]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
mm, mem-hotplug: fix section mismatch. setup_per_zone_inactive_ratio() should be...
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 #include <linux/memcontrol.h>
57 #include <linux/prefetch.h>
58
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61 #include "internal.h"
62
63 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
64 DEFINE_PER_CPU(int, numa_node);
65 EXPORT_PER_CPU_SYMBOL(numa_node);
66 #endif
67
68 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
69 /*
70 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
71 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
72 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
73 * defined in <linux/topology.h>.
74 */
75 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
76 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
77 #endif
78
79 /*
80 * Array of node states.
81 */
82 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
83 [N_POSSIBLE] = NODE_MASK_ALL,
84 [N_ONLINE] = { { [0] = 1UL } },
85 #ifndef CONFIG_NUMA
86 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
87 #ifdef CONFIG_HIGHMEM
88 [N_HIGH_MEMORY] = { { [0] = 1UL } },
89 #endif
90 [N_CPU] = { { [0] = 1UL } },
91 #endif /* NUMA */
92 };
93 EXPORT_SYMBOL(node_states);
94
95 unsigned long totalram_pages __read_mostly;
96 unsigned long totalreserve_pages __read_mostly;
97 int percpu_pagelist_fraction;
98 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
99
100 #ifdef CONFIG_PM_SLEEP
101 /*
102 * The following functions are used by the suspend/hibernate code to temporarily
103 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
104 * while devices are suspended. To avoid races with the suspend/hibernate code,
105 * they should always be called with pm_mutex held (gfp_allowed_mask also should
106 * only be modified with pm_mutex held, unless the suspend/hibernate code is
107 * guaranteed not to run in parallel with that modification).
108 */
109
110 static gfp_t saved_gfp_mask;
111
112 void pm_restore_gfp_mask(void)
113 {
114 WARN_ON(!mutex_is_locked(&pm_mutex));
115 if (saved_gfp_mask) {
116 gfp_allowed_mask = saved_gfp_mask;
117 saved_gfp_mask = 0;
118 }
119 }
120
121 void pm_restrict_gfp_mask(void)
122 {
123 WARN_ON(!mutex_is_locked(&pm_mutex));
124 WARN_ON(saved_gfp_mask);
125 saved_gfp_mask = gfp_allowed_mask;
126 gfp_allowed_mask &= ~GFP_IOFS;
127 }
128 #endif /* CONFIG_PM_SLEEP */
129
130 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
131 int pageblock_order __read_mostly;
132 #endif
133
134 static void __free_pages_ok(struct page *page, unsigned int order);
135
136 /*
137 * results with 256, 32 in the lowmem_reserve sysctl:
138 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
139 * 1G machine -> (16M dma, 784M normal, 224M high)
140 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
141 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
142 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
143 *
144 * TBD: should special case ZONE_DMA32 machines here - in those we normally
145 * don't need any ZONE_NORMAL reservation
146 */
147 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
148 #ifdef CONFIG_ZONE_DMA
149 256,
150 #endif
151 #ifdef CONFIG_ZONE_DMA32
152 256,
153 #endif
154 #ifdef CONFIG_HIGHMEM
155 32,
156 #endif
157 32,
158 };
159
160 EXPORT_SYMBOL(totalram_pages);
161
162 static char * const zone_names[MAX_NR_ZONES] = {
163 #ifdef CONFIG_ZONE_DMA
164 "DMA",
165 #endif
166 #ifdef CONFIG_ZONE_DMA32
167 "DMA32",
168 #endif
169 "Normal",
170 #ifdef CONFIG_HIGHMEM
171 "HighMem",
172 #endif
173 "Movable",
174 };
175
176 int min_free_kbytes = 1024;
177
178 static unsigned long __meminitdata nr_kernel_pages;
179 static unsigned long __meminitdata nr_all_pages;
180 static unsigned long __meminitdata dma_reserve;
181
182 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
183 /*
184 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
185 * ranges of memory (RAM) that may be registered with add_active_range().
186 * Ranges passed to add_active_range() will be merged if possible
187 * so the number of times add_active_range() can be called is
188 * related to the number of nodes and the number of holes
189 */
190 #ifdef CONFIG_MAX_ACTIVE_REGIONS
191 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
192 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
193 #else
194 #if MAX_NUMNODES >= 32
195 /* If there can be many nodes, allow up to 50 holes per node */
196 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
197 #else
198 /* By default, allow up to 256 distinct regions */
199 #define MAX_ACTIVE_REGIONS 256
200 #endif
201 #endif
202
203 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
204 static int __meminitdata nr_nodemap_entries;
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243
244 do {
245 seq = zone_span_seqbegin(zone);
246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 ret = 1;
248 else if (pfn < zone->zone_start_pfn)
249 ret = 1;
250 } while (zone_span_seqretry(zone, seq));
251
252 return ret;
253 }
254
255 static int page_is_consistent(struct zone *zone, struct page *page)
256 {
257 if (!pfn_valid_within(page_to_pfn(page)))
258 return 0;
259 if (zone != page_zone(page))
260 return 0;
261
262 return 1;
263 }
264 /*
265 * Temporary debugging check for pages not lying within a given zone.
266 */
267 static int bad_range(struct zone *zone, struct page *page)
268 {
269 if (page_outside_zone_boundaries(zone, page))
270 return 1;
271 if (!page_is_consistent(zone, page))
272 return 1;
273
274 return 0;
275 }
276 #else
277 static inline int bad_range(struct zone *zone, struct page *page)
278 {
279 return 0;
280 }
281 #endif
282
283 static void bad_page(struct page *page)
284 {
285 static unsigned long resume;
286 static unsigned long nr_shown;
287 static unsigned long nr_unshown;
288
289 /* Don't complain about poisoned pages */
290 if (PageHWPoison(page)) {
291 reset_page_mapcount(page); /* remove PageBuddy */
292 return;
293 }
294
295 /*
296 * Allow a burst of 60 reports, then keep quiet for that minute;
297 * or allow a steady drip of one report per second.
298 */
299 if (nr_shown == 60) {
300 if (time_before(jiffies, resume)) {
301 nr_unshown++;
302 goto out;
303 }
304 if (nr_unshown) {
305 printk(KERN_ALERT
306 "BUG: Bad page state: %lu messages suppressed\n",
307 nr_unshown);
308 nr_unshown = 0;
309 }
310 nr_shown = 0;
311 }
312 if (nr_shown++ == 0)
313 resume = jiffies + 60 * HZ;
314
315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
316 current->comm, page_to_pfn(page));
317 dump_page(page);
318
319 dump_stack();
320 out:
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
324 }
325
326 /*
327 * Higher-order pages are called "compound pages". They are structured thusly:
328 *
329 * The first PAGE_SIZE page is called the "head page".
330 *
331 * The remaining PAGE_SIZE pages are called "tail pages".
332 *
333 * All pages have PG_compound set. All pages have their ->private pointing at
334 * the head page (even the head page has this).
335 *
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
339 */
340
341 static void free_compound_page(struct page *page)
342 {
343 __free_pages_ok(page, compound_order(page));
344 }
345
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 int i;
349 int nr_pages = 1 << order;
350
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
356
357 __SetPageTail(p);
358 p->first_page = page;
359 }
360 }
361
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367 int bad = 0;
368
369 if (unlikely(compound_order(page) != order) ||
370 unlikely(!PageHead(page))) {
371 bad_page(page);
372 bad++;
373 }
374
375 __ClearPageHead(page);
376
377 for (i = 1; i < nr_pages; i++) {
378 struct page *p = page + i;
379
380 if (unlikely(!PageTail(p) || (p->first_page != page))) {
381 bad_page(page);
382 bad++;
383 }
384 __ClearPageTail(p);
385 }
386
387 return bad;
388 }
389
390 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391 {
392 int i;
393
394 /*
395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 */
398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
399 for (i = 0; i < (1 << order); i++)
400 clear_highpage(page + i);
401 }
402
403 static inline void set_page_order(struct page *page, int order)
404 {
405 set_page_private(page, order);
406 __SetPageBuddy(page);
407 }
408
409 static inline void rmv_page_order(struct page *page)
410 {
411 __ClearPageBuddy(page);
412 set_page_private(page, 0);
413 }
414
415 /*
416 * Locate the struct page for both the matching buddy in our
417 * pair (buddy1) and the combined O(n+1) page they form (page).
418 *
419 * 1) Any buddy B1 will have an order O twin B2 which satisfies
420 * the following equation:
421 * B2 = B1 ^ (1 << O)
422 * For example, if the starting buddy (buddy2) is #8 its order
423 * 1 buddy is #10:
424 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
425 *
426 * 2) Any buddy B will have an order O+1 parent P which
427 * satisfies the following equation:
428 * P = B & ~(1 << O)
429 *
430 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
431 */
432 static inline unsigned long
433 __find_buddy_index(unsigned long page_idx, unsigned int order)
434 {
435 return page_idx ^ (1 << order);
436 }
437
438 /*
439 * This function checks whether a page is free && is the buddy
440 * we can do coalesce a page and its buddy if
441 * (a) the buddy is not in a hole &&
442 * (b) the buddy is in the buddy system &&
443 * (c) a page and its buddy have the same order &&
444 * (d) a page and its buddy are in the same zone.
445 *
446 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
447 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
448 *
449 * For recording page's order, we use page_private(page).
450 */
451 static inline int page_is_buddy(struct page *page, struct page *buddy,
452 int order)
453 {
454 if (!pfn_valid_within(page_to_pfn(buddy)))
455 return 0;
456
457 if (page_zone_id(page) != page_zone_id(buddy))
458 return 0;
459
460 if (PageBuddy(buddy) && page_order(buddy) == order) {
461 VM_BUG_ON(page_count(buddy) != 0);
462 return 1;
463 }
464 return 0;
465 }
466
467 /*
468 * Freeing function for a buddy system allocator.
469 *
470 * The concept of a buddy system is to maintain direct-mapped table
471 * (containing bit values) for memory blocks of various "orders".
472 * The bottom level table contains the map for the smallest allocatable
473 * units of memory (here, pages), and each level above it describes
474 * pairs of units from the levels below, hence, "buddies".
475 * At a high level, all that happens here is marking the table entry
476 * at the bottom level available, and propagating the changes upward
477 * as necessary, plus some accounting needed to play nicely with other
478 * parts of the VM system.
479 * At each level, we keep a list of pages, which are heads of continuous
480 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
481 * order is recorded in page_private(page) field.
482 * So when we are allocating or freeing one, we can derive the state of the
483 * other. That is, if we allocate a small block, and both were
484 * free, the remainder of the region must be split into blocks.
485 * If a block is freed, and its buddy is also free, then this
486 * triggers coalescing into a block of larger size.
487 *
488 * -- wli
489 */
490
491 static inline void __free_one_page(struct page *page,
492 struct zone *zone, unsigned int order,
493 int migratetype)
494 {
495 unsigned long page_idx;
496 unsigned long combined_idx;
497 unsigned long uninitialized_var(buddy_idx);
498 struct page *buddy;
499
500 if (unlikely(PageCompound(page)))
501 if (unlikely(destroy_compound_page(page, order)))
502 return;
503
504 VM_BUG_ON(migratetype == -1);
505
506 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
507
508 VM_BUG_ON(page_idx & ((1 << order) - 1));
509 VM_BUG_ON(bad_range(zone, page));
510
511 while (order < MAX_ORDER-1) {
512 buddy_idx = __find_buddy_index(page_idx, order);
513 buddy = page + (buddy_idx - page_idx);
514 if (!page_is_buddy(page, buddy, order))
515 break;
516
517 /* Our buddy is free, merge with it and move up one order. */
518 list_del(&buddy->lru);
519 zone->free_area[order].nr_free--;
520 rmv_page_order(buddy);
521 combined_idx = buddy_idx & page_idx;
522 page = page + (combined_idx - page_idx);
523 page_idx = combined_idx;
524 order++;
525 }
526 set_page_order(page, order);
527
528 /*
529 * If this is not the largest possible page, check if the buddy
530 * of the next-highest order is free. If it is, it's possible
531 * that pages are being freed that will coalesce soon. In case,
532 * that is happening, add the free page to the tail of the list
533 * so it's less likely to be used soon and more likely to be merged
534 * as a higher order page
535 */
536 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
537 struct page *higher_page, *higher_buddy;
538 combined_idx = buddy_idx & page_idx;
539 higher_page = page + (combined_idx - page_idx);
540 buddy_idx = __find_buddy_index(combined_idx, order + 1);
541 higher_buddy = page + (buddy_idx - combined_idx);
542 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
543 list_add_tail(&page->lru,
544 &zone->free_area[order].free_list[migratetype]);
545 goto out;
546 }
547 }
548
549 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
550 out:
551 zone->free_area[order].nr_free++;
552 }
553
554 /*
555 * free_page_mlock() -- clean up attempts to free and mlocked() page.
556 * Page should not be on lru, so no need to fix that up.
557 * free_pages_check() will verify...
558 */
559 static inline void free_page_mlock(struct page *page)
560 {
561 __dec_zone_page_state(page, NR_MLOCK);
562 __count_vm_event(UNEVICTABLE_MLOCKFREED);
563 }
564
565 static inline int free_pages_check(struct page *page)
566 {
567 if (unlikely(page_mapcount(page) |
568 (page->mapping != NULL) |
569 (atomic_read(&page->_count) != 0) |
570 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
571 (mem_cgroup_bad_page_check(page)))) {
572 bad_page(page);
573 return 1;
574 }
575 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
576 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
577 return 0;
578 }
579
580 /*
581 * Frees a number of pages from the PCP lists
582 * Assumes all pages on list are in same zone, and of same order.
583 * count is the number of pages to free.
584 *
585 * If the zone was previously in an "all pages pinned" state then look to
586 * see if this freeing clears that state.
587 *
588 * And clear the zone's pages_scanned counter, to hold off the "all pages are
589 * pinned" detection logic.
590 */
591 static void free_pcppages_bulk(struct zone *zone, int count,
592 struct per_cpu_pages *pcp)
593 {
594 int migratetype = 0;
595 int batch_free = 0;
596 int to_free = count;
597
598 spin_lock(&zone->lock);
599 zone->all_unreclaimable = 0;
600 zone->pages_scanned = 0;
601
602 while (to_free) {
603 struct page *page;
604 struct list_head *list;
605
606 /*
607 * Remove pages from lists in a round-robin fashion. A
608 * batch_free count is maintained that is incremented when an
609 * empty list is encountered. This is so more pages are freed
610 * off fuller lists instead of spinning excessively around empty
611 * lists
612 */
613 do {
614 batch_free++;
615 if (++migratetype == MIGRATE_PCPTYPES)
616 migratetype = 0;
617 list = &pcp->lists[migratetype];
618 } while (list_empty(list));
619
620 /* This is the only non-empty list. Free them all. */
621 if (batch_free == MIGRATE_PCPTYPES)
622 batch_free = to_free;
623
624 do {
625 page = list_entry(list->prev, struct page, lru);
626 /* must delete as __free_one_page list manipulates */
627 list_del(&page->lru);
628 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
629 __free_one_page(page, zone, 0, page_private(page));
630 trace_mm_page_pcpu_drain(page, 0, page_private(page));
631 } while (--to_free && --batch_free && !list_empty(list));
632 }
633 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
634 spin_unlock(&zone->lock);
635 }
636
637 static void free_one_page(struct zone *zone, struct page *page, int order,
638 int migratetype)
639 {
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 __free_one_page(page, zone, order, migratetype);
645 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
646 spin_unlock(&zone->lock);
647 }
648
649 static bool free_pages_prepare(struct page *page, unsigned int order)
650 {
651 int i;
652 int bad = 0;
653
654 trace_mm_page_free_direct(page, order);
655 kmemcheck_free_shadow(page, order);
656
657 if (PageAnon(page))
658 page->mapping = NULL;
659 for (i = 0; i < (1 << order); i++)
660 bad += free_pages_check(page + i);
661 if (bad)
662 return false;
663
664 if (!PageHighMem(page)) {
665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
668 }
669 arch_free_page(page, order);
670 kernel_map_pages(page, 1 << order, 0);
671
672 return true;
673 }
674
675 static void __free_pages_ok(struct page *page, unsigned int order)
676 {
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
679
680 if (!free_pages_prepare(page, order))
681 return;
682
683 local_irq_save(flags);
684 if (unlikely(wasMlocked))
685 free_page_mlock(page);
686 __count_vm_events(PGFREE, 1 << order);
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
689 local_irq_restore(flags);
690 }
691
692 /*
693 * permit the bootmem allocator to evade page validation on high-order frees
694 */
695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
696 {
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
700 set_page_refcounted(page);
701 __free_page(page);
702 } else {
703 int loop;
704
705 prefetchw(page);
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
708
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
713 }
714
715 set_page_refcounted(page);
716 __free_pages(page, order);
717 }
718 }
719
720
721 /*
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
732 *
733 * -- wli
734 */
735 static inline void expand(struct zone *zone, struct page *page,
736 int low, int high, struct free_area *area,
737 int migratetype)
738 {
739 unsigned long size = 1 << high;
740
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
745 VM_BUG_ON(bad_range(zone, &page[size]));
746 list_add(&page[size].lru, &area->free_list[migratetype]);
747 area->nr_free++;
748 set_page_order(&page[size], high);
749 }
750 }
751
752 /*
753 * This page is about to be returned from the page allocator
754 */
755 static inline int check_new_page(struct page *page)
756 {
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
759 (atomic_read(&page->_count) != 0) |
760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
761 (mem_cgroup_bad_page_check(page)))) {
762 bad_page(page);
763 return 1;
764 }
765 return 0;
766 }
767
768 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
769 {
770 int i;
771
772 for (i = 0; i < (1 << order); i++) {
773 struct page *p = page + i;
774 if (unlikely(check_new_page(p)))
775 return 1;
776 }
777
778 set_page_private(page, 0);
779 set_page_refcounted(page);
780
781 arch_alloc_page(page, order);
782 kernel_map_pages(page, 1 << order, 1);
783
784 if (gfp_flags & __GFP_ZERO)
785 prep_zero_page(page, order, gfp_flags);
786
787 if (order && (gfp_flags & __GFP_COMP))
788 prep_compound_page(page, order);
789
790 return 0;
791 }
792
793 /*
794 * Go through the free lists for the given migratetype and remove
795 * the smallest available page from the freelists
796 */
797 static inline
798 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
799 int migratetype)
800 {
801 unsigned int current_order;
802 struct free_area * area;
803 struct page *page;
804
805 /* Find a page of the appropriate size in the preferred list */
806 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
807 area = &(zone->free_area[current_order]);
808 if (list_empty(&area->free_list[migratetype]))
809 continue;
810
811 page = list_entry(area->free_list[migratetype].next,
812 struct page, lru);
813 list_del(&page->lru);
814 rmv_page_order(page);
815 area->nr_free--;
816 expand(zone, page, order, current_order, area, migratetype);
817 return page;
818 }
819
820 return NULL;
821 }
822
823
824 /*
825 * This array describes the order lists are fallen back to when
826 * the free lists for the desirable migrate type are depleted
827 */
828 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
829 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
833 };
834
835 /*
836 * Move the free pages in a range to the free lists of the requested type.
837 * Note that start_page and end_pages are not aligned on a pageblock
838 * boundary. If alignment is required, use move_freepages_block()
839 */
840 static int move_freepages(struct zone *zone,
841 struct page *start_page, struct page *end_page,
842 int migratetype)
843 {
844 struct page *page;
845 unsigned long order;
846 int pages_moved = 0;
847
848 #ifndef CONFIG_HOLES_IN_ZONE
849 /*
850 * page_zone is not safe to call in this context when
851 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
852 * anyway as we check zone boundaries in move_freepages_block().
