]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
mm: page_alloc: Make paranoid check in move_freepages a VM_BUG_ON
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 bool oom_killer_disabled __read_mostly;
248
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
255 unsigned long sp, start_pfn;
256
257 do {
258 seq = zone_span_seqbegin(zone);
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
261 if (!zone_spans_pfn(zone, pfn))
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
265 if (ret)
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
269
270 return ret;
271 }
272
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 if (!pfn_valid_within(page_to_pfn(page)))
276 return 0;
277 if (zone != page_zone(page))
278 return 0;
279
280 return 1;
281 }
282 /*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 if (page_outside_zone_boundaries(zone, page))
288 return 1;
289 if (!page_is_consistent(zone, page))
290 return 1;
291
292 return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 return 0;
298 }
299 #endif
300
301 static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
303 {
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
310 page_mapcount_reset(page); /* remove PageBuddy */
311 return;
312 }
313
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
335 current->comm, page_to_pfn(page));
336 dump_page_badflags(page, reason, bad_flags);
337
338 print_modules();
339 dump_stack();
340 out:
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345
346 /*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
355 *
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
359 */
360
361 static void free_compound_page(struct page *page)
362 {
363 __free_pages_ok(page, compound_order(page));
364 }
365
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376 set_page_count(p, 0);
377 p->first_page = page;
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
381 }
382 }
383
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 int i;
388 int nr_pages = 1 << order;
389 int bad = 0;
390
391 if (unlikely(compound_order(page) != order)) {
392 bad_page(page, "wrong compound order", 0);
393 bad++;
394 }
395
396 __ClearPageHead(page);
397
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
400
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
406 bad++;
407 }
408 __ClearPageTail(p);
409 }
410
411 return bad;
412 }
413
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
416 {
417 int i;
418
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426 }
427
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430
431 static int __init debug_guardpage_minorder_setup(char *buf)
432 {
433 unsigned long res;
434
435 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
436 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
437 return 0;
438 }
439 _debug_guardpage_minorder = res;
440 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
441 return 0;
442 }
443 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
444
445 static inline void set_page_guard_flag(struct page *page)
446 {
447 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
448 }
449
450 static inline void clear_page_guard_flag(struct page *page)
451 {
452 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
453 }
454 #else
455 static inline void set_page_guard_flag(struct page *page) { }
456 static inline void clear_page_guard_flag(struct page *page) { }
457 #endif
458
459 static inline void set_page_order(struct page *page, unsigned int order)
460 {
461 set_page_private(page, order);
462 __SetPageBuddy(page);
463 }
464
465 static inline void rmv_page_order(struct page *page)
466 {
467 __ClearPageBuddy(page);
468 set_page_private(page, 0);
469 }
470
471 /*
472 * Locate the struct page for both the matching buddy in our
473 * pair (buddy1) and the combined O(n+1) page they form (page).
474 *
475 * 1) Any buddy B1 will have an order O twin B2 which satisfies
476 * the following equation:
477 * B2 = B1 ^ (1 << O)
478 * For example, if the starting buddy (buddy2) is #8 its order
479 * 1 buddy is #10:
480 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
481 *
482 * 2) Any buddy B will have an order O+1 parent P which
483 * satisfies the following equation:
484 * P = B & ~(1 << O)
485 *
486 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
487 */
488 static inline unsigned long
489 __find_buddy_index(unsigned long page_idx, unsigned int order)
490 {
491 return page_idx ^ (1 << order);
492 }
493
494 /*
495 * This function checks whether a page is free && is the buddy
496 * we can do coalesce a page and its buddy if
497 * (a) the buddy is not in a hole &&
498 * (b) the buddy is in the buddy system &&
499 * (c) a page and its buddy have the same order &&
500 * (d) a page and its buddy are in the same zone.
501 *
502 * For recording whether a page is in the buddy system, we set ->_mapcount
503 * PAGE_BUDDY_MAPCOUNT_VALUE.
504 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
505 * serialized by zone->lock.
506 *
507 * For recording page's order, we use page_private(page).
508 */
509 static inline int page_is_buddy(struct page *page, struct page *buddy,
510 unsigned int order)
511 {
512 if (!pfn_valid_within(page_to_pfn(buddy)))
513 return 0;
514
515 if (page_is_guard(buddy) && page_order(buddy) == order) {
516 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
517
518 if (page_zone_id(page) != page_zone_id(buddy))
519 return 0;
520
521 return 1;
522 }
523
524 if (PageBuddy(buddy) && page_order(buddy) == order) {
525 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
526
527 /*
528 * zone check is done late to avoid uselessly
529 * calculating zone/node ids for pages that could
530 * never merge.
531 */
532 if (page_zone_id(page) != page_zone_id(buddy))
533 return 0;
534
535 return 1;
536 }
537 return 0;
538 }
539
540 /*
541 * Freeing function for a buddy system allocator.
542 *
543 * The concept of a buddy system is to maintain direct-mapped table
544 * (containing bit values) for memory blocks of various "orders".
545 * The bottom level table contains the map for the smallest allocatable
546 * units of memory (here, pages), and each level above it describes
547 * pairs of units from the levels below, hence, "buddies".
548 * At a high level, all that happens here is marking the table entry
549 * at the bottom level available, and propagating the changes upward
550 * as necessary, plus some accounting needed to play nicely with other
551 * parts of the VM system.
552 * At each level, we keep a list of pages, which are heads of continuous
553 * free pages of length of (1 << order) and marked with _mapcount
554 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
555 * field.
556 * So when we are allocating or freeing one, we can derive the state of the
557 * other. That is, if we allocate a small block, and both were
558 * free, the remainder of the region must be split into blocks.
559 * If a block is freed, and its buddy is also free, then this
560 * triggers coalescing into a block of larger size.
561 *
562 * -- nyc
563 */
564
565 static inline void __free_one_page(struct page *page,
566 unsigned long pfn,
567 struct zone *zone, unsigned int order,
568 int migratetype)
569 {
570 unsigned long page_idx;
571 unsigned long combined_idx;
572 unsigned long uninitialized_var(buddy_idx);
573 struct page *buddy;
574
575 VM_BUG_ON(!zone_is_initialized(zone));
576
577 if (unlikely(PageCompound(page)))
578 if (unlikely(destroy_compound_page(page, order)))
579 return;
580
581 VM_BUG_ON(migratetype == -1);
582
583 page_idx = pfn & ((1 << MAX_ORDER) - 1);
584
585 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
586 VM_BUG_ON_PAGE(bad_range(zone, page), page);
587
588 while (order < MAX_ORDER-1) {
589 buddy_idx = __find_buddy_index(page_idx, order);
590 buddy = page + (buddy_idx - page_idx);
591 if (!page_is_buddy(page, buddy, order))
592 break;
593 /*
594 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
595 * merge with it and move up one order.
596 */
597 if (page_is_guard(buddy)) {
598 clear_page_guard_flag(buddy);
599 set_page_private(page, 0);
600 __mod_zone_freepage_state(zone, 1 << order,
601 migratetype);
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
607 combined_idx = buddy_idx & page_idx;
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
623 struct page *higher_page, *higher_buddy;
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
627 higher_buddy = higher_page + (buddy_idx - combined_idx);
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636 out:
637 zone->free_area[order].nr_free++;
638 }
639
640 static inline int free_pages_check(struct page *page)
641 {
642 const char *bad_reason = NULL;
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
655 if (unlikely(mem_cgroup_bad_page_check(page)))
656 bad_reason = "cgroup check failed";
657 if (unlikely(bad_reason)) {
658 bad_page(page, bad_reason, bad_flags);
659 return 1;
660 }
661 page_cpupid_reset_last(page);
662 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
663 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
664 return 0;
665 }
666
667 /*
668 * Frees a number of pages from the PCP lists
669 * Assumes all pages on list are in same zone, and of same order.
670 * count is the number of pages to free.
671 *
672 * If the zone was previously in an "all pages pinned" state then look to
673 * see if this freeing clears that state.
