]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/page_alloc.c
Merge tag 'kvm-x86-mmu-6.4-2' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/linux.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/khugepaged.h>
76 #include <linux/delayacct.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 #include "swap.h"
84
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87
88 /* No special request */
89 #define FPI_NONE ((__force fpi_t)0)
90
91 /*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
101 /*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
116
117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
118 /*
119 * On SMP, spin_trylock is sufficient protection.
120 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
121 */
122 #define pcp_trylock_prepare(flags) do { } while (0)
123 #define pcp_trylock_finish(flag) do { } while (0)
124 #else
125
126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
127 #define pcp_trylock_prepare(flags) local_irq_save(flags)
128 #define pcp_trylock_finish(flags) local_irq_restore(flags)
129 #endif
130
131 /*
132 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
133 * a migration causing the wrong PCP to be locked and remote memory being
134 * potentially allocated, pin the task to the CPU for the lookup+lock.
135 * preempt_disable is used on !RT because it is faster than migrate_disable.
136 * migrate_disable is used on RT because otherwise RT spinlock usage is
137 * interfered with and a high priority task cannot preempt the allocator.
138 */
139 #ifndef CONFIG_PREEMPT_RT
140 #define pcpu_task_pin() preempt_disable()
141 #define pcpu_task_unpin() preempt_enable()
142 #else
143 #define pcpu_task_pin() migrate_disable()
144 #define pcpu_task_unpin() migrate_enable()
145 #endif
146
147 /*
148 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
149 * Return value should be used with equivalent unlock helper.
150 */
151 #define pcpu_spin_lock(type, member, ptr) \
152 ({ \
153 type *_ret; \
154 pcpu_task_pin(); \
155 _ret = this_cpu_ptr(ptr); \
156 spin_lock(&_ret->member); \
157 _ret; \
158 })
159
160 #define pcpu_spin_trylock(type, member, ptr) \
161 ({ \
162 type *_ret; \
163 pcpu_task_pin(); \
164 _ret = this_cpu_ptr(ptr); \
165 if (!spin_trylock(&_ret->member)) { \
166 pcpu_task_unpin(); \
167 _ret = NULL; \
168 } \
169 _ret; \
170 })
171
172 #define pcpu_spin_unlock(member, ptr) \
173 ({ \
174 spin_unlock(&ptr->member); \
175 pcpu_task_unpin(); \
176 })
177
178 /* struct per_cpu_pages specific helpers. */
179 #define pcp_spin_lock(ptr) \
180 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
181
182 #define pcp_spin_trylock(ptr) \
183 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
184
185 #define pcp_spin_unlock(ptr) \
186 pcpu_spin_unlock(lock, ptr)
187
188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
189 DEFINE_PER_CPU(int, numa_node);
190 EXPORT_PER_CPU_SYMBOL(numa_node);
191 #endif
192
193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
194
195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
196 /*
197 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
198 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
199 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
200 * defined in <linux/topology.h>.
201 */
202 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
203 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
204 #endif
205
206 static DEFINE_MUTEX(pcpu_drain_mutex);
207
208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
209 volatile unsigned long latent_entropy __latent_entropy;
210 EXPORT_SYMBOL(latent_entropy);
211 #endif
212
213 /*
214 * Array of node states.
215 */
216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
217 [N_POSSIBLE] = NODE_MASK_ALL,
218 [N_ONLINE] = { { [0] = 1UL } },
219 #ifndef CONFIG_NUMA
220 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
221 #ifdef CONFIG_HIGHMEM
222 [N_HIGH_MEMORY] = { { [0] = 1UL } },
223 #endif
224 [N_MEMORY] = { { [0] = 1UL } },
225 [N_CPU] = { { [0] = 1UL } },
226 #endif /* NUMA */
227 };
228 EXPORT_SYMBOL(node_states);
229
230 atomic_long_t _totalram_pages __read_mostly;
231 EXPORT_SYMBOL(_totalram_pages);
232 unsigned long totalreserve_pages __read_mostly;
233 unsigned long totalcma_pages __read_mostly;
234
235 int percpu_pagelist_high_fraction;
236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
238 EXPORT_SYMBOL(init_on_alloc);
239
240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
241 EXPORT_SYMBOL(init_on_free);
242
243 /*
244 * A cached value of the page's pageblock's migratetype, used when the page is
245 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
246 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
247 * Also the migratetype set in the page does not necessarily match the pcplist
248 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
249 * other index - this ensures that it will be put on the correct CMA freelist.
250 */
251 static inline int get_pcppage_migratetype(struct page *page)
252 {
253 return page->index;
254 }
255
256 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
257 {
258 page->index = migratetype;
259 }
260
261 #ifdef CONFIG_PM_SLEEP
262 /*
263 * The following functions are used by the suspend/hibernate code to temporarily
264 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
265 * while devices are suspended. To avoid races with the suspend/hibernate code,
266 * they should always be called with system_transition_mutex held
267 * (gfp_allowed_mask also should only be modified with system_transition_mutex
268 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
269 * with that modification).
270 */
271
272 static gfp_t saved_gfp_mask;
273
274 void pm_restore_gfp_mask(void)
275 {
276 WARN_ON(!mutex_is_locked(&system_transition_mutex));
277 if (saved_gfp_mask) {
278 gfp_allowed_mask = saved_gfp_mask;
279 saved_gfp_mask = 0;
280 }
281 }
282
283 void pm_restrict_gfp_mask(void)
284 {
285 WARN_ON(!mutex_is_locked(&system_transition_mutex));
286 WARN_ON(saved_gfp_mask);
287 saved_gfp_mask = gfp_allowed_mask;
288 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
289 }
290
291 bool pm_suspended_storage(void)
292 {
293 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
294 return false;
295 return true;
296 }
297 #endif /* CONFIG_PM_SLEEP */
298
299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
300 unsigned int pageblock_order __read_mostly;
301 #endif
302
303 static void __free_pages_ok(struct page *page, unsigned int order,
304 fpi_t fpi_flags);
305
306 /*
307 * results with 256, 32 in the lowmem_reserve sysctl:
308 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
309 * 1G machine -> (16M dma, 784M normal, 224M high)
310 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
311 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
312 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
313 *
314 * TBD: should special case ZONE_DMA32 machines here - in those we normally
315 * don't need any ZONE_NORMAL reservation
316 */
317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
318 #ifdef CONFIG_ZONE_DMA
319 [ZONE_DMA] = 256,
320 #endif
321 #ifdef CONFIG_ZONE_DMA32
322 [ZONE_DMA32] = 256,
323 #endif
324 [ZONE_NORMAL] = 32,
325 #ifdef CONFIG_HIGHMEM
326 [ZONE_HIGHMEM] = 0,
327 #endif
328 [ZONE_MOVABLE] = 0,
329 };
330
331 char * const zone_names[MAX_NR_ZONES] = {
332 #ifdef CONFIG_ZONE_DMA
333 "DMA",
334 #endif
335 #ifdef CONFIG_ZONE_DMA32
336 "DMA32",
337 #endif
338 "Normal",
339 #ifdef CONFIG_HIGHMEM
340 "HighMem",
341 #endif
342 "Movable",
343 #ifdef CONFIG_ZONE_DEVICE
344 "Device",
345 #endif
346 };
347
348 const char * const migratetype_names[MIGRATE_TYPES] = {
349 "Unmovable",
350 "Movable",
351 "Reclaimable",
352 "HighAtomic",
353 #ifdef CONFIG_CMA
354 "CMA",
355 #endif
356 #ifdef CONFIG_MEMORY_ISOLATION
357 "Isolate",
358 #endif
359 };
360
361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
362 [NULL_COMPOUND_DTOR] = NULL,
363 [COMPOUND_PAGE_DTOR] = free_compound_page,
364 #ifdef CONFIG_HUGETLB_PAGE
365 [HUGETLB_PAGE_DTOR] = free_huge_page,
366 #endif
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
369 #endif
370 };
371
372 int min_free_kbytes = 1024;
373 int user_min_free_kbytes = -1;
374 int watermark_boost_factor __read_mostly = 15000;
375 int watermark_scale_factor = 10;
376
377 bool mirrored_kernelcore __initdata_memblock;
378
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389
390 int page_group_by_mobility_disabled __read_mostly;
391
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394 * During boot we initialize deferred pages on-demand, as needed, but once
395 * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 * and we can permanently disable that path.
397 */
398 DEFINE_STATIC_KEY_TRUE(deferred_pages);
399
400 static inline bool deferred_pages_enabled(void)
401 {
402 return static_branch_unlikely(&deferred_pages);
403 }
404
405 /*
406 * deferred_grow_zone() is __init, but it is called from
407 * get_page_from_freelist() during early boot until deferred_pages permanently
408 * disables this call. This is why we have refdata wrapper to avoid warning,
409 * and to ensure that the function body gets unloaded.
410 */
411 static bool __ref
412 _deferred_grow_zone(struct zone *zone, unsigned int order)
413 {
414 return deferred_grow_zone(zone, order);
415 }
416 #else
417 static inline bool deferred_pages_enabled(void)
418 {
419 return false;
420 }
421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
422
423 /* Return a pointer to the bitmap storing bits affecting a block of pages */
424 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
425 unsigned long pfn)
426 {
427 #ifdef CONFIG_SPARSEMEM
428 return section_to_usemap(__pfn_to_section(pfn));
429 #else
430 return page_zone(page)->pageblock_flags;
431 #endif /* CONFIG_SPARSEMEM */
432 }
433
434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
435 {
436 #ifdef CONFIG_SPARSEMEM
437 pfn &= (PAGES_PER_SECTION-1);
438 #else
439 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
440 #endif /* CONFIG_SPARSEMEM */
441 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
442 }
443
444 static __always_inline
445 unsigned long __get_pfnblock_flags_mask(const struct page *page,
446 unsigned long pfn,
447 unsigned long mask)
448 {
449 unsigned long *bitmap;
450 unsigned long bitidx, word_bitidx;
451 unsigned long word;
452
453 bitmap = get_pageblock_bitmap(page, pfn);
454 bitidx = pfn_to_bitidx(page, pfn);
455 word_bitidx = bitidx / BITS_PER_LONG;
456 bitidx &= (BITS_PER_LONG-1);
457 /*
458 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
459 * a consistent read of the memory array, so that results, even though
460 * racy, are not corrupted.
461 */
462 word = READ_ONCE(bitmap[word_bitidx]);
463 return (word >> bitidx) & mask;
464 }
465
466 /**
467 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
468 * @page: The page within the block of interest
469 * @pfn: The target page frame number
470 * @mask: mask of bits that the caller is interested in
471 *
472 * Return: pageblock_bits flags
473 */
474 unsigned long get_pfnblock_flags_mask(const struct page *page,
475 unsigned long pfn, unsigned long mask)
476 {
477 return __get_pfnblock_flags_mask(page, pfn, mask);
478 }
479
480 static __always_inline int get_pfnblock_migratetype(const struct page *page,
481 unsigned long pfn)
482 {
483 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
484 }
485
486 /**
487 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
488 * @page: The page within the block of interest
489 * @flags: The flags to set
490 * @pfn: The target page frame number
491 * @mask: mask of bits that the caller is interested in
492 */
493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
494 unsigned long pfn,
495 unsigned long mask)
496 {
497 unsigned long *bitmap;
498 unsigned long bitidx, word_bitidx;
499 unsigned long word;
500
501 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
502 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
503
504 bitmap = get_pageblock_bitmap(page, pfn);
505 bitidx = pfn_to_bitidx(page, pfn);
506 word_bitidx = bitidx / BITS_PER_LONG;
507 bitidx &= (BITS_PER_LONG-1);
508
509 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
510
511 mask <<= bitidx;
512 flags <<= bitidx;
513
514 word = READ_ONCE(bitmap[word_bitidx]);
515 do {
516 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
517 }
518
519 void set_pageblock_migratetype(struct page *page, int migratetype)
520 {
521 if (unlikely(page_group_by_mobility_disabled &&
522 migratetype < MIGRATE_PCPTYPES))
523 migratetype = MIGRATE_UNMOVABLE;
524
525 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
526 page_to_pfn(page), MIGRATETYPE_MASK);
527 }
528
529 #ifdef CONFIG_DEBUG_VM
530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
531 {
532 int ret = 0;
533 unsigned seq;
534 unsigned long pfn = page_to_pfn(page);
535 unsigned long sp, start_pfn;
536
537 do {
538 seq = zone_span_seqbegin(zone);
539 start_pfn = zone->zone_start_pfn;
540 sp = zone->spanned_pages;
541 if (!zone_spans_pfn(zone, pfn))
542 ret = 1;
543 } while (zone_span_seqretry(zone, seq));
544
545 if (ret)
546 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
547 pfn, zone_to_nid(zone), zone->name,
548 start_pfn, start_pfn + sp);
549
550 return ret;
551 }
552
553 static int page_is_consistent(struct zone *zone, struct page *page)
554 {
555 if (zone != page_zone(page))
556 return 0;
557
558 return 1;
559 }
560 /*
561 * Temporary debugging check for pages not lying within a given zone.
562 */
563 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
564 {
565 if (page_outside_zone_boundaries(zone, page))
566 return 1;
567 if (!page_is_consistent(zone, page))
568 return 1;
569
570 return 0;
571 }
572 #else
573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
574 {
575 return 0;
576 }
577 #endif
578
579 static void bad_page(struct page *page, const char *reason)
580 {
581 static unsigned long resume;
582 static unsigned long nr_shown;
583 static unsigned long nr_unshown;
584
585 /*
586 * Allow a burst of 60 reports, then keep quiet for that minute;
587 * or allow a steady drip of one report per second.
588 */
589 if (nr_shown == 60) {
590 if (time_before(jiffies, resume)) {
591 nr_unshown++;
592 goto out;
593 }
594 if (nr_unshown) {
595 pr_alert(
596 "BUG: Bad page state: %lu messages suppressed\n",
597 nr_unshown);
598 nr_unshown = 0;
599 }
600 nr_shown = 0;
601 }
602 if (nr_shown++ == 0)
603 resume = jiffies + 60 * HZ;
604
605 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
606 current->comm, page_to_pfn(page));
607 dump_page(page, reason);
608
609 print_modules();
610 dump_stack();
611 out:
612 /* Leave bad fields for debug, except PageBuddy could make trouble */
613 page_mapcount_reset(page); /* remove PageBuddy */
614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 }
616
617 static inline unsigned int order_to_pindex(int migratetype, int order)
618 {
619 int base = order;
620
621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
622 if (order > PAGE_ALLOC_COSTLY_ORDER) {
623 VM_BUG_ON(order != pageblock_order);
624 return NR_LOWORDER_PCP_LISTS;
625 }
626 #else
627 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
628 #endif
629
630 return (MIGRATE_PCPTYPES * base) + migratetype;
631 }
632
633 static inline int pindex_to_order(unsigned int pindex)
634 {
635 int order = pindex / MIGRATE_PCPTYPES;
636
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 if (pindex == NR_LOWORDER_PCP_LISTS)
639 order = pageblock_order;
640 #else
641 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
642 #endif
643
644 return order;
645 }
646
647 static inline bool pcp_allowed_order(unsigned int order)
648 {
649 if (order <= PAGE_ALLOC_COSTLY_ORDER)
650 return true;
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 if (order == pageblock_order)
653 return true;
654 #endif
655 return false;
656 }
657
658 static inline void free_the_page(struct page *page, unsigned int order)
659 {
660 if (pcp_allowed_order(order)) /* Via pcp? */
661 free_unref_page(page, order);
662 else
663 __free_pages_ok(page, order, FPI_NONE);
664 }
665
666 /*
667 * Higher-order pages are called "compound pages". They are structured thusly:
668 *
669 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
670 *
671 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
672 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
673 *
674 * The first tail page's ->compound_dtor holds the offset in array of compound
675 * page destructors. See compound_page_dtors.
676 *
677 * The first tail page's ->compound_order holds the order of allocation.
678 * This usage means that zero-order pages may not be compound.
679 */
680
681 void free_compound_page(struct page *page)
682 {
683 mem_cgroup_uncharge(page_folio(page));
684 free_the_page(page, compound_order(page));
685 }
686
687 void prep_compound_page(struct page *page, unsigned int order)
688 {
689 int i;
690 int nr_pages = 1 << order;
691
692 __SetPageHead(page);
693 for (i = 1; i < nr_pages; i++)
694 prep_compound_tail(page, i);
695
696 prep_compound_head(page, order);
697 }
698
699 void destroy_large_folio(struct folio *folio)
700 {
701 enum compound_dtor_id dtor = folio->_folio_dtor;
702
703 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
704 compound_page_dtors[dtor](&folio->page);
705 }
706
707 #ifdef CONFIG_DEBUG_PAGEALLOC
708 unsigned int _debug_guardpage_minorder;
709
710 bool _debug_pagealloc_enabled_early __read_mostly
711 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 EXPORT_SYMBOL(_debug_pagealloc_enabled);
715
716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717
718 static int __init early_debug_pagealloc(char *buf)
719 {
720 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 }
722 early_param("debug_pagealloc", early_debug_pagealloc);
723
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 unsigned long res;
727
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
730 return 0;
731 }
732 _debug_guardpage_minorder = res;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
740 {
741 if (!debug_guardpage_enabled())
742 return false;
743
744 if (order >= debug_guardpage_minorder())
745 return false;
746
747 __SetPageGuard(page);
748 INIT_LIST_HEAD(&page->buddy_list);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 if (!is_migrate_isolate(migratetype))
752 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753
754 return true;
755 }
756
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype)
759 {
760 if (!debug_guardpage_enabled())
761 return;
762
763 __ClearPageGuard(page);
764
765 set_page_private(page, 0);
766 if (!is_migrate_isolate(migratetype))
767 __mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 unsigned int order, int migratetype) {}
774 #endif
775
776 static inline void set_buddy_order(struct page *page, unsigned int order)
777 {
778 set_page_private(page, order);
779 __SetPageBuddy(page);
780 }
781
782 #ifdef CONFIG_COMPACTION
783 static inline struct capture_control *task_capc(struct zone *zone)
784 {
785 struct capture_control *capc = current->capture_control;
786
787 return unlikely(capc) &&
788 !(current->flags & PF_KTHREAD) &&
789 !capc->page &&
790 capc->cc->zone == zone ? capc : NULL;
791 }
792
793 static inline bool
794 compaction_capture(struct capture_control *capc, struct page *page,
795 int order, int migratetype)
796 {
797 if (!capc || order != capc->cc->order)
798 return false;
799
800 /* Do not accidentally pollute CMA or isolated regions*/
801 if (is_migrate_cma(migratetype) ||
802 is_migrate_isolate(migratetype))
803 return false;
804
805 /*
806 * Do not let lower order allocations pollute a movable pageblock.
807 * This might let an unmovable request use a reclaimable pageblock
808 * and vice-versa but no more than normal fallback logic which can
809 * have trouble finding a high-order free page.
810 */
811 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
812 return false;
813
814 capc->page = page;
815 return true;
816 }
817
818 #else
819 static inline struct capture_control *task_capc(struct zone *zone)
820 {
821 return NULL;
822 }
823
824 static inline bool
825 compaction_capture(struct capture_control *capc, struct page *page,
826 int order, int migratetype)
827 {
828 return false;
829 }
830 #endif /* CONFIG_COMPACTION */
831
832 /* Used for pages not on another list */
833 static inline void add_to_free_list(struct page *page, struct zone *zone,
834 unsigned int order, int migratetype)
835 {
836 struct free_area *area = &zone->free_area[order];
837
838 list_add(&page->buddy_list, &area->free_list[migratetype]);
839 area->nr_free++;
840 }
841
842 /* Used for pages not on another list */
843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
844 unsigned int order, int migratetype)
845 {
846 struct free_area *area = &zone->free_area[order];
847
848 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
849 area->nr_free++;
850 }
851
852 /*
853 * Used for pages which are on another list. Move the pages to the tail
854 * of the list - so the moved pages won't immediately be considered for
855 * allocation again (e.g., optimization for memory onlining).
856 */
857 static inline void move_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859 {
860 struct free_area *area = &zone->free_area[order];
861
862 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
863 }
864
865 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
866 unsigned int order)
867 {
868 /* clear reported state and update reported page count */
869 if (page_reported(page))
870 __ClearPageReported(page);
871
872 list_del(&page->buddy_list);
873 __ClearPageBuddy(page);
874 set_page_private(page, 0);
875 zone->free_area[order].nr_free--;
876 }
877
878 static inline struct page *get_page_from_free_area(struct free_area *area,
879 int migratetype)
880 {
881 return list_first_entry_or_null(&area->free_list[migratetype],
882 struct page, lru);
883 }
884
885 /*
886 * If this is not the largest possible page, check if the buddy
887 * of the next-highest order is free. If it is, it's possible
888 * that pages are being freed that will coalesce soon. In case,
889 * that is happening, add the free page to the tail of the list
890 * so it's less likely to be used soon and more likely to be merged
891 * as a higher order page
892 */
893 static inline bool
894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
895 struct page *page, unsigned int order)
896 {
897 unsigned long higher_page_pfn;
898 struct page *higher_page;
899
900 if (order >= MAX_ORDER - 1)
901 return false;
902
903 higher_page_pfn = buddy_pfn & pfn;
904 higher_page = page + (higher_page_pfn - pfn);
905
906 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
907 NULL) != NULL;
908 }
909
910 /*
911 * Freeing function for a buddy system allocator.
912 *
913 * The concept of a buddy system is to maintain direct-mapped table
914 * (containing bit values) for memory blocks of various "orders".
915 * The bottom level table contains the map for the smallest allocatable
916 * units of memory (here, pages), and each level above it describes
917 * pairs of units from the levels below, hence, "buddies".
918 * At a high level, all that happens here is marking the table entry
919 * at the bottom level available, and propagating the changes upward
920 * as necessary, plus some accounting needed to play nicely with other
921 * parts of the VM system.
922 * At each level, we keep a list of pages, which are heads of continuous
923 * free pages of length of (1 << order) and marked with PageBuddy.
924 * Page's order is recorded in page_private(page) field.
925 * So when we are allocating or freeing one, we can derive the state of the
926 * other. That is, if we allocate a small block, and both were
927 * free, the remainder of the region must be split into blocks.
928 * If a block is freed, and its buddy is also free, then this
929 * triggers coalescing into a block of larger size.
930 *
931 * -- nyc
932 */
933
934 static inline void __free_one_page(struct page *page,
935 unsigned long pfn,
936 struct zone *zone, unsigned int order,
937 int migratetype, fpi_t fpi_flags)
938 {
939 struct capture_control *capc = task_capc(zone);
940 unsigned long buddy_pfn = 0;
941 unsigned long combined_pfn;
942 struct page *buddy;
943 bool to_tail;
944
945 VM_BUG_ON(!zone_is_initialized(zone));
946 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
947
948 VM_BUG_ON(migratetype == -1);
949 if (likely(!is_migrate_isolate(migratetype)))
950 __mod_zone_freepage_state(zone, 1 << order, migratetype);
951
952 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
953 VM_BUG_ON_PAGE(bad_range(zone, page), page);
954
955 while (order < MAX_ORDER) {
956 if (compaction_capture(capc, page, order, migratetype)) {
957 __mod_zone_freepage_state(zone, -(1 << order),
958 migratetype);
959 return;
960 }
961
962 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
963 if (!buddy)
964 goto done_merging;
965
966 if (unlikely(order >= pageblock_order)) {
967 /*
968 * We want to prevent merge between freepages on pageblock
969 * without fallbacks and normal pageblock. Without this,
970 * pageblock isolation could cause incorrect freepage or CMA
971 * accounting or HIGHATOMIC accounting.
972 */
973 int buddy_mt = get_pageblock_migratetype(buddy);
974
975 if (migratetype != buddy_mt
976 && (!migratetype_is_mergeable(migratetype) ||
977 !migratetype_is_mergeable(buddy_mt)))
978 goto done_merging;
979 }
980
981 /*
982 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
983 * merge with it and move up one order.
984 */
985 if (page_is_guard(buddy))
986 clear_page_guard(zone, buddy, order, migratetype);
987 else
988 del_page_from_free_list(buddy, zone, order);
989 combined_pfn = buddy_pfn & pfn;
990 page = page + (combined_pfn - pfn);
991 pfn = combined_pfn;
992 order++;
993 }
994
995 done_merging:
996 set_buddy_order(page, order);
997
998 if (fpi_flags & FPI_TO_TAIL)
999 to_tail = true;
1000 else if (is_shuffle_order(order))
1001 to_tail = shuffle_pick_tail();
1002 else
1003 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1004
1005 if (to_tail)
1006 add_to_free_list_tail(page, zone, order, migratetype);
1007 else
1008 add_to_free_list(page, zone, order, migratetype);
1009
1010 /* Notify page reporting subsystem of freed page */
1011 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1012 page_reporting_notify_free(order);
1013 }
1014
1015 /**
1016 * split_free_page() -- split a free page at split_pfn_offset
1017 * @free_page: the original free page
1018 * @order: the order of the page
1019 * @split_pfn_offset: split offset within the page
1020 *
1021 * Return -ENOENT if the free page is changed, otherwise 0
1022 *
1023 * It is used when the free page crosses two pageblocks with different migratetypes
1024 * at split_pfn_offset within the page. The split free page will be put into
1025 * separate migratetype lists afterwards. Otherwise, the function achieves
1026 * nothing.
1027 */
1028 int split_free_page(struct page *free_page,
1029 unsigned int order, unsigned long split_pfn_offset)
1030 {
1031 struct zone *zone = page_zone(free_page);
1032 unsigned long free_page_pfn = page_to_pfn(free_page);
1033 unsigned long pfn;
1034 unsigned long flags;
1035 int free_page_order;
1036 int mt;
1037 int ret = 0;
1038
1039 if (split_pfn_offset == 0)
1040 return ret;
1041
1042 spin_lock_irqsave(&zone->lock, flags);
1043
1044 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1045 ret = -ENOENT;
1046 goto out;
1047 }
1048
1049 mt = get_pageblock_migratetype(free_page);
1050 if (likely(!is_migrate_isolate(mt)))
1051 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1052
1053 del_page_from_free_list(free_page, zone, order);
1054 for (pfn = free_page_pfn;
1055 pfn < free_page_pfn + (1UL << order);) {
1056 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1057
1058 free_page_order = min_t(unsigned int,
1059 pfn ? __ffs(pfn) : order,
1060 __fls(split_pfn_offset));
1061 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1062 mt, FPI_NONE);
1063 pfn += 1UL << free_page_order;
1064 split_pfn_offset -= (1UL << free_page_order);
1065 /* we have done the first part, now switch to second part */
1066 if (split_pfn_offset == 0)
1067 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1068 }
1069 out:
1070 spin_unlock_irqrestore(&zone->lock, flags);
1071 return ret;
1072 }
1073 /*
1074 * A bad page could be due to a number of fields. Instead of multiple branches,
1075 * try and check multiple fields with one check. The caller must do a detailed
1076 * check if necessary.
