]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/page_alloc.c
Merge tag 'pipe-nonblock-2023-05-06' of git://git.kernel.dk/linux
[thirdparty/linux.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/khugepaged.h>
76 #include <linux/delayacct.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 #include "swap.h"
84
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87
88 /* No special request */
89 #define FPI_NONE ((__force fpi_t)0)
90
91 /*
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
98 */
99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100
101 /*
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
105 *
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
109 * reporting).
110 */
111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
112
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
116
117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
118 /*
119 * On SMP, spin_trylock is sufficient protection.
120 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
121 */
122 #define pcp_trylock_prepare(flags) do { } while (0)
123 #define pcp_trylock_finish(flag) do { } while (0)
124 #else
125
126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
127 #define pcp_trylock_prepare(flags) local_irq_save(flags)
128 #define pcp_trylock_finish(flags) local_irq_restore(flags)
129 #endif
130
131 /*
132 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
133 * a migration causing the wrong PCP to be locked and remote memory being
134 * potentially allocated, pin the task to the CPU for the lookup+lock.
135 * preempt_disable is used on !RT because it is faster than migrate_disable.
136 * migrate_disable is used on RT because otherwise RT spinlock usage is
137 * interfered with and a high priority task cannot preempt the allocator.
138 */
139 #ifndef CONFIG_PREEMPT_RT
140 #define pcpu_task_pin() preempt_disable()
141 #define pcpu_task_unpin() preempt_enable()
142 #else
143 #define pcpu_task_pin() migrate_disable()
144 #define pcpu_task_unpin() migrate_enable()
145 #endif
146
147 /*
148 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
149 * Return value should be used with equivalent unlock helper.
150 */
151 #define pcpu_spin_lock(type, member, ptr) \
152 ({ \
153 type *_ret; \
154 pcpu_task_pin(); \
155 _ret = this_cpu_ptr(ptr); \
156 spin_lock(&_ret->member); \
157 _ret; \
158 })
159
160 #define pcpu_spin_trylock(type, member, ptr) \
161 ({ \
162 type *_ret; \
163 pcpu_task_pin(); \
164 _ret = this_cpu_ptr(ptr); \
165 if (!spin_trylock(&_ret->member)) { \
166 pcpu_task_unpin(); \
167 _ret = NULL; \
168 } \
169 _ret; \
170 })
171
172 #define pcpu_spin_unlock(member, ptr) \
173 ({ \
174 spin_unlock(&ptr->member); \
175 pcpu_task_unpin(); \
176 })
177
178 /* struct per_cpu_pages specific helpers. */
179 #define pcp_spin_lock(ptr) \
180 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
181
182 #define pcp_spin_trylock(ptr) \
183 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
184
185 #define pcp_spin_unlock(ptr) \
186 pcpu_spin_unlock(lock, ptr)
187
188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
189 DEFINE_PER_CPU(int, numa_node);
190 EXPORT_PER_CPU_SYMBOL(numa_node);
191 #endif
192
193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
194
195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
196 /*
197 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
198 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
199 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
200 * defined in <linux/topology.h>.
201 */
202 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
203 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
204 #endif
205
206 static DEFINE_MUTEX(pcpu_drain_mutex);
207
208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
209 volatile unsigned long latent_entropy __latent_entropy;
210 EXPORT_SYMBOL(latent_entropy);
211 #endif
212
213 /*
214 * Array of node states.
215 */
216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
217 [N_POSSIBLE] = NODE_MASK_ALL,
218 [N_ONLINE] = { { [0] = 1UL } },
219 #ifndef CONFIG_NUMA
220 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
221 #ifdef CONFIG_HIGHMEM
222 [N_HIGH_MEMORY] = { { [0] = 1UL } },
223 #endif
224 [N_MEMORY] = { { [0] = 1UL } },
225 [N_CPU] = { { [0] = 1UL } },
226 #endif /* NUMA */
227 };
228 EXPORT_SYMBOL(node_states);
229
230 atomic_long_t _totalram_pages __read_mostly;
231 EXPORT_SYMBOL(_totalram_pages);
232 unsigned long totalreserve_pages __read_mostly;
233 unsigned long totalcma_pages __read_mostly;
234
235 int percpu_pagelist_high_fraction;
236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
238 EXPORT_SYMBOL(init_on_alloc);
239
240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
241 EXPORT_SYMBOL(init_on_free);
242
243 /*
244 * A cached value of the page's pageblock's migratetype, used when the page is
245 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
246 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
247 * Also the migratetype set in the page does not necessarily match the pcplist
248 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
249 * other index - this ensures that it will be put on the correct CMA freelist.
250 */
251 static inline int get_pcppage_migratetype(struct page *page)
252 {
253 return page->index;
254 }
255
256 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
257 {
258 page->index = migratetype;
259 }
260
261 #ifdef CONFIG_PM_SLEEP
262 /*
263 * The following functions are used by the suspend/hibernate code to temporarily
264 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
265 * while devices are suspended. To avoid races with the suspend/hibernate code,
266 * they should always be called with system_transition_mutex held
267 * (gfp_allowed_mask also should only be modified with system_transition_mutex
268 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
269 * with that modification).
270 */
271
272 static gfp_t saved_gfp_mask;
273
274 void pm_restore_gfp_mask(void)
275 {
276 WARN_ON(!mutex_is_locked(&system_transition_mutex));
277 if (saved_gfp_mask) {
278 gfp_allowed_mask = saved_gfp_mask;
279 saved_gfp_mask = 0;
280 }
281 }
282
283 void pm_restrict_gfp_mask(void)
284 {
285 WARN_ON(!mutex_is_locked(&system_transition_mutex));
286 WARN_ON(saved_gfp_mask);
287 saved_gfp_mask = gfp_allowed_mask;
288 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
289 }
290
291 bool pm_suspended_storage(void)
292 {
293 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
294 return false;
295 return true;
296 }
297 #endif /* CONFIG_PM_SLEEP */
298
299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
300 unsigned int pageblock_order __read_mostly;
301 #endif
302
303 static void __free_pages_ok(struct page *page, unsigned int order,
304 fpi_t fpi_flags);
305
306 /*
307 * results with 256, 32 in the lowmem_reserve sysctl:
308 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
309 * 1G machine -> (16M dma, 784M normal, 224M high)
310 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
311 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
312 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
313 *
314 * TBD: should special case ZONE_DMA32 machines here - in those we normally
315 * don't need any ZONE_NORMAL reservation
316 */
317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
318 #ifdef CONFIG_ZONE_DMA
319 [ZONE_DMA] = 256,
320 #endif
321 #ifdef CONFIG_ZONE_DMA32
322 [ZONE_DMA32] = 256,
323 #endif
324 [ZONE_NORMAL] = 32,
325 #ifdef CONFIG_HIGHMEM
326 [ZONE_HIGHMEM] = 0,
327 #endif
328 [ZONE_MOVABLE] = 0,
329 };
330
331 char * const zone_names[MAX_NR_ZONES] = {
332 #ifdef CONFIG_ZONE_DMA
333 "DMA",
334 #endif
335 #ifdef CONFIG_ZONE_DMA32
336 "DMA32",
337 #endif
338 "Normal",
339 #ifdef CONFIG_HIGHMEM
340 "HighMem",
341 #endif
342 "Movable",
343 #ifdef CONFIG_ZONE_DEVICE
344 "Device",
345 #endif
346 };
347
348 const char * const migratetype_names[MIGRATE_TYPES] = {
349 "Unmovable",
350 "Movable",
351 "Reclaimable",
352 "HighAtomic",
353 #ifdef CONFIG_CMA
354 "CMA",
355 #endif
356 #ifdef CONFIG_MEMORY_ISOLATION
357 "Isolate",
358 #endif
359 };
360
361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
362 [NULL_COMPOUND_DTOR] = NULL,
363 [COMPOUND_PAGE_DTOR] = free_compound_page,
364 #ifdef CONFIG_HUGETLB_PAGE
365 [HUGETLB_PAGE_DTOR] = free_huge_page,
366 #endif
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
369 #endif
370 };
371
372 int min_free_kbytes = 1024;
373 int user_min_free_kbytes = -1;
374 int watermark_boost_factor __read_mostly = 15000;
375 int watermark_scale_factor = 10;
376
377 bool mirrored_kernelcore __initdata_memblock;
378
379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380 int movable_zone;
381 EXPORT_SYMBOL(movable_zone);
382
383 #if MAX_NUMNODES > 1
384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
385 unsigned int nr_online_nodes __read_mostly = 1;
386 EXPORT_SYMBOL(nr_node_ids);
387 EXPORT_SYMBOL(nr_online_nodes);
388 #endif
389
390 int page_group_by_mobility_disabled __read_mostly;
391
392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
393 /*
394 * During boot we initialize deferred pages on-demand, as needed, but once
395 * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 * and we can permanently disable that path.
397 */
398 DEFINE_STATIC_KEY_TRUE(deferred_pages);
399
400 static inline bool deferred_pages_enabled(void)
401 {
402 return static_branch_unlikely(&deferred_pages);
403 }
404
405 /*
406 * deferred_grow_zone() is __init, but it is called from
407 * get_page_from_freelist() during early boot until deferred_pages permanently
408 * disables this call. This is why we have refdata wrapper to avoid warning,
409 * and to ensure that the function body gets unloaded.
410 */
411 static bool __ref
412 _deferred_grow_zone(struct zone *zone, unsigned int order)
413 {
414 return deferred_grow_zone(zone, order);
415 }
416 #else
417 static inline bool deferred_pages_enabled(void)
418 {
419 return false;
420 }
421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
422
423 /* Return a pointer to the bitmap storing bits affecting a block of pages */
424 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
425 unsigned long pfn)
426 {
427 #ifdef CONFIG_SPARSEMEM
428 return section_to_usemap(__pfn_to_section(pfn));
429 #else
430 return page_zone(page)->pageblock_flags;
431 #endif /* CONFIG_SPARSEMEM */
432 }
433
434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
435 {
436 #ifdef CONFIG_SPARSEMEM
437 pfn &= (PAGES_PER_SECTION-1);
438 #else
439 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
440 #endif /* CONFIG_SPARSEMEM */
441 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
442 }
443
444 static __always_inline
445 unsigned long __get_pfnblock_flags_mask(const struct page *page,
446 unsigned long pfn,
447 unsigned long mask)
448 {
449 unsigned long *bitmap;
450 unsigned long bitidx, word_bitidx;
451 unsigned long word;
452
453 bitmap = get_pageblock_bitmap(page, pfn);
454 bitidx = pfn_to_bitidx(page, pfn);
455 word_bitidx = bitidx / BITS_PER_LONG;
456 bitidx &= (BITS_PER_LONG-1);
457 /*
458 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
459 * a consistent read of the memory array, so that results, even though
460 * racy, are not corrupted.
461 */
462 word = READ_ONCE(bitmap[word_bitidx]);
463 return (word >> bitidx) & mask;
464 }
465
466 /**
467 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
468 * @page: The page within the block of interest
469 * @pfn: The target page frame number
470 * @mask: mask of bits that the caller is interested in
471 *
472 * Return: pageblock_bits flags
473 */
474 unsigned long get_pfnblock_flags_mask(const struct page *page,
475 unsigned long pfn, unsigned long mask)
476 {
477 return __get_pfnblock_flags_mask(page, pfn, mask);
478 }
479
480 static __always_inline int get_pfnblock_migratetype(const struct page *page,
481 unsigned long pfn)
482 {
483 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
484 }
485
486 /**
487 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
488 * @page: The page within the block of interest
489 * @flags: The flags to set
490 * @pfn: The target page frame number
491 * @mask: mask of bits that the caller is interested in
492 */
493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
494 unsigned long pfn,
495 unsigned long mask)
496 {
497 unsigned long *bitmap;
498 unsigned long bitidx, word_bitidx;
499 unsigned long word;
500
501 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
502 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
503
504 bitmap = get_pageblock_bitmap(page, pfn);
505 bitidx = pfn_to_bitidx(page, pfn);
506 word_bitidx = bitidx / BITS_PER_LONG;
507 bitidx &= (BITS_PER_LONG-1);
508
509 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
510
511 mask <<= bitidx;
512 flags <<= bitidx;
513
514 word = READ_ONCE(bitmap[word_bitidx]);
515 do {
516 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
517 }
518
519 void set_pageblock_migratetype(struct page *page, int migratetype)
520 {
521 if (unlikely(page_group_by_mobility_disabled &&
522 migratetype < MIGRATE_PCPTYPES))
523 migratetype = MIGRATE_UNMOVABLE;
524
525 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
526 page_to_pfn(page), MIGRATETYPE_MASK);
527 }
528
529 #ifdef CONFIG_DEBUG_VM
530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
531 {
532 int ret = 0;
533 unsigned seq;
534 unsigned long pfn = page_to_pfn(page);
535 unsigned long sp, start_pfn;
536
537 do {
538 seq = zone_span_seqbegin(zone);
539 start_pfn = zone->zone_start_pfn;
540 sp = zone->spanned_pages;
541 if (!zone_spans_pfn(zone, pfn))
542 ret = 1;
543 } while (zone_span_seqretry(zone, seq));
544
545 if (ret)
546 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
547 pfn, zone_to_nid(zone), zone->name,
548 start_pfn, start_pfn + sp);
549
550 return ret;
551 }
552
553 static int page_is_consistent(struct zone *zone, struct page *page)
554 {
555 if (zone != page_zone(page))
556 return 0;
557
558 return 1;
559 }
560 /*
561 * Temporary debugging check for pages not lying within a given zone.
562 */
563 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
564 {
565 if (page_outside_zone_boundaries(zone, page))
566 return 1;
567 if (!page_is_consistent(zone, page))
568 return 1;
569
570 return 0;
571 }
572 #else
573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
574 {
575 return 0;
576 }
577 #endif
578
579 static void bad_page(struct page *page, const char *reason)
580 {
581 static unsigned long resume;
582 static unsigned long nr_shown;
583 static unsigned long nr_unshown;
584
585 /*
586 * Allow a burst of 60 reports, then keep quiet for that minute;
587 * or allow a steady drip of one report per second.
588 */
589 if (nr_shown == 60) {
590 if (time_before(jiffies, resume)) {
591 nr_unshown++;
592 goto out;
593 }
594 if (nr_unshown) {
595 pr_alert(
596 "BUG: Bad page state: %lu messages suppressed\n",
597 nr_unshown);
598 nr_unshown = 0;
599 }
600 nr_shown = 0;
601 }
602 if (nr_shown++ == 0)
603 resume = jiffies + 60 * HZ;
604
605 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
606 current->comm, page_to_pfn(page));
607 dump_page(page, reason);
608
609 print_modules();
610 dump_stack();
611 out:
612 /* Leave bad fields for debug, except PageBuddy could make trouble */
613 page_mapcount_reset(page); /* remove PageBuddy */
614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 }
616
617 static inline unsigned int order_to_pindex(int migratetype, int order)
618 {
619 int base = order;
620
621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
622 if (order > PAGE_ALLOC_COSTLY_ORDER) {
623 VM_BUG_ON(order != pageblock_order);
624 return NR_LOWORDER_PCP_LISTS;
625 }
626 #else
627 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
628 #endif
629
630 return (MIGRATE_PCPTYPES * base) + migratetype;
631 }
632
633 static inline int pindex_to_order(unsigned int pindex)
634 {
635 int order = pindex / MIGRATE_PCPTYPES;
636
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 if (pindex == NR_LOWORDER_PCP_LISTS)
639 order = pageblock_order;
640 #else
641 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
642 #endif
643
644 return order;
645 }
646
647 static inline bool pcp_allowed_order(unsigned int order)
648 {
649 if (order <= PAGE_ALLOC_COSTLY_ORDER)
650 return true;
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 if (order == pageblock_order)
653 return true;
654 #endif
655 return false;
656 }
657
658 static inline void free_the_page(struct page *page, unsigned int order)
659 {
660 if (pcp_allowed_order(order)) /* Via pcp? */
661 free_unref_page(page, order);
662 else
663 __free_pages_ok(page, order, FPI_NONE);
664 }
665
666 /*
667 * Higher-order pages are called "compound pages". They are structured thusly:
668 *
669 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
670 *
671 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
672 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
673 *
674 * The first tail page's ->compound_dtor holds the offset in array of compound
675 * page destructors. See compound_page_dtors.
676 *
677 * The first tail page's ->compound_order holds the order of allocation.
678 * This usage means that zero-order pages may not be compound.
679 */
680
681 void free_compound_page(struct page *page)
682 {
683 mem_cgroup_uncharge(page_folio(page));
684 free_the_page(page, compound_order(page));
685 }
686
687 void prep_compound_page(struct page *page, unsigned int order)
688 {
689 int i;
690 int nr_pages = 1 << order;
691
692 __SetPageHead(page);
693 for (i = 1; i < nr_pages; i++)
694 prep_compound_tail(page, i);
695
696 prep_compound_head(page, order);
697 }
698
699 void destroy_large_folio(struct folio *folio)
700 {
701 enum compound_dtor_id dtor = folio->_folio_dtor;
702
703 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
704 compound_page_dtors[dtor](&folio->page);
705 }
706
707 #ifdef CONFIG_DEBUG_PAGEALLOC
708 unsigned int _debug_guardpage_minorder;
709
710 bool _debug_pagealloc_enabled_early __read_mostly
711 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 EXPORT_SYMBOL(_debug_pagealloc_enabled);
715
716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717
718 static int __init early_debug_pagealloc(char *buf)
719 {
720 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 }
722 early_param("debug_pagealloc", early_debug_pagealloc);
723
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 unsigned long res;
727
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
730 return 0;
731 }
732 _debug_guardpage_minorder = res;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
740 {
741 if (!debug_guardpage_enabled())
742 return false;
743
744 if (order >= debug_guardpage_minorder())
745 return false;
746
747 __SetPageGuard(page);
748 INIT_LIST_HEAD(&page->buddy_list);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 if (!is_migrate_isolate(migratetype))
752 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753
754 return true;
755 }
756
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype)
759 {
760 if (!debug_guardpage_enabled())
761 return;
762
763 __ClearPageGuard(page);
764
765 set_page_private(page, 0);
766 if (!is_migrate_isolate(migratetype))
767 __mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 unsigned int order, int migratetype) {}
774 #endif
775
776 static inline void set_buddy_order(struct page *page, unsigned int order)
777 {
778 set_page_private(page, order);
779 __SetPageBuddy(page);
780 }
781
782 #ifdef CONFIG_COMPACTION
783 static inline struct capture_control *task_capc(struct zone *zone)
784 {
785 struct capture_control *capc = current->capture_control;
786
787 return unlikely(capc) &&
788 !(current->flags & PF_KTHREAD) &&
789 !capc->page &&
790 capc->cc->zone == zone ? capc : NULL;
791 }
792
793 static inline bool
794 compaction_capture(struct capture_control *capc, struct page *page,
795 int order, int migratetype)
796 {
797 if (!capc || order != capc->cc->order)
798 return false;
799
800 /* Do not accidentally pollute CMA or isolated regions*/
801 if (is_migrate_cma(migratetype) ||
802 is_migrate_isolate(migratetype))
803 return false;
804
805 /*
806 * Do not let lower order allocations pollute a movable pageblock.
807 * This might let an unmovable request use a reclaimable pageblock
808 * and vice-versa but no more than normal fallback logic which can
809 * have trouble finding a high-order free page.
810 */
811 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
812 return false;
813
814 capc->page = page;
815 return true;
816 }
817
818 #else
819 static inline struct capture_control *task_capc(struct zone *zone)
820 {
821 return NULL;
822 }
823
824 static inline bool
825 compaction_capture(struct capture_control *capc, struct page *page,
826 int order, int migratetype)
827 {
828 return false;
829 }
830 #endif /* CONFIG_COMPACTION */
831
832 /* Used for pages not on another list */
833 static inline void add_to_free_list(struct page *page, struct zone *zone,
834 unsigned int order, int migratetype)
835 {
836 struct free_area *area = &zone->free_area[order];
837
838 list_add(&page->buddy_list, &area->free_list[migratetype]);
839 area->nr_free++;
840 }
841
842 /* Used for pages not on another list */
843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
844 unsigned int order, int migratetype)
845 {
846 struct free_area *area = &zone->free_area[order];
847
848 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
849 area->nr_free++;
850 }
851
852 /*
853 * Used for pages which are on another list. Move the pages to the tail
854 * of the list - so the moved pages won't immediately be considered for
855 * allocation again (e.g., optimization for memory onlining).
856 */
857 static inline void move_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859 {
860 struct free_area *area = &zone->free_area[order];
861
862 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
863 }
864
865 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
866 unsigned int order)
867 {
868 /* clear reported state and update reported page count */
869 if (page_reported(page))
870 __ClearPageReported(page);
871
872 list_del(&page->buddy_list);
873 __ClearPageBuddy(page);
874 set_page_private(page, 0);
875 zone->free_area[order].nr_free--;
876 }
877
878 static inline struct page *get_page_from_free_area(struct free_area *area,
879 int migratetype)
880 {
881 return list_first_entry_or_null(&area->free_list[migratetype],
882 struct page, lru);
883 }
884
885 /*
886 * If this is not the largest possible page, check if the buddy
887 * of the next-highest order is free. If it is, it's possible
888 * that pages are being freed that will coalesce soon. In case,
889 * that is happening, add the free page to the tail of the list
890 * so it's less likely to be used soon and more likely to be merged
891 * as a higher order page
892 */
893 static inline bool
894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
895 struct page *page, unsigned int order)
896 {
897 unsigned long higher_page_pfn;
898 struct page *higher_page;
899
900 if (order >= MAX_ORDER - 1)
901 return false;
902
903 higher_page_pfn = buddy_pfn & pfn;
904 higher_page = page + (higher_page_pfn - pfn);
905
906 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
907 NULL) != NULL;
908 }
909
910 /*
911 * Freeing function for a buddy system allocator.
912 *
913 * The concept of a buddy system is to maintain direct-mapped table
914 * (containing bit values) for memory blocks of various "orders".
915 * The bottom level table contains the map for the smallest allocatable
916 * units of memory (here, pages), and each level above it describes
917 * pairs of units from the levels below, hence, "buddies".
918 * At a high level, all that happens here is marking the table entry
919 * at the bottom level available, and propagating the changes upward
920 * as necessary, plus some accounting needed to play nicely with other
921 * parts of the VM system.
922 * At each level, we keep a list of pages, which are heads of continuous
923 * free pages of length of (1 << order) and marked with PageBuddy.
924 * Page's order is recorded in page_private(page) field.
925 * So when we are allocating or freeing one, we can derive the state of the
926 * other. That is, if we allocate a small block, and both were
927 * free, the remainder of the region must be split into blocks.
928 * If a block is freed, and its buddy is also free, then this
929 * triggers coalescing into a block of larger size.
930 *
931 * -- nyc
932 */
933
934 static inline void __free_one_page(struct page *page,
935 unsigned long pfn,
936 struct zone *zone, unsigned int order,
937 int migratetype, fpi_t fpi_flags)
938 {
939 struct capture_control *capc = task_capc(zone);
940 unsigned long buddy_pfn = 0;
941 unsigned long combined_pfn;
942 struct page *buddy;
943 bool to_tail;
944
945 VM_BUG_ON(!zone_is_initialized(zone));
946 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
947
948 VM_BUG_ON(migratetype == -1);
949 if (likely(!is_migrate_isolate(migratetype)))
950 __mod_zone_freepage_state(zone, 1 << order, migratetype);
951
952 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
953 VM_BUG_ON_PAGE(bad_range(zone, page), page);
954
955 while (order < MAX_ORDER) {
956 if (compaction_capture(capc, page, order, migratetype)) {
957 __mod_zone_freepage_state(zone, -(1 << order),
958 migratetype);
959 return;
960 }
961
962 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
963 if (!buddy)
964 goto done_merging;
965
966 if (unlikely(order >= pageblock_order)) {
967 /*
968 * We want to prevent merge between freepages on pageblock
969 * without fallbacks and normal pageblock. Without this,
970 * pageblock isolation could cause incorrect freepage or CMA
971 * accounting or HIGHATOMIC accounting.
972 */
973 int buddy_mt = get_pageblock_migratetype(buddy);
974
975 if (migratetype != buddy_mt
976 && (!migratetype_is_mergeable(migratetype) ||
977 !migratetype_is_mergeable(buddy_mt)))
978 goto done_merging;
979 }
980
981 /*
982 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
983 * merge with it and move up one order.
984 */
985 if (page_is_guard(buddy))
986 clear_page_guard(zone, buddy, order, migratetype);
987 else
988 del_page_from_free_list(buddy, zone, order);
989 combined_pfn = buddy_pfn & pfn;
990 page = page + (combined_pfn - pfn);
991 pfn = combined_pfn;
992 order++;
993 }
994
995 done_merging:
996 set_buddy_order(page, order);
997
998 if (fpi_flags & FPI_TO_TAIL)
999 to_tail = true;
1000 else if (is_shuffle_order(order))
1001 to_tail = shuffle_pick_tail();
1002 else
1003 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1004
1005 if (to_tail)
1006 add_to_free_list_tail(page, zone, order, migratetype);
1007 else
1008 add_to_free_list(page, zone, order, migratetype);
1009
1010 /* Notify page reporting subsystem of freed page */
1011 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1012 page_reporting_notify_free(order);
1013 }
1014
1015 /**
1016 * split_free_page() -- split a free page at split_pfn_offset
1017 * @free_page: the original free page
1018 * @order: the order of the page
1019 * @split_pfn_offset: split offset within the page
1020 *
1021 * Return -ENOENT if the free page is changed, otherwise 0
1022 *
1023 * It is used when the free page crosses two pageblocks with different migratetypes
1024 * at split_pfn_offset within the page. The split free page will be put into
1025 * separate migratetype lists afterwards. Otherwise, the function achieves
1026 * nothing.