674 *
675 * And clear the zone's pages_scanned counter, to hold off the "all pages are
676 * pinned" detection logic.
677 */
678 static void free_pcppages_bulk(struct zone *zone, int count,
679 struct per_cpu_pages *pcp)
680 {
681 int migratetype = 0;
682 int batch_free = 0;
683 int to_free = count;
684 unsigned long nr_scanned;
685
686 spin_lock(&zone->lock);
687 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
688 if (nr_scanned)
689 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
690
691 while (to_free) {
692 struct page *page;
693 struct list_head *list;
694
695 /*
696 * Remove pages from lists in a round-robin fashion. A
697 * batch_free count is maintained that is incremented when an
698 * empty list is encountered. This is so more pages are freed
699 * off fuller lists instead of spinning excessively around empty
700 * lists
701 */
702 do {
703 batch_free++;
704 if (++migratetype == MIGRATE_PCPTYPES)
705 migratetype = 0;
706 list = &pcp->lists[migratetype];
707 } while (list_empty(list));
708
709 /* This is the only non-empty list. Free them all. */
710 if (batch_free == MIGRATE_PCPTYPES)
711 batch_free = to_free;
712
713 do {
714 int mt; /* migratetype of the to-be-freed page */
715
716 page = list_entry(list->prev, struct page, lru);
717 /* must delete as __free_one_page list manipulates */
718 list_del(&page->lru);
719 mt = get_freepage_migratetype(page);
720 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
721 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
722 trace_mm_page_pcpu_drain(page, 0, mt);
723 if (likely(!is_migrate_isolate_page(page))) {
724 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
725 if (is_migrate_cma(mt))
726 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
727 }
728 } while (--to_free && --batch_free && !list_empty(list));
729 }
730 spin_unlock(&zone->lock);
731 }
732
733 static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
735 unsigned int order,
736 int migratetype)
737 {
738 unsigned long nr_scanned;
739 spin_lock(&zone->lock);
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
743
744 __free_one_page(page, pfn, zone, order, migratetype);
745 if (unlikely(!is_migrate_isolate(migratetype)))
746 __mod_zone_freepage_state(zone, 1 << order, migratetype);
747 spin_unlock(&zone->lock);
748 }
749
750 static bool free_pages_prepare(struct page *page, unsigned int order)
751 {
752 int i;
753 int bad = 0;
754
755 trace_mm_page_free(page, order);
756 kmemcheck_free_shadow(page, order);
757
758 if (PageAnon(page))
759 page->mapping = NULL;
760 for (i = 0; i < (1 << order); i++)
761 bad += free_pages_check(page + i);
762 if (bad)
763 return false;
764
765 if (!PageHighMem(page)) {
766 debug_check_no_locks_freed(page_address(page),
767 PAGE_SIZE << order);
768 debug_check_no_obj_freed(page_address(page),
769 PAGE_SIZE << order);
770 }
771 arch_free_page(page, order);
772 kernel_map_pages(page, 1 << order, 0);
773
774 return true;
775 }
776
777 static void __free_pages_ok(struct page *page, unsigned int order)
778 {
779 unsigned long flags;
780 int migratetype;
781 unsigned long pfn = page_to_pfn(page);
782
783 if (!free_pages_prepare(page, order))
784 return;
785
786 migratetype = get_pfnblock_migratetype(page, pfn);
787 local_irq_save(flags);
788 __count_vm_events(PGFREE, 1 << order);
789 set_freepage_migratetype(page, migratetype);
790 free_one_page(page_zone(page), page, pfn, order, migratetype);
791 local_irq_restore(flags);
792 }
793
794 void __init __free_pages_bootmem(struct page *page, unsigned int order)
795 {
796 unsigned int nr_pages = 1 << order;
797 struct page *p = page;
798 unsigned int loop;
799
800 prefetchw(p);
801 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
802 prefetchw(p + 1);
803 __ClearPageReserved(p);
804 set_page_count(p, 0);
805 }
806 __ClearPageReserved(p);
807 set_page_count(p, 0);
808
809 page_zone(page)->managed_pages += nr_pages;
810 set_page_refcounted(page);
811 __free_pages(page, order);
812 }
813
814 #ifdef CONFIG_CMA
815 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
816 void __init init_cma_reserved_pageblock(struct page *page)
817 {
818 unsigned i = pageblock_nr_pages;
819 struct page *p = page;
820
821 do {
822 __ClearPageReserved(p);
823 set_page_count(p, 0);
824 } while (++p, --i);
825
826 set_pageblock_migratetype(page, MIGRATE_CMA);
827
828 if (pageblock_order >= MAX_ORDER) {
829 i = pageblock_nr_pages;
830 p = page;
831 do {
832 set_page_refcounted(p);
833 __free_pages(p, MAX_ORDER - 1);
834 p += MAX_ORDER_NR_PAGES;
835 } while (i -= MAX_ORDER_NR_PAGES);
836 } else {
837 set_page_refcounted(page);
838 __free_pages(page, pageblock_order);
839 }
840
841 adjust_managed_page_count(page, pageblock_nr_pages);
842 }
843 #endif
844
845 /*
846 * The order of subdivision here is critical for the IO subsystem.
847 * Please do not alter this order without good reasons and regression
848 * testing. Specifically, as large blocks of memory are subdivided,
849 * the order in which smaller blocks are delivered depends on the order
850 * they're subdivided in this function. This is the primary factor
851 * influencing the order in which pages are delivered to the IO
852 * subsystem according to empirical testing, and this is also justified
853 * by considering the behavior of a buddy system containing a single
854 * large block of memory acted on by a series of small allocations.
855 * This behavior is a critical factor in sglist merging's success.
856 *
857 * -- nyc
858 */
859 static inline void expand(struct zone *zone, struct page *page,
860 int low, int high, struct free_area *area,
861 int migratetype)
862 {
863 unsigned long size = 1 << high;
864
865 while (high > low) {
866 area--;
867 high--;
868 size >>= 1;
869 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
870
871 #ifdef CONFIG_DEBUG_PAGEALLOC
872 if (high < debug_guardpage_minorder()) {
873 /*
874 * Mark as guard pages (or page), that will allow to
875 * merge back to allocator when buddy will be freed.
876 * Corresponding page table entries will not be touched,
877 * pages will stay not present in virtual address space
878 */
879 INIT_LIST_HEAD(&page[size].lru);
880 set_page_guard_flag(&page[size]);
881 set_page_private(&page[size], high);
882 /* Guard pages are not available for any usage */
883 __mod_zone_freepage_state(zone, -(1 << high),
884 migratetype);
885 continue;
886 }
887 #endif
888 list_add(&page[size].lru, &area->free_list[migratetype]);
889 area->nr_free++;
890 set_page_order(&page[size], high);
891 }
892 }
893
894 /*
895 * This page is about to be returned from the page allocator
896 */
897 static inline int check_new_page(struct page *page)
898 {
899 const char *bad_reason = NULL;
900 unsigned long bad_flags = 0;
901
902 if (unlikely(page_mapcount(page)))
903 bad_reason = "nonzero mapcount";
904 if (unlikely(page->mapping != NULL))
905 bad_reason = "non-NULL mapping";
906 if (unlikely(atomic_read(&page->_count) != 0))
907 bad_reason = "nonzero _count";
908 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
909 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
910 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
911 }
912 if (unlikely(mem_cgroup_bad_page_check(page)))
913 bad_reason = "cgroup check failed";
914 if (unlikely(bad_reason)) {
915 bad_page(page, bad_reason, bad_flags);
916 return 1;
917 }
918 return 0;
919 }
920
921 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
922 {
923 int i;
924
925 for (i = 0; i < (1 << order); i++) {
926 struct page *p = page + i;
927 if (unlikely(check_new_page(p)))
928 return 1;
929 }
930
931 set_page_private(page, 0);
932 set_page_refcounted(page);
933
934 arch_alloc_page(page, order);
935 kernel_map_pages(page, 1 << order, 1);
936
937 if (gfp_flags & __GFP_ZERO)
938 prep_zero_page(page, order, gfp_flags);
939
940 if (order && (gfp_flags & __GFP_COMP))
941 prep_compound_page(page, order);
942
943 return 0;
944 }
945
946 /*
947 * Go through the free lists for the given migratetype and remove
948 * the smallest available page from the freelists
949 */
950 static inline
951 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
952 int migratetype)
953 {
954 unsigned int current_order;
955 struct free_area *area;
956 struct page *page;
957
958 /* Find a page of the appropriate size in the preferred list */
959 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
960 area = &(zone->free_area[current_order]);
961 if (list_empty(&area->free_list[migratetype]))
962 continue;
963
964 page = list_entry(area->free_list[migratetype].next,
965 struct page, lru);
966 list_del(&page->lru);
967 rmv_page_order(page);
968 area->nr_free--;
969 expand(zone, page, order, current_order, area, migratetype);
970 set_freepage_migratetype(page, migratetype);
971 return page;
972 }
973
974 return NULL;
975 }
976
977
978 /*
979 * This array describes the order lists are fallen back to when
980 * the free lists for the desirable migrate type are depleted
981 */
982 static int fallbacks[MIGRATE_TYPES][4] = {
983 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
984 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
985 #ifdef CONFIG_CMA
986 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
987 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
988 #else
989 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
990 #endif
991 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
992 #ifdef CONFIG_MEMORY_ISOLATION
993 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
994 #endif
995 };
996
997 /*
998 * Move the free pages in a range to the free lists of the requested type.
