]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
page allocator: get the pageblock migratetype without disabling interrupts
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
54
55 /*
56 * Array of node states.
57 */
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
68 };
69 EXPORT_SYMBOL(node_states);
70
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
75
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
79
80 static void __free_pages_ok(struct page *page, unsigned int order);
81
82 /*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
101 32,
102 #endif
103 32,
104 };
105
106 EXPORT_SYMBOL(totalram_pages);
107
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
120 };
121
122 int min_free_kbytes = 1024;
123
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
127
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
166
167 int page_group_by_mobility_disabled __read_mostly;
168
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
170 {
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177 }
178
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 {
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
185
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
195 }
196
197 static int page_is_consistent(struct zone *zone, struct page *page)
198 {
199 if (!pfn_valid_within(page_to_pfn(page)))
200 return 0;
201 if (zone != page_zone(page))
202 return 0;
203
204 return 1;
205 }
206 /*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209 static int bad_range(struct zone *zone, struct page *page)
210 {
211 if (page_outside_zone_boundaries(zone, page))
212 return 1;
213 if (!page_is_consistent(zone, page))
214 return 1;
215
216 return 0;
217 }
218 #else
219 static inline int bad_range(struct zone *zone, struct page *page)
220 {
221 return 0;
222 }
223 #endif
224
225 static void bad_page(struct page *page)
226 {
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
252 current->comm, page_to_pfn(page));
253 printk(KERN_ALERT
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
257
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
263 }
264
265 /*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
278 */
279
280 static void free_compound_page(struct page *page)
281 {
282 __free_pages_ok(page, compound_order(page));
283 }
284
285 void prep_compound_page(struct page *page, unsigned long order)
286 {
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299 }
300
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
303 {
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
307
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
314 }
315 }
316 #endif
317
318 static int destroy_compound_page(struct page *page, unsigned long order)
319 {
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
323
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
328 }
329
330 __ClearPageHead(page);
331
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
334
335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
336 bad_page(page);
337 bad++;
338 }
339 __ClearPageTail(p);
340 }
341
342 return bad;
343 }
344
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346 {
347 int i;
348
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356 }
357
358 static inline void set_page_order(struct page *page, int order)
359 {
360 set_page_private(page, order);
361 __SetPageBuddy(page);
362 }
363
364 static inline void rmv_page_order(struct page *page)
365 {
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
368 }
369
370 /*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386 */
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389 {
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393 }
394
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
397 {
398 return (page_idx & ~(1 << order));
399 }
400
401 /*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411 *
412 * For recording page's order, we use page_private(page).
413 */
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
416 {
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
419
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 VM_BUG_ON(page_count(buddy) != 0);
425 return 1;
426 }
427 return 0;
428 }
429
430 /*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order,
456 int migratetype)
457 {
458 unsigned long page_idx;
459
460 if (unlikely(PageCompound(page)))
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
463
464 VM_BUG_ON(migratetype == -1);
465
466 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
467
468 VM_BUG_ON(page_idx & ((1 << order) - 1));
469 VM_BUG_ON(bad_range(zone, page));
470
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
473 struct page *buddy;
474
475 buddy = __page_find_buddy(page, page_idx, order);
476 if (!page_is_buddy(page, buddy, order))
477 break;
478
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy->lru);
481 zone->free_area[order].nr_free--;
482 rmv_page_order(buddy);
483 combined_idx = __find_combined_index(page_idx, order);
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
491 zone->free_area[order].nr_free++;
492 }
493
494 static inline int free_pages_check(struct page *page)
495 {
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (atomic_read(&page->_count) != 0) |
499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 bad_page(page);
501 return 1;
502 }
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
506 }
507
508 /*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
511 * count is the number of pages to free.
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
519 static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
521 {
522 spin_lock(&zone->lock);
523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 zone->pages_scanned = 0;
525
526 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
527 while (count--) {
528 struct page *page;
529
530 VM_BUG_ON(list_empty(list));
531 page = list_entry(list->prev, struct page, lru);
532 /* have to delete it as __free_one_page list manipulates */
533 list_del(&page->lru);
534 __free_one_page(page, zone, order, page_private(page));
535 }
536 spin_unlock(&zone->lock);
537 }
538
539 static void free_one_page(struct zone *zone, struct page *page, int order,
540 int migratetype)
541 {
542 spin_lock(&zone->lock);
543 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
544 zone->pages_scanned = 0;
545
546 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
547 __free_one_page(page, zone, order, migratetype);
548 spin_unlock(&zone->lock);
549 }
550
551 static void __free_pages_ok(struct page *page, unsigned int order)
552 {
553 unsigned long flags;
554 int i;
555 int bad = 0;
556 int clearMlocked = PageMlocked(page);
557
558 for (i = 0 ; i < (1 << order) ; ++i)
559 bad += free_pages_check(page + i);
560 if (bad)
561 return;
562
563 if (!PageHighMem(page)) {
564 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
565 debug_check_no_obj_freed(page_address(page),
566 PAGE_SIZE << order);
567 }
568 arch_free_page(page, order);
569 kernel_map_pages(page, 1 << order, 0);
570
571 local_irq_save(flags);
572 if (unlikely(clearMlocked))
573 free_page_mlock(page);
574 __count_vm_events(PGFREE, 1 << order);
575 free_one_page(page_zone(page), page, order,
576 get_pageblock_migratetype(page));
577 local_irq_restore(flags);
578 }
579
580 /*
581 * permit the bootmem allocator to evade page validation on high-order frees
582 */
583 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
584 {
585 if (order == 0) {
586 __ClearPageReserved(page);
587 set_page_count(page, 0);
588 set_page_refcounted(page);
589 __free_page(page);
590 } else {
591 int loop;
592
593 prefetchw(page);
594 for (loop = 0; loop < BITS_PER_LONG; loop++) {
595 struct page *p = &page[loop];
596
597 if (loop + 1 < BITS_PER_LONG)
598 prefetchw(p + 1);
599 __ClearPageReserved(p);
600 set_page_count(p, 0);
601 }
602
603 set_page_refcounted(page);
604 __free_pages(page, order);
605 }
606 }
607
608
609 /*
610 * The order of subdivision here is critical for the IO subsystem.
611 * Please do not alter this order without good reasons and regression
612 * testing. Specifically, as large blocks of memory are subdivided,
613 * the order in which smaller blocks are delivered depends on the order
614 * they're subdivided in this function. This is the primary factor
615 * influencing the order in which pages are delivered to the IO
616 * subsystem according to empirical testing, and this is also justified
617 * by considering the behavior of a buddy system containing a single
618 * large block of memory acted on by a series of small allocations.
619 * This behavior is a critical factor in sglist merging's success.
620 *
621 * -- wli
622 */
623 static inline void expand(struct zone *zone, struct page *page,
624 int low, int high, struct free_area *area,
625 int migratetype)
626 {
627 unsigned long size = 1 << high;
628
629 while (high > low) {
630 area--;
631 high--;
632 size >>= 1;
633 VM_BUG_ON(bad_range(zone, &page[size]));
634 list_add(&page[size].lru, &area->free_list[migratetype]);
635 area->nr_free++;
636 set_page_order(&page[size], high);
637 }
638 }
639
640 /*
641 * This page is about to be returned from the page allocator
642 */
643 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
644 {
645 if (unlikely(page_mapcount(page) |
646 (page->mapping != NULL) |
647 (atomic_read(&page->_count) != 0) |
648 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
649 bad_page(page);
650 return 1;
651 }
652
653 set_page_private(page, 0);
654 set_page_refcounted(page);
655
656 arch_alloc_page(page, order);
657 kernel_map_pages(page, 1 << order, 1);
658
659 if (gfp_flags & __GFP_ZERO)
660 prep_zero_page(page, order, gfp_flags);
661
662 if (order && (gfp_flags & __GFP_COMP))
663 prep_compound_page(page, order);
664
665 return 0;
666 }
667
668 /*
669 * Go through the free lists for the given migratetype and remove
670 * the smallest available page from the freelists
671 */
672 static inline
673 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
674 int migratetype)
675 {
676 unsigned int current_order;
677 struct free_area * area;
678 struct page *page;
679
680 /* Find a page of the appropriate size in the preferred list */
681 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
682 area = &(zone->free_area[current_order]);
683 if (list_empty(&area->free_list[migratetype]))
684 continue;
685
686 page = list_entry(area->free_list[migratetype].next,
687 struct page, lru);
688 list_del(&page->lru);
689 rmv_page_order(page);
690 area->nr_free--;
691 expand(zone, page, order, current_order, area, migratetype);
692 return page;
693 }
694
695 return NULL;
696 }
697
698
699 /*
700 * This array describes the order lists are fallen back to when
701 * the free lists for the desirable migrate type are depleted
702 */
703 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
704 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
705 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
707 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
708 };
709
710 /*
711 * Move the free pages in a range to the free lists of the requested type.
712 * Note that start_page and end_pages are not aligned on a pageblock
713 * boundary. If alignment is required, use move_freepages_block()
714 */
715 static int move_freepages(struct zone *zone,
716 struct page *start_page, struct page *end_page,
717 int migratetype)
718 {
719 struct page *page;
720 unsigned long order;
721 int pages_moved = 0;
722
723 #ifndef CONFIG_HOLES_IN_ZONE
724 /*
725 * page_zone is not safe to call in this context when
726 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
727 * anyway as we check zone boundaries in move_freepages_block().
728 * Remove at a later date when no bug reports exist related to
729 * grouping pages by mobility
730 */
731 BUG_ON(page_zone(start_page) != page_zone(end_page));
732 #endif
733
734 for (page = start_page; page <= end_page;) {
735 /* Make sure we are not inadvertently changing nodes */
736 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
737
738 if (!pfn_valid_within(page_to_pfn(page))) {
739 page++;
740 continue;
741 }
742
743 if (!PageBuddy(page)) {
744 page++;
745 continue;
746 }
747
748 order = page_order(page);
749 list_del(&page->lru);
750 list_add(&page->lru,
751 &zone->free_area[order].free_list[migratetype]);
752 page += 1 << order;
753 pages_moved += 1 << order;
754 }
755
756 return pages_moved;
757 }
758
759 static int move_freepages_block(struct zone *zone, struct page *page,
760 int migratetype)
761 {
762 unsigned long start_pfn, end_pfn;
763 struct page *start_page, *end_page;
764
765 start_pfn = page_to_pfn(page);
766 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
767 start_page = pfn_to_page(start_pfn);
768 end_page = start_page + pageblock_nr_pages - 1;
769 end_pfn = start_pfn + pageblock_nr_pages - 1;
770
771 /* Do not cross zone boundaries */
772 if (start_pfn < zone->zone_start_pfn)
773 start_page = page;
774 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
775 return 0;
776
777 return move_freepages(zone, start_page, end_page, migratetype);
778 }
779
780 /* Remove an element from the buddy allocator from the fallback list */
781 static inline struct page *
782 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
783 {
784 struct free_area * area;
785 int current_order;
786 struct page *page;
787 int migratetype, i;
788
789 /* Find the largest possible block of pages in the other list */
790 for (current_order = MAX_ORDER-1; current_order >= order;
791 --current_order) {
792 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
793 migratetype = fallbacks[start_migratetype][i];
794
795 /* MIGRATE_RESERVE handled later if necessary */
796 if (migratetype == MIGRATE_RESERVE)
797 continue;
798
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 area->nr_free--;
806
807 /*
808 * If breaking a large block of pages, move all free
809 * pages to the preferred allocation list. If falling
810 * back for a reclaimable kernel allocation, be more
811 * agressive about taking ownership of free pages
812 */
813 if (unlikely(current_order >= (pageblock_order >> 1)) ||
814 start_migratetype == MIGRATE_RECLAIMABLE) {
815 unsigned long pages;
816 pages = move_freepages_block(zone, page,
817 start_migratetype);
818
819 /* Claim the whole block if over half of it is free */
820 if (pages >= (1 << (pageblock_order-1)))
821 set_pageblock_migratetype(page,
822 start_migratetype);
823
824 migratetype = start_migratetype;
825 }
826
827 /* Remove the page from the freelists */
828 list_del(&page->lru);
829 rmv_page_order(page);
830
831 if (current_order == pageblock_order)
832 set_pageblock_migratetype(page,
833 start_migratetype);
834
835 expand(zone, page, order, current_order, area, migratetype);
836 return page;
837 }
838 }
839
840 return NULL;
841 }
842
843 /*
844 * Do the hard work of removing an element from the buddy allocator.
845 * Call me with the zone->lock already held.
846 */
847 static struct page *__rmqueue(struct zone *zone, unsigned int order,
848 int migratetype)
849 {
850 struct page *page;
851
852 retry_reserve:
853 page = __rmqueue_smallest(zone, order, migratetype);
854
855 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
856 page = __rmqueue_fallback(zone, order, migratetype);
857
858 /*
859 * Use MIGRATE_RESERVE rather than fail an allocation. goto
860 * is used because __rmqueue_smallest is an inline function
861 * and we want just one call site
862 */
863 if (!page) {
864 migratetype = MIGRATE_RESERVE;
865 goto retry_reserve;
866 }
867 }
868
869 return page;
870 }
871
872 /*
873 * Obtain a specified number of elements from the buddy allocator, all under
874 * a single hold of the lock, for efficiency. Add them to the supplied list.
875 * Returns the number of new pages which were placed at *list.
876 */
877 static int rmqueue_bulk(struct zone *zone, unsigned int order,
878 unsigned long count, struct list_head *list,
879 int migratetype)
880 {
881 int i;
882
883 spin_lock(&zone->lock);
884 for (i = 0; i < count; ++i) {
885 struct page *page = __rmqueue(zone, order, migratetype);
886 if (unlikely(page == NULL))
887 break;
888
889 /*
890 * Split buddy pages returned by expand() are received here
891 * in physical page order. The page is added to the callers and
892 * list and the list head then moves forward. From the callers
893 * perspective, the linked list is ordered by page number in
894 * some conditions. This is useful for IO devices that can
895 * merge IO requests if the physical pages are ordered
896 * properly.
897 */
898 list_add(&page->lru, list);
899 set_page_private(page, migratetype);
900 list = &page->lru;
901 }
902 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
903 spin_unlock(&zone->lock);
904 return i;
905 }
906
907 #ifdef CONFIG_NUMA
908 /*
909 * Called from the vmstat counter updater to drain pagesets of this
910 * currently executing processor on remote nodes after they have
911 * expired.
912 *
913 * Note that this function must be called with the thread pinned to
914 * a single processor.
915 */
916 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
917 {
918 unsigned long flags;
919 int to_drain;
920
921 local_irq_save(flags);
922 if (pcp->count >= pcp->batch)
923 to_drain = pcp->batch;
924 else
925 to_drain = pcp->count;
926 free_pages_bulk(zone, to_drain, &pcp->list, 0);
927 pcp->count -= to_drain;
928 local_irq_restore(flags);
929 }
930 #endif
931
932 /*
933 * Drain pages of the indicated processor.
934 *
935 * The processor must either be the current processor and the
936 * thread pinned to the current processor or a processor that
937 * is not online.
938 */
939 static void drain_pages(unsigned int cpu)
940 {
941 unsigned long flags;
942 struct zone *zone;
943
944 for_each_populated_zone(zone) {
945 struct per_cpu_pageset *pset;
946 struct per_cpu_pages *pcp;
947
948 pset = zone_pcp(zone, cpu);
949
950 pcp = &pset->pcp;
951 local_irq_save(flags);
952 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
953 pcp->count = 0;
954 local_irq_restore(flags);
955 }
956 }
957
958 /*
959 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
960 */
961 void drain_local_pages(void *arg)
962 {
963 drain_pages(smp_processor_id());
964 }
965
966 /*
967 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
968 */
969 void drain_all_pages(void)
970 {
971 on_each_cpu(drain_local_pages, NULL, 1);
972 }
973
974 #ifdef CONFIG_HIBERNATION
975
976 void mark_free_pages(struct zone *zone)
977 {
978 unsigned long pfn, max_zone_pfn;
979 unsigned long flags;
980 int order, t;
981 struct list_head *curr;
982
983 if (!zone->spanned_pages)
984 return;
985
986 spin_lock_irqsave(&zone->lock, flags);
987
988 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
989 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
990 if (pfn_valid(pfn)) {
991 struct page *page = pfn_to_page(pfn);
992
993 if (!swsusp_page_is_forbidden(page))
994 swsusp_unset_page_free(page);
995 }
996
997 for_each_migratetype_order(order, t) {
998 list_for_each(curr, &zone->free_area[order].free_list[t]) {
999 unsigned long i;
1000
1001 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1002 for (i = 0; i < (1UL << order); i++)
1003 swsusp_set_page_free(pfn_to_page(pfn + i));
1004 }
1005 }
1006 spin_unlock_irqrestore(&zone->lock, flags);
1007 }
1008 #endif /* CONFIG_PM */
1009
1010 /*
1011 * Free a 0-order page
1012 */
1013 static void free_hot_cold_page(struct page *page, int cold)
1014 {
1015 struct zone *zone = page_zone(page);
1016 struct per_cpu_pages *pcp;
1017 unsigned long flags;
1018 int clearMlocked = PageMlocked(page);
1019
1020 if (PageAnon(page))
1021 page->mapping = NULL;
1022 if (free_pages_check(page))
1023 return;
1024
1025 if (!PageHighMem(page)) {
1026 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1027 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1028 }
1029 arch_free_page(page, 0);
1030 kernel_map_pages(page, 1, 0);
1031
1032 pcp = &zone_pcp(zone, get_cpu())->pcp;
1033 set_page_private(page, get_pageblock_migratetype(page));
1034 local_irq_save(flags);
1035 if (unlikely(clearMlocked))
1036 free_page_mlock(page);
1037 __count_vm_event(PGFREE);
1038
1039 if (cold)
1040 list_add_tail(&page->lru, &pcp->list);
1041 else
1042 list_add(&page->lru, &pcp->list);
1043 pcp->count++;
1044 if (pcp->count >= pcp->high) {
1045 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1046 pcp->count -= pcp->batch;
1047 }
1048 local_irq_restore(flags);
1049 put_cpu();
1050 }
1051
1052 void free_hot_page(struct page *page)
1053 {
1054 free_hot_cold_page(page, 0);
1055 }
1056
1057 void free_cold_page(struct page *page)
1058 {
1059 free_hot_cold_page(page, 1);
1060 }
1061
1062 /*
1063 * split_page takes a non-compound higher-order page, and splits it into
1064 * n (1<<order) sub-pages: page[0..n]
1065 * Each sub-page must be freed individually.