853 * Remove at a later date when no bug reports exist related to
854 * grouping pages by mobility
855 */
856 BUG_ON(page_zone(start_page) != page_zone(end_page));
857 #endif
858
859 for (page = start_page; page <= end_page;) {
860 /* Make sure we are not inadvertently changing nodes */
861 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
862
863 if (!pfn_valid_within(page_to_pfn(page))) {
864 page++;
865 continue;
866 }
867
868 if (!PageBuddy(page)) {
869 page++;
870 continue;
871 }
872
873 order = page_order(page);
874 list_move(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
877 pages_moved += 1 << order;
878 }
879
880 return pages_moved;
881 }
882
883 static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
885 {
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
888
889 start_pfn = page_to_pfn(page);
890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
891 start_page = pfn_to_page(start_pfn);
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
894
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
900
901 return move_freepages(zone, start_page, end_page, migratetype);
902 }
903
904 static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
906 {
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
908
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
912 }
913 }
914
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page *
917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
918 {
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
923
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
929
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
933
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
937
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
941
942 /*
943 * If breaking a large block of pages, move all free
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * aggressive about taking ownership of free pages
947 */
948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
954
955 /* Claim the whole block if over half of it is free */
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
958 set_pageblock_migratetype(page,
959 start_migratetype);
960
961 migratetype = start_migratetype;
962 }
963
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
967
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
971 start_migratetype);
972
973 expand(zone, page, order, current_order, area, migratetype);
974
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
977
978 return page;
979 }
980 }
981
982 return NULL;
983 }
984
985 /*
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
988 */
989 static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
991 {
992 struct page *page;
993
994 retry_reserve:
995 page = __rmqueue_smallest(zone, order, migratetype);
996
997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
998 page = __rmqueue_fallback(zone, order, migratetype);
999
1000 /*
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1004 */
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1008 }
1009 }
1010
1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1012 return page;
1013 }
1014
1015 /*
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1019 */
1020 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1021 unsigned long count, struct list_head *list,
1022 int migratetype, int cold)
1023 {
1024 int i;
1025
1026 spin_lock(&zone->lock);
1027 for (i = 0; i < count; ++i) {
1028 struct page *page = __rmqueue(zone, order, migratetype);
1029 if (unlikely(page == NULL))
1030 break;
1031
1032 /*
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1040 */
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
1045 set_page_private(page, migratetype);
1046 list = &page->lru;
1047 }
1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1049 spin_unlock(&zone->lock);
1050 return i;
1051 }
1052
1053 #ifdef CONFIG_NUMA
1054 /*
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1058 *
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
1061 */
1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1063 {
1064 unsigned long flags;
1065 int to_drain;
1066
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
1072 free_pcppages_bulk(zone, to_drain, pcp);
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
1075 }
1076 #endif
1077
1078 /*
1079 * Drain pages of the indicated processor.
1080 *
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1084 */
1085 static void drain_pages(unsigned int cpu)
1086 {
1087 unsigned long flags;
1088 struct zone *zone;
1089
1090 for_each_populated_zone(zone) {
1091 struct per_cpu_pageset *pset;
1092 struct per_cpu_pages *pcp;
1093
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
1096
1097 pcp = &pset->pcp;
1098 if (pcp->count) {
1099 free_pcppages_bulk(zone, pcp->count, pcp);
1100 pcp->count = 0;
1101 }
1102 local_irq_restore(flags);
1103 }
1104 }
1105
1106 /*
1107 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1108 */
1109 void drain_local_pages(void *arg)
1110 {
1111 drain_pages(smp_processor_id());
1112 }
1113
1114 /*
1115 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1116 */
1117 void drain_all_pages(void)
1118 {
1119 on_each_cpu(drain_local_pages, NULL, 1);
1120 }
1121
1122 #ifdef CONFIG_HIBERNATION
1123
1124 void mark_free_pages(struct zone *zone)
1125 {
1126 unsigned long pfn, max_zone_pfn;
1127 unsigned long flags;
1128 int order, t;
1129 struct list_head *curr;
1130
1131 if (!zone->spanned_pages)
1132 return;
1133
1134 spin_lock_irqsave(&zone->lock, flags);
1135
1136 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1137 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1138 if (pfn_valid(pfn)) {
1139 struct page *page = pfn_to_page(pfn);
1140
1141 if (!swsusp_page_is_forbidden(page))
1142 swsusp_unset_page_free(page);
1143 }
1144
1145 for_each_migratetype_order(order, t) {
1146 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1147 unsigned long i;
1148
1149 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1150 for (i = 0; i < (1UL << order); i++)
1151 swsusp_set_page_free(pfn_to_page(pfn + i));
1152 }
1153 }
1154 spin_unlock_irqrestore(&zone->lock, flags);
1155 }
1156 #endif /* CONFIG_PM */
1157
1158 /*
1159 * Free a 0-order page
1160 * cold == 1 ? free a cold page : free a hot page
1161 */
1162 void free_hot_cold_page(struct page *page, int cold)
1163 {
1164 struct zone *zone = page_zone(page);
1165 struct per_cpu_pages *pcp;
1166 unsigned long flags;
1167 int migratetype;
1168 int wasMlocked = __TestClearPageMlocked(page);
1169
1170 if (!free_pages_prepare(page, 0))
1171 return;
1172
1173 migratetype = get_pageblock_migratetype(page);
1174 set_page_private(page, migratetype);
1175 local_irq_save(flags);
1176 if (unlikely(wasMlocked))
1177 free_page_mlock(page);
1178 __count_vm_event(PGFREE);
1179
1180 /*
1181 * We only track unmovable, reclaimable and movable on pcp lists.
1182 * Free ISOLATE pages back to the allocator because they are being
1183 * offlined but treat RESERVE as movable pages so we can get those
1184 * areas back if necessary. Otherwise, we may have to free
1185 * excessively into the page allocator
1186 */
1187 if (migratetype >= MIGRATE_PCPTYPES) {
1188 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1189 free_one_page(zone, page, 0, migratetype);
1190 goto out;
1191 }
1192 migratetype = MIGRATE_MOVABLE;
1193 }
1194
1195 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1196 if (cold)
1197 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1198 else
1199 list_add(&page->lru, &pcp->lists[migratetype]);
1200 pcp->count++;
1201 if (pcp->count >= pcp->high) {
1202 free_pcppages_bulk(zone, pcp->batch, pcp);
1203 pcp->count -= pcp->batch;
1204 }
1205
1206 out:
1207 local_irq_restore(flags);
1208 }
1209
1210 /*
1211 * split_page takes a non-compound higher-order page, and splits it into
1212 * n (1<<order) sub-pages: page[0..n]
1213 * Each sub-page must be freed individually.
1214 *
1215 * Note: this is probably too low level an operation for use in drivers.
1216 * Please consult with lkml before using this in your driver.
1217 */
1218 void split_page(struct page *page, unsigned int order)
1219 {
1220 int i;
1221
1222 VM_BUG_ON(PageCompound(page));
1223 VM_BUG_ON(!page_count(page));
1224
1225 #ifdef CONFIG_KMEMCHECK
1226 /*
1227 * Split shadow pages too, because free(page[0]) would
1228 * otherwise free the whole shadow.
1229 */
1230 if (kmemcheck_page_is_tracked(page))
1231 split_page(virt_to_page(page[0].shadow), order);
1232 #endif
1233
1234 for (i = 1; i < (1 << order); i++)
1235 set_page_refcounted(page + i);
1236 }
1237
1238 /*
1239 * Similar to split_page except the page is already free. As this is only
1240 * being used for migration, the migratetype of the block also changes.
1241 * As this is called with interrupts disabled, the caller is responsible
1242 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1243 * are enabled.
1244 *
1245 * Note: this is probably too low level an operation for use in drivers.
1246 * Please consult with lkml before using this in your driver.
1247 */
1248 int split_free_page(struct page *page)
1249 {
1250 unsigned int order;
1251 unsigned long watermark;
1252 struct zone *zone;
1253
1254 BUG_ON(!PageBuddy(page));
1255
1256 zone = page_zone(page);
1257 order = page_order(page);
1258
1259 /* Obey watermarks as if the page was being allocated */
1260 watermark = low_wmark_pages(zone) + (1 << order);
1261 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1262 return 0;
1263
1264 /* Remove page from free list */
1265 list_del(&page->lru);
1266 zone->free_area[order].nr_free--;
1267 rmv_page_order(page);
1268 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1269
1270 /* Split into individual pages */
1271 set_page_refcounted(page);
1272 split_page(page, order);
1273
1274 if (order >= pageblock_order - 1) {
1275 struct page *endpage = page + (1 << order) - 1;
1276 for (; page < endpage; page += pageblock_nr_pages)
1277 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1278 }
1279
1280 return 1 << order;
1281 }
1282
1283 /*
1284 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1285 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1286 * or two.
1287 */
1288 static inline
1289 struct page *buffered_rmqueue(struct zone *preferred_zone,
1290 struct zone *zone, int order, gfp_t gfp_flags,
1291 int migratetype)
1292 {
1293 unsigned long flags;
1294 struct page *page;
1295 int cold = !!(gfp_flags & __GFP_COLD);
1296
1297 again:
1298 if (likely(order == 0)) {
1299 struct per_cpu_pages *pcp;
1300 struct list_head *list;
1301
1302 local_irq_save(flags);
1303 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1304 list = &pcp->lists[migratetype];
1305 if (list_empty(list)) {
1306 pcp->count += rmqueue_bulk(zone, 0,
1307 pcp->batch, list,
1308 migratetype, cold);
1309 if (unlikely(list_empty(list)))
1310 goto failed;
1311 }
1312
1313 if (cold)
1314 page = list_entry(list->prev, struct page, lru);
1315 else
1316 page = list_entry(list->next, struct page, lru);
1317
1318 list_del(&page->lru);
1319 pcp->count--;
1320 } else {
1321 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1322 /*
1323 * __GFP_NOFAIL is not to be used in new code.
1324 *
1325 * All __GFP_NOFAIL callers should be fixed so that they
1326 * properly detect and handle allocation failures.
1327 *
1328 * We most definitely don't want callers attempting to
1329 * allocate greater than order-1 page units with
1330 * __GFP_NOFAIL.
1331 */
1332 WARN_ON_ONCE(order > 1);
1333 }
1334 spin_lock_irqsave(&zone->lock, flags);
1335 page = __rmqueue(zone, order, migratetype);
1336 spin_unlock(&zone->lock);
1337 if (!page)
1338 goto failed;
1339 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1340 }
1341
1342 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1343 zone_statistics(preferred_zone, zone, gfp_flags);
1344 local_irq_restore(flags);
1345
1346 VM_BUG_ON(bad_range(zone, page));
1347 if (prep_new_page(page, order, gfp_flags))
1348 goto again;
1349 return page;
1350
1351 failed:
1352 local_irq_restore(flags);
1353 return NULL;
1354 }
1355
1356 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1357 #define ALLOC_WMARK_MIN WMARK_MIN
1358 #define ALLOC_WMARK_LOW WMARK_LOW
1359 #define ALLOC_WMARK_HIGH WMARK_HIGH
1360 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1361
1362 /* Mask to get the watermark bits */
1363 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1364
1365 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1366 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1367 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1368
1369 #ifdef CONFIG_FAIL_PAGE_ALLOC
1370
1371 static struct fail_page_alloc_attr {
1372 struct fault_attr attr;
1373
1374 u32 ignore_gfp_highmem;
1375 u32 ignore_gfp_wait;
1376 u32 min_order;
1377
1378 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1379
1380 struct dentry *ignore_gfp_highmem_file;
1381 struct dentry *ignore_gfp_wait_file;
1382 struct dentry *min_order_file;
1383
1384 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1385
1386 } fail_page_alloc = {
1387 .attr = FAULT_ATTR_INITIALIZER,
1388 .ignore_gfp_wait = 1,
1389 .ignore_gfp_highmem = 1,
1390 .min_order = 1,
1391 };
1392
1393 static int __init setup_fail_page_alloc(char *str)
1394 {
1395 return setup_fault_attr(&fail_page_alloc.attr, str);
1396 }
1397 __setup("fail_page_alloc=", setup_fail_page_alloc);
1398
1399 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1400 {
1401 if (order < fail_page_alloc.min_order)
1402 return 0;
1403 if (gfp_mask & __GFP_NOFAIL)
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1408 return 0;
1409
1410 return should_fail(&fail_page_alloc.attr, 1 << order);
1411 }
1412
1413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1414
1415 static int __init fail_page_alloc_debugfs(void)
1416 {
1417 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1418 struct dentry *dir;
1419 int err;
1420
1421 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1422 "fail_page_alloc");
1423 if (err)
1424 return err;
1425 dir = fail_page_alloc.attr.dentries.dir;
1426
1427 fail_page_alloc.ignore_gfp_wait_file =
1428 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1429 &fail_page_alloc.ignore_gfp_wait);
1430
1431 fail_page_alloc.ignore_gfp_highmem_file =
1432 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1433 &fail_page_alloc.ignore_gfp_highmem);
1434 fail_page_alloc.min_order_file =
1435 debugfs_create_u32("min-order", mode, dir,
1436 &fail_page_alloc.min_order);
1437
1438 if (!fail_page_alloc.ignore_gfp_wait_file ||
1439 !fail_page_alloc.ignore_gfp_highmem_file ||
1440 !fail_page_alloc.min_order_file) {
1441 err = -ENOMEM;
1442 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1443 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1444 debugfs_remove(fail_page_alloc.min_order_file);
1445 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1446 }
1447
1448 return err;
1449 }
1450
1451 late_initcall(fail_page_alloc_debugfs);
1452
1453 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1454
1455 #else /* CONFIG_FAIL_PAGE_ALLOC */
1456
1457 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1458 {
1459 return 0;
1460 }
1461
1462 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1463
1464 /*
1465 * Return true if free pages are above 'mark'. This takes into account the order
1466 * of the allocation.
1467 */
1468 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1469 int classzone_idx, int alloc_flags, long free_pages)
1470 {
1471 /* free_pages my go negative - that's OK */
1472 long min = mark;
1473 int o;
1474
1475 free_pages -= (1 << order) + 1;
1476 if (alloc_flags & ALLOC_HIGH)
1477 min -= min / 2;
1478 if (alloc_flags & ALLOC_HARDER)
1479 min -= min / 4;
1480
1481 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1482 return false;
1483 for (o = 0; o < order; o++) {
1484 /* At the next order, this order's pages become unavailable */
1485 free_pages -= z->free_area[o].nr_free << o;
1486
1487 /* Require fewer higher order pages to be free */
1488 min >>= 1;
1489
1490 if (free_pages <= min)
1491 return false;
1492 }
1493 return true;
1494 }
1495
1496 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1497 int classzone_idx, int alloc_flags)
1498 {
1499 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1500 zone_page_state(z, NR_FREE_PAGES));
1501 }
1502
1503 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1504 int classzone_idx, int alloc_flags)
1505 {
1506 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1507
1508 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1509 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1510
1511 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1512 free_pages);
1513 }
1514
1515 #ifdef CONFIG_NUMA
1516 /*
1517 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1518 * skip over zones that are not allowed by the cpuset, or that have
1519 * been recently (in last second) found to be nearly full. See further
1520 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1521 * that have to skip over a lot of full or unallowed zones.
1522 *
1523 * If the zonelist cache is present in the passed in zonelist, then
1524 * returns a pointer to the allowed node mask (either the current
1525 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1526 *
1527 * If the zonelist cache is not available for this zonelist, does
1528 * nothing and returns NULL.
1529 *
1530 * If the fullzones BITMAP in the zonelist cache is stale (more than
1531 * a second since last zap'd) then we zap it out (clear its bits.)
1532 *
1533 * We hold off even calling zlc_setup, until after we've checked the
1534 * first zone in the zonelist, on the theory that most allocations will
1535 * be satisfied from that first zone, so best to examine that zone as
1536 * quickly as we can.
1537 */
1538 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1539 {
1540 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1541 nodemask_t *allowednodes; /* zonelist_cache approximation */
1542
1543 zlc = zonelist->zlcache_ptr;
1544 if (!zlc)
1545 return NULL;
1546
1547 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1548 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1549 zlc->last_full_zap = jiffies;
1550 }
1551
1552 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1553 &cpuset_current_mems_allowed :
1554 &node_states[N_HIGH_MEMORY];
1555 return allowednodes;
1556 }
1557
1558 /*
1559 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1560 * if it is worth looking at further for free memory:
1561 * 1) Check that the zone isn't thought to be full (doesn't have its
1562 * bit set in the zonelist_cache fullzones BITMAP).
1563 * 2) Check that the zones node (obtained from the zonelist_cache
1564 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1565 * Return true (non-zero) if zone is worth looking at further, or
1566 * else return false (zero) if it is not.
1567 *
1568 * This check -ignores- the distinction between various watermarks,
1569 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1570 * found to be full for any variation of these watermarks, it will
1571 * be considered full for up to one second by all requests, unless
1572 * we are so low on memory on all allowed nodes that we are forced
1573 * into the second scan of the zonelist.
1574 *
1575 * In the second scan we ignore this zonelist cache and exactly
1576 * apply the watermarks to all zones, even it is slower to do so.
1577 * We are low on memory in the second scan, and should leave no stone
1578 * unturned looking for a free page.
1579 */
1580 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1581 nodemask_t *allowednodes)
1582 {
1583 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1584 int i; /* index of *z in zonelist zones */
1585 int n; /* node that zone *z is on */
1586
1587 zlc = zonelist->zlcache_ptr;
1588 if (!zlc)
1589 return 1;
1590
1591 i = z - zonelist->_zonerefs;
1592 n = zlc->z_to_n[i];
1593
1594 /* This zone is worth trying if it is allowed but not full */
1595 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1596 }
1597
1598 /*
1599 * Given 'z' scanning a zonelist, set the corresponding bit in
1600 * zlc->fullzones, so that subsequent attempts to allocate a page
1601 * from that zone don't waste time re-examining it.
1602 */
1603 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1604 {
1605 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1606 int i; /* index of *z in zonelist zones */
1607
1608 zlc = zonelist->zlcache_ptr;
1609 if (!zlc)
1610 return;
1611
1612 i = z - zonelist->_zonerefs;
1613
1614 set_bit(i, zlc->fullzones);
1615 }
1616
1617 #else /* CONFIG_NUMA */
1618
1619 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620 {
1621 return NULL;
1622 }
1623
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 nodemask_t *allowednodes)
1626 {
1627 return 1;
1628 }
1629
1630 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1631 {
1632 }
1633 #endif /* CONFIG_NUMA */
1634
1635 /*
1636 * get_page_from_freelist goes through the zonelist trying to allocate
1637 * a page.
1638 */
1639 static struct page *
1640 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1641 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1642 struct zone *preferred_zone, int migratetype)
1643 {
1644 struct zoneref *z;
1645 struct page *page = NULL;
1646 int classzone_idx;
1647 struct zone *zone;
1648 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1649 int zlc_active = 0; /* set if using zonelist_cache */
1650 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1651
1652 classzone_idx = zone_idx(preferred_zone);
1653 zonelist_scan:
1654 /*
1655 * Scan zonelist, looking for a zone with enough free.
1656 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1657 */
1658 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1659 high_zoneidx, nodemask) {
1660 if (NUMA_BUILD && zlc_active &&
1661 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1662 continue;
1663 if ((alloc_flags & ALLOC_CPUSET) &&
1664 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1665 goto try_next_zone;
1666
1667 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1668 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1669 unsigned long mark;
1670 int ret;
1671
1672 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1673 if (zone_watermark_ok(zone, order, mark,
1674 classzone_idx, alloc_flags))
1675 goto try_this_zone;
1676
1677 if (zone_reclaim_mode == 0)
1678 goto this_zone_full;
1679
1680 ret = zone_reclaim(zone, gfp_mask, order);
1681 switch (ret) {
1682 case ZONE_RECLAIM_NOSCAN:
1683 /* did not scan */
1684 goto try_next_zone;
1685 case ZONE_RECLAIM_FULL:
1686 /* scanned but unreclaimable */
1687 goto this_zone_full;
1688 default:
1689 /* did we reclaim enough */
1690 if (!zone_watermark_ok(zone, order, mark,
1691 classzone_idx, alloc_flags))
1692 goto this_zone_full;
1693 }
1694 }
1695
1696 try_this_zone:
1697 page = buffered_rmqueue(preferred_zone, zone, order,
1698 gfp_mask, migratetype);
1699 if (page)
1700 break;
1701 this_zone_full:
1702 if (NUMA_BUILD)
1703 zlc_mark_zone_full(zonelist, z);
1704 try_next_zone:
1705 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1706 /*
1707 * we do zlc_setup after the first zone is tried but only
1708 * if there are multiple nodes make it worthwhile
1709 */
1710 allowednodes = zlc_setup(zonelist, alloc_flags);
1711 zlc_active = 1;
1712 did_zlc_setup = 1;
1713 }
1714 }
1715
1716 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1717 /* Disable zlc cache for second zonelist scan */
1718 zlc_active = 0;
1719 goto zonelist_scan;
1720 }
1721 return page;
1722 }
1723
1724 /*
1725 * Large machines with many possible nodes should not always dump per-node
1726 * meminfo in irq context.
1727 */
1728 static inline bool should_suppress_show_mem(void)
1729 {
1730 bool ret = false;
1731
1732 #if NODES_SHIFT > 8
1733 ret = in_interrupt();
1734 #endif
1735 return ret;
1736 }
1737
1738 static inline int
1739 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1740 unsigned long pages_reclaimed)
1741 {
1742 /* Do not loop if specifically requested */
1743 if (gfp_mask & __GFP_NORETRY)
1744 return 0;
1745
1746 /*
1747 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1748 * means __GFP_NOFAIL, but that may not be true in other
1749 * implementations.