1027 */
1028 int split_free_page(struct page *free_page,
1029 unsigned int order, unsigned long split_pfn_offset)
1030 {
1031 struct zone *zone = page_zone(free_page);
1032 unsigned long free_page_pfn = page_to_pfn(free_page);
1033 unsigned long pfn;
1034 unsigned long flags;
1035 int free_page_order;
1036 int mt;
1037 int ret = 0;
1038
1039 if (split_pfn_offset == 0)
1040 return ret;
1041
1042 spin_lock_irqsave(&zone->lock, flags);
1043
1044 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1045 ret = -ENOENT;
1046 goto out;
1047 }
1048
1049 mt = get_pageblock_migratetype(free_page);
1050 if (likely(!is_migrate_isolate(mt)))
1051 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1052
1053 del_page_from_free_list(free_page, zone, order);
1054 for (pfn = free_page_pfn;
1055 pfn < free_page_pfn + (1UL << order);) {
1056 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1057
1058 free_page_order = min_t(unsigned int,
1059 pfn ? __ffs(pfn) : order,
1060 __fls(split_pfn_offset));
1061 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1062 mt, FPI_NONE);
1063 pfn += 1UL << free_page_order;
1064 split_pfn_offset -= (1UL << free_page_order);
1065 /* we have done the first part, now switch to second part */
1066 if (split_pfn_offset == 0)
1067 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1068 }
1069 out:
1070 spin_unlock_irqrestore(&zone->lock, flags);
1071 return ret;
1072 }
1073 /*
1074 * A bad page could be due to a number of fields. Instead of multiple branches,
1075 * try and check multiple fields with one check. The caller must do a detailed
1076 * check if necessary.
1077 */
1078 static inline bool page_expected_state(struct page *page,
1079 unsigned long check_flags)
1080 {
1081 if (unlikely(atomic_read(&page->_mapcount) != -1))
1082 return false;
1083
1084 if (unlikely((unsigned long)page->mapping |
1085 page_ref_count(page) |
1086 #ifdef CONFIG_MEMCG
1087 page->memcg_data |
1088 #endif
1089 (page->flags & check_flags)))
1090 return false;
1091
1092 return true;
1093 }
1094
1095 static const char *page_bad_reason(struct page *page, unsigned long flags)
1096 {
1097 const char *bad_reason = NULL;
1098
1099 if (unlikely(atomic_read(&page->_mapcount) != -1))
1100 bad_reason = "nonzero mapcount";
1101 if (unlikely(page->mapping != NULL))
1102 bad_reason = "non-NULL mapping";
1103 if (unlikely(page_ref_count(page) != 0))
1104 bad_reason = "nonzero _refcount";
1105 if (unlikely(page->flags & flags)) {
1106 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1107 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1108 else
1109 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1110 }
1111 #ifdef CONFIG_MEMCG
1112 if (unlikely(page->memcg_data))
1113 bad_reason = "page still charged to cgroup";
1114 #endif
1115 return bad_reason;
1116 }
1117
1118 static void free_page_is_bad_report(struct page *page)
1119 {
1120 bad_page(page,
1121 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 }
1123
1124 static inline bool free_page_is_bad(struct page *page)
1125 {
1126 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1127 return false;
1128
1129 /* Something has gone sideways, find it */
1130 free_page_is_bad_report(page);
1131 return true;
1132 }
1133
1134 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1135 {
1136 struct folio *folio = (struct folio *)head_page;
1137 int ret = 1;
1138
1139 /*
1140 * We rely page->lru.next never has bit 0 set, unless the page
1141 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1142 */
1143 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1144
1145 if (!static_branch_unlikely(&check_pages_enabled)) {
1146 ret = 0;
1147 goto out;
1148 }
1149 switch (page - head_page) {
1150 case 1:
1151 /* the first tail page: these may be in place of ->mapping */
1152 if (unlikely(folio_entire_mapcount(folio))) {
1153 bad_page(page, "nonzero entire_mapcount");
1154 goto out;
1155 }
1156 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1157 bad_page(page, "nonzero nr_pages_mapped");
1158 goto out;
1159 }
1160 if (unlikely(atomic_read(&folio->_pincount))) {
1161 bad_page(page, "nonzero pincount");
1162 goto out;
1163 }
1164 break;
1165 case 2:
1166 /*
1167 * the second tail page: ->mapping is
1168 * deferred_list.next -- ignore value.
1169 */
1170 break;
1171 default:
1172 if (page->mapping != TAIL_MAPPING) {
1173 bad_page(page, "corrupted mapping in tail page");
1174 goto out;
1175 }
1176 break;
1177 }
1178 if (unlikely(!PageTail(page))) {
1179 bad_page(page, "PageTail not set");
1180 goto out;
1181 }
1182 if (unlikely(compound_head(page) != head_page)) {
1183 bad_page(page, "compound_head not consistent");
1184 goto out;
1185 }
1186 ret = 0;
1187 out:
1188 page->mapping = NULL;
1189 clear_compound_head(page);
1190 return ret;
1191 }
1192
1193 /*
1194 * Skip KASAN memory poisoning when either:
1195 *
1196 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1197 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1198 * using page tags instead (see below).
1199 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1200 * that error detection is disabled for accesses via the page address.
1201 *
1202 * Pages will have match-all tags in the following circumstances:
1203 *
1204 * 1. Pages are being initialized for the first time, including during deferred
1205 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1206 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1207 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1208 * 3. The allocation was excluded from being checked due to sampling,
1209 * see the call to kasan_unpoison_pages.
1210 *
1211 * Poisoning pages during deferred memory init will greatly lengthen the
1212 * process and cause problem in large memory systems as the deferred pages
1213 * initialization is done with interrupt disabled.
1214 *
1215 * Assuming that there will be no reference to those newly initialized
1216 * pages before they are ever allocated, this should have no effect on
1217 * KASAN memory tracking as the poison will be properly inserted at page
1218 * allocation time. The only corner case is when pages are allocated by
1219 * on-demand allocation and then freed again before the deferred pages
1220 * initialization is done, but this is not likely to happen.
1221 */
1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1223 {
1224 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1225 return deferred_pages_enabled();
1226
1227 return page_kasan_tag(page) == 0xff;
1228 }
1229
1230 static void kernel_init_pages(struct page *page, int numpages)
1231 {
1232 int i;
1233
1234 /* s390's use of memset() could override KASAN redzones. */
1235 kasan_disable_current();
1236 for (i = 0; i < numpages; i++)
1237 clear_highpage_kasan_tagged(page + i);
1238 kasan_enable_current();
1239 }
1240
1241 static __always_inline bool free_pages_prepare(struct page *page,
1242 unsigned int order, fpi_t fpi_flags)
1243 {
1244 int bad = 0;
1245 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1246 bool init = want_init_on_free();
1247
1248 VM_BUG_ON_PAGE(PageTail(page), page);
1249
1250 trace_mm_page_free(page, order);
1251 kmsan_free_page(page, order);
1252
1253 if (unlikely(PageHWPoison(page)) && !order) {
1254 /*
1255 * Do not let hwpoison pages hit pcplists/buddy
1256 * Untie memcg state and reset page's owner
1257 */
1258 if (memcg_kmem_online() && PageMemcgKmem(page))
1259 __memcg_kmem_uncharge_page(page, order);
1260 reset_page_owner(page, order);
1261 page_table_check_free(page, order);
1262 return false;
1263 }
1264
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274
1275 if (compound)
1276 ClearPageHasHWPoisoned(page);
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_page_prepare(page, page + i);
1280 if (is_check_pages_enabled()) {
1281 if (free_page_is_bad(page + i)) {
1282 bad++;
1283 continue;
1284 }
1285 }
1286 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1287 }
1288 }
1289 if (PageMappingFlags(page))
1290 page->mapping = NULL;
1291 if (memcg_kmem_online() && PageMemcgKmem(page))
1292 __memcg_kmem_uncharge_page(page, order);
1293 if (is_check_pages_enabled()) {
1294 if (free_page_is_bad(page))
1295 bad++;
1296 if (bad)
1297 return false;
1298 }
1299
1300 page_cpupid_reset_last(page);
1301 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1302 reset_page_owner(page, order);
1303 page_table_check_free(page, order);
1304
1305 if (!PageHighMem(page)) {
1306 debug_check_no_locks_freed(page_address(page),
1307 PAGE_SIZE << order);
1308 debug_check_no_obj_freed(page_address(page),
1309 PAGE_SIZE << order);
1310 }
1311
1312 kernel_poison_pages(page, 1 << order);
1313
1314 /*
1315 * As memory initialization might be integrated into KASAN,
1316 * KASAN poisoning and memory initialization code must be
1317 * kept together to avoid discrepancies in behavior.
1318 *
1319 * With hardware tag-based KASAN, memory tags must be set before the
1320 * page becomes unavailable via debug_pagealloc or arch_free_page.
1321 */
1322 if (!skip_kasan_poison) {
1323 kasan_poison_pages(page, order, init);
1324
1325 /* Memory is already initialized if KASAN did it internally. */
1326 if (kasan_has_integrated_init())
1327 init = false;
1328 }
1329 if (init)
1330 kernel_init_pages(page, 1 << order);
1331
1332 /*
1333 * arch_free_page() can make the page's contents inaccessible. s390
1334 * does this. So nothing which can access the page's contents should
1335 * happen after this.
1336 */
1337 arch_free_page(page, order);
1338
1339 debug_pagealloc_unmap_pages(page, 1 << order);
1340
1341 return true;
1342 }
1343
1344 /*
1345 * Frees a number of pages from the PCP lists
1346 * Assumes all pages on list are in same zone.
1347 * count is the number of pages to free.
1348 */
1349 static void free_pcppages_bulk(struct zone *zone, int count,
1350 struct per_cpu_pages *pcp,
1351 int pindex)
1352 {
1353 unsigned long flags;
1354 int min_pindex = 0;
1355 int max_pindex = NR_PCP_LISTS - 1;
1356 unsigned int order;
1357 bool isolated_pageblocks;
1358 struct page *page;
1359
1360 /*
1361 * Ensure proper count is passed which otherwise would stuck in the
1362 * below while (list_empty(list)) loop.
1363 */
1364 count = min(pcp->count, count);
1365
1366 /* Ensure requested pindex is drained first. */
1367 pindex = pindex - 1;
1368
1369 spin_lock_irqsave(&zone->lock, flags);
1370 isolated_pageblocks = has_isolate_pageblock(zone);
1371
1372 while (count > 0) {
1373 struct list_head *list;
1374 int nr_pages;
1375
1376 /* Remove pages from lists in a round-robin fashion. */
1377 do {
1378 if (++pindex > max_pindex)
1379 pindex = min_pindex;
1380 list = &pcp->lists[pindex];
1381 if (!list_empty(list))
1382 break;
1383
1384 if (pindex == max_pindex)
1385 max_pindex--;
1386 if (pindex == min_pindex)
1387 min_pindex++;
1388 } while (1);
1389
1390 order = pindex_to_order(pindex);
1391 nr_pages = 1 << order;
1392 do {
1393 int mt;
1394
1395 page = list_last_entry(list, struct page, pcp_list);
1396 mt = get_pcppage_migratetype(page);
1397
1398 /* must delete to avoid corrupting pcp list */
1399 list_del(&page->pcp_list);
1400 count -= nr_pages;
1401 pcp->count -= nr_pages;
1402
1403 /* MIGRATE_ISOLATE page should not go to pcplists */
1404 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1405 /* Pageblock could have been isolated meanwhile */
1406 if (unlikely(isolated_pageblocks))
1407 mt = get_pageblock_migratetype(page);
1408
1409 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1410 trace_mm_page_pcpu_drain(page, order, mt);
1411 } while (count > 0 && !list_empty(list));
1412 }
1413
1414 spin_unlock_irqrestore(&zone->lock, flags);
1415 }
1416
1417 static void free_one_page(struct zone *zone,
1418 struct page *page, unsigned long pfn,
1419 unsigned int order,
1420 int migratetype, fpi_t fpi_flags)
1421 {
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&zone->lock, flags);
1425 if (unlikely(has_isolate_pageblock(zone) ||
1426 is_migrate_isolate(migratetype))) {
1427 migratetype = get_pfnblock_migratetype(page, pfn);
1428 }
1429 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1430 spin_unlock_irqrestore(&zone->lock, flags);
1431 }
1432
1433 static void __free_pages_ok(struct page *page, unsigned int order,
1434 fpi_t fpi_flags)
1435 {
1436 unsigned long flags;
1437 int migratetype;
1438 unsigned long pfn = page_to_pfn(page);
1439 struct zone *zone = page_zone(page);
1440
1441 if (!free_pages_prepare(page, order, fpi_flags))
1442 return;
1443
1444 /*
1445 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1446 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1447 * This will reduce the lock holding time.
1448 */
1449 migratetype = get_pfnblock_migratetype(page, pfn);
1450
1451 spin_lock_irqsave(&zone->lock, flags);
1452 if (unlikely(has_isolate_pageblock(zone) ||
1453 is_migrate_isolate(migratetype))) {
1454 migratetype = get_pfnblock_migratetype(page, pfn);
1455 }
1456 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1457 spin_unlock_irqrestore(&zone->lock, flags);
1458
1459 __count_vm_events(PGFREE, 1 << order);
1460 }
1461
1462 void __free_pages_core(struct page *page, unsigned int order)
1463 {
1464 unsigned int nr_pages = 1 << order;
1465 struct page *p = page;
1466 unsigned int loop;
1467
1468 /*
1469 * When initializing the memmap, __init_single_page() sets the refcount
1470 * of all pages to 1 ("allocated"/"not free"). We have to set the
1471 * refcount of all involved pages to 0.
1472 */
1473 prefetchw(p);
1474 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1475 prefetchw(p + 1);
1476 __ClearPageReserved(p);
1477 set_page_count(p, 0);
1478 }
1479 __ClearPageReserved(p);
1480 set_page_count(p, 0);
1481
1482 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1483
1484 /*
1485 * Bypass PCP and place fresh pages right to the tail, primarily
1486 * relevant for memory onlining.
1487 */
1488 __free_pages_ok(page, order, FPI_TO_TAIL);
1489 }
1490
1491 /*
1492 * Check that the whole (or subset of) a pageblock given by the interval of
1493 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494 * with the migration of free compaction scanner.
1495 *
1496 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1497 *
1498 * It's possible on some configurations to have a setup like node0 node1 node0
1499 * i.e. it's possible that all pages within a zones range of pages do not
1500 * belong to a single zone. We assume that a border between node0 and node1
1501 * can occur within a single pageblock, but not a node0 node1 node0
1502 * interleaving within a single pageblock. It is therefore sufficient to check
1503 * the first and last page of a pageblock and avoid checking each individual
1504 * page in a pageblock.
1505 *
1506 * Note: the function may return non-NULL struct page even for a page block
1507 * which contains a memory hole (i.e. there is no physical memory for a subset
1508 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1509 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1510 * even though the start pfn is online and valid. This should be safe most of
1511 * the time because struct pages are still initialized via init_unavailable_range()
1512 * and pfn walkers shouldn't touch any physical memory range for which they do
1513 * not recognize any specific metadata in struct pages.
1514 */
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1517 {
1518 struct page *start_page;
1519 struct page *end_page;
1520
1521 /* end_pfn is one past the range we are checking */
1522 end_pfn--;
1523
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 return NULL;
1526
1527 start_page = pfn_to_online_page(start_pfn);
1528 if (!start_page)
1529 return NULL;
1530
1531 if (page_zone(start_page) != zone)
1532 return NULL;
1533
1534 end_page = pfn_to_page(end_pfn);
1535
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1538 return NULL;
1539
1540 return start_page;
1541 }
1542
1543 void set_zone_contiguous(struct zone *zone)
1544 {
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1547
1548 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1552
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1557 return;
1558 cond_resched();
1559 }
1560
1561 /* We confirm that there is no hole */
1562 zone->contiguous = true;
1563 }
1564
1565 void clear_zone_contiguous(struct zone *zone)
1566 {
1567 zone->contiguous = false;
1568 }
1569
1570 /*
1571 * The order of subdivision here is critical for the IO subsystem.
1572 * Please do not alter this order without good reasons and regression
1573 * testing. Specifically, as large blocks of memory are subdivided,
1574 * the order in which smaller blocks are delivered depends on the order
1575 * they're subdivided in this function. This is the primary factor
1576 * influencing the order in which pages are delivered to the IO
1577 * subsystem according to empirical testing, and this is also justified
1578 * by considering the behavior of a buddy system containing a single
1579 * large block of memory acted on by a series of small allocations.
1580 * This behavior is a critical factor in sglist merging's success.
1581 *
1582 * -- nyc
1583 */
1584 static inline void expand(struct zone *zone, struct page *page,
1585 int low, int high, int migratetype)
1586 {
1587 unsigned long size = 1 << high;
1588
1589 while (high > low) {
1590 high--;
1591 size >>= 1;
1592 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1593
1594 /*
1595 * Mark as guard pages (or page), that will allow to
1596 * merge back to allocator when buddy will be freed.
1597 * Corresponding page table entries will not be touched,
1598 * pages will stay not present in virtual address space
1599 */
1600 if (set_page_guard(zone, &page[size], high, migratetype))
1601 continue;
1602
1603 add_to_free_list(&page[size], zone, high, migratetype);
1604 set_buddy_order(&page[size], high);
1605 }
1606 }
1607
1608 static void check_new_page_bad(struct page *page)
1609 {
1610 if (unlikely(page->flags & __PG_HWPOISON)) {
1611 /* Don't complain about hwpoisoned pages */
1612 page_mapcount_reset(page); /* remove PageBuddy */
1613 return;
1614 }
1615
1616 bad_page(page,
1617 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1618 }
1619
1620 /*
1621 * This page is about to be returned from the page allocator
1622 */
1623 static int check_new_page(struct page *page)
1624 {
1625 if (likely(page_expected_state(page,
1626 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1627 return 0;
1628
1629 check_new_page_bad(page);
1630 return 1;
1631 }
1632
1633 static inline bool check_new_pages(struct page *page, unsigned int order)
1634 {
1635 if (is_check_pages_enabled()) {
1636 for (int i = 0; i < (1 << order); i++) {
1637 struct page *p = page + i;
1638
1639 if (check_new_page(p))
1640 return true;
1641 }
1642 }
1643
1644 return false;
1645 }
1646
1647 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1648 {
1649 /* Don't skip if a software KASAN mode is enabled. */
1650 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1651 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1652 return false;
1653
1654 /* Skip, if hardware tag-based KASAN is not enabled. */
1655 if (!kasan_hw_tags_enabled())
1656 return true;
1657
1658 /*
1659 * With hardware tag-based KASAN enabled, skip if this has been
1660 * requested via __GFP_SKIP_KASAN.
1661 */
1662 return flags & __GFP_SKIP_KASAN;
1663 }
1664
1665 static inline bool should_skip_init(gfp_t flags)
1666 {
1667 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1668 if (!kasan_hw_tags_enabled())
1669 return false;
1670
1671 /* For hardware tag-based KASAN, skip if requested. */
1672 return (flags & __GFP_SKIP_ZERO);
1673 }
1674
1675 inline void post_alloc_hook(struct page *page, unsigned int order,
1676 gfp_t gfp_flags)
1677 {
1678 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1679 !should_skip_init(gfp_flags);
1680 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1681 int i;
1682
1683 set_page_private(page, 0);
1684 set_page_refcounted(page);
1685
1686 arch_alloc_page(page, order);
1687 debug_pagealloc_map_pages(page, 1 << order);
1688
1689 /*
1690 * Page unpoisoning must happen before memory initialization.
1691 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1692 * allocations and the page unpoisoning code will complain.
1693 */
1694 kernel_unpoison_pages(page, 1 << order);
1695
1696 /*
1697 * As memory initialization might be integrated into KASAN,
1698 * KASAN unpoisoning and memory initializion code must be
1699 * kept together to avoid discrepancies in behavior.
1700 */
1701
1702 /*
1703 * If memory tags should be zeroed
1704 * (which happens only when memory should be initialized as well).
1705 */
1706 if (zero_tags) {
1707 /* Initialize both memory and memory tags. */
1708 for (i = 0; i != 1 << order; ++i)
1709 tag_clear_highpage(page + i);
1710
1711 /* Take note that memory was initialized by the loop above. */
1712 init = false;
1713 }
1714 if (!should_skip_kasan_unpoison(gfp_flags) &&
1715 kasan_unpoison_pages(page, order, init)) {
1716 /* Take note that memory was initialized by KASAN. */
1717 if (kasan_has_integrated_init())
1718 init = false;
1719 } else {
1720 /*
1721 * If memory tags have not been set by KASAN, reset the page
1722 * tags to ensure page_address() dereferencing does not fault.
1723 */
1724 for (i = 0; i != 1 << order; ++i)
1725 page_kasan_tag_reset(page + i);
1726 }
1727 /* If memory is still not initialized, initialize it now. */
1728 if (init)
1729 kernel_init_pages(page, 1 << order);
1730
1731 set_page_owner(page, order, gfp_flags);
1732 page_table_check_alloc(page, order);
1733 }
1734
1735 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1736 unsigned int alloc_flags)
1737 {
1738 post_alloc_hook(page, order, gfp_flags);
1739
1740 if (order && (gfp_flags & __GFP_COMP))
1741 prep_compound_page(page, order);
1742
1743 /*
1744 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1745 * allocate the page. The expectation is that the caller is taking
1746 * steps that will free more memory. The caller should avoid the page
1747 * being used for !PFMEMALLOC purposes.
1748 */
1749 if (alloc_flags & ALLOC_NO_WATERMARKS)
1750 set_page_pfmemalloc(page);
1751 else
1752 clear_page_pfmemalloc(page);
1753 }
1754
1755 /*
1756 * Go through the free lists for the given migratetype and remove
1757 * the smallest available page from the freelists
1758 */
1759 static __always_inline
1760 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1761 int migratetype)
1762 {
1763 unsigned int current_order;
1764 struct free_area *area;
1765 struct page *page;
1766
1767 /* Find a page of the appropriate size in the preferred list */
1768 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1769 area = &(zone->free_area[current_order]);
1770 page = get_page_from_free_area(area, migratetype);
1771 if (!page)
1772 continue;
1773 del_page_from_free_list(page, zone, current_order);
1774 expand(zone, page, order, current_order, migratetype);
1775 set_pcppage_migratetype(page, migratetype);
1776 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1777 pcp_allowed_order(order) &&
1778 migratetype < MIGRATE_PCPTYPES);
1779 return page;
1780 }
1781
1782 return NULL;
1783 }
1784
1785
1786 /*
1787 * This array describes the order lists are fallen back to when
1788 * the free lists for the desirable migrate type are depleted
1789 *
1790 * The other migratetypes do not have fallbacks.
1791 */
1792 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1793 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1794 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1795 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1796 };
1797
1798 #ifdef CONFIG_CMA
1799 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1800 unsigned int order)
1801 {
1802 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1803 }
1804 #else
1805 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1806 unsigned int order) { return NULL; }
1807 #endif
1808
1809 /*
1810 * Move the free pages in a range to the freelist tail of the requested type.
1811 * Note that start_page and end_pages are not aligned on a pageblock
1812 * boundary. If alignment is required, use move_freepages_block()
1813 */
1814 static int move_freepages(struct zone *zone,
1815 unsigned long start_pfn, unsigned long end_pfn,
1816 int migratetype, int *num_movable)
1817 {
1818 struct page *page;
1819 unsigned long pfn;
1820 unsigned int order;
1821 int pages_moved = 0;
1822
1823 for (pfn = start_pfn; pfn <= end_pfn;) {
1824 page = pfn_to_page(pfn);
1825 if (!PageBuddy(page)) {
1826 /*
1827 * We assume that pages that could be isolated for
1828 * migration are movable. But we don't actually try
1829 * isolating, as that would be expensive.
1830 */
1831 if (num_movable &&
1832 (PageLRU(page) || __PageMovable(page)))
1833 (*num_movable)++;
1834 pfn++;
1835 continue;
1836 }
1837
1838 /* Make sure we are not inadvertently changing nodes */
1839 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1840 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1841
1842 order = buddy_order(page);
1843 move_to_free_list(page, zone, order, migratetype);
1844 pfn += 1 << order;
1845 pages_moved += 1 << order;
1846 }
1847
1848 return pages_moved;
1849 }
1850
1851 int move_freepages_block(struct zone *zone, struct page *page,
1852 int migratetype, int *num_movable)
1853 {
1854 unsigned long start_pfn, end_pfn, pfn;
1855
1856 if (num_movable)
1857 *num_movable = 0;
1858
1859 pfn = page_to_pfn(page);
1860 start_pfn = pageblock_start_pfn(pfn);
1861 end_pfn = pageblock_end_pfn(pfn) - 1;
1862
1863 /* Do not cross zone boundaries */
1864 if (!zone_spans_pfn(zone, start_pfn))
1865 start_pfn = pfn;
1866 if (!zone_spans_pfn(zone, end_pfn))
1867 return 0;
1868
1869 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1870 num_movable);
1871 }
1872
1873 static void change_pageblock_range(struct page *pageblock_page,
1874 int start_order, int migratetype)
1875 {
1876 int nr_pageblocks = 1 << (start_order - pageblock_order);
1877
1878 while (nr_pageblocks--) {
1879 set_pageblock_migratetype(pageblock_page, migratetype);
1880 pageblock_page += pageblock_nr_pages;
1881 }
1882 }
1883
1884 /*
1885 * When we are falling back to another migratetype during allocation, try to
1886 * steal extra free pages from the same pageblocks to satisfy further
1887 * allocations, instead of polluting multiple pageblocks.
1888 *
1889 * If we are stealing a relatively large buddy page, it is likely there will
1890 * be more free pages in the pageblock, so try to steal them all. For
1891 * reclaimable and unmovable allocations, we steal regardless of page size,
1892 * as fragmentation caused by those allocations polluting movable pageblocks
1893 * is worse than movable allocations stealing from unmovable and reclaimable
1894 * pageblocks.
1895 */
1896 static bool can_steal_fallback(unsigned int order, int start_mt)
1897 {
1898 /*
1899 * Leaving this order check is intended, although there is
1900 * relaxed order check in next check. The reason is that
1901 * we can actually steal whole pageblock if this condition met,
1902 * but, below check doesn't guarantee it and that is just heuristic
1903 * so could be changed anytime.
1904 */
1905 if (order >= pageblock_order)
1906 return true;
1907
1908 if (order >= pageblock_order / 2 ||
1909 start_mt == MIGRATE_RECLAIMABLE ||
1910 start_mt == MIGRATE_UNMOVABLE ||
1911 page_group_by_mobility_disabled)
1912 return true;
1913
1914 return false;
1915 }
1916
1917 static inline bool boost_watermark(struct zone *zone)
1918 {
1919 unsigned long max_boost;
1920
1921 if (!watermark_boost_factor)
1922 return false;
1923 /*
1924 * Don't bother in zones that are unlikely to produce results.
1925 * On small machines, including kdump capture kernels running
1926 * in a small area, boosting the watermark can cause an out of
1927 * memory situation immediately.