1066 *
1067 * Note: this is probably too low level an operation for use in drivers.
1068 * Please consult with lkml before using this in your driver.
1069 */
1070 void split_page(struct page *page, unsigned int order)
1071 {
1072 int i;
1073
1074 VM_BUG_ON(PageCompound(page));
1075 VM_BUG_ON(!page_count(page));
1076 for (i = 1; i < (1 << order); i++)
1077 set_page_refcounted(page + i);
1078 }
1079
1080 /*
1081 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1082 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1083 * or two.
1084 */
1085 static inline
1086 struct page *buffered_rmqueue(struct zone *preferred_zone,
1087 struct zone *zone, int order, gfp_t gfp_flags,
1088 int migratetype)
1089 {
1090 unsigned long flags;
1091 struct page *page;
1092 int cold = !!(gfp_flags & __GFP_COLD);
1093 int cpu;
1094
1095 again:
1096 cpu = get_cpu();
1097 if (likely(order == 0)) {
1098 struct per_cpu_pages *pcp;
1099
1100 pcp = &zone_pcp(zone, cpu)->pcp;
1101 local_irq_save(flags);
1102 if (!pcp->count) {
1103 pcp->count = rmqueue_bulk(zone, 0,
1104 pcp->batch, &pcp->list, migratetype);
1105 if (unlikely(!pcp->count))
1106 goto failed;
1107 }
1108
1109 /* Find a page of the appropriate migrate type */
1110 if (cold) {
1111 list_for_each_entry_reverse(page, &pcp->list, lru)
1112 if (page_private(page) == migratetype)
1113 break;
1114 } else {
1115 list_for_each_entry(page, &pcp->list, lru)
1116 if (page_private(page) == migratetype)
1117 break;
1118 }
1119
1120 /* Allocate more to the pcp list if necessary */
1121 if (unlikely(&page->lru == &pcp->list)) {
1122 pcp->count += rmqueue_bulk(zone, 0,
1123 pcp->batch, &pcp->list, migratetype);
1124 page = list_entry(pcp->list.next, struct page, lru);
1125 }
1126
1127 list_del(&page->lru);
1128 pcp->count--;
1129 } else {
1130 spin_lock_irqsave(&zone->lock, flags);
1131 page = __rmqueue(zone, order, migratetype);
1132 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1133 spin_unlock(&zone->lock);
1134 if (!page)
1135 goto failed;
1136 }
1137
1138 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1139 zone_statistics(preferred_zone, zone);
1140 local_irq_restore(flags);
1141 put_cpu();
1142
1143 VM_BUG_ON(bad_range(zone, page));
1144 if (prep_new_page(page, order, gfp_flags))
1145 goto again;
1146 return page;
1147
1148 failed:
1149 local_irq_restore(flags);
1150 put_cpu();
1151 return NULL;
1152 }
1153
1154 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1155 #define ALLOC_WMARK_MIN WMARK_MIN
1156 #define ALLOC_WMARK_LOW WMARK_LOW
1157 #define ALLOC_WMARK_HIGH WMARK_HIGH
1158 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1159
1160 /* Mask to get the watermark bits */
1161 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1162
1163 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1164 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1165 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1166
1167 #ifdef CONFIG_FAIL_PAGE_ALLOC
1168
1169 static struct fail_page_alloc_attr {
1170 struct fault_attr attr;
1171
1172 u32 ignore_gfp_highmem;
1173 u32 ignore_gfp_wait;
1174 u32 min_order;
1175
1176 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1177
1178 struct dentry *ignore_gfp_highmem_file;
1179 struct dentry *ignore_gfp_wait_file;
1180 struct dentry *min_order_file;
1181
1182 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1183
1184 } fail_page_alloc = {
1185 .attr = FAULT_ATTR_INITIALIZER,
1186 .ignore_gfp_wait = 1,
1187 .ignore_gfp_highmem = 1,
1188 .min_order = 1,
1189 };
1190
1191 static int __init setup_fail_page_alloc(char *str)
1192 {
1193 return setup_fault_attr(&fail_page_alloc.attr, str);
1194 }
1195 __setup("fail_page_alloc=", setup_fail_page_alloc);
1196
1197 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1198 {
1199 if (order < fail_page_alloc.min_order)
1200 return 0;
1201 if (gfp_mask & __GFP_NOFAIL)
1202 return 0;
1203 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1204 return 0;
1205 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1206 return 0;
1207
1208 return should_fail(&fail_page_alloc.attr, 1 << order);
1209 }
1210
1211 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1212
1213 static int __init fail_page_alloc_debugfs(void)
1214 {
1215 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1216 struct dentry *dir;
1217 int err;
1218
1219 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1220 "fail_page_alloc");
1221 if (err)
1222 return err;
1223 dir = fail_page_alloc.attr.dentries.dir;
1224
1225 fail_page_alloc.ignore_gfp_wait_file =
1226 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1227 &fail_page_alloc.ignore_gfp_wait);
1228
1229 fail_page_alloc.ignore_gfp_highmem_file =
1230 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1231 &fail_page_alloc.ignore_gfp_highmem);
1232 fail_page_alloc.min_order_file =
1233 debugfs_create_u32("min-order", mode, dir,
1234 &fail_page_alloc.min_order);
1235
1236 if (!fail_page_alloc.ignore_gfp_wait_file ||
1237 !fail_page_alloc.ignore_gfp_highmem_file ||
1238 !fail_page_alloc.min_order_file) {
1239 err = -ENOMEM;
1240 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1241 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1242 debugfs_remove(fail_page_alloc.min_order_file);
1243 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1244 }
1245
1246 return err;
1247 }
1248
1249 late_initcall(fail_page_alloc_debugfs);
1250
1251 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1252
1253 #else /* CONFIG_FAIL_PAGE_ALLOC */
1254
1255 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1256 {
1257 return 0;
1258 }
1259
1260 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1261
1262 /*
1263 * Return 1 if free pages are above 'mark'. This takes into account the order
1264 * of the allocation.
1265 */
1266 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1267 int classzone_idx, int alloc_flags)
1268 {
1269 /* free_pages my go negative - that's OK */
1270 long min = mark;
1271 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1272 int o;
1273
1274 if (alloc_flags & ALLOC_HIGH)
1275 min -= min / 2;
1276 if (alloc_flags & ALLOC_HARDER)
1277 min -= min / 4;
1278
1279 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1280 return 0;
1281 for (o = 0; o < order; o++) {
1282 /* At the next order, this order's pages become unavailable */
1283 free_pages -= z->free_area[o].nr_free << o;
1284
1285 /* Require fewer higher order pages to be free */
1286 min >>= 1;
1287
1288 if (free_pages <= min)
1289 return 0;
1290 }
1291 return 1;
1292 }
1293
1294 #ifdef CONFIG_NUMA
1295 /*
1296 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1297 * skip over zones that are not allowed by the cpuset, or that have
1298 * been recently (in last second) found to be nearly full. See further
1299 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1300 * that have to skip over a lot of full or unallowed zones.
1301 *
1302 * If the zonelist cache is present in the passed in zonelist, then
1303 * returns a pointer to the allowed node mask (either the current
1304 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1305 *
1306 * If the zonelist cache is not available for this zonelist, does
1307 * nothing and returns NULL.
1308 *
1309 * If the fullzones BITMAP in the zonelist cache is stale (more than
1310 * a second since last zap'd) then we zap it out (clear its bits.)
1311 *
1312 * We hold off even calling zlc_setup, until after we've checked the
1313 * first zone in the zonelist, on the theory that most allocations will
1314 * be satisfied from that first zone, so best to examine that zone as
1315 * quickly as we can.
1316 */
1317 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1318 {
1319 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1320 nodemask_t *allowednodes; /* zonelist_cache approximation */
1321
1322 zlc = zonelist->zlcache_ptr;
1323 if (!zlc)
1324 return NULL;
1325
1326 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1327 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1328 zlc->last_full_zap = jiffies;
1329 }
1330
1331 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1332 &cpuset_current_mems_allowed :
1333 &node_states[N_HIGH_MEMORY];
1334 return allowednodes;
1335 }
1336
1337 /*
1338 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1339 * if it is worth looking at further for free memory:
1340 * 1) Check that the zone isn't thought to be full (doesn't have its
1341 * bit set in the zonelist_cache fullzones BITMAP).
1342 * 2) Check that the zones node (obtained from the zonelist_cache
1343 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1344 * Return true (non-zero) if zone is worth looking at further, or
1345 * else return false (zero) if it is not.
1346 *
1347 * This check -ignores- the distinction between various watermarks,
1348 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1349 * found to be full for any variation of these watermarks, it will
1350 * be considered full for up to one second by all requests, unless
1351 * we are so low on memory on all allowed nodes that we are forced
1352 * into the second scan of the zonelist.
1353 *
1354 * In the second scan we ignore this zonelist cache and exactly
1355 * apply the watermarks to all zones, even it is slower to do so.
1356 * We are low on memory in the second scan, and should leave no stone
1357 * unturned looking for a free page.
1358 */
1359 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1360 nodemask_t *allowednodes)
1361 {
1362 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1363 int i; /* index of *z in zonelist zones */
1364 int n; /* node that zone *z is on */
1365
1366 zlc = zonelist->zlcache_ptr;
1367 if (!zlc)
1368 return 1;
1369
1370 i = z - zonelist->_zonerefs;
1371 n = zlc->z_to_n[i];
1372
1373 /* This zone is worth trying if it is allowed but not full */
1374 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1375 }
1376
1377 /*
1378 * Given 'z' scanning a zonelist, set the corresponding bit in
1379 * zlc->fullzones, so that subsequent attempts to allocate a page
1380 * from that zone don't waste time re-examining it.
1381 */
1382 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1383 {
1384 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1385 int i; /* index of *z in zonelist zones */
1386
1387 zlc = zonelist->zlcache_ptr;
1388 if (!zlc)
1389 return;
1390
1391 i = z - zonelist->_zonerefs;
1392
1393 set_bit(i, zlc->fullzones);
1394 }
1395
1396 #else /* CONFIG_NUMA */
1397
1398 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1399 {
1400 return NULL;
1401 }
1402
1403 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1404 nodemask_t *allowednodes)
1405 {
1406 return 1;
1407 }
1408
1409 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1410 {
1411 }
1412 #endif /* CONFIG_NUMA */
1413
1414 /*
1415 * get_page_from_freelist goes through the zonelist trying to allocate
1416 * a page.
1417 */
1418 static struct page *
1419 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1420 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1421 struct zone *preferred_zone, int migratetype)
1422 {
1423 struct zoneref *z;
1424 struct page *page = NULL;
1425 int classzone_idx;
1426 struct zone *zone;
1427 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1428 int zlc_active = 0; /* set if using zonelist_cache */
1429 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1430
1431 if (WARN_ON_ONCE(order >= MAX_ORDER))
1432 return NULL;
1433
1434 classzone_idx = zone_idx(preferred_zone);
1435 zonelist_scan:
1436 /*
1437 * Scan zonelist, looking for a zone with enough free.
1438 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1439 */
1440 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1441 high_zoneidx, nodemask) {
1442 if (NUMA_BUILD && zlc_active &&
1443 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1444 continue;
1445 if ((alloc_flags & ALLOC_CPUSET) &&
1446 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1447 goto try_next_zone;
1448
1449 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1450 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1451 unsigned long mark;
1452 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1453 if (!zone_watermark_ok(zone, order, mark,
1454 classzone_idx, alloc_flags)) {
1455 if (!zone_reclaim_mode ||
1456 !zone_reclaim(zone, gfp_mask, order))
1457 goto this_zone_full;
1458 }
1459 }
1460
1461 page = buffered_rmqueue(preferred_zone, zone, order,
1462 gfp_mask, migratetype);
1463 if (page)
1464 break;
1465 this_zone_full:
1466 if (NUMA_BUILD)
1467 zlc_mark_zone_full(zonelist, z);
1468 try_next_zone:
1469 if (NUMA_BUILD && !did_zlc_setup && num_online_nodes() > 1) {
1470 /*
1471 * we do zlc_setup after the first zone is tried but only
1472 * if there are multiple nodes make it worthwhile
1473 */
1474 allowednodes = zlc_setup(zonelist, alloc_flags);
1475 zlc_active = 1;
1476 did_zlc_setup = 1;
1477 }
1478 }
1479
1480 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1481 /* Disable zlc cache for second zonelist scan */
1482 zlc_active = 0;
1483 goto zonelist_scan;
1484 }
1485 return page;
1486 }
1487
1488 static inline int
1489 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1490 unsigned long pages_reclaimed)
1491 {
1492 /* Do not loop if specifically requested */
1493 if (gfp_mask & __GFP_NORETRY)
1494 return 0;
1495
1496 /*
1497 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1498 * means __GFP_NOFAIL, but that may not be true in other
1499 * implementations.
1500 */
1501 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1502 return 1;
1503
1504 /*
1505 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1506 * specified, then we retry until we no longer reclaim any pages
1507 * (above), or we've reclaimed an order of pages at least as
1508 * large as the allocation's order. In both cases, if the
1509 * allocation still fails, we stop retrying.
1510 */
1511 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1512 return 1;
1513
1514 /*
1515 * Don't let big-order allocations loop unless the caller
1516 * explicitly requests that.
1517 */
1518 if (gfp_mask & __GFP_NOFAIL)
1519 return 1;
1520
1521 return 0;
1522 }
1523
1524 static inline struct page *
1525 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1526 struct zonelist *zonelist, enum zone_type high_zoneidx,
1527 nodemask_t *nodemask, struct zone *preferred_zone,
1528 int migratetype)
1529 {
1530 struct page *page;
1531
1532 /* Acquire the OOM killer lock for the zones in zonelist */
1533 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1534 schedule_timeout_uninterruptible(1);
1535 return NULL;
1536 }
1537
1538 /*
1539 * Go through the zonelist yet one more time, keep very high watermark
1540 * here, this is only to catch a parallel oom killing, we must fail if
1541 * we're still under heavy pressure.