1750 */
1751 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1752 return 1;
1753
1754 /*
1755 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1756 * specified, then we retry until we no longer reclaim any pages
1757 * (above), or we've reclaimed an order of pages at least as
1758 * large as the allocation's order. In both cases, if the
1759 * allocation still fails, we stop retrying.
1760 */
1761 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1762 return 1;
1763
1764 /*
1765 * Don't let big-order allocations loop unless the caller
1766 * explicitly requests that.
1767 */
1768 if (gfp_mask & __GFP_NOFAIL)
1769 return 1;
1770
1771 return 0;
1772 }
1773
1774 static inline struct page *
1775 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1776 struct zonelist *zonelist, enum zone_type high_zoneidx,
1777 nodemask_t *nodemask, struct zone *preferred_zone,
1778 int migratetype)
1779 {
1780 struct page *page;
1781
1782 /* Acquire the OOM killer lock for the zones in zonelist */
1783 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1784 schedule_timeout_uninterruptible(1);
1785 return NULL;
1786 }
1787
1788 /*
1789 * Go through the zonelist yet one more time, keep very high watermark
1790 * here, this is only to catch a parallel oom killing, we must fail if
1791 * we're still under heavy pressure.
1792 */
1793 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1794 order, zonelist, high_zoneidx,
1795 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1796 preferred_zone, migratetype);
1797 if (page)
1798 goto out;
1799
1800 if (!(gfp_mask & __GFP_NOFAIL)) {
1801 /* The OOM killer will not help higher order allocs */
1802 if (order > PAGE_ALLOC_COSTLY_ORDER)
1803 goto out;
1804 /* The OOM killer does not needlessly kill tasks for lowmem */
1805 if (high_zoneidx < ZONE_NORMAL)
1806 goto out;
1807 /*
1808 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1809 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1810 * The caller should handle page allocation failure by itself if
1811 * it specifies __GFP_THISNODE.
1812 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1813 */
1814 if (gfp_mask & __GFP_THISNODE)
1815 goto out;
1816 }
1817 /* Exhausted what can be done so it's blamo time */
1818 out_of_memory(zonelist, gfp_mask, order, nodemask);
1819
1820 out:
1821 clear_zonelist_oom(zonelist, gfp_mask);
1822 return page;
1823 }
1824
1825 #ifdef CONFIG_COMPACTION
1826 /* Try memory compaction for high-order allocations before reclaim */
1827 static struct page *
1828 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1829 struct zonelist *zonelist, enum zone_type high_zoneidx,
1830 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1831 int migratetype, unsigned long *did_some_progress,
1832 bool sync_migration)
1833 {
1834 struct page *page;
1835
1836 if (!order || compaction_deferred(preferred_zone))
1837 return NULL;
1838
1839 current->flags |= PF_MEMALLOC;
1840 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1841 nodemask, sync_migration);
1842 current->flags &= ~PF_MEMALLOC;
1843 if (*did_some_progress != COMPACT_SKIPPED) {
1844
1845 /* Page migration frees to the PCP lists but we want merging */
1846 drain_pages(get_cpu());
1847 put_cpu();
1848
1849 page = get_page_from_freelist(gfp_mask, nodemask,
1850 order, zonelist, high_zoneidx,
1851 alloc_flags, preferred_zone,
1852 migratetype);
1853 if (page) {
1854 preferred_zone->compact_considered = 0;
1855 preferred_zone->compact_defer_shift = 0;
1856 count_vm_event(COMPACTSUCCESS);
1857 return page;
1858 }
1859
1860 /*
1861 * It's bad if compaction run occurs and fails.
1862 * The most likely reason is that pages exist,
1863 * but not enough to satisfy watermarks.
1864 */
1865 count_vm_event(COMPACTFAIL);
1866 defer_compaction(preferred_zone);
1867
1868 cond_resched();
1869 }
1870
1871 return NULL;
1872 }
1873 #else
1874 static inline struct page *
1875 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1876 struct zonelist *zonelist, enum zone_type high_zoneidx,
1877 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1878 int migratetype, unsigned long *did_some_progress,
1879 bool sync_migration)
1880 {
1881 return NULL;
1882 }
1883 #endif /* CONFIG_COMPACTION */
1884
1885 /* The really slow allocator path where we enter direct reclaim */
1886 static inline struct page *
1887 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1888 struct zonelist *zonelist, enum zone_type high_zoneidx,
1889 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1890 int migratetype, unsigned long *did_some_progress)
1891 {
1892 struct page *page = NULL;
1893 struct reclaim_state reclaim_state;
1894 bool drained = false;
1895
1896 cond_resched();
1897
1898 /* We now go into synchronous reclaim */
1899 cpuset_memory_pressure_bump();
1900 current->flags |= PF_MEMALLOC;
1901 lockdep_set_current_reclaim_state(gfp_mask);
1902 reclaim_state.reclaimed_slab = 0;
1903 current->reclaim_state = &reclaim_state;
1904
1905 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1906
1907 current->reclaim_state = NULL;
1908 lockdep_clear_current_reclaim_state();
1909 current->flags &= ~PF_MEMALLOC;
1910
1911 cond_resched();
1912
1913 if (unlikely(!(*did_some_progress)))
1914 return NULL;
1915
1916 retry:
1917 page = get_page_from_freelist(gfp_mask, nodemask, order,
1918 zonelist, high_zoneidx,
1919 alloc_flags, preferred_zone,
1920 migratetype);
1921
1922 /*
1923 * If an allocation failed after direct reclaim, it could be because
1924 * pages are pinned on the per-cpu lists. Drain them and try again
1925 */
1926 if (!page && !drained) {
1927 drain_all_pages();
1928 drained = true;
1929 goto retry;
1930 }
1931
1932 return page;
1933 }
1934
1935 /*
1936 * This is called in the allocator slow-path if the allocation request is of
1937 * sufficient urgency to ignore watermarks and take other desperate measures
1938 */
1939 static inline struct page *
1940 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1941 struct zonelist *zonelist, enum zone_type high_zoneidx,
1942 nodemask_t *nodemask, struct zone *preferred_zone,
1943 int migratetype)
1944 {
1945 struct page *page;
1946
1947 do {
1948 page = get_page_from_freelist(gfp_mask, nodemask, order,
1949 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1950 preferred_zone, migratetype);
1951
1952 if (!page && gfp_mask & __GFP_NOFAIL)
1953 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1954 } while (!page && (gfp_mask & __GFP_NOFAIL));
1955
1956 return page;
1957 }
1958
1959 static inline
1960 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1961 enum zone_type high_zoneidx,
1962 enum zone_type classzone_idx)
1963 {
1964 struct zoneref *z;
1965 struct zone *zone;
1966
1967 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1968 wakeup_kswapd(zone, order, classzone_idx);
1969 }
1970
1971 static inline int
1972 gfp_to_alloc_flags(gfp_t gfp_mask)
1973 {
1974 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1975 const gfp_t wait = gfp_mask & __GFP_WAIT;
1976
1977 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1978 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1979
1980 /*
1981 * The caller may dip into page reserves a bit more if the caller
1982 * cannot run direct reclaim, or if the caller has realtime scheduling
1983 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1984 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1985 */
1986 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1987
1988 if (!wait) {
1989 /*
1990 * Not worth trying to allocate harder for
1991 * __GFP_NOMEMALLOC even if it can't schedule.
1992 */
1993 if (!(gfp_mask & __GFP_NOMEMALLOC))
1994 alloc_flags |= ALLOC_HARDER;
1995 /*
1996 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1997 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1998 */
1999 alloc_flags &= ~ALLOC_CPUSET;
2000 } else if (unlikely(rt_task(current)) && !in_interrupt())
2001 alloc_flags |= ALLOC_HARDER;
2002
2003 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2004 if (!in_interrupt() &&
2005 ((current->flags & PF_MEMALLOC) ||
2006 unlikely(test_thread_flag(TIF_MEMDIE))))
2007 alloc_flags |= ALLOC_NO_WATERMARKS;
2008 }
2009
2010 return alloc_flags;
2011 }
2012
2013 static inline struct page *
2014 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2015 struct zonelist *zonelist, enum zone_type high_zoneidx,
2016 nodemask_t *nodemask, struct zone *preferred_zone,
2017 int migratetype)
2018 {
2019 const gfp_t wait = gfp_mask & __GFP_WAIT;
2020 struct page *page = NULL;
2021 int alloc_flags;
2022 unsigned long pages_reclaimed = 0;
2023 unsigned long did_some_progress;
2024 bool sync_migration = false;
2025
2026 /*
2027 * In the slowpath, we sanity check order to avoid ever trying to
2028 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2029 * be using allocators in order of preference for an area that is
2030 * too large.
2031 */
2032 if (order >= MAX_ORDER) {
2033 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2034 return NULL;
2035 }
2036
2037 /*
2038 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2039 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2040 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2041 * using a larger set of nodes after it has established that the
2042 * allowed per node queues are empty and that nodes are
2043 * over allocated.
2044 */
2045 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2046 goto nopage;
2047
2048 restart:
2049 if (!(gfp_mask & __GFP_NO_KSWAPD))
2050 wake_all_kswapd(order, zonelist, high_zoneidx,
2051 zone_idx(preferred_zone));
2052
2053 /*
2054 * OK, we're below the kswapd watermark and have kicked background
2055 * reclaim. Now things get more complex, so set up alloc_flags according
2056 * to how we want to proceed.
2057 */
2058 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2059
2060 /*
2061 * Find the true preferred zone if the allocation is unconstrained by
2062 * cpusets.
2063 */
2064 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2065 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2066 &preferred_zone);
2067
2068 /* This is the last chance, in general, before the goto nopage. */
2069 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2070 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2071 preferred_zone, migratetype);
2072 if (page)
2073 goto got_pg;
2074
2075 rebalance:
2076 /* Allocate without watermarks if the context allows */
2077 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2078 page = __alloc_pages_high_priority(gfp_mask, order,
2079 zonelist, high_zoneidx, nodemask,
2080 preferred_zone, migratetype);
2081 if (page)
2082 goto got_pg;
2083 }
2084
2085 /* Atomic allocations - we can't balance anything */
2086 if (!wait)
2087 goto nopage;
2088
2089 /* Avoid recursion of direct reclaim */
2090 if (current->flags & PF_MEMALLOC)
2091 goto nopage;
2092
2093 /* Avoid allocations with no watermarks from looping endlessly */
2094 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2095 goto nopage;
2096
2097 /*
2098 * Try direct compaction. The first pass is asynchronous. Subsequent
2099 * attempts after direct reclaim are synchronous
2100 */
2101 page = __alloc_pages_direct_compact(gfp_mask, order,
2102 zonelist, high_zoneidx,
2103 nodemask,
2104 alloc_flags, preferred_zone,
2105 migratetype, &did_some_progress,
2106 sync_migration);
2107 if (page)
2108 goto got_pg;
2109 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
2110
2111 /* Try direct reclaim and then allocating */
2112 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2113 zonelist, high_zoneidx,
2114 nodemask,
2115 alloc_flags, preferred_zone,
2116 migratetype, &did_some_progress);
2117 if (page)
2118 goto got_pg;
2119
2120 /*
2121 * If we failed to make any progress reclaiming, then we are
2122 * running out of options and have to consider going OOM
2123 */
2124 if (!did_some_progress) {
2125 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2126 if (oom_killer_disabled)
2127 goto nopage;
2128 page = __alloc_pages_may_oom(gfp_mask, order,
2129 zonelist, high_zoneidx,
2130 nodemask, preferred_zone,
2131 migratetype);
2132 if (page)
2133 goto got_pg;
2134
2135 if (!(gfp_mask & __GFP_NOFAIL)) {
2136 /*
2137 * The oom killer is not called for high-order
2138 * allocations that may fail, so if no progress
2139 * is being made, there are no other options and
2140 * retrying is unlikely to help.
2141 */
2142 if (order > PAGE_ALLOC_COSTLY_ORDER)
2143 goto nopage;
2144 /*
2145 * The oom killer is not called for lowmem
2146 * allocations to prevent needlessly killing
2147 * innocent tasks.
2148 */
2149 if (high_zoneidx < ZONE_NORMAL)
2150 goto nopage;
2151 }
2152
2153 goto restart;
2154 }
2155 }
2156
2157 /* Check if we should retry the allocation */
2158 pages_reclaimed += did_some_progress;
2159 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2160 /* Wait for some write requests to complete then retry */
2161 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2162 goto rebalance;
2163 } else {
2164 /*
2165 * High-order allocations do not necessarily loop after
2166 * direct reclaim and reclaim/compaction depends on compaction
2167 * being called after reclaim so call directly if necessary
2168 */
2169 page = __alloc_pages_direct_compact(gfp_mask, order,
2170 zonelist, high_zoneidx,
2171 nodemask,
2172 alloc_flags, preferred_zone,
2173 migratetype, &did_some_progress,
2174 sync_migration);
2175 if (page)
2176 goto got_pg;
2177 }
2178
2179 nopage:
2180 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2181 unsigned int filter = SHOW_MEM_FILTER_NODES;
2182
2183 /*
2184 * This documents exceptions given to allocations in certain
2185 * contexts that are allowed to allocate outside current's set
2186 * of allowed nodes.
2187 */
2188 if (!(gfp_mask & __GFP_NOMEMALLOC))
2189 if (test_thread_flag(TIF_MEMDIE) ||
2190 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2191 filter &= ~SHOW_MEM_FILTER_NODES;
2192 if (in_interrupt() || !wait)
2193 filter &= ~SHOW_MEM_FILTER_NODES;
2194
2195 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2196 current->comm, order, gfp_mask);
2197 dump_stack();
2198 if (!should_suppress_show_mem())
2199 show_mem(filter);
2200 }
2201 return page;
2202 got_pg:
2203 if (kmemcheck_enabled)
2204 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2205 return page;
2206
2207 }
2208
2209 /*
2210 * This is the 'heart' of the zoned buddy allocator.
2211 */
2212 struct page *
2213 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2214 struct zonelist *zonelist, nodemask_t *nodemask)
2215 {
2216 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2217 struct zone *preferred_zone;
2218 struct page *page;
2219 int migratetype = allocflags_to_migratetype(gfp_mask);
2220
2221 gfp_mask &= gfp_allowed_mask;
2222
2223 lockdep_trace_alloc(gfp_mask);
2224
2225 might_sleep_if(gfp_mask & __GFP_WAIT);
2226
2227 if (should_fail_alloc_page(gfp_mask, order))
2228 return NULL;
2229
2230 /*
2231 * Check the zones suitable for the gfp_mask contain at least one
2232 * valid zone. It's possible to have an empty zonelist as a result
2233 * of GFP_THISNODE and a memoryless node
2234 */
2235 if (unlikely(!zonelist->_zonerefs->zone))
2236 return NULL;
2237
2238 get_mems_allowed();
2239 /* The preferred zone is used for statistics later */
2240 first_zones_zonelist(zonelist, high_zoneidx,
2241 nodemask ? : &cpuset_current_mems_allowed,
2242 &preferred_zone);
2243 if (!preferred_zone) {
2244 put_mems_allowed();
2245 return NULL;
2246 }
2247
2248 /* First allocation attempt */
2249 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2250 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2251 preferred_zone, migratetype);
2252 if (unlikely(!page))
2253 page = __alloc_pages_slowpath(gfp_mask, order,
2254 zonelist, high_zoneidx, nodemask,
2255 preferred_zone, migratetype);
2256 put_mems_allowed();
2257
2258 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2259 return page;
2260 }
2261 EXPORT_SYMBOL(__alloc_pages_nodemask);
2262
2263 /*
2264 * Common helper functions.
2265 */
2266 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2267 {
2268 struct page *page;
2269
2270 /*
2271 * __get_free_pages() returns a 32-bit address, which cannot represent
2272 * a highmem page
2273 */
2274 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2275
2276 page = alloc_pages(gfp_mask, order);
2277 if (!page)
2278 return 0;
2279 return (unsigned long) page_address(page);
2280 }
2281 EXPORT_SYMBOL(__get_free_pages);
2282
2283 unsigned long get_zeroed_page(gfp_t gfp_mask)
2284 {
2285 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2286 }
2287 EXPORT_SYMBOL(get_zeroed_page);
2288
2289 void __pagevec_free(struct pagevec *pvec)
2290 {
2291 int i = pagevec_count(pvec);
2292
2293 while (--i >= 0) {
2294 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2295 free_hot_cold_page(pvec->pages[i], pvec->cold);
2296 }
2297 }
2298
2299 void __free_pages(struct page *page, unsigned int order)
2300 {
2301 if (put_page_testzero(page)) {
2302 if (order == 0)
2303 free_hot_cold_page(page, 0);
2304 else
2305 __free_pages_ok(page, order);
2306 }
2307 }
2308
2309 EXPORT_SYMBOL(__free_pages);
2310
2311 void free_pages(unsigned long addr, unsigned int order)
2312 {
2313 if (addr != 0) {
2314 VM_BUG_ON(!virt_addr_valid((void *)addr));
2315 __free_pages(virt_to_page((void *)addr), order);
2316 }
2317 }
2318
2319 EXPORT_SYMBOL(free_pages);
2320
2321 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2322 {
2323 if (addr) {
2324 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2325 unsigned long used = addr + PAGE_ALIGN(size);
2326
2327 split_page(virt_to_page((void *)addr), order);
2328 while (used < alloc_end) {
2329 free_page(used);
2330 used += PAGE_SIZE;
2331 }
2332 }
2333 return (void *)addr;
2334 }
2335
2336 /**
2337 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2338 * @size: the number of bytes to allocate
2339 * @gfp_mask: GFP flags for the allocation
2340 *
2341 * This function is similar to alloc_pages(), except that it allocates the
2342 * minimum number of pages to satisfy the request. alloc_pages() can only
2343 * allocate memory in power-of-two pages.
2344 *
2345 * This function is also limited by MAX_ORDER.
2346 *
2347 * Memory allocated by this function must be released by free_pages_exact().
2348 */
2349 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2350 {
2351 unsigned int order = get_order(size);
2352 unsigned long addr;
2353
2354 addr = __get_free_pages(gfp_mask, order);
2355 return make_alloc_exact(addr, order, size);
2356 }
2357 EXPORT_SYMBOL(alloc_pages_exact);
2358
2359 /**
2360 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2361 * pages on a node.
2362 * @nid: the preferred node ID where memory should be allocated
2363 * @size: the number of bytes to allocate
2364 * @gfp_mask: GFP flags for the allocation
2365 *
2366 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2367 * back.
2368 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2369 * but is not exact.
2370 */
2371 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2372 {
2373 unsigned order = get_order(size);
2374 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2375 if (!p)
2376 return NULL;
2377 return make_alloc_exact((unsigned long)page_address(p), order, size);
2378 }
2379 EXPORT_SYMBOL(alloc_pages_exact_nid);
2380
2381 /**
2382 * free_pages_exact - release memory allocated via alloc_pages_exact()
2383 * @virt: the value returned by alloc_pages_exact.
2384 * @size: size of allocation, same value as passed to alloc_pages_exact().
2385 *
2386 * Release the memory allocated by a previous call to alloc_pages_exact.
2387 */
2388 void free_pages_exact(void *virt, size_t size)
2389 {
2390 unsigned long addr = (unsigned long)virt;
2391 unsigned long end = addr + PAGE_ALIGN(size);
2392
2393 while (addr < end) {
2394 free_page(addr);
2395 addr += PAGE_SIZE;
2396 }
2397 }
2398 EXPORT_SYMBOL(free_pages_exact);
2399
2400 static unsigned int nr_free_zone_pages(int offset)
2401 {
2402 struct zoneref *z;
2403 struct zone *zone;
2404
2405 /* Just pick one node, since fallback list is circular */
2406 unsigned int sum = 0;
2407
2408 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2409
2410 for_each_zone_zonelist(zone, z, zonelist, offset) {
2411 unsigned long size = zone->present_pages;
2412 unsigned long high = high_wmark_pages(zone);
2413 if (size > high)
2414 sum += size - high;
2415 }
2416
2417 return sum;
2418 }
2419
2420 /*
2421 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2422 */
2423 unsigned int nr_free_buffer_pages(void)
2424 {
2425 return nr_free_zone_pages(gfp_zone(GFP_USER));
2426 }
2427 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2428
2429 /*
2430 * Amount of free RAM allocatable within all zones
2431 */
2432 unsigned int nr_free_pagecache_pages(void)
2433 {
2434 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2435 }
2436
2437 static inline void show_node(struct zone *zone)
2438 {
2439 if (NUMA_BUILD)
2440 printk("Node %d ", zone_to_nid(zone));
2441 }
2442
2443 void si_meminfo(struct sysinfo *val)
2444 {
2445 val->totalram = totalram_pages;
2446 val->sharedram = 0;
2447 val->freeram = global_page_state(NR_FREE_PAGES);
2448 val->bufferram = nr_blockdev_pages();
2449 val->totalhigh = totalhigh_pages;
2450 val->freehigh = nr_free_highpages();
2451 val->mem_unit = PAGE_SIZE;
2452 }
2453
2454 EXPORT_SYMBOL(si_meminfo);
2455
2456 #ifdef CONFIG_NUMA
2457 void si_meminfo_node(struct sysinfo *val, int nid)
2458 {
2459 pg_data_t *pgdat = NODE_DATA(nid);
2460
2461 val->totalram = pgdat->node_present_pages;
2462 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2463 #ifdef CONFIG_HIGHMEM
2464 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2465 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2466 NR_FREE_PAGES);
2467 #else
2468 val->totalhigh = 0;
2469 val->freehigh = 0;
2470 #endif
2471 val->mem_unit = PAGE_SIZE;
2472 }
2473 #endif
2474
2475 /*
2476 * Determine whether the node should be displayed or not, depending on whether
2477 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2478 */
2479 bool skip_free_areas_node(unsigned int flags, int nid)
2480 {
2481 bool ret = false;
2482
2483 if (!(flags & SHOW_MEM_FILTER_NODES))
2484 goto out;
2485
2486 get_mems_allowed();
2487 ret = !node_isset(nid, cpuset_current_mems_allowed);
2488 put_mems_allowed();
2489 out:
2490 return ret;
2491 }
2492
2493 #define K(x) ((x) << (PAGE_SHIFT-10))
2494
2495 /*
2496 * Show free area list (used inside shift_scroll-lock stuff)
2497 * We also calculate the percentage fragmentation. We do this by counting the
2498 * memory on each free list with the exception of the first item on the list.