1928 */
1929 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1930 return false;
1931
1932 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1933 watermark_boost_factor, 10000);
1934
1935 /*
1936 * high watermark may be uninitialised if fragmentation occurs
1937 * very early in boot so do not boost. We do not fall
1938 * through and boost by pageblock_nr_pages as failing
1939 * allocations that early means that reclaim is not going
1940 * to help and it may even be impossible to reclaim the
1941 * boosted watermark resulting in a hang.
1942 */
1943 if (!max_boost)
1944 return false;
1945
1946 max_boost = max(pageblock_nr_pages, max_boost);
1947
1948 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1949 max_boost);
1950
1951 return true;
1952 }
1953
1954 /*
1955 * This function implements actual steal behaviour. If order is large enough,
1956 * we can steal whole pageblock. If not, we first move freepages in this
1957 * pageblock to our migratetype and determine how many already-allocated pages
1958 * are there in the pageblock with a compatible migratetype. If at least half
1959 * of pages are free or compatible, we can change migratetype of the pageblock
1960 * itself, so pages freed in the future will be put on the correct free list.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 unsigned int alloc_flags, int start_type, bool whole_block)
1964 {
1965 unsigned int current_order = buddy_order(page);
1966 int free_pages, movable_pages, alike_pages;
1967 int old_block_type;
1968
1969 old_block_type = get_pageblock_migratetype(page);
1970
1971 /*
1972 * This can happen due to races and we want to prevent broken
1973 * highatomic accounting.
1974 */
1975 if (is_migrate_highatomic(old_block_type))
1976 goto single_page;
1977
1978 /* Take ownership for orders >= pageblock_order */
1979 if (current_order >= pageblock_order) {
1980 change_pageblock_range(page, current_order, start_type);
1981 goto single_page;
1982 }
1983
1984 /*
1985 * Boost watermarks to increase reclaim pressure to reduce the
1986 * likelihood of future fallbacks. Wake kswapd now as the node
1987 * may be balanced overall and kswapd will not wake naturally.
1988 */
1989 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1990 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1991
1992 /* We are not allowed to try stealing from the whole block */
1993 if (!whole_block)
1994 goto single_page;
1995
1996 free_pages = move_freepages_block(zone, page, start_type,
1997 &movable_pages);
1998 /*
1999 * Determine how many pages are compatible with our allocation.
2000 * For movable allocation, it's the number of movable pages which
2001 * we just obtained. For other types it's a bit more tricky.
2002 */
2003 if (start_type == MIGRATE_MOVABLE) {
2004 alike_pages = movable_pages;
2005 } else {
2006 /*
2007 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2008 * to MOVABLE pageblock, consider all non-movable pages as
2009 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2010 * vice versa, be conservative since we can't distinguish the
2011 * exact migratetype of non-movable pages.
2012 */
2013 if (old_block_type == MIGRATE_MOVABLE)
2014 alike_pages = pageblock_nr_pages
2015 - (free_pages + movable_pages);
2016 else
2017 alike_pages = 0;
2018 }
2019
2020 /* moving whole block can fail due to zone boundary conditions */
2021 if (!free_pages)
2022 goto single_page;
2023
2024 /*
2025 * If a sufficient number of pages in the block are either free or of
2026 * comparable migratability as our allocation, claim the whole block.
2027 */
2028 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2029 page_group_by_mobility_disabled)
2030 set_pageblock_migratetype(page, start_type);
2031
2032 return;
2033
2034 single_page:
2035 move_to_free_list(page, zone, current_order, start_type);
2036 }
2037
2038 /*
2039 * Check whether there is a suitable fallback freepage with requested order.
2040 * If only_stealable is true, this function returns fallback_mt only if
2041 * we can steal other freepages all together. This would help to reduce
2042 * fragmentation due to mixed migratetype pages in one pageblock.
2043 */
2044 int find_suitable_fallback(struct free_area *area, unsigned int order,
2045 int migratetype, bool only_stealable, bool *can_steal)
2046 {
2047 int i;
2048 int fallback_mt;
2049
2050 if (area->nr_free == 0)
2051 return -1;
2052
2053 *can_steal = false;
2054 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2055 fallback_mt = fallbacks[migratetype][i];
2056 if (free_area_empty(area, fallback_mt))
2057 continue;
2058
2059 if (can_steal_fallback(order, migratetype))
2060 *can_steal = true;
2061
2062 if (!only_stealable)
2063 return fallback_mt;
2064
2065 if (*can_steal)
2066 return fallback_mt;
2067 }
2068
2069 return -1;
2070 }
2071
2072 /*
2073 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2074 * there are no empty page blocks that contain a page with a suitable order
2075 */
2076 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2077 unsigned int alloc_order)
2078 {
2079 int mt;
2080 unsigned long max_managed, flags;
2081
2082 /*
2083 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2084 * Check is race-prone but harmless.
2085 */
2086 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2087 if (zone->nr_reserved_highatomic >= max_managed)
2088 return;
2089
2090 spin_lock_irqsave(&zone->lock, flags);
2091
2092 /* Recheck the nr_reserved_highatomic limit under the lock */
2093 if (zone->nr_reserved_highatomic >= max_managed)
2094 goto out_unlock;
2095
2096 /* Yoink! */
2097 mt = get_pageblock_migratetype(page);
2098 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2099 if (migratetype_is_mergeable(mt)) {
2100 zone->nr_reserved_highatomic += pageblock_nr_pages;
2101 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2102 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2103 }
2104
2105 out_unlock:
2106 spin_unlock_irqrestore(&zone->lock, flags);
2107 }
2108
2109 /*
2110 * Used when an allocation is about to fail under memory pressure. This
2111 * potentially hurts the reliability of high-order allocations when under
2112 * intense memory pressure but failed atomic allocations should be easier
2113 * to recover from than an OOM.
2114 *
2115 * If @force is true, try to unreserve a pageblock even though highatomic
2116 * pageblock is exhausted.
2117 */
2118 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2119 bool force)
2120 {
2121 struct zonelist *zonelist = ac->zonelist;
2122 unsigned long flags;
2123 struct zoneref *z;
2124 struct zone *zone;
2125 struct page *page;
2126 int order;
2127 bool ret;
2128
2129 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2130 ac->nodemask) {
2131 /*
2132 * Preserve at least one pageblock unless memory pressure
2133 * is really high.
2134 */
2135 if (!force && zone->nr_reserved_highatomic <=
2136 pageblock_nr_pages)
2137 continue;
2138
2139 spin_lock_irqsave(&zone->lock, flags);
2140 for (order = 0; order <= MAX_ORDER; order++) {
2141 struct free_area *area = &(zone->free_area[order]);
2142
2143 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2144 if (!page)
2145 continue;
2146
2147 /*
2148 * In page freeing path, migratetype change is racy so
2149 * we can counter several free pages in a pageblock
2150 * in this loop although we changed the pageblock type
2151 * from highatomic to ac->migratetype. So we should
2152 * adjust the count once.
2153 */
2154 if (is_migrate_highatomic_page(page)) {
2155 /*
2156 * It should never happen but changes to
2157 * locking could inadvertently allow a per-cpu
2158 * drain to add pages to MIGRATE_HIGHATOMIC
2159 * while unreserving so be safe and watch for
2160 * underflows.
2161 */
2162 zone->nr_reserved_highatomic -= min(
2163 pageblock_nr_pages,
2164 zone->nr_reserved_highatomic);
2165 }
2166
2167 /*
2168 * Convert to ac->migratetype and avoid the normal
2169 * pageblock stealing heuristics. Minimally, the caller
2170 * is doing the work and needs the pages. More
2171 * importantly, if the block was always converted to
2172 * MIGRATE_UNMOVABLE or another type then the number
2173 * of pageblocks that cannot be completely freed
2174 * may increase.
2175 */
2176 set_pageblock_migratetype(page, ac->migratetype);
2177 ret = move_freepages_block(zone, page, ac->migratetype,
2178 NULL);
2179 if (ret) {
2180 spin_unlock_irqrestore(&zone->lock, flags);
2181 return ret;
2182 }
2183 }
2184 spin_unlock_irqrestore(&zone->lock, flags);
2185 }
2186
2187 return false;
2188 }
2189
2190 /*
2191 * Try finding a free buddy page on the fallback list and put it on the free
2192 * list of requested migratetype, possibly along with other pages from the same
2193 * block, depending on fragmentation avoidance heuristics. Returns true if
2194 * fallback was found so that __rmqueue_smallest() can grab it.
2195 *
2196 * The use of signed ints for order and current_order is a deliberate
2197 * deviation from the rest of this file, to make the for loop
2198 * condition simpler.
2199 */
2200 static __always_inline bool
2201 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2202 unsigned int alloc_flags)
2203 {
2204 struct free_area *area;
2205 int current_order;
2206 int min_order = order;
2207 struct page *page;
2208 int fallback_mt;
2209 bool can_steal;
2210
2211 /*
2212 * Do not steal pages from freelists belonging to other pageblocks
2213 * i.e. orders < pageblock_order. If there are no local zones free,
2214 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2215 */
2216 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2217 min_order = pageblock_order;
2218
2219 /*
2220 * Find the largest available free page in the other list. This roughly
2221 * approximates finding the pageblock with the most free pages, which
2222 * would be too costly to do exactly.
2223 */
2224 for (current_order = MAX_ORDER; current_order >= min_order;
2225 --current_order) {
2226 area = &(zone->free_area[current_order]);
2227 fallback_mt = find_suitable_fallback(area, current_order,
2228 start_migratetype, false, &can_steal);
2229 if (fallback_mt == -1)
2230 continue;
2231
2232 /*
2233 * We cannot steal all free pages from the pageblock and the
2234 * requested migratetype is movable. In that case it's better to
2235 * steal and split the smallest available page instead of the
2236 * largest available page, because even if the next movable
2237 * allocation falls back into a different pageblock than this
2238 * one, it won't cause permanent fragmentation.
2239 */
2240 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2241 && current_order > order)
2242 goto find_smallest;
2243
2244 goto do_steal;
2245 }
2246
2247 return false;
2248
2249 find_smallest:
2250 for (current_order = order; current_order <= MAX_ORDER;
2251 current_order++) {
2252 area = &(zone->free_area[current_order]);
2253 fallback_mt = find_suitable_fallback(area, current_order,
2254 start_migratetype, false, &can_steal);
2255 if (fallback_mt != -1)
2256 break;
2257 }
2258
2259 /*
2260 * This should not happen - we already found a suitable fallback
2261 * when looking for the largest page.
2262 */
2263 VM_BUG_ON(current_order > MAX_ORDER);
2264
2265 do_steal:
2266 page = get_page_from_free_area(area, fallback_mt);
2267
2268 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2269 can_steal);
2270
2271 trace_mm_page_alloc_extfrag(page, order, current_order,
2272 start_migratetype, fallback_mt);
2273
2274 return true;
2275
2276 }
2277
2278 /*
2279 * Do the hard work of removing an element from the buddy allocator.
2280 * Call me with the zone->lock already held.
2281 */
2282 static __always_inline struct page *
2283 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2284 unsigned int alloc_flags)
2285 {
2286 struct page *page;
2287
2288 if (IS_ENABLED(CONFIG_CMA)) {
2289 /*
2290 * Balance movable allocations between regular and CMA areas by
2291 * allocating from CMA when over half of the zone's free memory
2292 * is in the CMA area.
2293 */
2294 if (alloc_flags & ALLOC_CMA &&
2295 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2296 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2297 page = __rmqueue_cma_fallback(zone, order);
2298 if (page)
2299 return page;
2300 }
2301 }
2302 retry:
2303 page = __rmqueue_smallest(zone, order, migratetype);
2304 if (unlikely(!page)) {
2305 if (alloc_flags & ALLOC_CMA)
2306 page = __rmqueue_cma_fallback(zone, order);
2307
2308 if (!page && __rmqueue_fallback(zone, order, migratetype,
2309 alloc_flags))
2310 goto retry;
2311 }
2312 return page;
2313 }
2314
2315 /*
2316 * Obtain a specified number of elements from the buddy allocator, all under
2317 * a single hold of the lock, for efficiency. Add them to the supplied list.
2318 * Returns the number of new pages which were placed at *list.
2319 */
2320 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2321 unsigned long count, struct list_head *list,
2322 int migratetype, unsigned int alloc_flags)
2323 {
2324 unsigned long flags;
2325 int i;
2326
2327 spin_lock_irqsave(&zone->lock, flags);
2328 for (i = 0; i < count; ++i) {
2329 struct page *page = __rmqueue(zone, order, migratetype,
2330 alloc_flags);
2331 if (unlikely(page == NULL))
2332 break;
2333
2334 /*
2335 * Split buddy pages returned by expand() are received here in
2336 * physical page order. The page is added to the tail of
2337 * caller's list. From the callers perspective, the linked list
2338 * is ordered by page number under some conditions. This is
2339 * useful for IO devices that can forward direction from the
2340 * head, thus also in the physical page order. This is useful
2341 * for IO devices that can merge IO requests if the physical
2342 * pages are ordered properly.
2343 */
2344 list_add_tail(&page->pcp_list, list);
2345 if (is_migrate_cma(get_pcppage_migratetype(page)))
2346 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2347 -(1 << order));
2348 }
2349
2350 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2351 spin_unlock_irqrestore(&zone->lock, flags);
2352
2353 return i;
2354 }
2355
2356 #ifdef CONFIG_NUMA
2357 /*
2358 * Called from the vmstat counter updater to drain pagesets of this
2359 * currently executing processor on remote nodes after they have
2360 * expired.
2361 */
2362 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2363 {
2364 int to_drain, batch;
2365
2366 batch = READ_ONCE(pcp->batch);
2367 to_drain = min(pcp->count, batch);
2368 if (to_drain > 0) {
2369 spin_lock(&pcp->lock);
2370 free_pcppages_bulk(zone, to_drain, pcp, 0);
2371 spin_unlock(&pcp->lock);
2372 }
2373 }
2374 #endif
2375
2376 /*
2377 * Drain pcplists of the indicated processor and zone.
2378 */
2379 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2380 {
2381 struct per_cpu_pages *pcp;
2382
2383 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2384 if (pcp->count) {
2385 spin_lock(&pcp->lock);
2386 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2387 spin_unlock(&pcp->lock);
2388 }
2389 }
2390
2391 /*
2392 * Drain pcplists of all zones on the indicated processor.
2393 */
2394 static void drain_pages(unsigned int cpu)
2395 {
2396 struct zone *zone;
2397
2398 for_each_populated_zone(zone) {
2399 drain_pages_zone(cpu, zone);
2400 }
2401 }
2402
2403 /*
2404 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2405 */
2406 void drain_local_pages(struct zone *zone)
2407 {
2408 int cpu = smp_processor_id();
2409
2410 if (zone)
2411 drain_pages_zone(cpu, zone);
2412 else
2413 drain_pages(cpu);
2414 }
2415
2416 /*
2417 * The implementation of drain_all_pages(), exposing an extra parameter to
2418 * drain on all cpus.
2419 *
2420 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2421 * not empty. The check for non-emptiness can however race with a free to
2422 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2423 * that need the guarantee that every CPU has drained can disable the
2424 * optimizing racy check.
2425 */
2426 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2427 {
2428 int cpu;
2429
2430 /*
2431 * Allocate in the BSS so we won't require allocation in
2432 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2433 */
2434 static cpumask_t cpus_with_pcps;
2435
2436 /*
2437 * Do not drain if one is already in progress unless it's specific to
2438 * a zone. Such callers are primarily CMA and memory hotplug and need
2439 * the drain to be complete when the call returns.
2440 */
2441 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2442 if (!zone)
2443 return;
2444 mutex_lock(&pcpu_drain_mutex);
2445 }
2446
2447 /*
2448 * We don't care about racing with CPU hotplug event
2449 * as offline notification will cause the notified
2450 * cpu to drain that CPU pcps and on_each_cpu_mask
2451 * disables preemption as part of its processing
2452 */
2453 for_each_online_cpu(cpu) {
2454 struct per_cpu_pages *pcp;
2455 struct zone *z;
2456 bool has_pcps = false;
2457
2458 if (force_all_cpus) {
2459 /*
2460 * The pcp.count check is racy, some callers need a
2461 * guarantee that no cpu is missed.
2462 */
2463 has_pcps = true;
2464 } else if (zone) {
2465 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2466 if (pcp->count)
2467 has_pcps = true;
2468 } else {
2469 for_each_populated_zone(z) {
2470 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2471 if (pcp->count) {
2472 has_pcps = true;
2473 break;
2474 }
2475 }
2476 }
2477
2478 if (has_pcps)
2479 cpumask_set_cpu(cpu, &cpus_with_pcps);
2480 else
2481 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2482 }
2483
2484 for_each_cpu(cpu, &cpus_with_pcps) {
2485 if (zone)
2486 drain_pages_zone(cpu, zone);
2487 else
2488 drain_pages(cpu);
2489 }
2490
2491 mutex_unlock(&pcpu_drain_mutex);
2492 }
2493
2494 /*
2495 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2496 *
2497 * When zone parameter is non-NULL, spill just the single zone's pages.
2498 */
2499 void drain_all_pages(struct zone *zone)
2500 {
2501 __drain_all_pages(zone, false);
2502 }
2503
2504 #ifdef CONFIG_HIBERNATION
2505
2506 /*
2507 * Touch the watchdog for every WD_PAGE_COUNT pages.
2508 */
2509 #define WD_PAGE_COUNT (128*1024)
2510
2511 void mark_free_pages(struct zone *zone)
2512 {
2513 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2514 unsigned long flags;
2515 unsigned int order, t;
2516 struct page *page;
2517
2518 if (zone_is_empty(zone))
2519 return;
2520
2521 spin_lock_irqsave(&zone->lock, flags);
2522
2523 max_zone_pfn = zone_end_pfn(zone);
2524 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2525 if (pfn_valid(pfn)) {
2526 page = pfn_to_page(pfn);
2527
2528 if (!--page_count) {
2529 touch_nmi_watchdog();
2530 page_count = WD_PAGE_COUNT;
2531 }
2532
2533 if (page_zone(page) != zone)
2534 continue;
2535
2536 if (!swsusp_page_is_forbidden(page))
2537 swsusp_unset_page_free(page);
2538 }
2539
2540 for_each_migratetype_order(order, t) {
2541 list_for_each_entry(page,
2542 &zone->free_area[order].free_list[t], buddy_list) {
2543 unsigned long i;
2544
2545 pfn = page_to_pfn(page);
2546 for (i = 0; i < (1UL << order); i++) {
2547 if (!--page_count) {
2548 touch_nmi_watchdog();
2549 page_count = WD_PAGE_COUNT;
2550 }
2551 swsusp_set_page_free(pfn_to_page(pfn + i));
2552 }
2553 }
2554 }
2555 spin_unlock_irqrestore(&zone->lock, flags);
2556 }
2557 #endif /* CONFIG_PM */
2558
2559 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2560 unsigned int order)
2561 {
2562 int migratetype;
2563
2564 if (!free_pages_prepare(page, order, FPI_NONE))
2565 return false;
2566
2567 migratetype = get_pfnblock_migratetype(page, pfn);
2568 set_pcppage_migratetype(page, migratetype);
2569 return true;
2570 }
2571
2572 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
2573 bool free_high)
2574 {
2575 int min_nr_free, max_nr_free;
2576
2577 /* Free everything if batch freeing high-order pages. */
2578 if (unlikely(free_high))
2579 return pcp->count;
2580
2581 /* Check for PCP disabled or boot pageset */
2582 if (unlikely(high < batch))
2583 return 1;
2584
2585 /* Leave at least pcp->batch pages on the list */
2586 min_nr_free = batch;
2587 max_nr_free = high - batch;
2588
2589 /*
2590 * Double the number of pages freed each time there is subsequent
2591 * freeing of pages without any allocation.
2592 */
2593 batch <<= pcp->free_factor;
2594 if (batch < max_nr_free)
2595 pcp->free_factor++;
2596 batch = clamp(batch, min_nr_free, max_nr_free);
2597
2598 return batch;
2599 }
2600
2601 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2602 bool free_high)
2603 {
2604 int high = READ_ONCE(pcp->high);
2605
2606 if (unlikely(!high || free_high))
2607 return 0;
2608
2609 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2610 return high;
2611
2612 /*
2613 * If reclaim is active, limit the number of pages that can be
2614 * stored on pcp lists
2615 */
2616 return min(READ_ONCE(pcp->batch) << 2, high);
2617 }
2618
2619 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2620 struct page *page, int migratetype,
2621 unsigned int order)
2622 {
2623 int high;
2624 int pindex;
2625 bool free_high;
2626
2627 __count_vm_events(PGFREE, 1 << order);
2628 pindex = order_to_pindex(migratetype, order);
2629 list_add(&page->pcp_list, &pcp->lists[pindex]);
2630 pcp->count += 1 << order;
2631
2632 /*
2633 * As high-order pages other than THP's stored on PCP can contribute
2634 * to fragmentation, limit the number stored when PCP is heavily
2635 * freeing without allocation. The remainder after bulk freeing
2636 * stops will be drained from vmstat refresh context.
2637 */
2638 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2639
2640 high = nr_pcp_high(pcp, zone, free_high);
2641 if (pcp->count >= high) {
2642 int batch = READ_ONCE(pcp->batch);
2643
2644 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
2645 }
2646 }
2647
2648 /*
2649 * Free a pcp page
2650 */
2651 void free_unref_page(struct page *page, unsigned int order)
2652 {
2653 unsigned long __maybe_unused UP_flags;
2654 struct per_cpu_pages *pcp;
2655 struct zone *zone;
2656 unsigned long pfn = page_to_pfn(page);
2657 int migratetype;
2658
2659 if (!free_unref_page_prepare(page, pfn, order))
2660 return;
2661
2662 /*
2663 * We only track unmovable, reclaimable and movable on pcp lists.
2664 * Place ISOLATE pages on the isolated list because they are being
2665 * offlined but treat HIGHATOMIC as movable pages so we can get those
2666 * areas back if necessary. Otherwise, we may have to free
2667 * excessively into the page allocator
2668 */
2669 migratetype = get_pcppage_migratetype(page);
2670 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2671 if (unlikely(is_migrate_isolate(migratetype))) {
2672 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2673 return;
2674 }
2675 migratetype = MIGRATE_MOVABLE;
2676 }
2677
2678 zone = page_zone(page);
2679 pcp_trylock_prepare(UP_flags);
2680 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2681 if (pcp) {
2682 free_unref_page_commit(zone, pcp, page, migratetype, order);
2683 pcp_spin_unlock(pcp);
2684 } else {
2685 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2686 }
2687 pcp_trylock_finish(UP_flags);
2688 }
2689
2690 /*
2691 * Free a list of 0-order pages
2692 */
2693 void free_unref_page_list(struct list_head *list)
2694 {
2695 unsigned long __maybe_unused UP_flags;
2696 struct page *page, *next;
2697 struct per_cpu_pages *pcp = NULL;
2698 struct zone *locked_zone = NULL;
2699 int batch_count = 0;
2700 int migratetype;
2701
2702 /* Prepare pages for freeing */
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 unsigned long pfn = page_to_pfn(page);
2705 if (!free_unref_page_prepare(page, pfn, 0)) {
2706 list_del(&page->lru);
2707 continue;
2708 }
2709
2710 /*
2711 * Free isolated pages directly to the allocator, see
2712 * comment in free_unref_page.
2713 */
2714 migratetype = get_pcppage_migratetype(page);
2715 if (unlikely(is_migrate_isolate(migratetype))) {
2716 list_del(&page->lru);
2717 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2718 continue;
2719 }
2720 }
2721
2722 list_for_each_entry_safe(page, next, list, lru) {
2723 struct zone *zone = page_zone(page);
2724
2725 list_del(&page->lru);
2726 migratetype = get_pcppage_migratetype(page);
2727
2728 /*
2729 * Either different zone requiring a different pcp lock or
2730 * excessive lock hold times when freeing a large list of
2731 * pages.
2732 */
2733 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2734 if (pcp) {
2735 pcp_spin_unlock(pcp);
2736 pcp_trylock_finish(UP_flags);
2737 }
2738
2739 batch_count = 0;
2740
2741 /*
2742 * trylock is necessary as pages may be getting freed
2743 * from IRQ or SoftIRQ context after an IO completion.
2744 */
2745 pcp_trylock_prepare(UP_flags);
2746 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2747 if (unlikely(!pcp)) {
2748 pcp_trylock_finish(UP_flags);
2749 free_one_page(zone, page, page_to_pfn(page),
2750 0, migratetype, FPI_NONE);
2751 locked_zone = NULL;
2752 continue;
2753 }
2754 locked_zone = zone;
2755 }
2756
2757 /*
2758 * Non-isolated types over MIGRATE_PCPTYPES get added
2759 * to the MIGRATE_MOVABLE pcp list.
2760 */
2761 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2762 migratetype = MIGRATE_MOVABLE;
2763
2764 trace_mm_page_free_batched(page);
2765 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2766 batch_count++;
2767 }
2768
2769 if (pcp) {
2770 pcp_spin_unlock(pcp);
2771 pcp_trylock_finish(UP_flags);
2772 }
2773 }
2774
2775 /*
2776 * split_page takes a non-compound higher-order page, and splits it into
2777 * n (1<<order) sub-pages: page[0..n]
2778 * Each sub-page must be freed individually.
2779 *
2780 * Note: this is probably too low level an operation for use in drivers.
2781 * Please consult with lkml before using this in your driver.
2782 */
2783 void split_page(struct page *page, unsigned int order)
2784 {
2785 int i;
2786
2787 VM_BUG_ON_PAGE(PageCompound(page), page);
2788 VM_BUG_ON_PAGE(!page_count(page), page);
2789
2790 for (i = 1; i < (1 << order); i++)
2791 set_page_refcounted(page + i);
2792 split_page_owner(page, 1 << order);
2793 split_page_memcg(page, 1 << order);
2794 }
2795 EXPORT_SYMBOL_GPL(split_page);
2796
2797 int __isolate_free_page(struct page *page, unsigned int order)
2798 {
2799 struct zone *zone = page_zone(page);
2800 int mt = get_pageblock_migratetype(page);
2801
2802 if (!is_migrate_isolate(mt)) {
2803 unsigned long watermark;
2804 /*
2805 * Obey watermarks as if the page was being allocated. We can
2806 * emulate a high-order watermark check with a raised order-0
2807 * watermark, because we already know our high-order page
2808 * exists.