1542 */
1543 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1544 order, zonelist, high_zoneidx,
1545 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1546 preferred_zone, migratetype);
1547 if (page)
1548 goto out;
1549
1550 /* The OOM killer will not help higher order allocs */
1551 if (order > PAGE_ALLOC_COSTLY_ORDER)
1552 goto out;
1553
1554 /* Exhausted what can be done so it's blamo time */
1555 out_of_memory(zonelist, gfp_mask, order);
1556
1557 out:
1558 clear_zonelist_oom(zonelist, gfp_mask);
1559 return page;
1560 }
1561
1562 /* The really slow allocator path where we enter direct reclaim */
1563 static inline struct page *
1564 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1565 struct zonelist *zonelist, enum zone_type high_zoneidx,
1566 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1567 int migratetype, unsigned long *did_some_progress)
1568 {
1569 struct page *page = NULL;
1570 struct reclaim_state reclaim_state;
1571 struct task_struct *p = current;
1572
1573 cond_resched();
1574
1575 /* We now go into synchronous reclaim */
1576 cpuset_memory_pressure_bump();
1577
1578 /*
1579 * The task's cpuset might have expanded its set of allowable nodes
1580 */
1581 p->flags |= PF_MEMALLOC;
1582 lockdep_set_current_reclaim_state(gfp_mask);
1583 reclaim_state.reclaimed_slab = 0;
1584 p->reclaim_state = &reclaim_state;
1585
1586 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1587
1588 p->reclaim_state = NULL;
1589 lockdep_clear_current_reclaim_state();
1590 p->flags &= ~PF_MEMALLOC;
1591
1592 cond_resched();
1593
1594 if (order != 0)
1595 drain_all_pages();
1596
1597 if (likely(*did_some_progress))
1598 page = get_page_from_freelist(gfp_mask, nodemask, order,
1599 zonelist, high_zoneidx,
1600 alloc_flags, preferred_zone,
1601 migratetype);
1602 return page;
1603 }
1604
1605 /*
1606 * This is called in the allocator slow-path if the allocation request is of
1607 * sufficient urgency to ignore watermarks and take other desperate measures
1608 */
1609 static inline struct page *
1610 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1611 struct zonelist *zonelist, enum zone_type high_zoneidx,
1612 nodemask_t *nodemask, struct zone *preferred_zone,
1613 int migratetype)
1614 {
1615 struct page *page;
1616
1617 do {
1618 page = get_page_from_freelist(gfp_mask, nodemask, order,
1619 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1620 preferred_zone, migratetype);
1621
1622 if (!page && gfp_mask & __GFP_NOFAIL)
1623 congestion_wait(WRITE, HZ/50);
1624 } while (!page && (gfp_mask & __GFP_NOFAIL));
1625
1626 return page;
1627 }
1628
1629 static inline
1630 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1631 enum zone_type high_zoneidx)
1632 {
1633 struct zoneref *z;
1634 struct zone *zone;
1635
1636 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1637 wakeup_kswapd(zone, order);
1638 }
1639
1640 static inline int
1641 gfp_to_alloc_flags(gfp_t gfp_mask)
1642 {
1643 struct task_struct *p = current;
1644 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1645 const gfp_t wait = gfp_mask & __GFP_WAIT;
1646
1647 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1648 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1649
1650 /*
1651 * The caller may dip into page reserves a bit more if the caller
1652 * cannot run direct reclaim, or if the caller has realtime scheduling
1653 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1654 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1655 */
1656 alloc_flags |= (gfp_mask & __GFP_HIGH);
1657
1658 if (!wait) {
1659 alloc_flags |= ALLOC_HARDER;
1660 /*
1661 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1662 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1663 */
1664 alloc_flags &= ~ALLOC_CPUSET;
1665 } else if (unlikely(rt_task(p)))
1666 alloc_flags |= ALLOC_HARDER;
1667
1668 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1669 if (!in_interrupt() &&
1670 ((p->flags & PF_MEMALLOC) ||
1671 unlikely(test_thread_flag(TIF_MEMDIE))))
1672 alloc_flags |= ALLOC_NO_WATERMARKS;
1673 }
1674
1675 return alloc_flags;
1676 }
1677
1678 static inline struct page *
1679 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1680 struct zonelist *zonelist, enum zone_type high_zoneidx,
1681 nodemask_t *nodemask, struct zone *preferred_zone,
1682 int migratetype)
1683 {
1684 const gfp_t wait = gfp_mask & __GFP_WAIT;
1685 struct page *page = NULL;
1686 int alloc_flags;
1687 unsigned long pages_reclaimed = 0;
1688 unsigned long did_some_progress;
1689 struct task_struct *p = current;
1690
1691 /*
1692 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1693 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1694 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1695 * using a larger set of nodes after it has established that the
1696 * allowed per node queues are empty and that nodes are
1697 * over allocated.
1698 */
1699 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1700 goto nopage;
1701
1702 wake_all_kswapd(order, zonelist, high_zoneidx);
1703
1704 /*
1705 * OK, we're below the kswapd watermark and have kicked background
1706 * reclaim. Now things get more complex, so set up alloc_flags according
1707 * to how we want to proceed.
1708 */
1709 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1710
1711 restart:
1712 /* This is the last chance, in general, before the goto nopage. */
1713 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1714 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1715 preferred_zone, migratetype);
1716 if (page)
1717 goto got_pg;
1718
1719 rebalance:
1720 /* Allocate without watermarks if the context allows */
1721 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1722 page = __alloc_pages_high_priority(gfp_mask, order,
1723 zonelist, high_zoneidx, nodemask,
1724 preferred_zone, migratetype);
1725 if (page)
1726 goto got_pg;
1727 }
1728
1729 /* Atomic allocations - we can't balance anything */
1730 if (!wait)
1731 goto nopage;
1732
1733 /* Avoid recursion of direct reclaim */
1734 if (p->flags & PF_MEMALLOC)
1735 goto nopage;
1736
1737 /* Try direct reclaim and then allocating */
1738 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1739 zonelist, high_zoneidx,
1740 nodemask,
1741 alloc_flags, preferred_zone,
1742 migratetype, &did_some_progress);
1743 if (page)
1744 goto got_pg;
1745
1746 /*
1747 * If we failed to make any progress reclaiming, then we are
1748 * running out of options and have to consider going OOM
1749 */
1750 if (!did_some_progress) {
1751 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1752 page = __alloc_pages_may_oom(gfp_mask, order,
1753 zonelist, high_zoneidx,
1754 nodemask, preferred_zone,
1755 migratetype);
1756 if (page)
1757 goto got_pg;
1758
1759 /*
1760 * The OOM killer does not trigger for high-order allocations
1761 * but if no progress is being made, there are no other
1762 * options and retrying is unlikely to help
1763 */
1764 if (order > PAGE_ALLOC_COSTLY_ORDER)
1765 goto nopage;
1766
1767 goto restart;
1768 }
1769 }
1770
1771 /* Check if we should retry the allocation */
1772 pages_reclaimed += did_some_progress;
1773 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1774 /* Wait for some write requests to complete then retry */
1775 congestion_wait(WRITE, HZ/50);
1776 goto rebalance;
1777 }
1778
1779 nopage:
1780 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1781 printk(KERN_WARNING "%s: page allocation failure."
1782 " order:%d, mode:0x%x\n",
1783 p->comm, order, gfp_mask);
1784 dump_stack();
1785 show_mem();
1786 }
1787 got_pg:
1788 return page;
1789
1790 }
1791
1792 /*
1793 * This is the 'heart' of the zoned buddy allocator.
1794 */
1795 struct page *
1796 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1797 struct zonelist *zonelist, nodemask_t *nodemask)
1798 {
1799 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1800 struct zone *preferred_zone;
1801 struct page *page;
1802 int migratetype = allocflags_to_migratetype(gfp_mask);
1803
1804 lockdep_trace_alloc(gfp_mask);
1805
1806 might_sleep_if(gfp_mask & __GFP_WAIT);
1807
1808 if (should_fail_alloc_page(gfp_mask, order))
1809 return NULL;
1810
1811 /*
1812 * Check the zones suitable for the gfp_mask contain at least one
1813 * valid zone. It's possible to have an empty zonelist as a result
1814 * of GFP_THISNODE and a memoryless node
1815 */
1816 if (unlikely(!zonelist->_zonerefs->zone))
1817 return NULL;
1818
1819 /* The preferred zone is used for statistics later */
1820 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1821 if (!preferred_zone)
1822 return NULL;
1823
1824 /* First allocation attempt */
1825 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1826 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1827 preferred_zone, migratetype);
1828 if (unlikely(!page))
1829 page = __alloc_pages_slowpath(gfp_mask, order,
1830 zonelist, high_zoneidx, nodemask,
1831 preferred_zone, migratetype);
1832
1833 return page;
1834 }
1835 EXPORT_SYMBOL(__alloc_pages_nodemask);
1836
1837 /*
1838 * Common helper functions.
1839 */
1840 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1841 {
1842 struct page * page;
1843 page = alloc_pages(gfp_mask, order);
1844 if (!page)
1845 return 0;
1846 return (unsigned long) page_address(page);
1847 }
1848
1849 EXPORT_SYMBOL(__get_free_pages);
1850
1851 unsigned long get_zeroed_page(gfp_t gfp_mask)
1852 {
1853 struct page * page;
1854
1855 /*
1856 * get_zeroed_page() returns a 32-bit address, which cannot represent
1857 * a highmem page
1858 */
1859 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1860
1861 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1862 if (page)
1863 return (unsigned long) page_address(page);
1864 return 0;
1865 }
1866
1867 EXPORT_SYMBOL(get_zeroed_page);
1868
1869 void __pagevec_free(struct pagevec *pvec)
1870 {
1871 int i = pagevec_count(pvec);
1872
1873 while (--i >= 0)
1874 free_hot_cold_page(pvec->pages[i], pvec->cold);
1875 }
1876
1877 void __free_pages(struct page *page, unsigned int order)
1878 {
1879 if (put_page_testzero(page)) {
1880 if (order == 0)
1881 free_hot_page(page);
1882 else
1883 __free_pages_ok(page, order);
1884 }
1885 }
1886
1887 EXPORT_SYMBOL(__free_pages);
1888
1889 void free_pages(unsigned long addr, unsigned int order)
1890 {
1891 if (addr != 0) {
1892 VM_BUG_ON(!virt_addr_valid((void *)addr));
1893 __free_pages(virt_to_page((void *)addr), order);
1894 }
1895 }
1896
1897 EXPORT_SYMBOL(free_pages);
1898
1899 /**
1900 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1901 * @size: the number of bytes to allocate
1902 * @gfp_mask: GFP flags for the allocation
1903 *
1904 * This function is similar to alloc_pages(), except that it allocates the
1905 * minimum number of pages to satisfy the request. alloc_pages() can only
1906 * allocate memory in power-of-two pages.
1907 *
1908 * This function is also limited by MAX_ORDER.
1909 *
1910 * Memory allocated by this function must be released by free_pages_exact().
1911 */
1912 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1913 {
1914 unsigned int order = get_order(size);
1915 unsigned long addr;
1916
1917 addr = __get_free_pages(gfp_mask, order);
1918 if (addr) {
1919 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1920 unsigned long used = addr + PAGE_ALIGN(size);
1921
1922 split_page(virt_to_page(addr), order);
1923 while (used < alloc_end) {
1924 free_page(used);
1925 used += PAGE_SIZE;
1926 }
1927 }
1928
1929 return (void *)addr;
1930 }
1931 EXPORT_SYMBOL(alloc_pages_exact);
1932
1933 /**
1934 * free_pages_exact - release memory allocated via alloc_pages_exact()
1935 * @virt: the value returned by alloc_pages_exact.
1936 * @size: size of allocation, same value as passed to alloc_pages_exact().
1937 *
1938 * Release the memory allocated by a previous call to alloc_pages_exact.
1939 */
1940 void free_pages_exact(void *virt, size_t size)
1941 {
1942 unsigned long addr = (unsigned long)virt;
1943 unsigned long end = addr + PAGE_ALIGN(size);
1944
1945 while (addr < end) {
1946 free_page(addr);
1947 addr += PAGE_SIZE;
1948 }
1949 }
1950 EXPORT_SYMBOL(free_pages_exact);
1951
1952 static unsigned int nr_free_zone_pages(int offset)
1953 {
1954 struct zoneref *z;
1955 struct zone *zone;
1956
1957 /* Just pick one node, since fallback list is circular */
1958 unsigned int sum = 0;
1959
1960 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1961
1962 for_each_zone_zonelist(zone, z, zonelist, offset) {
1963 unsigned long size = zone->present_pages;
1964 unsigned long high = high_wmark_pages(zone);
1965 if (size > high)
1966 sum += size - high;
1967 }
1968
1969 return sum;
1970 }
1971
1972 /*
1973 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1974 */
1975 unsigned int nr_free_buffer_pages(void)
1976 {
1977 return nr_free_zone_pages(gfp_zone(GFP_USER));
1978 }
1979 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1980
1981 /*
1982 * Amount of free RAM allocatable within all zones
1983 */
1984 unsigned int nr_free_pagecache_pages(void)
1985 {
1986 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1987 }
1988
1989 static inline void show_node(struct zone *zone)
1990 {
1991 if (NUMA_BUILD)
1992 printk("Node %d ", zone_to_nid(zone));
1993 }
1994
1995 void si_meminfo(struct sysinfo *val)
1996 {
1997 val->totalram = totalram_pages;
1998 val->sharedram = 0;
1999 val->freeram = global_page_state(NR_FREE_PAGES);
2000 val->bufferram = nr_blockdev_pages();
2001 val->totalhigh = totalhigh_pages;
2002 val->freehigh = nr_free_highpages();
2003 val->mem_unit = PAGE_SIZE;
2004 }
2005
2006 EXPORT_SYMBOL(si_meminfo);
2007
2008 #ifdef CONFIG_NUMA
2009 void si_meminfo_node(struct sysinfo *val, int nid)
2010 {
2011 pg_data_t *pgdat = NODE_DATA(nid);
2012
2013 val->totalram = pgdat->node_present_pages;
2014 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2015 #ifdef CONFIG_HIGHMEM
2016 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2017 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2018 NR_FREE_PAGES);
2019 #else
2020 val->totalhigh = 0;
2021 val->freehigh = 0;
2022 #endif
2023 val->mem_unit = PAGE_SIZE;
2024 }
2025 #endif
2026
2027 #define K(x) ((x) << (PAGE_SHIFT-10))
2028
2029 /*
2030 * Show free area list (used inside shift_scroll-lock stuff)
2031 * We also calculate the percentage fragmentation. We do this by counting the
2032 * memory on each free list with the exception of the first item on the list.
2033 */
2034 void show_free_areas(void)
2035 {
2036 int cpu;
2037 struct zone *zone;
2038
2039 for_each_populated_zone(zone) {
2040 show_node(zone);
2041 printk("%s per-cpu:\n", zone->name);
2042
2043 for_each_online_cpu(cpu) {
2044 struct per_cpu_pageset *pageset;
2045
2046 pageset = zone_pcp(zone, cpu);
2047
2048 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2049 cpu, pageset->pcp.high,
2050 pageset->pcp.batch, pageset->pcp.count);
2051 }
2052 }
2053
2054 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2055 " inactive_file:%lu"
2056 //TODO: check/adjust line lengths
2057 #ifdef CONFIG_UNEVICTABLE_LRU
2058 " unevictable:%lu"
2059 #endif
2060 " dirty:%lu writeback:%lu unstable:%lu\n"
2061 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2062 global_page_state(NR_ACTIVE_ANON),
2063 global_page_state(NR_ACTIVE_FILE),
2064 global_page_state(NR_INACTIVE_ANON),
2065 global_page_state(NR_INACTIVE_FILE),
2066 #ifdef CONFIG_UNEVICTABLE_LRU
2067 global_page_state(NR_UNEVICTABLE),
2068 #endif
2069 global_page_state(NR_FILE_DIRTY),
2070 global_page_state(NR_WRITEBACK),
2071 global_page_state(NR_UNSTABLE_NFS),
2072 global_page_state(NR_FREE_PAGES),
2073 global_page_state(NR_SLAB_RECLAIMABLE) +
2074 global_page_state(NR_SLAB_UNRECLAIMABLE),
2075 global_page_state(NR_FILE_MAPPED),
2076 global_page_state(NR_PAGETABLE),
2077 global_page_state(NR_BOUNCE));
2078
2079 for_each_populated_zone(zone) {
2080 int i;
2081
2082 show_node(zone);
2083 printk("%s"
2084 " free:%lukB"
2085 " min:%lukB"
2086 " low:%lukB"
2087 " high:%lukB"
2088 " active_anon:%lukB"
2089 " inactive_anon:%lukB"
2090 " active_file:%lukB"
2091 " inactive_file:%lukB"
2092 #ifdef CONFIG_UNEVICTABLE_LRU
2093 " unevictable:%lukB"
2094 #endif
2095 " present:%lukB"
2096 " pages_scanned:%lu"
2097 " all_unreclaimable? %s"
2098 "\n",
2099 zone->name,
2100 K(zone_page_state(zone, NR_FREE_PAGES)),
2101 K(min_wmark_pages(zone)),
2102 K(low_wmark_pages(zone)),
2103 K(high_wmark_pages(zone)),
2104 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2105 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2106 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2107 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2108 #ifdef CONFIG_UNEVICTABLE_LRU
2109 K(zone_page_state(zone, NR_UNEVICTABLE)),
2110 #endif
2111 K(zone->present_pages),
2112 zone->pages_scanned,
2113 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2114 );
2115 printk("lowmem_reserve[]:");
2116 for (i = 0; i < MAX_NR_ZONES; i++)
2117 printk(" %lu", zone->lowmem_reserve[i]);
2118 printk("\n");
2119 }
2120
2121 for_each_populated_zone(zone) {
2122 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2123
2124 show_node(zone);
2125 printk("%s: ", zone->name);
2126
2127 spin_lock_irqsave(&zone->lock, flags);
2128 for (order = 0; order < MAX_ORDER; order++) {
2129 nr[order] = zone->free_area[order].nr_free;
2130 total += nr[order] << order;
2131 }
2132 spin_unlock_irqrestore(&zone->lock, flags);
2133 for (order = 0; order < MAX_ORDER; order++)
2134 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2135 printk("= %lukB\n", K(total));
2136 }
2137
2138 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2139
2140 show_swap_cache_info();
2141 }
2142
2143 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2144 {
2145 zoneref->zone = zone;
2146 zoneref->zone_idx = zone_idx(zone);
2147 }
2148
2149 /*
2150 * Builds allocation fallback zone lists.
2151 *
2152 * Add all populated zones of a node to the zonelist.
