]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
567 combined_idx = buddy_idx & page_idx;
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 struct page *higher_page, *higher_buddy;
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = page + (buddy_idx - combined_idx);
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 zone->free_area[order].nr_free++;
598 }
599
600 /*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605 static inline void free_page_mlock(struct page *page)
606 {
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610
611 static inline int free_pages_check(struct page *page)
612 {
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
615 (atomic_read(&page->_count) != 0) |
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
618 bad_page(page);
619 return 1;
620 }
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 } while (--to_free && --batch_free && !list_empty(list));
678 }
679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 spin_unlock(&zone->lock);
693 }
694
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 int i;
698 int bad = 0;
699
700 trace_mm_page_free(page, order);
701 kmemcheck_free_shadow(page, order);
702
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
707 if (bad)
708 return false;
709
710 if (!PageHighMem(page)) {
711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
715 arch_free_page(page, order);
716 kernel_map_pages(page, 1 << order, 0);
717
718 return true;
719 }
720
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
729 local_irq_save(flags);
730 if (unlikely(wasMlocked))
731 free_page_mlock(page);
732 __count_vm_events(PGFREE, 1 << order);
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
735 local_irq_restore(flags);
736 }
737
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
742
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
751 }
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
755 }
756
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775
776 /*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
790 static inline void expand(struct zone *zone, struct page *page,
791 int low, int high, struct free_area *area,
792 int migratetype)
793 {
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
800 VM_BUG_ON(bad_range(zone, &page[size]));
801
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817 #endif
818 list_add(&page[size].lru, &area->free_list[migratetype]);
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
822 }
823
824 /*
825 * This page is about to be returned from the page allocator
826 */
827 static inline int check_new_page(struct page *page)
828 {
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
831 (atomic_read(&page->_count) != 0) |
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
834 bad_page(page);
835 return 1;
836 }
837 return 0;
838 }
839
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
849
850 set_page_private(page, 0);
851 set_page_refcounted(page);
852
853 arch_alloc_page(page, order);
854 kernel_map_pages(page, 1 << order, 1);
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
862 return 0;
863 }
864
865 /*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 int migratetype)
872 {
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893 }
894
895
896 /*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908 #endif
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
911 };
912
913 /*
914 * Move the free pages in a range to the free lists of the requested type.
915 * Note that start_page and end_pages are not aligned on a pageblock
916 * boundary. If alignment is required, use move_freepages_block()
917 */
918 static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
921 {
922 struct page *page;
923 unsigned long order;
924 int pages_moved = 0;
925
926 #ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
932 * grouping pages by mobility
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936
937 for (page = start_page; page <= end_page;) {
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
954 page += 1 << order;
955 pages_moved += 1 << order;
956 }
957
958 return pages_moved;
959 }
960
961 int move_freepages_block(struct zone *zone, struct page *page,
962 int migratetype)
963 {
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 start_page = pfn_to_page(start_pfn);
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980 }
981
982 static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984 {
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991 }
992
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
1005 for (i = 0;; i++) {
1006 migratetype = fallbacks[start_migratetype][i];
1007
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
1010 break;
1011
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
1021 * If breaking a large block of pages, move all free
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
1024 * aggressive about taking ownership of free pages
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
1031 */
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
1046 migratetype = start_migratetype;
1047 }
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
1052
1053 /* Take ownership for orders >= pageblock_order */
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
1056 change_pageblock_range(page, current_order,
1057 start_migratetype);
1058
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
1066 return page;
1067 }
1068 }
1069
1070 return NULL;
1071 }
1072
1073 /*
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1079 {
1080 struct page *page;
1081
1082 retry_reserve:
1083 page = __rmqueue_smallest(zone, order, migratetype);
1084
1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 page = __rmqueue_fallback(zone, order, migratetype);
1087
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 return page;
1101 }
1102
1103 /*
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 unsigned long count, struct list_head *list,
1110 int migratetype, int cold)
1111 {
1112 int mt = migratetype, i;
1113
1114 spin_lock(&zone->lock);
1115 for (i = 0; i < count; ++i) {
1116 struct page *page = __rmqueue(zone, order, migratetype);
1117 if (unlikely(page == NULL))
1118 break;
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
1139 list = &page->lru;
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144 }
1145
1146 #ifdef CONFIG_NUMA
1147 /*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170 }
1171 #endif
1172
1173 /*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 }
1200
1201 /*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204 void drain_local_pages(void *arg)
1205 {
1206 drain_pages(smp_processor_id());
1207 }
1208
1209 /*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218 void drain_all_pages(void)
1219 {
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252
1253 #ifdef CONFIG_HIBERNATION
1254
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288
1289 /*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299 int wasMlocked = __TestClearPageMlocked(page);
1300
1301 if (!free_pages_prepare(page, 0))
1302 return;
1303
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1306 local_irq_save(flags);
1307 if (unlikely(wasMlocked))
1308 free_page_mlock(page);
1309 __count_vm_event(PGFREE);
1310
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 if (cold)
1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 else
1330 list_add(&page->lru, &pcp->lists[migratetype]);
1331 pcp->count++;
1332 if (pcp->count >= pcp->high) {
1333 free_pcppages_bulk(zone, pcp->batch, pcp);
1334 pcp->count -= pcp->batch;
1335 }
1336
1337 out:
1338 local_irq_restore(flags);
1339 }
1340
1341 /*
1342 * Free a list of 0-order pages
1343 */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
1349 trace_mm_page_free_batched(page, cold);
1350 free_hot_cold_page(page, cold);
1351 }
1352 }
1353
1354 /*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 int i;
1365
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
1368
1369 #ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
1380 }
1381
1382 /*
1383 * Similar to split_page except the page is already free. As this is only
1384 * being used for migration, the migratetype of the block also changes.
1385 * As this is called with interrupts disabled, the caller is responsible
1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387 * are enabled.
1388 *
1389 * Note: this is probably too low level an operation for use in drivers.
1390 * Please consult with lkml before using this in your driver.
1391 */
1392 int split_free_page(struct page *page)
1393 {
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413
1414 /* Split into individual pages */
1415 set_page_refcounted(page);
1416 split_page(page, order);
1417
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
1426 }
1427
1428 return 1 << order;
1429 }
1430
1431 /*
1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1434 * or two.
1435 */
1436 static inline
1437 struct page *buffered_rmqueue(struct zone *preferred_zone,
1438 struct zone *zone, int order, gfp_t gfp_flags,
1439 int migratetype)
1440 {
1441 unsigned long flags;
1442 struct page *page;
1443 int cold = !!(gfp_flags & __GFP_COLD);
1444
1445 again:
1446 if (likely(order == 0)) {
1447 struct per_cpu_pages *pcp;
1448 struct list_head *list;
1449
1450 local_irq_save(flags);
1451 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 list = &pcp->lists[migratetype];
1453 if (list_empty(list)) {
1454 pcp->count += rmqueue_bulk(zone, 0,
1455 pcp->batch, list,
1456 migratetype, cold);
1457 if (unlikely(list_empty(list)))
1458 goto failed;
1459 }
1460
1461 if (cold)
1462 page = list_entry(list->prev, struct page, lru);
1463 else
1464 page = list_entry(list->next, struct page, lru);
1465
1466 list_del(&page->lru);
1467 pcp->count--;
1468 } else {
1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 /*
1471 * __GFP_NOFAIL is not to be used in new code.
1472 *
1473 * All __GFP_NOFAIL callers should be fixed so that they
1474 * properly detect and handle allocation failures.
1475 *
1476 * We most definitely don't want callers attempting to
1477 * allocate greater than order-1 page units with
1478 * __GFP_NOFAIL.
1479 */
1480 WARN_ON_ONCE(order > 1);
1481 }
1482 spin_lock_irqsave(&zone->lock, flags);
1483 page = __rmqueue(zone, order, migratetype);
1484 spin_unlock(&zone->lock);
1485 if (!page)
1486 goto failed;
1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1488 }
1489
1490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1491 zone_statistics(preferred_zone, zone, gfp_flags);
1492 local_irq_restore(flags);
1493
1494 VM_BUG_ON(bad_range(zone, page));
1495 if (prep_new_page(page, order, gfp_flags))
1496 goto again;
1497 return page;
1498
1499 failed:
1500 local_irq_restore(flags);
1501 return NULL;
1502 }
1503
1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505 #define ALLOC_WMARK_MIN WMARK_MIN
1506 #define ALLOC_WMARK_LOW WMARK_LOW
1507 #define ALLOC_WMARK_HIGH WMARK_HIGH
1508 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1509
1510 /* Mask to get the watermark bits */
1511 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1512
1513 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1514 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1515 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1516
1517 #ifdef CONFIG_FAIL_PAGE_ALLOC
1518
1519 static struct {
1520 struct fault_attr attr;
1521
1522 u32 ignore_gfp_highmem;
1523 u32 ignore_gfp_wait;
1524 u32 min_order;
1525 } fail_page_alloc = {
1526 .attr = FAULT_ATTR_INITIALIZER,
1527 .ignore_gfp_wait = 1,
1528 .ignore_gfp_highmem = 1,
1529 .min_order = 1,
1530 };
1531
1532 static int __init setup_fail_page_alloc(char *str)
1533 {
1534 return setup_fault_attr(&fail_page_alloc.attr, str);
1535 }
1536 __setup("fail_page_alloc=", setup_fail_page_alloc);
1537
1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 {
1540 if (order < fail_page_alloc.min_order)
1541 return false;
1542 if (gfp_mask & __GFP_NOFAIL)
1543 return false;
1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1545 return false;
1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1547 return false;
1548
1549 return should_fail(&fail_page_alloc.attr, 1 << order);
1550 }
1551
1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553
1554 static int __init fail_page_alloc_debugfs(void)
1555 {
1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1557 struct dentry *dir;
1558
1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 &fail_page_alloc.attr);
1561 if (IS_ERR(dir))
1562 return PTR_ERR(dir);
1563
1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 &fail_page_alloc.ignore_gfp_wait))
1566 goto fail;
1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 &fail_page_alloc.ignore_gfp_highmem))
1569 goto fail;
1570 if (!debugfs_create_u32("min-order", mode, dir,
1571 &fail_page_alloc.min_order))
1572 goto fail;
1573
1574 return 0;
1575 fail:
1576 debugfs_remove_recursive(dir);
1577
1578 return -ENOMEM;
1579 }
1580
1581 late_initcall(fail_page_alloc_debugfs);
1582
1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584
1585 #else /* CONFIG_FAIL_PAGE_ALLOC */
1586
1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1588 {
1589 return false;
1590 }
1591
1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1593
1594 /*
1595 * Return true if free pages are above 'mark'. This takes into account the order
1596 * of the allocation.
1597 */
1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 int classzone_idx, int alloc_flags, long free_pages)
1600 {
1601 /* free_pages my go negative - that's OK */
1602 long min = mark;
1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1604 int o;
1605
1606 free_pages -= (1 << order) - 1;
1607 if (alloc_flags & ALLOC_HIGH)
1608 min -= min / 2;
1609 if (alloc_flags & ALLOC_HARDER)
1610 min -= min / 4;
1611
1612 if (free_pages <= min + lowmem_reserve)
1613 return false;
1614 for (o = 0; o < order; o++) {
1615 /* At the next order, this order's pages become unavailable */
1616 free_pages -= z->free_area[o].nr_free << o;
1617
1618 /* Require fewer higher order pages to be free */
1619 min >>= 1;
1620
1621 if (free_pages <= min)
1622 return false;
1623 }
1624 return true;
1625 }
1626
1627 #ifdef CONFIG_MEMORY_ISOLATION
1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629 {
1630 if (unlikely(zone->nr_pageblock_isolate))
1631 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 return 0;
1633 }
1634 #else
1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636 {
1637 return 0;
1638 }
1639 #endif
1640
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1643 {
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1646 }
1647
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1650 {
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655
1656 /*
1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1659 * sleep although it could do so. But this is more desirable for memory
1660 * hotplug than sleeping which can cause a livelock in the direct
1661 * reclaim path.
1662 */
1663 free_pages -= nr_zone_isolate_freepages(z);
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 free_pages);
1666 }
1667
1668 #ifdef CONFIG_NUMA
1669 /*
1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1671 * skip over zones that are not allowed by the cpuset, or that have
1672 * been recently (in last second) found to be nearly full. See further
1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1674 * that have to skip over a lot of full or unallowed zones.
1675 *
1676 * If the zonelist cache is present in the passed in zonelist, then
1677 * returns a pointer to the allowed node mask (either the current
1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1679 *
1680 * If the zonelist cache is not available for this zonelist, does
1681 * nothing and returns NULL.
1682 *
1683 * If the fullzones BITMAP in the zonelist cache is stale (more than
1684 * a second since last zap'd) then we zap it out (clear its bits.)
1685 *
1686 * We hold off even calling zlc_setup, until after we've checked the
1687 * first zone in the zonelist, on the theory that most allocations will
1688 * be satisfied from that first zone, so best to examine that zone as
1689 * quickly as we can.
1690 */
1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692 {
1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1694 nodemask_t *allowednodes; /* zonelist_cache approximation */
1695
1696 zlc = zonelist->zlcache_ptr;
1697 if (!zlc)
1698 return NULL;
1699
1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 zlc->last_full_zap = jiffies;
1703 }
1704
1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 &cpuset_current_mems_allowed :
1707 &node_states[N_HIGH_MEMORY];
1708 return allowednodes;
1709 }
1710
1711 /*
1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713 * if it is worth looking at further for free memory:
1714 * 1) Check that the zone isn't thought to be full (doesn't have its
1715 * bit set in the zonelist_cache fullzones BITMAP).
1716 * 2) Check that the zones node (obtained from the zonelist_cache
1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718 * Return true (non-zero) if zone is worth looking at further, or
1719 * else return false (zero) if it is not.
1720 *
1721 * This check -ignores- the distinction between various watermarks,
1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1723 * found to be full for any variation of these watermarks, it will
1724 * be considered full for up to one second by all requests, unless
1725 * we are so low on memory on all allowed nodes that we are forced
1726 * into the second scan of the zonelist.
1727 *
1728 * In the second scan we ignore this zonelist cache and exactly
1729 * apply the watermarks to all zones, even it is slower to do so.
1730 * We are low on memory in the second scan, and should leave no stone
1731 * unturned looking for a free page.
1732 */
1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1734 nodemask_t *allowednodes)
1735 {
1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1737 int i; /* index of *z in zonelist zones */
1738 int n; /* node that zone *z is on */
1739
1740 zlc = zonelist->zlcache_ptr;
1741 if (!zlc)
1742 return 1;
1743
1744 i = z - zonelist->_zonerefs;
1745 n = zlc->z_to_n[i];
1746
1747 /* This zone is worth trying if it is allowed but not full */
1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749 }
1750
1751 /*
1752 * Given 'z' scanning a zonelist, set the corresponding bit in
1753 * zlc->fullzones, so that subsequent attempts to allocate a page
1754 * from that zone don't waste time re-examining it.
1755 */
1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1757 {
1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1759 int i; /* index of *z in zonelist zones */
1760
1761 zlc = zonelist->zlcache_ptr;
1762 if (!zlc)
1763 return;
1764
1765 i = z - zonelist->_zonerefs;
1766
1767 set_bit(i, zlc->fullzones);
1768 }
1769
1770 /*
1771 * clear all zones full, called after direct reclaim makes progress so that
1772 * a zone that was recently full is not skipped over for up to a second
1773 */
1774 static void zlc_clear_zones_full(struct zonelist *zonelist)
1775 {
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783 }
1784
1785 #else /* CONFIG_NUMA */
1786
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 return NULL;
1790 }
1791
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 nodemask_t *allowednodes)
1794 {
1795 return 1;
1796 }
1797
1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1799 {
1800 }
1801
1802 static void zlc_clear_zones_full(struct zonelist *zonelist)
1803 {
1804 }
1805 #endif /* CONFIG_NUMA */
1806
1807 /*
1808 * get_page_from_freelist goes through the zonelist trying to allocate
1809 * a page.
1810 */
1811 static struct page *
1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1814 struct zone *preferred_zone, int migratetype)
1815 {
1816 struct zoneref *z;
1817 struct page *page = NULL;
1818 int classzone_idx;
1819 struct zone *zone;
1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 int zlc_active = 0; /* set if using zonelist_cache */
1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1823
1824 classzone_idx = zone_idx(preferred_zone);
1825 zonelist_scan:
1826 /*
1827 * Scan zonelist, looking for a zone with enough free.
1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 */
1830 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 high_zoneidx, nodemask) {
1832 if (NUMA_BUILD && zlc_active &&
1833 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 continue;
1835 if ((alloc_flags & ALLOC_CPUSET) &&
1836 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1837 continue;
1838 /*
1839 * When allocating a page cache page for writing, we
1840 * want to get it from a zone that is within its dirty
1841 * limit, such that no single zone holds more than its
1842 * proportional share of globally allowed dirty pages.
1843 * The dirty limits take into account the zone's
1844 * lowmem reserves and high watermark so that kswapd
1845 * should be able to balance it without having to
1846 * write pages from its LRU list.
1847 *
1848 * This may look like it could increase pressure on
1849 * lower zones by failing allocations in higher zones
1850 * before they are full. But the pages that do spill
1851 * over are limited as the lower zones are protected
1852 * by this very same mechanism. It should not become
1853 * a practical burden to them.
1854 *
1855 * XXX: For now, allow allocations to potentially
1856 * exceed the per-zone dirty limit in the slowpath
1857 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 * which is important when on a NUMA setup the allowed
1859 * zones are together not big enough to reach the
1860 * global limit. The proper fix for these situations
1861 * will require awareness of zones in the
1862 * dirty-throttling and the flusher threads.
1863 */
1864 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 goto this_zone_full;
1867
1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1870 unsigned long mark;
1871 int ret;
1872
1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1874 if (zone_watermark_ok(zone, order, mark,
1875 classzone_idx, alloc_flags))
1876 goto try_this_zone;
1877
1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 /*
1880 * we do zlc_setup if there are multiple nodes
1881 * and before considering the first zone allowed
1882 * by the cpuset.
1883 */
1884 allowednodes = zlc_setup(zonelist, alloc_flags);
1885 zlc_active = 1;
1886 did_zlc_setup = 1;
1887 }
1888
1889 if (zone_reclaim_mode == 0)
1890 goto this_zone_full;
1891
1892 /*
1893 * As we may have just activated ZLC, check if the first
1894 * eligible zone has failed zone_reclaim recently.