2809 */
2810 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2811 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2812 return 0;
2813
2814 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2815 }
2816
2817 del_page_from_free_list(page, zone, order);
2818
2819 /*
2820 * Set the pageblock if the isolated page is at least half of a
2821 * pageblock
2822 */
2823 if (order >= pageblock_order - 1) {
2824 struct page *endpage = page + (1 << order) - 1;
2825 for (; page < endpage; page += pageblock_nr_pages) {
2826 int mt = get_pageblock_migratetype(page);
2827 /*
2828 * Only change normal pageblocks (i.e., they can merge
2829 * with others)
2830 */
2831 if (migratetype_is_mergeable(mt))
2832 set_pageblock_migratetype(page,
2833 MIGRATE_MOVABLE);
2834 }
2835 }
2836
2837 return 1UL << order;
2838 }
2839
2840 /**
2841 * __putback_isolated_page - Return a now-isolated page back where we got it
2842 * @page: Page that was isolated
2843 * @order: Order of the isolated page
2844 * @mt: The page's pageblock's migratetype
2845 *
2846 * This function is meant to return a page pulled from the free lists via
2847 * __isolate_free_page back to the free lists they were pulled from.
2848 */
2849 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2850 {
2851 struct zone *zone = page_zone(page);
2852
2853 /* zone lock should be held when this function is called */
2854 lockdep_assert_held(&zone->lock);
2855
2856 /* Return isolated page to tail of freelist. */
2857 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2858 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2859 }
2860
2861 /*
2862 * Update NUMA hit/miss statistics
2863 */
2864 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2865 long nr_account)
2866 {
2867 #ifdef CONFIG_NUMA
2868 enum numa_stat_item local_stat = NUMA_LOCAL;
2869
2870 /* skip numa counters update if numa stats is disabled */
2871 if (!static_branch_likely(&vm_numa_stat_key))
2872 return;
2873
2874 if (zone_to_nid(z) != numa_node_id())
2875 local_stat = NUMA_OTHER;
2876
2877 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2878 __count_numa_events(z, NUMA_HIT, nr_account);
2879 else {
2880 __count_numa_events(z, NUMA_MISS, nr_account);
2881 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2882 }
2883 __count_numa_events(z, local_stat, nr_account);
2884 #endif
2885 }
2886
2887 static __always_inline
2888 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2889 unsigned int order, unsigned int alloc_flags,
2890 int migratetype)
2891 {
2892 struct page *page;
2893 unsigned long flags;
2894
2895 do {
2896 page = NULL;
2897 spin_lock_irqsave(&zone->lock, flags);
2898 /*
2899 * order-0 request can reach here when the pcplist is skipped
2900 * due to non-CMA allocation context. HIGHATOMIC area is
2901 * reserved for high-order atomic allocation, so order-0
2902 * request should skip it.
2903 */
2904 if (alloc_flags & ALLOC_HIGHATOMIC)
2905 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2906 if (!page) {
2907 page = __rmqueue(zone, order, migratetype, alloc_flags);
2908
2909 /*
2910 * If the allocation fails, allow OOM handling access
2911 * to HIGHATOMIC reserves as failing now is worse than
2912 * failing a high-order atomic allocation in the
2913 * future.
2914 */
2915 if (!page && (alloc_flags & ALLOC_OOM))
2916 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2917
2918 if (!page) {
2919 spin_unlock_irqrestore(&zone->lock, flags);
2920 return NULL;
2921 }
2922 }
2923 __mod_zone_freepage_state(zone, -(1 << order),
2924 get_pcppage_migratetype(page));
2925 spin_unlock_irqrestore(&zone->lock, flags);
2926 } while (check_new_pages(page, order));
2927
2928 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2929 zone_statistics(preferred_zone, zone, 1);
2930
2931 return page;
2932 }
2933
2934 /* Remove page from the per-cpu list, caller must protect the list */
2935 static inline
2936 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2937 int migratetype,
2938 unsigned int alloc_flags,
2939 struct per_cpu_pages *pcp,
2940 struct list_head *list)
2941 {
2942 struct page *page;
2943
2944 do {
2945 if (list_empty(list)) {
2946 int batch = READ_ONCE(pcp->batch);
2947 int alloced;
2948
2949 /*
2950 * Scale batch relative to order if batch implies
2951 * free pages can be stored on the PCP. Batch can
2952 * be 1 for small zones or for boot pagesets which
2953 * should never store free pages as the pages may
2954 * belong to arbitrary zones.
2955 */
2956 if (batch > 1)
2957 batch = max(batch >> order, 2);
2958 alloced = rmqueue_bulk(zone, order,
2959 batch, list,
2960 migratetype, alloc_flags);
2961
2962 pcp->count += alloced << order;
2963 if (unlikely(list_empty(list)))
2964 return NULL;
2965 }
2966
2967 page = list_first_entry(list, struct page, pcp_list);
2968 list_del(&page->pcp_list);
2969 pcp->count -= 1 << order;
2970 } while (check_new_pages(page, order));
2971
2972 return page;
2973 }
2974
2975 /* Lock and remove page from the per-cpu list */
2976 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2977 struct zone *zone, unsigned int order,
2978 int migratetype, unsigned int alloc_flags)
2979 {
2980 struct per_cpu_pages *pcp;
2981 struct list_head *list;
2982 struct page *page;
2983 unsigned long __maybe_unused UP_flags;
2984
2985 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2986 pcp_trylock_prepare(UP_flags);
2987 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2988 if (!pcp) {
2989 pcp_trylock_finish(UP_flags);
2990 return NULL;
2991 }
2992
2993 /*
2994 * On allocation, reduce the number of pages that are batch freed.
2995 * See nr_pcp_free() where free_factor is increased for subsequent
2996 * frees.
2997 */
2998 pcp->free_factor >>= 1;
2999 list = &pcp->lists[order_to_pindex(migratetype, order)];
3000 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3001 pcp_spin_unlock(pcp);
3002 pcp_trylock_finish(UP_flags);
3003 if (page) {
3004 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3005 zone_statistics(preferred_zone, zone, 1);
3006 }
3007 return page;
3008 }
3009
3010 /*
3011 * Allocate a page from the given zone.
3012 * Use pcplists for THP or "cheap" high-order allocations.
3013 */
3014
3015 /*
3016 * Do not instrument rmqueue() with KMSAN. This function may call
3017 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3018 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3019 * may call rmqueue() again, which will result in a deadlock.
3020 */
3021 __no_sanitize_memory
3022 static inline
3023 struct page *rmqueue(struct zone *preferred_zone,
3024 struct zone *zone, unsigned int order,
3025 gfp_t gfp_flags, unsigned int alloc_flags,
3026 int migratetype)
3027 {
3028 struct page *page;
3029
3030 /*
3031 * We most definitely don't want callers attempting to
3032 * allocate greater than order-1 page units with __GFP_NOFAIL.
3033 */
3034 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3035
3036 if (likely(pcp_allowed_order(order))) {
3037 /*
3038 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3039 * we need to skip it when CMA area isn't allowed.
3040 */
3041 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3042 migratetype != MIGRATE_MOVABLE) {
3043 page = rmqueue_pcplist(preferred_zone, zone, order,
3044 migratetype, alloc_flags);
3045 if (likely(page))
3046 goto out;
3047 }
3048 }
3049
3050 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3051 migratetype);
3052
3053 out:
3054 /* Separate test+clear to avoid unnecessary atomics */
3055 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3056 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3057 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3058 }
3059
3060 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3061 return page;
3062 }
3063
3064 #ifdef CONFIG_FAIL_PAGE_ALLOC
3065
3066 static struct {
3067 struct fault_attr attr;
3068
3069 bool ignore_gfp_highmem;
3070 bool ignore_gfp_reclaim;
3071 u32 min_order;
3072 } fail_page_alloc = {
3073 .attr = FAULT_ATTR_INITIALIZER,
3074 .ignore_gfp_reclaim = true,
3075 .ignore_gfp_highmem = true,
3076 .min_order = 1,
3077 };
3078
3079 static int __init setup_fail_page_alloc(char *str)
3080 {
3081 return setup_fault_attr(&fail_page_alloc.attr, str);
3082 }
3083 __setup("fail_page_alloc=", setup_fail_page_alloc);
3084
3085 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3086 {
3087 int flags = 0;
3088
3089 if (order < fail_page_alloc.min_order)
3090 return false;
3091 if (gfp_mask & __GFP_NOFAIL)
3092 return false;
3093 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3094 return false;
3095 if (fail_page_alloc.ignore_gfp_reclaim &&
3096 (gfp_mask & __GFP_DIRECT_RECLAIM))
3097 return false;
3098
3099 /* See comment in __should_failslab() */
3100 if (gfp_mask & __GFP_NOWARN)
3101 flags |= FAULT_NOWARN;
3102
3103 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3104 }
3105
3106 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3107
3108 static int __init fail_page_alloc_debugfs(void)
3109 {
3110 umode_t mode = S_IFREG | 0600;
3111 struct dentry *dir;
3112
3113 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3114 &fail_page_alloc.attr);
3115
3116 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3117 &fail_page_alloc.ignore_gfp_reclaim);
3118 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3119 &fail_page_alloc.ignore_gfp_highmem);
3120 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3121
3122 return 0;
3123 }
3124
3125 late_initcall(fail_page_alloc_debugfs);
3126
3127 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3128
3129 #else /* CONFIG_FAIL_PAGE_ALLOC */
3130
3131 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3132 {
3133 return false;
3134 }
3135
3136 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3137
3138 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3139 {
3140 return __should_fail_alloc_page(gfp_mask, order);
3141 }
3142 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3143
3144 static inline long __zone_watermark_unusable_free(struct zone *z,
3145 unsigned int order, unsigned int alloc_flags)
3146 {
3147 long unusable_free = (1 << order) - 1;
3148
3149 /*
3150 * If the caller does not have rights to reserves below the min
3151 * watermark then subtract the high-atomic reserves. This will
3152 * over-estimate the size of the atomic reserve but it avoids a search.
3153 */
3154 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3155 unusable_free += z->nr_reserved_highatomic;
3156
3157 #ifdef CONFIG_CMA
3158 /* If allocation can't use CMA areas don't use free CMA pages */
3159 if (!(alloc_flags & ALLOC_CMA))
3160 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3161 #endif
3162
3163 return unusable_free;
3164 }
3165
3166 /*
3167 * Return true if free base pages are above 'mark'. For high-order checks it
3168 * will return true of the order-0 watermark is reached and there is at least
3169 * one free page of a suitable size. Checking now avoids taking the zone lock
3170 * to check in the allocation paths if no pages are free.
3171 */
3172 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3173 int highest_zoneidx, unsigned int alloc_flags,
3174 long free_pages)
3175 {
3176 long min = mark;
3177 int o;
3178
3179 /* free_pages may go negative - that's OK */
3180 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3181
3182 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3183 /*
3184 * __GFP_HIGH allows access to 50% of the min reserve as well
3185 * as OOM.
3186 */
3187 if (alloc_flags & ALLOC_MIN_RESERVE) {
3188 min -= min / 2;
3189
3190 /*
3191 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3192 * access more reserves than just __GFP_HIGH. Other
3193 * non-blocking allocations requests such as GFP_NOWAIT
3194 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3195 * access to the min reserve.
3196 */
3197 if (alloc_flags & ALLOC_NON_BLOCK)
3198 min -= min / 4;
3199 }
3200
3201 /*
3202 * OOM victims can try even harder than the normal reserve
3203 * users on the grounds that it's definitely going to be in
3204 * the exit path shortly and free memory. Any allocation it
3205 * makes during the free path will be small and short-lived.
3206 */
3207 if (alloc_flags & ALLOC_OOM)
3208 min -= min / 2;
3209 }
3210
3211 /*
3212 * Check watermarks for an order-0 allocation request. If these
3213 * are not met, then a high-order request also cannot go ahead
3214 * even if a suitable page happened to be free.
3215 */
3216 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3217 return false;
3218
3219 /* If this is an order-0 request then the watermark is fine */
3220 if (!order)
3221 return true;
3222
3223 /* For a high-order request, check at least one suitable page is free */
3224 for (o = order; o <= MAX_ORDER; o++) {
3225 struct free_area *area = &z->free_area[o];
3226 int mt;
3227
3228 if (!area->nr_free)
3229 continue;
3230
3231 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3232 if (!free_area_empty(area, mt))
3233 return true;
3234 }
3235
3236 #ifdef CONFIG_CMA
3237 if ((alloc_flags & ALLOC_CMA) &&
3238 !free_area_empty(area, MIGRATE_CMA)) {
3239 return true;
3240 }
3241 #endif
3242 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3243 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3244 return true;
3245 }
3246 }
3247 return false;
3248 }
3249
3250 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3251 int highest_zoneidx, unsigned int alloc_flags)
3252 {
3253 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3254 zone_page_state(z, NR_FREE_PAGES));
3255 }
3256
3257 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3258 unsigned long mark, int highest_zoneidx,
3259 unsigned int alloc_flags, gfp_t gfp_mask)
3260 {
3261 long free_pages;
3262
3263 free_pages = zone_page_state(z, NR_FREE_PAGES);
3264
3265 /*
3266 * Fast check for order-0 only. If this fails then the reserves
3267 * need to be calculated.
3268 */
3269 if (!order) {
3270 long usable_free;
3271 long reserved;
3272
3273 usable_free = free_pages;
3274 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3275
3276 /* reserved may over estimate high-atomic reserves. */
3277 usable_free -= min(usable_free, reserved);
3278 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3279 return true;
3280 }
3281
3282 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3283 free_pages))
3284 return true;
3285
3286 /*
3287 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3288 * when checking the min watermark. The min watermark is the
3289 * point where boosting is ignored so that kswapd is woken up
3290 * when below the low watermark.
3291 */
3292 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3293 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3294 mark = z->_watermark[WMARK_MIN];
3295 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3296 alloc_flags, free_pages);
3297 }
3298
3299 return false;
3300 }
3301
3302 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3303 unsigned long mark, int highest_zoneidx)
3304 {
3305 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3306
3307 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3308 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3309
3310 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3311 free_pages);
3312 }
3313
3314 #ifdef CONFIG_NUMA
3315 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3316
3317 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3318 {
3319 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3320 node_reclaim_distance;
3321 }
3322 #else /* CONFIG_NUMA */
3323 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3324 {
3325 return true;
3326 }
3327 #endif /* CONFIG_NUMA */
3328
3329 /*
3330 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3331 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3332 * premature use of a lower zone may cause lowmem pressure problems that
3333 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3334 * probably too small. It only makes sense to spread allocations to avoid
3335 * fragmentation between the Normal and DMA32 zones.
3336 */
3337 static inline unsigned int
3338 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3339 {
3340 unsigned int alloc_flags;
3341
3342 /*
3343 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3344 * to save a branch.
3345 */
3346 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3347
3348 #ifdef CONFIG_ZONE_DMA32
3349 if (!zone)
3350 return alloc_flags;
3351
3352 if (zone_idx(zone) != ZONE_NORMAL)
3353 return alloc_flags;
3354
3355 /*
3356 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3357 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3358 * on UMA that if Normal is populated then so is DMA32.
3359 */
3360 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3361 if (nr_online_nodes > 1 && !populated_zone(--zone))
3362 return alloc_flags;
3363
3364 alloc_flags |= ALLOC_NOFRAGMENT;
3365 #endif /* CONFIG_ZONE_DMA32 */
3366 return alloc_flags;
3367 }
3368
3369 /* Must be called after current_gfp_context() which can change gfp_mask */
3370 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3371 unsigned int alloc_flags)
3372 {
3373 #ifdef CONFIG_CMA
3374 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3375 alloc_flags |= ALLOC_CMA;
3376 #endif
3377 return alloc_flags;
3378 }
3379
3380 /*
3381 * get_page_from_freelist goes through the zonelist trying to allocate
3382 * a page.
3383 */
3384 static struct page *
3385 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 const struct alloc_context *ac)
3387 {
3388 struct zoneref *z;
3389 struct zone *zone;
3390 struct pglist_data *last_pgdat = NULL;
3391 bool last_pgdat_dirty_ok = false;
3392 bool no_fallback;
3393
3394 retry:
3395 /*
3396 * Scan zonelist, looking for a zone with enough free.
3397 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3398 */
3399 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3400 z = ac->preferred_zoneref;
3401 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3402 ac->nodemask) {
3403 struct page *page;
3404 unsigned long mark;
3405
3406 if (cpusets_enabled() &&
3407 (alloc_flags & ALLOC_CPUSET) &&
3408 !__cpuset_zone_allowed(zone, gfp_mask))
3409 continue;
3410 /*
3411 * When allocating a page cache page for writing, we
3412 * want to get it from a node that is within its dirty
3413 * limit, such that no single node holds more than its
3414 * proportional share of globally allowed dirty pages.
3415 * The dirty limits take into account the node's
3416 * lowmem reserves and high watermark so that kswapd
3417 * should be able to balance it without having to
3418 * write pages from its LRU list.
3419 *
3420 * XXX: For now, allow allocations to potentially
3421 * exceed the per-node dirty limit in the slowpath
3422 * (spread_dirty_pages unset) before going into reclaim,
3423 * which is important when on a NUMA setup the allowed
3424 * nodes are together not big enough to reach the
3425 * global limit. The proper fix for these situations
3426 * will require awareness of nodes in the
3427 * dirty-throttling and the flusher threads.
3428 */
3429 if (ac->spread_dirty_pages) {
3430 if (last_pgdat != zone->zone_pgdat) {
3431 last_pgdat = zone->zone_pgdat;
3432 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3433 }
3434
3435 if (!last_pgdat_dirty_ok)
3436 continue;
3437 }
3438
3439 if (no_fallback && nr_online_nodes > 1 &&
3440 zone != ac->preferred_zoneref->zone) {
3441 int local_nid;
3442
3443 /*
3444 * If moving to a remote node, retry but allow
3445 * fragmenting fallbacks. Locality is more important
3446 * than fragmentation avoidance.
3447 */
3448 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3449 if (zone_to_nid(zone) != local_nid) {
3450 alloc_flags &= ~ALLOC_NOFRAGMENT;
3451 goto retry;
3452 }
3453 }
3454
3455 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3456 if (!zone_watermark_fast(zone, order, mark,
3457 ac->highest_zoneidx, alloc_flags,
3458 gfp_mask)) {
3459 int ret;
3460
3461 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3462 /*
3463 * Watermark failed for this zone, but see if we can
3464 * grow this zone if it contains deferred pages.
3465 */
3466 if (deferred_pages_enabled()) {
3467 if (_deferred_grow_zone(zone, order))
3468 goto try_this_zone;
3469 }
3470 #endif
3471 /* Checked here to keep the fast path fast */
3472 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3473 if (alloc_flags & ALLOC_NO_WATERMARKS)
3474 goto try_this_zone;
3475
3476 if (!node_reclaim_enabled() ||
3477 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3478 continue;
3479
3480 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3481 switch (ret) {
3482 case NODE_RECLAIM_NOSCAN:
3483 /* did not scan */
3484 continue;
3485 case NODE_RECLAIM_FULL:
3486 /* scanned but unreclaimable */
3487 continue;
3488 default:
3489 /* did we reclaim enough */
3490 if (zone_watermark_ok(zone, order, mark,
3491 ac->highest_zoneidx, alloc_flags))
3492 goto try_this_zone;
3493
3494 continue;
3495 }
3496 }
3497
3498 try_this_zone:
3499 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3500 gfp_mask, alloc_flags, ac->migratetype);
3501 if (page) {
3502 prep_new_page(page, order, gfp_mask, alloc_flags);
3503
3504 /*
3505 * If this is a high-order atomic allocation then check
3506 * if the pageblock should be reserved for the future
3507 */
3508 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3509 reserve_highatomic_pageblock(page, zone, order);
3510
3511 return page;
3512 } else {
3513 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3514 /* Try again if zone has deferred pages */
3515 if (deferred_pages_enabled()) {
3516 if (_deferred_grow_zone(zone, order))
3517 goto try_this_zone;
3518 }
3519 #endif
3520 }
3521 }
3522
3523 /*
3524 * It's possible on a UMA machine to get through all zones that are
3525 * fragmented. If avoiding fragmentation, reset and try again.
3526 */
3527 if (no_fallback) {
3528 alloc_flags &= ~ALLOC_NOFRAGMENT;
3529 goto retry;
3530 }
3531
3532 return NULL;
3533 }
3534
3535 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3536 {
3537 unsigned int filter = SHOW_MEM_FILTER_NODES;
3538
3539 /*
3540 * This documents exceptions given to allocations in certain
3541 * contexts that are allowed to allocate outside current's set
3542 * of allowed nodes.
3543 */
3544 if (!(gfp_mask & __GFP_NOMEMALLOC))
3545 if (tsk_is_oom_victim(current) ||
3546 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3547 filter &= ~SHOW_MEM_FILTER_NODES;
3548 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3549 filter &= ~SHOW_MEM_FILTER_NODES;
3550
3551 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3552 }
3553
3554 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3555 {
3556 struct va_format vaf;
3557 va_list args;
3558 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3559
3560 if ((gfp_mask & __GFP_NOWARN) ||
3561 !__ratelimit(&nopage_rs) ||
3562 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3563 return;
3564
3565 va_start(args, fmt);
3566 vaf.fmt = fmt;
3567 vaf.va = &args;
3568 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3569 current->comm, &vaf, gfp_mask, &gfp_mask,
3570 nodemask_pr_args(nodemask));
3571 va_end(args);
3572
3573 cpuset_print_current_mems_allowed();
3574 pr_cont("\n");
3575 dump_stack();
3576 warn_alloc_show_mem(gfp_mask, nodemask);
3577 }
3578
3579 static inline struct page *
3580 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3581 unsigned int alloc_flags,
3582 const struct alloc_context *ac)
3583 {
3584 struct page *page;
3585
3586 page = get_page_from_freelist(gfp_mask, order,
3587 alloc_flags|ALLOC_CPUSET, ac);
3588 /*
3589 * fallback to ignore cpuset restriction if our nodes
3590 * are depleted
3591 */
3592 if (!page)
3593 page = get_page_from_freelist(gfp_mask, order,
3594 alloc_flags, ac);
3595
3596 return page;
3597 }
3598
3599 static inline struct page *
3600 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3601 const struct alloc_context *ac, unsigned long *did_some_progress)
3602 {
3603 struct oom_control oc = {
3604 .zonelist = ac->zonelist,
3605 .nodemask = ac->nodemask,
3606 .memcg = NULL,
3607 .gfp_mask = gfp_mask,
3608 .order = order,
3609 };
3610 struct page *page;
3611
3612 *did_some_progress = 0;
3613
3614 /*
3615 * Acquire the oom lock. If that fails, somebody else is
3616 * making progress for us.
3617 */
3618 if (!mutex_trylock(&oom_lock)) {
3619 *did_some_progress = 1;
3620 schedule_timeout_uninterruptible(1);
3621 return NULL;
3622 }
3623
3624 /*
3625 * Go through the zonelist yet one more time, keep very high watermark
3626 * here, this is only to catch a parallel oom killing, we must fail if
3627 * we're still under heavy pressure. But make sure that this reclaim
3628 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3629 * allocation which will never fail due to oom_lock already held.
3630 */
3631 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3632 ~__GFP_DIRECT_RECLAIM, order,
3633 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3634 if (page)
3635 goto out;
3636
3637 /* Coredumps can quickly deplete all memory reserves */
3638 if (current->flags & PF_DUMPCORE)
3639 goto out;
3640 /* The OOM killer will not help higher order allocs */
3641 if (order > PAGE_ALLOC_COSTLY_ORDER)
3642 goto out;
3643 /*
3644 * We have already exhausted all our reclaim opportunities without any
3645 * success so it is time to admit defeat. We will skip the OOM killer
3646 * because it is very likely that the caller has a more reasonable
3647 * fallback than shooting a random task.
3648 *
3649 * The OOM killer may not free memory on a specific node.
3650 */
3651 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3652 goto out;
3653 /* The OOM killer does not needlessly kill tasks for lowmem */
3654 if (ac->highest_zoneidx < ZONE_NORMAL)
3655 goto out;
3656 if (pm_suspended_storage())
3657 goto out;
3658 /*
3659 * XXX: GFP_NOFS allocations should rather fail than rely on
3660 * other request to make a forward progress.
3661 * We are in an unfortunate situation where out_of_memory cannot
3662 * do much for this context but let's try it to at least get
3663 * access to memory reserved if the current task is killed (see
3664 * out_of_memory). Once filesystems are ready to handle allocation
3665 * failures more gracefully we should just bail out here.
3666 */
3667
3668 /* Exhausted what can be done so it's blame time */
3669 if (out_of_memory(&oc) ||
3670 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3671 *did_some_progress = 1;
3672
3673 /*
3674 * Help non-failing allocations by giving them access to memory
3675 * reserves
3676 */
3677 if (gfp_mask & __GFP_NOFAIL)
3678 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3679 ALLOC_NO_WATERMARKS, ac);
3680 }
3681 out:
3682 mutex_unlock(&oom_lock);
3683 return page;
3684 }
3685
3686 /*
3687 * Maximum number of compaction retries with a progress before OOM
3688 * killer is consider as the only way to move forward.
3689 */
3690 #define MAX_COMPACT_RETRIES 16
3691
3692 #ifdef CONFIG_COMPACTION
3693 /* Try memory compaction for high-order allocations before reclaim */
3694 static struct page *
3695 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3696 unsigned int alloc_flags, const struct alloc_context *ac,
3697 enum compact_priority prio, enum compact_result *compact_result)
3698 {
3699 struct page *page = NULL;
3700 unsigned long pflags;
3701 unsigned int noreclaim_flag;
3702
3703 if (!order)
3704 return NULL;
3705
3706 psi_memstall_enter(&pflags);
3707 delayacct_compact_start();
3708 noreclaim_flag = memalloc_noreclaim_save();
3709
3710 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3711 prio, &page);
3712
3713 memalloc_noreclaim_restore(noreclaim_flag);
3714 psi_memstall_leave(&pflags);
3715 delayacct_compact_end();
3716
3717 if (*compact_result == COMPACT_SKIPPED)
3718 return NULL;
3719 /*
3720 * At least in one zone compaction wasn't deferred or skipped, so let's
3721 * count a compaction stall
3722 */
3723 count_vm_event(COMPACTSTALL);
3724
3725 /* Prep a captured page if available */
3726 if (page)
3727 prep_new_page(page, order, gfp_mask, alloc_flags);
3728
3729 /* Try get a page from the freelist if available */
3730 if (!page)
3731 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3732
3733 if (page) {
3734 struct zone *zone = page_zone(page);
3735
3736 zone->compact_blockskip_flush = false;
3737 compaction_defer_reset(zone, order, true);
3738 count_vm_event(COMPACTSUCCESS);
3739 return page;
3740 }
3741
3742 /*
3743 * It's bad if compaction run occurs and fails. The most likely reason
3744 * is that pages exist, but not enough to satisfy watermarks.