2499 * Suppresses nodes that are not allowed by current's cpuset if
2500 * SHOW_MEM_FILTER_NODES is passed.
2501 */
2502 void show_free_areas(unsigned int filter)
2503 {
2504 int cpu;
2505 struct zone *zone;
2506
2507 for_each_populated_zone(zone) {
2508 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2509 continue;
2510 show_node(zone);
2511 printk("%s per-cpu:\n", zone->name);
2512
2513 for_each_online_cpu(cpu) {
2514 struct per_cpu_pageset *pageset;
2515
2516 pageset = per_cpu_ptr(zone->pageset, cpu);
2517
2518 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2519 cpu, pageset->pcp.high,
2520 pageset->pcp.batch, pageset->pcp.count);
2521 }
2522 }
2523
2524 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2525 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2526 " unevictable:%lu"
2527 " dirty:%lu writeback:%lu unstable:%lu\n"
2528 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2529 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2530 global_page_state(NR_ACTIVE_ANON),
2531 global_page_state(NR_INACTIVE_ANON),
2532 global_page_state(NR_ISOLATED_ANON),
2533 global_page_state(NR_ACTIVE_FILE),
2534 global_page_state(NR_INACTIVE_FILE),
2535 global_page_state(NR_ISOLATED_FILE),
2536 global_page_state(NR_UNEVICTABLE),
2537 global_page_state(NR_FILE_DIRTY),
2538 global_page_state(NR_WRITEBACK),
2539 global_page_state(NR_UNSTABLE_NFS),
2540 global_page_state(NR_FREE_PAGES),
2541 global_page_state(NR_SLAB_RECLAIMABLE),
2542 global_page_state(NR_SLAB_UNRECLAIMABLE),
2543 global_page_state(NR_FILE_MAPPED),
2544 global_page_state(NR_SHMEM),
2545 global_page_state(NR_PAGETABLE),
2546 global_page_state(NR_BOUNCE));
2547
2548 for_each_populated_zone(zone) {
2549 int i;
2550
2551 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2552 continue;
2553 show_node(zone);
2554 printk("%s"
2555 " free:%lukB"
2556 " min:%lukB"
2557 " low:%lukB"
2558 " high:%lukB"
2559 " active_anon:%lukB"
2560 " inactive_anon:%lukB"
2561 " active_file:%lukB"
2562 " inactive_file:%lukB"
2563 " unevictable:%lukB"
2564 " isolated(anon):%lukB"
2565 " isolated(file):%lukB"
2566 " present:%lukB"
2567 " mlocked:%lukB"
2568 " dirty:%lukB"
2569 " writeback:%lukB"
2570 " mapped:%lukB"
2571 " shmem:%lukB"
2572 " slab_reclaimable:%lukB"
2573 " slab_unreclaimable:%lukB"
2574 " kernel_stack:%lukB"
2575 " pagetables:%lukB"
2576 " unstable:%lukB"
2577 " bounce:%lukB"
2578 " writeback_tmp:%lukB"
2579 " pages_scanned:%lu"
2580 " all_unreclaimable? %s"
2581 "\n",
2582 zone->name,
2583 K(zone_page_state(zone, NR_FREE_PAGES)),
2584 K(min_wmark_pages(zone)),
2585 K(low_wmark_pages(zone)),
2586 K(high_wmark_pages(zone)),
2587 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2588 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2589 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2590 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2591 K(zone_page_state(zone, NR_UNEVICTABLE)),
2592 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2593 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2594 K(zone->present_pages),
2595 K(zone_page_state(zone, NR_MLOCK)),
2596 K(zone_page_state(zone, NR_FILE_DIRTY)),
2597 K(zone_page_state(zone, NR_WRITEBACK)),
2598 K(zone_page_state(zone, NR_FILE_MAPPED)),
2599 K(zone_page_state(zone, NR_SHMEM)),
2600 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2601 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2602 zone_page_state(zone, NR_KERNEL_STACK) *
2603 THREAD_SIZE / 1024,
2604 K(zone_page_state(zone, NR_PAGETABLE)),
2605 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2606 K(zone_page_state(zone, NR_BOUNCE)),
2607 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2608 zone->pages_scanned,
2609 (zone->all_unreclaimable ? "yes" : "no")
2610 );
2611 printk("lowmem_reserve[]:");
2612 for (i = 0; i < MAX_NR_ZONES; i++)
2613 printk(" %lu", zone->lowmem_reserve[i]);
2614 printk("\n");
2615 }
2616
2617 for_each_populated_zone(zone) {
2618 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2619
2620 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2621 continue;
2622 show_node(zone);
2623 printk("%s: ", zone->name);
2624
2625 spin_lock_irqsave(&zone->lock, flags);
2626 for (order = 0; order < MAX_ORDER; order++) {
2627 nr[order] = zone->free_area[order].nr_free;
2628 total += nr[order] << order;
2629 }
2630 spin_unlock_irqrestore(&zone->lock, flags);
2631 for (order = 0; order < MAX_ORDER; order++)
2632 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2633 printk("= %lukB\n", K(total));
2634 }
2635
2636 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2637
2638 show_swap_cache_info();
2639 }
2640
2641 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2642 {
2643 zoneref->zone = zone;
2644 zoneref->zone_idx = zone_idx(zone);
2645 }
2646
2647 /*
2648 * Builds allocation fallback zone lists.
2649 *
2650 * Add all populated zones of a node to the zonelist.
2651 */
2652 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2653 int nr_zones, enum zone_type zone_type)
2654 {
2655 struct zone *zone;
2656
2657 BUG_ON(zone_type >= MAX_NR_ZONES);
2658 zone_type++;
2659
2660 do {
2661 zone_type--;
2662 zone = pgdat->node_zones + zone_type;
2663 if (populated_zone(zone)) {
2664 zoneref_set_zone(zone,
2665 &zonelist->_zonerefs[nr_zones++]);
2666 check_highest_zone(zone_type);
2667 }
2668
2669 } while (zone_type);
2670 return nr_zones;
2671 }
2672
2673
2674 /*
2675 * zonelist_order:
2676 * 0 = automatic detection of better ordering.
2677 * 1 = order by ([node] distance, -zonetype)
2678 * 2 = order by (-zonetype, [node] distance)
2679 *
2680 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2681 * the same zonelist. So only NUMA can configure this param.
2682 */
2683 #define ZONELIST_ORDER_DEFAULT 0
2684 #define ZONELIST_ORDER_NODE 1
2685 #define ZONELIST_ORDER_ZONE 2
2686
2687 /* zonelist order in the kernel.
2688 * set_zonelist_order() will set this to NODE or ZONE.
2689 */
2690 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2691 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2692
2693
2694 #ifdef CONFIG_NUMA
2695 /* The value user specified ....changed by config */
2696 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2697 /* string for sysctl */
2698 #define NUMA_ZONELIST_ORDER_LEN 16
2699 char numa_zonelist_order[16] = "default";
2700
2701 /*
2702 * interface for configure zonelist ordering.
2703 * command line option "numa_zonelist_order"
2704 * = "[dD]efault - default, automatic configuration.
2705 * = "[nN]ode - order by node locality, then by zone within node
2706 * = "[zZ]one - order by zone, then by locality within zone
2707 */
2708
2709 static int __parse_numa_zonelist_order(char *s)
2710 {
2711 if (*s == 'd' || *s == 'D') {
2712 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2713 } else if (*s == 'n' || *s == 'N') {
2714 user_zonelist_order = ZONELIST_ORDER_NODE;
2715 } else if (*s == 'z' || *s == 'Z') {
2716 user_zonelist_order = ZONELIST_ORDER_ZONE;
2717 } else {
2718 printk(KERN_WARNING
2719 "Ignoring invalid numa_zonelist_order value: "
2720 "%s\n", s);
2721 return -EINVAL;
2722 }
2723 return 0;
2724 }
2725
2726 static __init int setup_numa_zonelist_order(char *s)
2727 {
2728 int ret;
2729
2730 if (!s)
2731 return 0;
2732
2733 ret = __parse_numa_zonelist_order(s);
2734 if (ret == 0)
2735 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2736
2737 return ret;
2738 }
2739 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2740
2741 /*
2742 * sysctl handler for numa_zonelist_order
2743 */
2744 int numa_zonelist_order_handler(ctl_table *table, int write,
2745 void __user *buffer, size_t *length,
2746 loff_t *ppos)
2747 {
2748 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2749 int ret;
2750 static DEFINE_MUTEX(zl_order_mutex);
2751
2752 mutex_lock(&zl_order_mutex);
2753 if (write)
2754 strcpy(saved_string, (char*)table->data);
2755 ret = proc_dostring(table, write, buffer, length, ppos);
2756 if (ret)
2757 goto out;
2758 if (write) {
2759 int oldval = user_zonelist_order;
2760 if (__parse_numa_zonelist_order((char*)table->data)) {
2761 /*
2762 * bogus value. restore saved string
2763 */
2764 strncpy((char*)table->data, saved_string,
2765 NUMA_ZONELIST_ORDER_LEN);
2766 user_zonelist_order = oldval;
2767 } else if (oldval != user_zonelist_order) {
2768 mutex_lock(&zonelists_mutex);
2769 build_all_zonelists(NULL);
2770 mutex_unlock(&zonelists_mutex);
2771 }
2772 }
2773 out:
2774 mutex_unlock(&zl_order_mutex);
2775 return ret;
2776 }
2777
2778
2779 #define MAX_NODE_LOAD (nr_online_nodes)
2780 static int node_load[MAX_NUMNODES];
2781
2782 /**
2783 * find_next_best_node - find the next node that should appear in a given node's fallback list
2784 * @node: node whose fallback list we're appending
2785 * @used_node_mask: nodemask_t of already used nodes
2786 *
2787 * We use a number of factors to determine which is the next node that should
2788 * appear on a given node's fallback list. The node should not have appeared
2789 * already in @node's fallback list, and it should be the next closest node
2790 * according to the distance array (which contains arbitrary distance values
2791 * from each node to each node in the system), and should also prefer nodes
2792 * with no CPUs, since presumably they'll have very little allocation pressure
2793 * on them otherwise.
2794 * It returns -1 if no node is found.
2795 */
2796 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2797 {
2798 int n, val;
2799 int min_val = INT_MAX;
2800 int best_node = -1;
2801 const struct cpumask *tmp = cpumask_of_node(0);
2802
2803 /* Use the local node if we haven't already */
2804 if (!node_isset(node, *used_node_mask)) {
2805 node_set(node, *used_node_mask);
2806 return node;
2807 }
2808
2809 for_each_node_state(n, N_HIGH_MEMORY) {
2810
2811 /* Don't want a node to appear more than once */
2812 if (node_isset(n, *used_node_mask))
2813 continue;
2814
2815 /* Use the distance array to find the distance */
2816 val = node_distance(node, n);
2817
2818 /* Penalize nodes under us ("prefer the next node") */
2819 val += (n < node);
2820
2821 /* Give preference to headless and unused nodes */
2822 tmp = cpumask_of_node(n);
2823 if (!cpumask_empty(tmp))
2824 val += PENALTY_FOR_NODE_WITH_CPUS;
2825
2826 /* Slight preference for less loaded node */
2827 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2828 val += node_load[n];
2829
2830 if (val < min_val) {
2831 min_val = val;
2832 best_node = n;
2833 }
2834 }
2835
2836 if (best_node >= 0)
2837 node_set(best_node, *used_node_mask);
2838
2839 return best_node;
2840 }
2841
2842
2843 /*
2844 * Build zonelists ordered by node and zones within node.
2845 * This results in maximum locality--normal zone overflows into local
2846 * DMA zone, if any--but risks exhausting DMA zone.
2847 */
2848 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2849 {
2850 int j;
2851 struct zonelist *zonelist;
2852
2853 zonelist = &pgdat->node_zonelists[0];
2854 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2855 ;
2856 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2857 MAX_NR_ZONES - 1);
2858 zonelist->_zonerefs[j].zone = NULL;
2859 zonelist->_zonerefs[j].zone_idx = 0;
2860 }
2861
2862 /*
2863 * Build gfp_thisnode zonelists
2864 */
2865 static void build_thisnode_zonelists(pg_data_t *pgdat)
2866 {
2867 int j;
2868 struct zonelist *zonelist;
2869
2870 zonelist = &pgdat->node_zonelists[1];
2871 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2872 zonelist->_zonerefs[j].zone = NULL;
2873 zonelist->_zonerefs[j].zone_idx = 0;
2874 }
2875
2876 /*
2877 * Build zonelists ordered by zone and nodes within zones.
2878 * This results in conserving DMA zone[s] until all Normal memory is
2879 * exhausted, but results in overflowing to remote node while memory
2880 * may still exist in local DMA zone.
2881 */
2882 static int node_order[MAX_NUMNODES];
2883
2884 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2885 {
2886 int pos, j, node;
2887 int zone_type; /* needs to be signed */
2888 struct zone *z;
2889 struct zonelist *zonelist;
2890
2891 zonelist = &pgdat->node_zonelists[0];
2892 pos = 0;
2893 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2894 for (j = 0; j < nr_nodes; j++) {
2895 node = node_order[j];
2896 z = &NODE_DATA(node)->node_zones[zone_type];
2897 if (populated_zone(z)) {
2898 zoneref_set_zone(z,
2899 &zonelist->_zonerefs[pos++]);
2900 check_highest_zone(zone_type);
2901 }
2902 }
2903 }
2904 zonelist->_zonerefs[pos].zone = NULL;
2905 zonelist->_zonerefs[pos].zone_idx = 0;
2906 }
2907
2908 static int default_zonelist_order(void)
2909 {
2910 int nid, zone_type;
2911 unsigned long low_kmem_size,total_size;
2912 struct zone *z;
2913 int average_size;
2914 /*
2915 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2916 * If they are really small and used heavily, the system can fall
2917 * into OOM very easily.
2918 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2919 */
2920 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2921 low_kmem_size = 0;
2922 total_size = 0;
2923 for_each_online_node(nid) {
2924 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2925 z = &NODE_DATA(nid)->node_zones[zone_type];
2926 if (populated_zone(z)) {
2927 if (zone_type < ZONE_NORMAL)
2928 low_kmem_size += z->present_pages;
2929 total_size += z->present_pages;
2930 } else if (zone_type == ZONE_NORMAL) {
2931 /*
2932 * If any node has only lowmem, then node order
2933 * is preferred to allow kernel allocations
2934 * locally; otherwise, they can easily infringe
2935 * on other nodes when there is an abundance of
2936 * lowmem available to allocate from.
2937 */
2938 return ZONELIST_ORDER_NODE;
2939 }
2940 }
2941 }
2942 if (!low_kmem_size || /* there are no DMA area. */
2943 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2944 return ZONELIST_ORDER_NODE;
2945 /*
2946 * look into each node's config.
2947 * If there is a node whose DMA/DMA32 memory is very big area on
2948 * local memory, NODE_ORDER may be suitable.
2949 */
2950 average_size = total_size /
2951 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2952 for_each_online_node(nid) {
2953 low_kmem_size = 0;
2954 total_size = 0;
2955 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2956 z = &NODE_DATA(nid)->node_zones[zone_type];
2957 if (populated_zone(z)) {
2958 if (zone_type < ZONE_NORMAL)
2959 low_kmem_size += z->present_pages;
2960 total_size += z->present_pages;
2961 }
2962 }
2963 if (low_kmem_size &&
2964 total_size > average_size && /* ignore small node */
2965 low_kmem_size > total_size * 70/100)
2966 return ZONELIST_ORDER_NODE;
2967 }
2968 return ZONELIST_ORDER_ZONE;
2969 }
2970
2971 static void set_zonelist_order(void)
2972 {
2973 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2974 current_zonelist_order = default_zonelist_order();
2975 else
2976 current_zonelist_order = user_zonelist_order;
2977 }
2978
2979 static void build_zonelists(pg_data_t *pgdat)
2980 {
2981 int j, node, load;
2982 enum zone_type i;
2983 nodemask_t used_mask;
2984 int local_node, prev_node;
2985 struct zonelist *zonelist;
2986 int order = current_zonelist_order;
2987
2988 /* initialize zonelists */
2989 for (i = 0; i < MAX_ZONELISTS; i++) {
2990 zonelist = pgdat->node_zonelists + i;
2991 zonelist->_zonerefs[0].zone = NULL;
2992 zonelist->_zonerefs[0].zone_idx = 0;
2993 }
2994
2995 /* NUMA-aware ordering of nodes */
2996 local_node = pgdat->node_id;
2997 load = nr_online_nodes;
2998 prev_node = local_node;
2999 nodes_clear(used_mask);
3000
3001 memset(node_order, 0, sizeof(node_order));
3002 j = 0;
3003
3004 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3005 int distance = node_distance(local_node, node);
3006
3007 /*
3008 * If another node is sufficiently far away then it is better
3009 * to reclaim pages in a zone before going off node.
3010 */
3011 if (distance > RECLAIM_DISTANCE)
3012 zone_reclaim_mode = 1;
3013
3014 /*
3015 * We don't want to pressure a particular node.
3016 * So adding penalty to the first node in same
3017 * distance group to make it round-robin.
3018 */
3019 if (distance != node_distance(local_node, prev_node))
3020 node_load[node] = load;
3021
3022 prev_node = node;
3023 load--;
3024 if (order == ZONELIST_ORDER_NODE)
3025 build_zonelists_in_node_order(pgdat, node);
3026 else
3027 node_order[j++] = node; /* remember order */
3028 }
3029
3030 if (order == ZONELIST_ORDER_ZONE) {
3031 /* calculate node order -- i.e., DMA last! */
3032 build_zonelists_in_zone_order(pgdat, j);
3033 }
3034
3035 build_thisnode_zonelists(pgdat);
3036 }
3037
3038 /* Construct the zonelist performance cache - see further mmzone.h */
3039 static void build_zonelist_cache(pg_data_t *pgdat)
3040 {
3041 struct zonelist *zonelist;
3042 struct zonelist_cache *zlc;
3043 struct zoneref *z;
3044
3045 zonelist = &pgdat->node_zonelists[0];
3046 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3047 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3048 for (z = zonelist->_zonerefs; z->zone; z++)
3049 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3050 }
3051
3052 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3053 /*
3054 * Return node id of node used for "local" allocations.
3055 * I.e., first node id of first zone in arg node's generic zonelist.
3056 * Used for initializing percpu 'numa_mem', which is used primarily
3057 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3058 */
3059 int local_memory_node(int node)
3060 {
3061 struct zone *zone;
3062
3063 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3064 gfp_zone(GFP_KERNEL),
3065 NULL,
3066 &zone);
3067 return zone->node;
3068 }
3069 #endif
3070
3071 #else /* CONFIG_NUMA */
3072
3073 static void set_zonelist_order(void)
3074 {
3075 current_zonelist_order = ZONELIST_ORDER_ZONE;
3076 }
3077
3078 static void build_zonelists(pg_data_t *pgdat)
3079 {
3080 int node, local_node;
3081 enum zone_type j;
3082 struct zonelist *zonelist;
3083
3084 local_node = pgdat->node_id;
3085
3086 zonelist = &pgdat->node_zonelists[0];
3087 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3088
3089 /*
3090 * Now we build the zonelist so that it contains the zones
3091 * of all the other nodes.