999 * Note that start_page and end_pages are not aligned on a pageblock
1000 * boundary. If alignment is required, use move_freepages_block()
1001 */
1002 int move_freepages(struct zone *zone,
1003 struct page *start_page, struct page *end_page,
1004 int migratetype)
1005 {
1006 struct page *page;
1007 unsigned long order;
1008 int pages_moved = 0;
1009
1010 #ifndef CONFIG_HOLES_IN_ZONE
1011 /*
1012 * page_zone is not safe to call in this context when
1013 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1014 * anyway as we check zone boundaries in move_freepages_block().
1015 * Remove at a later date when no bug reports exist related to
1016 * grouping pages by mobility
1017 */
1018 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1019 #endif
1020
1021 for (page = start_page; page <= end_page;) {
1022 /* Make sure we are not inadvertently changing nodes */
1023 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1024
1025 if (!pfn_valid_within(page_to_pfn(page))) {
1026 page++;
1027 continue;
1028 }
1029
1030 if (!PageBuddy(page)) {
1031 page++;
1032 continue;
1033 }
1034
1035 order = page_order(page);
1036 list_move(&page->lru,
1037 &zone->free_area[order].free_list[migratetype]);
1038 set_freepage_migratetype(page, migratetype);
1039 page += 1 << order;
1040 pages_moved += 1 << order;
1041 }
1042
1043 return pages_moved;
1044 }
1045
1046 int move_freepages_block(struct zone *zone, struct page *page,
1047 int migratetype)
1048 {
1049 unsigned long start_pfn, end_pfn;
1050 struct page *start_page, *end_page;
1051
1052 start_pfn = page_to_pfn(page);
1053 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1054 start_page = pfn_to_page(start_pfn);
1055 end_page = start_page + pageblock_nr_pages - 1;
1056 end_pfn = start_pfn + pageblock_nr_pages - 1;
1057
1058 /* Do not cross zone boundaries */
1059 if (!zone_spans_pfn(zone, start_pfn))
1060 start_page = page;
1061 if (!zone_spans_pfn(zone, end_pfn))
1062 return 0;
1063
1064 return move_freepages(zone, start_page, end_page, migratetype);
1065 }
1066
1067 static void change_pageblock_range(struct page *pageblock_page,
1068 int start_order, int migratetype)
1069 {
1070 int nr_pageblocks = 1 << (start_order - pageblock_order);
1071
1072 while (nr_pageblocks--) {
1073 set_pageblock_migratetype(pageblock_page, migratetype);
1074 pageblock_page += pageblock_nr_pages;
1075 }
1076 }
1077
1078 /*
1079 * If breaking a large block of pages, move all free pages to the preferred
1080 * allocation list. If falling back for a reclaimable kernel allocation, be
1081 * more aggressive about taking ownership of free pages.
1082 *
1083 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1084 * nor move CMA pages to different free lists. We don't want unmovable pages
1085 * to be allocated from MIGRATE_CMA areas.
1086 *
1087 * Returns the new migratetype of the pageblock (or the same old migratetype
1088 * if it was unchanged).
1089 */
1090 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1091 int start_type, int fallback_type)
1092 {
1093 int current_order = page_order(page);
1094
1095 /*
1096 * When borrowing from MIGRATE_CMA, we need to release the excess
1097 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1098 * is set to CMA so it is returned to the correct freelist in case
1099 * the page ends up being not actually allocated from the pcp lists.
1100 */
1101 if (is_migrate_cma(fallback_type))
1102 return fallback_type;
1103
1104 /* Take ownership for orders >= pageblock_order */
1105 if (current_order >= pageblock_order) {
1106 change_pageblock_range(page, current_order, start_type);
1107 return start_type;
1108 }
1109
1110 if (current_order >= pageblock_order / 2 ||
1111 start_type == MIGRATE_RECLAIMABLE ||
1112 page_group_by_mobility_disabled) {
1113 int pages;
1114
1115 pages = move_freepages_block(zone, page, start_type);
1116
1117 /* Claim the whole block if over half of it is free */
1118 if (pages >= (1 << (pageblock_order-1)) ||
1119 page_group_by_mobility_disabled) {
1120
1121 set_pageblock_migratetype(page, start_type);
1122 return start_type;
1123 }
1124
1125 }
1126
1127 return fallback_type;
1128 }
1129
1130 /* Remove an element from the buddy allocator from the fallback list */
1131 static inline struct page *
1132 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1133 {
1134 struct free_area *area;
1135 unsigned int current_order;
1136 struct page *page;
1137 int migratetype, new_type, i;
1138
1139 /* Find the largest possible block of pages in the other list */
1140 for (current_order = MAX_ORDER-1;
1141 current_order >= order && current_order <= MAX_ORDER-1;
1142 --current_order) {
1143 for (i = 0;; i++) {
1144 migratetype = fallbacks[start_migratetype][i];
1145
1146 /* MIGRATE_RESERVE handled later if necessary */
1147 if (migratetype == MIGRATE_RESERVE)
1148 break;
1149
1150 area = &(zone->free_area[current_order]);
1151 if (list_empty(&area->free_list[migratetype]))
1152 continue;
1153
1154 page = list_entry(area->free_list[migratetype].next,
1155 struct page, lru);
1156 area->nr_free--;
1157
1158 new_type = try_to_steal_freepages(zone, page,
1159 start_migratetype,
1160 migratetype);
1161
1162 /* Remove the page from the freelists */
1163 list_del(&page->lru);
1164 rmv_page_order(page);
1165
1166 expand(zone, page, order, current_order, area,
1167 new_type);
1168 /* The freepage_migratetype may differ from pageblock's
1169 * migratetype depending on the decisions in
1170 * try_to_steal_freepages. This is OK as long as it does
1171 * not differ for MIGRATE_CMA type.
1172 */
1173 set_freepage_migratetype(page, new_type);
1174
1175 trace_mm_page_alloc_extfrag(page, order, current_order,
1176 start_migratetype, migratetype, new_type);
1177
1178 return page;
1179 }
1180 }
1181
1182 return NULL;
1183 }
1184
1185 /*
1186 * Do the hard work of removing an element from the buddy allocator.
1187 * Call me with the zone->lock already held.