1895 */
1896 if (NUMA_BUILD && zlc_active &&
1897 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 continue;
1899
1900 ret = zone_reclaim(zone, gfp_mask, order);
1901 switch (ret) {
1902 case ZONE_RECLAIM_NOSCAN:
1903 /* did not scan */
1904 continue;
1905 case ZONE_RECLAIM_FULL:
1906 /* scanned but unreclaimable */
1907 continue;
1908 default:
1909 /* did we reclaim enough */
1910 if (!zone_watermark_ok(zone, order, mark,
1911 classzone_idx, alloc_flags))
1912 goto this_zone_full;
1913 }
1914 }
1915
1916 try_this_zone:
1917 page = buffered_rmqueue(preferred_zone, zone, order,
1918 gfp_mask, migratetype);
1919 if (page)
1920 break;
1921 this_zone_full:
1922 if (NUMA_BUILD)
1923 zlc_mark_zone_full(zonelist, z);
1924 }
1925
1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 /* Disable zlc cache for second zonelist scan */
1928 zlc_active = 0;
1929 goto zonelist_scan;
1930 }
1931 return page;
1932 }
1933
1934 /*
1935 * Large machines with many possible nodes should not always dump per-node
1936 * meminfo in irq context.
1937 */
1938 static inline bool should_suppress_show_mem(void)
1939 {
1940 bool ret = false;
1941
1942 #if NODES_SHIFT > 8
1943 ret = in_interrupt();
1944 #endif
1945 return ret;
1946 }
1947
1948 static DEFINE_RATELIMIT_STATE(nopage_rs,
1949 DEFAULT_RATELIMIT_INTERVAL,
1950 DEFAULT_RATELIMIT_BURST);
1951
1952 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1953 {
1954 unsigned int filter = SHOW_MEM_FILTER_NODES;
1955
1956 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1957 debug_guardpage_minorder() > 0)
1958 return;
1959
1960 /*
1961 * This documents exceptions given to allocations in certain
1962 * contexts that are allowed to allocate outside current's set
1963 * of allowed nodes.
1964 */
1965 if (!(gfp_mask & __GFP_NOMEMALLOC))
1966 if (test_thread_flag(TIF_MEMDIE) ||
1967 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1968 filter &= ~SHOW_MEM_FILTER_NODES;
1969 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1970 filter &= ~SHOW_MEM_FILTER_NODES;
1971
1972 if (fmt) {
1973 struct va_format vaf;
1974 va_list args;
1975
1976 va_start(args, fmt);
1977
1978 vaf.fmt = fmt;
1979 vaf.va = &args;
1980
1981 pr_warn("%pV", &vaf);
1982
1983 va_end(args);
1984 }
1985
1986 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1987 current->comm, order, gfp_mask);
1988
1989 dump_stack();
1990 if (!should_suppress_show_mem())
1991 show_mem(filter);
1992 }
1993
1994 static inline int
1995 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1996 unsigned long did_some_progress,
1997 unsigned long pages_reclaimed)
1998 {
1999 /* Do not loop if specifically requested */
2000 if (gfp_mask & __GFP_NORETRY)
2001 return 0;
2002
2003 /* Always retry if specifically requested */
2004 if (gfp_mask & __GFP_NOFAIL)
2005 return 1;
2006
2007 /*
2008 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2009 * making forward progress without invoking OOM. Suspend also disables
2010 * storage devices so kswapd will not help. Bail if we are suspending.
2011 */
2012 if (!did_some_progress && pm_suspended_storage())
2013 return 0;
2014
2015 /*
2016 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2017 * means __GFP_NOFAIL, but that may not be true in other
2018 * implementations.
2019 */
2020 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2021 return 1;
2022
2023 /*
2024 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2025 * specified, then we retry until we no longer reclaim any pages
2026 * (above), or we've reclaimed an order of pages at least as
2027 * large as the allocation's order. In both cases, if the
2028 * allocation still fails, we stop retrying.
2029 */
2030 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2031 return 1;
2032
2033 return 0;
2034 }
2035
2036 static inline struct page *
2037 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2038 struct zonelist *zonelist, enum zone_type high_zoneidx,
2039 nodemask_t *nodemask, struct zone *preferred_zone,
2040 int migratetype)
2041 {
2042 struct page *page;
2043
2044 /* Acquire the OOM killer lock for the zones in zonelist */
2045 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2046 schedule_timeout_uninterruptible(1);
2047 return NULL;
2048 }
2049
2050 /*
2051 * Go through the zonelist yet one more time, keep very high watermark
2052 * here, this is only to catch a parallel oom killing, we must fail if
2053 * we're still under heavy pressure.
2054 */
2055 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2056 order, zonelist, high_zoneidx,
2057 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2058 preferred_zone, migratetype);
2059 if (page)
2060 goto out;
2061
2062 if (!(gfp_mask & __GFP_NOFAIL)) {
2063 /* The OOM killer will not help higher order allocs */
2064 if (order > PAGE_ALLOC_COSTLY_ORDER)
2065 goto out;
2066 /* The OOM killer does not needlessly kill tasks for lowmem */
2067 if (high_zoneidx < ZONE_NORMAL)
2068 goto out;
2069 /*
2070 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2071 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2072 * The caller should handle page allocation failure by itself if
2073 * it specifies __GFP_THISNODE.
2074 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2075 */
2076 if (gfp_mask & __GFP_THISNODE)
2077 goto out;
2078 }
2079 /* Exhausted what can be done so it's blamo time */
2080 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2081
2082 out:
2083 clear_zonelist_oom(zonelist, gfp_mask);
2084 return page;
2085 }
2086
2087 #ifdef CONFIG_COMPACTION
2088 /* Try memory compaction for high-order allocations before reclaim */
2089 static struct page *
2090 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2091 struct zonelist *zonelist, enum zone_type high_zoneidx,
2092 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2093 int migratetype, bool sync_migration,
2094 bool *deferred_compaction,
2095 unsigned long *did_some_progress)
2096 {
2097 struct page *page;
2098
2099 if (!order)
2100 return NULL;
2101
2102 if (compaction_deferred(preferred_zone, order)) {
2103 *deferred_compaction = true;
2104 return NULL;
2105 }
2106
2107 current->flags |= PF_MEMALLOC;
2108 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2109 nodemask, sync_migration);
2110 current->flags &= ~PF_MEMALLOC;
2111 if (*did_some_progress != COMPACT_SKIPPED) {
2112
2113 /* Page migration frees to the PCP lists but we want merging */
2114 drain_pages(get_cpu());
2115 put_cpu();
2116
2117 page = get_page_from_freelist(gfp_mask, nodemask,
2118 order, zonelist, high_zoneidx,
2119 alloc_flags & ~ALLOC_NO_WATERMARKS,
2120 preferred_zone, migratetype);
2121 if (page) {
2122 preferred_zone->compact_considered = 0;
2123 preferred_zone->compact_defer_shift = 0;
2124 if (order >= preferred_zone->compact_order_failed)
2125 preferred_zone->compact_order_failed = order + 1;
2126 count_vm_event(COMPACTSUCCESS);
2127 return page;
2128 }
2129
2130 /*
2131 * It's bad if compaction run occurs and fails.
2132 * The most likely reason is that pages exist,
2133 * but not enough to satisfy watermarks.
2134 */
2135 count_vm_event(COMPACTFAIL);
2136
2137 /*
2138 * As async compaction considers a subset of pageblocks, only
2139 * defer if the failure was a sync compaction failure.
2140 */
2141 if (sync_migration)
2142 defer_compaction(preferred_zone, order);
2143
2144 cond_resched();
2145 }
2146
2147 return NULL;
2148 }
2149 #else
2150 static inline struct page *
2151 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2154 int migratetype, bool sync_migration,
2155 bool *deferred_compaction,
2156 unsigned long *did_some_progress)
2157 {
2158 return NULL;
2159 }
2160 #endif /* CONFIG_COMPACTION */
2161
2162 /* Perform direct synchronous page reclaim */
2163 static int
2164 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2165 nodemask_t *nodemask)
2166 {
2167 struct reclaim_state reclaim_state;
2168 int progress;
2169
2170 cond_resched();
2171
2172 /* We now go into synchronous reclaim */
2173 cpuset_memory_pressure_bump();
2174 current->flags |= PF_MEMALLOC;
2175 lockdep_set_current_reclaim_state(gfp_mask);
2176 reclaim_state.reclaimed_slab = 0;
2177 current->reclaim_state = &reclaim_state;
2178
2179 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2180
2181 current->reclaim_state = NULL;
2182 lockdep_clear_current_reclaim_state();
2183 current->flags &= ~PF_MEMALLOC;
2184
2185 cond_resched();
2186
2187 return progress;
2188 }
2189
2190 /* The really slow allocator path where we enter direct reclaim */
2191 static inline struct page *
2192 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2193 struct zonelist *zonelist, enum zone_type high_zoneidx,
2194 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2195 int migratetype, unsigned long *did_some_progress)
2196 {
2197 struct page *page = NULL;
2198 bool drained = false;
2199
2200 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2201 nodemask);
2202 if (unlikely(!(*did_some_progress)))
2203 return NULL;
2204
2205 /* After successful reclaim, reconsider all zones for allocation */
2206 if (NUMA_BUILD)
2207 zlc_clear_zones_full(zonelist);
2208
2209 retry:
2210 page = get_page_from_freelist(gfp_mask, nodemask, order,
2211 zonelist, high_zoneidx,
2212 alloc_flags & ~ALLOC_NO_WATERMARKS,
2213 preferred_zone, migratetype);
2214
2215 /*
2216 * If an allocation failed after direct reclaim, it could be because
2217 * pages are pinned on the per-cpu lists. Drain them and try again
2218 */
2219 if (!page && !drained) {
2220 drain_all_pages();
2221 drained = true;
2222 goto retry;
2223 }
2224
2225 return page;
2226 }
2227
2228 /*
2229 * This is called in the allocator slow-path if the allocation request is of
2230 * sufficient urgency to ignore watermarks and take other desperate measures
2231 */
2232 static inline struct page *
2233 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2234 struct zonelist *zonelist, enum zone_type high_zoneidx,
2235 nodemask_t *nodemask, struct zone *preferred_zone,
2236 int migratetype)
2237 {
2238 struct page *page;
2239
2240 do {
2241 page = get_page_from_freelist(gfp_mask, nodemask, order,
2242 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2243 preferred_zone, migratetype);
2244
2245 if (!page && gfp_mask & __GFP_NOFAIL)
2246 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2247 } while (!page && (gfp_mask & __GFP_NOFAIL));
2248
2249 return page;
2250 }
2251
2252 static inline
2253 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2254 enum zone_type high_zoneidx,
2255 enum zone_type classzone_idx)
2256 {
2257 struct zoneref *z;
2258 struct zone *zone;
2259
2260 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2261 wakeup_kswapd(zone, order, classzone_idx);
2262 }
2263
2264 static inline int
2265 gfp_to_alloc_flags(gfp_t gfp_mask)
2266 {
2267 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2268 const gfp_t wait = gfp_mask & __GFP_WAIT;
2269
2270 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2271 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2272
2273 /*
2274 * The caller may dip into page reserves a bit more if the caller
2275 * cannot run direct reclaim, or if the caller has realtime scheduling
2276 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2277 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2278 */
2279 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2280
2281 if (!wait) {
2282 /*
2283 * Not worth trying to allocate harder for
2284 * __GFP_NOMEMALLOC even if it can't schedule.
2285 */
2286 if (!(gfp_mask & __GFP_NOMEMALLOC))
2287 alloc_flags |= ALLOC_HARDER;
2288 /*
2289 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2290 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2291 */
2292 alloc_flags &= ~ALLOC_CPUSET;
2293 } else if (unlikely(rt_task(current)) && !in_interrupt())
2294 alloc_flags |= ALLOC_HARDER;
2295
2296 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2297 if (gfp_mask & __GFP_MEMALLOC)
2298 alloc_flags |= ALLOC_NO_WATERMARKS;
2299 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2300 alloc_flags |= ALLOC_NO_WATERMARKS;
2301 else if (!in_interrupt() &&
2302 ((current->flags & PF_MEMALLOC) ||
2303 unlikely(test_thread_flag(TIF_MEMDIE))))
2304 alloc_flags |= ALLOC_NO_WATERMARKS;
2305 }
2306
2307 return alloc_flags;
2308 }
2309
2310 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2311 {
2312 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2313 }
2314
2315 static inline struct page *
2316 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2317 struct zonelist *zonelist, enum zone_type high_zoneidx,
2318 nodemask_t *nodemask, struct zone *preferred_zone,
2319 int migratetype)
2320 {
2321 const gfp_t wait = gfp_mask & __GFP_WAIT;
2322 struct page *page = NULL;
2323 int alloc_flags;
2324 unsigned long pages_reclaimed = 0;
2325 unsigned long did_some_progress;
2326 bool sync_migration = false;
2327 bool deferred_compaction = false;
2328
2329 /*
2330 * In the slowpath, we sanity check order to avoid ever trying to
2331 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2332 * be using allocators in order of preference for an area that is
2333 * too large.
2334 */
2335 if (order >= MAX_ORDER) {
2336 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2337 return NULL;
2338 }
2339
2340 /*
2341 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2342 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2343 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2344 * using a larger set of nodes after it has established that the
2345 * allowed per node queues are empty and that nodes are
2346 * over allocated.
2347 */
2348 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2349 goto nopage;
2350
2351 restart:
2352 if (!(gfp_mask & __GFP_NO_KSWAPD))
2353 wake_all_kswapd(order, zonelist, high_zoneidx,
2354 zone_idx(preferred_zone));
2355
2356 /*
2357 * OK, we're below the kswapd watermark and have kicked background
2358 * reclaim. Now things get more complex, so set up alloc_flags according
2359 * to how we want to proceed.
2360 */
2361 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2362
2363 /*
2364 * Find the true preferred zone if the allocation is unconstrained by
2365 * cpusets.
2366 */
2367 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2368 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2369 &preferred_zone);
2370
2371 rebalance:
2372 /* This is the last chance, in general, before the goto nopage. */
2373 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2374 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2375 preferred_zone, migratetype);
2376 if (page)
2377 goto got_pg;
2378
2379 /* Allocate without watermarks if the context allows */
2380 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2381 /*
2382 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2383 * the allocation is high priority and these type of
2384 * allocations are system rather than user orientated
2385 */
2386 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2387
2388 page = __alloc_pages_high_priority(gfp_mask, order,
2389 zonelist, high_zoneidx, nodemask,
2390 preferred_zone, migratetype);
2391 if (page) {
2392 /*
2393 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2394 * necessary to allocate the page. The expectation is
2395 * that the caller is taking steps that will free more
2396 * memory. The caller should avoid the page being used
2397 * for !PFMEMALLOC purposes.
2398 */
2399 page->pfmemalloc = true;
2400 goto got_pg;
2401 }
2402 }
2403
2404 /* Atomic allocations - we can't balance anything */
2405 if (!wait)
2406 goto nopage;
2407
2408 /* Avoid recursion of direct reclaim */
2409 if (current->flags & PF_MEMALLOC)
2410 goto nopage;
2411
2412 /* Avoid allocations with no watermarks from looping endlessly */
2413 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2414 goto nopage;
2415
2416 /*
2417 * Try direct compaction. The first pass is asynchronous. Subsequent
2418 * attempts after direct reclaim are synchronous
2419 */
2420 page = __alloc_pages_direct_compact(gfp_mask, order,
2421 zonelist, high_zoneidx,
2422 nodemask,
2423 alloc_flags, preferred_zone,
2424 migratetype, sync_migration,
2425 &deferred_compaction,
2426 &did_some_progress);
2427 if (page)
2428 goto got_pg;
2429 sync_migration = true;
2430
2431 /*
2432 * If compaction is deferred for high-order allocations, it is because
2433 * sync compaction recently failed. In this is the case and the caller
2434 * has requested the system not be heavily disrupted, fail the
2435 * allocation now instead of entering direct reclaim
2436 */
2437 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2438 goto nopage;
2439
2440 /* Try direct reclaim and then allocating */
2441 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2442 zonelist, high_zoneidx,
2443 nodemask,
2444 alloc_flags, preferred_zone,
2445 migratetype, &did_some_progress);
2446 if (page)
2447 goto got_pg;
2448
2449 /*
2450 * If we failed to make any progress reclaiming, then we are
2451 * running out of options and have to consider going OOM
2452 */
2453 if (!did_some_progress) {
2454 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2455 if (oom_killer_disabled)
2456 goto nopage;
2457 /* Coredumps can quickly deplete all memory reserves */
2458 if ((current->flags & PF_DUMPCORE) &&
2459 !(gfp_mask & __GFP_NOFAIL))
2460 goto nopage;
2461 page = __alloc_pages_may_oom(gfp_mask, order,
2462 zonelist, high_zoneidx,
2463 nodemask, preferred_zone,
2464 migratetype);
2465 if (page)
2466 goto got_pg;
2467
2468 if (!(gfp_mask & __GFP_NOFAIL)) {
2469 /*
2470 * The oom killer is not called for high-order
2471 * allocations that may fail, so if no progress
2472 * is being made, there are no other options and
2473 * retrying is unlikely to help.
2474 */
2475 if (order > PAGE_ALLOC_COSTLY_ORDER)
2476 goto nopage;
2477 /*
2478 * The oom killer is not called for lowmem
2479 * allocations to prevent needlessly killing
2480 * innocent tasks.
2481 */
2482 if (high_zoneidx < ZONE_NORMAL)
2483 goto nopage;
2484 }
2485
2486 goto restart;
2487 }
2488 }
2489
2490 /* Check if we should retry the allocation */
2491 pages_reclaimed += did_some_progress;
2492 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2493 pages_reclaimed)) {
2494 /* Wait for some write requests to complete then retry */
2495 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2496 goto rebalance;
2497 } else {
2498 /*
2499 * High-order allocations do not necessarily loop after
2500 * direct reclaim and reclaim/compaction depends on compaction
2501 * being called after reclaim so call directly if necessary
2502 */
2503 page = __alloc_pages_direct_compact(gfp_mask, order,
2504 zonelist, high_zoneidx,
2505 nodemask,
2506 alloc_flags, preferred_zone,
2507 migratetype, sync_migration,
2508 &deferred_compaction,
2509 &did_some_progress);
2510 if (page)
2511 goto got_pg;
2512 }
2513
2514 nopage:
2515 warn_alloc_failed(gfp_mask, order, NULL);
2516 return page;
2517 got_pg:
2518 if (kmemcheck_enabled)
2519 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2520
2521 return page;
2522 }
2523
2524 /*
2525 * This is the 'heart' of the zoned buddy allocator.