3745 */
3746 count_vm_event(COMPACTFAIL);
3747
3748 cond_resched();
3749
3750 return NULL;
3751 }
3752
3753 static inline bool
3754 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3755 enum compact_result compact_result,
3756 enum compact_priority *compact_priority,
3757 int *compaction_retries)
3758 {
3759 int max_retries = MAX_COMPACT_RETRIES;
3760 int min_priority;
3761 bool ret = false;
3762 int retries = *compaction_retries;
3763 enum compact_priority priority = *compact_priority;
3764
3765 if (!order)
3766 return false;
3767
3768 if (fatal_signal_pending(current))
3769 return false;
3770
3771 if (compaction_made_progress(compact_result))
3772 (*compaction_retries)++;
3773
3774 /*
3775 * compaction considers all the zone as desperately out of memory
3776 * so it doesn't really make much sense to retry except when the
3777 * failure could be caused by insufficient priority
3778 */
3779 if (compaction_failed(compact_result))
3780 goto check_priority;
3781
3782 /*
3783 * compaction was skipped because there are not enough order-0 pages
3784 * to work with, so we retry only if it looks like reclaim can help.
3785 */
3786 if (compaction_needs_reclaim(compact_result)) {
3787 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3788 goto out;
3789 }
3790
3791 /*
3792 * make sure the compaction wasn't deferred or didn't bail out early
3793 * due to locks contention before we declare that we should give up.
3794 * But the next retry should use a higher priority if allowed, so
3795 * we don't just keep bailing out endlessly.
3796 */
3797 if (compaction_withdrawn(compact_result)) {
3798 goto check_priority;
3799 }
3800
3801 /*
3802 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3803 * costly ones because they are de facto nofail and invoke OOM
3804 * killer to move on while costly can fail and users are ready
3805 * to cope with that. 1/4 retries is rather arbitrary but we
3806 * would need much more detailed feedback from compaction to
3807 * make a better decision.
3808 */
3809 if (order > PAGE_ALLOC_COSTLY_ORDER)
3810 max_retries /= 4;
3811 if (*compaction_retries <= max_retries) {
3812 ret = true;
3813 goto out;
3814 }
3815
3816 /*
3817 * Make sure there are attempts at the highest priority if we exhausted
3818 * all retries or failed at the lower priorities.
3819 */
3820 check_priority:
3821 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3822 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3823
3824 if (*compact_priority > min_priority) {
3825 (*compact_priority)--;
3826 *compaction_retries = 0;
3827 ret = true;
3828 }
3829 out:
3830 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3831 return ret;
3832 }
3833 #else
3834 static inline struct page *
3835 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3836 unsigned int alloc_flags, const struct alloc_context *ac,
3837 enum compact_priority prio, enum compact_result *compact_result)
3838 {
3839 *compact_result = COMPACT_SKIPPED;
3840 return NULL;
3841 }
3842
3843 static inline bool
3844 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3845 enum compact_result compact_result,
3846 enum compact_priority *compact_priority,
3847 int *compaction_retries)
3848 {
3849 struct zone *zone;
3850 struct zoneref *z;
3851
3852 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3853 return false;
3854
3855 /*
3856 * There are setups with compaction disabled which would prefer to loop
3857 * inside the allocator rather than hit the oom killer prematurely.
3858 * Let's give them a good hope and keep retrying while the order-0
3859 * watermarks are OK.
3860 */
3861 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3862 ac->highest_zoneidx, ac->nodemask) {
3863 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3864 ac->highest_zoneidx, alloc_flags))
3865 return true;
3866 }
3867 return false;
3868 }
3869 #endif /* CONFIG_COMPACTION */
3870
3871 #ifdef CONFIG_LOCKDEP
3872 static struct lockdep_map __fs_reclaim_map =
3873 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3874
3875 static bool __need_reclaim(gfp_t gfp_mask)
3876 {
3877 /* no reclaim without waiting on it */
3878 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3879 return false;
3880
3881 /* this guy won't enter reclaim */
3882 if (current->flags & PF_MEMALLOC)
3883 return false;
3884
3885 if (gfp_mask & __GFP_NOLOCKDEP)
3886 return false;
3887
3888 return true;
3889 }
3890
3891 void __fs_reclaim_acquire(unsigned long ip)
3892 {
3893 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3894 }
3895
3896 void __fs_reclaim_release(unsigned long ip)
3897 {
3898 lock_release(&__fs_reclaim_map, ip);
3899 }
3900
3901 void fs_reclaim_acquire(gfp_t gfp_mask)
3902 {
3903 gfp_mask = current_gfp_context(gfp_mask);
3904
3905 if (__need_reclaim(gfp_mask)) {
3906 if (gfp_mask & __GFP_FS)
3907 __fs_reclaim_acquire(_RET_IP_);
3908
3909 #ifdef CONFIG_MMU_NOTIFIER
3910 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3911 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3912 #endif
3913
3914 }
3915 }
3916 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3917
3918 void fs_reclaim_release(gfp_t gfp_mask)
3919 {
3920 gfp_mask = current_gfp_context(gfp_mask);
3921
3922 if (__need_reclaim(gfp_mask)) {
3923 if (gfp_mask & __GFP_FS)
3924 __fs_reclaim_release(_RET_IP_);
3925 }
3926 }
3927 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3928 #endif
3929
3930 /*
3931 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3932 * have been rebuilt so allocation retries. Reader side does not lock and
3933 * retries the allocation if zonelist changes. Writer side is protected by the
3934 * embedded spin_lock.
3935 */
3936 static DEFINE_SEQLOCK(zonelist_update_seq);
3937
3938 static unsigned int zonelist_iter_begin(void)
3939 {
3940 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3941 return read_seqbegin(&zonelist_update_seq);
3942
3943 return 0;
3944 }
3945
3946 static unsigned int check_retry_zonelist(unsigned int seq)
3947 {
3948 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3949 return read_seqretry(&zonelist_update_seq, seq);
3950
3951 return seq;
3952 }
3953
3954 /* Perform direct synchronous page reclaim */
3955 static unsigned long
3956 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3957 const struct alloc_context *ac)
3958 {
3959 unsigned int noreclaim_flag;
3960 unsigned long progress;
3961
3962 cond_resched();
3963
3964 /* We now go into synchronous reclaim */
3965 cpuset_memory_pressure_bump();
3966 fs_reclaim_acquire(gfp_mask);
3967 noreclaim_flag = memalloc_noreclaim_save();
3968
3969 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3970 ac->nodemask);
3971
3972 memalloc_noreclaim_restore(noreclaim_flag);
3973 fs_reclaim_release(gfp_mask);
3974
3975 cond_resched();
3976
3977 return progress;
3978 }
3979
3980 /* The really slow allocator path where we enter direct reclaim */
3981 static inline struct page *
3982 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3983 unsigned int alloc_flags, const struct alloc_context *ac,
3984 unsigned long *did_some_progress)
3985 {
3986 struct page *page = NULL;
3987 unsigned long pflags;
3988 bool drained = false;
3989
3990 psi_memstall_enter(&pflags);
3991 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3992 if (unlikely(!(*did_some_progress)))
3993 goto out;
3994
3995 retry:
3996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997
3998 /*
3999 * If an allocation failed after direct reclaim, it could be because
4000 * pages are pinned on the per-cpu lists or in high alloc reserves.
4001 * Shrink them and try again
4002 */
4003 if (!page && !drained) {
4004 unreserve_highatomic_pageblock(ac, false);
4005 drain_all_pages(NULL);
4006 drained = true;
4007 goto retry;
4008 }
4009 out:
4010 psi_memstall_leave(&pflags);
4011
4012 return page;
4013 }
4014
4015 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4016 const struct alloc_context *ac)
4017 {
4018 struct zoneref *z;
4019 struct zone *zone;
4020 pg_data_t *last_pgdat = NULL;
4021 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4022
4023 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4024 ac->nodemask) {
4025 if (!managed_zone(zone))
4026 continue;
4027 if (last_pgdat != zone->zone_pgdat) {
4028 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4029 last_pgdat = zone->zone_pgdat;
4030 }
4031 }
4032 }
4033
4034 static inline unsigned int
4035 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4036 {
4037 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4038
4039 /*
4040 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4041 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4042 * to save two branches.
4043 */
4044 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4045 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4046
4047 /*
4048 * The caller may dip into page reserves a bit more if the caller
4049 * cannot run direct reclaim, or if the caller has realtime scheduling
4050 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4051 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4052 */
4053 alloc_flags |= (__force int)
4054 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4055
4056 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4057 /*
4058 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4059 * if it can't schedule.
4060 */
4061 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4062 alloc_flags |= ALLOC_NON_BLOCK;
4063
4064 if (order > 0)
4065 alloc_flags |= ALLOC_HIGHATOMIC;
4066 }
4067
4068 /*
4069 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4070 * GFP_ATOMIC) rather than fail, see the comment for
4071 * cpuset_node_allowed().
4072 */
4073 if (alloc_flags & ALLOC_MIN_RESERVE)
4074 alloc_flags &= ~ALLOC_CPUSET;
4075 } else if (unlikely(rt_task(current)) && in_task())
4076 alloc_flags |= ALLOC_MIN_RESERVE;
4077
4078 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4079
4080 return alloc_flags;
4081 }
4082
4083 static bool oom_reserves_allowed(struct task_struct *tsk)
4084 {
4085 if (!tsk_is_oom_victim(tsk))
4086 return false;
4087
4088 /*
4089 * !MMU doesn't have oom reaper so give access to memory reserves
4090 * only to the thread with TIF_MEMDIE set
4091 */
4092 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4093 return false;
4094
4095 return true;
4096 }
4097
4098 /*
4099 * Distinguish requests which really need access to full memory
4100 * reserves from oom victims which can live with a portion of it
4101 */
4102 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4103 {
4104 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4105 return 0;
4106 if (gfp_mask & __GFP_MEMALLOC)
4107 return ALLOC_NO_WATERMARKS;
4108 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4109 return ALLOC_NO_WATERMARKS;
4110 if (!in_interrupt()) {
4111 if (current->flags & PF_MEMALLOC)
4112 return ALLOC_NO_WATERMARKS;
4113 else if (oom_reserves_allowed(current))
4114 return ALLOC_OOM;
4115 }
4116
4117 return 0;
4118 }
4119
4120 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4121 {
4122 return !!__gfp_pfmemalloc_flags(gfp_mask);
4123 }
4124
4125 /*
4126 * Checks whether it makes sense to retry the reclaim to make a forward progress
4127 * for the given allocation request.
4128 *
4129 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4130 * without success, or when we couldn't even meet the watermark if we
4131 * reclaimed all remaining pages on the LRU lists.
4132 *
4133 * Returns true if a retry is viable or false to enter the oom path.
4134 */
4135 static inline bool
4136 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4137 struct alloc_context *ac, int alloc_flags,
4138 bool did_some_progress, int *no_progress_loops)
4139 {
4140 struct zone *zone;
4141 struct zoneref *z;
4142 bool ret = false;
4143
4144 /*
4145 * Costly allocations might have made a progress but this doesn't mean
4146 * their order will become available due to high fragmentation so
4147 * always increment the no progress counter for them
4148 */
4149 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4150 *no_progress_loops = 0;
4151 else
4152 (*no_progress_loops)++;
4153
4154 /*
4155 * Make sure we converge to OOM if we cannot make any progress
4156 * several times in the row.
4157 */
4158 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4159 /* Before OOM, exhaust highatomic_reserve */
4160 return unreserve_highatomic_pageblock(ac, true);
4161 }
4162
4163 /*
4164 * Keep reclaiming pages while there is a chance this will lead
4165 * somewhere. If none of the target zones can satisfy our allocation
4166 * request even if all reclaimable pages are considered then we are
4167 * screwed and have to go OOM.
4168 */
4169 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4170 ac->highest_zoneidx, ac->nodemask) {
4171 unsigned long available;
4172 unsigned long reclaimable;
4173 unsigned long min_wmark = min_wmark_pages(zone);
4174 bool wmark;
4175
4176 available = reclaimable = zone_reclaimable_pages(zone);
4177 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4178
4179 /*
4180 * Would the allocation succeed if we reclaimed all
4181 * reclaimable pages?
4182 */
4183 wmark = __zone_watermark_ok(zone, order, min_wmark,
4184 ac->highest_zoneidx, alloc_flags, available);
4185 trace_reclaim_retry_zone(z, order, reclaimable,
4186 available, min_wmark, *no_progress_loops, wmark);
4187 if (wmark) {
4188 ret = true;
4189 break;
4190 }
4191 }
4192
4193 /*
4194 * Memory allocation/reclaim might be called from a WQ context and the
4195 * current implementation of the WQ concurrency control doesn't
4196 * recognize that a particular WQ is congested if the worker thread is
4197 * looping without ever sleeping. Therefore we have to do a short sleep
4198 * here rather than calling cond_resched().
4199 */
4200 if (current->flags & PF_WQ_WORKER)
4201 schedule_timeout_uninterruptible(1);
4202 else
4203 cond_resched();
4204 return ret;
4205 }
4206
4207 static inline bool
4208 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4209 {
4210 /*
4211 * It's possible that cpuset's mems_allowed and the nodemask from
4212 * mempolicy don't intersect. This should be normally dealt with by
4213 * policy_nodemask(), but it's possible to race with cpuset update in
4214 * such a way the check therein was true, and then it became false
4215 * before we got our cpuset_mems_cookie here.
4216 * This assumes that for all allocations, ac->nodemask can come only
4217 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4218 * when it does not intersect with the cpuset restrictions) or the
4219 * caller can deal with a violated nodemask.
4220 */
4221 if (cpusets_enabled() && ac->nodemask &&
4222 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4223 ac->nodemask = NULL;
4224 return true;
4225 }
4226
4227 /*
4228 * When updating a task's mems_allowed or mempolicy nodemask, it is
4229 * possible to race with parallel threads in such a way that our
4230 * allocation can fail while the mask is being updated. If we are about
4231 * to fail, check if the cpuset changed during allocation and if so,
4232 * retry.
4233 */
4234 if (read_mems_allowed_retry(cpuset_mems_cookie))
4235 return true;
4236
4237 return false;
4238 }
4239
4240 static inline struct page *
4241 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4242 struct alloc_context *ac)
4243 {
4244 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4245 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4246 struct page *page = NULL;
4247 unsigned int alloc_flags;
4248 unsigned long did_some_progress;
4249 enum compact_priority compact_priority;
4250 enum compact_result compact_result;
4251 int compaction_retries;
4252 int no_progress_loops;
4253 unsigned int cpuset_mems_cookie;
4254 unsigned int zonelist_iter_cookie;
4255 int reserve_flags;
4256
4257 restart:
4258 compaction_retries = 0;
4259 no_progress_loops = 0;
4260 compact_priority = DEF_COMPACT_PRIORITY;
4261 cpuset_mems_cookie = read_mems_allowed_begin();
4262 zonelist_iter_cookie = zonelist_iter_begin();
4263
4264 /*
4265 * The fast path uses conservative alloc_flags to succeed only until
4266 * kswapd needs to be woken up, and to avoid the cost of setting up
4267 * alloc_flags precisely. So we do that now.
4268 */
4269 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4270
4271 /*
4272 * We need to recalculate the starting point for the zonelist iterator
4273 * because we might have used different nodemask in the fast path, or
4274 * there was a cpuset modification and we are retrying - otherwise we
4275 * could end up iterating over non-eligible zones endlessly.
4276 */
4277 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4278 ac->highest_zoneidx, ac->nodemask);
4279 if (!ac->preferred_zoneref->zone)
4280 goto nopage;
4281
4282 /*
4283 * Check for insane configurations where the cpuset doesn't contain
4284 * any suitable zone to satisfy the request - e.g. non-movable
4285 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4286 */
4287 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4288 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4289 ac->highest_zoneidx,
4290 &cpuset_current_mems_allowed);
4291 if (!z->zone)
4292 goto nopage;
4293 }
4294
4295 if (alloc_flags & ALLOC_KSWAPD)
4296 wake_all_kswapds(order, gfp_mask, ac);
4297
4298 /*
4299 * The adjusted alloc_flags might result in immediate success, so try
4300 * that first
4301 */
4302 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4303 if (page)
4304 goto got_pg;
4305
4306 /*
4307 * For costly allocations, try direct compaction first, as it's likely
4308 * that we have enough base pages and don't need to reclaim. For non-
4309 * movable high-order allocations, do that as well, as compaction will
4310 * try prevent permanent fragmentation by migrating from blocks of the
4311 * same migratetype.
4312 * Don't try this for allocations that are allowed to ignore
4313 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4314 */
4315 if (can_direct_reclaim &&
4316 (costly_order ||
4317 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4318 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4319 page = __alloc_pages_direct_compact(gfp_mask, order,
4320 alloc_flags, ac,
4321 INIT_COMPACT_PRIORITY,
4322 &compact_result);
4323 if (page)
4324 goto got_pg;
4325
4326 /*
4327 * Checks for costly allocations with __GFP_NORETRY, which
4328 * includes some THP page fault allocations
4329 */
4330 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4331 /*
4332 * If allocating entire pageblock(s) and compaction
4333 * failed because all zones are below low watermarks
4334 * or is prohibited because it recently failed at this
4335 * order, fail immediately unless the allocator has
4336 * requested compaction and reclaim retry.
4337 *
4338 * Reclaim is
4339 * - potentially very expensive because zones are far
4340 * below their low watermarks or this is part of very
4341 * bursty high order allocations,
4342 * - not guaranteed to help because isolate_freepages()
4343 * may not iterate over freed pages as part of its
4344 * linear scan, and
4345 * - unlikely to make entire pageblocks free on its
4346 * own.
4347 */
4348 if (compact_result == COMPACT_SKIPPED ||
4349 compact_result == COMPACT_DEFERRED)
4350 goto nopage;
4351
4352 /*
4353 * Looks like reclaim/compaction is worth trying, but
4354 * sync compaction could be very expensive, so keep
4355 * using async compaction.
4356 */
4357 compact_priority = INIT_COMPACT_PRIORITY;
4358 }
4359 }
4360
4361 retry:
4362 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4363 if (alloc_flags & ALLOC_KSWAPD)
4364 wake_all_kswapds(order, gfp_mask, ac);
4365
4366 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4367 if (reserve_flags)
4368 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4369 (alloc_flags & ALLOC_KSWAPD);
4370
4371 /*
4372 * Reset the nodemask and zonelist iterators if memory policies can be
4373 * ignored. These allocations are high priority and system rather than
4374 * user oriented.
4375 */
4376 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4377 ac->nodemask = NULL;
4378 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4379 ac->highest_zoneidx, ac->nodemask);
4380 }
4381
4382 /* Attempt with potentially adjusted zonelist and alloc_flags */
4383 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4384 if (page)
4385 goto got_pg;
4386
4387 /* Caller is not willing to reclaim, we can't balance anything */
4388 if (!can_direct_reclaim)
4389 goto nopage;
4390
4391 /* Avoid recursion of direct reclaim */
4392 if (current->flags & PF_MEMALLOC)
4393 goto nopage;
4394
4395 /* Try direct reclaim and then allocating */
4396 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4397 &did_some_progress);
4398 if (page)
4399 goto got_pg;
4400
4401 /* Try direct compaction and then allocating */
4402 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4403 compact_priority, &compact_result);
4404 if (page)
4405 goto got_pg;
4406
4407 /* Do not loop if specifically requested */
4408 if (gfp_mask & __GFP_NORETRY)
4409 goto nopage;
4410
4411 /*
4412 * Do not retry costly high order allocations unless they are
4413 * __GFP_RETRY_MAYFAIL
4414 */
4415 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4416 goto nopage;
4417
4418 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4419 did_some_progress > 0, &no_progress_loops))
4420 goto retry;
4421
4422 /*
4423 * It doesn't make any sense to retry for the compaction if the order-0
4424 * reclaim is not able to make any progress because the current
4425 * implementation of the compaction depends on the sufficient amount
4426 * of free memory (see __compaction_suitable)
4427 */
4428 if (did_some_progress > 0 &&
4429 should_compact_retry(ac, order, alloc_flags,
4430 compact_result, &compact_priority,
4431 &compaction_retries))
4432 goto retry;
4433
4434
4435 /*
4436 * Deal with possible cpuset update races or zonelist updates to avoid
4437 * a unnecessary OOM kill.
4438 */
4439 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4440 check_retry_zonelist(zonelist_iter_cookie))
4441 goto restart;
4442
4443 /* Reclaim has failed us, start killing things */
4444 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4445 if (page)
4446 goto got_pg;
4447
4448 /* Avoid allocations with no watermarks from looping endlessly */
4449 if (tsk_is_oom_victim(current) &&
4450 (alloc_flags & ALLOC_OOM ||
4451 (gfp_mask & __GFP_NOMEMALLOC)))
4452 goto nopage;
4453
4454 /* Retry as long as the OOM killer is making progress */
4455 if (did_some_progress) {
4456 no_progress_loops = 0;
4457 goto retry;
4458 }
4459
4460 nopage:
4461 /*
4462 * Deal with possible cpuset update races or zonelist updates to avoid
4463 * a unnecessary OOM kill.
4464 */
4465 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4466 check_retry_zonelist(zonelist_iter_cookie))
4467 goto restart;
4468
4469 /*
4470 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4471 * we always retry
4472 */
4473 if (gfp_mask & __GFP_NOFAIL) {
4474 /*
4475 * All existing users of the __GFP_NOFAIL are blockable, so warn
4476 * of any new users that actually require GFP_NOWAIT
4477 */
4478 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4479 goto fail;
4480
4481 /*
4482 * PF_MEMALLOC request from this context is rather bizarre
4483 * because we cannot reclaim anything and only can loop waiting
4484 * for somebody to do a work for us
4485 */
4486 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4487
4488 /*
4489 * non failing costly orders are a hard requirement which we
4490 * are not prepared for much so let's warn about these users
4491 * so that we can identify them and convert them to something
4492 * else.
4493 */
4494 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4495
4496 /*
4497 * Help non-failing allocations by giving some access to memory
4498 * reserves normally used for high priority non-blocking
4499 * allocations but do not use ALLOC_NO_WATERMARKS because this
4500 * could deplete whole memory reserves which would just make
4501 * the situation worse.
4502 */
4503 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4504 if (page)
4505 goto got_pg;
4506
4507 cond_resched();
4508 goto retry;
4509 }
4510 fail:
4511 warn_alloc(gfp_mask, ac->nodemask,
4512 "page allocation failure: order:%u", order);
4513 got_pg:
4514 return page;
4515 }
4516
4517 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4518 int preferred_nid, nodemask_t *nodemask,
4519 struct alloc_context *ac, gfp_t *alloc_gfp,
4520 unsigned int *alloc_flags)
4521 {
4522 ac->highest_zoneidx = gfp_zone(gfp_mask);
4523 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4524 ac->nodemask = nodemask;
4525 ac->migratetype = gfp_migratetype(gfp_mask);
4526
4527 if (cpusets_enabled()) {
4528 *alloc_gfp |= __GFP_HARDWALL;
4529 /*
4530 * When we are in the interrupt context, it is irrelevant
4531 * to the current task context. It means that any node ok.
4532 */
4533 if (in_task() && !ac->nodemask)
4534 ac->nodemask = &cpuset_current_mems_allowed;
4535 else
4536 *alloc_flags |= ALLOC_CPUSET;
4537 }
4538
4539 might_alloc(gfp_mask);
4540
4541 if (should_fail_alloc_page(gfp_mask, order))
4542 return false;
4543
4544 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4545
4546 /* Dirty zone balancing only done in the fast path */
4547 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4548
4549 /*
4550 * The preferred zone is used for statistics but crucially it is
4551 * also used as the starting point for the zonelist iterator. It
4552 * may get reset for allocations that ignore memory policies.
4553 */
4554 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4555 ac->highest_zoneidx, ac->nodemask);
4556
4557 return true;
4558 }
4559
4560 /*
4561 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4562 * @gfp: GFP flags for the allocation
4563 * @preferred_nid: The preferred NUMA node ID to allocate from
4564 * @nodemask: Set of nodes to allocate from, may be NULL
4565 * @nr_pages: The number of pages desired on the list or array
4566 * @page_list: Optional list to store the allocated pages
4567 * @page_array: Optional array to store the pages
4568 *
4569 * This is a batched version of the page allocator that attempts to
4570 * allocate nr_pages quickly. Pages are added to page_list if page_list
4571 * is not NULL, otherwise it is assumed that the page_array is valid.
4572 *
4573 * For lists, nr_pages is the number of pages that should be allocated.
4574 *
4575 * For arrays, only NULL elements are populated with pages and nr_pages
4576 * is the maximum number of pages that will be stored in the array.
4577 *
4578 * Returns the number of pages on the list or array.
4579 */
4580 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4581 nodemask_t *nodemask, int nr_pages,
4582 struct list_head *page_list,
4583 struct page **page_array)
4584 {
4585 struct page *page;
4586 unsigned long __maybe_unused UP_flags;
4587 struct zone *zone;
4588 struct zoneref *z;
4589 struct per_cpu_pages *pcp;
4590 struct list_head *pcp_list;
4591 struct alloc_context ac;
4592 gfp_t alloc_gfp;
4593 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4594 int nr_populated = 0, nr_account = 0;
4595
4596 /*
4597 * Skip populated array elements to determine if any pages need
4598 * to be allocated before disabling IRQs.
4599 */
4600 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4601 nr_populated++;
4602
4603 /* No pages requested? */
4604 if (unlikely(nr_pages <= 0))
4605 goto out;
4606
4607 /* Already populated array? */
4608 if (unlikely(page_array && nr_pages - nr_populated == 0))
4609 goto out;
4610
4611 /* Bulk allocator does not support memcg accounting. */
4612 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4613 goto failed;
4614
4615 /* Use the single page allocator for one page. */
4616 if (nr_pages - nr_populated == 1)
4617 goto failed;
4618
4619 #ifdef CONFIG_PAGE_OWNER
4620 /*
4621 * PAGE_OWNER may recurse into the allocator to allocate space to
4622 * save the stack with pagesets.lock held. Releasing/reacquiring
4623 * removes much of the performance benefit of bulk allocation so
4624 * force the caller to allocate one page at a time as it'll have
4625 * similar performance to added complexity to the bulk allocator.