2153 */
2154 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2155 int nr_zones, enum zone_type zone_type)
2156 {
2157 struct zone *zone;
2158
2159 BUG_ON(zone_type >= MAX_NR_ZONES);
2160 zone_type++;
2161
2162 do {
2163 zone_type--;
2164 zone = pgdat->node_zones + zone_type;
2165 if (populated_zone(zone)) {
2166 zoneref_set_zone(zone,
2167 &zonelist->_zonerefs[nr_zones++]);
2168 check_highest_zone(zone_type);
2169 }
2170
2171 } while (zone_type);
2172 return nr_zones;
2173 }
2174
2175
2176 /*
2177 * zonelist_order:
2178 * 0 = automatic detection of better ordering.
2179 * 1 = order by ([node] distance, -zonetype)
2180 * 2 = order by (-zonetype, [node] distance)
2181 *
2182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2183 * the same zonelist. So only NUMA can configure this param.
2184 */
2185 #define ZONELIST_ORDER_DEFAULT 0
2186 #define ZONELIST_ORDER_NODE 1
2187 #define ZONELIST_ORDER_ZONE 2
2188
2189 /* zonelist order in the kernel.
2190 * set_zonelist_order() will set this to NODE or ZONE.
2191 */
2192 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2193 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2194
2195
2196 #ifdef CONFIG_NUMA
2197 /* The value user specified ....changed by config */
2198 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2199 /* string for sysctl */
2200 #define NUMA_ZONELIST_ORDER_LEN 16
2201 char numa_zonelist_order[16] = "default";
2202
2203 /*
2204 * interface for configure zonelist ordering.
2205 * command line option "numa_zonelist_order"
2206 * = "[dD]efault - default, automatic configuration.
2207 * = "[nN]ode - order by node locality, then by zone within node
2208 * = "[zZ]one - order by zone, then by locality within zone
2209 */
2210
2211 static int __parse_numa_zonelist_order(char *s)
2212 {
2213 if (*s == 'd' || *s == 'D') {
2214 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2215 } else if (*s == 'n' || *s == 'N') {
2216 user_zonelist_order = ZONELIST_ORDER_NODE;
2217 } else if (*s == 'z' || *s == 'Z') {
2218 user_zonelist_order = ZONELIST_ORDER_ZONE;
2219 } else {
2220 printk(KERN_WARNING
2221 "Ignoring invalid numa_zonelist_order value: "
2222 "%s\n", s);
2223 return -EINVAL;
2224 }
2225 return 0;
2226 }
2227
2228 static __init int setup_numa_zonelist_order(char *s)
2229 {
2230 if (s)
2231 return __parse_numa_zonelist_order(s);
2232 return 0;
2233 }
2234 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2235
2236 /*
2237 * sysctl handler for numa_zonelist_order
2238 */
2239 int numa_zonelist_order_handler(ctl_table *table, int write,
2240 struct file *file, void __user *buffer, size_t *length,
2241 loff_t *ppos)
2242 {
2243 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2244 int ret;
2245
2246 if (write)
2247 strncpy(saved_string, (char*)table->data,
2248 NUMA_ZONELIST_ORDER_LEN);
2249 ret = proc_dostring(table, write, file, buffer, length, ppos);
2250 if (ret)
2251 return ret;
2252 if (write) {
2253 int oldval = user_zonelist_order;
2254 if (__parse_numa_zonelist_order((char*)table->data)) {
2255 /*
2256 * bogus value. restore saved string
2257 */
2258 strncpy((char*)table->data, saved_string,
2259 NUMA_ZONELIST_ORDER_LEN);
2260 user_zonelist_order = oldval;
2261 } else if (oldval != user_zonelist_order)
2262 build_all_zonelists();
2263 }
2264 return 0;
2265 }
2266
2267
2268 #define MAX_NODE_LOAD (num_online_nodes())
2269 static int node_load[MAX_NUMNODES];
2270
2271 /**
2272 * find_next_best_node - find the next node that should appear in a given node's fallback list
2273 * @node: node whose fallback list we're appending
2274 * @used_node_mask: nodemask_t of already used nodes
2275 *
2276 * We use a number of factors to determine which is the next node that should
2277 * appear on a given node's fallback list. The node should not have appeared
2278 * already in @node's fallback list, and it should be the next closest node
2279 * according to the distance array (which contains arbitrary distance values
2280 * from each node to each node in the system), and should also prefer nodes
2281 * with no CPUs, since presumably they'll have very little allocation pressure
2282 * on them otherwise.
2283 * It returns -1 if no node is found.
2284 */
2285 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2286 {
2287 int n, val;
2288 int min_val = INT_MAX;
2289 int best_node = -1;
2290 const struct cpumask *tmp = cpumask_of_node(0);
2291
2292 /* Use the local node if we haven't already */
2293 if (!node_isset(node, *used_node_mask)) {
2294 node_set(node, *used_node_mask);
2295 return node;
2296 }
2297
2298 for_each_node_state(n, N_HIGH_MEMORY) {
2299
2300 /* Don't want a node to appear more than once */
2301 if (node_isset(n, *used_node_mask))
2302 continue;
2303
2304 /* Use the distance array to find the distance */
2305 val = node_distance(node, n);
2306
2307 /* Penalize nodes under us ("prefer the next node") */
2308 val += (n < node);
2309
2310 /* Give preference to headless and unused nodes */
2311 tmp = cpumask_of_node(n);
2312 if (!cpumask_empty(tmp))
2313 val += PENALTY_FOR_NODE_WITH_CPUS;
2314
2315 /* Slight preference for less loaded node */
2316 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2317 val += node_load[n];
2318
2319 if (val < min_val) {
2320 min_val = val;
2321 best_node = n;
2322 }
2323 }
2324
2325 if (best_node >= 0)
2326 node_set(best_node, *used_node_mask);
2327
2328 return best_node;
2329 }
2330
2331
2332 /*
2333 * Build zonelists ordered by node and zones within node.
2334 * This results in maximum locality--normal zone overflows into local
2335 * DMA zone, if any--but risks exhausting DMA zone.
2336 */
2337 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2338 {
2339 int j;
2340 struct zonelist *zonelist;
2341
2342 zonelist = &pgdat->node_zonelists[0];
2343 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2344 ;
2345 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2346 MAX_NR_ZONES - 1);
2347 zonelist->_zonerefs[j].zone = NULL;
2348 zonelist->_zonerefs[j].zone_idx = 0;
2349 }
2350
2351 /*
2352 * Build gfp_thisnode zonelists
2353 */
2354 static void build_thisnode_zonelists(pg_data_t *pgdat)
2355 {
2356 int j;
2357 struct zonelist *zonelist;
2358
2359 zonelist = &pgdat->node_zonelists[1];
2360 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2361 zonelist->_zonerefs[j].zone = NULL;
2362 zonelist->_zonerefs[j].zone_idx = 0;
2363 }
2364
2365 /*
2366 * Build zonelists ordered by zone and nodes within zones.
2367 * This results in conserving DMA zone[s] until all Normal memory is
2368 * exhausted, but results in overflowing to remote node while memory
2369 * may still exist in local DMA zone.
2370 */
2371 static int node_order[MAX_NUMNODES];
2372
2373 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2374 {
2375 int pos, j, node;
2376 int zone_type; /* needs to be signed */
2377 struct zone *z;
2378 struct zonelist *zonelist;
2379
2380 zonelist = &pgdat->node_zonelists[0];
2381 pos = 0;
2382 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2383 for (j = 0; j < nr_nodes; j++) {
2384 node = node_order[j];
2385 z = &NODE_DATA(node)->node_zones[zone_type];
2386 if (populated_zone(z)) {
2387 zoneref_set_zone(z,
2388 &zonelist->_zonerefs[pos++]);
2389 check_highest_zone(zone_type);
2390 }
2391 }
2392 }
2393 zonelist->_zonerefs[pos].zone = NULL;
2394 zonelist->_zonerefs[pos].zone_idx = 0;
2395 }
2396
2397 static int default_zonelist_order(void)
2398 {
2399 int nid, zone_type;
2400 unsigned long low_kmem_size,total_size;
2401 struct zone *z;
2402 int average_size;
2403 /*
2404 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2405 * If they are really small and used heavily, the system can fall
2406 * into OOM very easily.
2407 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2408 */
2409 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2410 low_kmem_size = 0;
2411 total_size = 0;
2412 for_each_online_node(nid) {
2413 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2414 z = &NODE_DATA(nid)->node_zones[zone_type];
2415 if (populated_zone(z)) {
2416 if (zone_type < ZONE_NORMAL)
2417 low_kmem_size += z->present_pages;
2418 total_size += z->present_pages;
2419 }
2420 }
2421 }
2422 if (!low_kmem_size || /* there are no DMA area. */
2423 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2424 return ZONELIST_ORDER_NODE;
2425 /*
2426 * look into each node's config.
2427 * If there is a node whose DMA/DMA32 memory is very big area on
2428 * local memory, NODE_ORDER may be suitable.
2429 */
2430 average_size = total_size /
2431 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2432 for_each_online_node(nid) {
2433 low_kmem_size = 0;
2434 total_size = 0;
2435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2436 z = &NODE_DATA(nid)->node_zones[zone_type];
2437 if (populated_zone(z)) {
2438 if (zone_type < ZONE_NORMAL)
2439 low_kmem_size += z->present_pages;
2440 total_size += z->present_pages;
2441 }
2442 }
2443 if (low_kmem_size &&
2444 total_size > average_size && /* ignore small node */
2445 low_kmem_size > total_size * 70/100)
2446 return ZONELIST_ORDER_NODE;
2447 }
2448 return ZONELIST_ORDER_ZONE;
2449 }
2450
2451 static void set_zonelist_order(void)
2452 {
2453 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2454 current_zonelist_order = default_zonelist_order();
2455 else
2456 current_zonelist_order = user_zonelist_order;
2457 }
2458
2459 static void build_zonelists(pg_data_t *pgdat)
2460 {
2461 int j, node, load;
2462 enum zone_type i;
2463 nodemask_t used_mask;
2464 int local_node, prev_node;
2465 struct zonelist *zonelist;
2466 int order = current_zonelist_order;
2467
2468 /* initialize zonelists */
2469 for (i = 0; i < MAX_ZONELISTS; i++) {
2470 zonelist = pgdat->node_zonelists + i;
2471 zonelist->_zonerefs[0].zone = NULL;
2472 zonelist->_zonerefs[0].zone_idx = 0;
2473 }
2474
2475 /* NUMA-aware ordering of nodes */
2476 local_node = pgdat->node_id;
2477 load = num_online_nodes();
2478 prev_node = local_node;
2479 nodes_clear(used_mask);
2480
2481 memset(node_load, 0, sizeof(node_load));
2482 memset(node_order, 0, sizeof(node_order));
2483 j = 0;
2484
2485 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2486 int distance = node_distance(local_node, node);
2487
2488 /*
2489 * If another node is sufficiently far away then it is better
2490 * to reclaim pages in a zone before going off node.
2491 */
2492 if (distance > RECLAIM_DISTANCE)
2493 zone_reclaim_mode = 1;
2494
2495 /*
2496 * We don't want to pressure a particular node.
2497 * So adding penalty to the first node in same
2498 * distance group to make it round-robin.
2499 */
2500 if (distance != node_distance(local_node, prev_node))
2501 node_load[node] = load;
2502
2503 prev_node = node;
2504 load--;
2505 if (order == ZONELIST_ORDER_NODE)
2506 build_zonelists_in_node_order(pgdat, node);
2507 else
2508 node_order[j++] = node; /* remember order */
2509 }
2510
2511 if (order == ZONELIST_ORDER_ZONE) {
2512 /* calculate node order -- i.e., DMA last! */
2513 build_zonelists_in_zone_order(pgdat, j);
2514 }
2515
2516 build_thisnode_zonelists(pgdat);
2517 }
2518
2519 /* Construct the zonelist performance cache - see further mmzone.h */
2520 static void build_zonelist_cache(pg_data_t *pgdat)
2521 {
2522 struct zonelist *zonelist;
2523 struct zonelist_cache *zlc;
2524 struct zoneref *z;
2525
2526 zonelist = &pgdat->node_zonelists[0];
2527 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2528 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2529 for (z = zonelist->_zonerefs; z->zone; z++)
2530 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2531 }
2532
2533
2534 #else /* CONFIG_NUMA */
2535
2536 static void set_zonelist_order(void)
2537 {
2538 current_zonelist_order = ZONELIST_ORDER_ZONE;
2539 }
2540
2541 static void build_zonelists(pg_data_t *pgdat)
2542 {
2543 int node, local_node;
2544 enum zone_type j;
2545 struct zonelist *zonelist;
2546
2547 local_node = pgdat->node_id;
2548
2549 zonelist = &pgdat->node_zonelists[0];
2550 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2551
2552 /*
2553 * Now we build the zonelist so that it contains the zones
2554 * of all the other nodes.
2555 * We don't want to pressure a particular node, so when
2556 * building the zones for node N, we make sure that the
2557 * zones coming right after the local ones are those from
2558 * node N+1 (modulo N)
2559 */
2560 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2561 if (!node_online(node))
2562 continue;
2563 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2564 MAX_NR_ZONES - 1);
2565 }
2566 for (node = 0; node < local_node; node++) {
2567 if (!node_online(node))
2568 continue;
2569 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2570 MAX_NR_ZONES - 1);
2571 }
2572
2573 zonelist->_zonerefs[j].zone = NULL;
2574 zonelist->_zonerefs[j].zone_idx = 0;
2575 }
2576
2577 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2578 static void build_zonelist_cache(pg_data_t *pgdat)
2579 {
2580 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2581 }
2582
2583 #endif /* CONFIG_NUMA */
2584
2585 /* return values int ....just for stop_machine() */
2586 static int __build_all_zonelists(void *dummy)
2587 {
2588 int nid;
2589
2590 for_each_online_node(nid) {
2591 pg_data_t *pgdat = NODE_DATA(nid);
2592
2593 build_zonelists(pgdat);
2594 build_zonelist_cache(pgdat);
2595 }
2596 return 0;
2597 }
2598
2599 void build_all_zonelists(void)
2600 {
2601 set_zonelist_order();
2602
2603 if (system_state == SYSTEM_BOOTING) {
2604 __build_all_zonelists(NULL);
2605 mminit_verify_zonelist();
2606 cpuset_init_current_mems_allowed();
2607 } else {
2608 /* we have to stop all cpus to guarantee there is no user
2609 of zonelist */
2610 stop_machine(__build_all_zonelists, NULL, NULL);
2611 /* cpuset refresh routine should be here */
2612 }
2613 vm_total_pages = nr_free_pagecache_pages();
2614 /*
2615 * Disable grouping by mobility if the number of pages in the
2616 * system is too low to allow the mechanism to work. It would be
2617 * more accurate, but expensive to check per-zone. This check is
2618 * made on memory-hotadd so a system can start with mobility
2619 * disabled and enable it later
2620 */
2621 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2622 page_group_by_mobility_disabled = 1;
2623 else
2624 page_group_by_mobility_disabled = 0;
2625
2626 printk("Built %i zonelists in %s order, mobility grouping %s. "
2627 "Total pages: %ld\n",
2628 num_online_nodes(),
2629 zonelist_order_name[current_zonelist_order],
2630 page_group_by_mobility_disabled ? "off" : "on",
2631 vm_total_pages);
2632 #ifdef CONFIG_NUMA
2633 printk("Policy zone: %s\n", zone_names[policy_zone]);
2634 #endif
2635 }
2636
2637 /*
2638 * Helper functions to size the waitqueue hash table.
2639 * Essentially these want to choose hash table sizes sufficiently
2640 * large so that collisions trying to wait on pages are rare.
2641 * But in fact, the number of active page waitqueues on typical
2642 * systems is ridiculously low, less than 200. So this is even
2643 * conservative, even though it seems large.
2644 *
2645 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2646 * waitqueues, i.e. the size of the waitq table given the number of pages.
2647 */
2648 #define PAGES_PER_WAITQUEUE 256
2649
2650 #ifndef CONFIG_MEMORY_HOTPLUG
2651 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2652 {
2653 unsigned long size = 1;
2654
2655 pages /= PAGES_PER_WAITQUEUE;
2656
2657 while (size < pages)
2658 size <<= 1;
2659
2660 /*
2661 * Once we have dozens or even hundreds of threads sleeping
2662 * on IO we've got bigger problems than wait queue collision.
2663 * Limit the size of the wait table to a reasonable size.
2664 */
2665 size = min(size, 4096UL);
2666
2667 return max(size, 4UL);
2668 }
2669 #else
2670 /*
2671 * A zone's size might be changed by hot-add, so it is not possible to determine
2672 * a suitable size for its wait_table. So we use the maximum size now.
2673 *
2674 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2675 *
2676 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2677 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2678 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2679 *
2680 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2681 * or more by the traditional way. (See above). It equals:
2682 *
2683 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2684 * ia64(16K page size) : = ( 8G + 4M)byte.
2685 * powerpc (64K page size) : = (32G +16M)byte.
2686 */
2687 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2688 {
2689 return 4096UL;
2690 }
2691 #endif
2692
2693 /*
2694 * This is an integer logarithm so that shifts can be used later
2695 * to extract the more random high bits from the multiplicative
2696 * hash function before the remainder is taken.