1077 */
1078 static inline bool page_expected_state(struct page *page,
1079 unsigned long check_flags)
1080 {
1081 if (unlikely(atomic_read(&page->_mapcount) != -1))
1082 return false;
1083
1084 if (unlikely((unsigned long)page->mapping |
1085 page_ref_count(page) |
1086 #ifdef CONFIG_MEMCG
1087 page->memcg_data |
1088 #endif
1089 (page->flags & check_flags)))
1090 return false;
1091
1092 return true;
1093 }
1094
1095 static const char *page_bad_reason(struct page *page, unsigned long flags)
1096 {
1097 const char *bad_reason = NULL;
1098
1099 if (unlikely(atomic_read(&page->_mapcount) != -1))
1100 bad_reason = "nonzero mapcount";
1101 if (unlikely(page->mapping != NULL))
1102 bad_reason = "non-NULL mapping";
1103 if (unlikely(page_ref_count(page) != 0))
1104 bad_reason = "nonzero _refcount";
1105 if (unlikely(page->flags & flags)) {
1106 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1107 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1108 else
1109 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1110 }
1111 #ifdef CONFIG_MEMCG
1112 if (unlikely(page->memcg_data))
1113 bad_reason = "page still charged to cgroup";
1114 #endif
1115 return bad_reason;
1116 }
1117
1118 static void free_page_is_bad_report(struct page *page)
1119 {
1120 bad_page(page,
1121 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 }
1123
1124 static inline bool free_page_is_bad(struct page *page)
1125 {
1126 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1127 return false;
1128
1129 /* Something has gone sideways, find it */
1130 free_page_is_bad_report(page);
1131 return true;
1132 }
1133
1134 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1135 {
1136 struct folio *folio = (struct folio *)head_page;
1137 int ret = 1;
1138
1139 /*
1140 * We rely page->lru.next never has bit 0 set, unless the page
1141 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1142 */
1143 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1144
1145 if (!static_branch_unlikely(&check_pages_enabled)) {
1146 ret = 0;
1147 goto out;
1148 }
1149 switch (page - head_page) {
1150 case 1:
1151 /* the first tail page: these may be in place of ->mapping */
1152 if (unlikely(folio_entire_mapcount(folio))) {
1153 bad_page(page, "nonzero entire_mapcount");
1154 goto out;
1155 }
1156 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1157 bad_page(page, "nonzero nr_pages_mapped");
1158 goto out;
1159 }
1160 if (unlikely(atomic_read(&folio->_pincount))) {
1161 bad_page(page, "nonzero pincount");
1162 goto out;
1163 }
1164 break;
1165 case 2:
1166 /*
1167 * the second tail page: ->mapping is
1168 * deferred_list.next -- ignore value.
1169 */
1170 break;
1171 default:
1172 if (page->mapping != TAIL_MAPPING) {
1173 bad_page(page, "corrupted mapping in tail page");
1174 goto out;
1175 }
1176 break;
1177 }
1178 if (unlikely(!PageTail(page))) {
1179 bad_page(page, "PageTail not set");
1180 goto out;
1181 }
1182 if (unlikely(compound_head(page) != head_page)) {
1183 bad_page(page, "compound_head not consistent");
1184 goto out;
1185 }
1186 ret = 0;
1187 out:
1188 page->mapping = NULL;
1189 clear_compound_head(page);
1190 return ret;
1191 }
1192
1193 /*
1194 * Skip KASAN memory poisoning when either:
1195 *
1196 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1197 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1198 * using page tags instead (see below).
1199 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1200 * that error detection is disabled for accesses via the page address.
1201 *
1202 * Pages will have match-all tags in the following circumstances:
1203 *
1204 * 1. Pages are being initialized for the first time, including during deferred
1205 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1206 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1207 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1208 * 3. The allocation was excluded from being checked due to sampling,
1209 * see the call to kasan_unpoison_pages.
1210 *
1211 * Poisoning pages during deferred memory init will greatly lengthen the
1212 * process and cause problem in large memory systems as the deferred pages
1213 * initialization is done with interrupt disabled.
1214 *
1215 * Assuming that there will be no reference to those newly initialized
1216 * pages before they are ever allocated, this should have no effect on
1217 * KASAN memory tracking as the poison will be properly inserted at page
1218 * allocation time. The only corner case is when pages are allocated by
1219 * on-demand allocation and then freed again before the deferred pages
1220 * initialization is done, but this is not likely to happen.
1221 */
1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1223 {
1224 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1225 return deferred_pages_enabled();
1226
1227 return page_kasan_tag(page) == 0xff;
1228 }
1229
1230 static void kernel_init_pages(struct page *page, int numpages)
1231 {
1232 int i;
1233
1234 /* s390's use of memset() could override KASAN redzones. */
1235 kasan_disable_current();
1236 for (i = 0; i < numpages; i++)
1237 clear_highpage_kasan_tagged(page + i);
1238 kasan_enable_current();
1239 }
1240
1241 static __always_inline bool free_pages_prepare(struct page *page,
1242 unsigned int order, fpi_t fpi_flags)
1243 {
1244 int bad = 0;
1245 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1246 bool init = want_init_on_free();
1247
1248 VM_BUG_ON_PAGE(PageTail(page), page);
1249
1250 trace_mm_page_free(page, order);
1251 kmsan_free_page(page, order);
1252
1253 if (unlikely(PageHWPoison(page)) && !order) {
1254 /*
1255 * Do not let hwpoison pages hit pcplists/buddy
1256 * Untie memcg state and reset page's owner
1257 */
1258 if (memcg_kmem_online() && PageMemcgKmem(page))
1259 __memcg_kmem_uncharge_page(page, order);
1260 reset_page_owner(page, order);
1261 page_table_check_free(page, order);
1262 return false;
1263 }
1264
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274
1275 if (compound)
1276 ClearPageHasHWPoisoned(page);
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_page_prepare(page, page + i);
1280 if (is_check_pages_enabled()) {
1281 if (free_page_is_bad(page + i)) {
1282 bad++;
1283 continue;
1284 }
1285 }
1286 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1287 }
1288 }
1289 if (PageMappingFlags(page))
1290 page->mapping = NULL;
1291 if (memcg_kmem_online() && PageMemcgKmem(page))
1292 __memcg_kmem_uncharge_page(page, order);
1293 if (is_check_pages_enabled()) {
1294 if (free_page_is_bad(page))
1295 bad++;
1296 if (bad)
1297 return false;
1298 }
1299
1300 page_cpupid_reset_last(page);
1301 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1302 reset_page_owner(page, order);
1303 page_table_check_free(page, order);
1304
1305 if (!PageHighMem(page)) {
1306 debug_check_no_locks_freed(page_address(page),
1307 PAGE_SIZE << order);
1308 debug_check_no_obj_freed(page_address(page),
1309 PAGE_SIZE << order);
1310 }
1311
1312 kernel_poison_pages(page, 1 << order);
1313
1314 /*
1315 * As memory initialization might be integrated into KASAN,
1316 * KASAN poisoning and memory initialization code must be
1317 * kept together to avoid discrepancies in behavior.
1318 *
1319 * With hardware tag-based KASAN, memory tags must be set before the
1320 * page becomes unavailable via debug_pagealloc or arch_free_page.
1321 */
1322 if (!skip_kasan_poison) {
1323 kasan_poison_pages(page, order, init);
1324
1325 /* Memory is already initialized if KASAN did it internally. */
1326 if (kasan_has_integrated_init())
1327 init = false;
1328 }
1329 if (init)
1330 kernel_init_pages(page, 1 << order);
1331
1332 /*
1333 * arch_free_page() can make the page's contents inaccessible. s390
1334 * does this. So nothing which can access the page's contents should
1335 * happen after this.
1336 */
1337 arch_free_page(page, order);
1338
1339 debug_pagealloc_unmap_pages(page, 1 << order);
1340
1341 return true;
1342 }
1343
1344 /*
1345 * Frees a number of pages from the PCP lists
1346 * Assumes all pages on list are in same zone.
1347 * count is the number of pages to free.
1348 */
1349 static void free_pcppages_bulk(struct zone *zone, int count,
1350 struct per_cpu_pages *pcp,
1351 int pindex)
1352 {
1353 unsigned long flags;
1354 int min_pindex = 0;
1355 int max_pindex = NR_PCP_LISTS - 1;
1356 unsigned int order;
1357 bool isolated_pageblocks;
1358 struct page *page;
1359
1360 /*
1361 * Ensure proper count is passed which otherwise would stuck in the
1362 * below while (list_empty(list)) loop.
1363 */
1364 count = min(pcp->count, count);
1365
1366 /* Ensure requested pindex is drained first. */
1367 pindex = pindex - 1;
1368
1369 spin_lock_irqsave(&zone->lock, flags);
1370 isolated_pageblocks = has_isolate_pageblock(zone);
1371
1372 while (count > 0) {
1373 struct list_head *list;
1374 int nr_pages;
1375
1376 /* Remove pages from lists in a round-robin fashion. */
1377 do {
1378 if (++pindex > max_pindex)
1379 pindex = min_pindex;
1380 list = &pcp->lists[pindex];
1381 if (!list_empty(list))
1382 break;
1383
1384 if (pindex == max_pindex)
1385 max_pindex--;
1386 if (pindex == min_pindex)
1387 min_pindex++;
1388 } while (1);
1389
1390 order = pindex_to_order(pindex);
1391 nr_pages = 1 << order;
1392 do {
1393 int mt;
1394
1395 page = list_last_entry(list, struct page, pcp_list);
1396 mt = get_pcppage_migratetype(page);
1397
1398 /* must delete to avoid corrupting pcp list */
1399 list_del(&page->pcp_list);
1400 count -= nr_pages;
1401 pcp->count -= nr_pages;
1402
1403 /* MIGRATE_ISOLATE page should not go to pcplists */
1404 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1405 /* Pageblock could have been isolated meanwhile */
1406 if (unlikely(isolated_pageblocks))
1407 mt = get_pageblock_migratetype(page);
1408
1409 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1410 trace_mm_page_pcpu_drain(page, order, mt);
1411 } while (count > 0 && !list_empty(list));
1412 }
1413
1414 spin_unlock_irqrestore(&zone->lock, flags);
1415 }
1416
1417 static void free_one_page(struct zone *zone,
1418 struct page *page, unsigned long pfn,
1419 unsigned int order,
1420 int migratetype, fpi_t fpi_flags)
1421 {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&zone->lock, flags);
1425 if (unlikely(has_isolate_pageblock(zone) ||
1426 is_migrate_isolate(migratetype))) {
1427 migratetype = get_pfnblock_migratetype(page, pfn);
1428 }
1429 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1430 spin_unlock_irqrestore(&zone->lock, flags);
1431 }
1432
1433 static void __free_pages_ok(struct page *page, unsigned int order,
1434 fpi_t fpi_flags)
1435 {
1436 unsigned long flags;
1437 int migratetype;
1438 unsigned long pfn = page_to_pfn(page);
1439 struct zone *zone = page_zone(page);
1440
1441 if (!free_pages_prepare(page, order, fpi_flags))
1442 return;
1443
1444 /*
1445 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1446 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1447 * This will reduce the lock holding time.
1448 */
1449 migratetype = get_pfnblock_migratetype(page, pfn);
1450
1451 spin_lock_irqsave(&zone->lock, flags);
1452 if (unlikely(has_isolate_pageblock(zone) ||
1453 is_migrate_isolate(migratetype))) {
1454 migratetype = get_pfnblock_migratetype(page, pfn);
1455 }
1456 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1457 spin_unlock_irqrestore(&zone->lock, flags);
1458
1459 __count_vm_events(PGFREE, 1 << order);
1460 }
1461
1462 void __free_pages_core(struct page *page, unsigned int order)
1463 {
1464 unsigned int nr_pages = 1 << order;
1465 struct page *p = page;
1466 unsigned int loop;
1467
1468 /*
1469 * When initializing the memmap, __init_single_page() sets the refcount
1470 * of all pages to 1 ("allocated"/"not free"). We have to set the
1471 * refcount of all involved pages to 0.
1472 */
1473 prefetchw(p);
1474 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1475 prefetchw(p + 1);
1476 __ClearPageReserved(p);
1477 set_page_count(p, 0);
1478 }
1479 __ClearPageReserved(p);
1480 set_page_count(p, 0);
1481
1482 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1483
1484 /*
1485 * Bypass PCP and place fresh pages right to the tail, primarily
1486 * relevant for memory onlining.
1487 */
1488 __free_pages_ok(page, order, FPI_TO_TAIL);
1489 }
1490
1491 /*
1492 * Check that the whole (or subset of) a pageblock given by the interval of
1493 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494 * with the migration of free compaction scanner.
1495 *
1496 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1497 *
1498 * It's possible on some configurations to have a setup like node0 node1 node0
1499 * i.e. it's possible that all pages within a zones range of pages do not
1500 * belong to a single zone. We assume that a border between node0 and node1
1501 * can occur within a single pageblock, but not a node0 node1 node0
1502 * interleaving within a single pageblock. It is therefore sufficient to check
1503 * the first and last page of a pageblock and avoid checking each individual
1504 * page in a pageblock.
1505 */
1506 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1507 unsigned long end_pfn, struct zone *zone)
1508 {
1509 struct page *start_page;
1510 struct page *end_page;
1511
1512 /* end_pfn is one past the range we are checking */
1513 end_pfn--;
1514
1515 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1516 return NULL;
1517
1518 start_page = pfn_to_online_page(start_pfn);
1519 if (!start_page)
1520 return NULL;
1521
1522 if (page_zone(start_page) != zone)
1523 return NULL;
1524
1525 end_page = pfn_to_page(end_pfn);
1526
1527 /* This gives a shorter code than deriving page_zone(end_page) */
1528 if (page_zone_id(start_page) != page_zone_id(end_page))
1529 return NULL;
1530
1531 return start_page;
1532 }
1533
1534 void set_zone_contiguous(struct zone *zone)
1535 {
1536 unsigned long block_start_pfn = zone->zone_start_pfn;
1537 unsigned long block_end_pfn;
1538
1539 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1540 for (; block_start_pfn < zone_end_pfn(zone);
1541 block_start_pfn = block_end_pfn,
1542 block_end_pfn += pageblock_nr_pages) {
1543
1544 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1545
1546 if (!__pageblock_pfn_to_page(block_start_pfn,
1547 block_end_pfn, zone))
1548 return;
1549 cond_resched();
1550 }
1551
1552 /* We confirm that there is no hole */
1553 zone->contiguous = true;
1554 }
1555
1556 void clear_zone_contiguous(struct zone *zone)
1557 {
1558 zone->contiguous = false;
1559 }
1560
1561 /*
1562 * The order of subdivision here is critical for the IO subsystem.
1563 * Please do not alter this order without good reasons and regression
1564 * testing. Specifically, as large blocks of memory are subdivided,
1565 * the order in which smaller blocks are delivered depends on the order
1566 * they're subdivided in this function. This is the primary factor
1567 * influencing the order in which pages are delivered to the IO
1568 * subsystem according to empirical testing, and this is also justified
1569 * by considering the behavior of a buddy system containing a single
1570 * large block of memory acted on by a series of small allocations.
1571 * This behavior is a critical factor in sglist merging's success.
1572 *
1573 * -- nyc
1574 */
1575 static inline void expand(struct zone *zone, struct page *page,
1576 int low, int high, int migratetype)
1577 {
1578 unsigned long size = 1 << high;
1579
1580 while (high > low) {
1581 high--;
1582 size >>= 1;
1583 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1584
1585 /*
1586 * Mark as guard pages (or page), that will allow to
1587 * merge back to allocator when buddy will be freed.
1588 * Corresponding page table entries will not be touched,
1589 * pages will stay not present in virtual address space
1590 */
1591 if (set_page_guard(zone, &page[size], high, migratetype))
1592 continue;
1593
1594 add_to_free_list(&page[size], zone, high, migratetype);
1595 set_buddy_order(&page[size], high);
1596 }
1597 }
1598
1599 static void check_new_page_bad(struct page *page)
1600 {
1601 if (unlikely(page->flags & __PG_HWPOISON)) {
1602 /* Don't complain about hwpoisoned pages */
1603 page_mapcount_reset(page); /* remove PageBuddy */
1604 return;
1605 }
1606
1607 bad_page(page,
1608 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1609 }
1610
1611 /*
1612 * This page is about to be returned from the page allocator
1613 */
1614 static int check_new_page(struct page *page)
1615 {
1616 if (likely(page_expected_state(page,
1617 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1618 return 0;
1619
1620 check_new_page_bad(page);
1621 return 1;
1622 }
1623
1624 static inline bool check_new_pages(struct page *page, unsigned int order)
1625 {
1626 if (is_check_pages_enabled()) {
1627 for (int i = 0; i < (1 << order); i++) {
1628 struct page *p = page + i;
1629
1630 if (check_new_page(p))
1631 return true;
1632 }
1633 }
1634
1635 return false;
1636 }
1637
1638 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1639 {
1640 /* Don't skip if a software KASAN mode is enabled. */
1641 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1642 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1643 return false;
1644
1645 /* Skip, if hardware tag-based KASAN is not enabled. */
1646 if (!kasan_hw_tags_enabled())
1647 return true;
1648
1649 /*
1650 * With hardware tag-based KASAN enabled, skip if this has been
1651 * requested via __GFP_SKIP_KASAN.
1652 */
1653 return flags & __GFP_SKIP_KASAN;
1654 }
1655
1656 static inline bool should_skip_init(gfp_t flags)
1657 {
1658 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1659 if (!kasan_hw_tags_enabled())
1660 return false;
1661
1662 /* For hardware tag-based KASAN, skip if requested. */
1663 return (flags & __GFP_SKIP_ZERO);
1664 }
1665
1666 inline void post_alloc_hook(struct page *page, unsigned int order,
1667 gfp_t gfp_flags)
1668 {
1669 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1670 !should_skip_init(gfp_flags);
1671 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1672 int i;
1673
1674 set_page_private(page, 0);
1675 set_page_refcounted(page);
1676
1677 arch_alloc_page(page, order);
1678 debug_pagealloc_map_pages(page, 1 << order);
1679
1680 /*
1681 * Page unpoisoning must happen before memory initialization.
1682 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1683 * allocations and the page unpoisoning code will complain.
1684 */
1685 kernel_unpoison_pages(page, 1 << order);
1686
1687 /*
1688 * As memory initialization might be integrated into KASAN,
1689 * KASAN unpoisoning and memory initializion code must be
1690 * kept together to avoid discrepancies in behavior.
1691 */
1692
1693 /*
1694 * If memory tags should be zeroed
1695 * (which happens only when memory should be initialized as well).
1696 */
1697 if (zero_tags) {
1698 /* Initialize both memory and memory tags. */
1699 for (i = 0; i != 1 << order; ++i)
1700 tag_clear_highpage(page + i);
1701
1702 /* Take note that memory was initialized by the loop above. */
1703 init = false;
1704 }
1705 if (!should_skip_kasan_unpoison(gfp_flags) &&
1706 kasan_unpoison_pages(page, order, init)) {
1707 /* Take note that memory was initialized by KASAN. */
1708 if (kasan_has_integrated_init())
1709 init = false;
1710 } else {
1711 /*
1712 * If memory tags have not been set by KASAN, reset the page
1713 * tags to ensure page_address() dereferencing does not fault.
1714 */
1715 for (i = 0; i != 1 << order; ++i)
1716 page_kasan_tag_reset(page + i);
1717 }
1718 /* If memory is still not initialized, initialize it now. */
1719 if (init)
1720 kernel_init_pages(page, 1 << order);
1721
1722 set_page_owner(page, order, gfp_flags);
1723 page_table_check_alloc(page, order);
1724 }
1725
1726 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1727 unsigned int alloc_flags)
1728 {
1729 post_alloc_hook(page, order, gfp_flags);
1730
1731 if (order && (gfp_flags & __GFP_COMP))
1732 prep_compound_page(page, order);
1733
1734 /*
1735 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1736 * allocate the page. The expectation is that the caller is taking
1737 * steps that will free more memory. The caller should avoid the page
1738 * being used for !PFMEMALLOC purposes.
1739 */
1740 if (alloc_flags & ALLOC_NO_WATERMARKS)
1741 set_page_pfmemalloc(page);
1742 else
1743 clear_page_pfmemalloc(page);
1744 }
1745
1746 /*
1747 * Go through the free lists for the given migratetype and remove
1748 * the smallest available page from the freelists
1749 */
1750 static __always_inline
1751 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1752 int migratetype)
1753 {
1754 unsigned int current_order;
1755 struct free_area *area;
1756 struct page *page;
1757
1758 /* Find a page of the appropriate size in the preferred list */
1759 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1760 area = &(zone->free_area[current_order]);
1761 page = get_page_from_free_area(area, migratetype);
1762 if (!page)
1763 continue;
1764 del_page_from_free_list(page, zone, current_order);
1765 expand(zone, page, order, current_order, migratetype);
1766 set_pcppage_migratetype(page, migratetype);
1767 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1768 pcp_allowed_order(order) &&
1769 migratetype < MIGRATE_PCPTYPES);
1770 return page;
1771 }
1772
1773 return NULL;
1774 }
1775
1776
1777 /*
1778 * This array describes the order lists are fallen back to when
1779 * the free lists for the desirable migrate type are depleted
1780 *
1781 * The other migratetypes do not have fallbacks.
1782 */
1783 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1784 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1785 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1786 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1787 };
1788
1789 #ifdef CONFIG_CMA
1790 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1791 unsigned int order)
1792 {
1793 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1794 }
1795 #else
1796 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1797 unsigned int order) { return NULL; }
1798 #endif
1799
1800 /*
1801 * Move the free pages in a range to the freelist tail of the requested type.
1802 * Note that start_page and end_pages are not aligned on a pageblock
1803 * boundary. If alignment is required, use move_freepages_block()
1804 */
1805 static int move_freepages(struct zone *zone,
1806 unsigned long start_pfn, unsigned long end_pfn,
1807 int migratetype, int *num_movable)
1808 {
1809 struct page *page;
1810 unsigned long pfn;
1811 unsigned int order;
1812 int pages_moved = 0;
1813
1814 for (pfn = start_pfn; pfn <= end_pfn;) {
1815 page = pfn_to_page(pfn);
1816 if (!PageBuddy(page)) {
1817 /*
1818 * We assume that pages that could be isolated for
1819 * migration are movable. But we don't actually try
1820 * isolating, as that would be expensive.
1821 */
1822 if (num_movable &&
1823 (PageLRU(page) || __PageMovable(page)))
1824 (*num_movable)++;
1825 pfn++;
1826 continue;
1827 }
1828
1829 /* Make sure we are not inadvertently changing nodes */
1830 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1831 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1832
1833 order = buddy_order(page);
1834 move_to_free_list(page, zone, order, migratetype);
1835 pfn += 1 << order;
1836 pages_moved += 1 << order;
1837 }
1838
1839 return pages_moved;
1840 }
1841
1842 int move_freepages_block(struct zone *zone, struct page *page,
1843 int migratetype, int *num_movable)
1844 {
1845 unsigned long start_pfn, end_pfn, pfn;
1846
1847 if (num_movable)
1848 *num_movable = 0;
1849
1850 pfn = page_to_pfn(page);
1851 start_pfn = pageblock_start_pfn(pfn);
1852 end_pfn = pageblock_end_pfn(pfn) - 1;
1853
1854 /* Do not cross zone boundaries */
1855 if (!zone_spans_pfn(zone, start_pfn))
1856 start_pfn = pfn;
1857 if (!zone_spans_pfn(zone, end_pfn))
1858 return 0;
1859
1860 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1861 num_movable);
1862 }
1863
1864 static void change_pageblock_range(struct page *pageblock_page,
1865 int start_order, int migratetype)
1866 {
1867 int nr_pageblocks = 1 << (start_order - pageblock_order);
1868
1869 while (nr_pageblocks--) {
1870 set_pageblock_migratetype(pageblock_page, migratetype);
1871 pageblock_page += pageblock_nr_pages;
1872 }
1873 }
1874
1875 /*
1876 * When we are falling back to another migratetype during allocation, try to
1877 * steal extra free pages from the same pageblocks to satisfy further
1878 * allocations, instead of polluting multiple pageblocks.
1879 *
1880 * If we are stealing a relatively large buddy page, it is likely there will
1881 * be more free pages in the pageblock, so try to steal them all. For
1882 * reclaimable and unmovable allocations, we steal regardless of page size,
1883 * as fragmentation caused by those allocations polluting movable pageblocks
1884 * is worse than movable allocations stealing from unmovable and reclaimable
1885 * pageblocks.
1886 */
1887 static bool can_steal_fallback(unsigned int order, int start_mt)
1888 {
1889 /*
1890 * Leaving this order check is intended, although there is
1891 * relaxed order check in next check. The reason is that
1892 * we can actually steal whole pageblock if this condition met,
1893 * but, below check doesn't guarantee it and that is just heuristic
1894 * so could be changed anytime.
1895 */
1896 if (order >= pageblock_order)
1897 return true;
1898
1899 if (order >= pageblock_order / 2 ||
1900 start_mt == MIGRATE_RECLAIMABLE ||
1901 start_mt == MIGRATE_UNMOVABLE ||
1902 page_group_by_mobility_disabled)
1903 return true;
1904
1905 return false;
1906 }
1907
1908 static inline bool boost_watermark(struct zone *zone)
1909 {
1910 unsigned long max_boost;
1911
1912 if (!watermark_boost_factor)
1913 return false;
1914 /*
1915 * Don't bother in zones that are unlikely to produce results.
1916 * On small machines, including kdump capture kernels running
1917 * in a small area, boosting the watermark can cause an out of
1918 * memory situation immediately.