1188 */
1189 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1190 int migratetype)
1191 {
1192 struct page *page;
1193
1194 retry_reserve:
1195 page = __rmqueue_smallest(zone, order, migratetype);
1196
1197 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1198 page = __rmqueue_fallback(zone, order, migratetype);
1199
1200 /*
1201 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1202 * is used because __rmqueue_smallest is an inline function
1203 * and we want just one call site
1204 */
1205 if (!page) {
1206 migratetype = MIGRATE_RESERVE;
1207 goto retry_reserve;
1208 }
1209 }
1210
1211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1212 return page;
1213 }
1214
1215 /*
1216 * Obtain a specified number of elements from the buddy allocator, all under
1217 * a single hold of the lock, for efficiency. Add them to the supplied list.
1218 * Returns the number of new pages which were placed at *list.
1219 */
1220 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1221 unsigned long count, struct list_head *list,
1222 int migratetype, bool cold)
1223 {
1224 int i;
1225
1226 spin_lock(&zone->lock);
1227 for (i = 0; i < count; ++i) {
1228 struct page *page = __rmqueue(zone, order, migratetype);
1229 if (unlikely(page == NULL))
1230 break;
1231
1232 /*
1233 * Split buddy pages returned by expand() are received here
1234 * in physical page order. The page is added to the callers and
1235 * list and the list head then moves forward. From the callers
1236 * perspective, the linked list is ordered by page number in
1237 * some conditions. This is useful for IO devices that can
1238 * merge IO requests if the physical pages are ordered
1239 * properly.
1240 */
1241 if (likely(!cold))
1242 list_add(&page->lru, list);
1243 else
1244 list_add_tail(&page->lru, list);
1245 list = &page->lru;
1246 if (is_migrate_cma(get_freepage_migratetype(page)))
1247 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1248 -(1 << order));
1249 }
1250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1251 spin_unlock(&zone->lock);
1252 return i;
1253 }
1254
1255 #ifdef CONFIG_NUMA
1256 /*
1257 * Called from the vmstat counter updater to drain pagesets of this
1258 * currently executing processor on remote nodes after they have
1259 * expired.
1260 *
1261 * Note that this function must be called with the thread pinned to
1262 * a single processor.
1263 */
1264 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1265 {
1266 unsigned long flags;
1267 int to_drain, batch;
1268
1269 local_irq_save(flags);
1270 batch = ACCESS_ONCE(pcp->batch);
1271 to_drain = min(pcp->count, batch);
1272 if (to_drain > 0) {
1273 free_pcppages_bulk(zone, to_drain, pcp);
1274 pcp->count -= to_drain;
1275 }
1276 local_irq_restore(flags);
1277 }
1278 #endif
1279
1280 /*
1281 * Drain pages of the indicated processor.
1282 *
1283 * The processor must either be the current processor and the
1284 * thread pinned to the current processor or a processor that
1285 * is not online.
1286 */
1287 static void drain_pages(unsigned int cpu)
1288 {
1289 unsigned long flags;
1290 struct zone *zone;
1291
1292 for_each_populated_zone(zone) {
1293 struct per_cpu_pageset *pset;
1294 struct per_cpu_pages *pcp;
1295
1296 local_irq_save(flags);
1297 pset = per_cpu_ptr(zone->pageset, cpu);
1298
1299 pcp = &pset->pcp;
1300 if (pcp->count) {
1301 free_pcppages_bulk(zone, pcp->count, pcp);
1302 pcp->count = 0;
1303 }
1304 local_irq_restore(flags);
1305 }
1306 }
1307
1308 /*
1309 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1310 */
1311 void drain_local_pages(void *arg)
1312 {
1313 drain_pages(smp_processor_id());
1314 }
1315
1316 /*
1317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1318 *
1319 * Note that this code is protected against sending an IPI to an offline
1320 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1321 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1322 * nothing keeps CPUs from showing up after we populated the cpumask and
1323 * before the call to on_each_cpu_mask().
1324 */
1325 void drain_all_pages(void)
1326 {
1327 int cpu;
1328 struct per_cpu_pageset *pcp;
1329 struct zone *zone;
1330
1331 /*
1332 * Allocate in the BSS so we wont require allocation in
1333 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1334 */
1335 static cpumask_t cpus_with_pcps;
1336
1337 /*
1338 * We don't care about racing with CPU hotplug event
1339 * as offline notification will cause the notified
1340 * cpu to drain that CPU pcps and on_each_cpu_mask
1341 * disables preemption as part of its processing
1342 */
1343 for_each_online_cpu(cpu) {
1344 bool has_pcps = false;
1345 for_each_populated_zone(zone) {
1346 pcp = per_cpu_ptr(zone->pageset, cpu);
1347 if (pcp->pcp.count) {
1348 has_pcps = true;
1349 break;
1350 }
1351 }
1352 if (has_pcps)
1353 cpumask_set_cpu(cpu, &cpus_with_pcps);
1354 else
1355 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1356 }
1357 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1358 }
1359
1360 #ifdef CONFIG_HIBERNATION
1361
1362 void mark_free_pages(struct zone *zone)
1363 {
1364 unsigned long pfn, max_zone_pfn;
1365 unsigned long flags;
1366 unsigned int order, t;
1367 struct list_head *curr;
1368
1369 if (zone_is_empty(zone))
1370 return;
1371
1372 spin_lock_irqsave(&zone->lock, flags);
1373
1374 max_zone_pfn = zone_end_pfn(zone);
1375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1376 if (pfn_valid(pfn)) {
1377 struct page *page = pfn_to_page(pfn);
1378
1379 if (!swsusp_page_is_forbidden(page))
1380 swsusp_unset_page_free(page);
1381 }
1382
1383 for_each_migratetype_order(order, t) {
1384 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1385 unsigned long i;
1386
1387 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1388 for (i = 0; i < (1UL << order); i++)
1389 swsusp_set_page_free(pfn_to_page(pfn + i));
1390 }
1391 }
1392 spin_unlock_irqrestore(&zone->lock, flags);
1393 }
1394 #endif /* CONFIG_PM */
1395
1396 /*
1397 * Free a 0-order page
1398 * cold == true ? free a cold page : free a hot page
1399 */
1400 void free_hot_cold_page(struct page *page, bool cold)
1401 {
1402 struct zone *zone = page_zone(page);
1403 struct per_cpu_pages *pcp;
1404 unsigned long flags;
1405 unsigned long pfn = page_to_pfn(page);
1406 int migratetype;
1407
1408 if (!free_pages_prepare(page, 0))
1409 return;
1410
1411 migratetype = get_pfnblock_migratetype(page, pfn);
1412 set_freepage_migratetype(page, migratetype);
1413 local_irq_save(flags);
1414 __count_vm_event(PGFREE);
1415
1416 /*
1417 * We only track unmovable, reclaimable and movable on pcp lists.
1418 * Free ISOLATE pages back to the allocator because they are being
1419 * offlined but treat RESERVE as movable pages so we can get those
1420 * areas back if necessary. Otherwise, we may have to free
1421 * excessively into the page allocator
1422 */
1423 if (migratetype >= MIGRATE_PCPTYPES) {
1424 if (unlikely(is_migrate_isolate(migratetype))) {
1425 free_one_page(zone, page, pfn, 0, migratetype);
1426 goto out;
1427 }
1428 migratetype = MIGRATE_MOVABLE;
1429 }
1430
1431 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1432 if (!cold)
1433 list_add(&page->lru, &pcp->lists[migratetype]);
1434 else
1435 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1436 pcp->count++;
1437 if (pcp->count >= pcp->high) {
1438 unsigned long batch = ACCESS_ONCE(pcp->batch);
1439 free_pcppages_bulk(zone, batch, pcp);
1440 pcp->count -= batch;
1441 }
1442
1443 out:
1444 local_irq_restore(flags);
1445 }
1446
1447 /*
1448 * Free a list of 0-order pages
1449 */
1450 void free_hot_cold_page_list(struct list_head *list, bool cold)
1451 {
1452 struct page *page, *next;
1453
1454 list_for_each_entry_safe(page, next, list, lru) {
1455 trace_mm_page_free_batched(page, cold);
1456 free_hot_cold_page(page, cold);
1457 }
1458 }
1459
1460 /*
1461 * split_page takes a non-compound higher-order page, and splits it into
1462 * n (1<<order) sub-pages: page[0..n]
1463 * Each sub-page must be freed individually.