2697 */
2698 static inline unsigned long wait_table_bits(unsigned long size)
2699 {
2700 return ffz(~size);
2701 }
2702
2703 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2704
2705 /*
2706 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2707 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2708 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2709 * higher will lead to a bigger reserve which will get freed as contiguous
2710 * blocks as reclaim kicks in
2711 */
2712 static void setup_zone_migrate_reserve(struct zone *zone)
2713 {
2714 unsigned long start_pfn, pfn, end_pfn;
2715 struct page *page;
2716 unsigned long reserve, block_migratetype;
2717
2718 /* Get the start pfn, end pfn and the number of blocks to reserve */
2719 start_pfn = zone->zone_start_pfn;
2720 end_pfn = start_pfn + zone->spanned_pages;
2721 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2722 pageblock_order;
2723
2724 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2725 if (!pfn_valid(pfn))
2726 continue;
2727 page = pfn_to_page(pfn);
2728
2729 /* Watch out for overlapping nodes */
2730 if (page_to_nid(page) != zone_to_nid(zone))
2731 continue;
2732
2733 /* Blocks with reserved pages will never free, skip them. */
2734 if (PageReserved(page))
2735 continue;
2736
2737 block_migratetype = get_pageblock_migratetype(page);
2738
2739 /* If this block is reserved, account for it */
2740 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2741 reserve--;
2742 continue;
2743 }
2744
2745 /* Suitable for reserving if this block is movable */
2746 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2747 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2748 move_freepages_block(zone, page, MIGRATE_RESERVE);
2749 reserve--;
2750 continue;
2751 }
2752
2753 /*
2754 * If the reserve is met and this is a previous reserved block,
2755 * take it back
2756 */
2757 if (block_migratetype == MIGRATE_RESERVE) {
2758 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2759 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2760 }
2761 }
2762 }
2763
2764 /*
2765 * Initially all pages are reserved - free ones are freed
2766 * up by free_all_bootmem() once the early boot process is
2767 * done. Non-atomic initialization, single-pass.
2768 */
2769 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2770 unsigned long start_pfn, enum memmap_context context)
2771 {
2772 struct page *page;
2773 unsigned long end_pfn = start_pfn + size;
2774 unsigned long pfn;
2775 struct zone *z;
2776
2777 if (highest_memmap_pfn < end_pfn - 1)
2778 highest_memmap_pfn = end_pfn - 1;
2779
2780 z = &NODE_DATA(nid)->node_zones[zone];
2781 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2782 /*
2783 * There can be holes in boot-time mem_map[]s
2784 * handed to this function. They do not
2785 * exist on hotplugged memory.
2786 */
2787 if (context == MEMMAP_EARLY) {
2788 if (!early_pfn_valid(pfn))
2789 continue;
2790 if (!early_pfn_in_nid(pfn, nid))
2791 continue;
2792 }
2793 page = pfn_to_page(pfn);
2794 set_page_links(page, zone, nid, pfn);
2795 mminit_verify_page_links(page, zone, nid, pfn);
2796 init_page_count(page);
2797 reset_page_mapcount(page);
2798 SetPageReserved(page);
2799 /*
2800 * Mark the block movable so that blocks are reserved for
2801 * movable at startup. This will force kernel allocations
2802 * to reserve their blocks rather than leaking throughout
2803 * the address space during boot when many long-lived
2804 * kernel allocations are made. Later some blocks near
2805 * the start are marked MIGRATE_RESERVE by
2806 * setup_zone_migrate_reserve()
2807 *
2808 * bitmap is created for zone's valid pfn range. but memmap
2809 * can be created for invalid pages (for alignment)
2810 * check here not to call set_pageblock_migratetype() against
2811 * pfn out of zone.
2812 */
2813 if ((z->zone_start_pfn <= pfn)
2814 && (pfn < z->zone_start_pfn + z->spanned_pages)
2815 && !(pfn & (pageblock_nr_pages - 1)))
2816 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2817
2818 INIT_LIST_HEAD(&page->lru);
2819 #ifdef WANT_PAGE_VIRTUAL
2820 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2821 if (!is_highmem_idx(zone))
2822 set_page_address(page, __va(pfn << PAGE_SHIFT));
2823 #endif
2824 }
2825 }
2826
2827 static void __meminit zone_init_free_lists(struct zone *zone)
2828 {
2829 int order, t;
2830 for_each_migratetype_order(order, t) {
2831 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2832 zone->free_area[order].nr_free = 0;
2833 }
2834 }
2835
2836 #ifndef __HAVE_ARCH_MEMMAP_INIT
2837 #define memmap_init(size, nid, zone, start_pfn) \
2838 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2839 #endif
2840
2841 static int zone_batchsize(struct zone *zone)
2842 {
2843 #ifdef CONFIG_MMU
2844 int batch;
2845
2846 /*
2847 * The per-cpu-pages pools are set to around 1000th of the
2848 * size of the zone. But no more than 1/2 of a meg.
2849 *
2850 * OK, so we don't know how big the cache is. So guess.
2851 */
2852 batch = zone->present_pages / 1024;
2853 if (batch * PAGE_SIZE > 512 * 1024)
2854 batch = (512 * 1024) / PAGE_SIZE;
2855 batch /= 4; /* We effectively *= 4 below */
2856 if (batch < 1)
2857 batch = 1;
2858
2859 /*
2860 * Clamp the batch to a 2^n - 1 value. Having a power
2861 * of 2 value was found to be more likely to have
2862 * suboptimal cache aliasing properties in some cases.
2863 *
2864 * For example if 2 tasks are alternately allocating
2865 * batches of pages, one task can end up with a lot
2866 * of pages of one half of the possible page colors
2867 * and the other with pages of the other colors.
2868 */
2869 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2870
2871 return batch;
2872
2873 #else
2874 /* The deferral and batching of frees should be suppressed under NOMMU
2875 * conditions.
2876 *
2877 * The problem is that NOMMU needs to be able to allocate large chunks
2878 * of contiguous memory as there's no hardware page translation to
2879 * assemble apparent contiguous memory from discontiguous pages.
2880 *
2881 * Queueing large contiguous runs of pages for batching, however,
2882 * causes the pages to actually be freed in smaller chunks. As there
2883 * can be a significant delay between the individual batches being
2884 * recycled, this leads to the once large chunks of space being
2885 * fragmented and becoming unavailable for high-order allocations.
2886 */
2887 return 0;
2888 #endif
2889 }
2890
2891 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2892 {
2893 struct per_cpu_pages *pcp;
2894
2895 memset(p, 0, sizeof(*p));
2896
2897 pcp = &p->pcp;
2898 pcp->count = 0;
2899 pcp->high = 6 * batch;
2900 pcp->batch = max(1UL, 1 * batch);
2901 INIT_LIST_HEAD(&pcp->list);
2902 }
2903
2904 /*
2905 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2906 * to the value high for the pageset p.
2907 */
2908
2909 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2910 unsigned long high)
2911 {
2912 struct per_cpu_pages *pcp;
2913
2914 pcp = &p->pcp;
2915 pcp->high = high;
2916 pcp->batch = max(1UL, high/4);
2917 if ((high/4) > (PAGE_SHIFT * 8))
2918 pcp->batch = PAGE_SHIFT * 8;
2919 }
2920
2921
2922 #ifdef CONFIG_NUMA
2923 /*
2924 * Boot pageset table. One per cpu which is going to be used for all
2925 * zones and all nodes. The parameters will be set in such a way
2926 * that an item put on a list will immediately be handed over to
2927 * the buddy list. This is safe since pageset manipulation is done
2928 * with interrupts disabled.
2929 *
2930 * Some NUMA counter updates may also be caught by the boot pagesets.
2931 *
2932 * The boot_pagesets must be kept even after bootup is complete for
2933 * unused processors and/or zones. They do play a role for bootstrapping
2934 * hotplugged processors.
2935 *
2936 * zoneinfo_show() and maybe other functions do
2937 * not check if the processor is online before following the pageset pointer.
2938 * Other parts of the kernel may not check if the zone is available.
2939 */
2940 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2941
2942 /*
2943 * Dynamically allocate memory for the
2944 * per cpu pageset array in struct zone.
2945 */
2946 static int __cpuinit process_zones(int cpu)
2947 {
2948 struct zone *zone, *dzone;
2949 int node = cpu_to_node(cpu);
2950
2951 node_set_state(node, N_CPU); /* this node has a cpu */
2952
2953 for_each_populated_zone(zone) {
2954 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2955 GFP_KERNEL, node);
2956 if (!zone_pcp(zone, cpu))
2957 goto bad;
2958
2959 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2960
2961 if (percpu_pagelist_fraction)
2962 setup_pagelist_highmark(zone_pcp(zone, cpu),
2963 (zone->present_pages / percpu_pagelist_fraction));
2964 }
2965
2966 return 0;
2967 bad:
2968 for_each_zone(dzone) {
2969 if (!populated_zone(dzone))
2970 continue;
2971 if (dzone == zone)
2972 break;
2973 kfree(zone_pcp(dzone, cpu));
2974 zone_pcp(dzone, cpu) = NULL;
2975 }
2976 return -ENOMEM;
2977 }
2978
2979 static inline void free_zone_pagesets(int cpu)
2980 {
2981 struct zone *zone;
2982
2983 for_each_zone(zone) {
2984 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2985
2986 /* Free per_cpu_pageset if it is slab allocated */
2987 if (pset != &boot_pageset[cpu])
2988 kfree(pset);
2989 zone_pcp(zone, cpu) = NULL;
2990 }
2991 }
2992
2993 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2994 unsigned long action,
2995 void *hcpu)
2996 {
2997 int cpu = (long)hcpu;
2998 int ret = NOTIFY_OK;
2999
3000 switch (action) {
3001 case CPU_UP_PREPARE:
3002 case CPU_UP_PREPARE_FROZEN:
3003 if (process_zones(cpu))
3004 ret = NOTIFY_BAD;
3005 break;
3006 case CPU_UP_CANCELED:
3007 case CPU_UP_CANCELED_FROZEN:
3008 case CPU_DEAD:
3009 case CPU_DEAD_FROZEN:
3010 free_zone_pagesets(cpu);
3011 break;
3012 default:
3013 break;
3014 }
3015 return ret;
3016 }
3017
3018 static struct notifier_block __cpuinitdata pageset_notifier =
3019 { &pageset_cpuup_callback, NULL, 0 };
3020
3021 void __init setup_per_cpu_pageset(void)
3022 {
3023 int err;
3024
3025 /* Initialize per_cpu_pageset for cpu 0.
3026 * A cpuup callback will do this for every cpu
3027 * as it comes online
3028 */
3029 err = process_zones(smp_processor_id());
3030 BUG_ON(err);
3031 register_cpu_notifier(&pageset_notifier);
3032 }
3033
3034 #endif
3035
3036 static noinline __init_refok
3037 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3038 {
3039 int i;
3040 struct pglist_data *pgdat = zone->zone_pgdat;
3041 size_t alloc_size;
3042
3043 /*
3044 * The per-page waitqueue mechanism uses hashed waitqueues
3045 * per zone.
3046 */
3047 zone->wait_table_hash_nr_entries =
3048 wait_table_hash_nr_entries(zone_size_pages);
3049 zone->wait_table_bits =
3050 wait_table_bits(zone->wait_table_hash_nr_entries);
3051 alloc_size = zone->wait_table_hash_nr_entries
3052 * sizeof(wait_queue_head_t);
3053
3054 if (!slab_is_available()) {
3055 zone->wait_table = (wait_queue_head_t *)
3056 alloc_bootmem_node(pgdat, alloc_size);
3057 } else {
3058 /*
3059 * This case means that a zone whose size was 0 gets new memory
3060 * via memory hot-add.
3061 * But it may be the case that a new node was hot-added. In
3062 * this case vmalloc() will not be able to use this new node's
3063 * memory - this wait_table must be initialized to use this new
3064 * node itself as well.
3065 * To use this new node's memory, further consideration will be
3066 * necessary.
3067 */
3068 zone->wait_table = vmalloc(alloc_size);
3069 }
3070 if (!zone->wait_table)
3071 return -ENOMEM;
3072
3073 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3074 init_waitqueue_head(zone->wait_table + i);
3075
3076 return 0;
3077 }
3078
3079 static __meminit void zone_pcp_init(struct zone *zone)
3080 {
3081 int cpu;
3082 unsigned long batch = zone_batchsize(zone);
3083
3084 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3085 #ifdef CONFIG_NUMA
3086 /* Early boot. Slab allocator not functional yet */
3087 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3088 setup_pageset(&boot_pageset[cpu],0);
3089 #else
3090 setup_pageset(zone_pcp(zone,cpu), batch);
3091 #endif
3092 }
3093 if (zone->present_pages)
3094 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3095 zone->name, zone->present_pages, batch);
3096 }
3097
3098 __meminit int init_currently_empty_zone(struct zone *zone,
3099 unsigned long zone_start_pfn,
3100 unsigned long size,
3101 enum memmap_context context)
3102 {
3103 struct pglist_data *pgdat = zone->zone_pgdat;
3104 int ret;
3105 ret = zone_wait_table_init(zone, size);
3106 if (ret)
3107 return ret;
3108 pgdat->nr_zones = zone_idx(zone) + 1;
3109
3110 zone->zone_start_pfn = zone_start_pfn;
3111
3112 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3113 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3114 pgdat->node_id,
3115 (unsigned long)zone_idx(zone),
3116 zone_start_pfn, (zone_start_pfn + size));
3117
3118 zone_init_free_lists(zone);
3119
3120 return 0;
3121 }
3122
3123 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3124 /*
3125 * Basic iterator support. Return the first range of PFNs for a node
3126 * Note: nid == MAX_NUMNODES returns first region regardless of node
3127 */
3128 static int __meminit first_active_region_index_in_nid(int nid)
3129 {
3130 int i;
3131
3132 for (i = 0; i < nr_nodemap_entries; i++)
3133 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3134 return i;
3135
3136 return -1;
3137 }
3138
3139 /*
3140 * Basic iterator support. Return the next active range of PFNs for a node
3141 * Note: nid == MAX_NUMNODES returns next region regardless of node
3142 */
3143 static int __meminit next_active_region_index_in_nid(int index, int nid)
3144 {
3145 for (index = index + 1; index < nr_nodemap_entries; index++)
3146 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3147 return index;
3148
3149 return -1;
3150 }
3151
3152 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3153 /*
3154 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3155 * Architectures may implement their own version but if add_active_range()
3156 * was used and there are no special requirements, this is a convenient
3157 * alternative
3158 */
3159 int __meminit __early_pfn_to_nid(unsigned long pfn)
3160 {
3161 int i;
3162
3163 for (i = 0; i < nr_nodemap_entries; i++) {
3164 unsigned long start_pfn = early_node_map[i].start_pfn;
3165 unsigned long end_pfn = early_node_map[i].end_pfn;
3166
3167 if (start_pfn <= pfn && pfn < end_pfn)
3168 return early_node_map[i].nid;
3169 }
3170 /* This is a memory hole */
3171 return -1;
3172 }
3173 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3174
3175 int __meminit early_pfn_to_nid(unsigned long pfn)
3176 {
3177 int nid;
3178
3179 nid = __early_pfn_to_nid(pfn);
3180 if (nid >= 0)
3181 return nid;
3182 /* just returns 0 */
3183 return 0;
3184 }
3185
3186 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3187 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3188 {
3189 int nid;
3190
3191 nid = __early_pfn_to_nid(pfn);
3192 if (nid >= 0 && nid != node)
3193 return false;
3194 return true;
3195 }
3196 #endif
3197
3198 /* Basic iterator support to walk early_node_map[] */
3199 #define for_each_active_range_index_in_nid(i, nid) \
3200 for (i = first_active_region_index_in_nid(nid); i != -1; \
3201 i = next_active_region_index_in_nid(i, nid))
3202
3203 /**
3204 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3205 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3206 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3207 *
3208 * If an architecture guarantees that all ranges registered with
3209 * add_active_ranges() contain no holes and may be freed, this
3210 * this function may be used instead of calling free_bootmem() manually.
3211 */
3212 void __init free_bootmem_with_active_regions(int nid,
3213 unsigned long max_low_pfn)
3214 {
3215 int i;
3216
3217 for_each_active_range_index_in_nid(i, nid) {
3218 unsigned long size_pages = 0;
3219 unsigned long end_pfn = early_node_map[i].end_pfn;
3220
3221 if (early_node_map[i].start_pfn >= max_low_pfn)
3222 continue;
3223
3224 if (end_pfn > max_low_pfn)
3225 end_pfn = max_low_pfn;
3226
3227 size_pages = end_pfn - early_node_map[i].start_pfn;
3228 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3229 PFN_PHYS(early_node_map[i].start_pfn),
3230 size_pages << PAGE_SHIFT);
3231 }
3232 }
3233
3234 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3235 {
3236 int i;
3237 int ret;
3238
3239 for_each_active_range_index_in_nid(i, nid) {
3240 ret = work_fn(early_node_map[i].start_pfn,
3241 early_node_map[i].end_pfn, data);
3242 if (ret)
3243 break;
3244 }
3245 }
3246 /**
3247 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3248 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3249 *
3250 * If an architecture guarantees that all ranges registered with
3251 * add_active_ranges() contain no holes and may be freed, this
3252 * function may be used instead of calling memory_present() manually.