1919 */
1920 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1921 return false;
1922
1923 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1924 watermark_boost_factor, 10000);
1925
1926 /*
1927 * high watermark may be uninitialised if fragmentation occurs
1928 * very early in boot so do not boost. We do not fall
1929 * through and boost by pageblock_nr_pages as failing
1930 * allocations that early means that reclaim is not going
1931 * to help and it may even be impossible to reclaim the
1932 * boosted watermark resulting in a hang.
1933 */
1934 if (!max_boost)
1935 return false;
1936
1937 max_boost = max(pageblock_nr_pages, max_boost);
1938
1939 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1940 max_boost);
1941
1942 return true;
1943 }
1944
1945 /*
1946 * This function implements actual steal behaviour. If order is large enough,
1947 * we can steal whole pageblock. If not, we first move freepages in this
1948 * pageblock to our migratetype and determine how many already-allocated pages
1949 * are there in the pageblock with a compatible migratetype. If at least half
1950 * of pages are free or compatible, we can change migratetype of the pageblock
1951 * itself, so pages freed in the future will be put on the correct free list.
1952 */
1953 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1954 unsigned int alloc_flags, int start_type, bool whole_block)
1955 {
1956 unsigned int current_order = buddy_order(page);
1957 int free_pages, movable_pages, alike_pages;
1958 int old_block_type;
1959
1960 old_block_type = get_pageblock_migratetype(page);
1961
1962 /*
1963 * This can happen due to races and we want to prevent broken
1964 * highatomic accounting.
1965 */
1966 if (is_migrate_highatomic(old_block_type))
1967 goto single_page;
1968
1969 /* Take ownership for orders >= pageblock_order */
1970 if (current_order >= pageblock_order) {
1971 change_pageblock_range(page, current_order, start_type);
1972 goto single_page;
1973 }
1974
1975 /*
1976 * Boost watermarks to increase reclaim pressure to reduce the
1977 * likelihood of future fallbacks. Wake kswapd now as the node
1978 * may be balanced overall and kswapd will not wake naturally.
1979 */
1980 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1981 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1982
1983 /* We are not allowed to try stealing from the whole block */
1984 if (!whole_block)
1985 goto single_page;
1986
1987 free_pages = move_freepages_block(zone, page, start_type,
1988 &movable_pages);
1989 /*
1990 * Determine how many pages are compatible with our allocation.
1991 * For movable allocation, it's the number of movable pages which
1992 * we just obtained. For other types it's a bit more tricky.
1993 */
1994 if (start_type == MIGRATE_MOVABLE) {
1995 alike_pages = movable_pages;
1996 } else {
1997 /*
1998 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1999 * to MOVABLE pageblock, consider all non-movable pages as
2000 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2001 * vice versa, be conservative since we can't distinguish the
2002 * exact migratetype of non-movable pages.
2003 */
2004 if (old_block_type == MIGRATE_MOVABLE)
2005 alike_pages = pageblock_nr_pages
2006 - (free_pages + movable_pages);
2007 else
2008 alike_pages = 0;
2009 }
2010
2011 /* moving whole block can fail due to zone boundary conditions */
2012 if (!free_pages)
2013 goto single_page;
2014
2015 /*
2016 * If a sufficient number of pages in the block are either free or of
2017 * comparable migratability as our allocation, claim the whole block.
2018 */
2019 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2020 page_group_by_mobility_disabled)
2021 set_pageblock_migratetype(page, start_type);
2022
2023 return;
2024
2025 single_page:
2026 move_to_free_list(page, zone, current_order, start_type);
2027 }
2028
2029 /*
2030 * Check whether there is a suitable fallback freepage with requested order.
2031 * If only_stealable is true, this function returns fallback_mt only if
2032 * we can steal other freepages all together. This would help to reduce
2033 * fragmentation due to mixed migratetype pages in one pageblock.
2034 */
2035 int find_suitable_fallback(struct free_area *area, unsigned int order,
2036 int migratetype, bool only_stealable, bool *can_steal)
2037 {
2038 int i;
2039 int fallback_mt;
2040
2041 if (area->nr_free == 0)
2042 return -1;
2043
2044 *can_steal = false;
2045 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2046 fallback_mt = fallbacks[migratetype][i];
2047 if (free_area_empty(area, fallback_mt))
2048 continue;
2049
2050 if (can_steal_fallback(order, migratetype))
2051 *can_steal = true;
2052
2053 if (!only_stealable)
2054 return fallback_mt;
2055
2056 if (*can_steal)
2057 return fallback_mt;
2058 }
2059
2060 return -1;
2061 }
2062
2063 /*
2064 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2065 * there are no empty page blocks that contain a page with a suitable order
2066 */
2067 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2068 unsigned int alloc_order)
2069 {
2070 int mt;
2071 unsigned long max_managed, flags;
2072
2073 /*
2074 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2075 * Check is race-prone but harmless.
2076 */
2077 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2078 if (zone->nr_reserved_highatomic >= max_managed)
2079 return;
2080
2081 spin_lock_irqsave(&zone->lock, flags);
2082
2083 /* Recheck the nr_reserved_highatomic limit under the lock */
2084 if (zone->nr_reserved_highatomic >= max_managed)
2085 goto out_unlock;
2086
2087 /* Yoink! */
2088 mt = get_pageblock_migratetype(page);
2089 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2090 if (migratetype_is_mergeable(mt)) {
2091 zone->nr_reserved_highatomic += pageblock_nr_pages;
2092 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2093 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2094 }
2095
2096 out_unlock:
2097 spin_unlock_irqrestore(&zone->lock, flags);
2098 }
2099
2100 /*
2101 * Used when an allocation is about to fail under memory pressure. This
2102 * potentially hurts the reliability of high-order allocations when under
2103 * intense memory pressure but failed atomic allocations should be easier
2104 * to recover from than an OOM.
2105 *
2106 * If @force is true, try to unreserve a pageblock even though highatomic
2107 * pageblock is exhausted.
2108 */
2109 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2110 bool force)
2111 {
2112 struct zonelist *zonelist = ac->zonelist;
2113 unsigned long flags;
2114 struct zoneref *z;
2115 struct zone *zone;
2116 struct page *page;
2117 int order;
2118 bool ret;
2119
2120 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2121 ac->nodemask) {
2122 /*
2123 * Preserve at least one pageblock unless memory pressure
2124 * is really high.
2125 */
2126 if (!force && zone->nr_reserved_highatomic <=
2127 pageblock_nr_pages)
2128 continue;
2129
2130 spin_lock_irqsave(&zone->lock, flags);
2131 for (order = 0; order <= MAX_ORDER; order++) {
2132 struct free_area *area = &(zone->free_area[order]);
2133
2134 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2135 if (!page)
2136 continue;
2137
2138 /*
2139 * In page freeing path, migratetype change is racy so
2140 * we can counter several free pages in a pageblock
2141 * in this loop although we changed the pageblock type
2142 * from highatomic to ac->migratetype. So we should
2143 * adjust the count once.
2144 */
2145 if (is_migrate_highatomic_page(page)) {
2146 /*
2147 * It should never happen but changes to
2148 * locking could inadvertently allow a per-cpu
2149 * drain to add pages to MIGRATE_HIGHATOMIC
2150 * while unreserving so be safe and watch for
2151 * underflows.
2152 */
2153 zone->nr_reserved_highatomic -= min(
2154 pageblock_nr_pages,
2155 zone->nr_reserved_highatomic);
2156 }
2157
2158 /*
2159 * Convert to ac->migratetype and avoid the normal
2160 * pageblock stealing heuristics. Minimally, the caller
2161 * is doing the work and needs the pages. More
2162 * importantly, if the block was always converted to
2163 * MIGRATE_UNMOVABLE or another type then the number
2164 * of pageblocks that cannot be completely freed
2165 * may increase.
2166 */
2167 set_pageblock_migratetype(page, ac->migratetype);
2168 ret = move_freepages_block(zone, page, ac->migratetype,
2169 NULL);
2170 if (ret) {
2171 spin_unlock_irqrestore(&zone->lock, flags);
2172 return ret;
2173 }
2174 }
2175 spin_unlock_irqrestore(&zone->lock, flags);
2176 }
2177
2178 return false;
2179 }
2180
2181 /*
2182 * Try finding a free buddy page on the fallback list and put it on the free
2183 * list of requested migratetype, possibly along with other pages from the same
2184 * block, depending on fragmentation avoidance heuristics. Returns true if
2185 * fallback was found so that __rmqueue_smallest() can grab it.
2186 *
2187 * The use of signed ints for order and current_order is a deliberate
2188 * deviation from the rest of this file, to make the for loop
2189 * condition simpler.
2190 */
2191 static __always_inline bool
2192 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2193 unsigned int alloc_flags)
2194 {
2195 struct free_area *area;
2196 int current_order;
2197 int min_order = order;
2198 struct page *page;
2199 int fallback_mt;
2200 bool can_steal;
2201
2202 /*
2203 * Do not steal pages from freelists belonging to other pageblocks
2204 * i.e. orders < pageblock_order. If there are no local zones free,
2205 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2206 */
2207 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2208 min_order = pageblock_order;
2209
2210 /*
2211 * Find the largest available free page in the other list. This roughly
2212 * approximates finding the pageblock with the most free pages, which
2213 * would be too costly to do exactly.
2214 */
2215 for (current_order = MAX_ORDER; current_order >= min_order;
2216 --current_order) {
2217 area = &(zone->free_area[current_order]);
2218 fallback_mt = find_suitable_fallback(area, current_order,
2219 start_migratetype, false, &can_steal);
2220 if (fallback_mt == -1)
2221 continue;
2222
2223 /*
2224 * We cannot steal all free pages from the pageblock and the
2225 * requested migratetype is movable. In that case it's better to
2226 * steal and split the smallest available page instead of the
2227 * largest available page, because even if the next movable
2228 * allocation falls back into a different pageblock than this
2229 * one, it won't cause permanent fragmentation.
2230 */
2231 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2232 && current_order > order)
2233 goto find_smallest;
2234
2235 goto do_steal;
2236 }
2237
2238 return false;
2239
2240 find_smallest:
2241 for (current_order = order; current_order <= MAX_ORDER;
2242 current_order++) {
2243 area = &(zone->free_area[current_order]);
2244 fallback_mt = find_suitable_fallback(area, current_order,
2245 start_migratetype, false, &can_steal);
2246 if (fallback_mt != -1)
2247 break;
2248 }
2249
2250 /*
2251 * This should not happen - we already found a suitable fallback
2252 * when looking for the largest page.
2253 */
2254 VM_BUG_ON(current_order > MAX_ORDER);
2255
2256 do_steal:
2257 page = get_page_from_free_area(area, fallback_mt);
2258
2259 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2260 can_steal);
2261
2262 trace_mm_page_alloc_extfrag(page, order, current_order,
2263 start_migratetype, fallback_mt);
2264
2265 return true;
2266
2267 }
2268
2269 /*
2270 * Do the hard work of removing an element from the buddy allocator.
2271 * Call me with the zone->lock already held.
2272 */
2273 static __always_inline struct page *
2274 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2275 unsigned int alloc_flags)
2276 {
2277 struct page *page;
2278
2279 if (IS_ENABLED(CONFIG_CMA)) {
2280 /*
2281 * Balance movable allocations between regular and CMA areas by
2282 * allocating from CMA when over half of the zone's free memory
2283 * is in the CMA area.
2284 */
2285 if (alloc_flags & ALLOC_CMA &&
2286 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2287 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2288 page = __rmqueue_cma_fallback(zone, order);
2289 if (page)
2290 return page;
2291 }
2292 }
2293 retry:
2294 page = __rmqueue_smallest(zone, order, migratetype);
2295 if (unlikely(!page)) {
2296 if (alloc_flags & ALLOC_CMA)
2297 page = __rmqueue_cma_fallback(zone, order);
2298
2299 if (!page && __rmqueue_fallback(zone, order, migratetype,
2300 alloc_flags))
2301 goto retry;
2302 }
2303 return page;
2304 }
2305
2306 /*
2307 * Obtain a specified number of elements from the buddy allocator, all under
2308 * a single hold of the lock, for efficiency. Add them to the supplied list.
2309 * Returns the number of new pages which were placed at *list.
2310 */
2311 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2312 unsigned long count, struct list_head *list,
2313 int migratetype, unsigned int alloc_flags)
2314 {
2315 unsigned long flags;
2316 int i;
2317
2318 spin_lock_irqsave(&zone->lock, flags);
2319 for (i = 0; i < count; ++i) {
2320 struct page *page = __rmqueue(zone, order, migratetype,
2321 alloc_flags);
2322 if (unlikely(page == NULL))
2323 break;
2324
2325 /*
2326 * Split buddy pages returned by expand() are received here in
2327 * physical page order. The page is added to the tail of
2328 * caller's list. From the callers perspective, the linked list
2329 * is ordered by page number under some conditions. This is
2330 * useful for IO devices that can forward direction from the
2331 * head, thus also in the physical page order. This is useful
2332 * for IO devices that can merge IO requests if the physical
2333 * pages are ordered properly.
2334 */
2335 list_add_tail(&page->pcp_list, list);
2336 if (is_migrate_cma(get_pcppage_migratetype(page)))
2337 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2338 -(1 << order));
2339 }
2340
2341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2342 spin_unlock_irqrestore(&zone->lock, flags);
2343
2344 return i;
2345 }
2346
2347 #ifdef CONFIG_NUMA
2348 /*
2349 * Called from the vmstat counter updater to drain pagesets of this
2350 * currently executing processor on remote nodes after they have
2351 * expired.
2352 */
2353 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2354 {
2355 int to_drain, batch;
2356
2357 batch = READ_ONCE(pcp->batch);
2358 to_drain = min(pcp->count, batch);
2359 if (to_drain > 0) {
2360 spin_lock(&pcp->lock);
2361 free_pcppages_bulk(zone, to_drain, pcp, 0);
2362 spin_unlock(&pcp->lock);
2363 }
2364 }
2365 #endif
2366
2367 /*
2368 * Drain pcplists of the indicated processor and zone.
2369 */
2370 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2371 {
2372 struct per_cpu_pages *pcp;
2373
2374 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2375 if (pcp->count) {
2376 spin_lock(&pcp->lock);
2377 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2378 spin_unlock(&pcp->lock);
2379 }
2380 }
2381
2382 /*
2383 * Drain pcplists of all zones on the indicated processor.
2384 */
2385 static void drain_pages(unsigned int cpu)
2386 {
2387 struct zone *zone;
2388
2389 for_each_populated_zone(zone) {
2390 drain_pages_zone(cpu, zone);
2391 }
2392 }
2393
2394 /*
2395 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2396 */
2397 void drain_local_pages(struct zone *zone)
2398 {
2399 int cpu = smp_processor_id();
2400
2401 if (zone)
2402 drain_pages_zone(cpu, zone);
2403 else
2404 drain_pages(cpu);
2405 }
2406
2407 /*
2408 * The implementation of drain_all_pages(), exposing an extra parameter to
2409 * drain on all cpus.
2410 *
2411 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2412 * not empty. The check for non-emptiness can however race with a free to
2413 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2414 * that need the guarantee that every CPU has drained can disable the
2415 * optimizing racy check.
2416 */
2417 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2418 {
2419 int cpu;
2420
2421 /*
2422 * Allocate in the BSS so we won't require allocation in
2423 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2424 */
2425 static cpumask_t cpus_with_pcps;
2426
2427 /*
2428 * Do not drain if one is already in progress unless it's specific to
2429 * a zone. Such callers are primarily CMA and memory hotplug and need
2430 * the drain to be complete when the call returns.
2431 */
2432 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2433 if (!zone)
2434 return;
2435 mutex_lock(&pcpu_drain_mutex);
2436 }
2437
2438 /*
2439 * We don't care about racing with CPU hotplug event
2440 * as offline notification will cause the notified
2441 * cpu to drain that CPU pcps and on_each_cpu_mask
2442 * disables preemption as part of its processing
2443 */
2444 for_each_online_cpu(cpu) {
2445 struct per_cpu_pages *pcp;
2446 struct zone *z;
2447 bool has_pcps = false;
2448
2449 if (force_all_cpus) {
2450 /*
2451 * The pcp.count check is racy, some callers need a
2452 * guarantee that no cpu is missed.
2453 */
2454 has_pcps = true;
2455 } else if (zone) {
2456 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2457 if (pcp->count)
2458 has_pcps = true;
2459 } else {
2460 for_each_populated_zone(z) {
2461 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2462 if (pcp->count) {
2463 has_pcps = true;
2464 break;
2465 }
2466 }
2467 }
2468
2469 if (has_pcps)
2470 cpumask_set_cpu(cpu, &cpus_with_pcps);
2471 else
2472 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2473 }
2474
2475 for_each_cpu(cpu, &cpus_with_pcps) {
2476 if (zone)
2477 drain_pages_zone(cpu, zone);
2478 else
2479 drain_pages(cpu);
2480 }
2481
2482 mutex_unlock(&pcpu_drain_mutex);
2483 }
2484
2485 /*
2486 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2487 *
2488 * When zone parameter is non-NULL, spill just the single zone's pages.
2489 */
2490 void drain_all_pages(struct zone *zone)
2491 {
2492 __drain_all_pages(zone, false);
2493 }
2494
2495 #ifdef CONFIG_HIBERNATION
2496
2497 /*
2498 * Touch the watchdog for every WD_PAGE_COUNT pages.
2499 */
2500 #define WD_PAGE_COUNT (128*1024)
2501
2502 void mark_free_pages(struct zone *zone)
2503 {
2504 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2505 unsigned long flags;
2506 unsigned int order, t;
2507 struct page *page;
2508
2509 if (zone_is_empty(zone))
2510 return;
2511
2512 spin_lock_irqsave(&zone->lock, flags);
2513
2514 max_zone_pfn = zone_end_pfn(zone);
2515 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2516 if (pfn_valid(pfn)) {
2517 page = pfn_to_page(pfn);
2518
2519 if (!--page_count) {
2520 touch_nmi_watchdog();
2521 page_count = WD_PAGE_COUNT;
2522 }
2523
2524 if (page_zone(page) != zone)
2525 continue;
2526
2527 if (!swsusp_page_is_forbidden(page))
2528 swsusp_unset_page_free(page);
2529 }
2530
2531 for_each_migratetype_order(order, t) {
2532 list_for_each_entry(page,
2533 &zone->free_area[order].free_list[t], buddy_list) {
2534 unsigned long i;
2535
2536 pfn = page_to_pfn(page);
2537 for (i = 0; i < (1UL << order); i++) {
2538 if (!--page_count) {
2539 touch_nmi_watchdog();
2540 page_count = WD_PAGE_COUNT;
2541 }
2542 swsusp_set_page_free(pfn_to_page(pfn + i));
2543 }
2544 }
2545 }
2546 spin_unlock_irqrestore(&zone->lock, flags);
2547 }
2548 #endif /* CONFIG_PM */
2549
2550 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2551 unsigned int order)
2552 {
2553 int migratetype;
2554
2555 if (!free_pages_prepare(page, order, FPI_NONE))
2556 return false;
2557
2558 migratetype = get_pfnblock_migratetype(page, pfn);
2559 set_pcppage_migratetype(page, migratetype);
2560 return true;
2561 }
2562
2563 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2564 bool free_high)
2565 {
2566 int min_nr_free, max_nr_free;
2567
2568 /* Free everything if batch freeing high-order pages. */
2569 if (unlikely(free_high))
2570 return pcp->count;
2571
2572 /* Check for PCP disabled or boot pageset */
2573 if (unlikely(high < batch))
2574 return 1;
2575
2576 /* Leave at least pcp->batch pages on the list */
2577 min_nr_free = batch;
2578 max_nr_free = high - batch;
2579
2580 /*
2581 * Double the number of pages freed each time there is subsequent
2582 * freeing of pages without any allocation.
2583 */
2584 batch <<= pcp->free_factor;
2585 if (batch < max_nr_free)
2586 pcp->free_factor++;
2587 batch = clamp(batch, min_nr_free, max_nr_free);
2588
2589 return batch;
2590 }
2591
2592 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2593 bool free_high)
2594 {
2595 int high = READ_ONCE(pcp->high);
2596
2597 if (unlikely(!high || free_high))
2598 return 0;
2599
2600 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2601 return high;
2602
2603 /*
2604 * If reclaim is active, limit the number of pages that can be
2605 * stored on pcp lists
2606 */
2607 return min(READ_ONCE(pcp->batch) << 2, high);
2608 }
2609
2610 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2611 struct page *page, int migratetype,
2612 unsigned int order)
2613 {
2614 int high;
2615 int pindex;
2616 bool free_high;
2617
2618 __count_vm_events(PGFREE, 1 << order);
2619 pindex = order_to_pindex(migratetype, order);
2620 list_add(&page->pcp_list, &pcp->lists[pindex]);
2621 pcp->count += 1 << order;
2622
2623 /*
2624 * As high-order pages other than THP's stored on PCP can contribute
2625 * to fragmentation, limit the number stored when PCP is heavily
2626 * freeing without allocation. The remainder after bulk freeing
2627 * stops will be drained from vmstat refresh context.
2628 */
2629 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2630
2631 high = nr_pcp_high(pcp, zone, free_high);
2632 if (pcp->count >= high) {
2633 int batch = READ_ONCE(pcp->batch);
2634
2635 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2636 }
2637 }
2638
2639 /*
2640 * Free a pcp page
2641 */
2642 void free_unref_page(struct page *page, unsigned int order)
2643 {
2644 unsigned long __maybe_unused UP_flags;
2645 struct per_cpu_pages *pcp;
2646 struct zone *zone;
2647 unsigned long pfn = page_to_pfn(page);
2648 int migratetype;
2649
2650 if (!free_unref_page_prepare(page, pfn, order))
2651 return;
2652
2653 /*
2654 * We only track unmovable, reclaimable and movable on pcp lists.
2655 * Place ISOLATE pages on the isolated list because they are being
2656 * offlined but treat HIGHATOMIC as movable pages so we can get those
2657 * areas back if necessary. Otherwise, we may have to free
2658 * excessively into the page allocator
2659 */
2660 migratetype = get_pcppage_migratetype(page);
2661 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2662 if (unlikely(is_migrate_isolate(migratetype))) {
2663 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2664 return;
2665 }
2666 migratetype = MIGRATE_MOVABLE;
2667 }
2668
2669 zone = page_zone(page);
2670 pcp_trylock_prepare(UP_flags);
2671 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2672 if (pcp) {
2673 free_unref_page_commit(zone, pcp, page, migratetype, order);
2674 pcp_spin_unlock(pcp);
2675 } else {
2676 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2677 }
2678 pcp_trylock_finish(UP_flags);
2679 }
2680
2681 /*
2682 * Free a list of 0-order pages
2683 */
2684 void free_unref_page_list(struct list_head *list)
2685 {
2686 unsigned long __maybe_unused UP_flags;
2687 struct page *page, *next;
2688 struct per_cpu_pages *pcp = NULL;
2689 struct zone *locked_zone = NULL;
2690 int batch_count = 0;
2691 int migratetype;
2692
2693 /* Prepare pages for freeing */
2694 list_for_each_entry_safe(page, next, list, lru) {
2695 unsigned long pfn = page_to_pfn(page);
2696 if (!free_unref_page_prepare(page, pfn, 0)) {
2697 list_del(&page->lru);
2698 continue;
2699 }
2700
2701 /*
2702 * Free isolated pages directly to the allocator, see
2703 * comment in free_unref_page.
2704 */
2705 migratetype = get_pcppage_migratetype(page);
2706 if (unlikely(is_migrate_isolate(migratetype))) {
2707 list_del(&page->lru);
2708 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2709 continue;
2710 }
2711 }
2712
2713 list_for_each_entry_safe(page, next, list, lru) {
2714 struct zone *zone = page_zone(page);
2715
2716 list_del(&page->lru);
2717 migratetype = get_pcppage_migratetype(page);
2718
2719 /*
2720 * Either different zone requiring a different pcp lock or
2721 * excessive lock hold times when freeing a large list of
2722 * pages.
2723 */
2724 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2725 if (pcp) {
2726 pcp_spin_unlock(pcp);
2727 pcp_trylock_finish(UP_flags);
2728 }
2729
2730 batch_count = 0;
2731
2732 /*
2733 * trylock is necessary as pages may be getting freed
2734 * from IRQ or SoftIRQ context after an IO completion.
2735 */
2736 pcp_trylock_prepare(UP_flags);
2737 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2738 if (unlikely(!pcp)) {
2739 pcp_trylock_finish(UP_flags);
2740 free_one_page(zone, page, page_to_pfn(page),
2741 0, migratetype, FPI_NONE);
2742 locked_zone = NULL;
2743 continue;
2744 }
2745 locked_zone = zone;
2746 }
2747
2748 /*
2749 * Non-isolated types over MIGRATE_PCPTYPES get added
2750 * to the MIGRATE_MOVABLE pcp list.
2751 */
2752 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2753 migratetype = MIGRATE_MOVABLE;
2754
2755 trace_mm_page_free_batched(page);
2756 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2757 batch_count++;
2758 }
2759
2760 if (pcp) {
2761 pcp_spin_unlock(pcp);
2762 pcp_trylock_finish(UP_flags);
2763 }
2764 }
2765
2766 /*
2767 * split_page takes a non-compound higher-order page, and splits it into
2768 * n (1<<order) sub-pages: page[0..n]
2769 * Each sub-page must be freed individually.
2770 *
2771 * Note: this is probably too low level an operation for use in drivers.
2772 * Please consult with lkml before using this in your driver.
2773 */
2774 void split_page(struct page *page, unsigned int order)
2775 {
2776 int i;
2777
2778 VM_BUG_ON_PAGE(PageCompound(page), page);
2779 VM_BUG_ON_PAGE(!page_count(page), page);
2780
2781 for (i = 1; i < (1 << order); i++)
2782 set_page_refcounted(page + i);
2783 split_page_owner(page, 1 << order);
2784 split_page_memcg(page, 1 << order);
2785 }
2786 EXPORT_SYMBOL_GPL(split_page);
2787
2788 int __isolate_free_page(struct page *page, unsigned int order)
2789 {
2790 struct zone *zone = page_zone(page);
2791 int mt = get_pageblock_migratetype(page);
2792
2793 if (!is_migrate_isolate(mt)) {
2794 unsigned long watermark;
2795 /*
2796 * Obey watermarks as if the page was being allocated. We can
2797 * emulate a high-order watermark check with a raised order-0
2798 * watermark, because we already know our high-order page
2799 * exists.