4626 */
4627 if (static_branch_unlikely(&page_owner_inited))
4628 goto failed;
4629 #endif
4630
4631 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4632 gfp &= gfp_allowed_mask;
4633 alloc_gfp = gfp;
4634 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4635 goto out;
4636 gfp = alloc_gfp;
4637
4638 /* Find an allowed local zone that meets the low watermark. */
4639 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4640 unsigned long mark;
4641
4642 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4643 !__cpuset_zone_allowed(zone, gfp)) {
4644 continue;
4645 }
4646
4647 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4648 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4649 goto failed;
4650 }
4651
4652 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4653 if (zone_watermark_fast(zone, 0, mark,
4654 zonelist_zone_idx(ac.preferred_zoneref),
4655 alloc_flags, gfp)) {
4656 break;
4657 }
4658 }
4659
4660 /*
4661 * If there are no allowed local zones that meets the watermarks then
4662 * try to allocate a single page and reclaim if necessary.
4663 */
4664 if (unlikely(!zone))
4665 goto failed;
4666
4667 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4668 pcp_trylock_prepare(UP_flags);
4669 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4670 if (!pcp)
4671 goto failed_irq;
4672
4673 /* Attempt the batch allocation */
4674 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4675 while (nr_populated < nr_pages) {
4676
4677 /* Skip existing pages */
4678 if (page_array && page_array[nr_populated]) {
4679 nr_populated++;
4680 continue;
4681 }
4682
4683 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4684 pcp, pcp_list);
4685 if (unlikely(!page)) {
4686 /* Try and allocate at least one page */
4687 if (!nr_account) {
4688 pcp_spin_unlock(pcp);
4689 goto failed_irq;
4690 }
4691 break;
4692 }
4693 nr_account++;
4694
4695 prep_new_page(page, 0, gfp, 0);
4696 if (page_list)
4697 list_add(&page->lru, page_list);
4698 else
4699 page_array[nr_populated] = page;
4700 nr_populated++;
4701 }
4702
4703 pcp_spin_unlock(pcp);
4704 pcp_trylock_finish(UP_flags);
4705
4706 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4707 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4708
4709 out:
4710 return nr_populated;
4711
4712 failed_irq:
4713 pcp_trylock_finish(UP_flags);
4714
4715 failed:
4716 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4717 if (page) {
4718 if (page_list)
4719 list_add(&page->lru, page_list);
4720 else
4721 page_array[nr_populated] = page;
4722 nr_populated++;
4723 }
4724
4725 goto out;
4726 }
4727 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4728
4729 /*
4730 * This is the 'heart' of the zoned buddy allocator.
4731 */
4732 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4733 nodemask_t *nodemask)
4734 {
4735 struct page *page;
4736 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4737 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4738 struct alloc_context ac = { };
4739
4740 /*
4741 * There are several places where we assume that the order value is sane
4742 * so bail out early if the request is out of bound.
4743 */
4744 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4745 return NULL;
4746
4747 gfp &= gfp_allowed_mask;
4748 /*
4749 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4750 * resp. GFP_NOIO which has to be inherited for all allocation requests
4751 * from a particular context which has been marked by
4752 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4753 * movable zones are not used during allocation.
4754 */
4755 gfp = current_gfp_context(gfp);
4756 alloc_gfp = gfp;
4757 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4758 &alloc_gfp, &alloc_flags))
4759 return NULL;
4760
4761 /*
4762 * Forbid the first pass from falling back to types that fragment
4763 * memory until all local zones are considered.
4764 */
4765 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4766
4767 /* First allocation attempt */
4768 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4769 if (likely(page))
4770 goto out;
4771
4772 alloc_gfp = gfp;
4773 ac.spread_dirty_pages = false;
4774
4775 /*
4776 * Restore the original nodemask if it was potentially replaced with
4777 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4778 */
4779 ac.nodemask = nodemask;
4780
4781 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4782
4783 out:
4784 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4785 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4786 __free_pages(page, order);
4787 page = NULL;
4788 }
4789
4790 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4791 kmsan_alloc_page(page, order, alloc_gfp);
4792
4793 return page;
4794 }
4795 EXPORT_SYMBOL(__alloc_pages);
4796
4797 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4798 nodemask_t *nodemask)
4799 {
4800 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4801 preferred_nid, nodemask);
4802
4803 if (page && order > 1)
4804 prep_transhuge_page(page);
4805 return (struct folio *)page;
4806 }
4807 EXPORT_SYMBOL(__folio_alloc);
4808
4809 /*
4810 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4811 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4812 * you need to access high mem.
4813 */
4814 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4815 {
4816 struct page *page;
4817
4818 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4819 if (!page)
4820 return 0;
4821 return (unsigned long) page_address(page);
4822 }
4823 EXPORT_SYMBOL(__get_free_pages);
4824
4825 unsigned long get_zeroed_page(gfp_t gfp_mask)
4826 {
4827 return __get_free_page(gfp_mask | __GFP_ZERO);
4828 }
4829 EXPORT_SYMBOL(get_zeroed_page);
4830
4831 /**
4832 * __free_pages - Free pages allocated with alloc_pages().
4833 * @page: The page pointer returned from alloc_pages().
4834 * @order: The order of the allocation.
4835 *
4836 * This function can free multi-page allocations that are not compound
4837 * pages. It does not check that the @order passed in matches that of
4838 * the allocation, so it is easy to leak memory. Freeing more memory
4839 * than was allocated will probably emit a warning.
4840 *
4841 * If the last reference to this page is speculative, it will be released
4842 * by put_page() which only frees the first page of a non-compound
4843 * allocation. To prevent the remaining pages from being leaked, we free
4844 * the subsequent pages here. If you want to use the page's reference
4845 * count to decide when to free the allocation, you should allocate a
4846 * compound page, and use put_page() instead of __free_pages().
4847 *
4848 * Context: May be called in interrupt context or while holding a normal
4849 * spinlock, but not in NMI context or while holding a raw spinlock.
4850 */
4851 void __free_pages(struct page *page, unsigned int order)
4852 {
4853 /* get PageHead before we drop reference */
4854 int head = PageHead(page);
4855
4856 if (put_page_testzero(page))
4857 free_the_page(page, order);
4858 else if (!head)
4859 while (order-- > 0)
4860 free_the_page(page + (1 << order), order);
4861 }
4862 EXPORT_SYMBOL(__free_pages);
4863
4864 void free_pages(unsigned long addr, unsigned int order)
4865 {
4866 if (addr != 0) {
4867 VM_BUG_ON(!virt_addr_valid((void *)addr));
4868 __free_pages(virt_to_page((void *)addr), order);
4869 }
4870 }
4871
4872 EXPORT_SYMBOL(free_pages);
4873
4874 /*
4875 * Page Fragment:
4876 * An arbitrary-length arbitrary-offset area of memory which resides
4877 * within a 0 or higher order page. Multiple fragments within that page
4878 * are individually refcounted, in the page's reference counter.
4879 *
4880 * The page_frag functions below provide a simple allocation framework for
4881 * page fragments. This is used by the network stack and network device
4882 * drivers to provide a backing region of memory for use as either an
4883 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4884 */
4885 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4886 gfp_t gfp_mask)
4887 {
4888 struct page *page = NULL;
4889 gfp_t gfp = gfp_mask;
4890
4891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4892 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4893 __GFP_NOMEMALLOC;
4894 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4895 PAGE_FRAG_CACHE_MAX_ORDER);
4896 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4897 #endif
4898 if (unlikely(!page))
4899 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4900
4901 nc->va = page ? page_address(page) : NULL;
4902
4903 return page;
4904 }
4905
4906 void __page_frag_cache_drain(struct page *page, unsigned int count)
4907 {
4908 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4909
4910 if (page_ref_sub_and_test(page, count))
4911 free_the_page(page, compound_order(page));
4912 }
4913 EXPORT_SYMBOL(__page_frag_cache_drain);
4914
4915 void *page_frag_alloc_align(struct page_frag_cache *nc,
4916 unsigned int fragsz, gfp_t gfp_mask,
4917 unsigned int align_mask)
4918 {
4919 unsigned int size = PAGE_SIZE;
4920 struct page *page;
4921 int offset;
4922
4923 if (unlikely(!nc->va)) {
4924 refill:
4925 page = __page_frag_cache_refill(nc, gfp_mask);
4926 if (!page)
4927 return NULL;
4928
4929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4930 /* if size can vary use size else just use PAGE_SIZE */
4931 size = nc->size;
4932 #endif
4933 /* Even if we own the page, we do not use atomic_set().
4934 * This would break get_page_unless_zero() users.
4935 */
4936 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4937
4938 /* reset page count bias and offset to start of new frag */
4939 nc->pfmemalloc = page_is_pfmemalloc(page);
4940 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4941 nc->offset = size;
4942 }
4943
4944 offset = nc->offset - fragsz;
4945 if (unlikely(offset < 0)) {
4946 page = virt_to_page(nc->va);
4947
4948 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4949 goto refill;
4950
4951 if (unlikely(nc->pfmemalloc)) {
4952 free_the_page(page, compound_order(page));
4953 goto refill;
4954 }
4955
4956 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4957 /* if size can vary use size else just use PAGE_SIZE */
4958 size = nc->size;
4959 #endif
4960 /* OK, page count is 0, we can safely set it */
4961 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4962
4963 /* reset page count bias and offset to start of new frag */
4964 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4965 offset = size - fragsz;
4966 if (unlikely(offset < 0)) {
4967 /*
4968 * The caller is trying to allocate a fragment
4969 * with fragsz > PAGE_SIZE but the cache isn't big
4970 * enough to satisfy the request, this may
4971 * happen in low memory conditions.
4972 * We don't release the cache page because
4973 * it could make memory pressure worse
4974 * so we simply return NULL here.
4975 */
4976 return NULL;
4977 }
4978 }
4979
4980 nc->pagecnt_bias--;
4981 offset &= align_mask;
4982 nc->offset = offset;
4983
4984 return nc->va + offset;
4985 }
4986 EXPORT_SYMBOL(page_frag_alloc_align);
4987
4988 /*
4989 * Frees a page fragment allocated out of either a compound or order 0 page.
4990 */
4991 void page_frag_free(void *addr)
4992 {
4993 struct page *page = virt_to_head_page(addr);
4994
4995 if (unlikely(put_page_testzero(page)))
4996 free_the_page(page, compound_order(page));
4997 }
4998 EXPORT_SYMBOL(page_frag_free);
4999
5000 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 size_t size)
5002 {
5003 if (addr) {
5004 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5005 struct page *page = virt_to_page((void *)addr);
5006 struct page *last = page + nr;
5007
5008 split_page_owner(page, 1 << order);
5009 split_page_memcg(page, 1 << order);
5010 while (page < --last)
5011 set_page_refcounted(last);
5012
5013 last = page + (1UL << order);
5014 for (page += nr; page < last; page++)
5015 __free_pages_ok(page, 0, FPI_TO_TAIL);
5016 }
5017 return (void *)addr;
5018 }
5019
5020 /**
5021 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5022 * @size: the number of bytes to allocate
5023 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5024 *
5025 * This function is similar to alloc_pages(), except that it allocates the
5026 * minimum number of pages to satisfy the request. alloc_pages() can only
5027 * allocate memory in power-of-two pages.
5028 *
5029 * This function is also limited by MAX_ORDER.
5030 *
5031 * Memory allocated by this function must be released by free_pages_exact().
5032 *
5033 * Return: pointer to the allocated area or %NULL in case of error.
5034 */
5035 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5036 {
5037 unsigned int order = get_order(size);
5038 unsigned long addr;
5039
5040 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5041 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5042
5043 addr = __get_free_pages(gfp_mask, order);
5044 return make_alloc_exact(addr, order, size);
5045 }
5046 EXPORT_SYMBOL(alloc_pages_exact);
5047
5048 /**
5049 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5050 * pages on a node.
5051 * @nid: the preferred node ID where memory should be allocated
5052 * @size: the number of bytes to allocate
5053 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5054 *
5055 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5056 * back.
5057 *
5058 * Return: pointer to the allocated area or %NULL in case of error.
5059 */
5060 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5061 {
5062 unsigned int order = get_order(size);
5063 struct page *p;
5064
5065 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5066 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5067
5068 p = alloc_pages_node(nid, gfp_mask, order);
5069 if (!p)
5070 return NULL;
5071 return make_alloc_exact((unsigned long)page_address(p), order, size);
5072 }
5073
5074 /**
5075 * free_pages_exact - release memory allocated via alloc_pages_exact()
5076 * @virt: the value returned by alloc_pages_exact.
5077 * @size: size of allocation, same value as passed to alloc_pages_exact().
5078 *
5079 * Release the memory allocated by a previous call to alloc_pages_exact.
5080 */
5081 void free_pages_exact(void *virt, size_t size)
5082 {
5083 unsigned long addr = (unsigned long)virt;
5084 unsigned long end = addr + PAGE_ALIGN(size);
5085
5086 while (addr < end) {
5087 free_page(addr);
5088 addr += PAGE_SIZE;
5089 }
5090 }
5091 EXPORT_SYMBOL(free_pages_exact);
5092
5093 /**
5094 * nr_free_zone_pages - count number of pages beyond high watermark
5095 * @offset: The zone index of the highest zone
5096 *
5097 * nr_free_zone_pages() counts the number of pages which are beyond the
5098 * high watermark within all zones at or below a given zone index. For each
5099 * zone, the number of pages is calculated as:
5100 *
5101 * nr_free_zone_pages = managed_pages - high_pages
5102 *
5103 * Return: number of pages beyond high watermark.
5104 */
5105 static unsigned long nr_free_zone_pages(int offset)
5106 {
5107 struct zoneref *z;
5108 struct zone *zone;
5109
5110 /* Just pick one node, since fallback list is circular */
5111 unsigned long sum = 0;
5112
5113 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5114
5115 for_each_zone_zonelist(zone, z, zonelist, offset) {
5116 unsigned long size = zone_managed_pages(zone);
5117 unsigned long high = high_wmark_pages(zone);
5118 if (size > high)
5119 sum += size - high;
5120 }
5121
5122 return sum;
5123 }
5124
5125 /**
5126 * nr_free_buffer_pages - count number of pages beyond high watermark
5127 *
5128 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5129 * watermark within ZONE_DMA and ZONE_NORMAL.
5130 *
5131 * Return: number of pages beyond high watermark within ZONE_DMA and
5132 * ZONE_NORMAL.
5133 */
5134 unsigned long nr_free_buffer_pages(void)
5135 {
5136 return nr_free_zone_pages(gfp_zone(GFP_USER));
5137 }
5138 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5139
5140 static inline void show_node(struct zone *zone)
5141 {
5142 if (IS_ENABLED(CONFIG_NUMA))
5143 printk("Node %d ", zone_to_nid(zone));
5144 }
5145
5146 long si_mem_available(void)
5147 {
5148 long available;
5149 unsigned long pagecache;
5150 unsigned long wmark_low = 0;
5151 unsigned long pages[NR_LRU_LISTS];
5152 unsigned long reclaimable;
5153 struct zone *zone;
5154 int lru;
5155
5156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5157 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5158
5159 for_each_zone(zone)
5160 wmark_low += low_wmark_pages(zone);
5161
5162 /*
5163 * Estimate the amount of memory available for userspace allocations,
5164 * without causing swapping or OOM.
5165 */
5166 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5167
5168 /*
5169 * Not all the page cache can be freed, otherwise the system will
5170 * start swapping or thrashing. Assume at least half of the page
5171 * cache, or the low watermark worth of cache, needs to stay.
5172 */
5173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 pagecache -= min(pagecache / 2, wmark_low);
5175 available += pagecache;
5176
5177 /*
5178 * Part of the reclaimable slab and other kernel memory consists of
5179 * items that are in use, and cannot be freed. Cap this estimate at the
5180 * low watermark.
5181 */
5182 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 available += reclaimable - min(reclaimable / 2, wmark_low);
5185
5186 if (available < 0)
5187 available = 0;
5188 return available;
5189 }
5190 EXPORT_SYMBOL_GPL(si_mem_available);
5191
5192 void si_meminfo(struct sysinfo *val)
5193 {
5194 val->totalram = totalram_pages();
5195 val->sharedram = global_node_page_state(NR_SHMEM);
5196 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5197 val->bufferram = nr_blockdev_pages();
5198 val->totalhigh = totalhigh_pages();
5199 val->freehigh = nr_free_highpages();
5200 val->mem_unit = PAGE_SIZE;
5201 }
5202
5203 EXPORT_SYMBOL(si_meminfo);
5204
5205 #ifdef CONFIG_NUMA
5206 void si_meminfo_node(struct sysinfo *val, int nid)
5207 {
5208 int zone_type; /* needs to be signed */
5209 unsigned long managed_pages = 0;
5210 unsigned long managed_highpages = 0;
5211 unsigned long free_highpages = 0;
5212 pg_data_t *pgdat = NODE_DATA(nid);
5213
5214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5215 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5216 val->totalram = managed_pages;
5217 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5219 #ifdef CONFIG_HIGHMEM
5220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 struct zone *zone = &pgdat->node_zones[zone_type];
5222
5223 if (is_highmem(zone)) {
5224 managed_highpages += zone_managed_pages(zone);
5225 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 }
5227 }
5228 val->totalhigh = managed_highpages;
5229 val->freehigh = free_highpages;
5230 #else
5231 val->totalhigh = managed_highpages;
5232 val->freehigh = free_highpages;
5233 #endif
5234 val->mem_unit = PAGE_SIZE;
5235 }
5236 #endif
5237
5238 /*
5239 * Determine whether the node should be displayed or not, depending on whether
5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5241 */
5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5243 {
5244 if (!(flags & SHOW_MEM_FILTER_NODES))
5245 return false;
5246
5247 /*
5248 * no node mask - aka implicit memory numa policy. Do not bother with
5249 * the synchronization - read_mems_allowed_begin - because we do not
5250 * have to be precise here.
5251 */
5252 if (!nodemask)
5253 nodemask = &cpuset_current_mems_allowed;
5254
5255 return !node_isset(nid, *nodemask);
5256 }
5257
5258 static void show_migration_types(unsigned char type)
5259 {
5260 static const char types[MIGRATE_TYPES] = {
5261 [MIGRATE_UNMOVABLE] = 'U',
5262 [MIGRATE_MOVABLE] = 'M',
5263 [MIGRATE_RECLAIMABLE] = 'E',
5264 [MIGRATE_HIGHATOMIC] = 'H',
5265 #ifdef CONFIG_CMA
5266 [MIGRATE_CMA] = 'C',
5267 #endif
5268 #ifdef CONFIG_MEMORY_ISOLATION
5269 [MIGRATE_ISOLATE] = 'I',
5270 #endif
5271 };
5272 char tmp[MIGRATE_TYPES + 1];
5273 char *p = tmp;
5274 int i;
5275
5276 for (i = 0; i < MIGRATE_TYPES; i++) {
5277 if (type & (1 << i))
5278 *p++ = types[i];
5279 }
5280
5281 *p = '\0';
5282 printk(KERN_CONT "(%s) ", tmp);
5283 }
5284
5285 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
5286 {
5287 int zone_idx;
5288 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
5289 if (zone_managed_pages(pgdat->node_zones + zone_idx))
5290 return true;
5291 return false;
5292 }
5293
5294 /*
5295 * Show free area list (used inside shift_scroll-lock stuff)
5296 * We also calculate the percentage fragmentation. We do this by counting the
5297 * memory on each free list with the exception of the first item on the list.
5298 *
5299 * Bits in @filter:
5300 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5301 * cpuset.
5302 */
5303 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
5304 {
5305 unsigned long free_pcp = 0;
5306 int cpu, nid;
5307 struct zone *zone;
5308 pg_data_t *pgdat;
5309
5310 for_each_populated_zone(zone) {
5311 if (zone_idx(zone) > max_zone_idx)
5312 continue;
5313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314 continue;
5315
5316 for_each_online_cpu(cpu)
5317 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5318 }
5319
5320 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322 " unevictable:%lu dirty:%lu writeback:%lu\n"
5323 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324 " mapped:%lu shmem:%lu pagetables:%lu\n"
5325 " sec_pagetables:%lu bounce:%lu\n"
5326 " kernel_misc_reclaimable:%lu\n"
5327 " free:%lu free_pcp:%lu free_cma:%lu\n",
5328 global_node_page_state(NR_ACTIVE_ANON),
5329 global_node_page_state(NR_INACTIVE_ANON),
5330 global_node_page_state(NR_ISOLATED_ANON),
5331 global_node_page_state(NR_ACTIVE_FILE),
5332 global_node_page_state(NR_INACTIVE_FILE),
5333 global_node_page_state(NR_ISOLATED_FILE),
5334 global_node_page_state(NR_UNEVICTABLE),
5335 global_node_page_state(NR_FILE_DIRTY),
5336 global_node_page_state(NR_WRITEBACK),
5337 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5338 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5339 global_node_page_state(NR_FILE_MAPPED),
5340 global_node_page_state(NR_SHMEM),
5341 global_node_page_state(NR_PAGETABLE),
5342 global_node_page_state(NR_SECONDARY_PAGETABLE),
5343 global_zone_page_state(NR_BOUNCE),
5344 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5345 global_zone_page_state(NR_FREE_PAGES),
5346 free_pcp,
5347 global_zone_page_state(NR_FREE_CMA_PAGES));
5348
5349 for_each_online_pgdat(pgdat) {
5350 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5351 continue;
5352 if (!node_has_managed_zones(pgdat, max_zone_idx))
5353 continue;
5354
5355 printk("Node %d"
5356 " active_anon:%lukB"
5357 " inactive_anon:%lukB"
5358 " active_file:%lukB"
5359 " inactive_file:%lukB"
5360 " unevictable:%lukB"
5361 " isolated(anon):%lukB"
5362 " isolated(file):%lukB"
5363 " mapped:%lukB"
5364 " dirty:%lukB"
5365 " writeback:%lukB"
5366 " shmem:%lukB"
5367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5368 " shmem_thp: %lukB"
5369 " shmem_pmdmapped: %lukB"
5370 " anon_thp: %lukB"
5371 #endif
5372 " writeback_tmp:%lukB"
5373 " kernel_stack:%lukB"
5374 #ifdef CONFIG_SHADOW_CALL_STACK
5375 " shadow_call_stack:%lukB"
5376 #endif
5377 " pagetables:%lukB"
5378 " sec_pagetables:%lukB"
5379 " all_unreclaimable? %s"
5380 "\n",
5381 pgdat->node_id,
5382 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5383 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5384 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5385 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5386 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5387 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5388 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5389 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5390 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5391 K(node_page_state(pgdat, NR_WRITEBACK)),
5392 K(node_page_state(pgdat, NR_SHMEM)),
5393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5394 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5395 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5396 K(node_page_state(pgdat, NR_ANON_THPS)),
5397 #endif
5398 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5399 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5400 #ifdef CONFIG_SHADOW_CALL_STACK
5401 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5402 #endif
5403 K(node_page_state(pgdat, NR_PAGETABLE)),
5404 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
5405 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5406 "yes" : "no");
5407 }
5408
5409 for_each_populated_zone(zone) {
5410 int i;
5411
5412 if (zone_idx(zone) > max_zone_idx)
5413 continue;
5414 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5415 continue;
5416
5417 free_pcp = 0;
5418 for_each_online_cpu(cpu)
5419 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5420
5421 show_node(zone);
5422 printk(KERN_CONT
5423 "%s"
5424 " free:%lukB"
5425 " boost:%lukB"
5426 " min:%lukB"
5427 " low:%lukB"
5428 " high:%lukB"
5429 " reserved_highatomic:%luKB"
5430 " active_anon:%lukB"
5431 " inactive_anon:%lukB"
5432 " active_file:%lukB"
5433 " inactive_file:%lukB"
5434 " unevictable:%lukB"
5435 " writepending:%lukB"
5436 " present:%lukB"
5437 " managed:%lukB"
5438 " mlocked:%lukB"
5439 " bounce:%lukB"
5440 " free_pcp:%lukB"
5441 " local_pcp:%ukB"
5442 " free_cma:%lukB"
5443 "\n",
5444 zone->name,
5445 K(zone_page_state(zone, NR_FREE_PAGES)),
5446 K(zone->watermark_boost),
5447 K(min_wmark_pages(zone)),
5448 K(low_wmark_pages(zone)),
5449 K(high_wmark_pages(zone)),
5450 K(zone->nr_reserved_highatomic),
5451 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5452 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5453 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5454 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5455 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5456 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5457 K(zone->present_pages),
5458 K(zone_managed_pages(zone)),
5459 K(zone_page_state(zone, NR_MLOCK)),
5460 K(zone_page_state(zone, NR_BOUNCE)),
5461 K(free_pcp),
5462 K(this_cpu_read(zone->per_cpu_pageset->count)),
5463 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5464 printk("lowmem_reserve[]:");
5465 for (i = 0; i < MAX_NR_ZONES; i++)
5466 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5467 printk(KERN_CONT "\n");
5468 }
5469
5470 for_each_populated_zone(zone) {
5471 unsigned int order;
5472 unsigned long nr[MAX_ORDER + 1], flags, total = 0;
5473 unsigned char types[MAX_ORDER + 1];
5474
5475 if (zone_idx(zone) > max_zone_idx)
5476 continue;
5477 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5478 continue;
5479 show_node(zone);
5480 printk(KERN_CONT "%s: ", zone->name);
5481
5482 spin_lock_irqsave(&zone->lock, flags);
5483 for (order = 0; order <= MAX_ORDER; order++) {
5484 struct free_area *area = &zone->free_area[order];
5485 int type;
5486
5487 nr[order] = area->nr_free;
5488 total += nr[order] << order;
5489
5490 types[order] = 0;
5491 for (type = 0; type < MIGRATE_TYPES; type++) {
5492 if (!free_area_empty(area, type))
5493 types[order] |= 1 << type;
5494 }
5495 }
5496 spin_unlock_irqrestore(&zone->lock, flags);
5497 for (order = 0; order <= MAX_ORDER; order++) {
5498 printk(KERN_CONT "%lu*%lukB ",
5499 nr[order], K(1UL) << order);
5500 if (nr[order])
5501 show_migration_types(types[order]);
5502 }
5503 printk(KERN_CONT "= %lukB\n", K(total));
5504 }
5505
5506 for_each_online_node(nid) {
5507 if (show_mem_node_skip(filter, nid, nodemask))
5508 continue;
5509 hugetlb_show_meminfo_node(nid);
5510 }
5511
5512 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5513
5514 show_swap_cache_info();
5515 }
5516
5517 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5518 {
5519 zoneref->zone = zone;
5520 zoneref->zone_idx = zone_idx(zone);
5521 }
5522
5523 /*
5524 * Builds allocation fallback zone lists.