3253 */
3254 void __init sparse_memory_present_with_active_regions(int nid)
3255 {
3256 int i;
3257
3258 for_each_active_range_index_in_nid(i, nid)
3259 memory_present(early_node_map[i].nid,
3260 early_node_map[i].start_pfn,
3261 early_node_map[i].end_pfn);
3262 }
3263
3264 /**
3265 * get_pfn_range_for_nid - Return the start and end page frames for a node
3266 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3267 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3268 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3269 *
3270 * It returns the start and end page frame of a node based on information
3271 * provided by an arch calling add_active_range(). If called for a node
3272 * with no available memory, a warning is printed and the start and end
3273 * PFNs will be 0.
3274 */
3275 void __meminit get_pfn_range_for_nid(unsigned int nid,
3276 unsigned long *start_pfn, unsigned long *end_pfn)
3277 {
3278 int i;
3279 *start_pfn = -1UL;
3280 *end_pfn = 0;
3281
3282 for_each_active_range_index_in_nid(i, nid) {
3283 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3284 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3285 }
3286
3287 if (*start_pfn == -1UL)
3288 *start_pfn = 0;
3289 }
3290
3291 /*
3292 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3293 * assumption is made that zones within a node are ordered in monotonic
3294 * increasing memory addresses so that the "highest" populated zone is used
3295 */
3296 static void __init find_usable_zone_for_movable(void)
3297 {
3298 int zone_index;
3299 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3300 if (zone_index == ZONE_MOVABLE)
3301 continue;
3302
3303 if (arch_zone_highest_possible_pfn[zone_index] >
3304 arch_zone_lowest_possible_pfn[zone_index])
3305 break;
3306 }
3307
3308 VM_BUG_ON(zone_index == -1);
3309 movable_zone = zone_index;
3310 }
3311
3312 /*
3313 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3314 * because it is sized independant of architecture. Unlike the other zones,
3315 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3316 * in each node depending on the size of each node and how evenly kernelcore
3317 * is distributed. This helper function adjusts the zone ranges
3318 * provided by the architecture for a given node by using the end of the
3319 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3320 * zones within a node are in order of monotonic increases memory addresses
3321 */
3322 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3323 unsigned long zone_type,
3324 unsigned long node_start_pfn,
3325 unsigned long node_end_pfn,
3326 unsigned long *zone_start_pfn,
3327 unsigned long *zone_end_pfn)
3328 {
3329 /* Only adjust if ZONE_MOVABLE is on this node */
3330 if (zone_movable_pfn[nid]) {
3331 /* Size ZONE_MOVABLE */
3332 if (zone_type == ZONE_MOVABLE) {
3333 *zone_start_pfn = zone_movable_pfn[nid];
3334 *zone_end_pfn = min(node_end_pfn,
3335 arch_zone_highest_possible_pfn[movable_zone]);
3336
3337 /* Adjust for ZONE_MOVABLE starting within this range */
3338 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3339 *zone_end_pfn > zone_movable_pfn[nid]) {
3340 *zone_end_pfn = zone_movable_pfn[nid];
3341
3342 /* Check if this whole range is within ZONE_MOVABLE */
3343 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3344 *zone_start_pfn = *zone_end_pfn;
3345 }
3346 }
3347
3348 /*
3349 * Return the number of pages a zone spans in a node, including holes
3350 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3351 */
3352 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3353 unsigned long zone_type,
3354 unsigned long *ignored)
3355 {
3356 unsigned long node_start_pfn, node_end_pfn;
3357 unsigned long zone_start_pfn, zone_end_pfn;
3358
3359 /* Get the start and end of the node and zone */
3360 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3361 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3362 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3363 adjust_zone_range_for_zone_movable(nid, zone_type,
3364 node_start_pfn, node_end_pfn,
3365 &zone_start_pfn, &zone_end_pfn);
3366
3367 /* Check that this node has pages within the zone's required range */
3368 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3369 return 0;
3370
3371 /* Move the zone boundaries inside the node if necessary */
3372 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3373 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3374
3375 /* Return the spanned pages */
3376 return zone_end_pfn - zone_start_pfn;
3377 }
3378
3379 /*
3380 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3381 * then all holes in the requested range will be accounted for.
3382 */
3383 static unsigned long __meminit __absent_pages_in_range(int nid,
3384 unsigned long range_start_pfn,
3385 unsigned long range_end_pfn)
3386 {
3387 int i = 0;
3388 unsigned long prev_end_pfn = 0, hole_pages = 0;
3389 unsigned long start_pfn;
3390
3391 /* Find the end_pfn of the first active range of pfns in the node */
3392 i = first_active_region_index_in_nid(nid);
3393 if (i == -1)
3394 return 0;
3395
3396 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3397
3398 /* Account for ranges before physical memory on this node */
3399 if (early_node_map[i].start_pfn > range_start_pfn)
3400 hole_pages = prev_end_pfn - range_start_pfn;
3401
3402 /* Find all holes for the zone within the node */
3403 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3404
3405 /* No need to continue if prev_end_pfn is outside the zone */
3406 if (prev_end_pfn >= range_end_pfn)
3407 break;
3408
3409 /* Make sure the end of the zone is not within the hole */
3410 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3411 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3412
3413 /* Update the hole size cound and move on */
3414 if (start_pfn > range_start_pfn) {
3415 BUG_ON(prev_end_pfn > start_pfn);
3416 hole_pages += start_pfn - prev_end_pfn;
3417 }
3418 prev_end_pfn = early_node_map[i].end_pfn;
3419 }
3420
3421 /* Account for ranges past physical memory on this node */
3422 if (range_end_pfn > prev_end_pfn)
3423 hole_pages += range_end_pfn -
3424 max(range_start_pfn, prev_end_pfn);
3425
3426 return hole_pages;
3427 }
3428
3429 /**
3430 * absent_pages_in_range - Return number of page frames in holes within a range
3431 * @start_pfn: The start PFN to start searching for holes
3432 * @end_pfn: The end PFN to stop searching for holes
3433 *
3434 * It returns the number of pages frames in memory holes within a range.
3435 */
3436 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3437 unsigned long end_pfn)
3438 {
3439 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3440 }
3441
3442 /* Return the number of page frames in holes in a zone on a node */
3443 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3444 unsigned long zone_type,
3445 unsigned long *ignored)
3446 {
3447 unsigned long node_start_pfn, node_end_pfn;
3448 unsigned long zone_start_pfn, zone_end_pfn;
3449
3450 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3451 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3452 node_start_pfn);
3453 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3454 node_end_pfn);
3455
3456 adjust_zone_range_for_zone_movable(nid, zone_type,
3457 node_start_pfn, node_end_pfn,
3458 &zone_start_pfn, &zone_end_pfn);
3459 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3460 }
3461
3462 #else
3463 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3464 unsigned long zone_type,
3465 unsigned long *zones_size)
3466 {
3467 return zones_size[zone_type];
3468 }
3469
3470 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3471 unsigned long zone_type,
3472 unsigned long *zholes_size)
3473 {
3474 if (!zholes_size)
3475 return 0;
3476
3477 return zholes_size[zone_type];
3478 }
3479
3480 #endif
3481
3482 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3483 unsigned long *zones_size, unsigned long *zholes_size)
3484 {
3485 unsigned long realtotalpages, totalpages = 0;
3486 enum zone_type i;
3487
3488 for (i = 0; i < MAX_NR_ZONES; i++)
3489 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3490 zones_size);
3491 pgdat->node_spanned_pages = totalpages;
3492
3493 realtotalpages = totalpages;
3494 for (i = 0; i < MAX_NR_ZONES; i++)
3495 realtotalpages -=
3496 zone_absent_pages_in_node(pgdat->node_id, i,
3497 zholes_size);
3498 pgdat->node_present_pages = realtotalpages;
3499 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3500 realtotalpages);
3501 }
3502
3503 #ifndef CONFIG_SPARSEMEM
3504 /*
3505 * Calculate the size of the zone->blockflags rounded to an unsigned long
3506 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3507 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3508 * round what is now in bits to nearest long in bits, then return it in
3509 * bytes.
3510 */
3511 static unsigned long __init usemap_size(unsigned long zonesize)
3512 {
3513 unsigned long usemapsize;
3514
3515 usemapsize = roundup(zonesize, pageblock_nr_pages);
3516 usemapsize = usemapsize >> pageblock_order;
3517 usemapsize *= NR_PAGEBLOCK_BITS;
3518 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3519
3520 return usemapsize / 8;
3521 }
3522
3523 static void __init setup_usemap(struct pglist_data *pgdat,
3524 struct zone *zone, unsigned long zonesize)
3525 {
3526 unsigned long usemapsize = usemap_size(zonesize);
3527 zone->pageblock_flags = NULL;
3528 if (usemapsize)
3529 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3530 }
3531 #else
3532 static void inline setup_usemap(struct pglist_data *pgdat,
3533 struct zone *zone, unsigned long zonesize) {}
3534 #endif /* CONFIG_SPARSEMEM */
3535
3536 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3537
3538 /* Return a sensible default order for the pageblock size. */
3539 static inline int pageblock_default_order(void)
3540 {
3541 if (HPAGE_SHIFT > PAGE_SHIFT)
3542 return HUGETLB_PAGE_ORDER;
3543
3544 return MAX_ORDER-1;
3545 }
3546
3547 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3548 static inline void __init set_pageblock_order(unsigned int order)
3549 {
3550 /* Check that pageblock_nr_pages has not already been setup */
3551 if (pageblock_order)
3552 return;
3553
3554 /*
3555 * Assume the largest contiguous order of interest is a huge page.
3556 * This value may be variable depending on boot parameters on IA64
3557 */
3558 pageblock_order = order;
3559 }
3560 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3561
3562 /*
3563 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3564 * and pageblock_default_order() are unused as pageblock_order is set
3565 * at compile-time. See include/linux/pageblock-flags.h for the values of
3566 * pageblock_order based on the kernel config
3567 */
3568 static inline int pageblock_default_order(unsigned int order)
3569 {
3570 return MAX_ORDER-1;
3571 }
3572 #define set_pageblock_order(x) do {} while (0)
3573
3574 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3575
3576 /*
3577 * Set up the zone data structures:
3578 * - mark all pages reserved
3579 * - mark all memory queues empty
3580 * - clear the memory bitmaps
3581 */
3582 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3583 unsigned long *zones_size, unsigned long *zholes_size)
3584 {
3585 enum zone_type j;
3586 int nid = pgdat->node_id;
3587 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3588 int ret;
3589
3590 pgdat_resize_init(pgdat);
3591 pgdat->nr_zones = 0;
3592 init_waitqueue_head(&pgdat->kswapd_wait);
3593 pgdat->kswapd_max_order = 0;
3594 pgdat_page_cgroup_init(pgdat);
3595
3596 for (j = 0; j < MAX_NR_ZONES; j++) {
3597 struct zone *zone = pgdat->node_zones + j;
3598 unsigned long size, realsize, memmap_pages;
3599 enum lru_list l;
3600
3601 size = zone_spanned_pages_in_node(nid, j, zones_size);
3602 realsize = size - zone_absent_pages_in_node(nid, j,
3603 zholes_size);
3604
3605 /*
3606 * Adjust realsize so that it accounts for how much memory
3607 * is used by this zone for memmap. This affects the watermark
3608 * and per-cpu initialisations
3609 */
3610 memmap_pages =
3611 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3612 if (realsize >= memmap_pages) {
3613 realsize -= memmap_pages;
3614 if (memmap_pages)
3615 printk(KERN_DEBUG
3616 " %s zone: %lu pages used for memmap\n",
3617 zone_names[j], memmap_pages);
3618 } else
3619 printk(KERN_WARNING
3620 " %s zone: %lu pages exceeds realsize %lu\n",
3621 zone_names[j], memmap_pages, realsize);
3622
3623 /* Account for reserved pages */
3624 if (j == 0 && realsize > dma_reserve) {
3625 realsize -= dma_reserve;
3626 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3627 zone_names[0], dma_reserve);
3628 }
3629
3630 if (!is_highmem_idx(j))
3631 nr_kernel_pages += realsize;
3632 nr_all_pages += realsize;
3633
3634 zone->spanned_pages = size;
3635 zone->present_pages = realsize;
3636 #ifdef CONFIG_NUMA
3637 zone->node = nid;
3638 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3639 / 100;
3640 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3641 #endif
3642 zone->name = zone_names[j];
3643 spin_lock_init(&zone->lock);
3644 spin_lock_init(&zone->lru_lock);
3645 zone_seqlock_init(zone);
3646 zone->zone_pgdat = pgdat;
3647
3648 zone->prev_priority = DEF_PRIORITY;
3649
3650 zone_pcp_init(zone);
3651 for_each_lru(l) {
3652 INIT_LIST_HEAD(&zone->lru[l].list);
3653 zone->lru[l].nr_scan = 0;
3654 }
3655 zone->reclaim_stat.recent_rotated[0] = 0;
3656 zone->reclaim_stat.recent_rotated[1] = 0;
3657 zone->reclaim_stat.recent_scanned[0] = 0;
3658 zone->reclaim_stat.recent_scanned[1] = 0;
3659 zap_zone_vm_stats(zone);
3660 zone->flags = 0;
3661 if (!size)
3662 continue;
3663
3664 set_pageblock_order(pageblock_default_order());
3665 setup_usemap(pgdat, zone, size);
3666 ret = init_currently_empty_zone(zone, zone_start_pfn,
3667 size, MEMMAP_EARLY);
3668 BUG_ON(ret);
3669 memmap_init(size, nid, j, zone_start_pfn);
3670 zone_start_pfn += size;
3671 }
3672 }
3673
3674 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3675 {
3676 /* Skip empty nodes */
3677 if (!pgdat->node_spanned_pages)
3678 return;
3679
3680 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3681 /* ia64 gets its own node_mem_map, before this, without bootmem */
3682 if (!pgdat->node_mem_map) {
3683 unsigned long size, start, end;
3684 struct page *map;
3685
3686 /*
3687 * The zone's endpoints aren't required to be MAX_ORDER
3688 * aligned but the node_mem_map endpoints must be in order
3689 * for the buddy allocator to function correctly.
3690 */
3691 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3692 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3693 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3694 size = (end - start) * sizeof(struct page);
3695 map = alloc_remap(pgdat->node_id, size);
3696 if (!map)
3697 map = alloc_bootmem_node(pgdat, size);
3698 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3699 }
3700 #ifndef CONFIG_NEED_MULTIPLE_NODES
3701 /*
3702 * With no DISCONTIG, the global mem_map is just set as node 0's
3703 */
3704 if (pgdat == NODE_DATA(0)) {
3705 mem_map = NODE_DATA(0)->node_mem_map;
3706 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3707 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3708 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3709 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3710 }
3711 #endif
3712 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3713 }
3714
3715 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3716 unsigned long node_start_pfn, unsigned long *zholes_size)
3717 {
3718 pg_data_t *pgdat = NODE_DATA(nid);
3719
3720 pgdat->node_id = nid;
3721 pgdat->node_start_pfn = node_start_pfn;
3722 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3723
3724 alloc_node_mem_map(pgdat);
3725 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3726 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3727 nid, (unsigned long)pgdat,
3728 (unsigned long)pgdat->node_mem_map);
3729 #endif
3730
3731 free_area_init_core(pgdat, zones_size, zholes_size);
3732 }
3733
3734 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3735
3736 #if MAX_NUMNODES > 1
3737 /*
3738 * Figure out the number of possible node ids.
3739 */
3740 static void __init setup_nr_node_ids(void)
3741 {
3742 unsigned int node;
3743 unsigned int highest = 0;
3744
3745 for_each_node_mask(node, node_possible_map)
3746 highest = node;
3747 nr_node_ids = highest + 1;
3748 }
3749 #else
3750 static inline void setup_nr_node_ids(void)
3751 {
3752 }
3753 #endif
3754
3755 /**
3756 * add_active_range - Register a range of PFNs backed by physical memory
3757 * @nid: The node ID the range resides on
3758 * @start_pfn: The start PFN of the available physical memory
3759 * @end_pfn: The end PFN of the available physical memory
3760 *
3761 * These ranges are stored in an early_node_map[] and later used by
3762 * free_area_init_nodes() to calculate zone sizes and holes. If the
3763 * range spans a memory hole, it is up to the architecture to ensure
3764 * the memory is not freed by the bootmem allocator. If possible
3765 * the range being registered will be merged with existing ranges.