2800 */
2801 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2802 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2803 return 0;
2804
2805 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2806 }
2807
2808 del_page_from_free_list(page, zone, order);
2809
2810 /*
2811 * Set the pageblock if the isolated page is at least half of a
2812 * pageblock
2813 */
2814 if (order >= pageblock_order - 1) {
2815 struct page *endpage = page + (1 << order) - 1;
2816 for (; page < endpage; page += pageblock_nr_pages) {
2817 int mt = get_pageblock_migratetype(page);
2818 /*
2819 * Only change normal pageblocks (i.e., they can merge
2820 * with others)
2821 */
2822 if (migratetype_is_mergeable(mt))
2823 set_pageblock_migratetype(page,
2824 MIGRATE_MOVABLE);
2825 }
2826 }
2827
2828 return 1UL << order;
2829 }
2830
2831 /**
2832 * __putback_isolated_page - Return a now-isolated page back where we got it
2833 * @page: Page that was isolated
2834 * @order: Order of the isolated page
2835 * @mt: The page's pageblock's migratetype
2836 *
2837 * This function is meant to return a page pulled from the free lists via
2838 * __isolate_free_page back to the free lists they were pulled from.
2839 */
2840 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2841 {
2842 struct zone *zone = page_zone(page);
2843
2844 /* zone lock should be held when this function is called */
2845 lockdep_assert_held(&zone->lock);
2846
2847 /* Return isolated page to tail of freelist. */
2848 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2849 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2850 }
2851
2852 /*
2853 * Update NUMA hit/miss statistics
2854 */
2855 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2856 long nr_account)
2857 {
2858 #ifdef CONFIG_NUMA
2859 enum numa_stat_item local_stat = NUMA_LOCAL;
2860
2861 /* skip numa counters update if numa stats is disabled */
2862 if (!static_branch_likely(&vm_numa_stat_key))
2863 return;
2864
2865 if (zone_to_nid(z) != numa_node_id())
2866 local_stat = NUMA_OTHER;
2867
2868 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2869 __count_numa_events(z, NUMA_HIT, nr_account);
2870 else {
2871 __count_numa_events(z, NUMA_MISS, nr_account);
2872 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2873 }
2874 __count_numa_events(z, local_stat, nr_account);
2875 #endif
2876 }
2877
2878 static __always_inline
2879 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2880 unsigned int order, unsigned int alloc_flags,
2881 int migratetype)
2882 {
2883 struct page *page;
2884 unsigned long flags;
2885
2886 do {
2887 page = NULL;
2888 spin_lock_irqsave(&zone->lock, flags);
2889 /*
2890 * order-0 request can reach here when the pcplist is skipped
2891 * due to non-CMA allocation context. HIGHATOMIC area is
2892 * reserved for high-order atomic allocation, so order-0
2893 * request should skip it.
2894 */
2895 if (alloc_flags & ALLOC_HIGHATOMIC)
2896 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2897 if (!page) {
2898 page = __rmqueue(zone, order, migratetype, alloc_flags);
2899
2900 /*
2901 * If the allocation fails, allow OOM handling access
2902 * to HIGHATOMIC reserves as failing now is worse than
2903 * failing a high-order atomic allocation in the
2904 * future.
2905 */
2906 if (!page && (alloc_flags & ALLOC_OOM))
2907 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2908
2909 if (!page) {
2910 spin_unlock_irqrestore(&zone->lock, flags);
2911 return NULL;
2912 }
2913 }
2914 __mod_zone_freepage_state(zone, -(1 << order),
2915 get_pcppage_migratetype(page));
2916 spin_unlock_irqrestore(&zone->lock, flags);
2917 } while (check_new_pages(page, order));
2918
2919 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2920 zone_statistics(preferred_zone, zone, 1);
2921
2922 return page;
2923 }
2924
2925 /* Remove page from the per-cpu list, caller must protect the list */
2926 static inline
2927 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2928 int migratetype,
2929 unsigned int alloc_flags,
2930 struct per_cpu_pages *pcp,
2931 struct list_head *list)
2932 {
2933 struct page *page;
2934
2935 do {
2936 if (list_empty(list)) {
2937 int batch = READ_ONCE(pcp->batch);
2938 int alloced;
2939
2940 /*
2941 * Scale batch relative to order if batch implies
2942 * free pages can be stored on the PCP. Batch can
2943 * be 1 for small zones or for boot pagesets which
2944 * should never store free pages as the pages may
2945 * belong to arbitrary zones.
2946 */
2947 if (batch > 1)
2948 batch = max(batch >> order, 2);
2949 alloced = rmqueue_bulk(zone, order,
2950 batch, list,
2951 migratetype, alloc_flags);
2952
2953 pcp->count += alloced << order;
2954 if (unlikely(list_empty(list)))
2955 return NULL;
2956 }
2957
2958 page = list_first_entry(list, struct page, pcp_list);
2959 list_del(&page->pcp_list);
2960 pcp->count -= 1 << order;
2961 } while (check_new_pages(page, order));
2962
2963 return page;
2964 }
2965
2966 /* Lock and remove page from the per-cpu list */
2967 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2968 struct zone *zone, unsigned int order,
2969 int migratetype, unsigned int alloc_flags)
2970 {
2971 struct per_cpu_pages *pcp;
2972 struct list_head *list;
2973 struct page *page;
2974 unsigned long __maybe_unused UP_flags;
2975
2976 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2977 pcp_trylock_prepare(UP_flags);
2978 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2979 if (!pcp) {
2980 pcp_trylock_finish(UP_flags);
2981 return NULL;
2982 }
2983
2984 /*
2985 * On allocation, reduce the number of pages that are batch freed.
2986 * See nr_pcp_free() where free_factor is increased for subsequent
2987 * frees.
2988 */
2989 pcp->free_factor >>= 1;
2990 list = &pcp->lists[order_to_pindex(migratetype, order)];
2991 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2992 pcp_spin_unlock(pcp);
2993 pcp_trylock_finish(UP_flags);
2994 if (page) {
2995 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2996 zone_statistics(preferred_zone, zone, 1);
2997 }
2998 return page;
2999 }
3000
3001 /*
3002 * Allocate a page from the given zone.
3003 * Use pcplists for THP or "cheap" high-order allocations.
3004 */
3005
3006 /*
3007 * Do not instrument rmqueue() with KMSAN. This function may call
3008 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3009 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3010 * may call rmqueue() again, which will result in a deadlock.
3011 */
3012 __no_sanitize_memory
3013 static inline
3014 struct page *rmqueue(struct zone *preferred_zone,
3015 struct zone *zone, unsigned int order,
3016 gfp_t gfp_flags, unsigned int alloc_flags,
3017 int migratetype)
3018 {
3019 struct page *page;
3020
3021 /*
3022 * We most definitely don't want callers attempting to
3023 * allocate greater than order-1 page units with __GFP_NOFAIL.
3024 */
3025 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3026
3027 if (likely(pcp_allowed_order(order))) {
3028 /*
3029 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3030 * we need to skip it when CMA area isn't allowed.
3031 */
3032 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3033 migratetype != MIGRATE_MOVABLE) {
3034 page = rmqueue_pcplist(preferred_zone, zone, order,
3035 migratetype, alloc_flags);
3036 if (likely(page))
3037 goto out;
3038 }
3039 }
3040
3041 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3042 migratetype);
3043
3044 out:
3045 /* Separate test+clear to avoid unnecessary atomics */
3046 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3047 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3048 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3049 }
3050
3051 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3052 return page;
3053 }
3054
3055 #ifdef CONFIG_FAIL_PAGE_ALLOC
3056
3057 static struct {
3058 struct fault_attr attr;
3059
3060 bool ignore_gfp_highmem;
3061 bool ignore_gfp_reclaim;
3062 u32 min_order;
3063 } fail_page_alloc = {
3064 .attr = FAULT_ATTR_INITIALIZER,
3065 .ignore_gfp_reclaim = true,
3066 .ignore_gfp_highmem = true,
3067 .min_order = 1,
3068 };
3069
3070 static int __init setup_fail_page_alloc(char *str)
3071 {
3072 return setup_fault_attr(&fail_page_alloc.attr, str);
3073 }
3074 __setup("fail_page_alloc=", setup_fail_page_alloc);
3075
3076 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3077 {
3078 int flags = 0;
3079
3080 if (order < fail_page_alloc.min_order)
3081 return false;
3082 if (gfp_mask & __GFP_NOFAIL)
3083 return false;
3084 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3085 return false;
3086 if (fail_page_alloc.ignore_gfp_reclaim &&
3087 (gfp_mask & __GFP_DIRECT_RECLAIM))
3088 return false;
3089
3090 /* See comment in __should_failslab() */
3091 if (gfp_mask & __GFP_NOWARN)
3092 flags |= FAULT_NOWARN;
3093
3094 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3095 }
3096
3097 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3098
3099 static int __init fail_page_alloc_debugfs(void)
3100 {
3101 umode_t mode = S_IFREG | 0600;
3102 struct dentry *dir;
3103
3104 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3105 &fail_page_alloc.attr);
3106
3107 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3108 &fail_page_alloc.ignore_gfp_reclaim);
3109 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3110 &fail_page_alloc.ignore_gfp_highmem);
3111 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3112
3113 return 0;
3114 }
3115
3116 late_initcall(fail_page_alloc_debugfs);
3117
3118 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3119
3120 #else /* CONFIG_FAIL_PAGE_ALLOC */
3121
3122 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3123 {
3124 return false;
3125 }
3126
3127 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3128
3129 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3130 {
3131 return __should_fail_alloc_page(gfp_mask, order);
3132 }
3133 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3134
3135 static inline long __zone_watermark_unusable_free(struct zone *z,
3136 unsigned int order, unsigned int alloc_flags)
3137 {
3138 long unusable_free = (1 << order) - 1;
3139
3140 /*
3141 * If the caller does not have rights to reserves below the min
3142 * watermark then subtract the high-atomic reserves. This will
3143 * over-estimate the size of the atomic reserve but it avoids a search.
3144 */
3145 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3146 unusable_free += z->nr_reserved_highatomic;
3147
3148 #ifdef CONFIG_CMA
3149 /* If allocation can't use CMA areas don't use free CMA pages */
3150 if (!(alloc_flags & ALLOC_CMA))
3151 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3152 #endif
3153
3154 return unusable_free;
3155 }
3156
3157 /*
3158 * Return true if free base pages are above 'mark'. For high-order checks it
3159 * will return true of the order-0 watermark is reached and there is at least
3160 * one free page of a suitable size. Checking now avoids taking the zone lock
3161 * to check in the allocation paths if no pages are free.
3162 */
3163 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3164 int highest_zoneidx, unsigned int alloc_flags,
3165 long free_pages)
3166 {
3167 long min = mark;
3168 int o;
3169
3170 /* free_pages may go negative - that's OK */
3171 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3172
3173 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3174 /*
3175 * __GFP_HIGH allows access to 50% of the min reserve as well
3176 * as OOM.
3177 */
3178 if (alloc_flags & ALLOC_MIN_RESERVE) {
3179 min -= min / 2;
3180
3181 /*
3182 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3183 * access more reserves than just __GFP_HIGH. Other
3184 * non-blocking allocations requests such as GFP_NOWAIT
3185 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3186 * access to the min reserve.
3187 */
3188 if (alloc_flags & ALLOC_NON_BLOCK)
3189 min -= min / 4;
3190 }
3191
3192 /*
3193 * OOM victims can try even harder than the normal reserve
3194 * users on the grounds that it's definitely going to be in
3195 * the exit path shortly and free memory. Any allocation it
3196 * makes during the free path will be small and short-lived.
3197 */
3198 if (alloc_flags & ALLOC_OOM)
3199 min -= min / 2;
3200 }
3201
3202 /*
3203 * Check watermarks for an order-0 allocation request. If these
3204 * are not met, then a high-order request also cannot go ahead
3205 * even if a suitable page happened to be free.
3206 */
3207 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3208 return false;
3209
3210 /* If this is an order-0 request then the watermark is fine */
3211 if (!order)
3212 return true;
3213
3214 /* For a high-order request, check at least one suitable page is free */
3215 for (o = order; o <= MAX_ORDER; o++) {
3216 struct free_area *area = &z->free_area[o];
3217 int mt;
3218
3219 if (!area->nr_free)
3220 continue;
3221
3222 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3223 if (!free_area_empty(area, mt))
3224 return true;
3225 }
3226
3227 #ifdef CONFIG_CMA
3228 if ((alloc_flags & ALLOC_CMA) &&
3229 !free_area_empty(area, MIGRATE_CMA)) {
3230 return true;
3231 }
3232 #endif
3233 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3234 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3235 return true;
3236 }
3237 }
3238 return false;
3239 }
3240
3241 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3242 int highest_zoneidx, unsigned int alloc_flags)
3243 {
3244 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3245 zone_page_state(z, NR_FREE_PAGES));
3246 }
3247
3248 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3249 unsigned long mark, int highest_zoneidx,
3250 unsigned int alloc_flags, gfp_t gfp_mask)
3251 {
3252 long free_pages;
3253
3254 free_pages = zone_page_state(z, NR_FREE_PAGES);
3255
3256 /*
3257 * Fast check for order-0 only. If this fails then the reserves
3258 * need to be calculated.
3259 */
3260 if (!order) {
3261 long usable_free;
3262 long reserved;
3263
3264 usable_free = free_pages;
3265 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3266
3267 /* reserved may over estimate high-atomic reserves. */
3268 usable_free -= min(usable_free, reserved);
3269 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3270 return true;
3271 }
3272
3273 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3274 free_pages))
3275 return true;
3276
3277 /*
3278 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3279 * when checking the min watermark. The min watermark is the
3280 * point where boosting is ignored so that kswapd is woken up
3281 * when below the low watermark.
3282 */
3283 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3284 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3285 mark = z->_watermark[WMARK_MIN];
3286 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3287 alloc_flags, free_pages);
3288 }
3289
3290 return false;
3291 }
3292
3293 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3294 unsigned long mark, int highest_zoneidx)
3295 {
3296 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3297
3298 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3299 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3300
3301 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3302 free_pages);
3303 }
3304
3305 #ifdef CONFIG_NUMA
3306 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3307
3308 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3309 {
3310 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3311 node_reclaim_distance;
3312 }
3313 #else /* CONFIG_NUMA */
3314 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3315 {
3316 return true;
3317 }
3318 #endif /* CONFIG_NUMA */
3319
3320 /*
3321 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3322 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3323 * premature use of a lower zone may cause lowmem pressure problems that
3324 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3325 * probably too small. It only makes sense to spread allocations to avoid
3326 * fragmentation between the Normal and DMA32 zones.
3327 */
3328 static inline unsigned int
3329 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3330 {
3331 unsigned int alloc_flags;
3332
3333 /*
3334 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3335 * to save a branch.
3336 */
3337 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3338
3339 #ifdef CONFIG_ZONE_DMA32
3340 if (!zone)
3341 return alloc_flags;
3342
3343 if (zone_idx(zone) != ZONE_NORMAL)
3344 return alloc_flags;
3345
3346 /*
3347 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3348 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3349 * on UMA that if Normal is populated then so is DMA32.
3350 */
3351 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3352 if (nr_online_nodes > 1 && !populated_zone(--zone))
3353 return alloc_flags;
3354
3355 alloc_flags |= ALLOC_NOFRAGMENT;
3356 #endif /* CONFIG_ZONE_DMA32 */
3357 return alloc_flags;
3358 }
3359
3360 /* Must be called after current_gfp_context() which can change gfp_mask */
3361 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3362 unsigned int alloc_flags)
3363 {
3364 #ifdef CONFIG_CMA
3365 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3366 alloc_flags |= ALLOC_CMA;
3367 #endif
3368 return alloc_flags;
3369 }
3370
3371 /*
3372 * get_page_from_freelist goes through the zonelist trying to allocate
3373 * a page.
3374 */
3375 static struct page *
3376 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3377 const struct alloc_context *ac)
3378 {
3379 struct zoneref *z;
3380 struct zone *zone;
3381 struct pglist_data *last_pgdat = NULL;
3382 bool last_pgdat_dirty_ok = false;
3383 bool no_fallback;
3384
3385 retry:
3386 /*
3387 * Scan zonelist, looking for a zone with enough free.
3388 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3389 */
3390 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3391 z = ac->preferred_zoneref;
3392 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3393 ac->nodemask) {
3394 struct page *page;
3395 unsigned long mark;
3396
3397 if (cpusets_enabled() &&
3398 (alloc_flags & ALLOC_CPUSET) &&
3399 !__cpuset_zone_allowed(zone, gfp_mask))
3400 continue;
3401 /*
3402 * When allocating a page cache page for writing, we
3403 * want to get it from a node that is within its dirty
3404 * limit, such that no single node holds more than its
3405 * proportional share of globally allowed dirty pages.
3406 * The dirty limits take into account the node's
3407 * lowmem reserves and high watermark so that kswapd
3408 * should be able to balance it without having to
3409 * write pages from its LRU list.
3410 *
3411 * XXX: For now, allow allocations to potentially
3412 * exceed the per-node dirty limit in the slowpath
3413 * (spread_dirty_pages unset) before going into reclaim,
3414 * which is important when on a NUMA setup the allowed
3415 * nodes are together not big enough to reach the
3416 * global limit. The proper fix for these situations
3417 * will require awareness of nodes in the
3418 * dirty-throttling and the flusher threads.
3419 */
3420 if (ac->spread_dirty_pages) {
3421 if (last_pgdat != zone->zone_pgdat) {
3422 last_pgdat = zone->zone_pgdat;
3423 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3424 }
3425
3426 if (!last_pgdat_dirty_ok)
3427 continue;
3428 }
3429
3430 if (no_fallback && nr_online_nodes > 1 &&
3431 zone != ac->preferred_zoneref->zone) {
3432 int local_nid;
3433
3434 /*
3435 * If moving to a remote node, retry but allow
3436 * fragmenting fallbacks. Locality is more important
3437 * than fragmentation avoidance.
3438 */
3439 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3440 if (zone_to_nid(zone) != local_nid) {
3441 alloc_flags &= ~ALLOC_NOFRAGMENT;
3442 goto retry;
3443 }
3444 }
3445
3446 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3447 if (!zone_watermark_fast(zone, order, mark,
3448 ac->highest_zoneidx, alloc_flags,
3449 gfp_mask)) {
3450 int ret;
3451
3452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3453 /*
3454 * Watermark failed for this zone, but see if we can
3455 * grow this zone if it contains deferred pages.
3456 */
3457 if (deferred_pages_enabled()) {
3458 if (_deferred_grow_zone(zone, order))
3459 goto try_this_zone;
3460 }
3461 #endif
3462 /* Checked here to keep the fast path fast */
3463 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3464 if (alloc_flags & ALLOC_NO_WATERMARKS)
3465 goto try_this_zone;
3466
3467 if (!node_reclaim_enabled() ||
3468 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3469 continue;
3470
3471 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3472 switch (ret) {
3473 case NODE_RECLAIM_NOSCAN:
3474 /* did not scan */
3475 continue;
3476 case NODE_RECLAIM_FULL:
3477 /* scanned but unreclaimable */
3478 continue;
3479 default:
3480 /* did we reclaim enough */
3481 if (zone_watermark_ok(zone, order, mark,
3482 ac->highest_zoneidx, alloc_flags))
3483 goto try_this_zone;
3484
3485 continue;
3486 }
3487 }
3488
3489 try_this_zone:
3490 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3491 gfp_mask, alloc_flags, ac->migratetype);
3492 if (page) {
3493 prep_new_page(page, order, gfp_mask, alloc_flags);
3494
3495 /*
3496 * If this is a high-order atomic allocation then check
3497 * if the pageblock should be reserved for the future
3498 */
3499 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3500 reserve_highatomic_pageblock(page, zone, order);
3501
3502 return page;
3503 } else {
3504 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3505 /* Try again if zone has deferred pages */
3506 if (deferred_pages_enabled()) {
3507 if (_deferred_grow_zone(zone, order))
3508 goto try_this_zone;
3509 }
3510 #endif
3511 }
3512 }
3513
3514 /*
3515 * It's possible on a UMA machine to get through all zones that are
3516 * fragmented. If avoiding fragmentation, reset and try again.
3517 */
3518 if (no_fallback) {
3519 alloc_flags &= ~ALLOC_NOFRAGMENT;
3520 goto retry;
3521 }
3522
3523 return NULL;
3524 }
3525
3526 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3527 {
3528 unsigned int filter = SHOW_MEM_FILTER_NODES;
3529
3530 /*
3531 * This documents exceptions given to allocations in certain
3532 * contexts that are allowed to allocate outside current's set
3533 * of allowed nodes.
3534 */
3535 if (!(gfp_mask & __GFP_NOMEMALLOC))
3536 if (tsk_is_oom_victim(current) ||
3537 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3538 filter &= ~SHOW_MEM_FILTER_NODES;
3539 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3540 filter &= ~SHOW_MEM_FILTER_NODES;
3541
3542 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3543 }
3544
3545 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3546 {
3547 struct va_format vaf;
3548 va_list args;
3549 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3550
3551 if ((gfp_mask & __GFP_NOWARN) ||
3552 !__ratelimit(&nopage_rs) ||
3553 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3554 return;
3555
3556 va_start(args, fmt);
3557 vaf.fmt = fmt;
3558 vaf.va = &args;
3559 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3560 current->comm, &vaf, gfp_mask, &gfp_mask,
3561 nodemask_pr_args(nodemask));
3562 va_end(args);
3563
3564 cpuset_print_current_mems_allowed();
3565 pr_cont("\n");
3566 dump_stack();
3567 warn_alloc_show_mem(gfp_mask, nodemask);
3568 }
3569
3570 static inline struct page *
3571 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3572 unsigned int alloc_flags,
3573 const struct alloc_context *ac)
3574 {
3575 struct page *page;
3576
3577 page = get_page_from_freelist(gfp_mask, order,
3578 alloc_flags|ALLOC_CPUSET, ac);
3579 /*
3580 * fallback to ignore cpuset restriction if our nodes
3581 * are depleted
3582 */
3583 if (!page)
3584 page = get_page_from_freelist(gfp_mask, order,
3585 alloc_flags, ac);
3586
3587 return page;
3588 }
3589
3590 static inline struct page *
3591 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3592 const struct alloc_context *ac, unsigned long *did_some_progress)
3593 {
3594 struct oom_control oc = {
3595 .zonelist = ac->zonelist,
3596 .nodemask = ac->nodemask,
3597 .memcg = NULL,
3598 .gfp_mask = gfp_mask,
3599 .order = order,
3600 };
3601 struct page *page;
3602
3603 *did_some_progress = 0;
3604
3605 /*
3606 * Acquire the oom lock. If that fails, somebody else is
3607 * making progress for us.
3608 */
3609 if (!mutex_trylock(&oom_lock)) {
3610 *did_some_progress = 1;
3611 schedule_timeout_uninterruptible(1);
3612 return NULL;
3613 }
3614
3615 /*
3616 * Go through the zonelist yet one more time, keep very high watermark
3617 * here, this is only to catch a parallel oom killing, we must fail if
3618 * we're still under heavy pressure. But make sure that this reclaim
3619 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3620 * allocation which will never fail due to oom_lock already held.
3621 */
3622 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3623 ~__GFP_DIRECT_RECLAIM, order,
3624 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3625 if (page)
3626 goto out;
3627
3628 /* Coredumps can quickly deplete all memory reserves */
3629 if (current->flags & PF_DUMPCORE)
3630 goto out;
3631 /* The OOM killer will not help higher order allocs */
3632 if (order > PAGE_ALLOC_COSTLY_ORDER)
3633 goto out;
3634 /*
3635 * We have already exhausted all our reclaim opportunities without any
3636 * success so it is time to admit defeat. We will skip the OOM killer
3637 * because it is very likely that the caller has a more reasonable
3638 * fallback than shooting a random task.
3639 *
3640 * The OOM killer may not free memory on a specific node.
3641 */
3642 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3643 goto out;
3644 /* The OOM killer does not needlessly kill tasks for lowmem */
3645 if (ac->highest_zoneidx < ZONE_NORMAL)
3646 goto out;
3647 if (pm_suspended_storage())
3648 goto out;
3649 /*
3650 * XXX: GFP_NOFS allocations should rather fail than rely on
3651 * other request to make a forward progress.
3652 * We are in an unfortunate situation where out_of_memory cannot
3653 * do much for this context but let's try it to at least get
3654 * access to memory reserved if the current task is killed (see
3655 * out_of_memory). Once filesystems are ready to handle allocation
3656 * failures more gracefully we should just bail out here.
3657 */
3658
3659 /* Exhausted what can be done so it's blame time */
3660 if (out_of_memory(&oc) ||
3661 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3662 *did_some_progress = 1;
3663
3664 /*
3665 * Help non-failing allocations by giving them access to memory
3666 * reserves
3667 */
3668 if (gfp_mask & __GFP_NOFAIL)
3669 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3670 ALLOC_NO_WATERMARKS, ac);
3671 }
3672 out:
3673 mutex_unlock(&oom_lock);
3674 return page;
3675 }
3676
3677 /*
3678 * Maximum number of compaction retries with a progress before OOM
3679 * killer is consider as the only way to move forward.
3680 */
3681 #define MAX_COMPACT_RETRIES 16
3682
3683 #ifdef CONFIG_COMPACTION
3684 /* Try memory compaction for high-order allocations before reclaim */
3685 static struct page *
3686 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3687 unsigned int alloc_flags, const struct alloc_context *ac,
3688 enum compact_priority prio, enum compact_result *compact_result)
3689 {
3690 struct page *page = NULL;
3691 unsigned long pflags;
3692 unsigned int noreclaim_flag;
3693
3694 if (!order)
3695 return NULL;
3696
3697 psi_memstall_enter(&pflags);
3698 delayacct_compact_start();
3699 noreclaim_flag = memalloc_noreclaim_save();
3700
3701 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3702 prio, &page);
3703
3704 memalloc_noreclaim_restore(noreclaim_flag);
3705 psi_memstall_leave(&pflags);
3706 delayacct_compact_end();
3707
3708 if (*compact_result == COMPACT_SKIPPED)
3709 return NULL;
3710 /*
3711 * At least in one zone compaction wasn't deferred or skipped, so let's
3712 * count a compaction stall
3713 */
3714 count_vm_event(COMPACTSTALL);
3715
3716 /* Prep a captured page if available */
3717 if (page)
3718 prep_new_page(page, order, gfp_mask, alloc_flags);
3719
3720 /* Try get a page from the freelist if available */
3721 if (!page)
3722 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3723
3724 if (page) {
3725 struct zone *zone = page_zone(page);
3726
3727 zone->compact_blockskip_flush = false;
3728 compaction_defer_reset(zone, order, true);
3729 count_vm_event(COMPACTSUCCESS);
3730 return page;
3731 }
3732
3733 /*
3734 * It's bad if compaction run occurs and fails. The most likely reason
3735 * is that pages exist, but not enough to satisfy watermarks.