1464 *
1465 * Note: this is probably too low level an operation for use in drivers.
1466 * Please consult with lkml before using this in your driver.
1467 */
1468 void split_page(struct page *page, unsigned int order)
1469 {
1470 int i;
1471
1472 VM_BUG_ON_PAGE(PageCompound(page), page);
1473 VM_BUG_ON_PAGE(!page_count(page), page);
1474
1475 #ifdef CONFIG_KMEMCHECK
1476 /*
1477 * Split shadow pages too, because free(page[0]) would
1478 * otherwise free the whole shadow.
1479 */
1480 if (kmemcheck_page_is_tracked(page))
1481 split_page(virt_to_page(page[0].shadow), order);
1482 #endif
1483
1484 for (i = 1; i < (1 << order); i++)
1485 set_page_refcounted(page + i);
1486 }
1487 EXPORT_SYMBOL_GPL(split_page);
1488
1489 static int __isolate_free_page(struct page *page, unsigned int order)
1490 {
1491 unsigned long watermark;
1492 struct zone *zone;
1493 int mt;
1494
1495 BUG_ON(!PageBuddy(page));
1496
1497 zone = page_zone(page);
1498 mt = get_pageblock_migratetype(page);
1499
1500 if (!is_migrate_isolate(mt)) {
1501 /* Obey watermarks as if the page was being allocated */
1502 watermark = low_wmark_pages(zone) + (1 << order);
1503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1504 return 0;
1505
1506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1507 }
1508
1509 /* Remove page from free list */
1510 list_del(&page->lru);
1511 zone->free_area[order].nr_free--;
1512 rmv_page_order(page);
1513
1514 /* Set the pageblock if the isolated page is at least a pageblock */
1515 if (order >= pageblock_order - 1) {
1516 struct page *endpage = page + (1 << order) - 1;
1517 for (; page < endpage; page += pageblock_nr_pages) {
1518 int mt = get_pageblock_migratetype(page);
1519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1520 set_pageblock_migratetype(page,
1521 MIGRATE_MOVABLE);
1522 }
1523 }
1524
1525 return 1UL << order;
1526 }
1527
1528 /*
1529 * Similar to split_page except the page is already free. As this is only
1530 * being used for migration, the migratetype of the block also changes.
1531 * As this is called with interrupts disabled, the caller is responsible
1532 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1533 * are enabled.
1534 *
1535 * Note: this is probably too low level an operation for use in drivers.
1536 * Please consult with lkml before using this in your driver.
1537 */
1538 int split_free_page(struct page *page)
1539 {
1540 unsigned int order;
1541 int nr_pages;
1542
1543 order = page_order(page);
1544
1545 nr_pages = __isolate_free_page(page, order);
1546 if (!nr_pages)
1547 return 0;
1548
1549 /* Split into individual pages */
1550 set_page_refcounted(page);
1551 split_page(page, order);
1552 return nr_pages;
1553 }
1554
1555 /*
1556 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1557 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1558 * or two.
1559 */
1560 static inline
1561 struct page *buffered_rmqueue(struct zone *preferred_zone,
1562 struct zone *zone, unsigned int order,
1563 gfp_t gfp_flags, int migratetype)
1564 {
1565 unsigned long flags;
1566 struct page *page;
1567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1568
1569 again:
1570 if (likely(order == 0)) {
1571 struct per_cpu_pages *pcp;
1572 struct list_head *list;
1573
1574 local_irq_save(flags);
1575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1576 list = &pcp->lists[migratetype];
1577 if (list_empty(list)) {
1578 pcp->count += rmqueue_bulk(zone, 0,
1579 pcp->batch, list,
1580 migratetype, cold);
1581 if (unlikely(list_empty(list)))
1582 goto failed;
1583 }
1584
1585 if (cold)
1586 page = list_entry(list->prev, struct page, lru);
1587 else
1588 page = list_entry(list->next, struct page, lru);
1589
1590 list_del(&page->lru);
1591 pcp->count--;
1592 } else {
1593 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1594 /*
1595 * __GFP_NOFAIL is not to be used in new code.
1596 *
1597 * All __GFP_NOFAIL callers should be fixed so that they
1598 * properly detect and handle allocation failures.
1599 *
1600 * We most definitely don't want callers attempting to
1601 * allocate greater than order-1 page units with
1602 * __GFP_NOFAIL.
1603 */
1604 WARN_ON_ONCE(order > 1);
1605 }
1606 spin_lock_irqsave(&zone->lock, flags);
1607 page = __rmqueue(zone, order, migratetype);
1608 spin_unlock(&zone->lock);
1609 if (!page)
1610 goto failed;
1611 __mod_zone_freepage_state(zone, -(1 << order),
1612 get_freepage_migratetype(page));
1613 }
1614
1615 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1616 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1617 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1618 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1619
1620 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1621 zone_statistics(preferred_zone, zone, gfp_flags);
1622 local_irq_restore(flags);
1623
1624 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1625 if (prep_new_page(page, order, gfp_flags))
1626 goto again;
1627 return page;
1628
1629 failed:
1630 local_irq_restore(flags);
1631 return NULL;
1632 }
1633
1634 #ifdef CONFIG_FAIL_PAGE_ALLOC
1635
1636 static struct {
1637 struct fault_attr attr;
1638
1639 u32 ignore_gfp_highmem;
1640 u32 ignore_gfp_wait;
1641 u32 min_order;
1642 } fail_page_alloc = {
1643 .attr = FAULT_ATTR_INITIALIZER,
1644 .ignore_gfp_wait = 1,
1645 .ignore_gfp_highmem = 1,
1646 .min_order = 1,
1647 };
1648
1649 static int __init setup_fail_page_alloc(char *str)
1650 {
1651 return setup_fault_attr(&fail_page_alloc.attr, str);
1652 }
1653 __setup("fail_page_alloc=", setup_fail_page_alloc);
1654
1655 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1656 {
1657 if (order < fail_page_alloc.min_order)
1658 return false;
1659 if (gfp_mask & __GFP_NOFAIL)
1660 return false;
1661 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1662 return false;
1663 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1664 return false;
1665
1666 return should_fail(&fail_page_alloc.attr, 1 << order);
1667 }
1668
1669 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1670
1671 static int __init fail_page_alloc_debugfs(void)
1672 {
1673 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1674 struct dentry *dir;
1675
1676 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1677 &fail_page_alloc.attr);
1678 if (IS_ERR(dir))
1679 return PTR_ERR(dir);
1680
1681 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1682 &fail_page_alloc.ignore_gfp_wait))
1683 goto fail;
1684 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1685 &fail_page_alloc.ignore_gfp_highmem))
1686 goto fail;
1687 if (!debugfs_create_u32("min-order", mode, dir,
1688 &fail_page_alloc.min_order))
1689 goto fail;
1690
1691 return 0;
1692 fail:
1693 debugfs_remove_recursive(dir);
1694
1695 return -ENOMEM;
1696 }
1697
1698 late_initcall(fail_page_alloc_debugfs);
1699
1700 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1701
1702 #else /* CONFIG_FAIL_PAGE_ALLOC */
1703
1704 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1705 {
1706 return false;
1707 }
1708
1709 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1710
1711 /*
1712 * Return true if free pages are above 'mark'. This takes into account the order
1713 * of the allocation.