2526 */
2527 struct page *
2528 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2529 struct zonelist *zonelist, nodemask_t *nodemask)
2530 {
2531 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2532 struct zone *preferred_zone;
2533 struct page *page = NULL;
2534 int migratetype = allocflags_to_migratetype(gfp_mask);
2535 unsigned int cpuset_mems_cookie;
2536
2537 gfp_mask &= gfp_allowed_mask;
2538
2539 lockdep_trace_alloc(gfp_mask);
2540
2541 might_sleep_if(gfp_mask & __GFP_WAIT);
2542
2543 if (should_fail_alloc_page(gfp_mask, order))
2544 return NULL;
2545
2546 /*
2547 * Check the zones suitable for the gfp_mask contain at least one
2548 * valid zone. It's possible to have an empty zonelist as a result
2549 * of GFP_THISNODE and a memoryless node
2550 */
2551 if (unlikely(!zonelist->_zonerefs->zone))
2552 return NULL;
2553
2554 retry_cpuset:
2555 cpuset_mems_cookie = get_mems_allowed();
2556
2557 /* The preferred zone is used for statistics later */
2558 first_zones_zonelist(zonelist, high_zoneidx,
2559 nodemask ? : &cpuset_current_mems_allowed,
2560 &preferred_zone);
2561 if (!preferred_zone)
2562 goto out;
2563
2564 /* First allocation attempt */
2565 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2566 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2567 preferred_zone, migratetype);
2568 if (unlikely(!page))
2569 page = __alloc_pages_slowpath(gfp_mask, order,
2570 zonelist, high_zoneidx, nodemask,
2571 preferred_zone, migratetype);
2572 else
2573 page->pfmemalloc = false;
2574
2575 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2576
2577 out:
2578 /*
2579 * When updating a task's mems_allowed, it is possible to race with
2580 * parallel threads in such a way that an allocation can fail while
2581 * the mask is being updated. If a page allocation is about to fail,
2582 * check if the cpuset changed during allocation and if so, retry.
2583 */
2584 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2585 goto retry_cpuset;
2586
2587 return page;
2588 }
2589 EXPORT_SYMBOL(__alloc_pages_nodemask);
2590
2591 /*
2592 * Common helper functions.
2593 */
2594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2595 {
2596 struct page *page;
2597
2598 /*
2599 * __get_free_pages() returns a 32-bit address, which cannot represent
2600 * a highmem page
2601 */
2602 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2603
2604 page = alloc_pages(gfp_mask, order);
2605 if (!page)
2606 return 0;
2607 return (unsigned long) page_address(page);
2608 }
2609 EXPORT_SYMBOL(__get_free_pages);
2610
2611 unsigned long get_zeroed_page(gfp_t gfp_mask)
2612 {
2613 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2614 }
2615 EXPORT_SYMBOL(get_zeroed_page);
2616
2617 void __free_pages(struct page *page, unsigned int order)
2618 {
2619 if (put_page_testzero(page)) {
2620 if (order == 0)
2621 free_hot_cold_page(page, 0);
2622 else
2623 __free_pages_ok(page, order);
2624 }
2625 }
2626
2627 EXPORT_SYMBOL(__free_pages);
2628
2629 void free_pages(unsigned long addr, unsigned int order)
2630 {
2631 if (addr != 0) {
2632 VM_BUG_ON(!virt_addr_valid((void *)addr));
2633 __free_pages(virt_to_page((void *)addr), order);
2634 }
2635 }
2636
2637 EXPORT_SYMBOL(free_pages);
2638
2639 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2640 {
2641 if (addr) {
2642 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2643 unsigned long used = addr + PAGE_ALIGN(size);
2644
2645 split_page(virt_to_page((void *)addr), order);
2646 while (used < alloc_end) {
2647 free_page(used);
2648 used += PAGE_SIZE;
2649 }
2650 }
2651 return (void *)addr;
2652 }
2653
2654 /**
2655 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2656 * @size: the number of bytes to allocate
2657 * @gfp_mask: GFP flags for the allocation
2658 *
2659 * This function is similar to alloc_pages(), except that it allocates the
2660 * minimum number of pages to satisfy the request. alloc_pages() can only
2661 * allocate memory in power-of-two pages.
2662 *
2663 * This function is also limited by MAX_ORDER.
2664 *
2665 * Memory allocated by this function must be released by free_pages_exact().
2666 */
2667 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2668 {
2669 unsigned int order = get_order(size);
2670 unsigned long addr;
2671
2672 addr = __get_free_pages(gfp_mask, order);
2673 return make_alloc_exact(addr, order, size);
2674 }
2675 EXPORT_SYMBOL(alloc_pages_exact);
2676
2677 /**
2678 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2679 * pages on a node.
2680 * @nid: the preferred node ID where memory should be allocated
2681 * @size: the number of bytes to allocate
2682 * @gfp_mask: GFP flags for the allocation
2683 *
2684 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2685 * back.
2686 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2687 * but is not exact.
2688 */
2689 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2690 {
2691 unsigned order = get_order(size);
2692 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2693 if (!p)
2694 return NULL;
2695 return make_alloc_exact((unsigned long)page_address(p), order, size);
2696 }
2697 EXPORT_SYMBOL(alloc_pages_exact_nid);
2698
2699 /**
2700 * free_pages_exact - release memory allocated via alloc_pages_exact()
2701 * @virt: the value returned by alloc_pages_exact.
2702 * @size: size of allocation, same value as passed to alloc_pages_exact().
2703 *
2704 * Release the memory allocated by a previous call to alloc_pages_exact.
2705 */
2706 void free_pages_exact(void *virt, size_t size)
2707 {
2708 unsigned long addr = (unsigned long)virt;
2709 unsigned long end = addr + PAGE_ALIGN(size);
2710
2711 while (addr < end) {
2712 free_page(addr);
2713 addr += PAGE_SIZE;
2714 }
2715 }
2716 EXPORT_SYMBOL(free_pages_exact);
2717
2718 static unsigned int nr_free_zone_pages(int offset)
2719 {
2720 struct zoneref *z;
2721 struct zone *zone;
2722
2723 /* Just pick one node, since fallback list is circular */
2724 unsigned int sum = 0;
2725
2726 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2727
2728 for_each_zone_zonelist(zone, z, zonelist, offset) {
2729 unsigned long size = zone->present_pages;
2730 unsigned long high = high_wmark_pages(zone);
2731 if (size > high)
2732 sum += size - high;
2733 }
2734
2735 return sum;
2736 }
2737
2738 /*
2739 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2740 */
2741 unsigned int nr_free_buffer_pages(void)
2742 {
2743 return nr_free_zone_pages(gfp_zone(GFP_USER));
2744 }
2745 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2746
2747 /*
2748 * Amount of free RAM allocatable within all zones
2749 */
2750 unsigned int nr_free_pagecache_pages(void)
2751 {
2752 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2753 }
2754
2755 static inline void show_node(struct zone *zone)
2756 {
2757 if (NUMA_BUILD)
2758 printk("Node %d ", zone_to_nid(zone));
2759 }
2760
2761 void si_meminfo(struct sysinfo *val)
2762 {
2763 val->totalram = totalram_pages;
2764 val->sharedram = 0;
2765 val->freeram = global_page_state(NR_FREE_PAGES);
2766 val->bufferram = nr_blockdev_pages();
2767 val->totalhigh = totalhigh_pages;
2768 val->freehigh = nr_free_highpages();
2769 val->mem_unit = PAGE_SIZE;
2770 }
2771
2772 EXPORT_SYMBOL(si_meminfo);
2773
2774 #ifdef CONFIG_NUMA
2775 void si_meminfo_node(struct sysinfo *val, int nid)
2776 {
2777 pg_data_t *pgdat = NODE_DATA(nid);
2778
2779 val->totalram = pgdat->node_present_pages;
2780 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2781 #ifdef CONFIG_HIGHMEM
2782 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2783 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2784 NR_FREE_PAGES);
2785 #else
2786 val->totalhigh = 0;
2787 val->freehigh = 0;
2788 #endif
2789 val->mem_unit = PAGE_SIZE;
2790 }
2791 #endif
2792
2793 /*
2794 * Determine whether the node should be displayed or not, depending on whether
2795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2796 */
2797 bool skip_free_areas_node(unsigned int flags, int nid)
2798 {
2799 bool ret = false;
2800 unsigned int cpuset_mems_cookie;
2801
2802 if (!(flags & SHOW_MEM_FILTER_NODES))
2803 goto out;
2804
2805 do {
2806 cpuset_mems_cookie = get_mems_allowed();
2807 ret = !node_isset(nid, cpuset_current_mems_allowed);
2808 } while (!put_mems_allowed(cpuset_mems_cookie));
2809 out:
2810 return ret;
2811 }
2812
2813 #define K(x) ((x) << (PAGE_SHIFT-10))
2814
2815 /*
2816 * Show free area list (used inside shift_scroll-lock stuff)
2817 * We also calculate the percentage fragmentation. We do this by counting the
2818 * memory on each free list with the exception of the first item on the list.
2819 * Suppresses nodes that are not allowed by current's cpuset if
2820 * SHOW_MEM_FILTER_NODES is passed.
2821 */
2822 void show_free_areas(unsigned int filter)
2823 {
2824 int cpu;
2825 struct zone *zone;
2826
2827 for_each_populated_zone(zone) {
2828 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2829 continue;
2830 show_node(zone);
2831 printk("%s per-cpu:\n", zone->name);
2832
2833 for_each_online_cpu(cpu) {
2834 struct per_cpu_pageset *pageset;
2835
2836 pageset = per_cpu_ptr(zone->pageset, cpu);
2837
2838 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2839 cpu, pageset->pcp.high,
2840 pageset->pcp.batch, pageset->pcp.count);
2841 }
2842 }
2843
2844 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2845 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2846 " unevictable:%lu"
2847 " dirty:%lu writeback:%lu unstable:%lu\n"
2848 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2849 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2850 global_page_state(NR_ACTIVE_ANON),
2851 global_page_state(NR_INACTIVE_ANON),
2852 global_page_state(NR_ISOLATED_ANON),
2853 global_page_state(NR_ACTIVE_FILE),
2854 global_page_state(NR_INACTIVE_FILE),
2855 global_page_state(NR_ISOLATED_FILE),
2856 global_page_state(NR_UNEVICTABLE),
2857 global_page_state(NR_FILE_DIRTY),
2858 global_page_state(NR_WRITEBACK),
2859 global_page_state(NR_UNSTABLE_NFS),
2860 global_page_state(NR_FREE_PAGES),
2861 global_page_state(NR_SLAB_RECLAIMABLE),
2862 global_page_state(NR_SLAB_UNRECLAIMABLE),
2863 global_page_state(NR_FILE_MAPPED),
2864 global_page_state(NR_SHMEM),
2865 global_page_state(NR_PAGETABLE),
2866 global_page_state(NR_BOUNCE));
2867
2868 for_each_populated_zone(zone) {
2869 int i;
2870
2871 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2872 continue;
2873 show_node(zone);
2874 printk("%s"
2875 " free:%lukB"
2876 " min:%lukB"
2877 " low:%lukB"
2878 " high:%lukB"
2879 " active_anon:%lukB"
2880 " inactive_anon:%lukB"
2881 " active_file:%lukB"
2882 " inactive_file:%lukB"
2883 " unevictable:%lukB"
2884 " isolated(anon):%lukB"
2885 " isolated(file):%lukB"
2886 " present:%lukB"
2887 " mlocked:%lukB"
2888 " dirty:%lukB"
2889 " writeback:%lukB"
2890 " mapped:%lukB"
2891 " shmem:%lukB"
2892 " slab_reclaimable:%lukB"
2893 " slab_unreclaimable:%lukB"
2894 " kernel_stack:%lukB"
2895 " pagetables:%lukB"
2896 " unstable:%lukB"
2897 " bounce:%lukB"
2898 " writeback_tmp:%lukB"
2899 " pages_scanned:%lu"
2900 " all_unreclaimable? %s"
2901 "\n",
2902 zone->name,
2903 K(zone_page_state(zone, NR_FREE_PAGES)),
2904 K(min_wmark_pages(zone)),
2905 K(low_wmark_pages(zone)),
2906 K(high_wmark_pages(zone)),
2907 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2908 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2909 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2910 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2911 K(zone_page_state(zone, NR_UNEVICTABLE)),
2912 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2913 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2914 K(zone->present_pages),
2915 K(zone_page_state(zone, NR_MLOCK)),
2916 K(zone_page_state(zone, NR_FILE_DIRTY)),
2917 K(zone_page_state(zone, NR_WRITEBACK)),
2918 K(zone_page_state(zone, NR_FILE_MAPPED)),
2919 K(zone_page_state(zone, NR_SHMEM)),
2920 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2921 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2922 zone_page_state(zone, NR_KERNEL_STACK) *
2923 THREAD_SIZE / 1024,
2924 K(zone_page_state(zone, NR_PAGETABLE)),
2925 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2926 K(zone_page_state(zone, NR_BOUNCE)),
2927 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2928 zone->pages_scanned,
2929 (zone->all_unreclaimable ? "yes" : "no")
2930 );
2931 printk("lowmem_reserve[]:");
2932 for (i = 0; i < MAX_NR_ZONES; i++)
2933 printk(" %lu", zone->lowmem_reserve[i]);
2934 printk("\n");
2935 }
2936
2937 for_each_populated_zone(zone) {
2938 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2939
2940 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2941 continue;
2942 show_node(zone);
2943 printk("%s: ", zone->name);
2944
2945 spin_lock_irqsave(&zone->lock, flags);
2946 for (order = 0; order < MAX_ORDER; order++) {
2947 nr[order] = zone->free_area[order].nr_free;
2948 total += nr[order] << order;
2949 }
2950 spin_unlock_irqrestore(&zone->lock, flags);
2951 for (order = 0; order < MAX_ORDER; order++)
2952 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2953 printk("= %lukB\n", K(total));
2954 }
2955
2956 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2957
2958 show_swap_cache_info();
2959 }
2960
2961 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2962 {
2963 zoneref->zone = zone;
2964 zoneref->zone_idx = zone_idx(zone);
2965 }
2966
2967 /*
2968 * Builds allocation fallback zone lists.
2969 *
2970 * Add all populated zones of a node to the zonelist.
2971 */
2972 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2973 int nr_zones, enum zone_type zone_type)
2974 {
2975 struct zone *zone;
2976
2977 BUG_ON(zone_type >= MAX_NR_ZONES);
2978 zone_type++;
2979
2980 do {
2981 zone_type--;
2982 zone = pgdat->node_zones + zone_type;
2983 if (populated_zone(zone)) {
2984 zoneref_set_zone(zone,
2985 &zonelist->_zonerefs[nr_zones++]);
2986 check_highest_zone(zone_type);
2987 }
2988
2989 } while (zone_type);
2990 return nr_zones;
2991 }
2992
2993
2994 /*
2995 * zonelist_order:
2996 * 0 = automatic detection of better ordering.
2997 * 1 = order by ([node] distance, -zonetype)
2998 * 2 = order by (-zonetype, [node] distance)
2999 *
3000 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3001 * the same zonelist. So only NUMA can configure this param.
3002 */
3003 #define ZONELIST_ORDER_DEFAULT 0
3004 #define ZONELIST_ORDER_NODE 1
3005 #define ZONELIST_ORDER_ZONE 2
3006
3007 /* zonelist order in the kernel.
3008 * set_zonelist_order() will set this to NODE or ZONE.
3009 */
3010 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3011 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3012
3013
3014 #ifdef CONFIG_NUMA
3015 /* The value user specified ....changed by config */
3016 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3017 /* string for sysctl */
3018 #define NUMA_ZONELIST_ORDER_LEN 16
3019 char numa_zonelist_order[16] = "default";
3020
3021 /*
3022 * interface for configure zonelist ordering.
3023 * command line option "numa_zonelist_order"
3024 * = "[dD]efault - default, automatic configuration.
3025 * = "[nN]ode - order by node locality, then by zone within node
3026 * = "[zZ]one - order by zone, then by locality within zone
3027 */
3028
3029 static int __parse_numa_zonelist_order(char *s)
3030 {
3031 if (*s == 'd' || *s == 'D') {
3032 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3033 } else if (*s == 'n' || *s == 'N') {
3034 user_zonelist_order = ZONELIST_ORDER_NODE;
3035 } else if (*s == 'z' || *s == 'Z') {
3036 user_zonelist_order = ZONELIST_ORDER_ZONE;
3037 } else {
3038 printk(KERN_WARNING
3039 "Ignoring invalid numa_zonelist_order value: "
3040 "%s\n", s);
3041 return -EINVAL;
3042 }
3043 return 0;
3044 }
3045
3046 static __init int setup_numa_zonelist_order(char *s)
3047 {
3048 int ret;
3049
3050 if (!s)
3051 return 0;
3052
3053 ret = __parse_numa_zonelist_order(s);
3054 if (ret == 0)
3055 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3056
3057 return ret;
3058 }
3059 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3060
3061 /*
3062 * sysctl handler for numa_zonelist_order
3063 */
3064 int numa_zonelist_order_handler(ctl_table *table, int write,
3065 void __user *buffer, size_t *length,
3066 loff_t *ppos)
3067 {
3068 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3069 int ret;
3070 static DEFINE_MUTEX(zl_order_mutex);
3071
3072 mutex_lock(&zl_order_mutex);
3073 if (write)
3074 strcpy(saved_string, (char*)table->data);
3075 ret = proc_dostring(table, write, buffer, length, ppos);
3076 if (ret)
3077 goto out;
3078 if (write) {
3079 int oldval = user_zonelist_order;
3080 if (__parse_numa_zonelist_order((char*)table->data)) {
3081 /*
3082 * bogus value. restore saved string
3083 */
3084 strncpy((char*)table->data, saved_string,
3085 NUMA_ZONELIST_ORDER_LEN);
3086 user_zonelist_order = oldval;
3087 } else if (oldval != user_zonelist_order) {
3088 mutex_lock(&zonelists_mutex);
3089 build_all_zonelists(NULL, NULL);
3090 mutex_unlock(&zonelists_mutex);
3091 }
3092 }
3093 out:
3094 mutex_unlock(&zl_order_mutex);
3095 return ret;
3096 }
3097
3098
3099 #define MAX_NODE_LOAD (nr_online_nodes)
3100 static int node_load[MAX_NUMNODES];
3101
3102 /**
3103 * find_next_best_node - find the next node that should appear in a given node's fallback list
3104 * @node: node whose fallback list we're appending
3105 * @used_node_mask: nodemask_t of already used nodes
3106 *
3107 * We use a number of factors to determine which is the next node that should
3108 * appear on a given node's fallback list. The node should not have appeared
3109 * already in @node's fallback list, and it should be the next closest node
3110 * according to the distance array (which contains arbitrary distance values
3111 * from each node to each node in the system), and should also prefer nodes
3112 * with no CPUs, since presumably they'll have very little allocation pressure
3113 * on them otherwise.