5525 *
5526 * Add all populated zones of a node to the zonelist.
5527 */
5528 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5529 {
5530 struct zone *zone;
5531 enum zone_type zone_type = MAX_NR_ZONES;
5532 int nr_zones = 0;
5533
5534 do {
5535 zone_type--;
5536 zone = pgdat->node_zones + zone_type;
5537 if (populated_zone(zone)) {
5538 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5539 check_highest_zone(zone_type);
5540 }
5541 } while (zone_type);
5542
5543 return nr_zones;
5544 }
5545
5546 #ifdef CONFIG_NUMA
5547
5548 static int __parse_numa_zonelist_order(char *s)
5549 {
5550 /*
5551 * We used to support different zonelists modes but they turned
5552 * out to be just not useful. Let's keep the warning in place
5553 * if somebody still use the cmd line parameter so that we do
5554 * not fail it silently
5555 */
5556 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5557 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5558 return -EINVAL;
5559 }
5560 return 0;
5561 }
5562
5563 char numa_zonelist_order[] = "Node";
5564
5565 /*
5566 * sysctl handler for numa_zonelist_order
5567 */
5568 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5569 void *buffer, size_t *length, loff_t *ppos)
5570 {
5571 if (write)
5572 return __parse_numa_zonelist_order(buffer);
5573 return proc_dostring(table, write, buffer, length, ppos);
5574 }
5575
5576
5577 static int node_load[MAX_NUMNODES];
5578
5579 /**
5580 * find_next_best_node - find the next node that should appear in a given node's fallback list
5581 * @node: node whose fallback list we're appending
5582 * @used_node_mask: nodemask_t of already used nodes
5583 *
5584 * We use a number of factors to determine which is the next node that should
5585 * appear on a given node's fallback list. The node should not have appeared
5586 * already in @node's fallback list, and it should be the next closest node
5587 * according to the distance array (which contains arbitrary distance values
5588 * from each node to each node in the system), and should also prefer nodes
5589 * with no CPUs, since presumably they'll have very little allocation pressure
5590 * on them otherwise.
5591 *
5592 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5593 */
5594 int find_next_best_node(int node, nodemask_t *used_node_mask)
5595 {
5596 int n, val;
5597 int min_val = INT_MAX;
5598 int best_node = NUMA_NO_NODE;
5599
5600 /* Use the local node if we haven't already */
5601 if (!node_isset(node, *used_node_mask)) {
5602 node_set(node, *used_node_mask);
5603 return node;
5604 }
5605
5606 for_each_node_state(n, N_MEMORY) {
5607
5608 /* Don't want a node to appear more than once */
5609 if (node_isset(n, *used_node_mask))
5610 continue;
5611
5612 /* Use the distance array to find the distance */
5613 val = node_distance(node, n);
5614
5615 /* Penalize nodes under us ("prefer the next node") */
5616 val += (n < node);
5617
5618 /* Give preference to headless and unused nodes */
5619 if (!cpumask_empty(cpumask_of_node(n)))
5620 val += PENALTY_FOR_NODE_WITH_CPUS;
5621
5622 /* Slight preference for less loaded node */
5623 val *= MAX_NUMNODES;
5624 val += node_load[n];
5625
5626 if (val < min_val) {
5627 min_val = val;
5628 best_node = n;
5629 }
5630 }
5631
5632 if (best_node >= 0)
5633 node_set(best_node, *used_node_mask);
5634
5635 return best_node;
5636 }
5637
5638
5639 /*
5640 * Build zonelists ordered by node and zones within node.
5641 * This results in maximum locality--normal zone overflows into local
5642 * DMA zone, if any--but risks exhausting DMA zone.
5643 */
5644 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5645 unsigned nr_nodes)
5646 {
5647 struct zoneref *zonerefs;
5648 int i;
5649
5650 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5651
5652 for (i = 0; i < nr_nodes; i++) {
5653 int nr_zones;
5654
5655 pg_data_t *node = NODE_DATA(node_order[i]);
5656
5657 nr_zones = build_zonerefs_node(node, zonerefs);
5658 zonerefs += nr_zones;
5659 }
5660 zonerefs->zone = NULL;
5661 zonerefs->zone_idx = 0;
5662 }
5663
5664 /*
5665 * Build gfp_thisnode zonelists
5666 */
5667 static void build_thisnode_zonelists(pg_data_t *pgdat)
5668 {
5669 struct zoneref *zonerefs;
5670 int nr_zones;
5671
5672 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5673 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5674 zonerefs += nr_zones;
5675 zonerefs->zone = NULL;
5676 zonerefs->zone_idx = 0;
5677 }
5678
5679 /*
5680 * Build zonelists ordered by zone and nodes within zones.
5681 * This results in conserving DMA zone[s] until all Normal memory is
5682 * exhausted, but results in overflowing to remote node while memory
5683 * may still exist in local DMA zone.
5684 */
5685
5686 static void build_zonelists(pg_data_t *pgdat)
5687 {
5688 static int node_order[MAX_NUMNODES];
5689 int node, nr_nodes = 0;
5690 nodemask_t used_mask = NODE_MASK_NONE;
5691 int local_node, prev_node;
5692
5693 /* NUMA-aware ordering of nodes */
5694 local_node = pgdat->node_id;
5695 prev_node = local_node;
5696
5697 memset(node_order, 0, sizeof(node_order));
5698 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5699 /*
5700 * We don't want to pressure a particular node.
5701 * So adding penalty to the first node in same
5702 * distance group to make it round-robin.
5703 */
5704 if (node_distance(local_node, node) !=
5705 node_distance(local_node, prev_node))
5706 node_load[node] += 1;
5707
5708 node_order[nr_nodes++] = node;
5709 prev_node = node;
5710 }
5711
5712 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5713 build_thisnode_zonelists(pgdat);
5714 pr_info("Fallback order for Node %d: ", local_node);
5715 for (node = 0; node < nr_nodes; node++)
5716 pr_cont("%d ", node_order[node]);
5717 pr_cont("\n");
5718 }
5719
5720 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5721 /*
5722 * Return node id of node used for "local" allocations.
5723 * I.e., first node id of first zone in arg node's generic zonelist.
5724 * Used for initializing percpu 'numa_mem', which is used primarily
5725 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5726 */
5727 int local_memory_node(int node)
5728 {
5729 struct zoneref *z;
5730
5731 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5732 gfp_zone(GFP_KERNEL),
5733 NULL);
5734 return zone_to_nid(z->zone);
5735 }
5736 #endif
5737
5738 static void setup_min_unmapped_ratio(void);
5739 static void setup_min_slab_ratio(void);
5740 #else /* CONFIG_NUMA */
5741
5742 static void build_zonelists(pg_data_t *pgdat)
5743 {
5744 int node, local_node;
5745 struct zoneref *zonerefs;
5746 int nr_zones;
5747
5748 local_node = pgdat->node_id;
5749
5750 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5751 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5752 zonerefs += nr_zones;
5753
5754 /*
5755 * Now we build the zonelist so that it contains the zones
5756 * of all the other nodes.
5757 * We don't want to pressure a particular node, so when
5758 * building the zones for node N, we make sure that the
5759 * zones coming right after the local ones are those from
5760 * node N+1 (modulo N)
5761 */
5762 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5763 if (!node_online(node))
5764 continue;
5765 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5766 zonerefs += nr_zones;
5767 }
5768 for (node = 0; node < local_node; node++) {
5769 if (!node_online(node))
5770 continue;
5771 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5772 zonerefs += nr_zones;
5773 }
5774
5775 zonerefs->zone = NULL;
5776 zonerefs->zone_idx = 0;
5777 }
5778
5779 #endif /* CONFIG_NUMA */
5780
5781 /*
5782 * Boot pageset table. One per cpu which is going to be used for all
5783 * zones and all nodes. The parameters will be set in such a way
5784 * that an item put on a list will immediately be handed over to
5785 * the buddy list. This is safe since pageset manipulation is done
5786 * with interrupts disabled.
5787 *
5788 * The boot_pagesets must be kept even after bootup is complete for
5789 * unused processors and/or zones. They do play a role for bootstrapping
5790 * hotplugged processors.
5791 *
5792 * zoneinfo_show() and maybe other functions do
5793 * not check if the processor is online before following the pageset pointer.
5794 * Other parts of the kernel may not check if the zone is available.
5795 */
5796 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5797 /* These effectively disable the pcplists in the boot pageset completely */
5798 #define BOOT_PAGESET_HIGH 0
5799 #define BOOT_PAGESET_BATCH 1
5800 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5801 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5802
5803 static void __build_all_zonelists(void *data)
5804 {
5805 int nid;
5806 int __maybe_unused cpu;
5807 pg_data_t *self = data;
5808 unsigned long flags;
5809
5810 /*
5811 * Explicitly disable this CPU's interrupts before taking seqlock
5812 * to prevent any IRQ handler from calling into the page allocator
5813 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5814 */
5815 local_irq_save(flags);
5816 /*
5817 * Explicitly disable this CPU's synchronous printk() before taking
5818 * seqlock to prevent any printk() from trying to hold port->lock, for
5819 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5820 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5821 */
5822 printk_deferred_enter();
5823 write_seqlock(&zonelist_update_seq);
5824
5825 #ifdef CONFIG_NUMA
5826 memset(node_load, 0, sizeof(node_load));
5827 #endif
5828
5829 /*
5830 * This node is hotadded and no memory is yet present. So just
5831 * building zonelists is fine - no need to touch other nodes.
5832 */
5833 if (self && !node_online(self->node_id)) {
5834 build_zonelists(self);
5835 } else {
5836 /*
5837 * All possible nodes have pgdat preallocated
5838 * in free_area_init
5839 */
5840 for_each_node(nid) {
5841 pg_data_t *pgdat = NODE_DATA(nid);
5842
5843 build_zonelists(pgdat);
5844 }
5845
5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847 /*
5848 * We now know the "local memory node" for each node--
5849 * i.e., the node of the first zone in the generic zonelist.
5850 * Set up numa_mem percpu variable for on-line cpus. During
5851 * boot, only the boot cpu should be on-line; we'll init the
5852 * secondary cpus' numa_mem as they come on-line. During
5853 * node/memory hotplug, we'll fixup all on-line cpus.
5854 */
5855 for_each_online_cpu(cpu)
5856 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5857 #endif
5858 }
5859
5860 write_sequnlock(&zonelist_update_seq);
5861 printk_deferred_exit();
5862 local_irq_restore(flags);
5863 }
5864
5865 static noinline void __init
5866 build_all_zonelists_init(void)
5867 {
5868 int cpu;
5869
5870 __build_all_zonelists(NULL);
5871
5872 /*
5873 * Initialize the boot_pagesets that are going to be used
5874 * for bootstrapping processors. The real pagesets for
5875 * each zone will be allocated later when the per cpu
5876 * allocator is available.
5877 *
5878 * boot_pagesets are used also for bootstrapping offline
5879 * cpus if the system is already booted because the pagesets
5880 * are needed to initialize allocators on a specific cpu too.
5881 * F.e. the percpu allocator needs the page allocator which
5882 * needs the percpu allocator in order to allocate its pagesets
5883 * (a chicken-egg dilemma).
5884 */
5885 for_each_possible_cpu(cpu)
5886 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5887
5888 mminit_verify_zonelist();
5889 cpuset_init_current_mems_allowed();
5890 }
5891
5892 /*
5893 * unless system_state == SYSTEM_BOOTING.
5894 *
5895 * __ref due to call of __init annotated helper build_all_zonelists_init
5896 * [protected by SYSTEM_BOOTING].
5897 */
5898 void __ref build_all_zonelists(pg_data_t *pgdat)
5899 {
5900 unsigned long vm_total_pages;
5901
5902 if (system_state == SYSTEM_BOOTING) {
5903 build_all_zonelists_init();
5904 } else {
5905 __build_all_zonelists(pgdat);
5906 /* cpuset refresh routine should be here */
5907 }
5908 /* Get the number of free pages beyond high watermark in all zones. */
5909 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5910 /*
5911 * Disable grouping by mobility if the number of pages in the
5912 * system is too low to allow the mechanism to work. It would be
5913 * more accurate, but expensive to check per-zone. This check is
5914 * made on memory-hotadd so a system can start with mobility
5915 * disabled and enable it later
5916 */
5917 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5918 page_group_by_mobility_disabled = 1;
5919 else
5920 page_group_by_mobility_disabled = 0;
5921
5922 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5923 nr_online_nodes,
5924 page_group_by_mobility_disabled ? "off" : "on",
5925 vm_total_pages);
5926 #ifdef CONFIG_NUMA
5927 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5928 #endif
5929 }
5930
5931 static int zone_batchsize(struct zone *zone)
5932 {
5933 #ifdef CONFIG_MMU
5934 int batch;
5935
5936 /*
5937 * The number of pages to batch allocate is either ~0.1%
5938 * of the zone or 1MB, whichever is smaller. The batch
5939 * size is striking a balance between allocation latency
5940 * and zone lock contention.
5941 */
5942 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5943 batch /= 4; /* We effectively *= 4 below */
5944 if (batch < 1)
5945 batch = 1;
5946
5947 /*
5948 * Clamp the batch to a 2^n - 1 value. Having a power
5949 * of 2 value was found to be more likely to have
5950 * suboptimal cache aliasing properties in some cases.
5951 *
5952 * For example if 2 tasks are alternately allocating
5953 * batches of pages, one task can end up with a lot
5954 * of pages of one half of the possible page colors
5955 * and the other with pages of the other colors.
5956 */
5957 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5958
5959 return batch;
5960
5961 #else
5962 /* The deferral and batching of frees should be suppressed under NOMMU
5963 * conditions.
5964 *
5965 * The problem is that NOMMU needs to be able to allocate large chunks
5966 * of contiguous memory as there's no hardware page translation to
5967 * assemble apparent contiguous memory from discontiguous pages.
5968 *
5969 * Queueing large contiguous runs of pages for batching, however,
5970 * causes the pages to actually be freed in smaller chunks. As there
5971 * can be a significant delay between the individual batches being
5972 * recycled, this leads to the once large chunks of space being
5973 * fragmented and becoming unavailable for high-order allocations.
5974 */
5975 return 0;
5976 #endif
5977 }
5978
5979 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5980 {
5981 #ifdef CONFIG_MMU
5982 int high;
5983 int nr_split_cpus;
5984 unsigned long total_pages;
5985
5986 if (!percpu_pagelist_high_fraction) {
5987 /*
5988 * By default, the high value of the pcp is based on the zone
5989 * low watermark so that if they are full then background
5990 * reclaim will not be started prematurely.
5991 */
5992 total_pages = low_wmark_pages(zone);
5993 } else {
5994 /*
5995 * If percpu_pagelist_high_fraction is configured, the high
5996 * value is based on a fraction of the managed pages in the
5997 * zone.
5998 */
5999 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6000 }
6001
6002 /*
6003 * Split the high value across all online CPUs local to the zone. Note
6004 * that early in boot that CPUs may not be online yet and that during
6005 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6006 * onlined. For memory nodes that have no CPUs, split pcp->high across
6007 * all online CPUs to mitigate the risk that reclaim is triggered
6008 * prematurely due to pages stored on pcp lists.
6009 */
6010 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6011 if (!nr_split_cpus)
6012 nr_split_cpus = num_online_cpus();
6013 high = total_pages / nr_split_cpus;
6014
6015 /*
6016 * Ensure high is at least batch*4. The multiple is based on the
6017 * historical relationship between high and batch.
6018 */
6019 high = max(high, batch << 2);
6020
6021 return high;
6022 #else
6023 return 0;
6024 #endif
6025 }
6026
6027 /*
6028 * pcp->high and pcp->batch values are related and generally batch is lower
6029 * than high. They are also related to pcp->count such that count is lower
6030 * than high, and as soon as it reaches high, the pcplist is flushed.
6031 *
6032 * However, guaranteeing these relations at all times would require e.g. write
6033 * barriers here but also careful usage of read barriers at the read side, and
6034 * thus be prone to error and bad for performance. Thus the update only prevents
6035 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6036 * can cope with those fields changing asynchronously, and fully trust only the
6037 * pcp->count field on the local CPU with interrupts disabled.
6038 *
6039 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6040 * outside of boot time (or some other assurance that no concurrent updaters
6041 * exist).
6042 */
6043 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6044 unsigned long batch)
6045 {
6046 WRITE_ONCE(pcp->batch, batch);
6047 WRITE_ONCE(pcp->high, high);
6048 }
6049
6050 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6051 {
6052 int pindex;
6053
6054 memset(pcp, 0, sizeof(*pcp));
6055 memset(pzstats, 0, sizeof(*pzstats));
6056
6057 spin_lock_init(&pcp->lock);
6058 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6059 INIT_LIST_HEAD(&pcp->lists[pindex]);
6060
6061 /*
6062 * Set batch and high values safe for a boot pageset. A true percpu
6063 * pageset's initialization will update them subsequently. Here we don't
6064 * need to be as careful as pageset_update() as nobody can access the
6065 * pageset yet.
6066 */
6067 pcp->high = BOOT_PAGESET_HIGH;
6068 pcp->batch = BOOT_PAGESET_BATCH;
6069 pcp->free_factor = 0;
6070 }
6071
6072 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6073 unsigned long batch)
6074 {
6075 struct per_cpu_pages *pcp;
6076 int cpu;
6077
6078 for_each_possible_cpu(cpu) {
6079 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6080 pageset_update(pcp, high, batch);
6081 }
6082 }
6083
6084 /*
6085 * Calculate and set new high and batch values for all per-cpu pagesets of a
6086 * zone based on the zone's size.
6087 */
6088 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6089 {
6090 int new_high, new_batch;
6091
6092 new_batch = max(1, zone_batchsize(zone));
6093 new_high = zone_highsize(zone, new_batch, cpu_online);
6094
6095 if (zone->pageset_high == new_high &&
6096 zone->pageset_batch == new_batch)
6097 return;
6098
6099 zone->pageset_high = new_high;
6100 zone->pageset_batch = new_batch;
6101
6102 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6103 }
6104
6105 void __meminit setup_zone_pageset(struct zone *zone)
6106 {
6107 int cpu;
6108
6109 /* Size may be 0 on !SMP && !NUMA */
6110 if (sizeof(struct per_cpu_zonestat) > 0)
6111 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6112
6113 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6114 for_each_possible_cpu(cpu) {
6115 struct per_cpu_pages *pcp;
6116 struct per_cpu_zonestat *pzstats;
6117
6118 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6119 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6120 per_cpu_pages_init(pcp, pzstats);
6121 }
6122
6123 zone_set_pageset_high_and_batch(zone, 0);
6124 }
6125
6126 /*
6127 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6128 * page high values need to be recalculated.
6129 */
6130 static void zone_pcp_update(struct zone *zone, int cpu_online)
6131 {
6132 mutex_lock(&pcp_batch_high_lock);
6133 zone_set_pageset_high_and_batch(zone, cpu_online);
6134 mutex_unlock(&pcp_batch_high_lock);
6135 }
6136
6137 /*
6138 * Allocate per cpu pagesets and initialize them.
6139 * Before this call only boot pagesets were available.
6140 */
6141 void __init setup_per_cpu_pageset(void)
6142 {
6143 struct pglist_data *pgdat;
6144 struct zone *zone;
6145 int __maybe_unused cpu;
6146
6147 for_each_populated_zone(zone)
6148 setup_zone_pageset(zone);
6149
6150 #ifdef CONFIG_NUMA
6151 /*
6152 * Unpopulated zones continue using the boot pagesets.
6153 * The numa stats for these pagesets need to be reset.
6154 * Otherwise, they will end up skewing the stats of
6155 * the nodes these zones are associated with.
6156 */
6157 for_each_possible_cpu(cpu) {
6158 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6159 memset(pzstats->vm_numa_event, 0,
6160 sizeof(pzstats->vm_numa_event));
6161 }
6162 #endif
6163
6164 for_each_online_pgdat(pgdat)
6165 pgdat->per_cpu_nodestats =
6166 alloc_percpu(struct per_cpu_nodestat);
6167 }
6168
6169 __meminit void zone_pcp_init(struct zone *zone)
6170 {
6171 /*
6172 * per cpu subsystem is not up at this point. The following code
6173 * relies on the ability of the linker to provide the
6174 * offset of a (static) per cpu variable into the per cpu area.
6175 */
6176 zone->per_cpu_pageset = &boot_pageset;
6177 zone->per_cpu_zonestats = &boot_zonestats;
6178 zone->pageset_high = BOOT_PAGESET_HIGH;
6179 zone->pageset_batch = BOOT_PAGESET_BATCH;
6180
6181 if (populated_zone(zone))
6182 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6183 zone->present_pages, zone_batchsize(zone));
6184 }
6185
6186 void adjust_managed_page_count(struct page *page, long count)
6187 {
6188 atomic_long_add(count, &page_zone(page)->managed_pages);
6189 totalram_pages_add(count);
6190 #ifdef CONFIG_HIGHMEM
6191 if (PageHighMem(page))
6192 totalhigh_pages_add(count);
6193 #endif
6194 }
6195 EXPORT_SYMBOL(adjust_managed_page_count);
6196
6197 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6198 {
6199 void *pos;
6200 unsigned long pages = 0;
6201
6202 start = (void *)PAGE_ALIGN((unsigned long)start);
6203 end = (void *)((unsigned long)end & PAGE_MASK);
6204 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6205 struct page *page = virt_to_page(pos);
6206 void *direct_map_addr;
6207
6208 /*
6209 * 'direct_map_addr' might be different from 'pos'
6210 * because some architectures' virt_to_page()
6211 * work with aliases. Getting the direct map
6212 * address ensures that we get a _writeable_
6213 * alias for the memset().
6214 */
6215 direct_map_addr = page_address(page);
6216 /*
6217 * Perform a kasan-unchecked memset() since this memory
6218 * has not been initialized.
6219 */
6220 direct_map_addr = kasan_reset_tag(direct_map_addr);
6221 if ((unsigned int)poison <= 0xFF)
6222 memset(direct_map_addr, poison, PAGE_SIZE);
6223
6224 free_reserved_page(page);
6225 }
6226
6227 if (pages && s)
6228 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6229
6230 return pages;
6231 }
6232
6233 static int page_alloc_cpu_dead(unsigned int cpu)
6234 {
6235 struct zone *zone;
6236
6237 lru_add_drain_cpu(cpu);
6238 mlock_drain_remote(cpu);
6239 drain_pages(cpu);
6240
6241 /*
6242 * Spill the event counters of the dead processor
6243 * into the current processors event counters.
6244 * This artificially elevates the count of the current
6245 * processor.
6246 */
6247 vm_events_fold_cpu(cpu);
6248
6249 /*
6250 * Zero the differential counters of the dead processor
6251 * so that the vm statistics are consistent.
6252 *
6253 * This is only okay since the processor is dead and cannot
6254 * race with what we are doing.
6255 */
6256 cpu_vm_stats_fold(cpu);
6257
6258 for_each_populated_zone(zone)
6259 zone_pcp_update(zone, 0);
6260
6261 return 0;
6262 }
6263
6264 static int page_alloc_cpu_online(unsigned int cpu)
6265 {
6266 struct zone *zone;
6267
6268 for_each_populated_zone(zone)
6269 zone_pcp_update(zone, 1);
6270 return 0;
6271 }
6272
6273 void __init page_alloc_init_cpuhp(void)
6274 {
6275 int ret;
6276
6277 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6278 "mm/page_alloc:pcp",
6279 page_alloc_cpu_online,
6280 page_alloc_cpu_dead);
6281 WARN_ON(ret < 0);
6282 }
6283
6284 /*
6285 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6286 * or min_free_kbytes changes.
6287 */
6288 static void calculate_totalreserve_pages(void)
6289 {
6290 struct pglist_data *pgdat;
6291 unsigned long reserve_pages = 0;
6292 enum zone_type i, j;
6293
6294 for_each_online_pgdat(pgdat) {
6295
6296 pgdat->totalreserve_pages = 0;
6297
6298 for (i = 0; i < MAX_NR_ZONES; i++) {
6299 struct zone *zone = pgdat->node_zones + i;
6300 long max = 0;
6301 unsigned long managed_pages = zone_managed_pages(zone);
6302
6303 /* Find valid and maximum lowmem_reserve in the zone */
6304 for (j = i; j < MAX_NR_ZONES; j++) {
6305 if (zone->lowmem_reserve[j] > max)
6306 max = zone->lowmem_reserve[j];
6307 }
6308
6309 /* we treat the high watermark as reserved pages. */
6310 max += high_wmark_pages(zone);
6311
6312 if (max > managed_pages)
6313 max = managed_pages;
6314
6315 pgdat->totalreserve_pages += max;
6316
6317 reserve_pages += max;
6318 }
6319 }
6320 totalreserve_pages = reserve_pages;
6321 }
6322
6323 /*
6324 * setup_per_zone_lowmem_reserve - called whenever
6325 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6326 * has a correct pages reserved value, so an adequate number of
6327 * pages are left in the zone after a successful __alloc_pages().