3092 * We don't want to pressure a particular node, so when
3093 * building the zones for node N, we make sure that the
3094 * zones coming right after the local ones are those from
3095 * node N+1 (modulo N)
3096 */
3097 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3098 if (!node_online(node))
3099 continue;
3100 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3101 MAX_NR_ZONES - 1);
3102 }
3103 for (node = 0; node < local_node; node++) {
3104 if (!node_online(node))
3105 continue;
3106 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3107 MAX_NR_ZONES - 1);
3108 }
3109
3110 zonelist->_zonerefs[j].zone = NULL;
3111 zonelist->_zonerefs[j].zone_idx = 0;
3112 }
3113
3114 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3115 static void build_zonelist_cache(pg_data_t *pgdat)
3116 {
3117 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3118 }
3119
3120 #endif /* CONFIG_NUMA */
3121
3122 /*
3123 * Boot pageset table. One per cpu which is going to be used for all
3124 * zones and all nodes. The parameters will be set in such a way
3125 * that an item put on a list will immediately be handed over to
3126 * the buddy list. This is safe since pageset manipulation is done
3127 * with interrupts disabled.
3128 *
3129 * The boot_pagesets must be kept even after bootup is complete for
3130 * unused processors and/or zones. They do play a role for bootstrapping
3131 * hotplugged processors.
3132 *
3133 * zoneinfo_show() and maybe other functions do
3134 * not check if the processor is online before following the pageset pointer.
3135 * Other parts of the kernel may not check if the zone is available.
3136 */
3137 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3138 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3139 static void setup_zone_pageset(struct zone *zone);
3140
3141 /*
3142 * Global mutex to protect against size modification of zonelists
3143 * as well as to serialize pageset setup for the new populated zone.
3144 */
3145 DEFINE_MUTEX(zonelists_mutex);
3146
3147 /* return values int ....just for stop_machine() */
3148 static __init_refok int __build_all_zonelists(void *data)
3149 {
3150 int nid;
3151 int cpu;
3152
3153 #ifdef CONFIG_NUMA
3154 memset(node_load, 0, sizeof(node_load));
3155 #endif
3156 for_each_online_node(nid) {
3157 pg_data_t *pgdat = NODE_DATA(nid);
3158
3159 build_zonelists(pgdat);
3160 build_zonelist_cache(pgdat);
3161 }
3162
3163 /*
3164 * Initialize the boot_pagesets that are going to be used
3165 * for bootstrapping processors. The real pagesets for
3166 * each zone will be allocated later when the per cpu
3167 * allocator is available.
3168 *
3169 * boot_pagesets are used also for bootstrapping offline
3170 * cpus if the system is already booted because the pagesets
3171 * are needed to initialize allocators on a specific cpu too.
3172 * F.e. the percpu allocator needs the page allocator which
3173 * needs the percpu allocator in order to allocate its pagesets
3174 * (a chicken-egg dilemma).
3175 */
3176 for_each_possible_cpu(cpu) {
3177 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3178
3179 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3180 /*
3181 * We now know the "local memory node" for each node--
3182 * i.e., the node of the first zone in the generic zonelist.
3183 * Set up numa_mem percpu variable for on-line cpus. During
3184 * boot, only the boot cpu should be on-line; we'll init the
3185 * secondary cpus' numa_mem as they come on-line. During
3186 * node/memory hotplug, we'll fixup all on-line cpus.
3187 */
3188 if (cpu_online(cpu))
3189 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3190 #endif
3191 }
3192
3193 return 0;
3194 }
3195
3196 /*
3197 * Called with zonelists_mutex held always
3198 * unless system_state == SYSTEM_BOOTING.
3199 */
3200 void __ref build_all_zonelists(void *data)
3201 {
3202 set_zonelist_order();
3203
3204 if (system_state == SYSTEM_BOOTING) {
3205 __build_all_zonelists(NULL);
3206 mminit_verify_zonelist();
3207 cpuset_init_current_mems_allowed();
3208 } else {
3209 /* we have to stop all cpus to guarantee there is no user
3210 of zonelist */
3211 #ifdef CONFIG_MEMORY_HOTPLUG
3212 if (data)
3213 setup_zone_pageset((struct zone *)data);
3214 #endif
3215 stop_machine(__build_all_zonelists, NULL, NULL);
3216 /* cpuset refresh routine should be here */
3217 }
3218 vm_total_pages = nr_free_pagecache_pages();
3219 /*
3220 * Disable grouping by mobility if the number of pages in the
3221 * system is too low to allow the mechanism to work. It would be
3222 * more accurate, but expensive to check per-zone. This check is
3223 * made on memory-hotadd so a system can start with mobility
3224 * disabled and enable it later
3225 */
3226 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3227 page_group_by_mobility_disabled = 1;
3228 else
3229 page_group_by_mobility_disabled = 0;
3230
3231 printk("Built %i zonelists in %s order, mobility grouping %s. "
3232 "Total pages: %ld\n",
3233 nr_online_nodes,
3234 zonelist_order_name[current_zonelist_order],
3235 page_group_by_mobility_disabled ? "off" : "on",
3236 vm_total_pages);
3237 #ifdef CONFIG_NUMA
3238 printk("Policy zone: %s\n", zone_names[policy_zone]);
3239 #endif
3240 }
3241
3242 /*
3243 * Helper functions to size the waitqueue hash table.
3244 * Essentially these want to choose hash table sizes sufficiently
3245 * large so that collisions trying to wait on pages are rare.
3246 * But in fact, the number of active page waitqueues on typical
3247 * systems is ridiculously low, less than 200. So this is even
3248 * conservative, even though it seems large.
3249 *
3250 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3251 * waitqueues, i.e. the size of the waitq table given the number of pages.
3252 */
3253 #define PAGES_PER_WAITQUEUE 256
3254
3255 #ifndef CONFIG_MEMORY_HOTPLUG
3256 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3257 {
3258 unsigned long size = 1;
3259
3260 pages /= PAGES_PER_WAITQUEUE;
3261
3262 while (size < pages)
3263 size <<= 1;
3264
3265 /*
3266 * Once we have dozens or even hundreds of threads sleeping
3267 * on IO we've got bigger problems than wait queue collision.
3268 * Limit the size of the wait table to a reasonable size.
3269 */
3270 size = min(size, 4096UL);
3271
3272 return max(size, 4UL);
3273 }
3274 #else
3275 /*
3276 * A zone's size might be changed by hot-add, so it is not possible to determine
3277 * a suitable size for its wait_table. So we use the maximum size now.
3278 *
3279 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3280 *
3281 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3282 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3283 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3284 *
3285 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3286 * or more by the traditional way. (See above). It equals:
3287 *
3288 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3289 * ia64(16K page size) : = ( 8G + 4M)byte.
3290 * powerpc (64K page size) : = (32G +16M)byte.
3291 */
3292 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3293 {
3294 return 4096UL;
3295 }
3296 #endif
3297
3298 /*
3299 * This is an integer logarithm so that shifts can be used later
3300 * to extract the more random high bits from the multiplicative
3301 * hash function before the remainder is taken.
3302 */
3303 static inline unsigned long wait_table_bits(unsigned long size)
3304 {
3305 return ffz(~size);
3306 }
3307
3308 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3309
3310 /*
3311 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3312 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3313 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3314 * higher will lead to a bigger reserve which will get freed as contiguous
3315 * blocks as reclaim kicks in
3316 */
3317 static void setup_zone_migrate_reserve(struct zone *zone)
3318 {
3319 unsigned long start_pfn, pfn, end_pfn;
3320 struct page *page;
3321 unsigned long block_migratetype;
3322 int reserve;
3323
3324 /* Get the start pfn, end pfn and the number of blocks to reserve */
3325 start_pfn = zone->zone_start_pfn;
3326 end_pfn = start_pfn + zone->spanned_pages;
3327 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3328 pageblock_order;
3329
3330 /*
3331 * Reserve blocks are generally in place to help high-order atomic
3332 * allocations that are short-lived. A min_free_kbytes value that
3333 * would result in more than 2 reserve blocks for atomic allocations
3334 * is assumed to be in place to help anti-fragmentation for the
3335 * future allocation of hugepages at runtime.
3336 */
3337 reserve = min(2, reserve);
3338
3339 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3340 if (!pfn_valid(pfn))
3341 continue;
3342 page = pfn_to_page(pfn);
3343
3344 /* Watch out for overlapping nodes */
3345 if (page_to_nid(page) != zone_to_nid(zone))
3346 continue;
3347
3348 /* Blocks with reserved pages will never free, skip them. */
3349 if (PageReserved(page))
3350 continue;
3351
3352 block_migratetype = get_pageblock_migratetype(page);
3353
3354 /* If this block is reserved, account for it */
3355 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3356 reserve--;
3357 continue;
3358 }
3359
3360 /* Suitable for reserving if this block is movable */
3361 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3362 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3363 move_freepages_block(zone, page, MIGRATE_RESERVE);
3364 reserve--;
3365 continue;
3366 }
3367
3368 /*
3369 * If the reserve is met and this is a previous reserved block,
3370 * take it back
3371 */
3372 if (block_migratetype == MIGRATE_RESERVE) {
3373 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3374 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3375 }
3376 }
3377 }
3378
3379 /*
3380 * Initially all pages are reserved - free ones are freed
3381 * up by free_all_bootmem() once the early boot process is
3382 * done. Non-atomic initialization, single-pass.
3383 */
3384 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3385 unsigned long start_pfn, enum memmap_context context)
3386 {
3387 struct page *page;
3388 unsigned long end_pfn = start_pfn + size;
3389 unsigned long pfn;
3390 struct zone *z;
3391
3392 if (highest_memmap_pfn < end_pfn - 1)
3393 highest_memmap_pfn = end_pfn - 1;
3394
3395 z = &NODE_DATA(nid)->node_zones[zone];
3396 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3397 /*
3398 * There can be holes in boot-time mem_map[]s
3399 * handed to this function. They do not
3400 * exist on hotplugged memory.
3401 */
3402 if (context == MEMMAP_EARLY) {
3403 if (!early_pfn_valid(pfn))
3404 continue;
3405 if (!early_pfn_in_nid(pfn, nid))
3406 continue;
3407 }
3408 page = pfn_to_page(pfn);
3409 set_page_links(page, zone, nid, pfn);
3410 mminit_verify_page_links(page, zone, nid, pfn);
3411 init_page_count(page);
3412 reset_page_mapcount(page);
3413 SetPageReserved(page);
3414 /*
3415 * Mark the block movable so that blocks are reserved for
3416 * movable at startup. This will force kernel allocations
3417 * to reserve their blocks rather than leaking throughout
3418 * the address space during boot when many long-lived
3419 * kernel allocations are made. Later some blocks near
3420 * the start are marked MIGRATE_RESERVE by
3421 * setup_zone_migrate_reserve()
3422 *
3423 * bitmap is created for zone's valid pfn range. but memmap
3424 * can be created for invalid pages (for alignment)
3425 * check here not to call set_pageblock_migratetype() against
3426 * pfn out of zone.
3427 */
3428 if ((z->zone_start_pfn <= pfn)
3429 && (pfn < z->zone_start_pfn + z->spanned_pages)
3430 && !(pfn & (pageblock_nr_pages - 1)))
3431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3432
3433 INIT_LIST_HEAD(&page->lru);
3434 #ifdef WANT_PAGE_VIRTUAL
3435 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3436 if (!is_highmem_idx(zone))
3437 set_page_address(page, __va(pfn << PAGE_SHIFT));
3438 #endif
3439 }
3440 }
3441
3442 static void __meminit zone_init_free_lists(struct zone *zone)
3443 {
3444 int order, t;
3445 for_each_migratetype_order(order, t) {
3446 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3447 zone->free_area[order].nr_free = 0;
3448 }
3449 }
3450
3451 #ifndef __HAVE_ARCH_MEMMAP_INIT
3452 #define memmap_init(size, nid, zone, start_pfn) \
3453 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3454 #endif
3455
3456 static int zone_batchsize(struct zone *zone)
3457 {
3458 #ifdef CONFIG_MMU
3459 int batch;
3460
3461 /*
3462 * The per-cpu-pages pools are set to around 1000th of the
3463 * size of the zone. But no more than 1/2 of a meg.
3464 *
3465 * OK, so we don't know how big the cache is. So guess.
3466 */
3467 batch = zone->present_pages / 1024;
3468 if (batch * PAGE_SIZE > 512 * 1024)
3469 batch = (512 * 1024) / PAGE_SIZE;
3470 batch /= 4; /* We effectively *= 4 below */
3471 if (batch < 1)
3472 batch = 1;
3473
3474 /*
3475 * Clamp the batch to a 2^n - 1 value. Having a power
3476 * of 2 value was found to be more likely to have
3477 * suboptimal cache aliasing properties in some cases.
3478 *
3479 * For example if 2 tasks are alternately allocating
3480 * batches of pages, one task can end up with a lot
3481 * of pages of one half of the possible page colors
3482 * and the other with pages of the other colors.
3483 */
3484 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3485
3486 return batch;
3487
3488 #else
3489 /* The deferral and batching of frees should be suppressed under NOMMU
3490 * conditions.
3491 *
3492 * The problem is that NOMMU needs to be able to allocate large chunks
3493 * of contiguous memory as there's no hardware page translation to
3494 * assemble apparent contiguous memory from discontiguous pages.
3495 *
3496 * Queueing large contiguous runs of pages for batching, however,
3497 * causes the pages to actually be freed in smaller chunks. As there
3498 * can be a significant delay between the individual batches being
3499 * recycled, this leads to the once large chunks of space being
3500 * fragmented and becoming unavailable for high-order allocations.
3501 */
3502 return 0;
3503 #endif
3504 }
3505
3506 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3507 {
3508 struct per_cpu_pages *pcp;
3509 int migratetype;
3510
3511 memset(p, 0, sizeof(*p));
3512
3513 pcp = &p->pcp;
3514 pcp->count = 0;
3515 pcp->high = 6 * batch;
3516 pcp->batch = max(1UL, 1 * batch);
3517 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3518 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3519 }
3520
3521 /*
3522 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3523 * to the value high for the pageset p.
3524 */
3525
3526 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3527 unsigned long high)
3528 {
3529 struct per_cpu_pages *pcp;
3530
3531 pcp = &p->pcp;
3532 pcp->high = high;
3533 pcp->batch = max(1UL, high/4);
3534 if ((high/4) > (PAGE_SHIFT * 8))
3535 pcp->batch = PAGE_SHIFT * 8;
3536 }
3537
3538 static void setup_zone_pageset(struct zone *zone)
3539 {
3540 int cpu;
3541
3542 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3543
3544 for_each_possible_cpu(cpu) {
3545 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3546
3547 setup_pageset(pcp, zone_batchsize(zone));
3548
3549 if (percpu_pagelist_fraction)
3550 setup_pagelist_highmark(pcp,
3551 (zone->present_pages /
3552 percpu_pagelist_fraction));
3553 }
3554 }
3555
3556 /*
3557 * Allocate per cpu pagesets and initialize them.
3558 * Before this call only boot pagesets were available.
3559 */
3560 void __init setup_per_cpu_pageset(void)
3561 {
3562 struct zone *zone;
3563
3564 for_each_populated_zone(zone)
3565 setup_zone_pageset(zone);
3566 }
3567
3568 static noinline __init_refok
3569 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3570 {
3571 int i;
3572 struct pglist_data *pgdat = zone->zone_pgdat;
3573 size_t alloc_size;
3574
3575 /*
3576 * The per-page waitqueue mechanism uses hashed waitqueues
3577 * per zone.
3578 */
3579 zone->wait_table_hash_nr_entries =
3580 wait_table_hash_nr_entries(zone_size_pages);
3581 zone->wait_table_bits =
3582 wait_table_bits(zone->wait_table_hash_nr_entries);
3583 alloc_size = zone->wait_table_hash_nr_entries
3584 * sizeof(wait_queue_head_t);
3585
3586 if (!slab_is_available()) {
3587 zone->wait_table = (wait_queue_head_t *)
3588 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3589 } else {
3590 /*
3591 * This case means that a zone whose size was 0 gets new memory
3592 * via memory hot-add.
3593 * But it may be the case that a new node was hot-added. In
3594 * this case vmalloc() will not be able to use this new node's
3595 * memory - this wait_table must be initialized to use this new
3596 * node itself as well.
3597 * To use this new node's memory, further consideration will be
3598 * necessary.
3599 */
3600 zone->wait_table = vmalloc(alloc_size);
3601 }
3602 if (!zone->wait_table)
3603 return -ENOMEM;
3604
3605 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3606 init_waitqueue_head(zone->wait_table + i);
3607
3608 return 0;
3609 }
3610
3611 static int __zone_pcp_update(void *data)
3612 {
3613 struct zone *zone = data;
3614 int cpu;
3615 unsigned long batch = zone_batchsize(zone), flags;
3616
3617 for_each_possible_cpu(cpu) {
3618 struct per_cpu_pageset *pset;
3619 struct per_cpu_pages *pcp;
3620
3621 pset = per_cpu_ptr(zone->pageset, cpu);
3622 pcp = &pset->pcp;
3623
3624 local_irq_save(flags);
3625 free_pcppages_bulk(zone, pcp->count, pcp);
3626 setup_pageset(pset, batch);
3627 local_irq_restore(flags);
3628 }
3629 return 0;
3630 }
3631
3632 void zone_pcp_update(struct zone *zone)
3633 {
3634 stop_machine(__zone_pcp_update, zone, NULL);
3635 }
3636
3637 static __meminit void zone_pcp_init(struct zone *zone)
3638 {
3639 /*
3640 * per cpu subsystem is not up at this point. The following code
3641 * relies on the ability of the linker to provide the
3642 * offset of a (static) per cpu variable into the per cpu area.
3643 */
3644 zone->pageset = &boot_pageset;
3645
3646 if (zone->present_pages)
3647 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3648 zone->name, zone->present_pages,
3649 zone_batchsize(zone));
3650 }
3651
3652 __meminit int init_currently_empty_zone(struct zone *zone,
3653 unsigned long zone_start_pfn,
3654 unsigned long size,
3655 enum memmap_context context)
3656 {
3657 struct pglist_data *pgdat = zone->zone_pgdat;
3658 int ret;
3659 ret = zone_wait_table_init(zone, size);
3660 if (ret)
3661 return ret;
3662 pgdat->nr_zones = zone_idx(zone) + 1;
3663
3664 zone->zone_start_pfn = zone_start_pfn;
3665
3666 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3667 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3668 pgdat->node_id,
3669 (unsigned long)zone_idx(zone),
3670 zone_start_pfn, (zone_start_pfn + size));
3671
3672 zone_init_free_lists(zone);
3673
3674 return 0;
3675 }
3676
3677 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3678 /*
3679 * Basic iterator support. Return the first range of PFNs for a node
3680 * Note: nid == MAX_NUMNODES returns first region regardless of node
3681 */
3682 static int __meminit first_active_region_index_in_nid(int nid)
3683 {
3684 int i;
3685
3686 for (i = 0; i < nr_nodemap_entries; i++)
3687 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3688 return i;
3689
3690 return -1;
3691 }
3692
3693 /*
3694 * Basic iterator support. Return the next active range of PFNs for a node
3695 * Note: nid == MAX_NUMNODES returns next region regardless of node
3696 */
3697 static int __meminit next_active_region_index_in_nid(int index, int nid)
3698 {
3699 for (index = index + 1; index < nr_nodemap_entries; index++)
3700 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3701 return index;
3702
3703 return -1;
3704 }
3705
3706 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3707 /*
3708 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3709 * Architectures may implement their own version but if add_active_range()
3710 * was used and there are no special requirements, this is a convenient
3711 * alternative
3712 */
3713 int __meminit __early_pfn_to_nid(unsigned long pfn)
3714 {
3715 int i;
3716
3717 for (i = 0; i < nr_nodemap_entries; i++) {
3718 unsigned long start_pfn = early_node_map[i].start_pfn;
3719 unsigned long end_pfn = early_node_map[i].end_pfn;
3720
3721 if (start_pfn <= pfn && pfn < end_pfn)
3722 return early_node_map[i].nid;
3723 }
3724 /* This is a memory hole */
3725 return -1;
3726 }
3727 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3728
3729 int __meminit early_pfn_to_nid(unsigned long pfn)
3730 {
3731 int nid;
3732
3733 nid = __early_pfn_to_nid(pfn);
3734 if (nid >= 0)
3735 return nid;
3736 /* just returns 0 */
3737 return 0;
3738 }
3739
3740 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3741 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3742 {
3743 int nid;
3744
3745 nid = __early_pfn_to_nid(pfn);
3746 if (nid >= 0 && nid != node)
3747 return false;
3748 return true;
3749 }
3750 #endif
3751
3752 /* Basic iterator support to walk early_node_map[] */
3753 #define for_each_active_range_index_in_nid(i, nid) \
3754 for (i = first_active_region_index_in_nid(nid); i != -1; \
3755 i = next_active_region_index_in_nid(i, nid))
3756
3757 /**
3758 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3759 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3760 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3761 *
3762 * If an architecture guarantees that all ranges registered with
3763 * add_active_ranges() contain no holes and may be freed, this
3764 * this function may be used instead of calling free_bootmem() manually.