3114 * It returns -1 if no node is found.
3115 */
3116 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3117 {
3118 int n, val;
3119 int min_val = INT_MAX;
3120 int best_node = -1;
3121 const struct cpumask *tmp = cpumask_of_node(0);
3122
3123 /* Use the local node if we haven't already */
3124 if (!node_isset(node, *used_node_mask)) {
3125 node_set(node, *used_node_mask);
3126 return node;
3127 }
3128
3129 for_each_node_state(n, N_HIGH_MEMORY) {
3130
3131 /* Don't want a node to appear more than once */
3132 if (node_isset(n, *used_node_mask))
3133 continue;
3134
3135 /* Use the distance array to find the distance */
3136 val = node_distance(node, n);
3137
3138 /* Penalize nodes under us ("prefer the next node") */
3139 val += (n < node);
3140
3141 /* Give preference to headless and unused nodes */
3142 tmp = cpumask_of_node(n);
3143 if (!cpumask_empty(tmp))
3144 val += PENALTY_FOR_NODE_WITH_CPUS;
3145
3146 /* Slight preference for less loaded node */
3147 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3148 val += node_load[n];
3149
3150 if (val < min_val) {
3151 min_val = val;
3152 best_node = n;
3153 }
3154 }
3155
3156 if (best_node >= 0)
3157 node_set(best_node, *used_node_mask);
3158
3159 return best_node;
3160 }
3161
3162
3163 /*
3164 * Build zonelists ordered by node and zones within node.
3165 * This results in maximum locality--normal zone overflows into local
3166 * DMA zone, if any--but risks exhausting DMA zone.
3167 */
3168 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3169 {
3170 int j;
3171 struct zonelist *zonelist;
3172
3173 zonelist = &pgdat->node_zonelists[0];
3174 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3175 ;
3176 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3177 MAX_NR_ZONES - 1);
3178 zonelist->_zonerefs[j].zone = NULL;
3179 zonelist->_zonerefs[j].zone_idx = 0;
3180 }
3181
3182 /*
3183 * Build gfp_thisnode zonelists
3184 */
3185 static void build_thisnode_zonelists(pg_data_t *pgdat)
3186 {
3187 int j;
3188 struct zonelist *zonelist;
3189
3190 zonelist = &pgdat->node_zonelists[1];
3191 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3192 zonelist->_zonerefs[j].zone = NULL;
3193 zonelist->_zonerefs[j].zone_idx = 0;
3194 }
3195
3196 /*
3197 * Build zonelists ordered by zone and nodes within zones.
3198 * This results in conserving DMA zone[s] until all Normal memory is
3199 * exhausted, but results in overflowing to remote node while memory
3200 * may still exist in local DMA zone.
3201 */
3202 static int node_order[MAX_NUMNODES];
3203
3204 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3205 {
3206 int pos, j, node;
3207 int zone_type; /* needs to be signed */
3208 struct zone *z;
3209 struct zonelist *zonelist;
3210
3211 zonelist = &pgdat->node_zonelists[0];
3212 pos = 0;
3213 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3214 for (j = 0; j < nr_nodes; j++) {
3215 node = node_order[j];
3216 z = &NODE_DATA(node)->node_zones[zone_type];
3217 if (populated_zone(z)) {
3218 zoneref_set_zone(z,
3219 &zonelist->_zonerefs[pos++]);
3220 check_highest_zone(zone_type);
3221 }
3222 }
3223 }
3224 zonelist->_zonerefs[pos].zone = NULL;
3225 zonelist->_zonerefs[pos].zone_idx = 0;
3226 }
3227
3228 static int default_zonelist_order(void)
3229 {
3230 int nid, zone_type;
3231 unsigned long low_kmem_size,total_size;
3232 struct zone *z;
3233 int average_size;
3234 /*
3235 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3236 * If they are really small and used heavily, the system can fall
3237 * into OOM very easily.
3238 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3239 */
3240 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3241 low_kmem_size = 0;
3242 total_size = 0;
3243 for_each_online_node(nid) {
3244 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3245 z = &NODE_DATA(nid)->node_zones[zone_type];
3246 if (populated_zone(z)) {
3247 if (zone_type < ZONE_NORMAL)
3248 low_kmem_size += z->present_pages;
3249 total_size += z->present_pages;
3250 } else if (zone_type == ZONE_NORMAL) {
3251 /*
3252 * If any node has only lowmem, then node order
3253 * is preferred to allow kernel allocations
3254 * locally; otherwise, they can easily infringe
3255 * on other nodes when there is an abundance of
3256 * lowmem available to allocate from.
3257 */
3258 return ZONELIST_ORDER_NODE;
3259 }
3260 }
3261 }
3262 if (!low_kmem_size || /* there are no DMA area. */
3263 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3264 return ZONELIST_ORDER_NODE;
3265 /*
3266 * look into each node's config.
3267 * If there is a node whose DMA/DMA32 memory is very big area on
3268 * local memory, NODE_ORDER may be suitable.
3269 */
3270 average_size = total_size /
3271 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3272 for_each_online_node(nid) {
3273 low_kmem_size = 0;
3274 total_size = 0;
3275 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3276 z = &NODE_DATA(nid)->node_zones[zone_type];
3277 if (populated_zone(z)) {
3278 if (zone_type < ZONE_NORMAL)
3279 low_kmem_size += z->present_pages;
3280 total_size += z->present_pages;
3281 }
3282 }
3283 if (low_kmem_size &&
3284 total_size > average_size && /* ignore small node */
3285 low_kmem_size > total_size * 70/100)
3286 return ZONELIST_ORDER_NODE;
3287 }
3288 return ZONELIST_ORDER_ZONE;
3289 }
3290
3291 static void set_zonelist_order(void)
3292 {
3293 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3294 current_zonelist_order = default_zonelist_order();
3295 else
3296 current_zonelist_order = user_zonelist_order;
3297 }
3298
3299 static void build_zonelists(pg_data_t *pgdat)
3300 {
3301 int j, node, load;
3302 enum zone_type i;
3303 nodemask_t used_mask;
3304 int local_node, prev_node;
3305 struct zonelist *zonelist;
3306 int order = current_zonelist_order;
3307
3308 /* initialize zonelists */
3309 for (i = 0; i < MAX_ZONELISTS; i++) {
3310 zonelist = pgdat->node_zonelists + i;
3311 zonelist->_zonerefs[0].zone = NULL;
3312 zonelist->_zonerefs[0].zone_idx = 0;
3313 }
3314
3315 /* NUMA-aware ordering of nodes */
3316 local_node = pgdat->node_id;
3317 load = nr_online_nodes;
3318 prev_node = local_node;
3319 nodes_clear(used_mask);
3320
3321 memset(node_order, 0, sizeof(node_order));
3322 j = 0;
3323
3324 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3325 int distance = node_distance(local_node, node);
3326
3327 /*
3328 * If another node is sufficiently far away then it is better
3329 * to reclaim pages in a zone before going off node.
3330 */
3331 if (distance > RECLAIM_DISTANCE)
3332 zone_reclaim_mode = 1;
3333
3334 /*
3335 * We don't want to pressure a particular node.
3336 * So adding penalty to the first node in same
3337 * distance group to make it round-robin.
3338 */
3339 if (distance != node_distance(local_node, prev_node))
3340 node_load[node] = load;
3341
3342 prev_node = node;
3343 load--;
3344 if (order == ZONELIST_ORDER_NODE)
3345 build_zonelists_in_node_order(pgdat, node);
3346 else
3347 node_order[j++] = node; /* remember order */
3348 }
3349
3350 if (order == ZONELIST_ORDER_ZONE) {
3351 /* calculate node order -- i.e., DMA last! */
3352 build_zonelists_in_zone_order(pgdat, j);
3353 }
3354
3355 build_thisnode_zonelists(pgdat);
3356 }
3357
3358 /* Construct the zonelist performance cache - see further mmzone.h */
3359 static void build_zonelist_cache(pg_data_t *pgdat)
3360 {
3361 struct zonelist *zonelist;
3362 struct zonelist_cache *zlc;
3363 struct zoneref *z;
3364
3365 zonelist = &pgdat->node_zonelists[0];
3366 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3367 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3368 for (z = zonelist->_zonerefs; z->zone; z++)
3369 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3370 }
3371
3372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3373 /*
3374 * Return node id of node used for "local" allocations.
3375 * I.e., first node id of first zone in arg node's generic zonelist.
3376 * Used for initializing percpu 'numa_mem', which is used primarily
3377 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3378 */
3379 int local_memory_node(int node)
3380 {
3381 struct zone *zone;
3382
3383 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3384 gfp_zone(GFP_KERNEL),
3385 NULL,
3386 &zone);
3387 return zone->node;
3388 }
3389 #endif
3390
3391 #else /* CONFIG_NUMA */
3392
3393 static void set_zonelist_order(void)
3394 {
3395 current_zonelist_order = ZONELIST_ORDER_ZONE;
3396 }
3397
3398 static void build_zonelists(pg_data_t *pgdat)
3399 {
3400 int node, local_node;
3401 enum zone_type j;
3402 struct zonelist *zonelist;
3403
3404 local_node = pgdat->node_id;
3405
3406 zonelist = &pgdat->node_zonelists[0];
3407 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3408
3409 /*
3410 * Now we build the zonelist so that it contains the zones
3411 * of all the other nodes.
3412 * We don't want to pressure a particular node, so when
3413 * building the zones for node N, we make sure that the
3414 * zones coming right after the local ones are those from
3415 * node N+1 (modulo N)
3416 */
3417 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3418 if (!node_online(node))
3419 continue;
3420 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3421 MAX_NR_ZONES - 1);
3422 }
3423 for (node = 0; node < local_node; node++) {
3424 if (!node_online(node))
3425 continue;
3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3427 MAX_NR_ZONES - 1);
3428 }
3429
3430 zonelist->_zonerefs[j].zone = NULL;
3431 zonelist->_zonerefs[j].zone_idx = 0;
3432 }
3433
3434 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3435 static void build_zonelist_cache(pg_data_t *pgdat)
3436 {
3437 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3438 }
3439
3440 #endif /* CONFIG_NUMA */
3441
3442 /*
3443 * Boot pageset table. One per cpu which is going to be used for all
3444 * zones and all nodes. The parameters will be set in such a way
3445 * that an item put on a list will immediately be handed over to
3446 * the buddy list. This is safe since pageset manipulation is done
3447 * with interrupts disabled.
3448 *
3449 * The boot_pagesets must be kept even after bootup is complete for
3450 * unused processors and/or zones. They do play a role for bootstrapping
3451 * hotplugged processors.
3452 *
3453 * zoneinfo_show() and maybe other functions do
3454 * not check if the processor is online before following the pageset pointer.
3455 * Other parts of the kernel may not check if the zone is available.
3456 */
3457 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3458 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3459 static void setup_zone_pageset(struct zone *zone);
3460
3461 /*
3462 * Global mutex to protect against size modification of zonelists
3463 * as well as to serialize pageset setup for the new populated zone.
3464 */
3465 DEFINE_MUTEX(zonelists_mutex);
3466
3467 /* return values int ....just for stop_machine() */
3468 static int __build_all_zonelists(void *data)
3469 {
3470 int nid;
3471 int cpu;
3472 pg_data_t *self = data;
3473
3474 #ifdef CONFIG_NUMA
3475 memset(node_load, 0, sizeof(node_load));
3476 #endif
3477
3478 if (self && !node_online(self->node_id)) {
3479 build_zonelists(self);
3480 build_zonelist_cache(self);
3481 }
3482
3483 for_each_online_node(nid) {
3484 pg_data_t *pgdat = NODE_DATA(nid);
3485
3486 build_zonelists(pgdat);
3487 build_zonelist_cache(pgdat);
3488 }
3489
3490 /*
3491 * Initialize the boot_pagesets that are going to be used
3492 * for bootstrapping processors. The real pagesets for
3493 * each zone will be allocated later when the per cpu
3494 * allocator is available.
3495 *
3496 * boot_pagesets are used also for bootstrapping offline
3497 * cpus if the system is already booted because the pagesets
3498 * are needed to initialize allocators on a specific cpu too.
3499 * F.e. the percpu allocator needs the page allocator which
3500 * needs the percpu allocator in order to allocate its pagesets
3501 * (a chicken-egg dilemma).
3502 */
3503 for_each_possible_cpu(cpu) {
3504 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3505
3506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3507 /*
3508 * We now know the "local memory node" for each node--
3509 * i.e., the node of the first zone in the generic zonelist.
3510 * Set up numa_mem percpu variable for on-line cpus. During
3511 * boot, only the boot cpu should be on-line; we'll init the
3512 * secondary cpus' numa_mem as they come on-line. During
3513 * node/memory hotplug, we'll fixup all on-line cpus.
3514 */
3515 if (cpu_online(cpu))
3516 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3517 #endif
3518 }
3519
3520 return 0;
3521 }
3522
3523 /*
3524 * Called with zonelists_mutex held always
3525 * unless system_state == SYSTEM_BOOTING.
3526 */
3527 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3528 {
3529 set_zonelist_order();
3530
3531 if (system_state == SYSTEM_BOOTING) {
3532 __build_all_zonelists(NULL);
3533 mminit_verify_zonelist();
3534 cpuset_init_current_mems_allowed();
3535 } else {
3536 /* we have to stop all cpus to guarantee there is no user
3537 of zonelist */
3538 #ifdef CONFIG_MEMORY_HOTPLUG
3539 if (zone)
3540 setup_zone_pageset(zone);
3541 #endif
3542 stop_machine(__build_all_zonelists, pgdat, NULL);
3543 /* cpuset refresh routine should be here */
3544 }
3545 vm_total_pages = nr_free_pagecache_pages();
3546 /*
3547 * Disable grouping by mobility if the number of pages in the
3548 * system is too low to allow the mechanism to work. It would be
3549 * more accurate, but expensive to check per-zone. This check is
3550 * made on memory-hotadd so a system can start with mobility
3551 * disabled and enable it later
3552 */
3553 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3554 page_group_by_mobility_disabled = 1;
3555 else
3556 page_group_by_mobility_disabled = 0;
3557
3558 printk("Built %i zonelists in %s order, mobility grouping %s. "
3559 "Total pages: %ld\n",
3560 nr_online_nodes,
3561 zonelist_order_name[current_zonelist_order],
3562 page_group_by_mobility_disabled ? "off" : "on",
3563 vm_total_pages);
3564 #ifdef CONFIG_NUMA
3565 printk("Policy zone: %s\n", zone_names[policy_zone]);
3566 #endif
3567 }
3568
3569 /*
3570 * Helper functions to size the waitqueue hash table.
3571 * Essentially these want to choose hash table sizes sufficiently
3572 * large so that collisions trying to wait on pages are rare.
3573 * But in fact, the number of active page waitqueues on typical
3574 * systems is ridiculously low, less than 200. So this is even
3575 * conservative, even though it seems large.
3576 *
3577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3578 * waitqueues, i.e. the size of the waitq table given the number of pages.
3579 */
3580 #define PAGES_PER_WAITQUEUE 256
3581
3582 #ifndef CONFIG_MEMORY_HOTPLUG
3583 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3584 {
3585 unsigned long size = 1;
3586
3587 pages /= PAGES_PER_WAITQUEUE;
3588
3589 while (size < pages)
3590 size <<= 1;
3591
3592 /*
3593 * Once we have dozens or even hundreds of threads sleeping
3594 * on IO we've got bigger problems than wait queue collision.
3595 * Limit the size of the wait table to a reasonable size.
3596 */
3597 size = min(size, 4096UL);
3598
3599 return max(size, 4UL);
3600 }
3601 #else
3602 /*
3603 * A zone's size might be changed by hot-add, so it is not possible to determine
3604 * a suitable size for its wait_table. So we use the maximum size now.
3605 *
3606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3607 *
3608 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3611 *
3612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3613 * or more by the traditional way. (See above). It equals:
3614 *
3615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3616 * ia64(16K page size) : = ( 8G + 4M)byte.
3617 * powerpc (64K page size) : = (32G +16M)byte.
3618 */
3619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3620 {
3621 return 4096UL;
3622 }
3623 #endif
3624
3625 /*
3626 * This is an integer logarithm so that shifts can be used later
3627 * to extract the more random high bits from the multiplicative
3628 * hash function before the remainder is taken.
3629 */
3630 static inline unsigned long wait_table_bits(unsigned long size)
3631 {
3632 return ffz(~size);
3633 }
3634
3635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3636
3637 /*
3638 * Check if a pageblock contains reserved pages
3639 */
3640 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3641 {
3642 unsigned long pfn;
3643
3644 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3645 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3646 return 1;
3647 }
3648 return 0;
3649 }
3650
3651 /*
3652 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3653 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3654 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3655 * higher will lead to a bigger reserve which will get freed as contiguous
3656 * blocks as reclaim kicks in
3657 */
3658 static void setup_zone_migrate_reserve(struct zone *zone)
3659 {
3660 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3661 struct page *page;
3662 unsigned long block_migratetype;
3663 int reserve;
3664
3665 /*
3666 * Get the start pfn, end pfn and the number of blocks to reserve
3667 * We have to be careful to be aligned to pageblock_nr_pages to
3668 * make sure that we always check pfn_valid for the first page in
3669 * the block.
3670 */
3671 start_pfn = zone->zone_start_pfn;
3672 end_pfn = start_pfn + zone->spanned_pages;
3673 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3674 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3675 pageblock_order;
3676
3677 /*
3678 * Reserve blocks are generally in place to help high-order atomic
3679 * allocations that are short-lived. A min_free_kbytes value that
3680 * would result in more than 2 reserve blocks for atomic allocations
3681 * is assumed to be in place to help anti-fragmentation for the
3682 * future allocation of hugepages at runtime.