3766 */
3767 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3768 unsigned long end_pfn)
3769 {
3770 int i;
3771
3772 mminit_dprintk(MMINIT_TRACE, "memory_register",
3773 "Entering add_active_range(%d, %#lx, %#lx) "
3774 "%d entries of %d used\n",
3775 nid, start_pfn, end_pfn,
3776 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3777
3778 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3779
3780 /* Merge with existing active regions if possible */
3781 for (i = 0; i < nr_nodemap_entries; i++) {
3782 if (early_node_map[i].nid != nid)
3783 continue;
3784
3785 /* Skip if an existing region covers this new one */
3786 if (start_pfn >= early_node_map[i].start_pfn &&
3787 end_pfn <= early_node_map[i].end_pfn)
3788 return;
3789
3790 /* Merge forward if suitable */
3791 if (start_pfn <= early_node_map[i].end_pfn &&
3792 end_pfn > early_node_map[i].end_pfn) {
3793 early_node_map[i].end_pfn = end_pfn;
3794 return;
3795 }
3796
3797 /* Merge backward if suitable */
3798 if (start_pfn < early_node_map[i].end_pfn &&
3799 end_pfn >= early_node_map[i].start_pfn) {
3800 early_node_map[i].start_pfn = start_pfn;
3801 return;
3802 }
3803 }
3804
3805 /* Check that early_node_map is large enough */
3806 if (i >= MAX_ACTIVE_REGIONS) {
3807 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3808 MAX_ACTIVE_REGIONS);
3809 return;
3810 }
3811
3812 early_node_map[i].nid = nid;
3813 early_node_map[i].start_pfn = start_pfn;
3814 early_node_map[i].end_pfn = end_pfn;
3815 nr_nodemap_entries = i + 1;
3816 }
3817
3818 /**
3819 * remove_active_range - Shrink an existing registered range of PFNs
3820 * @nid: The node id the range is on that should be shrunk
3821 * @start_pfn: The new PFN of the range
3822 * @end_pfn: The new PFN of the range
3823 *
3824 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3825 * The map is kept near the end physical page range that has already been
3826 * registered. This function allows an arch to shrink an existing registered
3827 * range.
3828 */
3829 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3830 unsigned long end_pfn)
3831 {
3832 int i, j;
3833 int removed = 0;
3834
3835 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3836 nid, start_pfn, end_pfn);
3837
3838 /* Find the old active region end and shrink */
3839 for_each_active_range_index_in_nid(i, nid) {
3840 if (early_node_map[i].start_pfn >= start_pfn &&
3841 early_node_map[i].end_pfn <= end_pfn) {
3842 /* clear it */
3843 early_node_map[i].start_pfn = 0;
3844 early_node_map[i].end_pfn = 0;
3845 removed = 1;
3846 continue;
3847 }
3848 if (early_node_map[i].start_pfn < start_pfn &&
3849 early_node_map[i].end_pfn > start_pfn) {
3850 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3851 early_node_map[i].end_pfn = start_pfn;
3852 if (temp_end_pfn > end_pfn)
3853 add_active_range(nid, end_pfn, temp_end_pfn);
3854 continue;
3855 }
3856 if (early_node_map[i].start_pfn >= start_pfn &&
3857 early_node_map[i].end_pfn > end_pfn &&
3858 early_node_map[i].start_pfn < end_pfn) {
3859 early_node_map[i].start_pfn = end_pfn;
3860 continue;
3861 }
3862 }
3863
3864 if (!removed)
3865 return;
3866
3867 /* remove the blank ones */
3868 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3869 if (early_node_map[i].nid != nid)
3870 continue;
3871 if (early_node_map[i].end_pfn)
3872 continue;
3873 /* we found it, get rid of it */
3874 for (j = i; j < nr_nodemap_entries - 1; j++)
3875 memcpy(&early_node_map[j], &early_node_map[j+1],
3876 sizeof(early_node_map[j]));
3877 j = nr_nodemap_entries - 1;
3878 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3879 nr_nodemap_entries--;
3880 }
3881 }
3882
3883 /**
3884 * remove_all_active_ranges - Remove all currently registered regions
3885 *
3886 * During discovery, it may be found that a table like SRAT is invalid
3887 * and an alternative discovery method must be used. This function removes
3888 * all currently registered regions.
3889 */
3890 void __init remove_all_active_ranges(void)
3891 {
3892 memset(early_node_map, 0, sizeof(early_node_map));
3893 nr_nodemap_entries = 0;
3894 }
3895
3896 /* Compare two active node_active_regions */
3897 static int __init cmp_node_active_region(const void *a, const void *b)
3898 {
3899 struct node_active_region *arange = (struct node_active_region *)a;
3900 struct node_active_region *brange = (struct node_active_region *)b;
3901
3902 /* Done this way to avoid overflows */
3903 if (arange->start_pfn > brange->start_pfn)
3904 return 1;
3905 if (arange->start_pfn < brange->start_pfn)
3906 return -1;
3907
3908 return 0;
3909 }
3910
3911 /* sort the node_map by start_pfn */
3912 static void __init sort_node_map(void)
3913 {
3914 sort(early_node_map, (size_t)nr_nodemap_entries,
3915 sizeof(struct node_active_region),
3916 cmp_node_active_region, NULL);
3917 }
3918
3919 /* Find the lowest pfn for a node */
3920 static unsigned long __init find_min_pfn_for_node(int nid)
3921 {
3922 int i;
3923 unsigned long min_pfn = ULONG_MAX;
3924
3925 /* Assuming a sorted map, the first range found has the starting pfn */
3926 for_each_active_range_index_in_nid(i, nid)
3927 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3928
3929 if (min_pfn == ULONG_MAX) {
3930 printk(KERN_WARNING
3931 "Could not find start_pfn for node %d\n", nid);
3932 return 0;
3933 }
3934
3935 return min_pfn;
3936 }
3937
3938 /**
3939 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3940 *
3941 * It returns the minimum PFN based on information provided via
3942 * add_active_range().
3943 */
3944 unsigned long __init find_min_pfn_with_active_regions(void)
3945 {
3946 return find_min_pfn_for_node(MAX_NUMNODES);
3947 }
3948
3949 /*
3950 * early_calculate_totalpages()
3951 * Sum pages in active regions for movable zone.
3952 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3953 */
3954 static unsigned long __init early_calculate_totalpages(void)
3955 {
3956 int i;
3957 unsigned long totalpages = 0;
3958
3959 for (i = 0; i < nr_nodemap_entries; i++) {
3960 unsigned long pages = early_node_map[i].end_pfn -
3961 early_node_map[i].start_pfn;
3962 totalpages += pages;
3963 if (pages)
3964 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3965 }
3966 return totalpages;
3967 }
3968
3969 /*
3970 * Find the PFN the Movable zone begins in each node. Kernel memory
3971 * is spread evenly between nodes as long as the nodes have enough
3972 * memory. When they don't, some nodes will have more kernelcore than
3973 * others
3974 */
3975 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3976 {
3977 int i, nid;
3978 unsigned long usable_startpfn;
3979 unsigned long kernelcore_node, kernelcore_remaining;
3980 unsigned long totalpages = early_calculate_totalpages();
3981 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3982
3983 /*
3984 * If movablecore was specified, calculate what size of
3985 * kernelcore that corresponds so that memory usable for
3986 * any allocation type is evenly spread. If both kernelcore
3987 * and movablecore are specified, then the value of kernelcore
3988 * will be used for required_kernelcore if it's greater than
3989 * what movablecore would have allowed.
3990 */
3991 if (required_movablecore) {
3992 unsigned long corepages;
3993
3994 /*
3995 * Round-up so that ZONE_MOVABLE is at least as large as what
3996 * was requested by the user
3997 */
3998 required_movablecore =
3999 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4000 corepages = totalpages - required_movablecore;
4001
4002 required_kernelcore = max(required_kernelcore, corepages);
4003 }
4004
4005 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4006 if (!required_kernelcore)
4007 return;
4008
4009 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4010 find_usable_zone_for_movable();
4011 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4012
4013 restart:
4014 /* Spread kernelcore memory as evenly as possible throughout nodes */
4015 kernelcore_node = required_kernelcore / usable_nodes;
4016 for_each_node_state(nid, N_HIGH_MEMORY) {
4017 /*
4018 * Recalculate kernelcore_node if the division per node
4019 * now exceeds what is necessary to satisfy the requested
4020 * amount of memory for the kernel
4021 */
4022 if (required_kernelcore < kernelcore_node)
4023 kernelcore_node = required_kernelcore / usable_nodes;
4024
4025 /*
4026 * As the map is walked, we track how much memory is usable
4027 * by the kernel using kernelcore_remaining. When it is
4028 * 0, the rest of the node is usable by ZONE_MOVABLE
4029 */
4030 kernelcore_remaining = kernelcore_node;
4031
4032 /* Go through each range of PFNs within this node */
4033 for_each_active_range_index_in_nid(i, nid) {
4034 unsigned long start_pfn, end_pfn;
4035 unsigned long size_pages;
4036
4037 start_pfn = max(early_node_map[i].start_pfn,
4038 zone_movable_pfn[nid]);
4039 end_pfn = early_node_map[i].end_pfn;
4040 if (start_pfn >= end_pfn)
4041 continue;
4042
4043 /* Account for what is only usable for kernelcore */
4044 if (start_pfn < usable_startpfn) {
4045 unsigned long kernel_pages;
4046 kernel_pages = min(end_pfn, usable_startpfn)
4047 - start_pfn;
4048
4049 kernelcore_remaining -= min(kernel_pages,
4050 kernelcore_remaining);
4051 required_kernelcore -= min(kernel_pages,
4052 required_kernelcore);
4053
4054 /* Continue if range is now fully accounted */
4055 if (end_pfn <= usable_startpfn) {
4056
4057 /*
4058 * Push zone_movable_pfn to the end so
4059 * that if we have to rebalance
4060 * kernelcore across nodes, we will
4061 * not double account here
4062 */
4063 zone_movable_pfn[nid] = end_pfn;
4064 continue;
4065 }
4066 start_pfn = usable_startpfn;
4067 }
4068
4069 /*
4070 * The usable PFN range for ZONE_MOVABLE is from
4071 * start_pfn->end_pfn. Calculate size_pages as the
4072 * number of pages used as kernelcore
4073 */
4074 size_pages = end_pfn - start_pfn;
4075 if (size_pages > kernelcore_remaining)
4076 size_pages = kernelcore_remaining;
4077 zone_movable_pfn[nid] = start_pfn + size_pages;
4078
4079 /*
4080 * Some kernelcore has been met, update counts and
4081 * break if the kernelcore for this node has been
4082 * satisified
4083 */
4084 required_kernelcore -= min(required_kernelcore,
4085 size_pages);
4086 kernelcore_remaining -= size_pages;
4087 if (!kernelcore_remaining)
4088 break;
4089 }
4090 }
4091
4092 /*
4093 * If there is still required_kernelcore, we do another pass with one
4094 * less node in the count. This will push zone_movable_pfn[nid] further
4095 * along on the nodes that still have memory until kernelcore is
4096 * satisified
4097 */
4098 usable_nodes--;
4099 if (usable_nodes && required_kernelcore > usable_nodes)
4100 goto restart;
4101
4102 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4103 for (nid = 0; nid < MAX_NUMNODES; nid++)
4104 zone_movable_pfn[nid] =
4105 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4106 }
4107
4108 /* Any regular memory on that node ? */
4109 static void check_for_regular_memory(pg_data_t *pgdat)
4110 {
4111 #ifdef CONFIG_HIGHMEM
4112 enum zone_type zone_type;
4113
4114 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4115 struct zone *zone = &pgdat->node_zones[zone_type];
4116 if (zone->present_pages)
4117 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4118 }
4119 #endif
4120 }
4121
4122 /**
4123 * free_area_init_nodes - Initialise all pg_data_t and zone data
4124 * @max_zone_pfn: an array of max PFNs for each zone
4125 *
4126 * This will call free_area_init_node() for each active node in the system.
4127 * Using the page ranges provided by add_active_range(), the size of each
4128 * zone in each node and their holes is calculated. If the maximum PFN
4129 * between two adjacent zones match, it is assumed that the zone is empty.
4130 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4131 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4132 * starts where the previous one ended. For example, ZONE_DMA32 starts
4133 * at arch_max_dma_pfn.
4134 */
4135 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4136 {
4137 unsigned long nid;
4138 int i;
4139
4140 /* Sort early_node_map as initialisation assumes it is sorted */
4141 sort_node_map();
4142
4143 /* Record where the zone boundaries are */
4144 memset(arch_zone_lowest_possible_pfn, 0,
4145 sizeof(arch_zone_lowest_possible_pfn));
4146 memset(arch_zone_highest_possible_pfn, 0,
4147 sizeof(arch_zone_highest_possible_pfn));
4148 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4149 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4150 for (i = 1; i < MAX_NR_ZONES; i++) {
4151 if (i == ZONE_MOVABLE)
4152 continue;
4153 arch_zone_lowest_possible_pfn[i] =
4154 arch_zone_highest_possible_pfn[i-1];
4155 arch_zone_highest_possible_pfn[i] =
4156 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4157 }
4158 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4159 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4160
4161 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4162 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4163 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4164
4165 /* Print out the zone ranges */
4166 printk("Zone PFN ranges:\n");
4167 for (i = 0; i < MAX_NR_ZONES; i++) {
4168 if (i == ZONE_MOVABLE)
4169 continue;
4170 printk(" %-8s %0#10lx -> %0#10lx\n",
4171 zone_names[i],
4172 arch_zone_lowest_possible_pfn[i],
4173 arch_zone_highest_possible_pfn[i]);
4174 }
4175
4176 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4177 printk("Movable zone start PFN for each node\n");
4178 for (i = 0; i < MAX_NUMNODES; i++) {
4179 if (zone_movable_pfn[i])
4180 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4181 }
4182
4183 /* Print out the early_node_map[] */
4184 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4185 for (i = 0; i < nr_nodemap_entries; i++)
4186 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4187 early_node_map[i].start_pfn,
4188 early_node_map[i].end_pfn);
4189
4190 /* Initialise every node */
4191 mminit_verify_pageflags_layout();
4192 setup_nr_node_ids();
4193 for_each_online_node(nid) {
4194 pg_data_t *pgdat = NODE_DATA(nid);
4195 free_area_init_node(nid, NULL,
4196 find_min_pfn_for_node(nid), NULL);
4197
4198 /* Any memory on that node */
4199 if (pgdat->node_present_pages)
4200 node_set_state(nid, N_HIGH_MEMORY);
4201 check_for_regular_memory(pgdat);
4202 }
4203 }
4204
4205 static int __init cmdline_parse_core(char *p, unsigned long *core)
4206 {
4207 unsigned long long coremem;
4208 if (!p)
4209 return -EINVAL;
4210
4211 coremem = memparse(p, &p);
4212 *core = coremem >> PAGE_SHIFT;
4213
4214 /* Paranoid check that UL is enough for the coremem value */
4215 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4216
4217 return 0;
4218 }
4219
4220 /*
4221 * kernelcore=size sets the amount of memory for use for allocations that
4222 * cannot be reclaimed or migrated.
4223 */
4224 static int __init cmdline_parse_kernelcore(char *p)
4225 {
4226 return cmdline_parse_core(p, &required_kernelcore);
4227 }
4228
4229 /*
4230 * movablecore=size sets the amount of memory for use for allocations that
4231 * can be reclaimed or migrated.
4232 */
4233 static int __init cmdline_parse_movablecore(char *p)
4234 {
4235 return cmdline_parse_core(p, &required_movablecore);
4236 }
4237
4238 early_param("kernelcore", cmdline_parse_kernelcore);
4239 early_param("movablecore", cmdline_parse_movablecore);
4240
4241 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4242
4243 /**
4244 * set_dma_reserve - set the specified number of pages reserved in the first zone
4245 * @new_dma_reserve: The number of pages to mark reserved
4246 *
4247 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4248 * In the DMA zone, a significant percentage may be consumed by kernel image
4249 * and other unfreeable allocations which can skew the watermarks badly. This
4250 * function may optionally be used to account for unfreeable pages in the
4251 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4252 * smaller per-cpu batchsize.
4253 */
4254 void __init set_dma_reserve(unsigned long new_dma_reserve)
4255 {
4256 dma_reserve = new_dma_reserve;
4257 }
4258
4259 #ifndef CONFIG_NEED_MULTIPLE_NODES
4260 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4261 EXPORT_SYMBOL(contig_page_data);
4262 #endif
4263
4264 void __init free_area_init(unsigned long *zones_size)
4265 {
4266 free_area_init_node(0, zones_size,
4267 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4268 }
4269
4270 static int page_alloc_cpu_notify(struct notifier_block *self,
4271 unsigned long action, void *hcpu)
4272 {
4273 int cpu = (unsigned long)hcpu;
4274
4275 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4276 drain_pages(cpu);
4277
4278 /*
4279 * Spill the event counters of the dead processor
4280 * into the current processors event counters.
4281 * This artificially elevates the count of the current
4282 * processor.
4283 */
4284 vm_events_fold_cpu(cpu);
4285
4286 /*
4287 * Zero the differential counters of the dead processor
4288 * so that the vm statistics are consistent.
4289 *
4290 * This is only okay since the processor is dead and cannot
4291 * race with what we are doing.
4292 */
4293 refresh_cpu_vm_stats(cpu);
4294 }
4295 return NOTIFY_OK;
4296 }
4297
4298 void __init page_alloc_init(void)
4299 {
4300 hotcpu_notifier(page_alloc_cpu_notify, 0);
4301 }
4302
4303 /*
4304 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4305 * or min_free_kbytes changes.