3736 */
3737 count_vm_event(COMPACTFAIL);
3738
3739 cond_resched();
3740
3741 return NULL;
3742 }
3743
3744 static inline bool
3745 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3746 enum compact_result compact_result,
3747 enum compact_priority *compact_priority,
3748 int *compaction_retries)
3749 {
3750 int max_retries = MAX_COMPACT_RETRIES;
3751 int min_priority;
3752 bool ret = false;
3753 int retries = *compaction_retries;
3754 enum compact_priority priority = *compact_priority;
3755
3756 if (!order)
3757 return false;
3758
3759 if (fatal_signal_pending(current))
3760 return false;
3761
3762 if (compaction_made_progress(compact_result))
3763 (*compaction_retries)++;
3764
3765 /*
3766 * compaction considers all the zone as desperately out of memory
3767 * so it doesn't really make much sense to retry except when the
3768 * failure could be caused by insufficient priority
3769 */
3770 if (compaction_failed(compact_result))
3771 goto check_priority;
3772
3773 /*
3774 * compaction was skipped because there are not enough order-0 pages
3775 * to work with, so we retry only if it looks like reclaim can help.
3776 */
3777 if (compaction_needs_reclaim(compact_result)) {
3778 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3779 goto out;
3780 }
3781
3782 /*
3783 * make sure the compaction wasn't deferred or didn't bail out early
3784 * due to locks contention before we declare that we should give up.
3785 * But the next retry should use a higher priority if allowed, so
3786 * we don't just keep bailing out endlessly.
3787 */
3788 if (compaction_withdrawn(compact_result)) {
3789 goto check_priority;
3790 }
3791
3792 /*
3793 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3794 * costly ones because they are de facto nofail and invoke OOM
3795 * killer to move on while costly can fail and users are ready
3796 * to cope with that. 1/4 retries is rather arbitrary but we
3797 * would need much more detailed feedback from compaction to
3798 * make a better decision.
3799 */
3800 if (order > PAGE_ALLOC_COSTLY_ORDER)
3801 max_retries /= 4;
3802 if (*compaction_retries <= max_retries) {
3803 ret = true;
3804 goto out;
3805 }
3806
3807 /*
3808 * Make sure there are attempts at the highest priority if we exhausted
3809 * all retries or failed at the lower priorities.
3810 */
3811 check_priority:
3812 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3813 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3814
3815 if (*compact_priority > min_priority) {
3816 (*compact_priority)--;
3817 *compaction_retries = 0;
3818 ret = true;
3819 }
3820 out:
3821 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3822 return ret;
3823 }
3824 #else
3825 static inline struct page *
3826 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3827 unsigned int alloc_flags, const struct alloc_context *ac,
3828 enum compact_priority prio, enum compact_result *compact_result)
3829 {
3830 *compact_result = COMPACT_SKIPPED;
3831 return NULL;
3832 }
3833
3834 static inline bool
3835 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3836 enum compact_result compact_result,
3837 enum compact_priority *compact_priority,
3838 int *compaction_retries)
3839 {
3840 struct zone *zone;
3841 struct zoneref *z;
3842
3843 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3844 return false;
3845
3846 /*
3847 * There are setups with compaction disabled which would prefer to loop
3848 * inside the allocator rather than hit the oom killer prematurely.
3849 * Let's give them a good hope and keep retrying while the order-0
3850 * watermarks are OK.
3851 */
3852 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3853 ac->highest_zoneidx, ac->nodemask) {
3854 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3855 ac->highest_zoneidx, alloc_flags))
3856 return true;
3857 }
3858 return false;
3859 }
3860 #endif /* CONFIG_COMPACTION */
3861
3862 #ifdef CONFIG_LOCKDEP
3863 static struct lockdep_map __fs_reclaim_map =
3864 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3865
3866 static bool __need_reclaim(gfp_t gfp_mask)
3867 {
3868 /* no reclaim without waiting on it */
3869 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3870 return false;
3871
3872 /* this guy won't enter reclaim */
3873 if (current->flags & PF_MEMALLOC)
3874 return false;
3875
3876 if (gfp_mask & __GFP_NOLOCKDEP)
3877 return false;
3878
3879 return true;
3880 }
3881
3882 void __fs_reclaim_acquire(unsigned long ip)
3883 {
3884 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3885 }
3886
3887 void __fs_reclaim_release(unsigned long ip)
3888 {
3889 lock_release(&__fs_reclaim_map, ip);
3890 }
3891
3892 void fs_reclaim_acquire(gfp_t gfp_mask)
3893 {
3894 gfp_mask = current_gfp_context(gfp_mask);
3895
3896 if (__need_reclaim(gfp_mask)) {
3897 if (gfp_mask & __GFP_FS)
3898 __fs_reclaim_acquire(_RET_IP_);
3899
3900 #ifdef CONFIG_MMU_NOTIFIER
3901 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3902 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3903 #endif
3904
3905 }
3906 }
3907 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3908
3909 void fs_reclaim_release(gfp_t gfp_mask)
3910 {
3911 gfp_mask = current_gfp_context(gfp_mask);
3912
3913 if (__need_reclaim(gfp_mask)) {
3914 if (gfp_mask & __GFP_FS)
3915 __fs_reclaim_release(_RET_IP_);
3916 }
3917 }
3918 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3919 #endif
3920
3921 /*
3922 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3923 * have been rebuilt so allocation retries. Reader side does not lock and
3924 * retries the allocation if zonelist changes. Writer side is protected by the
3925 * embedded spin_lock.
3926 */
3927 static DEFINE_SEQLOCK(zonelist_update_seq);
3928
3929 static unsigned int zonelist_iter_begin(void)
3930 {
3931 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3932 return read_seqbegin(&zonelist_update_seq);
3933
3934 return 0;
3935 }
3936
3937 static unsigned int check_retry_zonelist(unsigned int seq)
3938 {
3939 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3940 return read_seqretry(&zonelist_update_seq, seq);
3941
3942 return seq;
3943 }
3944
3945 /* Perform direct synchronous page reclaim */
3946 static unsigned long
3947 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3948 const struct alloc_context *ac)
3949 {
3950 unsigned int noreclaim_flag;
3951 unsigned long progress;
3952
3953 cond_resched();
3954
3955 /* We now go into synchronous reclaim */
3956 cpuset_memory_pressure_bump();
3957 fs_reclaim_acquire(gfp_mask);
3958 noreclaim_flag = memalloc_noreclaim_save();
3959
3960 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3961 ac->nodemask);
3962
3963 memalloc_noreclaim_restore(noreclaim_flag);
3964 fs_reclaim_release(gfp_mask);
3965
3966 cond_resched();
3967
3968 return progress;
3969 }
3970
3971 /* The really slow allocator path where we enter direct reclaim */
3972 static inline struct page *
3973 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3974 unsigned int alloc_flags, const struct alloc_context *ac,
3975 unsigned long *did_some_progress)
3976 {
3977 struct page *page = NULL;
3978 unsigned long pflags;
3979 bool drained = false;
3980
3981 psi_memstall_enter(&pflags);
3982 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3983 if (unlikely(!(*did_some_progress)))
3984 goto out;
3985
3986 retry:
3987 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3988
3989 /*
3990 * If an allocation failed after direct reclaim, it could be because
3991 * pages are pinned on the per-cpu lists or in high alloc reserves.
3992 * Shrink them and try again
3993 */
3994 if (!page && !drained) {
3995 unreserve_highatomic_pageblock(ac, false);
3996 drain_all_pages(NULL);
3997 drained = true;
3998 goto retry;
3999 }
4000 out:
4001 psi_memstall_leave(&pflags);
4002
4003 return page;
4004 }
4005
4006 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4007 const struct alloc_context *ac)
4008 {
4009 struct zoneref *z;
4010 struct zone *zone;
4011 pg_data_t *last_pgdat = NULL;
4012 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4013
4014 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4015 ac->nodemask) {
4016 if (!managed_zone(zone))
4017 continue;
4018 if (last_pgdat != zone->zone_pgdat) {
4019 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4020 last_pgdat = zone->zone_pgdat;
4021 }
4022 }
4023 }
4024
4025 static inline unsigned int
4026 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4027 {
4028 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4029
4030 /*
4031 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4032 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4033 * to save two branches.
4034 */
4035 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4036 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4037
4038 /*
4039 * The caller may dip into page reserves a bit more if the caller
4040 * cannot run direct reclaim, or if the caller has realtime scheduling
4041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4042 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4043 */
4044 alloc_flags |= (__force int)
4045 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4046
4047 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4048 /*
4049 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4050 * if it can't schedule.
4051 */
4052 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4053 alloc_flags |= ALLOC_NON_BLOCK;
4054
4055 if (order > 0)
4056 alloc_flags |= ALLOC_HIGHATOMIC;
4057 }
4058
4059 /*
4060 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4061 * GFP_ATOMIC) rather than fail, see the comment for
4062 * cpuset_node_allowed().
4063 */
4064 if (alloc_flags & ALLOC_MIN_RESERVE)
4065 alloc_flags &= ~ALLOC_CPUSET;
4066 } else if (unlikely(rt_task(current)) && in_task())
4067 alloc_flags |= ALLOC_MIN_RESERVE;
4068
4069 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4070
4071 return alloc_flags;
4072 }
4073
4074 static bool oom_reserves_allowed(struct task_struct *tsk)
4075 {
4076 if (!tsk_is_oom_victim(tsk))
4077 return false;
4078
4079 /*
4080 * !MMU doesn't have oom reaper so give access to memory reserves
4081 * only to the thread with TIF_MEMDIE set
4082 */
4083 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4084 return false;
4085
4086 return true;
4087 }
4088
4089 /*
4090 * Distinguish requests which really need access to full memory
4091 * reserves from oom victims which can live with a portion of it
4092 */
4093 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4094 {
4095 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4096 return 0;
4097 if (gfp_mask & __GFP_MEMALLOC)
4098 return ALLOC_NO_WATERMARKS;
4099 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4100 return ALLOC_NO_WATERMARKS;
4101 if (!in_interrupt()) {
4102 if (current->flags & PF_MEMALLOC)
4103 return ALLOC_NO_WATERMARKS;
4104 else if (oom_reserves_allowed(current))
4105 return ALLOC_OOM;
4106 }
4107
4108 return 0;
4109 }
4110
4111 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4112 {
4113 return !!__gfp_pfmemalloc_flags(gfp_mask);
4114 }
4115
4116 /*
4117 * Checks whether it makes sense to retry the reclaim to make a forward progress
4118 * for the given allocation request.
4119 *
4120 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4121 * without success, or when we couldn't even meet the watermark if we
4122 * reclaimed all remaining pages on the LRU lists.
4123 *
4124 * Returns true if a retry is viable or false to enter the oom path.
4125 */
4126 static inline bool
4127 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4128 struct alloc_context *ac, int alloc_flags,
4129 bool did_some_progress, int *no_progress_loops)
4130 {
4131 struct zone *zone;
4132 struct zoneref *z;
4133 bool ret = false;
4134
4135 /*
4136 * Costly allocations might have made a progress but this doesn't mean
4137 * their order will become available due to high fragmentation so
4138 * always increment the no progress counter for them
4139 */
4140 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4141 *no_progress_loops = 0;
4142 else
4143 (*no_progress_loops)++;
4144
4145 /*
4146 * Make sure we converge to OOM if we cannot make any progress
4147 * several times in the row.
4148 */
4149 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4150 /* Before OOM, exhaust highatomic_reserve */
4151 return unreserve_highatomic_pageblock(ac, true);
4152 }
4153
4154 /*
4155 * Keep reclaiming pages while there is a chance this will lead
4156 * somewhere. If none of the target zones can satisfy our allocation
4157 * request even if all reclaimable pages are considered then we are
4158 * screwed and have to go OOM.
4159 */
4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4161 ac->highest_zoneidx, ac->nodemask) {
4162 unsigned long available;
4163 unsigned long reclaimable;
4164 unsigned long min_wmark = min_wmark_pages(zone);
4165 bool wmark;
4166
4167 available = reclaimable = zone_reclaimable_pages(zone);
4168 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4169
4170 /*
4171 * Would the allocation succeed if we reclaimed all
4172 * reclaimable pages?
4173 */
4174 wmark = __zone_watermark_ok(zone, order, min_wmark,
4175 ac->highest_zoneidx, alloc_flags, available);
4176 trace_reclaim_retry_zone(z, order, reclaimable,
4177 available, min_wmark, *no_progress_loops, wmark);
4178 if (wmark) {
4179 ret = true;
4180 break;
4181 }
4182 }
4183
4184 /*
4185 * Memory allocation/reclaim might be called from a WQ context and the
4186 * current implementation of the WQ concurrency control doesn't
4187 * recognize that a particular WQ is congested if the worker thread is
4188 * looping without ever sleeping. Therefore we have to do a short sleep
4189 * here rather than calling cond_resched().
4190 */
4191 if (current->flags & PF_WQ_WORKER)
4192 schedule_timeout_uninterruptible(1);
4193 else
4194 cond_resched();
4195 return ret;
4196 }
4197
4198 static inline bool
4199 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4200 {
4201 /*
4202 * It's possible that cpuset's mems_allowed and the nodemask from
4203 * mempolicy don't intersect. This should be normally dealt with by
4204 * policy_nodemask(), but it's possible to race with cpuset update in
4205 * such a way the check therein was true, and then it became false
4206 * before we got our cpuset_mems_cookie here.
4207 * This assumes that for all allocations, ac->nodemask can come only
4208 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4209 * when it does not intersect with the cpuset restrictions) or the
4210 * caller can deal with a violated nodemask.
4211 */
4212 if (cpusets_enabled() && ac->nodemask &&
4213 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4214 ac->nodemask = NULL;
4215 return true;
4216 }
4217
4218 /*
4219 * When updating a task's mems_allowed or mempolicy nodemask, it is
4220 * possible to race with parallel threads in such a way that our
4221 * allocation can fail while the mask is being updated. If we are about
4222 * to fail, check if the cpuset changed during allocation and if so,
4223 * retry.
4224 */
4225 if (read_mems_allowed_retry(cpuset_mems_cookie))
4226 return true;
4227
4228 return false;
4229 }
4230
4231 static inline struct page *
4232 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4233 struct alloc_context *ac)
4234 {
4235 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4236 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4237 struct page *page = NULL;
4238 unsigned int alloc_flags;
4239 unsigned long did_some_progress;
4240 enum compact_priority compact_priority;
4241 enum compact_result compact_result;
4242 int compaction_retries;
4243 int no_progress_loops;
4244 unsigned int cpuset_mems_cookie;
4245 unsigned int zonelist_iter_cookie;
4246 int reserve_flags;
4247
4248 restart:
4249 compaction_retries = 0;
4250 no_progress_loops = 0;
4251 compact_priority = DEF_COMPACT_PRIORITY;
4252 cpuset_mems_cookie = read_mems_allowed_begin();
4253 zonelist_iter_cookie = zonelist_iter_begin();
4254
4255 /*
4256 * The fast path uses conservative alloc_flags to succeed only until
4257 * kswapd needs to be woken up, and to avoid the cost of setting up
4258 * alloc_flags precisely. So we do that now.
4259 */
4260 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4261
4262 /*
4263 * We need to recalculate the starting point for the zonelist iterator
4264 * because we might have used different nodemask in the fast path, or
4265 * there was a cpuset modification and we are retrying - otherwise we
4266 * could end up iterating over non-eligible zones endlessly.
4267 */
4268 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4269 ac->highest_zoneidx, ac->nodemask);
4270 if (!ac->preferred_zoneref->zone)
4271 goto nopage;
4272
4273 /*
4274 * Check for insane configurations where the cpuset doesn't contain
4275 * any suitable zone to satisfy the request - e.g. non-movable
4276 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4277 */
4278 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4279 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4280 ac->highest_zoneidx,
4281 &cpuset_current_mems_allowed);
4282 if (!z->zone)
4283 goto nopage;
4284 }
4285
4286 if (alloc_flags & ALLOC_KSWAPD)
4287 wake_all_kswapds(order, gfp_mask, ac);
4288
4289 /*
4290 * The adjusted alloc_flags might result in immediate success, so try
4291 * that first
4292 */
4293 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4294 if (page)
4295 goto got_pg;
4296
4297 /*
4298 * For costly allocations, try direct compaction first, as it's likely
4299 * that we have enough base pages and don't need to reclaim. For non-
4300 * movable high-order allocations, do that as well, as compaction will
4301 * try prevent permanent fragmentation by migrating from blocks of the
4302 * same migratetype.
4303 * Don't try this for allocations that are allowed to ignore
4304 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4305 */
4306 if (can_direct_reclaim &&
4307 (costly_order ||
4308 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4309 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4310 page = __alloc_pages_direct_compact(gfp_mask, order,
4311 alloc_flags, ac,
4312 INIT_COMPACT_PRIORITY,
4313 &compact_result);
4314 if (page)
4315 goto got_pg;
4316
4317 /*
4318 * Checks for costly allocations with __GFP_NORETRY, which
4319 * includes some THP page fault allocations
4320 */
4321 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4322 /*
4323 * If allocating entire pageblock(s) and compaction
4324 * failed because all zones are below low watermarks
4325 * or is prohibited because it recently failed at this
4326 * order, fail immediately unless the allocator has
4327 * requested compaction and reclaim retry.
4328 *
4329 * Reclaim is
4330 * - potentially very expensive because zones are far
4331 * below their low watermarks or this is part of very
4332 * bursty high order allocations,
4333 * - not guaranteed to help because isolate_freepages()
4334 * may not iterate over freed pages as part of its
4335 * linear scan, and
4336 * - unlikely to make entire pageblocks free on its
4337 * own.
4338 */
4339 if (compact_result == COMPACT_SKIPPED ||
4340 compact_result == COMPACT_DEFERRED)
4341 goto nopage;
4342
4343 /*
4344 * Looks like reclaim/compaction is worth trying, but
4345 * sync compaction could be very expensive, so keep
4346 * using async compaction.
4347 */
4348 compact_priority = INIT_COMPACT_PRIORITY;
4349 }
4350 }
4351
4352 retry:
4353 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4354 if (alloc_flags & ALLOC_KSWAPD)
4355 wake_all_kswapds(order, gfp_mask, ac);
4356
4357 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4358 if (reserve_flags)
4359 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4360 (alloc_flags & ALLOC_KSWAPD);
4361
4362 /*
4363 * Reset the nodemask and zonelist iterators if memory policies can be
4364 * ignored. These allocations are high priority and system rather than
4365 * user oriented.
4366 */
4367 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4368 ac->nodemask = NULL;
4369 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370 ac->highest_zoneidx, ac->nodemask);
4371 }
4372
4373 /* Attempt with potentially adjusted zonelist and alloc_flags */
4374 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4375 if (page)
4376 goto got_pg;
4377
4378 /* Caller is not willing to reclaim, we can't balance anything */
4379 if (!can_direct_reclaim)
4380 goto nopage;
4381
4382 /* Avoid recursion of direct reclaim */
4383 if (current->flags & PF_MEMALLOC)
4384 goto nopage;
4385
4386 /* Try direct reclaim and then allocating */
4387 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4388 &did_some_progress);
4389 if (page)
4390 goto got_pg;
4391
4392 /* Try direct compaction and then allocating */
4393 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4394 compact_priority, &compact_result);
4395 if (page)
4396 goto got_pg;
4397
4398 /* Do not loop if specifically requested */
4399 if (gfp_mask & __GFP_NORETRY)
4400 goto nopage;
4401
4402 /*
4403 * Do not retry costly high order allocations unless they are
4404 * __GFP_RETRY_MAYFAIL
4405 */
4406 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4407 goto nopage;
4408
4409 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4410 did_some_progress > 0, &no_progress_loops))
4411 goto retry;
4412
4413 /*
4414 * It doesn't make any sense to retry for the compaction if the order-0
4415 * reclaim is not able to make any progress because the current
4416 * implementation of the compaction depends on the sufficient amount
4417 * of free memory (see __compaction_suitable)
4418 */
4419 if (did_some_progress > 0 &&
4420 should_compact_retry(ac, order, alloc_flags,
4421 compact_result, &compact_priority,
4422 &compaction_retries))
4423 goto retry;
4424
4425
4426 /*
4427 * Deal with possible cpuset update races or zonelist updates to avoid
4428 * a unnecessary OOM kill.
4429 */
4430 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4431 check_retry_zonelist(zonelist_iter_cookie))
4432 goto restart;
4433
4434 /* Reclaim has failed us, start killing things */
4435 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4436 if (page)
4437 goto got_pg;
4438
4439 /* Avoid allocations with no watermarks from looping endlessly */
4440 if (tsk_is_oom_victim(current) &&
4441 (alloc_flags & ALLOC_OOM ||
4442 (gfp_mask & __GFP_NOMEMALLOC)))
4443 goto nopage;
4444
4445 /* Retry as long as the OOM killer is making progress */
4446 if (did_some_progress) {
4447 no_progress_loops = 0;
4448 goto retry;
4449 }
4450
4451 nopage:
4452 /*
4453 * Deal with possible cpuset update races or zonelist updates to avoid
4454 * a unnecessary OOM kill.
4455 */
4456 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4457 check_retry_zonelist(zonelist_iter_cookie))
4458 goto restart;
4459
4460 /*
4461 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4462 * we always retry
4463 */
4464 if (gfp_mask & __GFP_NOFAIL) {
4465 /*
4466 * All existing users of the __GFP_NOFAIL are blockable, so warn
4467 * of any new users that actually require GFP_NOWAIT
4468 */
4469 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4470 goto fail;
4471
4472 /*
4473 * PF_MEMALLOC request from this context is rather bizarre
4474 * because we cannot reclaim anything and only can loop waiting
4475 * for somebody to do a work for us
4476 */
4477 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4478
4479 /*
4480 * non failing costly orders are a hard requirement which we
4481 * are not prepared for much so let's warn about these users
4482 * so that we can identify them and convert them to something
4483 * else.
4484 */
4485 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4486
4487 /*
4488 * Help non-failing allocations by giving some access to memory
4489 * reserves normally used for high priority non-blocking
4490 * allocations but do not use ALLOC_NO_WATERMARKS because this
4491 * could deplete whole memory reserves which would just make
4492 * the situation worse.
4493 */
4494 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4495 if (page)
4496 goto got_pg;
4497
4498 cond_resched();
4499 goto retry;
4500 }
4501 fail:
4502 warn_alloc(gfp_mask, ac->nodemask,
4503 "page allocation failure: order:%u", order);
4504 got_pg:
4505 return page;
4506 }
4507
4508 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4509 int preferred_nid, nodemask_t *nodemask,
4510 struct alloc_context *ac, gfp_t *alloc_gfp,
4511 unsigned int *alloc_flags)
4512 {
4513 ac->highest_zoneidx = gfp_zone(gfp_mask);
4514 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4515 ac->nodemask = nodemask;
4516 ac->migratetype = gfp_migratetype(gfp_mask);
4517
4518 if (cpusets_enabled()) {
4519 *alloc_gfp |= __GFP_HARDWALL;
4520 /*
4521 * When we are in the interrupt context, it is irrelevant
4522 * to the current task context. It means that any node ok.
4523 */
4524 if (in_task() && !ac->nodemask)
4525 ac->nodemask = &cpuset_current_mems_allowed;
4526 else
4527 *alloc_flags |= ALLOC_CPUSET;
4528 }
4529
4530 might_alloc(gfp_mask);
4531
4532 if (should_fail_alloc_page(gfp_mask, order))
4533 return false;
4534
4535 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4536
4537 /* Dirty zone balancing only done in the fast path */
4538 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4539
4540 /*
4541 * The preferred zone is used for statistics but crucially it is
4542 * also used as the starting point for the zonelist iterator. It
4543 * may get reset for allocations that ignore memory policies.
4544 */
4545 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4546 ac->highest_zoneidx, ac->nodemask);
4547
4548 return true;
4549 }
4550
4551 /*
4552 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4553 * @gfp: GFP flags for the allocation
4554 * @preferred_nid: The preferred NUMA node ID to allocate from
4555 * @nodemask: Set of nodes to allocate from, may be NULL
4556 * @nr_pages: The number of pages desired on the list or array
4557 * @page_list: Optional list to store the allocated pages
4558 * @page_array: Optional array to store the pages
4559 *
4560 * This is a batched version of the page allocator that attempts to
4561 * allocate nr_pages quickly. Pages are added to page_list if page_list
4562 * is not NULL, otherwise it is assumed that the page_array is valid.
4563 *
4564 * For lists, nr_pages is the number of pages that should be allocated.
4565 *
4566 * For arrays, only NULL elements are populated with pages and nr_pages
4567 * is the maximum number of pages that will be stored in the array.
4568 *
4569 * Returns the number of pages on the list or array.
4570 */
4571 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4572 nodemask_t *nodemask, int nr_pages,
4573 struct list_head *page_list,
4574 struct page **page_array)
4575 {
4576 struct page *page;
4577 unsigned long __maybe_unused UP_flags;
4578 struct zone *zone;
4579 struct zoneref *z;
4580 struct per_cpu_pages *pcp;
4581 struct list_head *pcp_list;
4582 struct alloc_context ac;
4583 gfp_t alloc_gfp;
4584 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4585 int nr_populated = 0, nr_account = 0;
4586
4587 /*
4588 * Skip populated array elements to determine if any pages need
4589 * to be allocated before disabling IRQs.
4590 */
4591 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4592 nr_populated++;
4593
4594 /* No pages requested? */
4595 if (unlikely(nr_pages <= 0))
4596 goto out;
4597
4598 /* Already populated array? */
4599 if (unlikely(page_array && nr_pages - nr_populated == 0))
4600 goto out;
4601
4602 /* Bulk allocator does not support memcg accounting. */
4603 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4604 goto failed;
4605
4606 /* Use the single page allocator for one page. */
4607 if (nr_pages - nr_populated == 1)
4608 goto failed;
4609
4610 #ifdef CONFIG_PAGE_OWNER
4611 /*
4612 * PAGE_OWNER may recurse into the allocator to allocate space to
4613 * save the stack with pagesets.lock held. Releasing/reacquiring
4614 * removes much of the performance benefit of bulk allocation so
4615 * force the caller to allocate one page at a time as it'll have
4616 * similar performance to added complexity to the bulk allocator.