3683 */
3684 reserve = min(2, reserve);
3685
3686 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3687 if (!pfn_valid(pfn))
3688 continue;
3689 page = pfn_to_page(pfn);
3690
3691 /* Watch out for overlapping nodes */
3692 if (page_to_nid(page) != zone_to_nid(zone))
3693 continue;
3694
3695 block_migratetype = get_pageblock_migratetype(page);
3696
3697 /* Only test what is necessary when the reserves are not met */
3698 if (reserve > 0) {
3699 /*
3700 * Blocks with reserved pages will never free, skip
3701 * them.
3702 */
3703 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3704 if (pageblock_is_reserved(pfn, block_end_pfn))
3705 continue;
3706
3707 /* If this block is reserved, account for it */
3708 if (block_migratetype == MIGRATE_RESERVE) {
3709 reserve--;
3710 continue;
3711 }
3712
3713 /* Suitable for reserving if this block is movable */
3714 if (block_migratetype == MIGRATE_MOVABLE) {
3715 set_pageblock_migratetype(page,
3716 MIGRATE_RESERVE);
3717 move_freepages_block(zone, page,
3718 MIGRATE_RESERVE);
3719 reserve--;
3720 continue;
3721 }
3722 }
3723
3724 /*
3725 * If the reserve is met and this is a previous reserved block,
3726 * take it back
3727 */
3728 if (block_migratetype == MIGRATE_RESERVE) {
3729 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3730 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3731 }
3732 }
3733 }
3734
3735 /*
3736 * Initially all pages are reserved - free ones are freed
3737 * up by free_all_bootmem() once the early boot process is
3738 * done. Non-atomic initialization, single-pass.
3739 */
3740 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3741 unsigned long start_pfn, enum memmap_context context)
3742 {
3743 struct page *page;
3744 unsigned long end_pfn = start_pfn + size;
3745 unsigned long pfn;
3746 struct zone *z;
3747
3748 if (highest_memmap_pfn < end_pfn - 1)
3749 highest_memmap_pfn = end_pfn - 1;
3750
3751 z = &NODE_DATA(nid)->node_zones[zone];
3752 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3753 /*
3754 * There can be holes in boot-time mem_map[]s
3755 * handed to this function. They do not
3756 * exist on hotplugged memory.
3757 */
3758 if (context == MEMMAP_EARLY) {
3759 if (!early_pfn_valid(pfn))
3760 continue;
3761 if (!early_pfn_in_nid(pfn, nid))
3762 continue;
3763 }
3764 page = pfn_to_page(pfn);
3765 set_page_links(page, zone, nid, pfn);
3766 mminit_verify_page_links(page, zone, nid, pfn);
3767 init_page_count(page);
3768 reset_page_mapcount(page);
3769 SetPageReserved(page);
3770 /*
3771 * Mark the block movable so that blocks are reserved for
3772 * movable at startup. This will force kernel allocations
3773 * to reserve their blocks rather than leaking throughout
3774 * the address space during boot when many long-lived
3775 * kernel allocations are made. Later some blocks near
3776 * the start are marked MIGRATE_RESERVE by
3777 * setup_zone_migrate_reserve()
3778 *
3779 * bitmap is created for zone's valid pfn range. but memmap
3780 * can be created for invalid pages (for alignment)
3781 * check here not to call set_pageblock_migratetype() against
3782 * pfn out of zone.
3783 */
3784 if ((z->zone_start_pfn <= pfn)
3785 && (pfn < z->zone_start_pfn + z->spanned_pages)
3786 && !(pfn & (pageblock_nr_pages - 1)))
3787 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3788
3789 INIT_LIST_HEAD(&page->lru);
3790 #ifdef WANT_PAGE_VIRTUAL
3791 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3792 if (!is_highmem_idx(zone))
3793 set_page_address(page, __va(pfn << PAGE_SHIFT));
3794 #endif
3795 }
3796 }
3797
3798 static void __meminit zone_init_free_lists(struct zone *zone)
3799 {
3800 int order, t;
3801 for_each_migratetype_order(order, t) {
3802 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3803 zone->free_area[order].nr_free = 0;
3804 }
3805 }
3806
3807 #ifndef __HAVE_ARCH_MEMMAP_INIT
3808 #define memmap_init(size, nid, zone, start_pfn) \
3809 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3810 #endif
3811
3812 static int __meminit zone_batchsize(struct zone *zone)
3813 {
3814 #ifdef CONFIG_MMU
3815 int batch;
3816
3817 /*
3818 * The per-cpu-pages pools are set to around 1000th of the
3819 * size of the zone. But no more than 1/2 of a meg.
3820 *
3821 * OK, so we don't know how big the cache is. So guess.
3822 */
3823 batch = zone->present_pages / 1024;
3824 if (batch * PAGE_SIZE > 512 * 1024)
3825 batch = (512 * 1024) / PAGE_SIZE;
3826 batch /= 4; /* We effectively *= 4 below */
3827 if (batch < 1)
3828 batch = 1;
3829
3830 /*
3831 * Clamp the batch to a 2^n - 1 value. Having a power
3832 * of 2 value was found to be more likely to have
3833 * suboptimal cache aliasing properties in some cases.
3834 *
3835 * For example if 2 tasks are alternately allocating
3836 * batches of pages, one task can end up with a lot
3837 * of pages of one half of the possible page colors
3838 * and the other with pages of the other colors.
3839 */
3840 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3841
3842 return batch;
3843
3844 #else
3845 /* The deferral and batching of frees should be suppressed under NOMMU
3846 * conditions.
3847 *
3848 * The problem is that NOMMU needs to be able to allocate large chunks
3849 * of contiguous memory as there's no hardware page translation to
3850 * assemble apparent contiguous memory from discontiguous pages.
3851 *
3852 * Queueing large contiguous runs of pages for batching, however,
3853 * causes the pages to actually be freed in smaller chunks. As there
3854 * can be a significant delay between the individual batches being
3855 * recycled, this leads to the once large chunks of space being
3856 * fragmented and becoming unavailable for high-order allocations.
3857 */
3858 return 0;
3859 #endif
3860 }
3861
3862 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3863 {
3864 struct per_cpu_pages *pcp;
3865 int migratetype;
3866
3867 memset(p, 0, sizeof(*p));
3868
3869 pcp = &p->pcp;
3870 pcp->count = 0;
3871 pcp->high = 6 * batch;
3872 pcp->batch = max(1UL, 1 * batch);
3873 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3874 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3875 }
3876
3877 /*
3878 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3879 * to the value high for the pageset p.
3880 */
3881
3882 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3883 unsigned long high)
3884 {
3885 struct per_cpu_pages *pcp;
3886
3887 pcp = &p->pcp;
3888 pcp->high = high;
3889 pcp->batch = max(1UL, high/4);
3890 if ((high/4) > (PAGE_SHIFT * 8))
3891 pcp->batch = PAGE_SHIFT * 8;
3892 }
3893
3894 static void __meminit setup_zone_pageset(struct zone *zone)
3895 {
3896 int cpu;
3897
3898 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3899
3900 for_each_possible_cpu(cpu) {
3901 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3902
3903 setup_pageset(pcp, zone_batchsize(zone));
3904
3905 if (percpu_pagelist_fraction)
3906 setup_pagelist_highmark(pcp,
3907 (zone->present_pages /
3908 percpu_pagelist_fraction));
3909 }
3910 }
3911
3912 /*
3913 * Allocate per cpu pagesets and initialize them.
3914 * Before this call only boot pagesets were available.
3915 */
3916 void __init setup_per_cpu_pageset(void)
3917 {
3918 struct zone *zone;
3919
3920 for_each_populated_zone(zone)
3921 setup_zone_pageset(zone);
3922 }
3923
3924 static noinline __init_refok
3925 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3926 {
3927 int i;
3928 struct pglist_data *pgdat = zone->zone_pgdat;
3929 size_t alloc_size;
3930
3931 /*
3932 * The per-page waitqueue mechanism uses hashed waitqueues
3933 * per zone.
3934 */
3935 zone->wait_table_hash_nr_entries =
3936 wait_table_hash_nr_entries(zone_size_pages);
3937 zone->wait_table_bits =
3938 wait_table_bits(zone->wait_table_hash_nr_entries);
3939 alloc_size = zone->wait_table_hash_nr_entries
3940 * sizeof(wait_queue_head_t);
3941
3942 if (!slab_is_available()) {
3943 zone->wait_table = (wait_queue_head_t *)
3944 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3945 } else {
3946 /*
3947 * This case means that a zone whose size was 0 gets new memory
3948 * via memory hot-add.
3949 * But it may be the case that a new node was hot-added. In
3950 * this case vmalloc() will not be able to use this new node's
3951 * memory - this wait_table must be initialized to use this new
3952 * node itself as well.
3953 * To use this new node's memory, further consideration will be
3954 * necessary.
3955 */
3956 zone->wait_table = vmalloc(alloc_size);
3957 }
3958 if (!zone->wait_table)
3959 return -ENOMEM;
3960
3961 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3962 init_waitqueue_head(zone->wait_table + i);
3963
3964 return 0;
3965 }
3966
3967 static __meminit void zone_pcp_init(struct zone *zone)
3968 {
3969 /*
3970 * per cpu subsystem is not up at this point. The following code
3971 * relies on the ability of the linker to provide the
3972 * offset of a (static) per cpu variable into the per cpu area.
3973 */
3974 zone->pageset = &boot_pageset;
3975
3976 if (zone->present_pages)
3977 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3978 zone->name, zone->present_pages,
3979 zone_batchsize(zone));
3980 }
3981
3982 int __meminit init_currently_empty_zone(struct zone *zone,
3983 unsigned long zone_start_pfn,
3984 unsigned long size,
3985 enum memmap_context context)
3986 {
3987 struct pglist_data *pgdat = zone->zone_pgdat;
3988 int ret;
3989 ret = zone_wait_table_init(zone, size);
3990 if (ret)
3991 return ret;
3992 pgdat->nr_zones = zone_idx(zone) + 1;
3993
3994 zone->zone_start_pfn = zone_start_pfn;
3995
3996 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3997 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3998 pgdat->node_id,
3999 (unsigned long)zone_idx(zone),
4000 zone_start_pfn, (zone_start_pfn + size));
4001
4002 zone_init_free_lists(zone);
4003
4004 return 0;
4005 }
4006
4007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4008 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4009 /*
4010 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4011 * Architectures may implement their own version but if add_active_range()
4012 * was used and there are no special requirements, this is a convenient
4013 * alternative
4014 */
4015 int __meminit __early_pfn_to_nid(unsigned long pfn)
4016 {
4017 unsigned long start_pfn, end_pfn;
4018 int i, nid;
4019
4020 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4021 if (start_pfn <= pfn && pfn < end_pfn)
4022 return nid;
4023 /* This is a memory hole */
4024 return -1;
4025 }
4026 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4027
4028 int __meminit early_pfn_to_nid(unsigned long pfn)
4029 {
4030 int nid;
4031
4032 nid = __early_pfn_to_nid(pfn);
4033 if (nid >= 0)
4034 return nid;
4035 /* just returns 0 */
4036 return 0;
4037 }
4038
4039 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4040 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4041 {
4042 int nid;
4043
4044 nid = __early_pfn_to_nid(pfn);
4045 if (nid >= 0 && nid != node)
4046 return false;
4047 return true;
4048 }
4049 #endif
4050
4051 /**
4052 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4053 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4054 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4055 *
4056 * If an architecture guarantees that all ranges registered with
4057 * add_active_ranges() contain no holes and may be freed, this
4058 * this function may be used instead of calling free_bootmem() manually.
4059 */
4060 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4061 {
4062 unsigned long start_pfn, end_pfn;
4063 int i, this_nid;
4064
4065 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4066 start_pfn = min(start_pfn, max_low_pfn);
4067 end_pfn = min(end_pfn, max_low_pfn);
4068
4069 if (start_pfn < end_pfn)
4070 free_bootmem_node(NODE_DATA(this_nid),
4071 PFN_PHYS(start_pfn),
4072 (end_pfn - start_pfn) << PAGE_SHIFT);
4073 }
4074 }
4075
4076 /**
4077 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4078 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4079 *
4080 * If an architecture guarantees that all ranges registered with
4081 * add_active_ranges() contain no holes and may be freed, this
4082 * function may be used instead of calling memory_present() manually.
4083 */
4084 void __init sparse_memory_present_with_active_regions(int nid)
4085 {
4086 unsigned long start_pfn, end_pfn;
4087 int i, this_nid;
4088
4089 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4090 memory_present(this_nid, start_pfn, end_pfn);
4091 }
4092
4093 /**
4094 * get_pfn_range_for_nid - Return the start and end page frames for a node
4095 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4096 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4097 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4098 *
4099 * It returns the start and end page frame of a node based on information
4100 * provided by an arch calling add_active_range(). If called for a node
4101 * with no available memory, a warning is printed and the start and end
4102 * PFNs will be 0.
4103 */
4104 void __meminit get_pfn_range_for_nid(unsigned int nid,
4105 unsigned long *start_pfn, unsigned long *end_pfn)
4106 {
4107 unsigned long this_start_pfn, this_end_pfn;
4108 int i;
4109
4110 *start_pfn = -1UL;
4111 *end_pfn = 0;
4112
4113 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4114 *start_pfn = min(*start_pfn, this_start_pfn);
4115 *end_pfn = max(*end_pfn, this_end_pfn);
4116 }
4117
4118 if (*start_pfn == -1UL)
4119 *start_pfn = 0;
4120 }
4121
4122 /*
4123 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4124 * assumption is made that zones within a node are ordered in monotonic
4125 * increasing memory addresses so that the "highest" populated zone is used
4126 */
4127 static void __init find_usable_zone_for_movable(void)
4128 {
4129 int zone_index;
4130 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4131 if (zone_index == ZONE_MOVABLE)
4132 continue;
4133
4134 if (arch_zone_highest_possible_pfn[zone_index] >
4135 arch_zone_lowest_possible_pfn[zone_index])
4136 break;
4137 }
4138
4139 VM_BUG_ON(zone_index == -1);
4140 movable_zone = zone_index;
4141 }
4142
4143 /*
4144 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4145 * because it is sized independent of architecture. Unlike the other zones,
4146 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4147 * in each node depending on the size of each node and how evenly kernelcore
4148 * is distributed. This helper function adjusts the zone ranges
4149 * provided by the architecture for a given node by using the end of the
4150 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4151 * zones within a node are in order of monotonic increases memory addresses
4152 */
4153 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4154 unsigned long zone_type,
4155 unsigned long node_start_pfn,
4156 unsigned long node_end_pfn,
4157 unsigned long *zone_start_pfn,
4158 unsigned long *zone_end_pfn)
4159 {
4160 /* Only adjust if ZONE_MOVABLE is on this node */
4161 if (zone_movable_pfn[nid]) {
4162 /* Size ZONE_MOVABLE */
4163 if (zone_type == ZONE_MOVABLE) {
4164 *zone_start_pfn = zone_movable_pfn[nid];
4165 *zone_end_pfn = min(node_end_pfn,
4166 arch_zone_highest_possible_pfn[movable_zone]);
4167
4168 /* Adjust for ZONE_MOVABLE starting within this range */
4169 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4170 *zone_end_pfn > zone_movable_pfn[nid]) {
4171 *zone_end_pfn = zone_movable_pfn[nid];
4172
4173 /* Check if this whole range is within ZONE_MOVABLE */
4174 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4175 *zone_start_pfn = *zone_end_pfn;
4176 }
4177 }
4178
4179 /*
4180 * Return the number of pages a zone spans in a node, including holes
4181 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4182 */
4183 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4184 unsigned long zone_type,
4185 unsigned long *ignored)
4186 {
4187 unsigned long node_start_pfn, node_end_pfn;
4188 unsigned long zone_start_pfn, zone_end_pfn;
4189
4190 /* Get the start and end of the node and zone */
4191 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4192 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4193 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4194 adjust_zone_range_for_zone_movable(nid, zone_type,
4195 node_start_pfn, node_end_pfn,
4196 &zone_start_pfn, &zone_end_pfn);
4197
4198 /* Check that this node has pages within the zone's required range */
4199 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4200 return 0;
4201
4202 /* Move the zone boundaries inside the node if necessary */
4203 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4204 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4205
4206 /* Return the spanned pages */
4207 return zone_end_pfn - zone_start_pfn;
4208 }
4209
4210 /*
4211 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4212 * then all holes in the requested range will be accounted for.
4213 */
4214 unsigned long __meminit __absent_pages_in_range(int nid,
4215 unsigned long range_start_pfn,
4216 unsigned long range_end_pfn)
4217 {
4218 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4219 unsigned long start_pfn, end_pfn;
4220 int i;
4221
4222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4223 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4224 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4225 nr_absent -= end_pfn - start_pfn;
4226 }
4227 return nr_absent;
4228 }
4229
4230 /**
4231 * absent_pages_in_range - Return number of page frames in holes within a range
4232 * @start_pfn: The start PFN to start searching for holes
4233 * @end_pfn: The end PFN to stop searching for holes
4234 *
4235 * It returns the number of pages frames in memory holes within a range.
4236 */
4237 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4238 unsigned long end_pfn)
4239 {
4240 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4241 }
4242
4243 /* Return the number of page frames in holes in a zone on a node */
4244 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4245 unsigned long zone_type,
4246 unsigned long *ignored)
4247 {
4248 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4249 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4250 unsigned long node_start_pfn, node_end_pfn;
4251 unsigned long zone_start_pfn, zone_end_pfn;
4252
4253 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4254 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4255 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4256
4257 adjust_zone_range_for_zone_movable(nid, zone_type,
4258 node_start_pfn, node_end_pfn,
4259 &zone_start_pfn, &zone_end_pfn);
4260 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4261 }
4262
4263 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4264 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4265 unsigned long zone_type,
4266 unsigned long *zones_size)
4267 {
4268 return zones_size[zone_type];
4269 }
4270
4271 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4272 unsigned long zone_type,
4273 unsigned long *zholes_size)
4274 {
4275 if (!zholes_size)
4276 return 0;
4277
4278 return zholes_size[zone_type];
4279 }
4280
4281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4282
4283 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4284 unsigned long *zones_size, unsigned long *zholes_size)
4285 {
4286 unsigned long realtotalpages, totalpages = 0;
4287 enum zone_type i;
4288
4289 for (i = 0; i < MAX_NR_ZONES; i++)
4290 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4291 zones_size);
4292 pgdat->node_spanned_pages = totalpages;
4293
4294 realtotalpages = totalpages;
4295 for (i = 0; i < MAX_NR_ZONES; i++)
4296 realtotalpages -=
4297 zone_absent_pages_in_node(pgdat->node_id, i,
4298 zholes_size);
4299 pgdat->node_present_pages = realtotalpages;
4300 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4301 realtotalpages);
4302 }
4303
4304 #ifndef CONFIG_SPARSEMEM
4305 /*
4306 * Calculate the size of the zone->blockflags rounded to an unsigned long
4307 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4308 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4309 * round what is now in bits to nearest long in bits, then return it in
4310 * bytes.