6328 */
6329 static void setup_per_zone_lowmem_reserve(void)
6330 {
6331 struct pglist_data *pgdat;
6332 enum zone_type i, j;
6333
6334 for_each_online_pgdat(pgdat) {
6335 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6336 struct zone *zone = &pgdat->node_zones[i];
6337 int ratio = sysctl_lowmem_reserve_ratio[i];
6338 bool clear = !ratio || !zone_managed_pages(zone);
6339 unsigned long managed_pages = 0;
6340
6341 for (j = i + 1; j < MAX_NR_ZONES; j++) {
6342 struct zone *upper_zone = &pgdat->node_zones[j];
6343
6344 managed_pages += zone_managed_pages(upper_zone);
6345
6346 if (clear)
6347 zone->lowmem_reserve[j] = 0;
6348 else
6349 zone->lowmem_reserve[j] = managed_pages / ratio;
6350 }
6351 }
6352 }
6353
6354 /* update totalreserve_pages */
6355 calculate_totalreserve_pages();
6356 }
6357
6358 static void __setup_per_zone_wmarks(void)
6359 {
6360 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6361 unsigned long lowmem_pages = 0;
6362 struct zone *zone;
6363 unsigned long flags;
6364
6365 /* Calculate total number of !ZONE_HIGHMEM pages */
6366 for_each_zone(zone) {
6367 if (!is_highmem(zone))
6368 lowmem_pages += zone_managed_pages(zone);
6369 }
6370
6371 for_each_zone(zone) {
6372 u64 tmp;
6373
6374 spin_lock_irqsave(&zone->lock, flags);
6375 tmp = (u64)pages_min * zone_managed_pages(zone);
6376 do_div(tmp, lowmem_pages);
6377 if (is_highmem(zone)) {
6378 /*
6379 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6380 * need highmem pages, so cap pages_min to a small
6381 * value here.
6382 *
6383 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6384 * deltas control async page reclaim, and so should
6385 * not be capped for highmem.
6386 */
6387 unsigned long min_pages;
6388
6389 min_pages = zone_managed_pages(zone) / 1024;
6390 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6391 zone->_watermark[WMARK_MIN] = min_pages;
6392 } else {
6393 /*
6394 * If it's a lowmem zone, reserve a number of pages
6395 * proportionate to the zone's size.
6396 */
6397 zone->_watermark[WMARK_MIN] = tmp;
6398 }
6399
6400 /*
6401 * Set the kswapd watermarks distance according to the
6402 * scale factor in proportion to available memory, but
6403 * ensure a minimum size on small systems.
6404 */
6405 tmp = max_t(u64, tmp >> 2,
6406 mult_frac(zone_managed_pages(zone),
6407 watermark_scale_factor, 10000));
6408
6409 zone->watermark_boost = 0;
6410 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6411 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6412 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6413
6414 spin_unlock_irqrestore(&zone->lock, flags);
6415 }
6416
6417 /* update totalreserve_pages */
6418 calculate_totalreserve_pages();
6419 }
6420
6421 /**
6422 * setup_per_zone_wmarks - called when min_free_kbytes changes
6423 * or when memory is hot-{added|removed}
6424 *
6425 * Ensures that the watermark[min,low,high] values for each zone are set
6426 * correctly with respect to min_free_kbytes.
6427 */
6428 void setup_per_zone_wmarks(void)
6429 {
6430 struct zone *zone;
6431 static DEFINE_SPINLOCK(lock);
6432
6433 spin_lock(&lock);
6434 __setup_per_zone_wmarks();
6435 spin_unlock(&lock);
6436
6437 /*
6438 * The watermark size have changed so update the pcpu batch
6439 * and high limits or the limits may be inappropriate.
6440 */
6441 for_each_zone(zone)
6442 zone_pcp_update(zone, 0);
6443 }
6444
6445 /*
6446 * Initialise min_free_kbytes.
6447 *
6448 * For small machines we want it small (128k min). For large machines
6449 * we want it large (256MB max). But it is not linear, because network
6450 * bandwidth does not increase linearly with machine size. We use
6451 *
6452 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6453 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6454 *
6455 * which yields
6456 *
6457 * 16MB: 512k
6458 * 32MB: 724k
6459 * 64MB: 1024k
6460 * 128MB: 1448k
6461 * 256MB: 2048k
6462 * 512MB: 2896k
6463 * 1024MB: 4096k
6464 * 2048MB: 5792k
6465 * 4096MB: 8192k
6466 * 8192MB: 11584k
6467 * 16384MB: 16384k
6468 */
6469 void calculate_min_free_kbytes(void)
6470 {
6471 unsigned long lowmem_kbytes;
6472 int new_min_free_kbytes;
6473
6474 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6475 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6476
6477 if (new_min_free_kbytes > user_min_free_kbytes)
6478 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6479 else
6480 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6481 new_min_free_kbytes, user_min_free_kbytes);
6482
6483 }
6484
6485 int __meminit init_per_zone_wmark_min(void)
6486 {
6487 calculate_min_free_kbytes();
6488 setup_per_zone_wmarks();
6489 refresh_zone_stat_thresholds();
6490 setup_per_zone_lowmem_reserve();
6491
6492 #ifdef CONFIG_NUMA
6493 setup_min_unmapped_ratio();
6494 setup_min_slab_ratio();
6495 #endif
6496
6497 khugepaged_min_free_kbytes_update();
6498
6499 return 0;
6500 }
6501 postcore_initcall(init_per_zone_wmark_min)
6502
6503 /*
6504 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6505 * that we can call two helper functions whenever min_free_kbytes
6506 * changes.
6507 */
6508 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6509 void *buffer, size_t *length, loff_t *ppos)
6510 {
6511 int rc;
6512
6513 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6514 if (rc)
6515 return rc;
6516
6517 if (write) {
6518 user_min_free_kbytes = min_free_kbytes;
6519 setup_per_zone_wmarks();
6520 }
6521 return 0;
6522 }
6523
6524 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6525 void *buffer, size_t *length, loff_t *ppos)
6526 {
6527 int rc;
6528
6529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6530 if (rc)
6531 return rc;
6532
6533 if (write)
6534 setup_per_zone_wmarks();
6535
6536 return 0;
6537 }
6538
6539 #ifdef CONFIG_NUMA
6540 static void setup_min_unmapped_ratio(void)
6541 {
6542 pg_data_t *pgdat;
6543 struct zone *zone;
6544
6545 for_each_online_pgdat(pgdat)
6546 pgdat->min_unmapped_pages = 0;
6547
6548 for_each_zone(zone)
6549 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6550 sysctl_min_unmapped_ratio) / 100;
6551 }
6552
6553
6554 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6555 void *buffer, size_t *length, loff_t *ppos)
6556 {
6557 int rc;
6558
6559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6560 if (rc)
6561 return rc;
6562
6563 setup_min_unmapped_ratio();
6564
6565 return 0;
6566 }
6567
6568 static void setup_min_slab_ratio(void)
6569 {
6570 pg_data_t *pgdat;
6571 struct zone *zone;
6572
6573 for_each_online_pgdat(pgdat)
6574 pgdat->min_slab_pages = 0;
6575
6576 for_each_zone(zone)
6577 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6578 sysctl_min_slab_ratio) / 100;
6579 }
6580
6581 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6582 void *buffer, size_t *length, loff_t *ppos)
6583 {
6584 int rc;
6585
6586 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6587 if (rc)
6588 return rc;
6589
6590 setup_min_slab_ratio();
6591
6592 return 0;
6593 }
6594 #endif
6595
6596 /*
6597 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6598 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6599 * whenever sysctl_lowmem_reserve_ratio changes.
6600 *
6601 * The reserve ratio obviously has absolutely no relation with the
6602 * minimum watermarks. The lowmem reserve ratio can only make sense
6603 * if in function of the boot time zone sizes.
6604 */
6605 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6606 void *buffer, size_t *length, loff_t *ppos)
6607 {
6608 int i;
6609
6610 proc_dointvec_minmax(table, write, buffer, length, ppos);
6611
6612 for (i = 0; i < MAX_NR_ZONES; i++) {
6613 if (sysctl_lowmem_reserve_ratio[i] < 1)
6614 sysctl_lowmem_reserve_ratio[i] = 0;
6615 }
6616
6617 setup_per_zone_lowmem_reserve();
6618 return 0;
6619 }
6620
6621 /*
6622 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6623 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6624 * pagelist can have before it gets flushed back to buddy allocator.
6625 */
6626 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6627 int write, void *buffer, size_t *length, loff_t *ppos)
6628 {
6629 struct zone *zone;
6630 int old_percpu_pagelist_high_fraction;
6631 int ret;
6632
6633 mutex_lock(&pcp_batch_high_lock);
6634 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6635
6636 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6637 if (!write || ret < 0)
6638 goto out;
6639
6640 /* Sanity checking to avoid pcp imbalance */
6641 if (percpu_pagelist_high_fraction &&
6642 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6643 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6644 ret = -EINVAL;
6645 goto out;
6646 }
6647
6648 /* No change? */
6649 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6650 goto out;
6651
6652 for_each_populated_zone(zone)
6653 zone_set_pageset_high_and_batch(zone, 0);
6654 out:
6655 mutex_unlock(&pcp_batch_high_lock);
6656 return ret;
6657 }
6658
6659 #ifdef CONFIG_CONTIG_ALLOC
6660 #if defined(CONFIG_DYNAMIC_DEBUG) || \
6661 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
6662 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6663 static void alloc_contig_dump_pages(struct list_head *page_list)
6664 {
6665 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6666
6667 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6668 struct page *page;
6669
6670 dump_stack();
6671 list_for_each_entry(page, page_list, lru)
6672 dump_page(page, "migration failure");
6673 }
6674 }
6675 #else
6676 static inline void alloc_contig_dump_pages(struct list_head *page_list)
6677 {
6678 }
6679 #endif
6680
6681 /* [start, end) must belong to a single zone. */
6682 int __alloc_contig_migrate_range(struct compact_control *cc,
6683 unsigned long start, unsigned long end)
6684 {
6685 /* This function is based on compact_zone() from compaction.c. */
6686 unsigned int nr_reclaimed;
6687 unsigned long pfn = start;
6688 unsigned int tries = 0;
6689 int ret = 0;
6690 struct migration_target_control mtc = {
6691 .nid = zone_to_nid(cc->zone),
6692 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6693 };
6694
6695 lru_cache_disable();
6696
6697 while (pfn < end || !list_empty(&cc->migratepages)) {
6698 if (fatal_signal_pending(current)) {
6699 ret = -EINTR;
6700 break;
6701 }
6702
6703 if (list_empty(&cc->migratepages)) {
6704 cc->nr_migratepages = 0;
6705 ret = isolate_migratepages_range(cc, pfn, end);
6706 if (ret && ret != -EAGAIN)
6707 break;
6708 pfn = cc->migrate_pfn;
6709 tries = 0;
6710 } else if (++tries == 5) {
6711 ret = -EBUSY;
6712 break;
6713 }
6714
6715 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6716 &cc->migratepages);
6717 cc->nr_migratepages -= nr_reclaimed;
6718
6719 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6720 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6721
6722 /*
6723 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6724 * to retry again over this error, so do the same here.
6725 */
6726 if (ret == -ENOMEM)
6727 break;
6728 }
6729
6730 lru_cache_enable();
6731 if (ret < 0) {
6732 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6733 alloc_contig_dump_pages(&cc->migratepages);
6734 putback_movable_pages(&cc->migratepages);
6735 return ret;
6736 }
6737 return 0;
6738 }
6739
6740 /**
6741 * alloc_contig_range() -- tries to allocate given range of pages
6742 * @start: start PFN to allocate
6743 * @end: one-past-the-last PFN to allocate
6744 * @migratetype: migratetype of the underlying pageblocks (either
6745 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6746 * in range must have the same migratetype and it must
6747 * be either of the two.
6748 * @gfp_mask: GFP mask to use during compaction
6749 *
6750 * The PFN range does not have to be pageblock aligned. The PFN range must
6751 * belong to a single zone.
6752 *
6753 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6754 * pageblocks in the range. Once isolated, the pageblocks should not
6755 * be modified by others.
6756 *
6757 * Return: zero on success or negative error code. On success all
6758 * pages which PFN is in [start, end) are allocated for the caller and
6759 * need to be freed with free_contig_range().
6760 */
6761 int alloc_contig_range(unsigned long start, unsigned long end,
6762 unsigned migratetype, gfp_t gfp_mask)
6763 {
6764 unsigned long outer_start, outer_end;
6765 int order;
6766 int ret = 0;
6767
6768 struct compact_control cc = {
6769 .nr_migratepages = 0,
6770 .order = -1,
6771 .zone = page_zone(pfn_to_page(start)),
6772 .mode = MIGRATE_SYNC,
6773 .ignore_skip_hint = true,
6774 .no_set_skip_hint = true,
6775 .gfp_mask = current_gfp_context(gfp_mask),
6776 .alloc_contig = true,
6777 };
6778 INIT_LIST_HEAD(&cc.migratepages);
6779
6780 /*
6781 * What we do here is we mark all pageblocks in range as
6782 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6783 * have different sizes, and due to the way page allocator
6784 * work, start_isolate_page_range() has special handlings for this.
6785 *
6786 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6787 * migrate the pages from an unaligned range (ie. pages that
6788 * we are interested in). This will put all the pages in
6789 * range back to page allocator as MIGRATE_ISOLATE.
6790 *
6791 * When this is done, we take the pages in range from page
6792 * allocator removing them from the buddy system. This way
6793 * page allocator will never consider using them.
6794 *
6795 * This lets us mark the pageblocks back as
6796 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6797 * aligned range but not in the unaligned, original range are
6798 * put back to page allocator so that buddy can use them.
6799 */
6800
6801 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6802 if (ret)
6803 goto done;
6804
6805 drain_all_pages(cc.zone);
6806
6807 /*
6808 * In case of -EBUSY, we'd like to know which page causes problem.
6809 * So, just fall through. test_pages_isolated() has a tracepoint
6810 * which will report the busy page.
6811 *
6812 * It is possible that busy pages could become available before
6813 * the call to test_pages_isolated, and the range will actually be
6814 * allocated. So, if we fall through be sure to clear ret so that
6815 * -EBUSY is not accidentally used or returned to caller.
6816 */
6817 ret = __alloc_contig_migrate_range(&cc, start, end);
6818 if (ret && ret != -EBUSY)
6819 goto done;
6820 ret = 0;
6821
6822 /*
6823 * Pages from [start, end) are within a pageblock_nr_pages
6824 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6825 * more, all pages in [start, end) are free in page allocator.
6826 * What we are going to do is to allocate all pages from
6827 * [start, end) (that is remove them from page allocator).
6828 *
6829 * The only problem is that pages at the beginning and at the
6830 * end of interesting range may be not aligned with pages that
6831 * page allocator holds, ie. they can be part of higher order
6832 * pages. Because of this, we reserve the bigger range and
6833 * once this is done free the pages we are not interested in.
6834 *
6835 * We don't have to hold zone->lock here because the pages are
6836 * isolated thus they won't get removed from buddy.
6837 */
6838
6839 order = 0;
6840 outer_start = start;
6841 while (!PageBuddy(pfn_to_page(outer_start))) {
6842 if (++order > MAX_ORDER) {
6843 outer_start = start;
6844 break;
6845 }
6846 outer_start &= ~0UL << order;
6847 }
6848
6849 if (outer_start != start) {
6850 order = buddy_order(pfn_to_page(outer_start));
6851
6852 /*
6853 * outer_start page could be small order buddy page and
6854 * it doesn't include start page. Adjust outer_start
6855 * in this case to report failed page properly
6856 * on tracepoint in test_pages_isolated()
6857 */
6858 if (outer_start + (1UL << order) <= start)
6859 outer_start = start;
6860 }
6861
6862 /* Make sure the range is really isolated. */
6863 if (test_pages_isolated(outer_start, end, 0)) {
6864 ret = -EBUSY;
6865 goto done;
6866 }
6867
6868 /* Grab isolated pages from freelists. */
6869 outer_end = isolate_freepages_range(&cc, outer_start, end);
6870 if (!outer_end) {
6871 ret = -EBUSY;
6872 goto done;
6873 }
6874
6875 /* Free head and tail (if any) */
6876 if (start != outer_start)
6877 free_contig_range(outer_start, start - outer_start);
6878 if (end != outer_end)
6879 free_contig_range(end, outer_end - end);
6880
6881 done:
6882 undo_isolate_page_range(start, end, migratetype);
6883 return ret;
6884 }
6885 EXPORT_SYMBOL(alloc_contig_range);
6886
6887 static int __alloc_contig_pages(unsigned long start_pfn,
6888 unsigned long nr_pages, gfp_t gfp_mask)
6889 {
6890 unsigned long end_pfn = start_pfn + nr_pages;
6891
6892 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6893 gfp_mask);
6894 }
6895
6896 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6897 unsigned long nr_pages)
6898 {
6899 unsigned long i, end_pfn = start_pfn + nr_pages;
6900 struct page *page;
6901
6902 for (i = start_pfn; i < end_pfn; i++) {
6903 page = pfn_to_online_page(i);
6904 if (!page)
6905 return false;
6906
6907 if (page_zone(page) != z)
6908 return false;
6909
6910 if (PageReserved(page))
6911 return false;
6912
6913 if (PageHuge(page))
6914 return false;
6915 }
6916 return true;
6917 }
6918
6919 static bool zone_spans_last_pfn(const struct zone *zone,
6920 unsigned long start_pfn, unsigned long nr_pages)
6921 {
6922 unsigned long last_pfn = start_pfn + nr_pages - 1;
6923
6924 return zone_spans_pfn(zone, last_pfn);
6925 }
6926
6927 /**
6928 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6929 * @nr_pages: Number of contiguous pages to allocate
6930 * @gfp_mask: GFP mask to limit search and used during compaction
6931 * @nid: Target node
6932 * @nodemask: Mask for other possible nodes
6933 *
6934 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6935 * on an applicable zonelist to find a contiguous pfn range which can then be
6936 * tried for allocation with alloc_contig_range(). This routine is intended
6937 * for allocation requests which can not be fulfilled with the buddy allocator.
6938 *
6939 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6940 * power of two, then allocated range is also guaranteed to be aligned to same
6941 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6942 *
6943 * Allocated pages can be freed with free_contig_range() or by manually calling
6944 * __free_page() on each allocated page.
6945 *
6946 * Return: pointer to contiguous pages on success, or NULL if not successful.
6947 */
6948 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6949 int nid, nodemask_t *nodemask)
6950 {
6951 unsigned long ret, pfn, flags;
6952 struct zonelist *zonelist;
6953 struct zone *zone;
6954 struct zoneref *z;
6955
6956 zonelist = node_zonelist(nid, gfp_mask);
6957 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6958 gfp_zone(gfp_mask), nodemask) {
6959 spin_lock_irqsave(&zone->lock, flags);
6960
6961 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6962 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6963 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6964 /*
6965 * We release the zone lock here because
6966 * alloc_contig_range() will also lock the zone
6967 * at some point. If there's an allocation
6968 * spinning on this lock, it may win the race
6969 * and cause alloc_contig_range() to fail...
6970 */
6971 spin_unlock_irqrestore(&zone->lock, flags);
6972 ret = __alloc_contig_pages(pfn, nr_pages,
6973 gfp_mask);
6974 if (!ret)
6975 return pfn_to_page(pfn);
6976 spin_lock_irqsave(&zone->lock, flags);
6977 }
6978 pfn += nr_pages;
6979 }
6980 spin_unlock_irqrestore(&zone->lock, flags);
6981 }
6982 return NULL;
6983 }
6984 #endif /* CONFIG_CONTIG_ALLOC */
6985
6986 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6987 {
6988 unsigned long count = 0;
6989
6990 for (; nr_pages--; pfn++) {
6991 struct page *page = pfn_to_page(pfn);
6992
6993 count += page_count(page) != 1;
6994 __free_page(page);
6995 }
6996 WARN(count != 0, "%lu pages are still in use!\n", count);
6997 }
6998 EXPORT_SYMBOL(free_contig_range);
6999
7000 /*
7001 * Effectively disable pcplists for the zone by setting the high limit to 0
7002 * and draining all cpus. A concurrent page freeing on another CPU that's about
7003 * to put the page on pcplist will either finish before the drain and the page
7004 * will be drained, or observe the new high limit and skip the pcplist.
7005 *
7006 * Must be paired with a call to zone_pcp_enable().
7007 */
7008 void zone_pcp_disable(struct zone *zone)
7009 {
7010 mutex_lock(&pcp_batch_high_lock);
7011 __zone_set_pageset_high_and_batch(zone, 0, 1);
7012 __drain_all_pages(zone, true);
7013 }
7014
7015 void zone_pcp_enable(struct zone *zone)
7016 {
7017 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
7018 mutex_unlock(&pcp_batch_high_lock);
7019 }
7020
7021 void zone_pcp_reset(struct zone *zone)
7022 {
7023 int cpu;
7024 struct per_cpu_zonestat *pzstats;
7025
7026 if (zone->per_cpu_pageset != &boot_pageset) {
7027 for_each_online_cpu(cpu) {
7028 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7029 drain_zonestat(zone, pzstats);
7030 }
7031 free_percpu(zone->per_cpu_pageset);
7032 zone->per_cpu_pageset = &boot_pageset;
7033 if (zone->per_cpu_zonestats != &boot_zonestats) {
7034 free_percpu(zone->per_cpu_zonestats);
7035 zone->per_cpu_zonestats = &boot_zonestats;
7036 }
7037 }
7038 }
7039
7040 #ifdef CONFIG_MEMORY_HOTREMOVE
7041 /*
7042 * All pages in the range must be in a single zone, must not contain holes,
7043 * must span full sections, and must be isolated before calling this function.
7044 */
7045 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7046 {
7047 unsigned long pfn = start_pfn;
7048 struct page *page;
7049 struct zone *zone;
7050 unsigned int order;
7051 unsigned long flags;
7052
7053 offline_mem_sections(pfn, end_pfn);
7054 zone = page_zone(pfn_to_page(pfn));
7055 spin_lock_irqsave(&zone->lock, flags);
7056 while (pfn < end_pfn) {
7057 page = pfn_to_page(pfn);
7058 /*
7059 * The HWPoisoned page may be not in buddy system, and
7060 * page_count() is not 0.
7061 */
7062 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7063 pfn++;
7064 continue;
7065 }
7066 /*
7067 * At this point all remaining PageOffline() pages have a
7068 * reference count of 0 and can simply be skipped.
7069 */
7070 if (PageOffline(page)) {
7071 BUG_ON(page_count(page));
7072 BUG_ON(PageBuddy(page));
7073 pfn++;
7074 continue;
7075 }
7076
7077 BUG_ON(page_count(page));
7078 BUG_ON(!PageBuddy(page));
7079 order = buddy_order(page);
7080 del_page_from_free_list(page, zone, order);
7081 pfn += (1 << order);
7082 }
7083 spin_unlock_irqrestore(&zone->lock, flags);
7084 }
7085 #endif
7086
7087 /*
7088 * This function returns a stable result only if called under zone lock.
7089 */
7090 bool is_free_buddy_page(struct page *page)
7091 {
7092 unsigned long pfn = page_to_pfn(page);
7093 unsigned int order;
7094
7095 for (order = 0; order <= MAX_ORDER; order++) {
7096 struct page *page_head = page - (pfn & ((1 << order) - 1));
7097
7098 if (PageBuddy(page_head) &&
7099 buddy_order_unsafe(page_head) >= order)
7100 break;
7101 }
7102
7103 return order <= MAX_ORDER;
7104 }
7105 EXPORT_SYMBOL(is_free_buddy_page);
7106
7107 #ifdef CONFIG_MEMORY_FAILURE
7108 /*
7109 * Break down a higher-order page in sub-pages, and keep our target out of
7110 * buddy allocator.
7111 */
7112 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7113 struct page *target, int low, int high,
7114 int migratetype)
7115 {
7116 unsigned long size = 1 << high;
7117 struct page *current_buddy, *next_page;
7118
7119 while (high > low) {
7120 high--;
7121 size >>= 1;
7122
7123 if (target >= &page[size]) {
7124 next_page = page + size;
7125 current_buddy = page;
7126 } else {
7127 next_page = page;
7128 current_buddy = page + size;
7129 }
7130
7131 if (set_page_guard(zone, current_buddy, high, migratetype))
7132 continue;
7133
7134 if (current_buddy != target) {
7135 add_to_free_list(current_buddy, zone, high, migratetype);
7136 set_buddy_order(current_buddy, high);
7137 page = next_page;
7138 }
7139 }
7140 }
7141
7142 /*
7143 * Take a page that will be marked as poisoned off the buddy allocator.
7144 */
7145 bool take_page_off_buddy(struct page *page)
7146 {
7147 struct zone *zone = page_zone(page);
7148 unsigned long pfn = page_to_pfn(page);
7149 unsigned long flags;
7150 unsigned int order;
7151 bool ret = false;
7152
7153 spin_lock_irqsave(&zone->lock, flags);
7154 for (order = 0; order <= MAX_ORDER; order++) {
7155 struct page *page_head = page - (pfn & ((1 << order) - 1));
7156 int page_order = buddy_order(page_head);
7157
7158 if (PageBuddy(page_head) && page_order >= order) {
7159 unsigned long pfn_head = page_to_pfn(page_head);
7160 int migratetype = get_pfnblock_migratetype(page_head,
7161 pfn_head);
7162
7163 del_page_from_free_list(page_head, zone, page_order);
7164 break_down_buddy_pages(zone, page_head, page, 0,
7165 page_order, migratetype);
7166 SetPageHWPoisonTakenOff(page);
7167 if (!is_migrate_isolate(migratetype))
7168 __mod_zone_freepage_state(zone, -1, migratetype);
7169 ret = true;
7170 break;
7171 }
7172 if (page_count(page_head) > 0)
7173 break;
7174 }
7175 spin_unlock_irqrestore(&zone->lock, flags);
7176 return ret;
7177 }
7178
7179 /*
7180 * Cancel takeoff done by take_page_off_buddy().
7181 */
7182 bool put_page_back_buddy(struct page *page)
7183 {
7184 struct zone *zone = page_zone(page);
7185 unsigned long pfn = page_to_pfn(page);
7186 unsigned long flags;
7187 int migratetype = get_pfnblock_migratetype(page, pfn);
7188 bool ret = false;
7189
7190 spin_lock_irqsave(&zone->lock, flags);
7191 if (put_page_testzero(page)) {
7192 ClearPageHWPoisonTakenOff(page);
7193 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7194 if (TestClearPageHWPoison(page)) {
7195 ret = true;
7196 }
7197 }
7198 spin_unlock_irqrestore(&zone->lock, flags);
7199
7200 return ret;
7201 }
7202 #endif
7203
7204 #ifdef CONFIG_ZONE_DMA
7205 bool has_managed_dma(void)
7206 {
7207 struct pglist_data *pgdat;
7208
7209 for_each_online_pgdat(pgdat) {
7210 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7211
7212 if (managed_zone(zone))
7213 return true;
7214 }
7215 return false;
7216 }
7217 #endif /* CONFIG_ZONE_DMA */