4617 */
4618 if (static_branch_unlikely(&page_owner_inited))
4619 goto failed;
4620 #endif
4621
4622 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4623 gfp &= gfp_allowed_mask;
4624 alloc_gfp = gfp;
4625 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4626 goto out;
4627 gfp = alloc_gfp;
4628
4629 /* Find an allowed local zone that meets the low watermark. */
4630 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4631 unsigned long mark;
4632
4633 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4634 !__cpuset_zone_allowed(zone, gfp)) {
4635 continue;
4636 }
4637
4638 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4639 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4640 goto failed;
4641 }
4642
4643 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4644 if (zone_watermark_fast(zone, 0, mark,
4645 zonelist_zone_idx(ac.preferred_zoneref),
4646 alloc_flags, gfp)) {
4647 break;
4648 }
4649 }
4650
4651 /*
4652 * If there are no allowed local zones that meets the watermarks then
4653 * try to allocate a single page and reclaim if necessary.
4654 */
4655 if (unlikely(!zone))
4656 goto failed;
4657
4658 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4659 pcp_trylock_prepare(UP_flags);
4660 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4661 if (!pcp)
4662 goto failed_irq;
4663
4664 /* Attempt the batch allocation */
4665 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4666 while (nr_populated < nr_pages) {
4667
4668 /* Skip existing pages */
4669 if (page_array && page_array[nr_populated]) {
4670 nr_populated++;
4671 continue;
4672 }
4673
4674 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4675 pcp, pcp_list);
4676 if (unlikely(!page)) {
4677 /* Try and allocate at least one page */
4678 if (!nr_account) {
4679 pcp_spin_unlock(pcp);
4680 goto failed_irq;
4681 }
4682 break;
4683 }
4684 nr_account++;
4685
4686 prep_new_page(page, 0, gfp, 0);
4687 if (page_list)
4688 list_add(&page->lru, page_list);
4689 else
4690 page_array[nr_populated] = page;
4691 nr_populated++;
4692 }
4693
4694 pcp_spin_unlock(pcp);
4695 pcp_trylock_finish(UP_flags);
4696
4697 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4698 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4699
4700 out:
4701 return nr_populated;
4702
4703 failed_irq:
4704 pcp_trylock_finish(UP_flags);
4705
4706 failed:
4707 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4708 if (page) {
4709 if (page_list)
4710 list_add(&page->lru, page_list);
4711 else
4712 page_array[nr_populated] = page;
4713 nr_populated++;
4714 }
4715
4716 goto out;
4717 }
4718 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4719
4720 /*
4721 * This is the 'heart' of the zoned buddy allocator.
4722 */
4723 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4724 nodemask_t *nodemask)
4725 {
4726 struct page *page;
4727 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4728 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4729 struct alloc_context ac = { };
4730
4731 /*
4732 * There are several places where we assume that the order value is sane
4733 * so bail out early if the request is out of bound.
4734 */
4735 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4736 return NULL;
4737
4738 gfp &= gfp_allowed_mask;
4739 /*
4740 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4741 * resp. GFP_NOIO which has to be inherited for all allocation requests
4742 * from a particular context which has been marked by
4743 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4744 * movable zones are not used during allocation.
4745 */
4746 gfp = current_gfp_context(gfp);
4747 alloc_gfp = gfp;
4748 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4749 &alloc_gfp, &alloc_flags))
4750 return NULL;
4751
4752 /*
4753 * Forbid the first pass from falling back to types that fragment
4754 * memory until all local zones are considered.
4755 */
4756 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4757
4758 /* First allocation attempt */
4759 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4760 if (likely(page))
4761 goto out;
4762
4763 alloc_gfp = gfp;
4764 ac.spread_dirty_pages = false;
4765
4766 /*
4767 * Restore the original nodemask if it was potentially replaced with
4768 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4769 */
4770 ac.nodemask = nodemask;
4771
4772 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4773
4774 out:
4775 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4776 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4777 __free_pages(page, order);
4778 page = NULL;
4779 }
4780
4781 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4782 kmsan_alloc_page(page, order, alloc_gfp);
4783
4784 return page;
4785 }
4786 EXPORT_SYMBOL(__alloc_pages);
4787
4788 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4789 nodemask_t *nodemask)
4790 {
4791 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4792 preferred_nid, nodemask);
4793
4794 if (page && order > 1)
4795 prep_transhuge_page(page);
4796 return (struct folio *)page;
4797 }
4798 EXPORT_SYMBOL(__folio_alloc);
4799
4800 /*
4801 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4802 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4803 * you need to access high mem.
4804 */
4805 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4806 {
4807 struct page *page;
4808
4809 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4810 if (!page)
4811 return 0;
4812 return (unsigned long) page_address(page);
4813 }
4814 EXPORT_SYMBOL(__get_free_pages);
4815
4816 unsigned long get_zeroed_page(gfp_t gfp_mask)
4817 {
4818 return __get_free_page(gfp_mask | __GFP_ZERO);
4819 }
4820 EXPORT_SYMBOL(get_zeroed_page);
4821
4822 /**
4823 * __free_pages - Free pages allocated with alloc_pages().
4824 * @page: The page pointer returned from alloc_pages().
4825 * @order: The order of the allocation.
4826 *
4827 * This function can free multi-page allocations that are not compound
4828 * pages. It does not check that the @order passed in matches that of
4829 * the allocation, so it is easy to leak memory. Freeing more memory
4830 * than was allocated will probably emit a warning.
4831 *
4832 * If the last reference to this page is speculative, it will be released
4833 * by put_page() which only frees the first page of a non-compound
4834 * allocation. To prevent the remaining pages from being leaked, we free
4835 * the subsequent pages here. If you want to use the page's reference
4836 * count to decide when to free the allocation, you should allocate a
4837 * compound page, and use put_page() instead of __free_pages().
4838 *
4839 * Context: May be called in interrupt context or while holding a normal
4840 * spinlock, but not in NMI context or while holding a raw spinlock.
4841 */
4842 void __free_pages(struct page *page, unsigned int order)
4843 {
4844 /* get PageHead before we drop reference */
4845 int head = PageHead(page);
4846
4847 if (put_page_testzero(page))
4848 free_the_page(page, order);
4849 else if (!head)
4850 while (order-- > 0)
4851 free_the_page(page + (1 << order), order);
4852 }
4853 EXPORT_SYMBOL(__free_pages);
4854
4855 void free_pages(unsigned long addr, unsigned int order)
4856 {
4857 if (addr != 0) {
4858 VM_BUG_ON(!virt_addr_valid((void *)addr));
4859 __free_pages(virt_to_page((void *)addr), order);
4860 }
4861 }
4862
4863 EXPORT_SYMBOL(free_pages);
4864
4865 /*
4866 * Page Fragment:
4867 * An arbitrary-length arbitrary-offset area of memory which resides
4868 * within a 0 or higher order page. Multiple fragments within that page
4869 * are individually refcounted, in the page's reference counter.
4870 *
4871 * The page_frag functions below provide a simple allocation framework for
4872 * page fragments. This is used by the network stack and network device
4873 * drivers to provide a backing region of memory for use as either an
4874 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4875 */
4876 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4877 gfp_t gfp_mask)
4878 {
4879 struct page *page = NULL;
4880 gfp_t gfp = gfp_mask;
4881
4882 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4883 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4884 __GFP_NOMEMALLOC;
4885 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4886 PAGE_FRAG_CACHE_MAX_ORDER);
4887 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4888 #endif
4889 if (unlikely(!page))
4890 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4891
4892 nc->va = page ? page_address(page) : NULL;
4893
4894 return page;
4895 }
4896
4897 void __page_frag_cache_drain(struct page *page, unsigned int count)
4898 {
4899 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4900
4901 if (page_ref_sub_and_test(page, count))
4902 free_the_page(page, compound_order(page));
4903 }
4904 EXPORT_SYMBOL(__page_frag_cache_drain);
4905
4906 void *page_frag_alloc_align(struct page_frag_cache *nc,
4907 unsigned int fragsz, gfp_t gfp_mask,
4908 unsigned int align_mask)
4909 {
4910 unsigned int size = PAGE_SIZE;
4911 struct page *page;
4912 int offset;
4913
4914 if (unlikely(!nc->va)) {
4915 refill:
4916 page = __page_frag_cache_refill(nc, gfp_mask);
4917 if (!page)
4918 return NULL;
4919
4920 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4921 /* if size can vary use size else just use PAGE_SIZE */
4922 size = nc->size;
4923 #endif
4924 /* Even if we own the page, we do not use atomic_set().
4925 * This would break get_page_unless_zero() users.
4926 */
4927 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4928
4929 /* reset page count bias and offset to start of new frag */
4930 nc->pfmemalloc = page_is_pfmemalloc(page);
4931 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4932 nc->offset = size;
4933 }
4934
4935 offset = nc->offset - fragsz;
4936 if (unlikely(offset < 0)) {
4937 page = virt_to_page(nc->va);
4938
4939 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4940 goto refill;
4941
4942 if (unlikely(nc->pfmemalloc)) {
4943 free_the_page(page, compound_order(page));
4944 goto refill;
4945 }
4946
4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 /* if size can vary use size else just use PAGE_SIZE */
4949 size = nc->size;
4950 #endif
4951 /* OK, page count is 0, we can safely set it */
4952 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4953
4954 /* reset page count bias and offset to start of new frag */
4955 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4956 offset = size - fragsz;
4957 if (unlikely(offset < 0)) {
4958 /*
4959 * The caller is trying to allocate a fragment
4960 * with fragsz > PAGE_SIZE but the cache isn't big
4961 * enough to satisfy the request, this may
4962 * happen in low memory conditions.
4963 * We don't release the cache page because
4964 * it could make memory pressure worse
4965 * so we simply return NULL here.
4966 */
4967 return NULL;
4968 }
4969 }
4970
4971 nc->pagecnt_bias--;
4972 offset &= align_mask;
4973 nc->offset = offset;
4974
4975 return nc->va + offset;
4976 }
4977 EXPORT_SYMBOL(page_frag_alloc_align);
4978
4979 /*
4980 * Frees a page fragment allocated out of either a compound or order 0 page.
4981 */
4982 void page_frag_free(void *addr)
4983 {
4984 struct page *page = virt_to_head_page(addr);
4985
4986 if (unlikely(put_page_testzero(page)))
4987 free_the_page(page, compound_order(page));
4988 }
4989 EXPORT_SYMBOL(page_frag_free);
4990
4991 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4992 size_t size)
4993 {
4994 if (addr) {
4995 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4996 struct page *page = virt_to_page((void *)addr);
4997 struct page *last = page + nr;
4998
4999 split_page_owner(page, 1 << order);
5000 split_page_memcg(page, 1 << order);
5001 while (page < --last)
5002 set_page_refcounted(last);
5003
5004 last = page + (1UL << order);
5005 for (page += nr; page < last; page++)
5006 __free_pages_ok(page, 0, FPI_TO_TAIL);
5007 }
5008 return (void *)addr;
5009 }
5010
5011 /**
5012 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5013 * @size: the number of bytes to allocate
5014 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5015 *
5016 * This function is similar to alloc_pages(), except that it allocates the
5017 * minimum number of pages to satisfy the request. alloc_pages() can only
5018 * allocate memory in power-of-two pages.
5019 *
5020 * This function is also limited by MAX_ORDER.
5021 *
5022 * Memory allocated by this function must be released by free_pages_exact().
5023 *
5024 * Return: pointer to the allocated area or %NULL in case of error.
5025 */
5026 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5027 {
5028 unsigned int order = get_order(size);
5029 unsigned long addr;
5030
5031 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5032 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5033
5034 addr = __get_free_pages(gfp_mask, order);
5035 return make_alloc_exact(addr, order, size);
5036 }
5037 EXPORT_SYMBOL(alloc_pages_exact);
5038
5039 /**
5040 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5041 * pages on a node.
5042 * @nid: the preferred node ID where memory should be allocated
5043 * @size: the number of bytes to allocate
5044 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5045 *
5046 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5047 * back.
5048 *
5049 * Return: pointer to the allocated area or %NULL in case of error.
5050 */
5051 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5052 {
5053 unsigned int order = get_order(size);
5054 struct page *p;
5055
5056 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5057 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5058
5059 p = alloc_pages_node(nid, gfp_mask, order);
5060 if (!p)
5061 return NULL;
5062 return make_alloc_exact((unsigned long)page_address(p), order, size);
5063 }
5064
5065 /**
5066 * free_pages_exact - release memory allocated via alloc_pages_exact()
5067 * @virt: the value returned by alloc_pages_exact.
5068 * @size: size of allocation, same value as passed to alloc_pages_exact().
5069 *
5070 * Release the memory allocated by a previous call to alloc_pages_exact.
5071 */
5072 void free_pages_exact(void *virt, size_t size)
5073 {
5074 unsigned long addr = (unsigned long)virt;
5075 unsigned long end = addr + PAGE_ALIGN(size);
5076
5077 while (addr < end) {
5078 free_page(addr);
5079 addr += PAGE_SIZE;
5080 }
5081 }
5082 EXPORT_SYMBOL(free_pages_exact);
5083
5084 /**
5085 * nr_free_zone_pages - count number of pages beyond high watermark
5086 * @offset: The zone index of the highest zone
5087 *
5088 * nr_free_zone_pages() counts the number of pages which are beyond the
5089 * high watermark within all zones at or below a given zone index. For each
5090 * zone, the number of pages is calculated as:
5091 *
5092 * nr_free_zone_pages = managed_pages - high_pages
5093 *
5094 * Return: number of pages beyond high watermark.
5095 */
5096 static unsigned long nr_free_zone_pages(int offset)
5097 {
5098 struct zoneref *z;
5099 struct zone *zone;
5100
5101 /* Just pick one node, since fallback list is circular */
5102 unsigned long sum = 0;
5103
5104 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5105
5106 for_each_zone_zonelist(zone, z, zonelist, offset) {
5107 unsigned long size = zone_managed_pages(zone);
5108 unsigned long high = high_wmark_pages(zone);
5109 if (size > high)
5110 sum += size - high;
5111 }
5112
5113 return sum;
5114 }
5115
5116 /**
5117 * nr_free_buffer_pages - count number of pages beyond high watermark
5118 *
5119 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5120 * watermark within ZONE_DMA and ZONE_NORMAL.
5121 *
5122 * Return: number of pages beyond high watermark within ZONE_DMA and
5123 * ZONE_NORMAL.
5124 */
5125 unsigned long nr_free_buffer_pages(void)
5126 {
5127 return nr_free_zone_pages(gfp_zone(GFP_USER));
5128 }
5129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5130
5131 static inline void show_node(struct zone *zone)
5132 {
5133 if (IS_ENABLED(CONFIG_NUMA))
5134 printk("Node %d ", zone_to_nid(zone));
5135 }
5136
5137 long si_mem_available(void)
5138 {
5139 long available;
5140 unsigned long pagecache;
5141 unsigned long wmark_low = 0;
5142 unsigned long pages[NR_LRU_LISTS];
5143 unsigned long reclaimable;
5144 struct zone *zone;
5145 int lru;
5146
5147 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5148 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5149
5150 for_each_zone(zone)
5151 wmark_low += low_wmark_pages(zone);
5152
5153 /*
5154 * Estimate the amount of memory available for userspace allocations,
5155 * without causing swapping or OOM.
5156 */
5157 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5158
5159 /*
5160 * Not all the page cache can be freed, otherwise the system will
5161 * start swapping or thrashing. Assume at least half of the page
5162 * cache, or the low watermark worth of cache, needs to stay.
5163 */
5164 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5165 pagecache -= min(pagecache / 2, wmark_low);
5166 available += pagecache;
5167
5168 /*
5169 * Part of the reclaimable slab and other kernel memory consists of
5170 * items that are in use, and cannot be freed. Cap this estimate at the
5171 * low watermark.
5172 */
5173 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5174 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5175 available += reclaimable - min(reclaimable / 2, wmark_low);
5176
5177 if (available < 0)
5178 available = 0;
5179 return available;
5180 }
5181 EXPORT_SYMBOL_GPL(si_mem_available);
5182
5183 void si_meminfo(struct sysinfo *val)
5184 {
5185 val->totalram = totalram_pages();
5186 val->sharedram = global_node_page_state(NR_SHMEM);
5187 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5188 val->bufferram = nr_blockdev_pages();
5189 val->totalhigh = totalhigh_pages();
5190 val->freehigh = nr_free_highpages();
5191 val->mem_unit = PAGE_SIZE;
5192 }
5193
5194 EXPORT_SYMBOL(si_meminfo);
5195
5196 #ifdef CONFIG_NUMA
5197 void si_meminfo_node(struct sysinfo *val, int nid)
5198 {
5199 int zone_type; /* needs to be signed */
5200 unsigned long managed_pages = 0;
5201 unsigned long managed_highpages = 0;
5202 unsigned long free_highpages = 0;
5203 pg_data_t *pgdat = NODE_DATA(nid);
5204
5205 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5206 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5207 val->totalram = managed_pages;
5208 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5209 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5210 #ifdef CONFIG_HIGHMEM
5211 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5212 struct zone *zone = &pgdat->node_zones[zone_type];
5213
5214 if (is_highmem(zone)) {
5215 managed_highpages += zone_managed_pages(zone);
5216 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5217 }
5218 }
5219 val->totalhigh = managed_highpages;
5220 val->freehigh = free_highpages;
5221 #else
5222 val->totalhigh = managed_highpages;
5223 val->freehigh = free_highpages;
5224 #endif
5225 val->mem_unit = PAGE_SIZE;
5226 }
5227 #endif
5228
5229 /*
5230 * Determine whether the node should be displayed or not, depending on whether
5231 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5232 */
5233 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5234 {
5235 if (!(flags & SHOW_MEM_FILTER_NODES))
5236 return false;
5237
5238 /*
5239 * no node mask - aka implicit memory numa policy. Do not bother with
5240 * the synchronization - read_mems_allowed_begin - because we do not
5241 * have to be precise here.
5242 */
5243 if (!nodemask)
5244 nodemask = &cpuset_current_mems_allowed;
5245
5246 return !node_isset(nid, *nodemask);
5247 }
5248
5249 static void show_migration_types(unsigned char type)
5250 {
5251 static const char types[MIGRATE_TYPES] = {
5252 [MIGRATE_UNMOVABLE] = 'U',
5253 [MIGRATE_MOVABLE] = 'M',
5254 [MIGRATE_RECLAIMABLE] = 'E',
5255 [MIGRATE_HIGHATOMIC] = 'H',
5256 #ifdef CONFIG_CMA
5257 [MIGRATE_CMA] = 'C',
5258 #endif
5259 #ifdef CONFIG_MEMORY_ISOLATION
5260 [MIGRATE_ISOLATE] = 'I',
5261 #endif
5262 };
5263 char tmp[MIGRATE_TYPES + 1];
5264 char *p = tmp;
5265 int i;
5266
5267 for (i = 0; i < MIGRATE_TYPES; i++) {
5268 if (type & (1 << i))
5269 *p++ = types[i];
5270 }
5271
5272 *p = '\0';
5273 printk(KERN_CONT "(%s) ", tmp);
5274 }
5275
5276 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
5277 {
5278 int zone_idx;
5279 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
5280 if (zone_managed_pages(pgdat->node_zones + zone_idx))
5281 return true;
5282 return false;
5283 }
5284
5285 /*
5286 * Show free area list (used inside shift_scroll-lock stuff)
5287 * We also calculate the percentage fragmentation. We do this by counting the
5288 * memory on each free list with the exception of the first item on the list.
5289 *
5290 * Bits in @filter:
5291 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5292 * cpuset.
5293 */
5294 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
5295 {
5296 unsigned long free_pcp = 0;
5297 int cpu, nid;
5298 struct zone *zone;
5299 pg_data_t *pgdat;
5300
5301 for_each_populated_zone(zone) {
5302 if (zone_idx(zone) > max_zone_idx)
5303 continue;
5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 continue;
5306
5307 for_each_online_cpu(cpu)
5308 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5309 }
5310
5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5313 " unevictable:%lu dirty:%lu writeback:%lu\n"
5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5315 " mapped:%lu shmem:%lu pagetables:%lu\n"
5316 " sec_pagetables:%lu bounce:%lu\n"
5317 " kernel_misc_reclaimable:%lu\n"
5318 " free:%lu free_pcp:%lu free_cma:%lu\n",
5319 global_node_page_state(NR_ACTIVE_ANON),
5320 global_node_page_state(NR_INACTIVE_ANON),
5321 global_node_page_state(NR_ISOLATED_ANON),
5322 global_node_page_state(NR_ACTIVE_FILE),
5323 global_node_page_state(NR_INACTIVE_FILE),
5324 global_node_page_state(NR_ISOLATED_FILE),
5325 global_node_page_state(NR_UNEVICTABLE),
5326 global_node_page_state(NR_FILE_DIRTY),
5327 global_node_page_state(NR_WRITEBACK),
5328 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5329 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5330 global_node_page_state(NR_FILE_MAPPED),
5331 global_node_page_state(NR_SHMEM),
5332 global_node_page_state(NR_PAGETABLE),
5333 global_node_page_state(NR_SECONDARY_PAGETABLE),
5334 global_zone_page_state(NR_BOUNCE),
5335 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5336 global_zone_page_state(NR_FREE_PAGES),
5337 free_pcp,
5338 global_zone_page_state(NR_FREE_CMA_PAGES));
5339
5340 for_each_online_pgdat(pgdat) {
5341 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5342 continue;
5343 if (!node_has_managed_zones(pgdat, max_zone_idx))
5344 continue;
5345
5346 printk("Node %d"
5347 " active_anon:%lukB"
5348 " inactive_anon:%lukB"
5349 " active_file:%lukB"
5350 " inactive_file:%lukB"
5351 " unevictable:%lukB"
5352 " isolated(anon):%lukB"
5353 " isolated(file):%lukB"
5354 " mapped:%lukB"
5355 " dirty:%lukB"
5356 " writeback:%lukB"
5357 " shmem:%lukB"
5358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5359 " shmem_thp: %lukB"
5360 " shmem_pmdmapped: %lukB"
5361 " anon_thp: %lukB"
5362 #endif
5363 " writeback_tmp:%lukB"
5364 " kernel_stack:%lukB"
5365 #ifdef CONFIG_SHADOW_CALL_STACK
5366 " shadow_call_stack:%lukB"
5367 #endif
5368 " pagetables:%lukB"
5369 " sec_pagetables:%lukB"
5370 " all_unreclaimable? %s"
5371 "\n",
5372 pgdat->node_id,
5373 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5374 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5375 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5376 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5377 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5378 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5379 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5380 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5381 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5382 K(node_page_state(pgdat, NR_WRITEBACK)),
5383 K(node_page_state(pgdat, NR_SHMEM)),
5384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5386 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5387 K(node_page_state(pgdat, NR_ANON_THPS)),
5388 #endif
5389 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5390 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5391 #ifdef CONFIG_SHADOW_CALL_STACK
5392 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5393 #endif
5394 K(node_page_state(pgdat, NR_PAGETABLE)),
5395 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
5396 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5397 "yes" : "no");
5398 }
5399
5400 for_each_populated_zone(zone) {
5401 int i;
5402
5403 if (zone_idx(zone) > max_zone_idx)
5404 continue;
5405 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5406 continue;
5407
5408 free_pcp = 0;
5409 for_each_online_cpu(cpu)
5410 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5411
5412 show_node(zone);
5413 printk(KERN_CONT
5414 "%s"
5415 " free:%lukB"
5416 " boost:%lukB"
5417 " min:%lukB"
5418 " low:%lukB"
5419 " high:%lukB"
5420 " reserved_highatomic:%luKB"
5421 " active_anon:%lukB"
5422 " inactive_anon:%lukB"
5423 " active_file:%lukB"
5424 " inactive_file:%lukB"
5425 " unevictable:%lukB"
5426 " writepending:%lukB"
5427 " present:%lukB"
5428 " managed:%lukB"
5429 " mlocked:%lukB"
5430 " bounce:%lukB"
5431 " free_pcp:%lukB"
5432 " local_pcp:%ukB"
5433 " free_cma:%lukB"
5434 "\n",
5435 zone->name,
5436 K(zone_page_state(zone, NR_FREE_PAGES)),
5437 K(zone->watermark_boost),
5438 K(min_wmark_pages(zone)),
5439 K(low_wmark_pages(zone)),
5440 K(high_wmark_pages(zone)),
5441 K(zone->nr_reserved_highatomic),
5442 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5443 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5444 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5445 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5446 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5447 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5448 K(zone->present_pages),
5449 K(zone_managed_pages(zone)),
5450 K(zone_page_state(zone, NR_MLOCK)),
5451 K(zone_page_state(zone, NR_BOUNCE)),
5452 K(free_pcp),
5453 K(this_cpu_read(zone->per_cpu_pageset->count)),
5454 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5455 printk("lowmem_reserve[]:");
5456 for (i = 0; i < MAX_NR_ZONES; i++)
5457 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5458 printk(KERN_CONT "\n");
5459 }
5460
5461 for_each_populated_zone(zone) {
5462 unsigned int order;
5463 unsigned long nr[MAX_ORDER + 1], flags, total = 0;
5464 unsigned char types[MAX_ORDER + 1];
5465
5466 if (zone_idx(zone) > max_zone_idx)
5467 continue;
5468 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5469 continue;
5470 show_node(zone);
5471 printk(KERN_CONT "%s: ", zone->name);
5472
5473 spin_lock_irqsave(&zone->lock, flags);
5474 for (order = 0; order <= MAX_ORDER; order++) {
5475 struct free_area *area = &zone->free_area[order];
5476 int type;
5477
5478 nr[order] = area->nr_free;
5479 total += nr[order] << order;
5480
5481 types[order] = 0;
5482 for (type = 0; type < MIGRATE_TYPES; type++) {
5483 if (!free_area_empty(area, type))
5484 types[order] |= 1 << type;
5485 }
5486 }
5487 spin_unlock_irqrestore(&zone->lock, flags);
5488 for (order = 0; order <= MAX_ORDER; order++) {
5489 printk(KERN_CONT "%lu*%lukB ",
5490 nr[order], K(1UL) << order);
5491 if (nr[order])
5492 show_migration_types(types[order]);
5493 }
5494 printk(KERN_CONT "= %lukB\n", K(total));
5495 }
5496
5497 for_each_online_node(nid) {
5498 if (show_mem_node_skip(filter, nid, nodemask))
5499 continue;
5500 hugetlb_show_meminfo_node(nid);
5501 }
5502
5503 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5504
5505 show_swap_cache_info();
5506 }
5507
5508 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5509 {
5510 zoneref->zone = zone;
5511 zoneref->zone_idx = zone_idx(zone);
5512 }
5513
5514 /*
5515 * Builds allocation fallback zone lists.