4311 */
4312 static unsigned long __init usemap_size(unsigned long zonesize)
4313 {
4314 unsigned long usemapsize;
4315
4316 usemapsize = roundup(zonesize, pageblock_nr_pages);
4317 usemapsize = usemapsize >> pageblock_order;
4318 usemapsize *= NR_PAGEBLOCK_BITS;
4319 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4320
4321 return usemapsize / 8;
4322 }
4323
4324 static void __init setup_usemap(struct pglist_data *pgdat,
4325 struct zone *zone, unsigned long zonesize)
4326 {
4327 unsigned long usemapsize = usemap_size(zonesize);
4328 zone->pageblock_flags = NULL;
4329 if (usemapsize)
4330 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4331 usemapsize);
4332 }
4333 #else
4334 static inline void setup_usemap(struct pglist_data *pgdat,
4335 struct zone *zone, unsigned long zonesize) {}
4336 #endif /* CONFIG_SPARSEMEM */
4337
4338 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4339
4340 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4341 void __init set_pageblock_order(void)
4342 {
4343 unsigned int order;
4344
4345 /* Check that pageblock_nr_pages has not already been setup */
4346 if (pageblock_order)
4347 return;
4348
4349 if (HPAGE_SHIFT > PAGE_SHIFT)
4350 order = HUGETLB_PAGE_ORDER;
4351 else
4352 order = MAX_ORDER - 1;
4353
4354 /*
4355 * Assume the largest contiguous order of interest is a huge page.
4356 * This value may be variable depending on boot parameters on IA64 and
4357 * powerpc.
4358 */
4359 pageblock_order = order;
4360 }
4361 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4362
4363 /*
4364 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4365 * is unused as pageblock_order is set at compile-time. See
4366 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4367 * the kernel config
4368 */
4369 void __init set_pageblock_order(void)
4370 {
4371 }
4372
4373 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4374
4375 /*
4376 * Set up the zone data structures:
4377 * - mark all pages reserved
4378 * - mark all memory queues empty
4379 * - clear the memory bitmaps
4380 *
4381 * NOTE: pgdat should get zeroed by caller.
4382 */
4383 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4384 unsigned long *zones_size, unsigned long *zholes_size)
4385 {
4386 enum zone_type j;
4387 int nid = pgdat->node_id;
4388 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4389 int ret;
4390
4391 pgdat_resize_init(pgdat);
4392 init_waitqueue_head(&pgdat->kswapd_wait);
4393 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4394 pgdat_page_cgroup_init(pgdat);
4395
4396 for (j = 0; j < MAX_NR_ZONES; j++) {
4397 struct zone *zone = pgdat->node_zones + j;
4398 unsigned long size, realsize, memmap_pages;
4399
4400 size = zone_spanned_pages_in_node(nid, j, zones_size);
4401 realsize = size - zone_absent_pages_in_node(nid, j,
4402 zholes_size);
4403
4404 /*
4405 * Adjust realsize so that it accounts for how much memory
4406 * is used by this zone for memmap. This affects the watermark
4407 * and per-cpu initialisations
4408 */
4409 memmap_pages =
4410 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4411 if (realsize >= memmap_pages) {
4412 realsize -= memmap_pages;
4413 if (memmap_pages)
4414 printk(KERN_DEBUG
4415 " %s zone: %lu pages used for memmap\n",
4416 zone_names[j], memmap_pages);
4417 } else
4418 printk(KERN_WARNING
4419 " %s zone: %lu pages exceeds realsize %lu\n",
4420 zone_names[j], memmap_pages, realsize);
4421
4422 /* Account for reserved pages */
4423 if (j == 0 && realsize > dma_reserve) {
4424 realsize -= dma_reserve;
4425 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4426 zone_names[0], dma_reserve);
4427 }
4428
4429 if (!is_highmem_idx(j))
4430 nr_kernel_pages += realsize;
4431 nr_all_pages += realsize;
4432
4433 zone->spanned_pages = size;
4434 zone->present_pages = realsize;
4435 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4436 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4437 zone->spanned_pages;
4438 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4439 #endif
4440 #ifdef CONFIG_NUMA
4441 zone->node = nid;
4442 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4443 / 100;
4444 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4445 #endif
4446 zone->name = zone_names[j];
4447 spin_lock_init(&zone->lock);
4448 spin_lock_init(&zone->lru_lock);
4449 zone_seqlock_init(zone);
4450 zone->zone_pgdat = pgdat;
4451
4452 zone_pcp_init(zone);
4453 lruvec_init(&zone->lruvec, zone);
4454 if (!size)
4455 continue;
4456
4457 set_pageblock_order();
4458 setup_usemap(pgdat, zone, size);
4459 ret = init_currently_empty_zone(zone, zone_start_pfn,
4460 size, MEMMAP_EARLY);
4461 BUG_ON(ret);
4462 memmap_init(size, nid, j, zone_start_pfn);
4463 zone_start_pfn += size;
4464 }
4465 }
4466
4467 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4468 {
4469 /* Skip empty nodes */
4470 if (!pgdat->node_spanned_pages)
4471 return;
4472
4473 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4474 /* ia64 gets its own node_mem_map, before this, without bootmem */
4475 if (!pgdat->node_mem_map) {
4476 unsigned long size, start, end;
4477 struct page *map;
4478
4479 /*
4480 * The zone's endpoints aren't required to be MAX_ORDER
4481 * aligned but the node_mem_map endpoints must be in order
4482 * for the buddy allocator to function correctly.
4483 */
4484 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4485 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4486 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4487 size = (end - start) * sizeof(struct page);
4488 map = alloc_remap(pgdat->node_id, size);
4489 if (!map)
4490 map = alloc_bootmem_node_nopanic(pgdat, size);
4491 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4492 }
4493 #ifndef CONFIG_NEED_MULTIPLE_NODES
4494 /*
4495 * With no DISCONTIG, the global mem_map is just set as node 0's
4496 */
4497 if (pgdat == NODE_DATA(0)) {
4498 mem_map = NODE_DATA(0)->node_mem_map;
4499 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4500 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4501 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4502 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503 }
4504 #endif
4505 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4506 }
4507
4508 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4509 unsigned long node_start_pfn, unsigned long *zholes_size)
4510 {
4511 pg_data_t *pgdat = NODE_DATA(nid);
4512
4513 /* pg_data_t should be reset to zero when it's allocated */
4514 WARN_ON(pgdat->nr_zones || pgdat->node_start_pfn || pgdat->classzone_idx);
4515
4516 pgdat->node_id = nid;
4517 pgdat->node_start_pfn = node_start_pfn;
4518 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4519
4520 alloc_node_mem_map(pgdat);
4521 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4522 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4523 nid, (unsigned long)pgdat,
4524 (unsigned long)pgdat->node_mem_map);
4525 #endif
4526
4527 free_area_init_core(pgdat, zones_size, zholes_size);
4528 }
4529
4530 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4531
4532 #if MAX_NUMNODES > 1
4533 /*
4534 * Figure out the number of possible node ids.
4535 */
4536 static void __init setup_nr_node_ids(void)
4537 {
4538 unsigned int node;
4539 unsigned int highest = 0;
4540
4541 for_each_node_mask(node, node_possible_map)
4542 highest = node;
4543 nr_node_ids = highest + 1;
4544 }
4545 #else
4546 static inline void setup_nr_node_ids(void)
4547 {
4548 }
4549 #endif
4550
4551 /**
4552 * node_map_pfn_alignment - determine the maximum internode alignment
4553 *
4554 * This function should be called after node map is populated and sorted.
4555 * It calculates the maximum power of two alignment which can distinguish
4556 * all the nodes.
4557 *
4558 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4559 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4560 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4561 * shifted, 1GiB is enough and this function will indicate so.
4562 *
4563 * This is used to test whether pfn -> nid mapping of the chosen memory
4564 * model has fine enough granularity to avoid incorrect mapping for the
4565 * populated node map.
4566 *
4567 * Returns the determined alignment in pfn's. 0 if there is no alignment
4568 * requirement (single node).
4569 */
4570 unsigned long __init node_map_pfn_alignment(void)
4571 {
4572 unsigned long accl_mask = 0, last_end = 0;
4573 unsigned long start, end, mask;
4574 int last_nid = -1;
4575 int i, nid;
4576
4577 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4578 if (!start || last_nid < 0 || last_nid == nid) {
4579 last_nid = nid;
4580 last_end = end;
4581 continue;
4582 }
4583
4584 /*
4585 * Start with a mask granular enough to pin-point to the
4586 * start pfn and tick off bits one-by-one until it becomes
4587 * too coarse to separate the current node from the last.
4588 */
4589 mask = ~((1 << __ffs(start)) - 1);
4590 while (mask && last_end <= (start & (mask << 1)))
4591 mask <<= 1;
4592
4593 /* accumulate all internode masks */
4594 accl_mask |= mask;
4595 }
4596
4597 /* convert mask to number of pages */
4598 return ~accl_mask + 1;
4599 }
4600
4601 /* Find the lowest pfn for a node */
4602 static unsigned long __init find_min_pfn_for_node(int nid)
4603 {
4604 unsigned long min_pfn = ULONG_MAX;
4605 unsigned long start_pfn;
4606 int i;
4607
4608 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4609 min_pfn = min(min_pfn, start_pfn);
4610
4611 if (min_pfn == ULONG_MAX) {
4612 printk(KERN_WARNING
4613 "Could not find start_pfn for node %d\n", nid);
4614 return 0;
4615 }
4616
4617 return min_pfn;
4618 }
4619
4620 /**
4621 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4622 *
4623 * It returns the minimum PFN based on information provided via
4624 * add_active_range().
4625 */
4626 unsigned long __init find_min_pfn_with_active_regions(void)
4627 {
4628 return find_min_pfn_for_node(MAX_NUMNODES);
4629 }
4630
4631 /*
4632 * early_calculate_totalpages()
4633 * Sum pages in active regions for movable zone.
4634 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4635 */
4636 static unsigned long __init early_calculate_totalpages(void)
4637 {
4638 unsigned long totalpages = 0;
4639 unsigned long start_pfn, end_pfn;
4640 int i, nid;
4641
4642 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4643 unsigned long pages = end_pfn - start_pfn;
4644
4645 totalpages += pages;
4646 if (pages)
4647 node_set_state(nid, N_HIGH_MEMORY);
4648 }
4649 return totalpages;
4650 }
4651
4652 /*
4653 * Find the PFN the Movable zone begins in each node. Kernel memory
4654 * is spread evenly between nodes as long as the nodes have enough
4655 * memory. When they don't, some nodes will have more kernelcore than
4656 * others
4657 */
4658 static void __init find_zone_movable_pfns_for_nodes(void)
4659 {
4660 int i, nid;
4661 unsigned long usable_startpfn;
4662 unsigned long kernelcore_node, kernelcore_remaining;
4663 /* save the state before borrow the nodemask */
4664 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4665 unsigned long totalpages = early_calculate_totalpages();
4666 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4667
4668 /*
4669 * If movablecore was specified, calculate what size of
4670 * kernelcore that corresponds so that memory usable for
4671 * any allocation type is evenly spread. If both kernelcore
4672 * and movablecore are specified, then the value of kernelcore
4673 * will be used for required_kernelcore if it's greater than
4674 * what movablecore would have allowed.
4675 */
4676 if (required_movablecore) {
4677 unsigned long corepages;
4678
4679 /*
4680 * Round-up so that ZONE_MOVABLE is at least as large as what
4681 * was requested by the user
4682 */
4683 required_movablecore =
4684 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4685 corepages = totalpages - required_movablecore;
4686
4687 required_kernelcore = max(required_kernelcore, corepages);
4688 }
4689
4690 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4691 if (!required_kernelcore)
4692 goto out;
4693
4694 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4695 find_usable_zone_for_movable();
4696 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4697
4698 restart:
4699 /* Spread kernelcore memory as evenly as possible throughout nodes */
4700 kernelcore_node = required_kernelcore / usable_nodes;
4701 for_each_node_state(nid, N_HIGH_MEMORY) {
4702 unsigned long start_pfn, end_pfn;
4703
4704 /*
4705 * Recalculate kernelcore_node if the division per node
4706 * now exceeds what is necessary to satisfy the requested
4707 * amount of memory for the kernel
4708 */
4709 if (required_kernelcore < kernelcore_node)
4710 kernelcore_node = required_kernelcore / usable_nodes;
4711
4712 /*
4713 * As the map is walked, we track how much memory is usable
4714 * by the kernel using kernelcore_remaining. When it is
4715 * 0, the rest of the node is usable by ZONE_MOVABLE
4716 */
4717 kernelcore_remaining = kernelcore_node;
4718
4719 /* Go through each range of PFNs within this node */
4720 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4721 unsigned long size_pages;
4722
4723 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4724 if (start_pfn >= end_pfn)
4725 continue;
4726
4727 /* Account for what is only usable for kernelcore */
4728 if (start_pfn < usable_startpfn) {
4729 unsigned long kernel_pages;
4730 kernel_pages = min(end_pfn, usable_startpfn)
4731 - start_pfn;
4732
4733 kernelcore_remaining -= min(kernel_pages,
4734 kernelcore_remaining);
4735 required_kernelcore -= min(kernel_pages,
4736 required_kernelcore);
4737
4738 /* Continue if range is now fully accounted */
4739 if (end_pfn <= usable_startpfn) {
4740
4741 /*
4742 * Push zone_movable_pfn to the end so
4743 * that if we have to rebalance
4744 * kernelcore across nodes, we will
4745 * not double account here
4746 */
4747 zone_movable_pfn[nid] = end_pfn;
4748 continue;
4749 }
4750 start_pfn = usable_startpfn;
4751 }
4752
4753 /*
4754 * The usable PFN range for ZONE_MOVABLE is from
4755 * start_pfn->end_pfn. Calculate size_pages as the
4756 * number of pages used as kernelcore
4757 */
4758 size_pages = end_pfn - start_pfn;
4759 if (size_pages > kernelcore_remaining)
4760 size_pages = kernelcore_remaining;
4761 zone_movable_pfn[nid] = start_pfn + size_pages;
4762
4763 /*
4764 * Some kernelcore has been met, update counts and
4765 * break if the kernelcore for this node has been
4766 * satisified
4767 */
4768 required_kernelcore -= min(required_kernelcore,
4769 size_pages);
4770 kernelcore_remaining -= size_pages;
4771 if (!kernelcore_remaining)
4772 break;
4773 }
4774 }
4775
4776 /*
4777 * If there is still required_kernelcore, we do another pass with one
4778 * less node in the count. This will push zone_movable_pfn[nid] further
4779 * along on the nodes that still have memory until kernelcore is
4780 * satisified
4781 */
4782 usable_nodes--;
4783 if (usable_nodes && required_kernelcore > usable_nodes)
4784 goto restart;
4785
4786 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4787 for (nid = 0; nid < MAX_NUMNODES; nid++)
4788 zone_movable_pfn[nid] =
4789 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4790
4791 out:
4792 /* restore the node_state */
4793 node_states[N_HIGH_MEMORY] = saved_node_state;
4794 }
4795
4796 /* Any regular memory on that node ? */
4797 static void __init check_for_regular_memory(pg_data_t *pgdat)
4798 {
4799 #ifdef CONFIG_HIGHMEM
4800 enum zone_type zone_type;
4801
4802 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4803 struct zone *zone = &pgdat->node_zones[zone_type];
4804 if (zone->present_pages) {
4805 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4806 break;
4807 }
4808 }
4809 #endif
4810 }
4811
4812 /**
4813 * free_area_init_nodes - Initialise all pg_data_t and zone data
4814 * @max_zone_pfn: an array of max PFNs for each zone
4815 *
4816 * This will call free_area_init_node() for each active node in the system.
4817 * Using the page ranges provided by add_active_range(), the size of each
4818 * zone in each node and their holes is calculated. If the maximum PFN
4819 * between two adjacent zones match, it is assumed that the zone is empty.
4820 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4821 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4822 * starts where the previous one ended. For example, ZONE_DMA32 starts
4823 * at arch_max_dma_pfn.