4306 */
4307 static void calculate_totalreserve_pages(void)
4308 {
4309 struct pglist_data *pgdat;
4310 unsigned long reserve_pages = 0;
4311 enum zone_type i, j;
4312
4313 for_each_online_pgdat(pgdat) {
4314 for (i = 0; i < MAX_NR_ZONES; i++) {
4315 struct zone *zone = pgdat->node_zones + i;
4316 unsigned long max = 0;
4317
4318 /* Find valid and maximum lowmem_reserve in the zone */
4319 for (j = i; j < MAX_NR_ZONES; j++) {
4320 if (zone->lowmem_reserve[j] > max)
4321 max = zone->lowmem_reserve[j];
4322 }
4323
4324 /* we treat the high watermark as reserved pages. */
4325 max += high_wmark_pages(zone);
4326
4327 if (max > zone->present_pages)
4328 max = zone->present_pages;
4329 reserve_pages += max;
4330 }
4331 }
4332 totalreserve_pages = reserve_pages;
4333 }
4334
4335 /*
4336 * setup_per_zone_lowmem_reserve - called whenever
4337 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4338 * has a correct pages reserved value, so an adequate number of
4339 * pages are left in the zone after a successful __alloc_pages().
4340 */
4341 static void setup_per_zone_lowmem_reserve(void)
4342 {
4343 struct pglist_data *pgdat;
4344 enum zone_type j, idx;
4345
4346 for_each_online_pgdat(pgdat) {
4347 for (j = 0; j < MAX_NR_ZONES; j++) {
4348 struct zone *zone = pgdat->node_zones + j;
4349 unsigned long present_pages = zone->present_pages;
4350
4351 zone->lowmem_reserve[j] = 0;
4352
4353 idx = j;
4354 while (idx) {
4355 struct zone *lower_zone;
4356
4357 idx--;
4358
4359 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4360 sysctl_lowmem_reserve_ratio[idx] = 1;
4361
4362 lower_zone = pgdat->node_zones + idx;
4363 lower_zone->lowmem_reserve[j] = present_pages /
4364 sysctl_lowmem_reserve_ratio[idx];
4365 present_pages += lower_zone->present_pages;
4366 }
4367 }
4368 }
4369
4370 /* update totalreserve_pages */
4371 calculate_totalreserve_pages();
4372 }
4373
4374 /**
4375 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4376 *
4377 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4378 * with respect to min_free_kbytes.
4379 */
4380 void setup_per_zone_pages_min(void)
4381 {
4382 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4383 unsigned long lowmem_pages = 0;
4384 struct zone *zone;
4385 unsigned long flags;
4386
4387 /* Calculate total number of !ZONE_HIGHMEM pages */
4388 for_each_zone(zone) {
4389 if (!is_highmem(zone))
4390 lowmem_pages += zone->present_pages;
4391 }
4392
4393 for_each_zone(zone) {
4394 u64 tmp;
4395
4396 spin_lock_irqsave(&zone->lock, flags);
4397 tmp = (u64)pages_min * zone->present_pages;
4398 do_div(tmp, lowmem_pages);
4399 if (is_highmem(zone)) {
4400 /*
4401 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4402 * need highmem pages, so cap pages_min to a small
4403 * value here.
4404 *
4405 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4406 * deltas controls asynch page reclaim, and so should
4407 * not be capped for highmem.
4408 */
4409 int min_pages;
4410
4411 min_pages = zone->present_pages / 1024;
4412 if (min_pages < SWAP_CLUSTER_MAX)
4413 min_pages = SWAP_CLUSTER_MAX;
4414 if (min_pages > 128)
4415 min_pages = 128;
4416 zone->watermark[WMARK_MIN] = min_pages;
4417 } else {
4418 /*
4419 * If it's a lowmem zone, reserve a number of pages
4420 * proportionate to the zone's size.
4421 */
4422 zone->watermark[WMARK_MIN] = tmp;
4423 }
4424
4425 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4426 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4427 setup_zone_migrate_reserve(zone);
4428 spin_unlock_irqrestore(&zone->lock, flags);
4429 }
4430
4431 /* update totalreserve_pages */
4432 calculate_totalreserve_pages();
4433 }
4434
4435 /**
4436 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4437 *
4438 * The inactive anon list should be small enough that the VM never has to
4439 * do too much work, but large enough that each inactive page has a chance
4440 * to be referenced again before it is swapped out.
4441 *
4442 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4443 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4444 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4445 * the anonymous pages are kept on the inactive list.
4446 *
4447 * total target max
4448 * memory ratio inactive anon
4449 * -------------------------------------
4450 * 10MB 1 5MB
4451 * 100MB 1 50MB
4452 * 1GB 3 250MB
4453 * 10GB 10 0.9GB
4454 * 100GB 31 3GB
4455 * 1TB 101 10GB
4456 * 10TB 320 32GB
4457 */
4458 static void setup_per_zone_inactive_ratio(void)
4459 {
4460 struct zone *zone;
4461
4462 for_each_zone(zone) {
4463 unsigned int gb, ratio;
4464
4465 /* Zone size in gigabytes */
4466 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4467 ratio = int_sqrt(10 * gb);
4468 if (!ratio)
4469 ratio = 1;
4470
4471 zone->inactive_ratio = ratio;
4472 }
4473 }
4474
4475 /*
4476 * Initialise min_free_kbytes.
4477 *
4478 * For small machines we want it small (128k min). For large machines
4479 * we want it large (64MB max). But it is not linear, because network
4480 * bandwidth does not increase linearly with machine size. We use
4481 *
4482 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4483 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4484 *
4485 * which yields
4486 *
4487 * 16MB: 512k
4488 * 32MB: 724k
4489 * 64MB: 1024k
4490 * 128MB: 1448k
4491 * 256MB: 2048k
4492 * 512MB: 2896k
4493 * 1024MB: 4096k
4494 * 2048MB: 5792k
4495 * 4096MB: 8192k
4496 * 8192MB: 11584k
4497 * 16384MB: 16384k
4498 */
4499 static int __init init_per_zone_pages_min(void)
4500 {
4501 unsigned long lowmem_kbytes;
4502
4503 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4504
4505 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4506 if (min_free_kbytes < 128)
4507 min_free_kbytes = 128;
4508 if (min_free_kbytes > 65536)
4509 min_free_kbytes = 65536;
4510 setup_per_zone_pages_min();
4511 setup_per_zone_lowmem_reserve();
4512 setup_per_zone_inactive_ratio();
4513 return 0;
4514 }
4515 module_init(init_per_zone_pages_min)
4516
4517 /*
4518 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4519 * that we can call two helper functions whenever min_free_kbytes
4520 * changes.
4521 */
4522 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4523 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4524 {
4525 proc_dointvec(table, write, file, buffer, length, ppos);
4526 if (write)
4527 setup_per_zone_pages_min();
4528 return 0;
4529 }
4530
4531 #ifdef CONFIG_NUMA
4532 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4533 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4534 {
4535 struct zone *zone;
4536 int rc;
4537
4538 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4539 if (rc)
4540 return rc;
4541
4542 for_each_zone(zone)
4543 zone->min_unmapped_pages = (zone->present_pages *
4544 sysctl_min_unmapped_ratio) / 100;
4545 return 0;
4546 }
4547
4548 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4549 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4550 {
4551 struct zone *zone;
4552 int rc;
4553
4554 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4555 if (rc)
4556 return rc;
4557
4558 for_each_zone(zone)
4559 zone->min_slab_pages = (zone->present_pages *
4560 sysctl_min_slab_ratio) / 100;
4561 return 0;
4562 }
4563 #endif
4564
4565 /*
4566 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4567 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4568 * whenever sysctl_lowmem_reserve_ratio changes.
4569 *
4570 * The reserve ratio obviously has absolutely no relation with the
4571 * minimum watermarks. The lowmem reserve ratio can only make sense
4572 * if in function of the boot time zone sizes.
4573 */
4574 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4575 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4576 {
4577 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4578 setup_per_zone_lowmem_reserve();
4579 return 0;
4580 }
4581
4582 /*
4583 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4584 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4585 * can have before it gets flushed back to buddy allocator.
4586 */
4587
4588 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4589 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4590 {
4591 struct zone *zone;
4592 unsigned int cpu;
4593 int ret;
4594
4595 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4596 if (!write || (ret == -EINVAL))
4597 return ret;
4598 for_each_zone(zone) {
4599 for_each_online_cpu(cpu) {
4600 unsigned long high;
4601 high = zone->present_pages / percpu_pagelist_fraction;
4602 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4603 }
4604 }
4605 return 0;
4606 }
4607
4608 int hashdist = HASHDIST_DEFAULT;
4609
4610 #ifdef CONFIG_NUMA
4611 static int __init set_hashdist(char *str)
4612 {
4613 if (!str)
4614 return 0;
4615 hashdist = simple_strtoul(str, &str, 0);
4616 return 1;
4617 }
4618 __setup("hashdist=", set_hashdist);
4619 #endif
4620
4621 /*
4622 * allocate a large system hash table from bootmem
4623 * - it is assumed that the hash table must contain an exact power-of-2
4624 * quantity of entries
4625 * - limit is the number of hash buckets, not the total allocation size
4626 */
4627 void *__init alloc_large_system_hash(const char *tablename,
4628 unsigned long bucketsize,
4629 unsigned long numentries,
4630 int scale,
4631 int flags,
4632 unsigned int *_hash_shift,
4633 unsigned int *_hash_mask,
4634 unsigned long limit)
4635 {
4636 unsigned long long max = limit;
4637 unsigned long log2qty, size;
4638 void *table = NULL;
4639
4640 /* allow the kernel cmdline to have a say */
4641 if (!numentries) {
4642 /* round applicable memory size up to nearest megabyte */
4643 numentries = nr_kernel_pages;
4644 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4645 numentries >>= 20 - PAGE_SHIFT;
4646 numentries <<= 20 - PAGE_SHIFT;
4647
4648 /* limit to 1 bucket per 2^scale bytes of low memory */
4649 if (scale > PAGE_SHIFT)
4650 numentries >>= (scale - PAGE_SHIFT);
4651 else
4652 numentries <<= (PAGE_SHIFT - scale);
4653
4654 /* Make sure we've got at least a 0-order allocation.. */
4655 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4656 numentries = PAGE_SIZE / bucketsize;
4657 }
4658 numentries = roundup_pow_of_two(numentries);
4659
4660 /* limit allocation size to 1/16 total memory by default */
4661 if (max == 0) {
4662 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4663 do_div(max, bucketsize);
4664 }
4665
4666 if (numentries > max)
4667 numentries = max;
4668
4669 log2qty = ilog2(numentries);
4670
4671 do {
4672 size = bucketsize << log2qty;
4673 if (flags & HASH_EARLY)
4674 table = alloc_bootmem_nopanic(size);
4675 else if (hashdist)
4676 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4677 else {
4678 unsigned long order = get_order(size);
4679
4680 if (order < MAX_ORDER)
4681 table = (void *)__get_free_pages(GFP_ATOMIC,
4682 order);
4683 /*
4684 * If bucketsize is not a power-of-two, we may free
4685 * some pages at the end of hash table.
4686 */
4687 if (table) {
4688 unsigned long alloc_end = (unsigned long)table +
4689 (PAGE_SIZE << order);
4690 unsigned long used = (unsigned long)table +
4691 PAGE_ALIGN(size);
4692 split_page(virt_to_page(table), order);
4693 while (used < alloc_end) {
4694 free_page(used);
4695 used += PAGE_SIZE;
4696 }
4697 }
4698 }
4699 } while (!table && size > PAGE_SIZE && --log2qty);
4700
4701 if (!table)
4702 panic("Failed to allocate %s hash table\n", tablename);
4703
4704 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4705 tablename,
4706 (1U << log2qty),
4707 ilog2(size) - PAGE_SHIFT,
4708 size);
4709
4710 if (_hash_shift)
4711 *_hash_shift = log2qty;
4712 if (_hash_mask)
4713 *_hash_mask = (1 << log2qty) - 1;
4714
4715 /*
4716 * If hashdist is set, the table allocation is done with __vmalloc()
4717 * which invokes the kmemleak_alloc() callback. This function may also
4718 * be called before the slab and kmemleak are initialised when
4719 * kmemleak simply buffers the request to be executed later
4720 * (GFP_ATOMIC flag ignored in this case).
4721 */
4722 if (!hashdist)
4723 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4724
4725 return table;
4726 }
4727
4728 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4729 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4730 unsigned long pfn)
4731 {
4732 #ifdef CONFIG_SPARSEMEM
4733 return __pfn_to_section(pfn)->pageblock_flags;
4734 #else
4735 return zone->pageblock_flags;
4736 #endif /* CONFIG_SPARSEMEM */
4737 }
4738
4739 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4740 {
4741 #ifdef CONFIG_SPARSEMEM
4742 pfn &= (PAGES_PER_SECTION-1);
4743 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4744 #else
4745 pfn = pfn - zone->zone_start_pfn;
4746 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4747 #endif /* CONFIG_SPARSEMEM */
4748 }
4749
4750 /**
4751 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4752 * @page: The page within the block of interest
4753 * @start_bitidx: The first bit of interest to retrieve
4754 * @end_bitidx: The last bit of interest
4755 * returns pageblock_bits flags
4756 */
4757 unsigned long get_pageblock_flags_group(struct page *page,
4758 int start_bitidx, int end_bitidx)
4759 {
4760 struct zone *zone;
4761 unsigned long *bitmap;
4762 unsigned long pfn, bitidx;
4763 unsigned long flags = 0;
4764 unsigned long value = 1;
4765
4766 zone = page_zone(page);
4767 pfn = page_to_pfn(page);
4768 bitmap = get_pageblock_bitmap(zone, pfn);
4769 bitidx = pfn_to_bitidx(zone, pfn);
4770
4771 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4772 if (test_bit(bitidx + start_bitidx, bitmap))
4773 flags |= value;
4774
4775 return flags;
4776 }
4777
4778 /**
4779 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4780 * @page: The page within the block of interest
4781 * @start_bitidx: The first bit of interest
4782 * @end_bitidx: The last bit of interest
4783 * @flags: The flags to set
4784 */
4785 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4786 int start_bitidx, int end_bitidx)
4787 {
4788 struct zone *zone;
4789 unsigned long *bitmap;
4790 unsigned long pfn, bitidx;
4791 unsigned long value = 1;
4792
4793 zone = page_zone(page);
4794 pfn = page_to_pfn(page);
4795 bitmap = get_pageblock_bitmap(zone, pfn);
4796 bitidx = pfn_to_bitidx(zone, pfn);
4797 VM_BUG_ON(pfn < zone->zone_start_pfn);
4798 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4799
4800 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4801 if (flags & value)
4802 __set_bit(bitidx + start_bitidx, bitmap);
4803 else
4804 __clear_bit(bitidx + start_bitidx, bitmap);
4805 }
4806
4807 /*
4808 * This is designed as sub function...plz see page_isolation.c also.
4809 * set/clear page block's type to be ISOLATE.
4810 * page allocater never alloc memory from ISOLATE block.
4811 */
4812
4813 int set_migratetype_isolate(struct page *page)
4814 {
4815 struct zone *zone;
4816 unsigned long flags;
4817 int ret = -EBUSY;
4818
4819 zone = page_zone(page);
4820 spin_lock_irqsave(&zone->lock, flags);
4821 /*
4822 * In future, more migrate types will be able to be isolation target.
4823 */
4824 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4825 goto out;
4826 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4827 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4828 ret = 0;
4829 out:
4830 spin_unlock_irqrestore(&zone->lock, flags);
4831 if (!ret)
4832 drain_all_pages();
4833 return ret;
4834 }
4835
4836 void unset_migratetype_isolate(struct page *page)
4837 {
4838 struct zone *zone;
4839 unsigned long flags;
4840 zone = page_zone(page);
4841 spin_lock_irqsave(&zone->lock, flags);
4842 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4843 goto out;
4844 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4845 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4846 out:
4847 spin_unlock_irqrestore(&zone->lock, flags);
4848 }
4849
4850 #ifdef CONFIG_MEMORY_HOTREMOVE
4851 /*
4852 * All pages in the range must be isolated before calling this.
4853 */
4854 void
4855 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4856 {
4857 struct page *page;
4858 struct zone *zone;
4859 int order, i;
4860 unsigned long pfn;
4861 unsigned long flags;
4862 /* find the first valid pfn */
4863 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4864 if (pfn_valid(pfn))
4865 break;
4866 if (pfn == end_pfn)
4867 return;
4868 zone = page_zone(pfn_to_page(pfn));
4869 spin_lock_irqsave(&zone->lock, flags);
4870 pfn = start_pfn;
4871 while (pfn < end_pfn) {
4872 if (!pfn_valid(pfn)) {
4873 pfn++;
4874 continue;
4875 }
4876 page = pfn_to_page(pfn);
4877 BUG_ON(page_count(page));
4878 BUG_ON(!PageBuddy(page));
4879 order = page_order(page);
4880 #ifdef CONFIG_DEBUG_VM
4881 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4882 pfn, 1 << order, end_pfn);
4883 #endif
4884 list_del(&page->lru);
4885 rmv_page_order(page);
4886 zone->free_area[order].nr_free--;
4887 __mod_zone_page_state(zone, NR_FREE_PAGES,
4888 - (1UL << order));
4889 for (i = 0; i < (1 << order); i++)
4890 SetPageReserved((page+i));
4891 pfn += (1 << order);
4892 }
4893 spin_unlock_irqrestore(&zone->lock, flags);
4894 }
4895 #endif