3765 */
3766 void __init free_bootmem_with_active_regions(int nid,
3767 unsigned long max_low_pfn)
3768 {
3769 int i;
3770
3771 for_each_active_range_index_in_nid(i, nid) {
3772 unsigned long size_pages = 0;
3773 unsigned long end_pfn = early_node_map[i].end_pfn;
3774
3775 if (early_node_map[i].start_pfn >= max_low_pfn)
3776 continue;
3777
3778 if (end_pfn > max_low_pfn)
3779 end_pfn = max_low_pfn;
3780
3781 size_pages = end_pfn - early_node_map[i].start_pfn;
3782 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3783 PFN_PHYS(early_node_map[i].start_pfn),
3784 size_pages << PAGE_SHIFT);
3785 }
3786 }
3787
3788 #ifdef CONFIG_HAVE_MEMBLOCK
3789 /*
3790 * Basic iterator support. Return the last range of PFNs for a node
3791 * Note: nid == MAX_NUMNODES returns last region regardless of node
3792 */
3793 static int __meminit last_active_region_index_in_nid(int nid)
3794 {
3795 int i;
3796
3797 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3798 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3799 return i;
3800
3801 return -1;
3802 }
3803
3804 /*
3805 * Basic iterator support. Return the previous active range of PFNs for a node
3806 * Note: nid == MAX_NUMNODES returns next region regardless of node
3807 */
3808 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3809 {
3810 for (index = index - 1; index >= 0; index--)
3811 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3812 return index;
3813
3814 return -1;
3815 }
3816
3817 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3818 for (i = last_active_region_index_in_nid(nid); i != -1; \
3819 i = previous_active_region_index_in_nid(i, nid))
3820
3821 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3822 u64 goal, u64 limit)
3823 {
3824 int i;
3825
3826 /* Need to go over early_node_map to find out good range for node */
3827 for_each_active_range_index_in_nid_reverse(i, nid) {
3828 u64 addr;
3829 u64 ei_start, ei_last;
3830 u64 final_start, final_end;
3831
3832 ei_last = early_node_map[i].end_pfn;
3833 ei_last <<= PAGE_SHIFT;
3834 ei_start = early_node_map[i].start_pfn;
3835 ei_start <<= PAGE_SHIFT;
3836
3837 final_start = max(ei_start, goal);
3838 final_end = min(ei_last, limit);
3839
3840 if (final_start >= final_end)
3841 continue;
3842
3843 addr = memblock_find_in_range(final_start, final_end, size, align);
3844
3845 if (addr == MEMBLOCK_ERROR)
3846 continue;
3847
3848 return addr;
3849 }
3850
3851 return MEMBLOCK_ERROR;
3852 }
3853 #endif
3854
3855 int __init add_from_early_node_map(struct range *range, int az,
3856 int nr_range, int nid)
3857 {
3858 int i;
3859 u64 start, end;
3860
3861 /* need to go over early_node_map to find out good range for node */
3862 for_each_active_range_index_in_nid(i, nid) {
3863 start = early_node_map[i].start_pfn;
3864 end = early_node_map[i].end_pfn;
3865 nr_range = add_range(range, az, nr_range, start, end);
3866 }
3867 return nr_range;
3868 }
3869
3870 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3871 {
3872 int i;
3873 int ret;
3874
3875 for_each_active_range_index_in_nid(i, nid) {
3876 ret = work_fn(early_node_map[i].start_pfn,
3877 early_node_map[i].end_pfn, data);
3878 if (ret)
3879 break;
3880 }
3881 }
3882 /**
3883 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3884 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3885 *
3886 * If an architecture guarantees that all ranges registered with
3887 * add_active_ranges() contain no holes and may be freed, this
3888 * function may be used instead of calling memory_present() manually.
3889 */
3890 void __init sparse_memory_present_with_active_regions(int nid)
3891 {
3892 int i;
3893
3894 for_each_active_range_index_in_nid(i, nid)
3895 memory_present(early_node_map[i].nid,
3896 early_node_map[i].start_pfn,
3897 early_node_map[i].end_pfn);
3898 }
3899
3900 /**
3901 * get_pfn_range_for_nid - Return the start and end page frames for a node
3902 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3903 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3904 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3905 *
3906 * It returns the start and end page frame of a node based on information
3907 * provided by an arch calling add_active_range(). If called for a node
3908 * with no available memory, a warning is printed and the start and end
3909 * PFNs will be 0.
3910 */
3911 void __meminit get_pfn_range_for_nid(unsigned int nid,
3912 unsigned long *start_pfn, unsigned long *end_pfn)
3913 {
3914 int i;
3915 *start_pfn = -1UL;
3916 *end_pfn = 0;
3917
3918 for_each_active_range_index_in_nid(i, nid) {
3919 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3920 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3921 }
3922
3923 if (*start_pfn == -1UL)
3924 *start_pfn = 0;
3925 }
3926
3927 /*
3928 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3929 * assumption is made that zones within a node are ordered in monotonic
3930 * increasing memory addresses so that the "highest" populated zone is used
3931 */
3932 static void __init find_usable_zone_for_movable(void)
3933 {
3934 int zone_index;
3935 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3936 if (zone_index == ZONE_MOVABLE)
3937 continue;
3938
3939 if (arch_zone_highest_possible_pfn[zone_index] >
3940 arch_zone_lowest_possible_pfn[zone_index])
3941 break;
3942 }
3943
3944 VM_BUG_ON(zone_index == -1);
3945 movable_zone = zone_index;
3946 }
3947
3948 /*
3949 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3950 * because it is sized independent of architecture. Unlike the other zones,
3951 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3952 * in each node depending on the size of each node and how evenly kernelcore
3953 * is distributed. This helper function adjusts the zone ranges
3954 * provided by the architecture for a given node by using the end of the
3955 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3956 * zones within a node are in order of monotonic increases memory addresses
3957 */
3958 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3959 unsigned long zone_type,
3960 unsigned long node_start_pfn,
3961 unsigned long node_end_pfn,
3962 unsigned long *zone_start_pfn,
3963 unsigned long *zone_end_pfn)
3964 {
3965 /* Only adjust if ZONE_MOVABLE is on this node */
3966 if (zone_movable_pfn[nid]) {
3967 /* Size ZONE_MOVABLE */
3968 if (zone_type == ZONE_MOVABLE) {
3969 *zone_start_pfn = zone_movable_pfn[nid];
3970 *zone_end_pfn = min(node_end_pfn,
3971 arch_zone_highest_possible_pfn[movable_zone]);
3972
3973 /* Adjust for ZONE_MOVABLE starting within this range */
3974 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3975 *zone_end_pfn > zone_movable_pfn[nid]) {
3976 *zone_end_pfn = zone_movable_pfn[nid];
3977
3978 /* Check if this whole range is within ZONE_MOVABLE */
3979 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3980 *zone_start_pfn = *zone_end_pfn;
3981 }
3982 }
3983
3984 /*
3985 * Return the number of pages a zone spans in a node, including holes
3986 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3987 */
3988 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3989 unsigned long zone_type,
3990 unsigned long *ignored)
3991 {
3992 unsigned long node_start_pfn, node_end_pfn;
3993 unsigned long zone_start_pfn, zone_end_pfn;
3994
3995 /* Get the start and end of the node and zone */
3996 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3997 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3998 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3999 adjust_zone_range_for_zone_movable(nid, zone_type,
4000 node_start_pfn, node_end_pfn,
4001 &zone_start_pfn, &zone_end_pfn);
4002
4003 /* Check that this node has pages within the zone's required range */
4004 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4005 return 0;
4006
4007 /* Move the zone boundaries inside the node if necessary */
4008 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4009 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4010
4011 /* Return the spanned pages */
4012 return zone_end_pfn - zone_start_pfn;
4013 }
4014
4015 /*
4016 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4017 * then all holes in the requested range will be accounted for.
4018 */
4019 unsigned long __meminit __absent_pages_in_range(int nid,
4020 unsigned long range_start_pfn,
4021 unsigned long range_end_pfn)
4022 {
4023 int i = 0;
4024 unsigned long prev_end_pfn = 0, hole_pages = 0;
4025 unsigned long start_pfn;
4026
4027 /* Find the end_pfn of the first active range of pfns in the node */
4028 i = first_active_region_index_in_nid(nid);
4029 if (i == -1)
4030 return 0;
4031
4032 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4033
4034 /* Account for ranges before physical memory on this node */
4035 if (early_node_map[i].start_pfn > range_start_pfn)
4036 hole_pages = prev_end_pfn - range_start_pfn;
4037
4038 /* Find all holes for the zone within the node */
4039 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4040
4041 /* No need to continue if prev_end_pfn is outside the zone */
4042 if (prev_end_pfn >= range_end_pfn)
4043 break;
4044
4045 /* Make sure the end of the zone is not within the hole */
4046 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4047 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4048
4049 /* Update the hole size cound and move on */
4050 if (start_pfn > range_start_pfn) {
4051 BUG_ON(prev_end_pfn > start_pfn);
4052 hole_pages += start_pfn - prev_end_pfn;
4053 }
4054 prev_end_pfn = early_node_map[i].end_pfn;
4055 }
4056
4057 /* Account for ranges past physical memory on this node */
4058 if (range_end_pfn > prev_end_pfn)
4059 hole_pages += range_end_pfn -
4060 max(range_start_pfn, prev_end_pfn);
4061
4062 return hole_pages;
4063 }
4064
4065 /**
4066 * absent_pages_in_range - Return number of page frames in holes within a range
4067 * @start_pfn: The start PFN to start searching for holes
4068 * @end_pfn: The end PFN to stop searching for holes
4069 *
4070 * It returns the number of pages frames in memory holes within a range.
4071 */
4072 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4073 unsigned long end_pfn)
4074 {
4075 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4076 }
4077
4078 /* Return the number of page frames in holes in a zone on a node */
4079 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4080 unsigned long zone_type,
4081 unsigned long *ignored)
4082 {
4083 unsigned long node_start_pfn, node_end_pfn;
4084 unsigned long zone_start_pfn, zone_end_pfn;
4085
4086 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4087 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4088 node_start_pfn);
4089 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4090 node_end_pfn);
4091
4092 adjust_zone_range_for_zone_movable(nid, zone_type,
4093 node_start_pfn, node_end_pfn,
4094 &zone_start_pfn, &zone_end_pfn);
4095 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4096 }
4097
4098 #else
4099 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4100 unsigned long zone_type,
4101 unsigned long *zones_size)
4102 {
4103 return zones_size[zone_type];
4104 }
4105
4106 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4107 unsigned long zone_type,
4108 unsigned long *zholes_size)
4109 {
4110 if (!zholes_size)
4111 return 0;
4112
4113 return zholes_size[zone_type];
4114 }
4115
4116 #endif
4117
4118 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4119 unsigned long *zones_size, unsigned long *zholes_size)
4120 {
4121 unsigned long realtotalpages, totalpages = 0;
4122 enum zone_type i;
4123
4124 for (i = 0; i < MAX_NR_ZONES; i++)
4125 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4126 zones_size);
4127 pgdat->node_spanned_pages = totalpages;
4128
4129 realtotalpages = totalpages;
4130 for (i = 0; i < MAX_NR_ZONES; i++)
4131 realtotalpages -=
4132 zone_absent_pages_in_node(pgdat->node_id, i,
4133 zholes_size);
4134 pgdat->node_present_pages = realtotalpages;
4135 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4136 realtotalpages);
4137 }
4138
4139 #ifndef CONFIG_SPARSEMEM
4140 /*
4141 * Calculate the size of the zone->blockflags rounded to an unsigned long
4142 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4143 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4144 * round what is now in bits to nearest long in bits, then return it in
4145 * bytes.
4146 */
4147 static unsigned long __init usemap_size(unsigned long zonesize)
4148 {
4149 unsigned long usemapsize;
4150
4151 usemapsize = roundup(zonesize, pageblock_nr_pages);
4152 usemapsize = usemapsize >> pageblock_order;
4153 usemapsize *= NR_PAGEBLOCK_BITS;
4154 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4155
4156 return usemapsize / 8;
4157 }
4158
4159 static void __init setup_usemap(struct pglist_data *pgdat,
4160 struct zone *zone, unsigned long zonesize)
4161 {
4162 unsigned long usemapsize = usemap_size(zonesize);
4163 zone->pageblock_flags = NULL;
4164 if (usemapsize)
4165 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4166 usemapsize);
4167 }
4168 #else
4169 static inline void setup_usemap(struct pglist_data *pgdat,
4170 struct zone *zone, unsigned long zonesize) {}
4171 #endif /* CONFIG_SPARSEMEM */
4172
4173 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4174
4175 /* Return a sensible default order for the pageblock size. */
4176 static inline int pageblock_default_order(void)
4177 {
4178 if (HPAGE_SHIFT > PAGE_SHIFT)
4179 return HUGETLB_PAGE_ORDER;
4180
4181 return MAX_ORDER-1;
4182 }
4183
4184 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4185 static inline void __init set_pageblock_order(unsigned int order)
4186 {
4187 /* Check that pageblock_nr_pages has not already been setup */
4188 if (pageblock_order)
4189 return;
4190
4191 /*
4192 * Assume the largest contiguous order of interest is a huge page.
4193 * This value may be variable depending on boot parameters on IA64
4194 */
4195 pageblock_order = order;
4196 }
4197 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4198
4199 /*
4200 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4201 * and pageblock_default_order() are unused as pageblock_order is set
4202 * at compile-time. See include/linux/pageblock-flags.h for the values of
4203 * pageblock_order based on the kernel config
4204 */
4205 static inline int pageblock_default_order(unsigned int order)
4206 {
4207 return MAX_ORDER-1;
4208 }
4209 #define set_pageblock_order(x) do {} while (0)
4210
4211 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4212
4213 /*
4214 * Set up the zone data structures:
4215 * - mark all pages reserved
4216 * - mark all memory queues empty
4217 * - clear the memory bitmaps
4218 */
4219 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4220 unsigned long *zones_size, unsigned long *zholes_size)
4221 {
4222 enum zone_type j;
4223 int nid = pgdat->node_id;
4224 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4225 int ret;
4226
4227 pgdat_resize_init(pgdat);
4228 pgdat->nr_zones = 0;
4229 init_waitqueue_head(&pgdat->kswapd_wait);
4230 pgdat->kswapd_max_order = 0;
4231 pgdat_page_cgroup_init(pgdat);
4232
4233 for (j = 0; j < MAX_NR_ZONES; j++) {
4234 struct zone *zone = pgdat->node_zones + j;
4235 unsigned long size, realsize, memmap_pages;
4236 enum lru_list l;
4237
4238 size = zone_spanned_pages_in_node(nid, j, zones_size);
4239 realsize = size - zone_absent_pages_in_node(nid, j,
4240 zholes_size);
4241
4242 /*
4243 * Adjust realsize so that it accounts for how much memory
4244 * is used by this zone for memmap. This affects the watermark
4245 * and per-cpu initialisations
4246 */
4247 memmap_pages =
4248 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4249 if (realsize >= memmap_pages) {
4250 realsize -= memmap_pages;
4251 if (memmap_pages)
4252 printk(KERN_DEBUG
4253 " %s zone: %lu pages used for memmap\n",
4254 zone_names[j], memmap_pages);
4255 } else
4256 printk(KERN_WARNING
4257 " %s zone: %lu pages exceeds realsize %lu\n",
4258 zone_names[j], memmap_pages, realsize);
4259
4260 /* Account for reserved pages */
4261 if (j == 0 && realsize > dma_reserve) {
4262 realsize -= dma_reserve;
4263 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4264 zone_names[0], dma_reserve);
4265 }
4266
4267 if (!is_highmem_idx(j))
4268 nr_kernel_pages += realsize;
4269 nr_all_pages += realsize;
4270
4271 zone->spanned_pages = size;
4272 zone->present_pages = realsize;
4273 #ifdef CONFIG_NUMA
4274 zone->node = nid;
4275 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4276 / 100;
4277 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4278 #endif
4279 zone->name = zone_names[j];
4280 spin_lock_init(&zone->lock);
4281 spin_lock_init(&zone->lru_lock);
4282 zone_seqlock_init(zone);
4283 zone->zone_pgdat = pgdat;
4284
4285 zone_pcp_init(zone);
4286 for_each_lru(l) {
4287 INIT_LIST_HEAD(&zone->lru[l].list);
4288 zone->reclaim_stat.nr_saved_scan[l] = 0;
4289 }
4290 zone->reclaim_stat.recent_rotated[0] = 0;
4291 zone->reclaim_stat.recent_rotated[1] = 0;
4292 zone->reclaim_stat.recent_scanned[0] = 0;
4293 zone->reclaim_stat.recent_scanned[1] = 0;
4294 zap_zone_vm_stats(zone);
4295 zone->flags = 0;
4296 if (!size)
4297 continue;
4298
4299 set_pageblock_order(pageblock_default_order());
4300 setup_usemap(pgdat, zone, size);
4301 ret = init_currently_empty_zone(zone, zone_start_pfn,
4302 size, MEMMAP_EARLY);
4303 BUG_ON(ret);
4304 memmap_init(size, nid, j, zone_start_pfn);
4305 zone_start_pfn += size;
4306 }
4307 }
4308
4309 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4310 {
4311 /* Skip empty nodes */
4312 if (!pgdat->node_spanned_pages)
4313 return;
4314
4315 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4316 /* ia64 gets its own node_mem_map, before this, without bootmem */
4317 if (!pgdat->node_mem_map) {
4318 unsigned long size, start, end;
4319 struct page *map;
4320
4321 /*
4322 * The zone's endpoints aren't required to be MAX_ORDER
4323 * aligned but the node_mem_map endpoints must be in order
4324 * for the buddy allocator to function correctly.
4325 */
4326 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4327 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4328 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4329 size = (end - start) * sizeof(struct page);
4330 map = alloc_remap(pgdat->node_id, size);
4331 if (!map)
4332 map = alloc_bootmem_node_nopanic(pgdat, size);
4333 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4334 }
4335 #ifndef CONFIG_NEED_MULTIPLE_NODES
4336 /*
4337 * With no DISCONTIG, the global mem_map is just set as node 0's
4338 */
4339 if (pgdat == NODE_DATA(0)) {
4340 mem_map = NODE_DATA(0)->node_mem_map;
4341 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4342 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4343 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4344 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4345 }
4346 #endif
4347 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4348 }
4349
4350 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4351 unsigned long node_start_pfn, unsigned long *zholes_size)
4352 {
4353 pg_data_t *pgdat = NODE_DATA(nid);
4354
4355 pgdat->node_id = nid;
4356 pgdat->node_start_pfn = node_start_pfn;
4357 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4358
4359 alloc_node_mem_map(pgdat);
4360 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4361 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4362 nid, (unsigned long)pgdat,
4363 (unsigned long)pgdat->node_mem_map);
4364 #endif
4365
4366 free_area_init_core(pgdat, zones_size, zholes_size);
4367 }
4368
4369 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4370
4371 #if MAX_NUMNODES > 1
4372 /*
4373 * Figure out the number of possible node ids.
4374 */
4375 static void __init setup_nr_node_ids(void)
4376 {
4377 unsigned int node;
4378 unsigned int highest = 0;
4379
4380 for_each_node_mask(node, node_possible_map)
4381 highest = node;
4382 nr_node_ids = highest + 1;
4383 }
4384 #else
4385 static inline void setup_nr_node_ids(void)
4386 {
4387 }
4388 #endif
4389
4390 /**
4391 * add_active_range - Register a range of PFNs backed by physical memory
4392 * @nid: The node ID the range resides on
4393 * @start_pfn: The start PFN of the available physical memory
4394 * @end_pfn: The end PFN of the available physical memory
4395 *
4396 * These ranges are stored in an early_node_map[] and later used by
4397 * free_area_init_nodes() to calculate zone sizes and holes. If the
4398 * range spans a memory hole, it is up to the architecture to ensure
4399 * the memory is not freed by the bootmem allocator. If possible
4400 * the range being registered will be merged with existing ranges.