4824 */
4825 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4826 {
4827 unsigned long start_pfn, end_pfn;
4828 int i, nid;
4829
4830 /* Record where the zone boundaries are */
4831 memset(arch_zone_lowest_possible_pfn, 0,
4832 sizeof(arch_zone_lowest_possible_pfn));
4833 memset(arch_zone_highest_possible_pfn, 0,
4834 sizeof(arch_zone_highest_possible_pfn));
4835 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4836 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4837 for (i = 1; i < MAX_NR_ZONES; i++) {
4838 if (i == ZONE_MOVABLE)
4839 continue;
4840 arch_zone_lowest_possible_pfn[i] =
4841 arch_zone_highest_possible_pfn[i-1];
4842 arch_zone_highest_possible_pfn[i] =
4843 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4844 }
4845 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4846 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4847
4848 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4849 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4850 find_zone_movable_pfns_for_nodes();
4851
4852 /* Print out the zone ranges */
4853 printk("Zone ranges:\n");
4854 for (i = 0; i < MAX_NR_ZONES; i++) {
4855 if (i == ZONE_MOVABLE)
4856 continue;
4857 printk(KERN_CONT " %-8s ", zone_names[i]);
4858 if (arch_zone_lowest_possible_pfn[i] ==
4859 arch_zone_highest_possible_pfn[i])
4860 printk(KERN_CONT "empty\n");
4861 else
4862 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4863 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4864 (arch_zone_highest_possible_pfn[i]
4865 << PAGE_SHIFT) - 1);
4866 }
4867
4868 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4869 printk("Movable zone start for each node\n");
4870 for (i = 0; i < MAX_NUMNODES; i++) {
4871 if (zone_movable_pfn[i])
4872 printk(" Node %d: %#010lx\n", i,
4873 zone_movable_pfn[i] << PAGE_SHIFT);
4874 }
4875
4876 /* Print out the early_node_map[] */
4877 printk("Early memory node ranges\n");
4878 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4879 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4880 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4881
4882 /* Initialise every node */
4883 mminit_verify_pageflags_layout();
4884 setup_nr_node_ids();
4885 for_each_online_node(nid) {
4886 pg_data_t *pgdat = NODE_DATA(nid);
4887 free_area_init_node(nid, NULL,
4888 find_min_pfn_for_node(nid), NULL);
4889
4890 /* Any memory on that node */
4891 if (pgdat->node_present_pages)
4892 node_set_state(nid, N_HIGH_MEMORY);
4893 check_for_regular_memory(pgdat);
4894 }
4895 }
4896
4897 static int __init cmdline_parse_core(char *p, unsigned long *core)
4898 {
4899 unsigned long long coremem;
4900 if (!p)
4901 return -EINVAL;
4902
4903 coremem = memparse(p, &p);
4904 *core = coremem >> PAGE_SHIFT;
4905
4906 /* Paranoid check that UL is enough for the coremem value */
4907 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4908
4909 return 0;
4910 }
4911
4912 /*
4913 * kernelcore=size sets the amount of memory for use for allocations that
4914 * cannot be reclaimed or migrated.
4915 */
4916 static int __init cmdline_parse_kernelcore(char *p)
4917 {
4918 return cmdline_parse_core(p, &required_kernelcore);
4919 }
4920
4921 /*
4922 * movablecore=size sets the amount of memory for use for allocations that
4923 * can be reclaimed or migrated.
4924 */
4925 static int __init cmdline_parse_movablecore(char *p)
4926 {
4927 return cmdline_parse_core(p, &required_movablecore);
4928 }
4929
4930 early_param("kernelcore", cmdline_parse_kernelcore);
4931 early_param("movablecore", cmdline_parse_movablecore);
4932
4933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4934
4935 /**
4936 * set_dma_reserve - set the specified number of pages reserved in the first zone
4937 * @new_dma_reserve: The number of pages to mark reserved
4938 *
4939 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4940 * In the DMA zone, a significant percentage may be consumed by kernel image
4941 * and other unfreeable allocations which can skew the watermarks badly. This
4942 * function may optionally be used to account for unfreeable pages in the
4943 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4944 * smaller per-cpu batchsize.
4945 */
4946 void __init set_dma_reserve(unsigned long new_dma_reserve)
4947 {
4948 dma_reserve = new_dma_reserve;
4949 }
4950
4951 void __init free_area_init(unsigned long *zones_size)
4952 {
4953 free_area_init_node(0, zones_size,
4954 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4955 }
4956
4957 static int page_alloc_cpu_notify(struct notifier_block *self,
4958 unsigned long action, void *hcpu)
4959 {
4960 int cpu = (unsigned long)hcpu;
4961
4962 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4963 lru_add_drain_cpu(cpu);
4964 drain_pages(cpu);
4965
4966 /*
4967 * Spill the event counters of the dead processor
4968 * into the current processors event counters.
4969 * This artificially elevates the count of the current
4970 * processor.
4971 */
4972 vm_events_fold_cpu(cpu);
4973
4974 /*
4975 * Zero the differential counters of the dead processor
4976 * so that the vm statistics are consistent.
4977 *
4978 * This is only okay since the processor is dead and cannot
4979 * race with what we are doing.
4980 */
4981 refresh_cpu_vm_stats(cpu);
4982 }
4983 return NOTIFY_OK;
4984 }
4985
4986 void __init page_alloc_init(void)
4987 {
4988 hotcpu_notifier(page_alloc_cpu_notify, 0);
4989 }
4990
4991 /*
4992 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4993 * or min_free_kbytes changes.
4994 */
4995 static void calculate_totalreserve_pages(void)
4996 {
4997 struct pglist_data *pgdat;
4998 unsigned long reserve_pages = 0;
4999 enum zone_type i, j;
5000
5001 for_each_online_pgdat(pgdat) {
5002 for (i = 0; i < MAX_NR_ZONES; i++) {
5003 struct zone *zone = pgdat->node_zones + i;
5004 unsigned long max = 0;
5005
5006 /* Find valid and maximum lowmem_reserve in the zone */
5007 for (j = i; j < MAX_NR_ZONES; j++) {
5008 if (zone->lowmem_reserve[j] > max)
5009 max = zone->lowmem_reserve[j];
5010 }
5011
5012 /* we treat the high watermark as reserved pages. */
5013 max += high_wmark_pages(zone);
5014
5015 if (max > zone->present_pages)
5016 max = zone->present_pages;
5017 reserve_pages += max;
5018 /*
5019 * Lowmem reserves are not available to
5020 * GFP_HIGHUSER page cache allocations and
5021 * kswapd tries to balance zones to their high
5022 * watermark. As a result, neither should be
5023 * regarded as dirtyable memory, to prevent a
5024 * situation where reclaim has to clean pages
5025 * in order to balance the zones.
5026 */
5027 zone->dirty_balance_reserve = max;
5028 }
5029 }
5030 dirty_balance_reserve = reserve_pages;
5031 totalreserve_pages = reserve_pages;
5032 }
5033
5034 /*
5035 * setup_per_zone_lowmem_reserve - called whenever
5036 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5037 * has a correct pages reserved value, so an adequate number of
5038 * pages are left in the zone after a successful __alloc_pages().
5039 */
5040 static void setup_per_zone_lowmem_reserve(void)
5041 {
5042 struct pglist_data *pgdat;
5043 enum zone_type j, idx;
5044
5045 for_each_online_pgdat(pgdat) {
5046 for (j = 0; j < MAX_NR_ZONES; j++) {
5047 struct zone *zone = pgdat->node_zones + j;
5048 unsigned long present_pages = zone->present_pages;
5049
5050 zone->lowmem_reserve[j] = 0;
5051
5052 idx = j;
5053 while (idx) {
5054 struct zone *lower_zone;
5055
5056 idx--;
5057
5058 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5059 sysctl_lowmem_reserve_ratio[idx] = 1;
5060
5061 lower_zone = pgdat->node_zones + idx;
5062 lower_zone->lowmem_reserve[j] = present_pages /
5063 sysctl_lowmem_reserve_ratio[idx];
5064 present_pages += lower_zone->present_pages;
5065 }
5066 }
5067 }
5068
5069 /* update totalreserve_pages */
5070 calculate_totalreserve_pages();
5071 }
5072
5073 static void __setup_per_zone_wmarks(void)
5074 {
5075 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5076 unsigned long lowmem_pages = 0;
5077 struct zone *zone;
5078 unsigned long flags;
5079
5080 /* Calculate total number of !ZONE_HIGHMEM pages */
5081 for_each_zone(zone) {
5082 if (!is_highmem(zone))
5083 lowmem_pages += zone->present_pages;
5084 }
5085
5086 for_each_zone(zone) {
5087 u64 tmp;
5088
5089 spin_lock_irqsave(&zone->lock, flags);
5090 tmp = (u64)pages_min * zone->present_pages;
5091 do_div(tmp, lowmem_pages);
5092 if (is_highmem(zone)) {
5093 /*
5094 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5095 * need highmem pages, so cap pages_min to a small
5096 * value here.
5097 *
5098 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5099 * deltas controls asynch page reclaim, and so should
5100 * not be capped for highmem.
5101 */
5102 int min_pages;
5103
5104 min_pages = zone->present_pages / 1024;
5105 if (min_pages < SWAP_CLUSTER_MAX)
5106 min_pages = SWAP_CLUSTER_MAX;
5107 if (min_pages > 128)
5108 min_pages = 128;
5109 zone->watermark[WMARK_MIN] = min_pages;
5110 } else {
5111 /*
5112 * If it's a lowmem zone, reserve a number of pages
5113 * proportionate to the zone's size.
5114 */
5115 zone->watermark[WMARK_MIN] = tmp;
5116 }
5117
5118 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5119 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5120
5121 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5122 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5123 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5124
5125 setup_zone_migrate_reserve(zone);
5126 spin_unlock_irqrestore(&zone->lock, flags);
5127 }
5128
5129 /* update totalreserve_pages */
5130 calculate_totalreserve_pages();
5131 }
5132
5133 /**
5134 * setup_per_zone_wmarks - called when min_free_kbytes changes
5135 * or when memory is hot-{added|removed}
5136 *
5137 * Ensures that the watermark[min,low,high] values for each zone are set
5138 * correctly with respect to min_free_kbytes.
5139 */
5140 void setup_per_zone_wmarks(void)
5141 {
5142 mutex_lock(&zonelists_mutex);
5143 __setup_per_zone_wmarks();
5144 mutex_unlock(&zonelists_mutex);
5145 }
5146
5147 /*
5148 * The inactive anon list should be small enough that the VM never has to
5149 * do too much work, but large enough that each inactive page has a chance
5150 * to be referenced again before it is swapped out.
5151 *
5152 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5153 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5154 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5155 * the anonymous pages are kept on the inactive list.
5156 *
5157 * total target max
5158 * memory ratio inactive anon
5159 * -------------------------------------
5160 * 10MB 1 5MB
5161 * 100MB 1 50MB
5162 * 1GB 3 250MB
5163 * 10GB 10 0.9GB
5164 * 100GB 31 3GB
5165 * 1TB 101 10GB
5166 * 10TB 320 32GB
5167 */
5168 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5169 {
5170 unsigned int gb, ratio;
5171
5172 /* Zone size in gigabytes */
5173 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5174 if (gb)
5175 ratio = int_sqrt(10 * gb);
5176 else
5177 ratio = 1;
5178
5179 zone->inactive_ratio = ratio;
5180 }
5181
5182 static void __meminit setup_per_zone_inactive_ratio(void)
5183 {
5184 struct zone *zone;
5185
5186 for_each_zone(zone)
5187 calculate_zone_inactive_ratio(zone);
5188 }
5189
5190 /*
5191 * Initialise min_free_kbytes.
5192 *
5193 * For small machines we want it small (128k min). For large machines
5194 * we want it large (64MB max). But it is not linear, because network
5195 * bandwidth does not increase linearly with machine size. We use
5196 *
5197 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5198 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5199 *
5200 * which yields
5201 *
5202 * 16MB: 512k
5203 * 32MB: 724k
5204 * 64MB: 1024k
5205 * 128MB: 1448k
5206 * 256MB: 2048k
5207 * 512MB: 2896k
5208 * 1024MB: 4096k
5209 * 2048MB: 5792k
5210 * 4096MB: 8192k
5211 * 8192MB: 11584k
5212 * 16384MB: 16384k
5213 */
5214 int __meminit init_per_zone_wmark_min(void)
5215 {
5216 unsigned long lowmem_kbytes;
5217
5218 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5219
5220 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5221 if (min_free_kbytes < 128)
5222 min_free_kbytes = 128;
5223 if (min_free_kbytes > 65536)
5224 min_free_kbytes = 65536;
5225 setup_per_zone_wmarks();
5226 refresh_zone_stat_thresholds();
5227 setup_per_zone_lowmem_reserve();
5228 setup_per_zone_inactive_ratio();
5229 return 0;
5230 }
5231 module_init(init_per_zone_wmark_min)
5232
5233 /*
5234 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5235 * that we can call two helper functions whenever min_free_kbytes
5236 * changes.
5237 */
5238 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5239 void __user *buffer, size_t *length, loff_t *ppos)
5240 {
5241 proc_dointvec(table, write, buffer, length, ppos);
5242 if (write)
5243 setup_per_zone_wmarks();
5244 return 0;
5245 }
5246
5247 #ifdef CONFIG_NUMA
5248 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5249 void __user *buffer, size_t *length, loff_t *ppos)
5250 {
5251 struct zone *zone;
5252 int rc;
5253
5254 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5255 if (rc)
5256 return rc;
5257
5258 for_each_zone(zone)
5259 zone->min_unmapped_pages = (zone->present_pages *
5260 sysctl_min_unmapped_ratio) / 100;
5261 return 0;
5262 }
5263
5264 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5265 void __user *buffer, size_t *length, loff_t *ppos)
5266 {
5267 struct zone *zone;
5268 int rc;
5269
5270 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5271 if (rc)
5272 return rc;
5273
5274 for_each_zone(zone)
5275 zone->min_slab_pages = (zone->present_pages *
5276 sysctl_min_slab_ratio) / 100;
5277 return 0;
5278 }
5279 #endif
5280
5281 /*
5282 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5283 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5284 * whenever sysctl_lowmem_reserve_ratio changes.
5285 *
5286 * The reserve ratio obviously has absolutely no relation with the
5287 * minimum watermarks. The lowmem reserve ratio can only make sense
5288 * if in function of the boot time zone sizes.
5289 */
5290 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5291 void __user *buffer, size_t *length, loff_t *ppos)
5292 {
5293 proc_dointvec_minmax(table, write, buffer, length, ppos);
5294 setup_per_zone_lowmem_reserve();
5295 return 0;
5296 }
5297
5298 /*
5299 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5300 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5301 * can have before it gets flushed back to buddy allocator.
5302 */
5303
5304 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5305 void __user *buffer, size_t *length, loff_t *ppos)
5306 {
5307 struct zone *zone;
5308 unsigned int cpu;
5309 int ret;
5310
5311 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5312 if (!write || (ret < 0))
5313 return ret;
5314 for_each_populated_zone(zone) {
5315 for_each_possible_cpu(cpu) {
5316 unsigned long high;
5317 high = zone->present_pages / percpu_pagelist_fraction;
5318 setup_pagelist_highmark(
5319 per_cpu_ptr(zone->pageset, cpu), high);
5320 }
5321 }
5322 return 0;
5323 }
5324
5325 int hashdist = HASHDIST_DEFAULT;
5326
5327 #ifdef CONFIG_NUMA
5328 static int __init set_hashdist(char *str)
5329 {
5330 if (!str)
5331 return 0;
5332 hashdist = simple_strtoul(str, &str, 0);
5333 return 1;
5334 }
5335 __setup("hashdist=", set_hashdist);
5336 #endif
5337
5338 /*
5339 * allocate a large system hash table from bootmem
5340 * - it is assumed that the hash table must contain an exact power-of-2
5341 * quantity of entries
5342 * - limit is the number of hash buckets, not the total allocation size
5343 */
5344 void *__init alloc_large_system_hash(const char *tablename,
5345 unsigned long bucketsize,
5346 unsigned long numentries,
5347 int scale,
5348 int flags,
5349 unsigned int *_hash_shift,
5350 unsigned int *_hash_mask,
5351 unsigned long low_limit,
5352 unsigned long high_limit)
5353 {
5354 unsigned long long max = high_limit;
5355 unsigned long log2qty, size;
5356 void *table = NULL;
5357
5358 /* allow the kernel cmdline to have a say */
5359 if (!numentries) {
5360 /* round applicable memory size up to nearest megabyte */
5361 numentries = nr_kernel_pages;
5362 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5363 numentries >>= 20 - PAGE_SHIFT;
5364 numentries <<= 20 - PAGE_SHIFT;
5365
5366 /* limit to 1 bucket per 2^scale bytes of low memory */
5367 if (scale > PAGE_SHIFT)
5368 numentries >>= (scale - PAGE_SHIFT);
5369 else
5370 numentries <<= (PAGE_SHIFT - scale);
5371
5372 /* Make sure we've got at least a 0-order allocation.. */
5373 if (unlikely(flags & HASH_SMALL)) {
5374 /* Makes no sense without HASH_EARLY */
5375 WARN_ON(!(flags & HASH_EARLY));
5376 if (!(numentries >> *_hash_shift)) {
5377 numentries = 1UL << *_hash_shift;
5378 BUG_ON(!numentries);
5379 }
5380 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5381 numentries = PAGE_SIZE / bucketsize;
5382 }
5383 numentries = roundup_pow_of_two(numentries);
5384
5385 /* limit allocation size to 1/16 total memory by default */
5386 if (max == 0) {
5387 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5388 do_div(max, bucketsize);
5389 }
5390 max = min(max, 0x80000000ULL);
5391
5392 if (numentries < low_limit)
5393 numentries = low_limit;
5394 if (numentries > max)
5395 numentries = max;
5396
5397 log2qty = ilog2(numentries);
5398
5399 do {
5400 size = bucketsize << log2qty;
5401 if (flags & HASH_EARLY)
5402 table = alloc_bootmem_nopanic(size);
5403 else if (hashdist)
5404 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5405 else {
5406 /*
5407 * If bucketsize is not a power-of-two, we may free
5408 * some pages at the end of hash table which
5409 * alloc_pages_exact() automatically does
5410 */
5411 if (get_order(size) < MAX_ORDER) {
5412 table = alloc_pages_exact(size, GFP_ATOMIC);
5413 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5414 }
5415 }
5416 } while (!table && size > PAGE_SIZE && --log2qty);
5417
5418 if (!table)
5419 panic("Failed to allocate %s hash table\n", tablename);
5420
5421 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5422 tablename,
5423 (1UL << log2qty),
5424 ilog2(size) - PAGE_SHIFT,
5425 size);
5426
5427 if (_hash_shift)
5428 *_hash_shift = log2qty;
5429 if (_hash_mask)
5430 *_hash_mask = (1 << log2qty) - 1;
5431
5432 return table;
5433 }
5434
5435 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5436 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5437 unsigned long pfn)
5438 {
5439 #ifdef CONFIG_SPARSEMEM
5440 return __pfn_to_section(pfn)->pageblock_flags;
5441 #else
5442 return zone->pageblock_flags;
5443 #endif /* CONFIG_SPARSEMEM */
5444 }
5445
5446 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5447 {
5448 #ifdef CONFIG_SPARSEMEM
5449 pfn &= (PAGES_PER_SECTION-1);
5450 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5451 #else
5452 pfn = pfn - zone->zone_start_pfn;
5453 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5454 #endif /* CONFIG_SPARSEMEM */
5455 }
5456
5457 /**
5458 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5459 * @page: The page within the block of interest
5460 * @start_bitidx: The first bit of interest to retrieve
5461 * @end_bitidx: The last bit of interest
5462 * returns pageblock_bits flags
5463 */
5464 unsigned long get_pageblock_flags_group(struct page *page,
5465 int start_bitidx, int end_bitidx)
5466 {
5467 struct zone *zone;
5468 unsigned long *bitmap;
5469 unsigned long pfn, bitidx;
5470 unsigned long flags = 0;
5471 unsigned long value = 1;
5472
5473 zone = page_zone(page);
5474 pfn = page_to_pfn(page);
5475 bitmap = get_pageblock_bitmap(zone, pfn);
5476 bitidx = pfn_to_bitidx(zone, pfn);
5477
5478 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5479 if (test_bit(bitidx + start_bitidx, bitmap))
5480 flags |= value;
5481
5482 return flags;
5483 }
5484
5485 /**
5486 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5487 * @page: The page within the block of interest
5488 * @start_bitidx: The first bit of interest
5489 * @end_bitidx: The last bit of interest
5490 * @flags: The flags to set
5491 */
5492 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5493 int start_bitidx, int end_bitidx)
5494 {
5495 struct zone *zone;
5496 unsigned long *bitmap;
5497 unsigned long pfn, bitidx;
5498 unsigned long value = 1;
5499
5500 zone = page_zone(page);
5501 pfn = page_to_pfn(page);
5502 bitmap = get_pageblock_bitmap(zone, pfn);
5503 bitidx = pfn_to_bitidx(zone, pfn);
5504 VM_BUG_ON(pfn < zone->zone_start_pfn);
5505 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5506
5507 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5508 if (flags & value)
5509 __set_bit(bitidx + start_bitidx, bitmap);
5510 else
5511 __clear_bit(bitidx + start_bitidx, bitmap);
5512 }
5513
5514 /*
5515 * This function checks whether pageblock includes unmovable pages or not.