1714 */
1715 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1716 unsigned long mark, int classzone_idx, int alloc_flags,
1717 long free_pages)
1718 {
1719 /* free_pages my go negative - that's OK */
1720 long min = mark;
1721 int o;
1722 long free_cma = 0;
1723
1724 free_pages -= (1 << order) - 1;
1725 if (alloc_flags & ALLOC_HIGH)
1726 min -= min / 2;
1727 if (alloc_flags & ALLOC_HARDER)
1728 min -= min / 4;
1729 #ifdef CONFIG_CMA
1730 /* If allocation can't use CMA areas don't use free CMA pages */
1731 if (!(alloc_flags & ALLOC_CMA))
1732 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1733 #endif
1734
1735 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1736 return false;
1737 for (o = 0; o < order; o++) {
1738 /* At the next order, this order's pages become unavailable */
1739 free_pages -= z->free_area[o].nr_free << o;
1740
1741 /* Require fewer higher order pages to be free */
1742 min >>= 1;
1743
1744 if (free_pages <= min)
1745 return false;
1746 }
1747 return true;
1748 }
1749
1750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1751 int classzone_idx, int alloc_flags)
1752 {
1753 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1754 zone_page_state(z, NR_FREE_PAGES));
1755 }
1756
1757 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1758 unsigned long mark, int classzone_idx, int alloc_flags)
1759 {
1760 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1761
1762 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1763 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1764
1765 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1766 free_pages);
1767 }
1768
1769 #ifdef CONFIG_NUMA
1770 /*
1771 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1772 * skip over zones that are not allowed by the cpuset, or that have
1773 * been recently (in last second) found to be nearly full. See further
1774 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1775 * that have to skip over a lot of full or unallowed zones.
1776 *
1777 * If the zonelist cache is present in the passed zonelist, then
1778 * returns a pointer to the allowed node mask (either the current
1779 * tasks mems_allowed, or node_states[N_MEMORY].)
1780 *
1781 * If the zonelist cache is not available for this zonelist, does
1782 * nothing and returns NULL.
1783 *
1784 * If the fullzones BITMAP in the zonelist cache is stale (more than
1785 * a second since last zap'd) then we zap it out (clear its bits.)
1786 *
1787 * We hold off even calling zlc_setup, until after we've checked the
1788 * first zone in the zonelist, on the theory that most allocations will
1789 * be satisfied from that first zone, so best to examine that zone as
1790 * quickly as we can.
1791 */
1792 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1793 {
1794 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1795 nodemask_t *allowednodes; /* zonelist_cache approximation */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return NULL;
1800
1801 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 zlc->last_full_zap = jiffies;
1804 }
1805
1806 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1807 &cpuset_current_mems_allowed :
1808 &node_states[N_MEMORY];
1809 return allowednodes;
1810 }
1811
1812 /*
1813 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1814 * if it is worth looking at further for free memory:
1815 * 1) Check that the zone isn't thought to be full (doesn't have its
1816 * bit set in the zonelist_cache fullzones BITMAP).
1817 * 2) Check that the zones node (obtained from the zonelist_cache
1818 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1819 * Return true (non-zero) if zone is worth looking at further, or
1820 * else return false (zero) if it is not.
1821 *
1822 * This check -ignores- the distinction between various watermarks,
1823 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1824 * found to be full for any variation of these watermarks, it will
1825 * be considered full for up to one second by all requests, unless
1826 * we are so low on memory on all allowed nodes that we are forced
1827 * into the second scan of the zonelist.
1828 *
1829 * In the second scan we ignore this zonelist cache and exactly
1830 * apply the watermarks to all zones, even it is slower to do so.
1831 * We are low on memory in the second scan, and should leave no stone
1832 * unturned looking for a free page.
1833 */
1834 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1835 nodemask_t *allowednodes)
1836 {
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838 int i; /* index of *z in zonelist zones */
1839 int n; /* node that zone *z is on */
1840
1841 zlc = zonelist->zlcache_ptr;
1842 if (!zlc)
1843 return 1;
1844
1845 i = z - zonelist->_zonerefs;
1846 n = zlc->z_to_n[i];
1847
1848 /* This zone is worth trying if it is allowed but not full */
1849 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1850 }
1851
1852 /*
1853 * Given 'z' scanning a zonelist, set the corresponding bit in
1854 * zlc->fullzones, so that subsequent attempts to allocate a page
1855 * from that zone don't waste time re-examining it.
1856 */
1857 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1858 {
1859 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1860 int i; /* index of *z in zonelist zones */
1861
1862 zlc = zonelist->zlcache_ptr;
1863 if (!zlc)
1864 return;
1865
1866 i = z - zonelist->_zonerefs;
1867
1868 set_bit(i, zlc->fullzones);
1869 }
1870
1871 /*
1872 * clear all zones full, called after direct reclaim makes progress so that
1873 * a zone that was recently full is not skipped over for up to a second
1874 */
1875 static void zlc_clear_zones_full(struct zonelist *zonelist)
1876 {
1877 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1878
1879 zlc = zonelist->zlcache_ptr;
1880 if (!zlc)
1881 return;
1882
1883 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1884 }
1885
1886 static bool zone_local(struct zone *local_zone, struct zone *zone)
1887 {
1888 return local_zone->node == zone->node;
1889 }
1890
1891 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892 {
1893 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1894 RECLAIM_DISTANCE;
1895 }
1896
1897 #else /* CONFIG_NUMA */
1898
1899 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1900 {
1901 return NULL;
1902 }
1903
1904 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1905 nodemask_t *allowednodes)
1906 {
1907 return 1;
1908 }
1909
1910 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1911 {
1912 }
1913
1914 static void zlc_clear_zones_full(struct zonelist *zonelist)
1915 {
1916 }
1917
1918 static bool zone_local(struct zone *local_zone, struct zone *zone)
1919 {
1920 return true;
1921 }
1922
1923 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1924 {
1925 return true;
1926 }
1927
1928 #endif /* CONFIG_NUMA */
1929
1930 static void reset_alloc_batches(struct zone *preferred_zone)
1931 {
1932 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1933
1934 do {
1935 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1936 high_wmark_pages(zone) - low_wmark_pages(zone) -
1937 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1938 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1939 } while (zone++ != preferred_zone);
1940 }
1941
1942 /*
1943 * get_page_from_freelist goes through the zonelist trying to allocate
1944 * a page.
1945 */
1946 static struct page *
1947 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1948 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1949 struct zone *preferred_zone, int classzone_idx, int migratetype)
1950 {
1951 struct zoneref *z;
1952 struct page *page = NULL;
1953 struct zone *zone;
1954 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1955 int zlc_active = 0; /* set if using zonelist_cache */
1956 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1957 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1958 (gfp_mask & __GFP_WRITE);
1959 int nr_fair_skipped = 0;
1960 bool zonelist_rescan;
1961
1962 zonelist_scan:
1963 zonelist_rescan = false;
1964
1965 /*
1966 * Scan zonelist, looking for a zone with enough free.
1967 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1968 */
1969 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1970 high_zoneidx, nodemask) {
1971 unsigned long mark;
1972
1973 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1974 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1975 continue;
1976 if (cpusets_enabled() &&
1977 (alloc_flags & ALLOC_CPUSET) &&
1978 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1979 continue;
1980 /*
1981 * Distribute pages in proportion to the individual
1982 * zone size to ensure fair page aging. The zone a
1983 * page was allocated in should have no effect on the
1984 * time the page has in memory before being reclaimed.
1985 */
1986 if (alloc_flags & ALLOC_FAIR) {
1987 if (!zone_local(preferred_zone, zone))
1988 break;
1989 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1990 nr_fair_skipped++;
1991 continue;
1992 }
1993 }
1994 /*
1995 * When allocating a page cache page for writing, we
1996 * want to get it from a zone that is within its dirty
1997 * limit, such that no single zone holds more than its
1998 * proportional share of globally allowed dirty pages.
1999 * The dirty limits take into account the zone's
2000 * lowmem reserves and high watermark so that kswapd
2001 * should be able to balance it without having to
2002 * write pages from its LRU list.
2003 *
2004 * This may look like it could increase pressure on
2005 * lower zones by failing allocations in higher zones
2006 * before they are full. But the pages that do spill
2007 * over are limited as the lower zones are protected
2008 * by this very same mechanism. It should not become
2009 * a practical burden to them.