5516 *
5517 * Add all populated zones of a node to the zonelist.
5518 */
5519 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5520 {
5521 struct zone *zone;
5522 enum zone_type zone_type = MAX_NR_ZONES;
5523 int nr_zones = 0;
5524
5525 do {
5526 zone_type--;
5527 zone = pgdat->node_zones + zone_type;
5528 if (populated_zone(zone)) {
5529 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5530 check_highest_zone(zone_type);
5531 }
5532 } while (zone_type);
5533
5534 return nr_zones;
5535 }
5536
5537 #ifdef CONFIG_NUMA
5538
5539 static int __parse_numa_zonelist_order(char *s)
5540 {
5541 /*
5542 * We used to support different zonelists modes but they turned
5543 * out to be just not useful. Let's keep the warning in place
5544 * if somebody still use the cmd line parameter so that we do
5545 * not fail it silently
5546 */
5547 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5548 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5549 return -EINVAL;
5550 }
5551 return 0;
5552 }
5553
5554 char numa_zonelist_order[] = "Node";
5555
5556 /*
5557 * sysctl handler for numa_zonelist_order
5558 */
5559 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5560 void *buffer, size_t *length, loff_t *ppos)
5561 {
5562 if (write)
5563 return __parse_numa_zonelist_order(buffer);
5564 return proc_dostring(table, write, buffer, length, ppos);
5565 }
5566
5567
5568 static int node_load[MAX_NUMNODES];
5569
5570 /**
5571 * find_next_best_node - find the next node that should appear in a given node's fallback list
5572 * @node: node whose fallback list we're appending
5573 * @used_node_mask: nodemask_t of already used nodes
5574 *
5575 * We use a number of factors to determine which is the next node that should
5576 * appear on a given node's fallback list. The node should not have appeared
5577 * already in @node's fallback list, and it should be the next closest node
5578 * according to the distance array (which contains arbitrary distance values
5579 * from each node to each node in the system), and should also prefer nodes
5580 * with no CPUs, since presumably they'll have very little allocation pressure
5581 * on them otherwise.
5582 *
5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5584 */
5585 int find_next_best_node(int node, nodemask_t *used_node_mask)
5586 {
5587 int n, val;
5588 int min_val = INT_MAX;
5589 int best_node = NUMA_NO_NODE;
5590
5591 /* Use the local node if we haven't already */
5592 if (!node_isset(node, *used_node_mask)) {
5593 node_set(node, *used_node_mask);
5594 return node;
5595 }
5596
5597 for_each_node_state(n, N_MEMORY) {
5598
5599 /* Don't want a node to appear more than once */
5600 if (node_isset(n, *used_node_mask))
5601 continue;
5602
5603 /* Use the distance array to find the distance */
5604 val = node_distance(node, n);
5605
5606 /* Penalize nodes under us ("prefer the next node") */
5607 val += (n < node);
5608
5609 /* Give preference to headless and unused nodes */
5610 if (!cpumask_empty(cpumask_of_node(n)))
5611 val += PENALTY_FOR_NODE_WITH_CPUS;
5612
5613 /* Slight preference for less loaded node */
5614 val *= MAX_NUMNODES;
5615 val += node_load[n];
5616
5617 if (val < min_val) {
5618 min_val = val;
5619 best_node = n;
5620 }
5621 }
5622
5623 if (best_node >= 0)
5624 node_set(best_node, *used_node_mask);
5625
5626 return best_node;
5627 }
5628
5629
5630 /*
5631 * Build zonelists ordered by node and zones within node.
5632 * This results in maximum locality--normal zone overflows into local
5633 * DMA zone, if any--but risks exhausting DMA zone.
5634 */
5635 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5636 unsigned nr_nodes)
5637 {
5638 struct zoneref *zonerefs;
5639 int i;
5640
5641 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5642
5643 for (i = 0; i < nr_nodes; i++) {
5644 int nr_zones;
5645
5646 pg_data_t *node = NODE_DATA(node_order[i]);
5647
5648 nr_zones = build_zonerefs_node(node, zonerefs);
5649 zonerefs += nr_zones;
5650 }
5651 zonerefs->zone = NULL;
5652 zonerefs->zone_idx = 0;
5653 }
5654
5655 /*
5656 * Build gfp_thisnode zonelists
5657 */
5658 static void build_thisnode_zonelists(pg_data_t *pgdat)
5659 {
5660 struct zoneref *zonerefs;
5661 int nr_zones;
5662
5663 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5664 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5665 zonerefs += nr_zones;
5666 zonerefs->zone = NULL;
5667 zonerefs->zone_idx = 0;
5668 }
5669
5670 /*
5671 * Build zonelists ordered by zone and nodes within zones.
5672 * This results in conserving DMA zone[s] until all Normal memory is
5673 * exhausted, but results in overflowing to remote node while memory
5674 * may still exist in local DMA zone.
5675 */
5676
5677 static void build_zonelists(pg_data_t *pgdat)
5678 {
5679 static int node_order[MAX_NUMNODES];
5680 int node, nr_nodes = 0;
5681 nodemask_t used_mask = NODE_MASK_NONE;
5682 int local_node, prev_node;
5683
5684 /* NUMA-aware ordering of nodes */
5685 local_node = pgdat->node_id;
5686 prev_node = local_node;
5687
5688 memset(node_order, 0, sizeof(node_order));
5689 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5690 /*
5691 * We don't want to pressure a particular node.
5692 * So adding penalty to the first node in same
5693 * distance group to make it round-robin.
5694 */
5695 if (node_distance(local_node, node) !=
5696 node_distance(local_node, prev_node))
5697 node_load[node] += 1;
5698
5699 node_order[nr_nodes++] = node;
5700 prev_node = node;
5701 }
5702
5703 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5704 build_thisnode_zonelists(pgdat);
5705 pr_info("Fallback order for Node %d: ", local_node);
5706 for (node = 0; node < nr_nodes; node++)
5707 pr_cont("%d ", node_order[node]);
5708 pr_cont("\n");
5709 }
5710
5711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5712 /*
5713 * Return node id of node used for "local" allocations.
5714 * I.e., first node id of first zone in arg node's generic zonelist.
5715 * Used for initializing percpu 'numa_mem', which is used primarily
5716 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5717 */
5718 int local_memory_node(int node)
5719 {
5720 struct zoneref *z;
5721
5722 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5723 gfp_zone(GFP_KERNEL),
5724 NULL);
5725 return zone_to_nid(z->zone);
5726 }
5727 #endif
5728
5729 static void setup_min_unmapped_ratio(void);
5730 static void setup_min_slab_ratio(void);
5731 #else /* CONFIG_NUMA */
5732
5733 static void build_zonelists(pg_data_t *pgdat)
5734 {
5735 int node, local_node;
5736 struct zoneref *zonerefs;
5737 int nr_zones;
5738
5739 local_node = pgdat->node_id;
5740
5741 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5742 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5743 zonerefs += nr_zones;
5744
5745 /*
5746 * Now we build the zonelist so that it contains the zones
5747 * of all the other nodes.
5748 * We don't want to pressure a particular node, so when
5749 * building the zones for node N, we make sure that the
5750 * zones coming right after the local ones are those from
5751 * node N+1 (modulo N)
5752 */
5753 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5754 if (!node_online(node))
5755 continue;
5756 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5757 zonerefs += nr_zones;
5758 }
5759 for (node = 0; node < local_node; node++) {
5760 if (!node_online(node))
5761 continue;
5762 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5763 zonerefs += nr_zones;
5764 }
5765
5766 zonerefs->zone = NULL;
5767 zonerefs->zone_idx = 0;
5768 }
5769
5770 #endif /* CONFIG_NUMA */
5771
5772 /*
5773 * Boot pageset table. One per cpu which is going to be used for all
5774 * zones and all nodes. The parameters will be set in such a way
5775 * that an item put on a list will immediately be handed over to
5776 * the buddy list. This is safe since pageset manipulation is done
5777 * with interrupts disabled.
5778 *
5779 * The boot_pagesets must be kept even after bootup is complete for
5780 * unused processors and/or zones. They do play a role for bootstrapping
5781 * hotplugged processors.
5782 *
5783 * zoneinfo_show() and maybe other functions do
5784 * not check if the processor is online before following the pageset pointer.
5785 * Other parts of the kernel may not check if the zone is available.
5786 */
5787 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5788 /* These effectively disable the pcplists in the boot pageset completely */
5789 #define BOOT_PAGESET_HIGH 0
5790 #define BOOT_PAGESET_BATCH 1
5791 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5792 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5793
5794 static void __build_all_zonelists(void *data)
5795 {
5796 int nid;
5797 int __maybe_unused cpu;
5798 pg_data_t *self = data;
5799 unsigned long flags;
5800
5801 /*
5802 * Explicitly disable this CPU's interrupts before taking seqlock
5803 * to prevent any IRQ handler from calling into the page allocator
5804 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5805 */
5806 local_irq_save(flags);
5807 /*
5808 * Explicitly disable this CPU's synchronous printk() before taking
5809 * seqlock to prevent any printk() from trying to hold port->lock, for
5810 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5811 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5812 */
5813 printk_deferred_enter();
5814 write_seqlock(&zonelist_update_seq);
5815
5816 #ifdef CONFIG_NUMA
5817 memset(node_load, 0, sizeof(node_load));
5818 #endif
5819
5820 /*
5821 * This node is hotadded and no memory is yet present. So just
5822 * building zonelists is fine - no need to touch other nodes.
5823 */
5824 if (self && !node_online(self->node_id)) {
5825 build_zonelists(self);
5826 } else {
5827 /*
5828 * All possible nodes have pgdat preallocated
5829 * in free_area_init
5830 */
5831 for_each_node(nid) {
5832 pg_data_t *pgdat = NODE_DATA(nid);
5833
5834 build_zonelists(pgdat);
5835 }
5836
5837 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5838 /*
5839 * We now know the "local memory node" for each node--
5840 * i.e., the node of the first zone in the generic zonelist.
5841 * Set up numa_mem percpu variable for on-line cpus. During
5842 * boot, only the boot cpu should be on-line; we'll init the
5843 * secondary cpus' numa_mem as they come on-line. During
5844 * node/memory hotplug, we'll fixup all on-line cpus.
5845 */
5846 for_each_online_cpu(cpu)
5847 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5848 #endif
5849 }
5850
5851 write_sequnlock(&zonelist_update_seq);
5852 printk_deferred_exit();
5853 local_irq_restore(flags);
5854 }
5855
5856 static noinline void __init
5857 build_all_zonelists_init(void)
5858 {
5859 int cpu;
5860
5861 __build_all_zonelists(NULL);
5862
5863 /*
5864 * Initialize the boot_pagesets that are going to be used
5865 * for bootstrapping processors. The real pagesets for
5866 * each zone will be allocated later when the per cpu
5867 * allocator is available.
5868 *
5869 * boot_pagesets are used also for bootstrapping offline
5870 * cpus if the system is already booted because the pagesets
5871 * are needed to initialize allocators on a specific cpu too.
5872 * F.e. the percpu allocator needs the page allocator which
5873 * needs the percpu allocator in order to allocate its pagesets
5874 * (a chicken-egg dilemma).
5875 */
5876 for_each_possible_cpu(cpu)
5877 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5878
5879 mminit_verify_zonelist();
5880 cpuset_init_current_mems_allowed();
5881 }
5882
5883 /*
5884 * unless system_state == SYSTEM_BOOTING.
5885 *
5886 * __ref due to call of __init annotated helper build_all_zonelists_init
5887 * [protected by SYSTEM_BOOTING].
5888 */
5889 void __ref build_all_zonelists(pg_data_t *pgdat)
5890 {
5891 unsigned long vm_total_pages;
5892
5893 if (system_state == SYSTEM_BOOTING) {
5894 build_all_zonelists_init();
5895 } else {
5896 __build_all_zonelists(pgdat);
5897 /* cpuset refresh routine should be here */
5898 }
5899 /* Get the number of free pages beyond high watermark in all zones. */
5900 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5901 /*
5902 * Disable grouping by mobility if the number of pages in the
5903 * system is too low to allow the mechanism to work. It would be
5904 * more accurate, but expensive to check per-zone. This check is
5905 * made on memory-hotadd so a system can start with mobility
5906 * disabled and enable it later
5907 */
5908 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5909 page_group_by_mobility_disabled = 1;
5910 else
5911 page_group_by_mobility_disabled = 0;
5912
5913 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5914 nr_online_nodes,
5915 page_group_by_mobility_disabled ? "off" : "on",
5916 vm_total_pages);
5917 #ifdef CONFIG_NUMA
5918 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5919 #endif
5920 }
5921
5922 static int zone_batchsize(struct zone *zone)
5923 {
5924 #ifdef CONFIG_MMU
5925 int batch;
5926
5927 /*
5928 * The number of pages to batch allocate is either ~0.1%
5929 * of the zone or 1MB, whichever is smaller. The batch
5930 * size is striking a balance between allocation latency
5931 * and zone lock contention.
5932 */
5933 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5934 batch /= 4; /* We effectively *= 4 below */
5935 if (batch < 1)
5936 batch = 1;
5937
5938 /*
5939 * Clamp the batch to a 2^n - 1 value. Having a power
5940 * of 2 value was found to be more likely to have
5941 * suboptimal cache aliasing properties in some cases.
5942 *
5943 * For example if 2 tasks are alternately allocating
5944 * batches of pages, one task can end up with a lot
5945 * of pages of one half of the possible page colors
5946 * and the other with pages of the other colors.
5947 */
5948 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5949
5950 return batch;
5951
5952 #else
5953 /* The deferral and batching of frees should be suppressed under NOMMU
5954 * conditions.
5955 *
5956 * The problem is that NOMMU needs to be able to allocate large chunks
5957 * of contiguous memory as there's no hardware page translation to
5958 * assemble apparent contiguous memory from discontiguous pages.
5959 *
5960 * Queueing large contiguous runs of pages for batching, however,
5961 * causes the pages to actually be freed in smaller chunks. As there
5962 * can be a significant delay between the individual batches being
5963 * recycled, this leads to the once large chunks of space being
5964 * fragmented and becoming unavailable for high-order allocations.
5965 */
5966 return 0;
5967 #endif
5968 }
5969
5970 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5971 {
5972 #ifdef CONFIG_MMU
5973 int high;
5974 int nr_split_cpus;
5975 unsigned long total_pages;
5976
5977 if (!percpu_pagelist_high_fraction) {
5978 /*
5979 * By default, the high value of the pcp is based on the zone
5980 * low watermark so that if they are full then background
5981 * reclaim will not be started prematurely.
5982 */
5983 total_pages = low_wmark_pages(zone);
5984 } else {
5985 /*
5986 * If percpu_pagelist_high_fraction is configured, the high
5987 * value is based on a fraction of the managed pages in the
5988 * zone.
5989 */
5990 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5991 }
5992
5993 /*
5994 * Split the high value across all online CPUs local to the zone. Note
5995 * that early in boot that CPUs may not be online yet and that during
5996 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5997 * onlined. For memory nodes that have no CPUs, split pcp->high across
5998 * all online CPUs to mitigate the risk that reclaim is triggered
5999 * prematurely due to pages stored on pcp lists.
6000 */
6001 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6002 if (!nr_split_cpus)
6003 nr_split_cpus = num_online_cpus();
6004 high = total_pages / nr_split_cpus;
6005
6006 /*
6007 * Ensure high is at least batch*4. The multiple is based on the
6008 * historical relationship between high and batch.
6009 */
6010 high = max(high, batch << 2);
6011
6012 return high;
6013 #else
6014 return 0;
6015 #endif
6016 }
6017
6018 /*
6019 * pcp->high and pcp->batch values are related and generally batch is lower
6020 * than high. They are also related to pcp->count such that count is lower
6021 * than high, and as soon as it reaches high, the pcplist is flushed.
6022 *
6023 * However, guaranteeing these relations at all times would require e.g. write
6024 * barriers here but also careful usage of read barriers at the read side, and
6025 * thus be prone to error and bad for performance. Thus the update only prevents
6026 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6027 * can cope with those fields changing asynchronously, and fully trust only the
6028 * pcp->count field on the local CPU with interrupts disabled.
6029 *
6030 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6031 * outside of boot time (or some other assurance that no concurrent updaters
6032 * exist).
6033 */
6034 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6035 unsigned long batch)
6036 {
6037 WRITE_ONCE(pcp->batch, batch);
6038 WRITE_ONCE(pcp->high, high);
6039 }
6040
6041 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6042 {
6043 int pindex;
6044
6045 memset(pcp, 0, sizeof(*pcp));
6046 memset(pzstats, 0, sizeof(*pzstats));
6047
6048 spin_lock_init(&pcp->lock);
6049 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6050 INIT_LIST_HEAD(&pcp->lists[pindex]);
6051
6052 /*
6053 * Set batch and high values safe for a boot pageset. A true percpu
6054 * pageset's initialization will update them subsequently. Here we don't
6055 * need to be as careful as pageset_update() as nobody can access the
6056 * pageset yet.
6057 */
6058 pcp->high = BOOT_PAGESET_HIGH;
6059 pcp->batch = BOOT_PAGESET_BATCH;
6060 pcp->free_factor = 0;
6061 }
6062
6063 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6064 unsigned long batch)
6065 {
6066 struct per_cpu_pages *pcp;
6067 int cpu;
6068
6069 for_each_possible_cpu(cpu) {
6070 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6071 pageset_update(pcp, high, batch);
6072 }
6073 }
6074
6075 /*
6076 * Calculate and set new high and batch values for all per-cpu pagesets of a
6077 * zone based on the zone's size.
6078 */
6079 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6080 {
6081 int new_high, new_batch;
6082
6083 new_batch = max(1, zone_batchsize(zone));
6084 new_high = zone_highsize(zone, new_batch, cpu_online);
6085
6086 if (zone->pageset_high == new_high &&
6087 zone->pageset_batch == new_batch)
6088 return;
6089
6090 zone->pageset_high = new_high;
6091 zone->pageset_batch = new_batch;
6092
6093 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6094 }
6095
6096 void __meminit setup_zone_pageset(struct zone *zone)
6097 {
6098 int cpu;
6099
6100 /* Size may be 0 on !SMP && !NUMA */
6101 if (sizeof(struct per_cpu_zonestat) > 0)
6102 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6103
6104 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6105 for_each_possible_cpu(cpu) {
6106 struct per_cpu_pages *pcp;
6107 struct per_cpu_zonestat *pzstats;
6108
6109 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6110 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6111 per_cpu_pages_init(pcp, pzstats);
6112 }
6113
6114 zone_set_pageset_high_and_batch(zone, 0);
6115 }
6116
6117 /*
6118 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6119 * page high values need to be recalculated.
6120 */
6121 static void zone_pcp_update(struct zone *zone, int cpu_online)
6122 {
6123 mutex_lock(&pcp_batch_high_lock);
6124 zone_set_pageset_high_and_batch(zone, cpu_online);
6125 mutex_unlock(&pcp_batch_high_lock);
6126 }
6127
6128 /*
6129 * Allocate per cpu pagesets and initialize them.
6130 * Before this call only boot pagesets were available.
6131 */
6132 void __init setup_per_cpu_pageset(void)
6133 {
6134 struct pglist_data *pgdat;
6135 struct zone *zone;
6136 int __maybe_unused cpu;
6137
6138 for_each_populated_zone(zone)
6139 setup_zone_pageset(zone);
6140
6141 #ifdef CONFIG_NUMA
6142 /*
6143 * Unpopulated zones continue using the boot pagesets.
6144 * The numa stats for these pagesets need to be reset.
6145 * Otherwise, they will end up skewing the stats of
6146 * the nodes these zones are associated with.
6147 */
6148 for_each_possible_cpu(cpu) {
6149 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6150 memset(pzstats->vm_numa_event, 0,
6151 sizeof(pzstats->vm_numa_event));
6152 }
6153 #endif
6154
6155 for_each_online_pgdat(pgdat)
6156 pgdat->per_cpu_nodestats =
6157 alloc_percpu(struct per_cpu_nodestat);
6158 }
6159
6160 __meminit void zone_pcp_init(struct zone *zone)
6161 {
6162 /*
6163 * per cpu subsystem is not up at this point. The following code
6164 * relies on the ability of the linker to provide the
6165 * offset of a (static) per cpu variable into the per cpu area.
6166 */
6167 zone->per_cpu_pageset = &boot_pageset;
6168 zone->per_cpu_zonestats = &boot_zonestats;
6169 zone->pageset_high = BOOT_PAGESET_HIGH;
6170 zone->pageset_batch = BOOT_PAGESET_BATCH;
6171
6172 if (populated_zone(zone))
6173 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6174 zone->present_pages, zone_batchsize(zone));
6175 }
6176
6177 void adjust_managed_page_count(struct page *page, long count)
6178 {
6179 atomic_long_add(count, &page_zone(page)->managed_pages);
6180 totalram_pages_add(count);
6181 #ifdef CONFIG_HIGHMEM
6182 if (PageHighMem(page))
6183 totalhigh_pages_add(count);
6184 #endif
6185 }
6186 EXPORT_SYMBOL(adjust_managed_page_count);
6187
6188 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6189 {
6190 void *pos;
6191 unsigned long pages = 0;
6192
6193 start = (void *)PAGE_ALIGN((unsigned long)start);
6194 end = (void *)((unsigned long)end & PAGE_MASK);
6195 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6196 struct page *page = virt_to_page(pos);
6197 void *direct_map_addr;
6198
6199 /*
6200 * 'direct_map_addr' might be different from 'pos'
6201 * because some architectures' virt_to_page()
6202 * work with aliases. Getting the direct map
6203 * address ensures that we get a _writeable_
6204 * alias for the memset().
6205 */
6206 direct_map_addr = page_address(page);
6207 /*
6208 * Perform a kasan-unchecked memset() since this memory
6209 * has not been initialized.
6210 */
6211 direct_map_addr = kasan_reset_tag(direct_map_addr);
6212 if ((unsigned int)poison <= 0xFF)
6213 memset(direct_map_addr, poison, PAGE_SIZE);
6214
6215 free_reserved_page(page);
6216 }
6217
6218 if (pages && s)
6219 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6220
6221 return pages;
6222 }
6223
6224 static int page_alloc_cpu_dead(unsigned int cpu)
6225 {
6226 struct zone *zone;
6227
6228 lru_add_drain_cpu(cpu);
6229 mlock_drain_remote(cpu);
6230 drain_pages(cpu);
6231
6232 /*
6233 * Spill the event counters of the dead processor
6234 * into the current processors event counters.
6235 * This artificially elevates the count of the current
6236 * processor.
6237 */
6238 vm_events_fold_cpu(cpu);
6239
6240 /*
6241 * Zero the differential counters of the dead processor
6242 * so that the vm statistics are consistent.
6243 *
6244 * This is only okay since the processor is dead and cannot
6245 * race with what we are doing.
6246 */
6247 cpu_vm_stats_fold(cpu);
6248
6249 for_each_populated_zone(zone)
6250 zone_pcp_update(zone, 0);
6251
6252 return 0;
6253 }
6254
6255 static int page_alloc_cpu_online(unsigned int cpu)
6256 {
6257 struct zone *zone;
6258
6259 for_each_populated_zone(zone)
6260 zone_pcp_update(zone, 1);
6261 return 0;
6262 }
6263
6264 void __init page_alloc_init_cpuhp(void)
6265 {
6266 int ret;
6267
6268 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6269 "mm/page_alloc:pcp",
6270 page_alloc_cpu_online,
6271 page_alloc_cpu_dead);
6272 WARN_ON(ret < 0);
6273 }
6274
6275 /*
6276 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6277 * or min_free_kbytes changes.
6278 */
6279 static void calculate_totalreserve_pages(void)
6280 {
6281 struct pglist_data *pgdat;
6282 unsigned long reserve_pages = 0;
6283 enum zone_type i, j;
6284
6285 for_each_online_pgdat(pgdat) {
6286
6287 pgdat->totalreserve_pages = 0;
6288
6289 for (i = 0; i < MAX_NR_ZONES; i++) {
6290 struct zone *zone = pgdat->node_zones + i;
6291 long max = 0;
6292 unsigned long managed_pages = zone_managed_pages(zone);
6293
6294 /* Find valid and maximum lowmem_reserve in the zone */
6295 for (j = i; j < MAX_NR_ZONES; j++) {
6296 if (zone->lowmem_reserve[j] > max)
6297 max = zone->lowmem_reserve[j];
6298 }
6299
6300 /* we treat the high watermark as reserved pages. */
6301 max += high_wmark_pages(zone);
6302
6303 if (max > managed_pages)
6304 max = managed_pages;
6305
6306 pgdat->totalreserve_pages += max;
6307
6308 reserve_pages += max;
6309 }
6310 }
6311 totalreserve_pages = reserve_pages;
6312 }
6313
6314 /*
6315 * setup_per_zone_lowmem_reserve - called whenever
6316 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6317 * has a correct pages reserved value, so an adequate number of
6318 * pages are left in the zone after a successful __alloc_pages().