5516 * If @count is not zero, it is okay to include less @count unmovable pages
5517 *
5518 * PageLRU check wihtout isolation or lru_lock could race so that
5519 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5520 * expect this function should be exact.
5521 */
5522 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5523 {
5524 unsigned long pfn, iter, found;
5525 int mt;
5526
5527 /*
5528 * For avoiding noise data, lru_add_drain_all() should be called
5529 * If ZONE_MOVABLE, the zone never contains unmovable pages
5530 */
5531 if (zone_idx(zone) == ZONE_MOVABLE)
5532 return false;
5533 mt = get_pageblock_migratetype(page);
5534 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5535 return false;
5536
5537 pfn = page_to_pfn(page);
5538 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5539 unsigned long check = pfn + iter;
5540
5541 if (!pfn_valid_within(check))
5542 continue;
5543
5544 page = pfn_to_page(check);
5545 /*
5546 * We can't use page_count without pin a page
5547 * because another CPU can free compound page.
5548 * This check already skips compound tails of THP
5549 * because their page->_count is zero at all time.
5550 */
5551 if (!atomic_read(&page->_count)) {
5552 if (PageBuddy(page))
5553 iter += (1 << page_order(page)) - 1;
5554 continue;
5555 }
5556
5557 if (!PageLRU(page))
5558 found++;
5559 /*
5560 * If there are RECLAIMABLE pages, we need to check it.
5561 * But now, memory offline itself doesn't call shrink_slab()
5562 * and it still to be fixed.
5563 */
5564 /*
5565 * If the page is not RAM, page_count()should be 0.
5566 * we don't need more check. This is an _used_ not-movable page.
5567 *
5568 * The problematic thing here is PG_reserved pages. PG_reserved
5569 * is set to both of a memory hole page and a _used_ kernel
5570 * page at boot.
5571 */
5572 if (found > count)
5573 return true;
5574 }
5575 return false;
5576 }
5577
5578 bool is_pageblock_removable_nolock(struct page *page)
5579 {
5580 struct zone *zone;
5581 unsigned long pfn;
5582
5583 /*
5584 * We have to be careful here because we are iterating over memory
5585 * sections which are not zone aware so we might end up outside of
5586 * the zone but still within the section.
5587 * We have to take care about the node as well. If the node is offline
5588 * its NODE_DATA will be NULL - see page_zone.
5589 */
5590 if (!node_online(page_to_nid(page)))
5591 return false;
5592
5593 zone = page_zone(page);
5594 pfn = page_to_pfn(page);
5595 if (zone->zone_start_pfn > pfn ||
5596 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5597 return false;
5598
5599 return !has_unmovable_pages(zone, page, 0);
5600 }
5601
5602 #ifdef CONFIG_CMA
5603
5604 static unsigned long pfn_max_align_down(unsigned long pfn)
5605 {
5606 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5607 pageblock_nr_pages) - 1);
5608 }
5609
5610 static unsigned long pfn_max_align_up(unsigned long pfn)
5611 {
5612 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5613 pageblock_nr_pages));
5614 }
5615
5616 static struct page *
5617 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5618 int **resultp)
5619 {
5620 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5621
5622 if (PageHighMem(page))
5623 gfp_mask |= __GFP_HIGHMEM;
5624
5625 return alloc_page(gfp_mask);
5626 }
5627
5628 /* [start, end) must belong to a single zone. */
5629 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5630 {
5631 /* This function is based on compact_zone() from compaction.c. */
5632
5633 unsigned long pfn = start;
5634 unsigned int tries = 0;
5635 int ret = 0;
5636
5637 struct compact_control cc = {
5638 .nr_migratepages = 0,
5639 .order = -1,
5640 .zone = page_zone(pfn_to_page(start)),
5641 .sync = true,
5642 };
5643 INIT_LIST_HEAD(&cc.migratepages);
5644
5645 migrate_prep_local();
5646
5647 while (pfn < end || !list_empty(&cc.migratepages)) {
5648 if (fatal_signal_pending(current)) {
5649 ret = -EINTR;
5650 break;
5651 }
5652
5653 if (list_empty(&cc.migratepages)) {
5654 cc.nr_migratepages = 0;
5655 pfn = isolate_migratepages_range(cc.zone, &cc,
5656 pfn, end);
5657 if (!pfn) {
5658 ret = -EINTR;
5659 break;
5660 }
5661 tries = 0;
5662 } else if (++tries == 5) {
5663 ret = ret < 0 ? ret : -EBUSY;
5664 break;
5665 }
5666
5667 ret = migrate_pages(&cc.migratepages,
5668 __alloc_contig_migrate_alloc,
5669 0, false, MIGRATE_SYNC);
5670 }
5671
5672 putback_lru_pages(&cc.migratepages);
5673 return ret > 0 ? 0 : ret;
5674 }
5675
5676 /*
5677 * Update zone's cma pages counter used for watermark level calculation.
5678 */
5679 static inline void __update_cma_watermarks(struct zone *zone, int count)
5680 {
5681 unsigned long flags;
5682 spin_lock_irqsave(&zone->lock, flags);
5683 zone->min_cma_pages += count;
5684 spin_unlock_irqrestore(&zone->lock, flags);
5685 setup_per_zone_wmarks();
5686 }
5687
5688 /*
5689 * Trigger memory pressure bump to reclaim some pages in order to be able to
5690 * allocate 'count' pages in single page units. Does similar work as
5691 *__alloc_pages_slowpath() function.
5692 */
5693 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5694 {
5695 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5696 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5697 int did_some_progress = 0;
5698 int order = 1;
5699
5700 /*
5701 * Increase level of watermarks to force kswapd do his job
5702 * to stabilise at new watermark level.
5703 */
5704 __update_cma_watermarks(zone, count);
5705
5706 /* Obey watermarks as if the page was being allocated */
5707 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5708 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5709
5710 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5711 NULL);
5712 if (!did_some_progress) {
5713 /* Exhausted what can be done so it's blamo time */
5714 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5715 }
5716 }
5717
5718 /* Restore original watermark levels. */
5719 __update_cma_watermarks(zone, -count);
5720
5721 return count;
5722 }
5723
5724 /**
5725 * alloc_contig_range() -- tries to allocate given range of pages
5726 * @start: start PFN to allocate
5727 * @end: one-past-the-last PFN to allocate
5728 * @migratetype: migratetype of the underlaying pageblocks (either
5729 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5730 * in range must have the same migratetype and it must
5731 * be either of the two.
5732 *
5733 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5734 * aligned, however it's the caller's responsibility to guarantee that
5735 * we are the only thread that changes migrate type of pageblocks the
5736 * pages fall in.
5737 *
5738 * The PFN range must belong to a single zone.
5739 *
5740 * Returns zero on success or negative error code. On success all
5741 * pages which PFN is in [start, end) are allocated for the caller and
5742 * need to be freed with free_contig_range().
5743 */
5744 int alloc_contig_range(unsigned long start, unsigned long end,
5745 unsigned migratetype)
5746 {
5747 struct zone *zone = page_zone(pfn_to_page(start));
5748 unsigned long outer_start, outer_end;
5749 int ret = 0, order;
5750
5751 /*
5752 * What we do here is we mark all pageblocks in range as
5753 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5754 * have different sizes, and due to the way page allocator
5755 * work, we align the range to biggest of the two pages so
5756 * that page allocator won't try to merge buddies from
5757 * different pageblocks and change MIGRATE_ISOLATE to some
5758 * other migration type.
5759 *
5760 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5761 * migrate the pages from an unaligned range (ie. pages that
5762 * we are interested in). This will put all the pages in
5763 * range back to page allocator as MIGRATE_ISOLATE.
5764 *
5765 * When this is done, we take the pages in range from page
5766 * allocator removing them from the buddy system. This way
5767 * page allocator will never consider using them.
5768 *
5769 * This lets us mark the pageblocks back as
5770 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5771 * aligned range but not in the unaligned, original range are
5772 * put back to page allocator so that buddy can use them.
5773 */
5774
5775 ret = start_isolate_page_range(pfn_max_align_down(start),
5776 pfn_max_align_up(end), migratetype);
5777 if (ret)
5778 goto done;
5779
5780 ret = __alloc_contig_migrate_range(start, end);
5781 if (ret)
5782 goto done;
5783
5784 /*
5785 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5786 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5787 * more, all pages in [start, end) are free in page allocator.
5788 * What we are going to do is to allocate all pages from
5789 * [start, end) (that is remove them from page allocator).
5790 *
5791 * The only problem is that pages at the beginning and at the
5792 * end of interesting range may be not aligned with pages that
5793 * page allocator holds, ie. they can be part of higher order
5794 * pages. Because of this, we reserve the bigger range and
5795 * once this is done free the pages we are not interested in.
5796 *
5797 * We don't have to hold zone->lock here because the pages are
5798 * isolated thus they won't get removed from buddy.
5799 */
5800
5801 lru_add_drain_all();
5802 drain_all_pages();
5803
5804 order = 0;
5805 outer_start = start;
5806 while (!PageBuddy(pfn_to_page(outer_start))) {
5807 if (++order >= MAX_ORDER) {
5808 ret = -EBUSY;
5809 goto done;
5810 }
5811 outer_start &= ~0UL << order;
5812 }
5813
5814 /* Make sure the range is really isolated. */
5815 if (test_pages_isolated(outer_start, end)) {
5816 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5817 outer_start, end);
5818 ret = -EBUSY;
5819 goto done;
5820 }
5821
5822 /*
5823 * Reclaim enough pages to make sure that contiguous allocation
5824 * will not starve the system.
5825 */
5826 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5827
5828 /* Grab isolated pages from freelists. */
5829 outer_end = isolate_freepages_range(outer_start, end);
5830 if (!outer_end) {
5831 ret = -EBUSY;
5832 goto done;
5833 }
5834
5835 /* Free head and tail (if any) */
5836 if (start != outer_start)
5837 free_contig_range(outer_start, start - outer_start);
5838 if (end != outer_end)
5839 free_contig_range(end, outer_end - end);
5840
5841 done:
5842 undo_isolate_page_range(pfn_max_align_down(start),
5843 pfn_max_align_up(end), migratetype);
5844 return ret;
5845 }
5846
5847 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5848 {
5849 for (; nr_pages--; ++pfn)
5850 __free_page(pfn_to_page(pfn));
5851 }
5852 #endif
5853
5854 #ifdef CONFIG_MEMORY_HOTPLUG
5855 static int __meminit __zone_pcp_update(void *data)
5856 {
5857 struct zone *zone = data;
5858 int cpu;
5859 unsigned long batch = zone_batchsize(zone), flags;
5860
5861 for_each_possible_cpu(cpu) {
5862 struct per_cpu_pageset *pset;
5863 struct per_cpu_pages *pcp;
5864
5865 pset = per_cpu_ptr(zone->pageset, cpu);
5866 pcp = &pset->pcp;
5867
5868 local_irq_save(flags);
5869 if (pcp->count > 0)
5870 free_pcppages_bulk(zone, pcp->count, pcp);
5871 setup_pageset(pset, batch);
5872 local_irq_restore(flags);
5873 }
5874 return 0;
5875 }
5876
5877 void __meminit zone_pcp_update(struct zone *zone)
5878 {
5879 stop_machine(__zone_pcp_update, zone, NULL);
5880 }
5881 #endif
5882
5883 #ifdef CONFIG_MEMORY_HOTREMOVE
5884 void zone_pcp_reset(struct zone *zone)
5885 {
5886 unsigned long flags;
5887
5888 /* avoid races with drain_pages() */
5889 local_irq_save(flags);
5890 if (zone->pageset != &boot_pageset) {
5891 free_percpu(zone->pageset);
5892 zone->pageset = &boot_pageset;
5893 }
5894 local_irq_restore(flags);
5895 }
5896
5897 /*
5898 * All pages in the range must be isolated before calling this.
5899 */
5900 void
5901 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5902 {
5903 struct page *page;
5904 struct zone *zone;
5905 int order, i;
5906 unsigned long pfn;
5907 unsigned long flags;
5908 /* find the first valid pfn */
5909 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5910 if (pfn_valid(pfn))
5911 break;
5912 if (pfn == end_pfn)
5913 return;
5914 zone = page_zone(pfn_to_page(pfn));
5915 spin_lock_irqsave(&zone->lock, flags);
5916 pfn = start_pfn;
5917 while (pfn < end_pfn) {
5918 if (!pfn_valid(pfn)) {
5919 pfn++;
5920 continue;
5921 }
5922 page = pfn_to_page(pfn);
5923 BUG_ON(page_count(page));
5924 BUG_ON(!PageBuddy(page));
5925 order = page_order(page);
5926 #ifdef CONFIG_DEBUG_VM
5927 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5928 pfn, 1 << order, end_pfn);
5929 #endif
5930 list_del(&page->lru);
5931 rmv_page_order(page);
5932 zone->free_area[order].nr_free--;
5933 __mod_zone_page_state(zone, NR_FREE_PAGES,
5934 - (1UL << order));
5935 for (i = 0; i < (1 << order); i++)
5936 SetPageReserved((page+i));
5937 pfn += (1 << order);
5938 }
5939 spin_unlock_irqrestore(&zone->lock, flags);
5940 }
5941 #endif
5942
5943 #ifdef CONFIG_MEMORY_FAILURE
5944 bool is_free_buddy_page(struct page *page)
5945 {
5946 struct zone *zone = page_zone(page);
5947 unsigned long pfn = page_to_pfn(page);
5948 unsigned long flags;
5949 int order;
5950
5951 spin_lock_irqsave(&zone->lock, flags);
5952 for (order = 0; order < MAX_ORDER; order++) {
5953 struct page *page_head = page - (pfn & ((1 << order) - 1));
5954
5955 if (PageBuddy(page_head) && page_order(page_head) >= order)
5956 break;
5957 }
5958 spin_unlock_irqrestore(&zone->lock, flags);
5959
5960 return order < MAX_ORDER;
5961 }
5962 #endif
5963
5964 static const struct trace_print_flags pageflag_names[] = {
5965 {1UL << PG_locked, "locked" },
5966 {1UL << PG_error, "error" },
5967 {1UL << PG_referenced, "referenced" },
5968 {1UL << PG_uptodate, "uptodate" },
5969 {1UL << PG_dirty, "dirty" },
5970 {1UL << PG_lru, "lru" },
5971 {1UL << PG_active, "active" },
5972 {1UL << PG_slab, "slab" },
5973 {1UL << PG_owner_priv_1, "owner_priv_1" },
5974 {1UL << PG_arch_1, "arch_1" },
5975 {1UL << PG_reserved, "reserved" },
5976 {1UL << PG_private, "private" },
5977 {1UL << PG_private_2, "private_2" },
5978 {1UL << PG_writeback, "writeback" },
5979 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5980 {1UL << PG_head, "head" },
5981 {1UL << PG_tail, "tail" },
5982 #else
5983 {1UL << PG_compound, "compound" },
5984 #endif
5985 {1UL << PG_swapcache, "swapcache" },
5986 {1UL << PG_mappedtodisk, "mappedtodisk" },
5987 {1UL << PG_reclaim, "reclaim" },
5988 {1UL << PG_swapbacked, "swapbacked" },
5989 {1UL << PG_unevictable, "unevictable" },
5990 #ifdef CONFIG_MMU
5991 {1UL << PG_mlocked, "mlocked" },
5992 #endif
5993 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5994 {1UL << PG_uncached, "uncached" },
5995 #endif
5996 #ifdef CONFIG_MEMORY_FAILURE
5997 {1UL << PG_hwpoison, "hwpoison" },
5998 #endif
5999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6000 {1UL << PG_compound_lock, "compound_lock" },
6001 #endif
6002 };
6003
6004 static void dump_page_flags(unsigned long flags)
6005 {
6006 const char *delim = "";
6007 unsigned long mask;
6008 int i;
6009
6010 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6011
6012 printk(KERN_ALERT "page flags: %#lx(", flags);
6013
6014 /* remove zone id */
6015 flags &= (1UL << NR_PAGEFLAGS) - 1;
6016
6017 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6018
6019 mask = pageflag_names[i].mask;
6020 if ((flags & mask) != mask)
6021 continue;
6022
6023 flags &= ~mask;
6024 printk("%s%s", delim, pageflag_names[i].name);
6025 delim = "|";
6026 }
6027
6028 /* check for left over flags */
6029 if (flags)
6030 printk("%s%#lx", delim, flags);
6031
6032 printk(")\n");
6033 }
6034
6035 void dump_page(struct page *page)
6036 {
6037 printk(KERN_ALERT
6038 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6039 page, atomic_read(&page->_count), page_mapcount(page),
6040 page->mapping, page->index);
6041 dump_page_flags(page->flags);
6042 mem_cgroup_print_bad_page(page);
6043 }