4401 */
4402 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4403 unsigned long end_pfn)
4404 {
4405 int i;
4406
4407 mminit_dprintk(MMINIT_TRACE, "memory_register",
4408 "Entering add_active_range(%d, %#lx, %#lx) "
4409 "%d entries of %d used\n",
4410 nid, start_pfn, end_pfn,
4411 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4412
4413 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4414
4415 /* Merge with existing active regions if possible */
4416 for (i = 0; i < nr_nodemap_entries; i++) {
4417 if (early_node_map[i].nid != nid)
4418 continue;
4419
4420 /* Skip if an existing region covers this new one */
4421 if (start_pfn >= early_node_map[i].start_pfn &&
4422 end_pfn <= early_node_map[i].end_pfn)
4423 return;
4424
4425 /* Merge forward if suitable */
4426 if (start_pfn <= early_node_map[i].end_pfn &&
4427 end_pfn > early_node_map[i].end_pfn) {
4428 early_node_map[i].end_pfn = end_pfn;
4429 return;
4430 }
4431
4432 /* Merge backward if suitable */
4433 if (start_pfn < early_node_map[i].start_pfn &&
4434 end_pfn >= early_node_map[i].start_pfn) {
4435 early_node_map[i].start_pfn = start_pfn;
4436 return;
4437 }
4438 }
4439
4440 /* Check that early_node_map is large enough */
4441 if (i >= MAX_ACTIVE_REGIONS) {
4442 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4443 MAX_ACTIVE_REGIONS);
4444 return;
4445 }
4446
4447 early_node_map[i].nid = nid;
4448 early_node_map[i].start_pfn = start_pfn;
4449 early_node_map[i].end_pfn = end_pfn;
4450 nr_nodemap_entries = i + 1;
4451 }
4452
4453 /**
4454 * remove_active_range - Shrink an existing registered range of PFNs
4455 * @nid: The node id the range is on that should be shrunk
4456 * @start_pfn: The new PFN of the range
4457 * @end_pfn: The new PFN of the range
4458 *
4459 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4460 * The map is kept near the end physical page range that has already been
4461 * registered. This function allows an arch to shrink an existing registered
4462 * range.
4463 */
4464 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4465 unsigned long end_pfn)
4466 {
4467 int i, j;
4468 int removed = 0;
4469
4470 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4471 nid, start_pfn, end_pfn);
4472
4473 /* Find the old active region end and shrink */
4474 for_each_active_range_index_in_nid(i, nid) {
4475 if (early_node_map[i].start_pfn >= start_pfn &&
4476 early_node_map[i].end_pfn <= end_pfn) {
4477 /* clear it */
4478 early_node_map[i].start_pfn = 0;
4479 early_node_map[i].end_pfn = 0;
4480 removed = 1;
4481 continue;
4482 }
4483 if (early_node_map[i].start_pfn < start_pfn &&
4484 early_node_map[i].end_pfn > start_pfn) {
4485 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4486 early_node_map[i].end_pfn = start_pfn;
4487 if (temp_end_pfn > end_pfn)
4488 add_active_range(nid, end_pfn, temp_end_pfn);
4489 continue;
4490 }
4491 if (early_node_map[i].start_pfn >= start_pfn &&
4492 early_node_map[i].end_pfn > end_pfn &&
4493 early_node_map[i].start_pfn < end_pfn) {
4494 early_node_map[i].start_pfn = end_pfn;
4495 continue;
4496 }
4497 }
4498
4499 if (!removed)
4500 return;
4501
4502 /* remove the blank ones */
4503 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4504 if (early_node_map[i].nid != nid)
4505 continue;
4506 if (early_node_map[i].end_pfn)
4507 continue;
4508 /* we found it, get rid of it */
4509 for (j = i; j < nr_nodemap_entries - 1; j++)
4510 memcpy(&early_node_map[j], &early_node_map[j+1],
4511 sizeof(early_node_map[j]));
4512 j = nr_nodemap_entries - 1;
4513 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4514 nr_nodemap_entries--;
4515 }
4516 }
4517
4518 /**
4519 * remove_all_active_ranges - Remove all currently registered regions
4520 *
4521 * During discovery, it may be found that a table like SRAT is invalid
4522 * and an alternative discovery method must be used. This function removes
4523 * all currently registered regions.
4524 */
4525 void __init remove_all_active_ranges(void)
4526 {
4527 memset(early_node_map, 0, sizeof(early_node_map));
4528 nr_nodemap_entries = 0;
4529 }
4530
4531 /* Compare two active node_active_regions */
4532 static int __init cmp_node_active_region(const void *a, const void *b)
4533 {
4534 struct node_active_region *arange = (struct node_active_region *)a;
4535 struct node_active_region *brange = (struct node_active_region *)b;
4536
4537 /* Done this way to avoid overflows */
4538 if (arange->start_pfn > brange->start_pfn)
4539 return 1;
4540 if (arange->start_pfn < brange->start_pfn)
4541 return -1;
4542
4543 return 0;
4544 }
4545
4546 /* sort the node_map by start_pfn */
4547 void __init sort_node_map(void)
4548 {
4549 sort(early_node_map, (size_t)nr_nodemap_entries,
4550 sizeof(struct node_active_region),
4551 cmp_node_active_region, NULL);
4552 }
4553
4554 /* Find the lowest pfn for a node */
4555 static unsigned long __init find_min_pfn_for_node(int nid)
4556 {
4557 int i;
4558 unsigned long min_pfn = ULONG_MAX;
4559
4560 /* Assuming a sorted map, the first range found has the starting pfn */
4561 for_each_active_range_index_in_nid(i, nid)
4562 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4563
4564 if (min_pfn == ULONG_MAX) {
4565 printk(KERN_WARNING
4566 "Could not find start_pfn for node %d\n", nid);
4567 return 0;
4568 }
4569
4570 return min_pfn;
4571 }
4572
4573 /**
4574 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4575 *
4576 * It returns the minimum PFN based on information provided via
4577 * add_active_range().
4578 */
4579 unsigned long __init find_min_pfn_with_active_regions(void)
4580 {
4581 return find_min_pfn_for_node(MAX_NUMNODES);
4582 }
4583
4584 /*
4585 * early_calculate_totalpages()
4586 * Sum pages in active regions for movable zone.
4587 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4588 */
4589 static unsigned long __init early_calculate_totalpages(void)
4590 {
4591 int i;
4592 unsigned long totalpages = 0;
4593
4594 for (i = 0; i < nr_nodemap_entries; i++) {
4595 unsigned long pages = early_node_map[i].end_pfn -
4596 early_node_map[i].start_pfn;
4597 totalpages += pages;
4598 if (pages)
4599 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4600 }
4601 return totalpages;
4602 }
4603
4604 /*
4605 * Find the PFN the Movable zone begins in each node. Kernel memory
4606 * is spread evenly between nodes as long as the nodes have enough
4607 * memory. When they don't, some nodes will have more kernelcore than
4608 * others
4609 */
4610 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4611 {
4612 int i, nid;
4613 unsigned long usable_startpfn;
4614 unsigned long kernelcore_node, kernelcore_remaining;
4615 /* save the state before borrow the nodemask */
4616 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4617 unsigned long totalpages = early_calculate_totalpages();
4618 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4619
4620 /*
4621 * If movablecore was specified, calculate what size of
4622 * kernelcore that corresponds so that memory usable for
4623 * any allocation type is evenly spread. If both kernelcore
4624 * and movablecore are specified, then the value of kernelcore
4625 * will be used for required_kernelcore if it's greater than
4626 * what movablecore would have allowed.
4627 */
4628 if (required_movablecore) {
4629 unsigned long corepages;
4630
4631 /*
4632 * Round-up so that ZONE_MOVABLE is at least as large as what
4633 * was requested by the user
4634 */
4635 required_movablecore =
4636 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4637 corepages = totalpages - required_movablecore;
4638
4639 required_kernelcore = max(required_kernelcore, corepages);
4640 }
4641
4642 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4643 if (!required_kernelcore)
4644 goto out;
4645
4646 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4647 find_usable_zone_for_movable();
4648 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4649
4650 restart:
4651 /* Spread kernelcore memory as evenly as possible throughout nodes */
4652 kernelcore_node = required_kernelcore / usable_nodes;
4653 for_each_node_state(nid, N_HIGH_MEMORY) {
4654 /*
4655 * Recalculate kernelcore_node if the division per node
4656 * now exceeds what is necessary to satisfy the requested
4657 * amount of memory for the kernel
4658 */
4659 if (required_kernelcore < kernelcore_node)
4660 kernelcore_node = required_kernelcore / usable_nodes;
4661
4662 /*
4663 * As the map is walked, we track how much memory is usable
4664 * by the kernel using kernelcore_remaining. When it is
4665 * 0, the rest of the node is usable by ZONE_MOVABLE
4666 */
4667 kernelcore_remaining = kernelcore_node;
4668
4669 /* Go through each range of PFNs within this node */
4670 for_each_active_range_index_in_nid(i, nid) {
4671 unsigned long start_pfn, end_pfn;
4672 unsigned long size_pages;
4673
4674 start_pfn = max(early_node_map[i].start_pfn,
4675 zone_movable_pfn[nid]);
4676 end_pfn = early_node_map[i].end_pfn;
4677 if (start_pfn >= end_pfn)
4678 continue;
4679
4680 /* Account for what is only usable for kernelcore */
4681 if (start_pfn < usable_startpfn) {
4682 unsigned long kernel_pages;
4683 kernel_pages = min(end_pfn, usable_startpfn)
4684 - start_pfn;
4685
4686 kernelcore_remaining -= min(kernel_pages,
4687 kernelcore_remaining);
4688 required_kernelcore -= min(kernel_pages,
4689 required_kernelcore);
4690
4691 /* Continue if range is now fully accounted */
4692 if (end_pfn <= usable_startpfn) {
4693
4694 /*
4695 * Push zone_movable_pfn to the end so
4696 * that if we have to rebalance
4697 * kernelcore across nodes, we will
4698 * not double account here
4699 */
4700 zone_movable_pfn[nid] = end_pfn;
4701 continue;
4702 }
4703 start_pfn = usable_startpfn;
4704 }
4705
4706 /*
4707 * The usable PFN range for ZONE_MOVABLE is from
4708 * start_pfn->end_pfn. Calculate size_pages as the
4709 * number of pages used as kernelcore
4710 */
4711 size_pages = end_pfn - start_pfn;
4712 if (size_pages > kernelcore_remaining)
4713 size_pages = kernelcore_remaining;
4714 zone_movable_pfn[nid] = start_pfn + size_pages;
4715
4716 /*
4717 * Some kernelcore has been met, update counts and
4718 * break if the kernelcore for this node has been
4719 * satisified
4720 */
4721 required_kernelcore -= min(required_kernelcore,
4722 size_pages);
4723 kernelcore_remaining -= size_pages;
4724 if (!kernelcore_remaining)
4725 break;
4726 }
4727 }
4728
4729 /*
4730 * If there is still required_kernelcore, we do another pass with one
4731 * less node in the count. This will push zone_movable_pfn[nid] further
4732 * along on the nodes that still have memory until kernelcore is
4733 * satisified
4734 */
4735 usable_nodes--;
4736 if (usable_nodes && required_kernelcore > usable_nodes)
4737 goto restart;
4738
4739 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4740 for (nid = 0; nid < MAX_NUMNODES; nid++)
4741 zone_movable_pfn[nid] =
4742 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4743
4744 out:
4745 /* restore the node_state */
4746 node_states[N_HIGH_MEMORY] = saved_node_state;
4747 }
4748
4749 /* Any regular memory on that node ? */
4750 static void check_for_regular_memory(pg_data_t *pgdat)
4751 {
4752 #ifdef CONFIG_HIGHMEM
4753 enum zone_type zone_type;
4754
4755 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4756 struct zone *zone = &pgdat->node_zones[zone_type];
4757 if (zone->present_pages)
4758 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4759 }
4760 #endif
4761 }
4762
4763 /**
4764 * free_area_init_nodes - Initialise all pg_data_t and zone data
4765 * @max_zone_pfn: an array of max PFNs for each zone
4766 *
4767 * This will call free_area_init_node() for each active node in the system.
4768 * Using the page ranges provided by add_active_range(), the size of each
4769 * zone in each node and their holes is calculated. If the maximum PFN
4770 * between two adjacent zones match, it is assumed that the zone is empty.
4771 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4772 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4773 * starts where the previous one ended. For example, ZONE_DMA32 starts
4774 * at arch_max_dma_pfn.
4775 */
4776 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4777 {
4778 unsigned long nid;
4779 int i;
4780
4781 /* Sort early_node_map as initialisation assumes it is sorted */
4782 sort_node_map();
4783
4784 /* Record where the zone boundaries are */
4785 memset(arch_zone_lowest_possible_pfn, 0,
4786 sizeof(arch_zone_lowest_possible_pfn));
4787 memset(arch_zone_highest_possible_pfn, 0,
4788 sizeof(arch_zone_highest_possible_pfn));
4789 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4790 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4791 for (i = 1; i < MAX_NR_ZONES; i++) {
4792 if (i == ZONE_MOVABLE)
4793 continue;
4794 arch_zone_lowest_possible_pfn[i] =
4795 arch_zone_highest_possible_pfn[i-1];
4796 arch_zone_highest_possible_pfn[i] =
4797 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4798 }
4799 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4800 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4801
4802 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4803 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4804 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4805
4806 /* Print out the zone ranges */
4807 printk("Zone PFN ranges:\n");
4808 for (i = 0; i < MAX_NR_ZONES; i++) {
4809 if (i == ZONE_MOVABLE)
4810 continue;
4811 printk(" %-8s ", zone_names[i]);
4812 if (arch_zone_lowest_possible_pfn[i] ==
4813 arch_zone_highest_possible_pfn[i])
4814 printk("empty\n");
4815 else
4816 printk("%0#10lx -> %0#10lx\n",
4817 arch_zone_lowest_possible_pfn[i],
4818 arch_zone_highest_possible_pfn[i]);
4819 }
4820
4821 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4822 printk("Movable zone start PFN for each node\n");
4823 for (i = 0; i < MAX_NUMNODES; i++) {
4824 if (zone_movable_pfn[i])
4825 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4826 }
4827
4828 /* Print out the early_node_map[] */
4829 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4830 for (i = 0; i < nr_nodemap_entries; i++)
4831 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4832 early_node_map[i].start_pfn,
4833 early_node_map[i].end_pfn);
4834
4835 /* Initialise every node */
4836 mminit_verify_pageflags_layout();
4837 setup_nr_node_ids();
4838 for_each_online_node(nid) {
4839 pg_data_t *pgdat = NODE_DATA(nid);
4840 free_area_init_node(nid, NULL,
4841 find_min_pfn_for_node(nid), NULL);
4842
4843 /* Any memory on that node */
4844 if (pgdat->node_present_pages)
4845 node_set_state(nid, N_HIGH_MEMORY);
4846 check_for_regular_memory(pgdat);
4847 }
4848 }
4849
4850 static int __init cmdline_parse_core(char *p, unsigned long *core)
4851 {
4852 unsigned long long coremem;
4853 if (!p)
4854 return -EINVAL;
4855
4856 coremem = memparse(p, &p);
4857 *core = coremem >> PAGE_SHIFT;
4858
4859 /* Paranoid check that UL is enough for the coremem value */
4860 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4861
4862 return 0;
4863 }
4864
4865 /*
4866 * kernelcore=size sets the amount of memory for use for allocations that
4867 * cannot be reclaimed or migrated.
4868 */
4869 static int __init cmdline_parse_kernelcore(char *p)
4870 {
4871 return cmdline_parse_core(p, &required_kernelcore);
4872 }
4873
4874 /*
4875 * movablecore=size sets the amount of memory for use for allocations that
4876 * can be reclaimed or migrated.
4877 */
4878 static int __init cmdline_parse_movablecore(char *p)
4879 {
4880 return cmdline_parse_core(p, &required_movablecore);
4881 }
4882
4883 early_param("kernelcore", cmdline_parse_kernelcore);
4884 early_param("movablecore", cmdline_parse_movablecore);
4885
4886 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4887
4888 /**
4889 * set_dma_reserve - set the specified number of pages reserved in the first zone
4890 * @new_dma_reserve: The number of pages to mark reserved
4891 *
4892 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4893 * In the DMA zone, a significant percentage may be consumed by kernel image
4894 * and other unfreeable allocations which can skew the watermarks badly. This
4895 * function may optionally be used to account for unfreeable pages in the
4896 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4897 * smaller per-cpu batchsize.
4898 */
4899 void __init set_dma_reserve(unsigned long new_dma_reserve)
4900 {
4901 dma_reserve = new_dma_reserve;
4902 }
4903
4904 void __init free_area_init(unsigned long *zones_size)
4905 {
4906 free_area_init_node(0, zones_size,
4907 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4908 }
4909
4910 static int page_alloc_cpu_notify(struct notifier_block *self,
4911 unsigned long action, void *hcpu)
4912 {
4913 int cpu = (unsigned long)hcpu;
4914
4915 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4916 drain_pages(cpu);
4917
4918 /*
4919 * Spill the event counters of the dead processor
4920 * into the current processors event counters.
4921 * This artificially elevates the count of the current
4922 * processor.
4923 */
4924 vm_events_fold_cpu(cpu);
4925
4926 /*
4927 * Zero the differential counters of the dead processor
4928 * so that the vm statistics are consistent.
4929 *
4930 * This is only okay since the processor is dead and cannot
4931 * race with what we are doing.
4932 */
4933 refresh_cpu_vm_stats(cpu);
4934 }
4935 return NOTIFY_OK;
4936 }
4937
4938 void __init page_alloc_init(void)
4939 {
4940 hotcpu_notifier(page_alloc_cpu_notify, 0);
4941 }
4942
4943 /*
4944 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4945 * or min_free_kbytes changes.
4946 */
4947 static void calculate_totalreserve_pages(void)
4948 {
4949 struct pglist_data *pgdat;
4950 unsigned long reserve_pages = 0;
4951 enum zone_type i, j;
4952
4953 for_each_online_pgdat(pgdat) {
4954 for (i = 0; i < MAX_NR_ZONES; i++) {
4955 struct zone *zone = pgdat->node_zones + i;
4956 unsigned long max = 0;
4957
4958 /* Find valid and maximum lowmem_reserve in the zone */
4959 for (j = i; j < MAX_NR_ZONES; j++) {
4960 if (zone->lowmem_reserve[j] > max)
4961 max = zone->lowmem_reserve[j];
4962 }
4963
4964 /* we treat the high watermark as reserved pages. */
4965 max += high_wmark_pages(zone);
4966
4967 if (max > zone->present_pages)
4968 max = zone->present_pages;
4969 reserve_pages += max;
4970 }
4971 }
4972 totalreserve_pages = reserve_pages;
4973 }
4974
4975 /*
4976 * setup_per_zone_lowmem_reserve - called whenever
4977 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4978 * has a correct pages reserved value, so an adequate number of
4979 * pages are left in the zone after a successful __alloc_pages().
4980 */
4981 static void setup_per_zone_lowmem_reserve(void)
4982 {
4983 struct pglist_data *pgdat;
4984 enum zone_type j, idx;
4985
4986 for_each_online_pgdat(pgdat) {
4987 for (j = 0; j < MAX_NR_ZONES; j++) {
4988 struct zone *zone = pgdat->node_zones + j;
4989 unsigned long present_pages = zone->present_pages;
4990
4991 zone->lowmem_reserve[j] = 0;
4992
4993 idx = j;
4994 while (idx) {
4995 struct zone *lower_zone;
4996
4997 idx--;
4998
4999 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5000 sysctl_lowmem_reserve_ratio[idx] = 1;
5001
5002 lower_zone = pgdat->node_zones + idx;
5003 lower_zone->lowmem_reserve[j] = present_pages /
5004 sysctl_lowmem_reserve_ratio[idx];
5005 present_pages += lower_zone->present_pages;
5006 }
5007 }
5008 }
5009
5010 /* update totalreserve_pages */
5011 calculate_totalreserve_pages();
5012 }
5013
5014 /**
5015 * setup_per_zone_wmarks - called when min_free_kbytes changes
5016 * or when memory is hot-{added|removed}
5017 *
5018 * Ensures that the watermark[min,low,high] values for each zone are set
5019 * correctly with respect to min_free_kbytes.
5020 */
5021 void setup_per_zone_wmarks(void)
5022 {
5023 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5024 unsigned long lowmem_pages = 0;
5025 struct zone *zone;
5026 unsigned long flags;
5027
5028 /* Calculate total number of !ZONE_HIGHMEM pages */
5029 for_each_zone(zone) {
5030 if (!is_highmem(zone))
5031 lowmem_pages += zone->present_pages;
5032 }
5033
5034 for_each_zone(zone) {
5035 u64 tmp;
5036
5037 spin_lock_irqsave(&zone->lock, flags);
5038 tmp = (u64)pages_min * zone->present_pages;
5039 do_div(tmp, lowmem_pages);
5040 if (is_highmem(zone)) {
5041 /*
5042 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5043 * need highmem pages, so cap pages_min to a small
5044 * value here.