2010 *
2011 * XXX: For now, allow allocations to potentially
2012 * exceed the per-zone dirty limit in the slowpath
2013 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2014 * which is important when on a NUMA setup the allowed
2015 * zones are together not big enough to reach the
2016 * global limit. The proper fix for these situations
2017 * will require awareness of zones in the
2018 * dirty-throttling and the flusher threads.
2019 */
2020 if (consider_zone_dirty && !zone_dirty_ok(zone))
2021 continue;
2022
2023 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2024 if (!zone_watermark_ok(zone, order, mark,
2025 classzone_idx, alloc_flags)) {
2026 int ret;
2027
2028 /* Checked here to keep the fast path fast */
2029 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2030 if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 goto try_this_zone;
2032
2033 if (IS_ENABLED(CONFIG_NUMA) &&
2034 !did_zlc_setup && nr_online_nodes > 1) {
2035 /*
2036 * we do zlc_setup if there are multiple nodes
2037 * and before considering the first zone allowed
2038 * by the cpuset.
2039 */
2040 allowednodes = zlc_setup(zonelist, alloc_flags);
2041 zlc_active = 1;
2042 did_zlc_setup = 1;
2043 }
2044
2045 if (zone_reclaim_mode == 0 ||
2046 !zone_allows_reclaim(preferred_zone, zone))
2047 goto this_zone_full;
2048
2049 /*
2050 * As we may have just activated ZLC, check if the first
2051 * eligible zone has failed zone_reclaim recently.
2052 */
2053 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2054 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2055 continue;
2056
2057 ret = zone_reclaim(zone, gfp_mask, order);
2058 switch (ret) {
2059 case ZONE_RECLAIM_NOSCAN:
2060 /* did not scan */
2061 continue;
2062 case ZONE_RECLAIM_FULL:
2063 /* scanned but unreclaimable */
2064 continue;
2065 default:
2066 /* did we reclaim enough */
2067 if (zone_watermark_ok(zone, order, mark,
2068 classzone_idx, alloc_flags))
2069 goto try_this_zone;
2070
2071 /*
2072 * Failed to reclaim enough to meet watermark.
2073 * Only mark the zone full if checking the min
2074 * watermark or if we failed to reclaim just
2075 * 1<<order pages or else the page allocator
2076 * fastpath will prematurely mark zones full
2077 * when the watermark is between the low and
2078 * min watermarks.
2079 */
2080 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2081 ret == ZONE_RECLAIM_SOME)
2082 goto this_zone_full;
2083
2084 continue;
2085 }
2086 }
2087
2088 try_this_zone:
2089 page = buffered_rmqueue(preferred_zone, zone, order,
2090 gfp_mask, migratetype);
2091 if (page)
2092 break;
2093 this_zone_full:
2094 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2095 zlc_mark_zone_full(zonelist, z);
2096 }
2097
2098 if (page) {
2099 /*
2100 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2101 * necessary to allocate the page. The expectation is
2102 * that the caller is taking steps that will free more
2103 * memory. The caller should avoid the page being used
2104 * for !PFMEMALLOC purposes.
2105 */
2106 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2107 return page;
2108 }
2109
2110 /*
2111 * The first pass makes sure allocations are spread fairly within the
2112 * local node. However, the local node might have free pages left
2113 * after the fairness batches are exhausted, and remote zones haven't
2114 * even been considered yet. Try once more without fairness, and
2115 * include remote zones now, before entering the slowpath and waking
2116 * kswapd: prefer spilling to a remote zone over swapping locally.
2117 */
2118 if (alloc_flags & ALLOC_FAIR) {
2119 alloc_flags &= ~ALLOC_FAIR;
2120 if (nr_fair_skipped) {
2121 zonelist_rescan = true;
2122 reset_alloc_batches(preferred_zone);
2123 }
2124 if (nr_online_nodes > 1)
2125 zonelist_rescan = true;
2126 }
2127
2128 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2129 /* Disable zlc cache for second zonelist scan */
2130 zlc_active = 0;
2131 zonelist_rescan = true;
2132 }
2133
2134 if (zonelist_rescan)
2135 goto zonelist_scan;
2136
2137 return NULL;
2138 }
2139
2140 /*
2141 * Large machines with many possible nodes should not always dump per-node
2142 * meminfo in irq context.
2143 */
2144 static inline bool should_suppress_show_mem(void)
2145 {
2146 bool ret = false;
2147
2148 #if NODES_SHIFT > 8
2149 ret = in_interrupt();
2150 #endif
2151 return ret;
2152 }
2153
2154 static DEFINE_RATELIMIT_STATE(nopage_rs,
2155 DEFAULT_RATELIMIT_INTERVAL,
2156 DEFAULT_RATELIMIT_BURST);
2157
2158 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2159 {
2160 unsigned int filter = SHOW_MEM_FILTER_NODES;
2161
2162 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2163 debug_guardpage_minorder() > 0)
2164 return;
2165
2166 /*
2167 * This documents exceptions given to allocations in certain
2168 * contexts that are allowed to allocate outside current's set
2169 * of allowed nodes.
2170 */
2171 if (!(gfp_mask & __GFP_NOMEMALLOC))
2172 if (test_thread_flag(TIF_MEMDIE) ||
2173 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2176 filter &= ~SHOW_MEM_FILTER_NODES;
2177
2178 if (fmt) {
2179 struct va_format vaf;
2180 va_list args;
2181
2182 va_start(args, fmt);
2183
2184 vaf.fmt = fmt;
2185 vaf.va = &args;
2186
2187 pr_warn("%pV", &vaf);
2188
2189 va_end(args);
2190 }
2191
2192 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2193 current->comm, order, gfp_mask);
2194
2195 dump_stack();
2196 if (!should_suppress_show_mem())
2197 show_mem(filter);
2198 }
2199
2200 static inline int
2201 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2202 unsigned long did_some_progress,
2203 unsigned long pages_reclaimed)
2204 {
2205 /* Do not loop if specifically requested */
2206 if (gfp_mask & __GFP_NORETRY)
2207 return 0;
2208
2209 /* Always retry if specifically requested */
2210 if (gfp_mask & __GFP_NOFAIL)
2211 return 1;
2212
2213 /*
2214 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2215 * making forward progress without invoking OOM. Suspend also disables
2216 * storage devices so kswapd will not help. Bail if we are suspending.
2217 */
2218 if (!did_some_progress && pm_suspended_storage())
2219 return 0;
2220
2221 /*
2222 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2223 * means __GFP_NOFAIL, but that may not be true in other
2224 * implementations.
2225 */
2226 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2227 return 1;
2228
2229 /*
2230 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2231 * specified, then we retry until we no longer reclaim any pages
2232 * (above), or we've reclaimed an order of pages at least as
2233 * large as the allocation's order. In both cases, if the
2234 * allocation still fails, we stop retrying.
2235 */
2236 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2237 return 1;
2238
2239 return 0;
2240 }
2241
2242 static inline struct page *
2243 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2244 struct zonelist *zonelist, enum zone_type high_zoneidx,
2245 nodemask_t *nodemask, struct zone *preferred_zone,
2246 int classzone_idx, int migratetype)
2247 {
2248 struct page *page;
2249
2250 /* Acquire the per-zone oom lock for each zone */
2251 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2252 schedule_timeout_uninterruptible(1);
2253 return NULL;
2254 }
2255
2256 /*
2257 * Go through the zonelist yet one more time, keep very high watermark
2258 * here, this is only to catch a parallel oom killing, we must fail if
2259 * we're still under heavy pressure.
2260 */
2261 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2262 order, zonelist, high_zoneidx,
2263 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2264 preferred_zone, classzone_idx, migratetype);
2265 if (page)
2266 goto out;
2267
2268 if (!(gfp_mask & __GFP_NOFAIL)) {
2269 /* The OOM killer will not help higher order allocs */
2270 if (order > PAGE_ALLOC_COSTLY_ORDER)
2271 goto out;
2272 /* The OOM killer does not needlessly kill tasks for lowmem */
2273 if (high_zoneidx < ZONE_NORMAL)
2274 goto out;
2275 /*
2276 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2277 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2278 * The caller should handle page allocation failure by itself if
2279 * it specifies __GFP_THISNODE.