6319 */
6320 static void setup_per_zone_lowmem_reserve(void)
6321 {
6322 struct pglist_data *pgdat;
6323 enum zone_type i, j;
6324
6325 for_each_online_pgdat(pgdat) {
6326 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6327 struct zone *zone = &pgdat->node_zones[i];
6328 int ratio = sysctl_lowmem_reserve_ratio[i];
6329 bool clear = !ratio || !zone_managed_pages(zone);
6330 unsigned long managed_pages = 0;
6331
6332 for (j = i + 1; j < MAX_NR_ZONES; j++) {
6333 struct zone *upper_zone = &pgdat->node_zones[j];
6334
6335 managed_pages += zone_managed_pages(upper_zone);
6336
6337 if (clear)
6338 zone->lowmem_reserve[j] = 0;
6339 else
6340 zone->lowmem_reserve[j] = managed_pages / ratio;
6341 }
6342 }
6343 }
6344
6345 /* update totalreserve_pages */
6346 calculate_totalreserve_pages();
6347 }
6348
6349 static void __setup_per_zone_wmarks(void)
6350 {
6351 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6352 unsigned long lowmem_pages = 0;
6353 struct zone *zone;
6354 unsigned long flags;
6355
6356 /* Calculate total number of !ZONE_HIGHMEM pages */
6357 for_each_zone(zone) {
6358 if (!is_highmem(zone))
6359 lowmem_pages += zone_managed_pages(zone);
6360 }
6361
6362 for_each_zone(zone) {
6363 u64 tmp;
6364
6365 spin_lock_irqsave(&zone->lock, flags);
6366 tmp = (u64)pages_min * zone_managed_pages(zone);
6367 do_div(tmp, lowmem_pages);
6368 if (is_highmem(zone)) {
6369 /*
6370 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6371 * need highmem pages, so cap pages_min to a small
6372 * value here.
6373 *
6374 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6375 * deltas control async page reclaim, and so should
6376 * not be capped for highmem.
6377 */
6378 unsigned long min_pages;
6379
6380 min_pages = zone_managed_pages(zone) / 1024;
6381 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6382 zone->_watermark[WMARK_MIN] = min_pages;
6383 } else {
6384 /*
6385 * If it's a lowmem zone, reserve a number of pages
6386 * proportionate to the zone's size.
6387 */
6388 zone->_watermark[WMARK_MIN] = tmp;
6389 }
6390
6391 /*
6392 * Set the kswapd watermarks distance according to the
6393 * scale factor in proportion to available memory, but
6394 * ensure a minimum size on small systems.
6395 */
6396 tmp = max_t(u64, tmp >> 2,
6397 mult_frac(zone_managed_pages(zone),
6398 watermark_scale_factor, 10000));
6399
6400 zone->watermark_boost = 0;
6401 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6402 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6403 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6404
6405 spin_unlock_irqrestore(&zone->lock, flags);
6406 }
6407
6408 /* update totalreserve_pages */
6409 calculate_totalreserve_pages();
6410 }
6411
6412 /**
6413 * setup_per_zone_wmarks - called when min_free_kbytes changes
6414 * or when memory is hot-{added|removed}
6415 *
6416 * Ensures that the watermark[min,low,high] values for each zone are set
6417 * correctly with respect to min_free_kbytes.
6418 */
6419 void setup_per_zone_wmarks(void)
6420 {
6421 struct zone *zone;
6422 static DEFINE_SPINLOCK(lock);
6423
6424 spin_lock(&lock);
6425 __setup_per_zone_wmarks();
6426 spin_unlock(&lock);
6427
6428 /*
6429 * The watermark size have changed so update the pcpu batch
6430 * and high limits or the limits may be inappropriate.
6431 */
6432 for_each_zone(zone)
6433 zone_pcp_update(zone, 0);
6434 }
6435
6436 /*
6437 * Initialise min_free_kbytes.
6438 *
6439 * For small machines we want it small (128k min). For large machines
6440 * we want it large (256MB max). But it is not linear, because network
6441 * bandwidth does not increase linearly with machine size. We use
6442 *
6443 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6444 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6445 *
6446 * which yields
6447 *
6448 * 16MB: 512k
6449 * 32MB: 724k
6450 * 64MB: 1024k
6451 * 128MB: 1448k
6452 * 256MB: 2048k
6453 * 512MB: 2896k
6454 * 1024MB: 4096k
6455 * 2048MB: 5792k
6456 * 4096MB: 8192k
6457 * 8192MB: 11584k
6458 * 16384MB: 16384k
6459 */
6460 void calculate_min_free_kbytes(void)
6461 {
6462 unsigned long lowmem_kbytes;
6463 int new_min_free_kbytes;
6464
6465 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6466 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6467
6468 if (new_min_free_kbytes > user_min_free_kbytes)
6469 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6470 else
6471 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6472 new_min_free_kbytes, user_min_free_kbytes);
6473
6474 }
6475
6476 int __meminit init_per_zone_wmark_min(void)
6477 {
6478 calculate_min_free_kbytes();
6479 setup_per_zone_wmarks();
6480 refresh_zone_stat_thresholds();
6481 setup_per_zone_lowmem_reserve();
6482
6483 #ifdef CONFIG_NUMA
6484 setup_min_unmapped_ratio();
6485 setup_min_slab_ratio();
6486 #endif
6487
6488 khugepaged_min_free_kbytes_update();
6489
6490 return 0;
6491 }
6492 postcore_initcall(init_per_zone_wmark_min)
6493
6494 /*
6495 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6496 * that we can call two helper functions whenever min_free_kbytes
6497 * changes.
6498 */
6499 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6500 void *buffer, size_t *length, loff_t *ppos)
6501 {
6502 int rc;
6503
6504 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6505 if (rc)
6506 return rc;
6507
6508 if (write) {
6509 user_min_free_kbytes = min_free_kbytes;
6510 setup_per_zone_wmarks();
6511 }
6512 return 0;
6513 }
6514
6515 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6516 void *buffer, size_t *length, loff_t *ppos)
6517 {
6518 int rc;
6519
6520 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6521 if (rc)
6522 return rc;
6523
6524 if (write)
6525 setup_per_zone_wmarks();
6526
6527 return 0;
6528 }
6529
6530 #ifdef CONFIG_NUMA
6531 static void setup_min_unmapped_ratio(void)
6532 {
6533 pg_data_t *pgdat;
6534 struct zone *zone;
6535
6536 for_each_online_pgdat(pgdat)
6537 pgdat->min_unmapped_pages = 0;
6538
6539 for_each_zone(zone)
6540 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6541 sysctl_min_unmapped_ratio) / 100;
6542 }
6543
6544
6545 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6546 void *buffer, size_t *length, loff_t *ppos)
6547 {
6548 int rc;
6549
6550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6551 if (rc)
6552 return rc;
6553
6554 setup_min_unmapped_ratio();
6555
6556 return 0;
6557 }
6558
6559 static void setup_min_slab_ratio(void)
6560 {
6561 pg_data_t *pgdat;
6562 struct zone *zone;
6563
6564 for_each_online_pgdat(pgdat)
6565 pgdat->min_slab_pages = 0;
6566
6567 for_each_zone(zone)
6568 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6569 sysctl_min_slab_ratio) / 100;
6570 }
6571
6572 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6573 void *buffer, size_t *length, loff_t *ppos)
6574 {
6575 int rc;
6576
6577 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6578 if (rc)
6579 return rc;
6580
6581 setup_min_slab_ratio();
6582
6583 return 0;
6584 }
6585 #endif
6586
6587 /*
6588 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6589 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6590 * whenever sysctl_lowmem_reserve_ratio changes.
6591 *
6592 * The reserve ratio obviously has absolutely no relation with the
6593 * minimum watermarks. The lowmem reserve ratio can only make sense
6594 * if in function of the boot time zone sizes.
6595 */
6596 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6597 void *buffer, size_t *length, loff_t *ppos)
6598 {
6599 int i;
6600
6601 proc_dointvec_minmax(table, write, buffer, length, ppos);
6602
6603 for (i = 0; i < MAX_NR_ZONES; i++) {
6604 if (sysctl_lowmem_reserve_ratio[i] < 1)
6605 sysctl_lowmem_reserve_ratio[i] = 0;
6606 }
6607
6608 setup_per_zone_lowmem_reserve();
6609 return 0;
6610 }
6611
6612 /*
6613 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6614 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6615 * pagelist can have before it gets flushed back to buddy allocator.
6616 */
6617 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6618 int write, void *buffer, size_t *length, loff_t *ppos)
6619 {
6620 struct zone *zone;
6621 int old_percpu_pagelist_high_fraction;
6622 int ret;
6623
6624 mutex_lock(&pcp_batch_high_lock);
6625 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6626
6627 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6628 if (!write || ret < 0)
6629 goto out;
6630
6631 /* Sanity checking to avoid pcp imbalance */
6632 if (percpu_pagelist_high_fraction &&
6633 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6634 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6635 ret = -EINVAL;
6636 goto out;
6637 }
6638
6639 /* No change? */
6640 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6641 goto out;
6642
6643 for_each_populated_zone(zone)
6644 zone_set_pageset_high_and_batch(zone, 0);
6645 out:
6646 mutex_unlock(&pcp_batch_high_lock);
6647 return ret;
6648 }
6649
6650 #ifdef CONFIG_CONTIG_ALLOC
6651 #if defined(CONFIG_DYNAMIC_DEBUG) || \
6652 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
6653 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6654 static void alloc_contig_dump_pages(struct list_head *page_list)
6655 {
6656 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6657
6658 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6659 struct page *page;
6660
6661 dump_stack();
6662 list_for_each_entry(page, page_list, lru)
6663 dump_page(page, "migration failure");
6664 }
6665 }
6666 #else
6667 static inline void alloc_contig_dump_pages(struct list_head *page_list)
6668 {
6669 }
6670 #endif
6671
6672 /* [start, end) must belong to a single zone. */
6673 int __alloc_contig_migrate_range(struct compact_control *cc,
6674 unsigned long start, unsigned long end)
6675 {
6676 /* This function is based on compact_zone() from compaction.c. */
6677 unsigned int nr_reclaimed;
6678 unsigned long pfn = start;
6679 unsigned int tries = 0;
6680 int ret = 0;
6681 struct migration_target_control mtc = {
6682 .nid = zone_to_nid(cc->zone),
6683 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6684 };
6685
6686 lru_cache_disable();
6687
6688 while (pfn < end || !list_empty(&cc->migratepages)) {
6689 if (fatal_signal_pending(current)) {
6690 ret = -EINTR;
6691 break;
6692 }
6693
6694 if (list_empty(&cc->migratepages)) {
6695 cc->nr_migratepages = 0;
6696 ret = isolate_migratepages_range(cc, pfn, end);
6697 if (ret && ret != -EAGAIN)
6698 break;
6699 pfn = cc->migrate_pfn;
6700 tries = 0;
6701 } else if (++tries == 5) {
6702 ret = -EBUSY;
6703 break;
6704 }
6705
6706 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6707 &cc->migratepages);
6708 cc->nr_migratepages -= nr_reclaimed;
6709
6710 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6711 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6712
6713 /*
6714 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6715 * to retry again over this error, so do the same here.
6716 */
6717 if (ret == -ENOMEM)
6718 break;
6719 }
6720
6721 lru_cache_enable();
6722 if (ret < 0) {
6723 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6724 alloc_contig_dump_pages(&cc->migratepages);
6725 putback_movable_pages(&cc->migratepages);
6726 return ret;
6727 }
6728 return 0;
6729 }
6730
6731 /**
6732 * alloc_contig_range() -- tries to allocate given range of pages
6733 * @start: start PFN to allocate
6734 * @end: one-past-the-last PFN to allocate
6735 * @migratetype: migratetype of the underlying pageblocks (either
6736 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6737 * in range must have the same migratetype and it must
6738 * be either of the two.
6739 * @gfp_mask: GFP mask to use during compaction
6740 *
6741 * The PFN range does not have to be pageblock aligned. The PFN range must
6742 * belong to a single zone.
6743 *
6744 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6745 * pageblocks in the range. Once isolated, the pageblocks should not
6746 * be modified by others.
6747 *
6748 * Return: zero on success or negative error code. On success all
6749 * pages which PFN is in [start, end) are allocated for the caller and
6750 * need to be freed with free_contig_range().
6751 */
6752 int alloc_contig_range(unsigned long start, unsigned long end,
6753 unsigned migratetype, gfp_t gfp_mask)
6754 {
6755 unsigned long outer_start, outer_end;
6756 int order;
6757 int ret = 0;
6758
6759 struct compact_control cc = {
6760 .nr_migratepages = 0,
6761 .order = -1,
6762 .zone = page_zone(pfn_to_page(start)),
6763 .mode = MIGRATE_SYNC,
6764 .ignore_skip_hint = true,
6765 .no_set_skip_hint = true,
6766 .gfp_mask = current_gfp_context(gfp_mask),
6767 .alloc_contig = true,
6768 };
6769 INIT_LIST_HEAD(&cc.migratepages);
6770
6771 /*
6772 * What we do here is we mark all pageblocks in range as
6773 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6774 * have different sizes, and due to the way page allocator
6775 * work, start_isolate_page_range() has special handlings for this.
6776 *
6777 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6778 * migrate the pages from an unaligned range (ie. pages that
6779 * we are interested in). This will put all the pages in
6780 * range back to page allocator as MIGRATE_ISOLATE.
6781 *
6782 * When this is done, we take the pages in range from page
6783 * allocator removing them from the buddy system. This way
6784 * page allocator will never consider using them.
6785 *
6786 * This lets us mark the pageblocks back as
6787 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6788 * aligned range but not in the unaligned, original range are
6789 * put back to page allocator so that buddy can use them.
6790 */
6791
6792 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6793 if (ret)
6794 goto done;
6795
6796 drain_all_pages(cc.zone);
6797
6798 /*
6799 * In case of -EBUSY, we'd like to know which page causes problem.
6800 * So, just fall through. test_pages_isolated() has a tracepoint
6801 * which will report the busy page.
6802 *
6803 * It is possible that busy pages could become available before
6804 * the call to test_pages_isolated, and the range will actually be
6805 * allocated. So, if we fall through be sure to clear ret so that
6806 * -EBUSY is not accidentally used or returned to caller.
6807 */
6808 ret = __alloc_contig_migrate_range(&cc, start, end);
6809 if (ret && ret != -EBUSY)
6810 goto done;
6811 ret = 0;
6812
6813 /*
6814 * Pages from [start, end) are within a pageblock_nr_pages
6815 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6816 * more, all pages in [start, end) are free in page allocator.
6817 * What we are going to do is to allocate all pages from
6818 * [start, end) (that is remove them from page allocator).
6819 *
6820 * The only problem is that pages at the beginning and at the
6821 * end of interesting range may be not aligned with pages that
6822 * page allocator holds, ie. they can be part of higher order
6823 * pages. Because of this, we reserve the bigger range and
6824 * once this is done free the pages we are not interested in.
6825 *
6826 * We don't have to hold zone->lock here because the pages are
6827 * isolated thus they won't get removed from buddy.
6828 */
6829
6830 order = 0;
6831 outer_start = start;
6832 while (!PageBuddy(pfn_to_page(outer_start))) {
6833 if (++order > MAX_ORDER) {
6834 outer_start = start;
6835 break;
6836 }
6837 outer_start &= ~0UL << order;
6838 }
6839
6840 if (outer_start != start) {
6841 order = buddy_order(pfn_to_page(outer_start));
6842
6843 /*
6844 * outer_start page could be small order buddy page and
6845 * it doesn't include start page. Adjust outer_start
6846 * in this case to report failed page properly
6847 * on tracepoint in test_pages_isolated()
6848 */
6849 if (outer_start + (1UL << order) <= start)
6850 outer_start = start;
6851 }
6852
6853 /* Make sure the range is really isolated. */
6854 if (test_pages_isolated(outer_start, end, 0)) {
6855 ret = -EBUSY;
6856 goto done;
6857 }
6858
6859 /* Grab isolated pages from freelists. */
6860 outer_end = isolate_freepages_range(&cc, outer_start, end);
6861 if (!outer_end) {
6862 ret = -EBUSY;
6863 goto done;
6864 }
6865
6866 /* Free head and tail (if any) */
6867 if (start != outer_start)
6868 free_contig_range(outer_start, start - outer_start);
6869 if (end != outer_end)
6870 free_contig_range(end, outer_end - end);
6871
6872 done:
6873 undo_isolate_page_range(start, end, migratetype);
6874 return ret;
6875 }
6876 EXPORT_SYMBOL(alloc_contig_range);
6877
6878 static int __alloc_contig_pages(unsigned long start_pfn,
6879 unsigned long nr_pages, gfp_t gfp_mask)
6880 {
6881 unsigned long end_pfn = start_pfn + nr_pages;
6882
6883 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6884 gfp_mask);
6885 }
6886
6887 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6888 unsigned long nr_pages)
6889 {
6890 unsigned long i, end_pfn = start_pfn + nr_pages;
6891 struct page *page;
6892
6893 for (i = start_pfn; i < end_pfn; i++) {
6894 page = pfn_to_online_page(i);
6895 if (!page)
6896 return false;
6897
6898 if (page_zone(page) != z)
6899 return false;
6900
6901 if (PageReserved(page))
6902 return false;
6903
6904 if (PageHuge(page))
6905 return false;
6906 }
6907 return true;
6908 }
6909
6910 static bool zone_spans_last_pfn(const struct zone *zone,
6911 unsigned long start_pfn, unsigned long nr_pages)
6912 {
6913 unsigned long last_pfn = start_pfn + nr_pages - 1;
6914
6915 return zone_spans_pfn(zone, last_pfn);
6916 }
6917
6918 /**
6919 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6920 * @nr_pages: Number of contiguous pages to allocate
6921 * @gfp_mask: GFP mask to limit search and used during compaction
6922 * @nid: Target node
6923 * @nodemask: Mask for other possible nodes
6924 *
6925 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6926 * on an applicable zonelist to find a contiguous pfn range which can then be
6927 * tried for allocation with alloc_contig_range(). This routine is intended
6928 * for allocation requests which can not be fulfilled with the buddy allocator.
6929 *
6930 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6931 * power of two, then allocated range is also guaranteed to be aligned to same
6932 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6933 *
6934 * Allocated pages can be freed with free_contig_range() or by manually calling
6935 * __free_page() on each allocated page.
6936 *
6937 * Return: pointer to contiguous pages on success, or NULL if not successful.
6938 */
6939 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6940 int nid, nodemask_t *nodemask)
6941 {
6942 unsigned long ret, pfn, flags;
6943 struct zonelist *zonelist;
6944 struct zone *zone;
6945 struct zoneref *z;
6946
6947 zonelist = node_zonelist(nid, gfp_mask);
6948 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6949 gfp_zone(gfp_mask), nodemask) {
6950 spin_lock_irqsave(&zone->lock, flags);
6951
6952 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6953 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6954 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6955 /*
6956 * We release the zone lock here because
6957 * alloc_contig_range() will also lock the zone
6958 * at some point. If there's an allocation
6959 * spinning on this lock, it may win the race
6960 * and cause alloc_contig_range() to fail...
6961 */
6962 spin_unlock_irqrestore(&zone->lock, flags);
6963 ret = __alloc_contig_pages(pfn, nr_pages,
6964 gfp_mask);
6965 if (!ret)
6966 return pfn_to_page(pfn);
6967 spin_lock_irqsave(&zone->lock, flags);
6968 }
6969 pfn += nr_pages;
6970 }
6971 spin_unlock_irqrestore(&zone->lock, flags);
6972 }
6973 return NULL;
6974 }
6975 #endif /* CONFIG_CONTIG_ALLOC */
6976
6977 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6978 {
6979 unsigned long count = 0;
6980
6981 for (; nr_pages--; pfn++) {
6982 struct page *page = pfn_to_page(pfn);
6983
6984 count += page_count(page) != 1;
6985 __free_page(page);
6986 }
6987 WARN(count != 0, "%lu pages are still in use!\n", count);
6988 }
6989 EXPORT_SYMBOL(free_contig_range);
6990
6991 /*
6992 * Effectively disable pcplists for the zone by setting the high limit to 0
6993 * and draining all cpus. A concurrent page freeing on another CPU that's about
6994 * to put the page on pcplist will either finish before the drain and the page
6995 * will be drained, or observe the new high limit and skip the pcplist.
6996 *
6997 * Must be paired with a call to zone_pcp_enable().
6998 */
6999 void zone_pcp_disable(struct zone *zone)
7000 {
7001 mutex_lock(&pcp_batch_high_lock);
7002 __zone_set_pageset_high_and_batch(zone, 0, 1);
7003 __drain_all_pages(zone, true);
7004 }
7005
7006 void zone_pcp_enable(struct zone *zone)
7007 {
7008 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
7009 mutex_unlock(&pcp_batch_high_lock);
7010 }
7011
7012 void zone_pcp_reset(struct zone *zone)
7013 {
7014 int cpu;
7015 struct per_cpu_zonestat *pzstats;
7016
7017 if (zone->per_cpu_pageset != &boot_pageset) {
7018 for_each_online_cpu(cpu) {
7019 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7020 drain_zonestat(zone, pzstats);
7021 }
7022 free_percpu(zone->per_cpu_pageset);
7023 zone->per_cpu_pageset = &boot_pageset;
7024 if (zone->per_cpu_zonestats != &boot_zonestats) {
7025 free_percpu(zone->per_cpu_zonestats);
7026 zone->per_cpu_zonestats = &boot_zonestats;
7027 }
7028 }
7029 }
7030
7031 #ifdef CONFIG_MEMORY_HOTREMOVE
7032 /*
7033 * All pages in the range must be in a single zone, must not contain holes,
7034 * must span full sections, and must be isolated before calling this function.
7035 */
7036 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7037 {
7038 unsigned long pfn = start_pfn;
7039 struct page *page;
7040 struct zone *zone;
7041 unsigned int order;
7042 unsigned long flags;
7043
7044 offline_mem_sections(pfn, end_pfn);
7045 zone = page_zone(pfn_to_page(pfn));
7046 spin_lock_irqsave(&zone->lock, flags);
7047 while (pfn < end_pfn) {
7048 page = pfn_to_page(pfn);
7049 /*
7050 * The HWPoisoned page may be not in buddy system, and
7051 * page_count() is not 0.
7052 */
7053 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7054 pfn++;
7055 continue;
7056 }
7057 /*
7058 * At this point all remaining PageOffline() pages have a
7059 * reference count of 0 and can simply be skipped.
7060 */
7061 if (PageOffline(page)) {
7062 BUG_ON(page_count(page));
7063 BUG_ON(PageBuddy(page));
7064 pfn++;
7065 continue;
7066 }
7067
7068 BUG_ON(page_count(page));
7069 BUG_ON(!PageBuddy(page));
7070 order = buddy_order(page);
7071 del_page_from_free_list(page, zone, order);
7072 pfn += (1 << order);
7073 }
7074 spin_unlock_irqrestore(&zone->lock, flags);
7075 }
7076 #endif
7077
7078 /*
7079 * This function returns a stable result only if called under zone lock.
7080 */
7081 bool is_free_buddy_page(struct page *page)
7082 {
7083 unsigned long pfn = page_to_pfn(page);
7084 unsigned int order;
7085
7086 for (order = 0; order <= MAX_ORDER; order++) {
7087 struct page *page_head = page - (pfn & ((1 << order) - 1));
7088
7089 if (PageBuddy(page_head) &&
7090 buddy_order_unsafe(page_head) >= order)
7091 break;
7092 }
7093
7094 return order <= MAX_ORDER;
7095 }
7096 EXPORT_SYMBOL(is_free_buddy_page);
7097
7098 #ifdef CONFIG_MEMORY_FAILURE
7099 /*
7100 * Break down a higher-order page in sub-pages, and keep our target out of
7101 * buddy allocator.
7102 */
7103 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7104 struct page *target, int low, int high,
7105 int migratetype)
7106 {
7107 unsigned long size = 1 << high;
7108 struct page *current_buddy, *next_page;
7109
7110 while (high > low) {
7111 high--;
7112 size >>= 1;
7113
7114 if (target >= &page[size]) {
7115 next_page = page + size;
7116 current_buddy = page;
7117 } else {
7118 next_page = page;
7119 current_buddy = page + size;
7120 }
7121
7122 if (set_page_guard(zone, current_buddy, high, migratetype))
7123 continue;
7124
7125 if (current_buddy != target) {
7126 add_to_free_list(current_buddy, zone, high, migratetype);
7127 set_buddy_order(current_buddy, high);
7128 page = next_page;
7129 }
7130 }
7131 }
7132
7133 /*
7134 * Take a page that will be marked as poisoned off the buddy allocator.
7135 */
7136 bool take_page_off_buddy(struct page *page)
7137 {
7138 struct zone *zone = page_zone(page);
7139 unsigned long pfn = page_to_pfn(page);
7140 unsigned long flags;
7141 unsigned int order;
7142 bool ret = false;
7143
7144 spin_lock_irqsave(&zone->lock, flags);
7145 for (order = 0; order <= MAX_ORDER; order++) {
7146 struct page *page_head = page - (pfn & ((1 << order) - 1));
7147 int page_order = buddy_order(page_head);
7148
7149 if (PageBuddy(page_head) && page_order >= order) {
7150 unsigned long pfn_head = page_to_pfn(page_head);
7151 int migratetype = get_pfnblock_migratetype(page_head,
7152 pfn_head);
7153
7154 del_page_from_free_list(page_head, zone, page_order);
7155 break_down_buddy_pages(zone, page_head, page, 0,
7156 page_order, migratetype);
7157 SetPageHWPoisonTakenOff(page);
7158 if (!is_migrate_isolate(migratetype))
7159 __mod_zone_freepage_state(zone, -1, migratetype);
7160 ret = true;
7161 break;
7162 }
7163 if (page_count(page_head) > 0)
7164 break;
7165 }
7166 spin_unlock_irqrestore(&zone->lock, flags);
7167 return ret;
7168 }
7169
7170 /*
7171 * Cancel takeoff done by take_page_off_buddy().
7172 */
7173 bool put_page_back_buddy(struct page *page)
7174 {
7175 struct zone *zone = page_zone(page);
7176 unsigned long pfn = page_to_pfn(page);
7177 unsigned long flags;
7178 int migratetype = get_pfnblock_migratetype(page, pfn);
7179 bool ret = false;
7180
7181 spin_lock_irqsave(&zone->lock, flags);
7182 if (put_page_testzero(page)) {
7183 ClearPageHWPoisonTakenOff(page);
7184 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7185 if (TestClearPageHWPoison(page)) {
7186 ret = true;
7187 }
7188 }
7189 spin_unlock_irqrestore(&zone->lock, flags);
7190
7191 return ret;
7192 }
7193 #endif
7194
7195 #ifdef CONFIG_ZONE_DMA
7196 bool has_managed_dma(void)
7197 {
7198 struct pglist_data *pgdat;
7199
7200 for_each_online_pgdat(pgdat) {
7201 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7202
7203 if (managed_zone(zone))
7204 return true;
7205 }
7206 return false;
7207 }
7208 #endif /* CONFIG_ZONE_DMA */