5045 *
5046 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5047 * deltas controls asynch page reclaim, and so should
5048 * not be capped for highmem.
5049 */
5050 int min_pages;
5051
5052 min_pages = zone->present_pages / 1024;
5053 if (min_pages < SWAP_CLUSTER_MAX)
5054 min_pages = SWAP_CLUSTER_MAX;
5055 if (min_pages > 128)
5056 min_pages = 128;
5057 zone->watermark[WMARK_MIN] = min_pages;
5058 } else {
5059 /*
5060 * If it's a lowmem zone, reserve a number of pages
5061 * proportionate to the zone's size.
5062 */
5063 zone->watermark[WMARK_MIN] = tmp;
5064 }
5065
5066 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5067 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5068 setup_zone_migrate_reserve(zone);
5069 spin_unlock_irqrestore(&zone->lock, flags);
5070 }
5071
5072 /* update totalreserve_pages */
5073 calculate_totalreserve_pages();
5074 }
5075
5076 /*
5077 * The inactive anon list should be small enough that the VM never has to
5078 * do too much work, but large enough that each inactive page has a chance
5079 * to be referenced again before it is swapped out.
5080 *
5081 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5082 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5083 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5084 * the anonymous pages are kept on the inactive list.
5085 *
5086 * total target max
5087 * memory ratio inactive anon
5088 * -------------------------------------
5089 * 10MB 1 5MB
5090 * 100MB 1 50MB
5091 * 1GB 3 250MB
5092 * 10GB 10 0.9GB
5093 * 100GB 31 3GB
5094 * 1TB 101 10GB
5095 * 10TB 320 32GB
5096 */
5097 void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5098 {
5099 unsigned int gb, ratio;
5100
5101 /* Zone size in gigabytes */
5102 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5103 if (gb)
5104 ratio = int_sqrt(10 * gb);
5105 else
5106 ratio = 1;
5107
5108 zone->inactive_ratio = ratio;
5109 }
5110
5111 static void __meminit setup_per_zone_inactive_ratio(void)
5112 {
5113 struct zone *zone;
5114
5115 for_each_zone(zone)
5116 calculate_zone_inactive_ratio(zone);
5117 }
5118
5119 /*
5120 * Initialise min_free_kbytes.
5121 *
5122 * For small machines we want it small (128k min). For large machines
5123 * we want it large (64MB max). But it is not linear, because network
5124 * bandwidth does not increase linearly with machine size. We use
5125 *
5126 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5127 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5128 *
5129 * which yields
5130 *
5131 * 16MB: 512k
5132 * 32MB: 724k
5133 * 64MB: 1024k
5134 * 128MB: 1448k
5135 * 256MB: 2048k
5136 * 512MB: 2896k
5137 * 1024MB: 4096k
5138 * 2048MB: 5792k
5139 * 4096MB: 8192k
5140 * 8192MB: 11584k
5141 * 16384MB: 16384k
5142 */
5143 static int __init init_per_zone_wmark_min(void)
5144 {
5145 unsigned long lowmem_kbytes;
5146
5147 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5148
5149 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5150 if (min_free_kbytes < 128)
5151 min_free_kbytes = 128;
5152 if (min_free_kbytes > 65536)
5153 min_free_kbytes = 65536;
5154 setup_per_zone_wmarks();
5155 setup_per_zone_lowmem_reserve();
5156 setup_per_zone_inactive_ratio();
5157 return 0;
5158 }
5159 module_init(init_per_zone_wmark_min)
5160
5161 /*
5162 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5163 * that we can call two helper functions whenever min_free_kbytes
5164 * changes.
5165 */
5166 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5167 void __user *buffer, size_t *length, loff_t *ppos)
5168 {
5169 proc_dointvec(table, write, buffer, length, ppos);
5170 if (write)
5171 setup_per_zone_wmarks();
5172 return 0;
5173 }
5174
5175 #ifdef CONFIG_NUMA
5176 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5177 void __user *buffer, size_t *length, loff_t *ppos)
5178 {
5179 struct zone *zone;
5180 int rc;
5181
5182 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5183 if (rc)
5184 return rc;
5185
5186 for_each_zone(zone)
5187 zone->min_unmapped_pages = (zone->present_pages *
5188 sysctl_min_unmapped_ratio) / 100;
5189 return 0;
5190 }
5191
5192 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5193 void __user *buffer, size_t *length, loff_t *ppos)
5194 {
5195 struct zone *zone;
5196 int rc;
5197
5198 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5199 if (rc)
5200 return rc;
5201
5202 for_each_zone(zone)
5203 zone->min_slab_pages = (zone->present_pages *
5204 sysctl_min_slab_ratio) / 100;
5205 return 0;
5206 }
5207 #endif
5208
5209 /*
5210 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5211 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5212 * whenever sysctl_lowmem_reserve_ratio changes.
5213 *
5214 * The reserve ratio obviously has absolutely no relation with the
5215 * minimum watermarks. The lowmem reserve ratio can only make sense
5216 * if in function of the boot time zone sizes.
5217 */
5218 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5219 void __user *buffer, size_t *length, loff_t *ppos)
5220 {
5221 proc_dointvec_minmax(table, write, buffer, length, ppos);
5222 setup_per_zone_lowmem_reserve();
5223 return 0;
5224 }
5225
5226 /*
5227 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5228 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5229 * can have before it gets flushed back to buddy allocator.
5230 */
5231
5232 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5233 void __user *buffer, size_t *length, loff_t *ppos)
5234 {
5235 struct zone *zone;
5236 unsigned int cpu;
5237 int ret;
5238
5239 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5240 if (!write || (ret == -EINVAL))
5241 return ret;
5242 for_each_populated_zone(zone) {
5243 for_each_possible_cpu(cpu) {
5244 unsigned long high;
5245 high = zone->present_pages / percpu_pagelist_fraction;
5246 setup_pagelist_highmark(
5247 per_cpu_ptr(zone->pageset, cpu), high);
5248 }
5249 }
5250 return 0;
5251 }
5252
5253 int hashdist = HASHDIST_DEFAULT;
5254
5255 #ifdef CONFIG_NUMA
5256 static int __init set_hashdist(char *str)
5257 {
5258 if (!str)
5259 return 0;
5260 hashdist = simple_strtoul(str, &str, 0);
5261 return 1;
5262 }
5263 __setup("hashdist=", set_hashdist);
5264 #endif
5265
5266 /*
5267 * allocate a large system hash table from bootmem
5268 * - it is assumed that the hash table must contain an exact power-of-2
5269 * quantity of entries
5270 * - limit is the number of hash buckets, not the total allocation size
5271 */
5272 void *__init alloc_large_system_hash(const char *tablename,
5273 unsigned long bucketsize,
5274 unsigned long numentries,
5275 int scale,
5276 int flags,
5277 unsigned int *_hash_shift,
5278 unsigned int *_hash_mask,
5279 unsigned long limit)
5280 {
5281 unsigned long long max = limit;
5282 unsigned long log2qty, size;
5283 void *table = NULL;
5284
5285 /* allow the kernel cmdline to have a say */
5286 if (!numentries) {
5287 /* round applicable memory size up to nearest megabyte */
5288 numentries = nr_kernel_pages;
5289 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5290 numentries >>= 20 - PAGE_SHIFT;
5291 numentries <<= 20 - PAGE_SHIFT;
5292
5293 /* limit to 1 bucket per 2^scale bytes of low memory */
5294 if (scale > PAGE_SHIFT)
5295 numentries >>= (scale - PAGE_SHIFT);
5296 else
5297 numentries <<= (PAGE_SHIFT - scale);
5298
5299 /* Make sure we've got at least a 0-order allocation.. */
5300 if (unlikely(flags & HASH_SMALL)) {
5301 /* Makes no sense without HASH_EARLY */
5302 WARN_ON(!(flags & HASH_EARLY));
5303 if (!(numentries >> *_hash_shift)) {
5304 numentries = 1UL << *_hash_shift;
5305 BUG_ON(!numentries);
5306 }
5307 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5308 numentries = PAGE_SIZE / bucketsize;
5309 }
5310 numentries = roundup_pow_of_two(numentries);
5311
5312 /* limit allocation size to 1/16 total memory by default */
5313 if (max == 0) {
5314 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5315 do_div(max, bucketsize);
5316 }
5317
5318 if (numentries > max)
5319 numentries = max;
5320
5321 log2qty = ilog2(numentries);
5322
5323 do {
5324 size = bucketsize << log2qty;
5325 if (flags & HASH_EARLY)
5326 table = alloc_bootmem_nopanic(size);
5327 else if (hashdist)
5328 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5329 else {
5330 /*
5331 * If bucketsize is not a power-of-two, we may free
5332 * some pages at the end of hash table which
5333 * alloc_pages_exact() automatically does
5334 */
5335 if (get_order(size) < MAX_ORDER) {
5336 table = alloc_pages_exact(size, GFP_ATOMIC);
5337 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5338 }
5339 }
5340 } while (!table && size > PAGE_SIZE && --log2qty);
5341
5342 if (!table)
5343 panic("Failed to allocate %s hash table\n", tablename);
5344
5345 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5346 tablename,
5347 (1UL << log2qty),
5348 ilog2(size) - PAGE_SHIFT,
5349 size);
5350
5351 if (_hash_shift)
5352 *_hash_shift = log2qty;
5353 if (_hash_mask)
5354 *_hash_mask = (1 << log2qty) - 1;
5355
5356 return table;
5357 }
5358
5359 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5360 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5361 unsigned long pfn)
5362 {
5363 #ifdef CONFIG_SPARSEMEM
5364 return __pfn_to_section(pfn)->pageblock_flags;
5365 #else
5366 return zone->pageblock_flags;
5367 #endif /* CONFIG_SPARSEMEM */
5368 }
5369
5370 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5371 {
5372 #ifdef CONFIG_SPARSEMEM
5373 pfn &= (PAGES_PER_SECTION-1);
5374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5375 #else
5376 pfn = pfn - zone->zone_start_pfn;
5377 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5378 #endif /* CONFIG_SPARSEMEM */
5379 }
5380
5381 /**
5382 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5383 * @page: The page within the block of interest
5384 * @start_bitidx: The first bit of interest to retrieve
5385 * @end_bitidx: The last bit of interest
5386 * returns pageblock_bits flags
5387 */
5388 unsigned long get_pageblock_flags_group(struct page *page,
5389 int start_bitidx, int end_bitidx)
5390 {
5391 struct zone *zone;
5392 unsigned long *bitmap;
5393 unsigned long pfn, bitidx;
5394 unsigned long flags = 0;
5395 unsigned long value = 1;
5396
5397 zone = page_zone(page);
5398 pfn = page_to_pfn(page);
5399 bitmap = get_pageblock_bitmap(zone, pfn);
5400 bitidx = pfn_to_bitidx(zone, pfn);
5401
5402 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5403 if (test_bit(bitidx + start_bitidx, bitmap))
5404 flags |= value;
5405
5406 return flags;
5407 }
5408
5409 /**
5410 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5411 * @page: The page within the block of interest
5412 * @start_bitidx: The first bit of interest
5413 * @end_bitidx: The last bit of interest
5414 * @flags: The flags to set
5415 */
5416 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5417 int start_bitidx, int end_bitidx)
5418 {
5419 struct zone *zone;
5420 unsigned long *bitmap;
5421 unsigned long pfn, bitidx;
5422 unsigned long value = 1;
5423
5424 zone = page_zone(page);
5425 pfn = page_to_pfn(page);
5426 bitmap = get_pageblock_bitmap(zone, pfn);
5427 bitidx = pfn_to_bitidx(zone, pfn);
5428 VM_BUG_ON(pfn < zone->zone_start_pfn);
5429 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5430
5431 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5432 if (flags & value)
5433 __set_bit(bitidx + start_bitidx, bitmap);
5434 else
5435 __clear_bit(bitidx + start_bitidx, bitmap);
5436 }
5437
5438 /*
5439 * This is designed as sub function...plz see page_isolation.c also.
5440 * set/clear page block's type to be ISOLATE.
5441 * page allocater never alloc memory from ISOLATE block.
5442 */
5443
5444 static int
5445 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5446 {
5447 unsigned long pfn, iter, found;
5448 /*
5449 * For avoiding noise data, lru_add_drain_all() should be called
5450 * If ZONE_MOVABLE, the zone never contains immobile pages
5451 */
5452 if (zone_idx(zone) == ZONE_MOVABLE)
5453 return true;
5454
5455 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5456 return true;
5457
5458 pfn = page_to_pfn(page);
5459 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5460 unsigned long check = pfn + iter;
5461
5462 if (!pfn_valid_within(check))
5463 continue;
5464
5465 page = pfn_to_page(check);
5466 if (!page_count(page)) {
5467 if (PageBuddy(page))
5468 iter += (1 << page_order(page)) - 1;
5469 continue;
5470 }
5471 if (!PageLRU(page))
5472 found++;
5473 /*
5474 * If there are RECLAIMABLE pages, we need to check it.
5475 * But now, memory offline itself doesn't call shrink_slab()
5476 * and it still to be fixed.
5477 */
5478 /*
5479 * If the page is not RAM, page_count()should be 0.
5480 * we don't need more check. This is an _used_ not-movable page.
5481 *
5482 * The problematic thing here is PG_reserved pages. PG_reserved
5483 * is set to both of a memory hole page and a _used_ kernel
5484 * page at boot.
5485 */
5486 if (found > count)
5487 return false;
5488 }
5489 return true;
5490 }
5491
5492 bool is_pageblock_removable_nolock(struct page *page)
5493 {
5494 struct zone *zone = page_zone(page);
5495 return __count_immobile_pages(zone, page, 0);
5496 }
5497
5498 int set_migratetype_isolate(struct page *page)
5499 {
5500 struct zone *zone;
5501 unsigned long flags, pfn;
5502 struct memory_isolate_notify arg;
5503 int notifier_ret;
5504 int ret = -EBUSY;
5505
5506 zone = page_zone(page);
5507
5508 spin_lock_irqsave(&zone->lock, flags);
5509
5510 pfn = page_to_pfn(page);
5511 arg.start_pfn = pfn;
5512 arg.nr_pages = pageblock_nr_pages;
5513 arg.pages_found = 0;
5514
5515 /*
5516 * It may be possible to isolate a pageblock even if the
5517 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5518 * notifier chain is used by balloon drivers to return the
5519 * number of pages in a range that are held by the balloon
5520 * driver to shrink memory. If all the pages are accounted for
5521 * by balloons, are free, or on the LRU, isolation can continue.
5522 * Later, for example, when memory hotplug notifier runs, these
5523 * pages reported as "can be isolated" should be isolated(freed)
5524 * by the balloon driver through the memory notifier chain.
5525 */
5526 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5527 notifier_ret = notifier_to_errno(notifier_ret);
5528 if (notifier_ret)
5529 goto out;
5530 /*
5531 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5532 * We just check MOVABLE pages.
5533 */
5534 if (__count_immobile_pages(zone, page, arg.pages_found))
5535 ret = 0;
5536
5537 /*
5538 * immobile means "not-on-lru" paes. If immobile is larger than
5539 * removable-by-driver pages reported by notifier, we'll fail.
5540 */
5541
5542 out:
5543 if (!ret) {
5544 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5545 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5546 }
5547
5548 spin_unlock_irqrestore(&zone->lock, flags);
5549 if (!ret)
5550 drain_all_pages();
5551 return ret;
5552 }
5553
5554 void unset_migratetype_isolate(struct page *page)
5555 {
5556 struct zone *zone;
5557 unsigned long flags;
5558 zone = page_zone(page);
5559 spin_lock_irqsave(&zone->lock, flags);
5560 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5561 goto out;
5562 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5563 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5564 out:
5565 spin_unlock_irqrestore(&zone->lock, flags);
5566 }
5567
5568 #ifdef CONFIG_MEMORY_HOTREMOVE
5569 /*
5570 * All pages in the range must be isolated before calling this.
5571 */
5572 void
5573 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5574 {
5575 struct page *page;
5576 struct zone *zone;
5577 int order, i;
5578 unsigned long pfn;
5579 unsigned long flags;
5580 /* find the first valid pfn */
5581 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5582 if (pfn_valid(pfn))
5583 break;
5584 if (pfn == end_pfn)
5585 return;
5586 zone = page_zone(pfn_to_page(pfn));
5587 spin_lock_irqsave(&zone->lock, flags);
5588 pfn = start_pfn;
5589 while (pfn < end_pfn) {
5590 if (!pfn_valid(pfn)) {
5591 pfn++;
5592 continue;
5593 }
5594 page = pfn_to_page(pfn);
5595 BUG_ON(page_count(page));
5596 BUG_ON(!PageBuddy(page));
5597 order = page_order(page);
5598 #ifdef CONFIG_DEBUG_VM
5599 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5600 pfn, 1 << order, end_pfn);
5601 #endif
5602 list_del(&page->lru);
5603 rmv_page_order(page);
5604 zone->free_area[order].nr_free--;
5605 __mod_zone_page_state(zone, NR_FREE_PAGES,
5606 - (1UL << order));
5607 for (i = 0; i < (1 << order); i++)
5608 SetPageReserved((page+i));
5609 pfn += (1 << order);
5610 }
5611 spin_unlock_irqrestore(&zone->lock, flags);
5612 }
5613 #endif
5614
5615 #ifdef CONFIG_MEMORY_FAILURE
5616 bool is_free_buddy_page(struct page *page)
5617 {
5618 struct zone *zone = page_zone(page);
5619 unsigned long pfn = page_to_pfn(page);
5620 unsigned long flags;
5621 int order;
5622
5623 spin_lock_irqsave(&zone->lock, flags);
5624 for (order = 0; order < MAX_ORDER; order++) {
5625 struct page *page_head = page - (pfn & ((1 << order) - 1));
5626
5627 if (PageBuddy(page_head) && page_order(page_head) >= order)
5628 break;
5629 }
5630 spin_unlock_irqrestore(&zone->lock, flags);
5631
5632 return order < MAX_ORDER;
5633 }
5634 #endif
5635
5636 static struct trace_print_flags pageflag_names[] = {
5637 {1UL << PG_locked, "locked" },
5638 {1UL << PG_error, "error" },
5639 {1UL << PG_referenced, "referenced" },
5640 {1UL << PG_uptodate, "uptodate" },
5641 {1UL << PG_dirty, "dirty" },
5642 {1UL << PG_lru, "lru" },
5643 {1UL << PG_active, "active" },
5644 {1UL << PG_slab, "slab" },
5645 {1UL << PG_owner_priv_1, "owner_priv_1" },
5646 {1UL << PG_arch_1, "arch_1" },
5647 {1UL << PG_reserved, "reserved" },
5648 {1UL << PG_private, "private" },
5649 {1UL << PG_private_2, "private_2" },
5650 {1UL << PG_writeback, "writeback" },
5651 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5652 {1UL << PG_head, "head" },
5653 {1UL << PG_tail, "tail" },
5654 #else
5655 {1UL << PG_compound, "compound" },
5656 #endif
5657 {1UL << PG_swapcache, "swapcache" },
5658 {1UL << PG_mappedtodisk, "mappedtodisk" },
5659 {1UL << PG_reclaim, "reclaim" },
5660 {1UL << PG_swapbacked, "swapbacked" },
5661 {1UL << PG_unevictable, "unevictable" },
5662 #ifdef CONFIG_MMU
5663 {1UL << PG_mlocked, "mlocked" },
5664 #endif
5665 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5666 {1UL << PG_uncached, "uncached" },
5667 #endif
5668 #ifdef CONFIG_MEMORY_FAILURE
5669 {1UL << PG_hwpoison, "hwpoison" },
5670 #endif
5671 {-1UL, NULL },
5672 };
5673
5674 static void dump_page_flags(unsigned long flags)
5675 {
5676 const char *delim = "";
5677 unsigned long mask;
5678 int i;
5679
5680 printk(KERN_ALERT "page flags: %#lx(", flags);
5681
5682 /* remove zone id */
5683 flags &= (1UL << NR_PAGEFLAGS) - 1;
5684
5685 for (i = 0; pageflag_names[i].name && flags; i++) {
5686
5687 mask = pageflag_names[i].mask;
5688 if ((flags & mask) != mask)
5689 continue;
5690
5691 flags &= ~mask;
5692 printk("%s%s", delim, pageflag_names[i].name);
5693 delim = "|";
5694 }
5695
5696 /* check for left over flags */
5697 if (flags)
5698 printk("%s%#lx", delim, flags);
5699
5700 printk(")\n");
5701 }
5702
5703 void dump_page(struct page *page)
5704 {
5705 printk(KERN_ALERT
5706 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5707 page, atomic_read(&page->_count), page_mapcount(page),
5708 page->mapping, page->index);
5709 dump_page_flags(page->flags);
5710 mem_cgroup_print_bad_page(page);
5711 }