2280 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2281 */
2282 if (gfp_mask & __GFP_THISNODE)
2283 goto out;
2284 }
2285 /* Exhausted what can be done so it's blamo time */
2286 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2287
2288 out:
2289 oom_zonelist_unlock(zonelist, gfp_mask);
2290 return page;
2291 }
2292
2293 #ifdef CONFIG_COMPACTION
2294 /* Try memory compaction for high-order allocations before reclaim */
2295 static struct page *
2296 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2299 int classzone_idx, int migratetype, enum migrate_mode mode,
2300 int *contended_compaction, bool *deferred_compaction)
2301 {
2302 struct zone *last_compact_zone = NULL;
2303 unsigned long compact_result;
2304 struct page *page;
2305
2306 if (!order)
2307 return NULL;
2308
2309 current->flags |= PF_MEMALLOC;
2310 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2311 nodemask, mode,
2312 contended_compaction,
2313 &last_compact_zone);
2314 current->flags &= ~PF_MEMALLOC;
2315
2316 switch (compact_result) {
2317 case COMPACT_DEFERRED:
2318 *deferred_compaction = true;
2319 /* fall-through */
2320 case COMPACT_SKIPPED:
2321 return NULL;
2322 default:
2323 break;
2324 }
2325
2326 /*
2327 * At least in one zone compaction wasn't deferred or skipped, so let's
2328 * count a compaction stall
2329 */
2330 count_vm_event(COMPACTSTALL);
2331
2332 /* Page migration frees to the PCP lists but we want merging */
2333 drain_pages(get_cpu());
2334 put_cpu();
2335
2336 page = get_page_from_freelist(gfp_mask, nodemask,
2337 order, zonelist, high_zoneidx,
2338 alloc_flags & ~ALLOC_NO_WATERMARKS,
2339 preferred_zone, classzone_idx, migratetype);
2340
2341 if (page) {
2342 struct zone *zone = page_zone(page);
2343
2344 zone->compact_blockskip_flush = false;
2345 compaction_defer_reset(zone, order, true);
2346 count_vm_event(COMPACTSUCCESS);
2347 return page;
2348 }
2349
2350 /*
2351 * last_compact_zone is where try_to_compact_pages thought allocation
2352 * should succeed, so it did not defer compaction. But here we know
2353 * that it didn't succeed, so we do the defer.
2354 */
2355 if (last_compact_zone && mode != MIGRATE_ASYNC)
2356 defer_compaction(last_compact_zone, order);
2357
2358 /*
2359 * It's bad if compaction run occurs and fails. The most likely reason
2360 * is that pages exist, but not enough to satisfy watermarks.
2361 */
2362 count_vm_event(COMPACTFAIL);
2363
2364 cond_resched();
2365
2366 return NULL;
2367 }
2368 #else
2369 static inline struct page *
2370 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2371 struct zonelist *zonelist, enum zone_type high_zoneidx,
2372 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2373 int classzone_idx, int migratetype, enum migrate_mode mode,
2374 int *contended_compaction, bool *deferred_compaction)
2375 {
2376 return NULL;
2377 }
2378 #endif /* CONFIG_COMPACTION */
2379
2380 /* Perform direct synchronous page reclaim */
2381 static int
2382 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2383 nodemask_t *nodemask)
2384 {
2385 struct reclaim_state reclaim_state;
2386 int progress;
2387
2388 cond_resched();
2389
2390 /* We now go into synchronous reclaim */
2391 cpuset_memory_pressure_bump();
2392 current->flags |= PF_MEMALLOC;
2393 lockdep_set_current_reclaim_state(gfp_mask);
2394 reclaim_state.reclaimed_slab = 0;
2395 current->reclaim_state = &reclaim_state;
2396
2397 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2398
2399 current->reclaim_state = NULL;
2400 lockdep_clear_current_reclaim_state();
2401 current->flags &= ~PF_MEMALLOC;
2402
2403 cond_resched();
2404
2405 return progress;
2406 }
2407
2408 /* The really slow allocator path where we enter direct reclaim */
2409 static inline struct page *
2410 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2411 struct zonelist *zonelist, enum zone_type high_zoneidx,
2412 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2413 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2414 {
2415 struct page *page = NULL;
2416 bool drained = false;
2417
2418 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2419 nodemask);
2420 if (unlikely(!(*did_some_progress)))
2421 return NULL;
2422
2423 /* After successful reclaim, reconsider all zones for allocation */
2424 if (IS_ENABLED(CONFIG_NUMA))
2425 zlc_clear_zones_full(zonelist);
2426
2427 retry:
2428 page = get_page_from_freelist(gfp_mask, nodemask, order,
2429 zonelist, high_zoneidx,
2430 alloc_flags & ~ALLOC_NO_WATERMARKS,
2431 preferred_zone, classzone_idx,
2432 migratetype);
2433
2434 /*
2435 * If an allocation failed after direct reclaim, it could be because
2436 * pages are pinned on the per-cpu lists. Drain them and try again
2437 */
2438 if (!page && !drained) {
2439 drain_all_pages();
2440 drained = true;
2441 goto retry;
2442 }
2443
2444 return page;
2445 }
2446
2447 /*
2448 * This is called in the allocator slow-path if the allocation request is of
2449 * sufficient urgency to ignore watermarks and take other desperate measures
2450 */
2451 static inline struct page *
2452 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2453 struct zonelist *zonelist, enum zone_type high_zoneidx,
2454 nodemask_t *nodemask, struct zone *preferred_zone,
2455 int classzone_idx, int migratetype)
2456 {
2457 struct page *page;
2458
2459 do {
2460 page = get_page_from_freelist(gfp_mask, nodemask, order,
2461 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2462 preferred_zone, classzone_idx, migratetype);
2463
2464 if (!page && gfp_mask & __GFP_NOFAIL)
2465 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2466 } while (!page && (gfp_mask & __GFP_NOFAIL));
2467
2468 return page;
2469 }
2470
2471 static void wake_all_kswapds(unsigned int order,
2472 struct zonelist *zonelist,
2473 enum zone_type high_zoneidx,
2474 struct zone *preferred_zone,
2475 nodemask_t *nodemask)
2476 {
2477 struct zoneref *z;
2478 struct zone *zone;
2479
2480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2481 high_zoneidx, nodemask)
2482 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2483 }
2484
2485 static inline int
2486 gfp_to_alloc_flags(gfp_t gfp_mask)
2487 {
2488 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2489 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2490
2491 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2492 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2493
2494 /*
2495 * The caller may dip into page reserves a bit more if the caller
2496 * cannot run direct reclaim, or if the caller has realtime scheduling
2497 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2498 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2499 */
2500 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2501
2502 if (atomic) {
2503 /*
2504 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2505 * if it can't schedule.
2506 */
2507 if (!(gfp_mask & __GFP_NOMEMALLOC))
2508 alloc_flags |= ALLOC_HARDER;
2509 /*
2510 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2511 * comment for __cpuset_node_allowed_softwall().
2512 */
2513 alloc_flags &= ~ALLOC_CPUSET;
2514 } else if (unlikely(rt_task(current)) && !in_interrupt())
2515 alloc_flags |= ALLOC_HARDER;
2516
2517 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2518 if (gfp_mask & __GFP_MEMALLOC)
2519 alloc_flags |= ALLOC_NO_WATERMARKS;
2520 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2521 alloc_flags |= ALLOC_NO_WATERMARKS;
2522 else if (!in_interrupt() &&
2523 ((current->flags & PF_MEMALLOC) ||
2524 unlikely(test_thread_flag(TIF_MEMDIE))))
2525 alloc_flags |= ALLOC_NO_WATERMARKS;
2526 }
2527 #ifdef CONFIG_CMA
2528 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2529 alloc_flags |= ALLOC_CMA;
2530 #endif
2531 return alloc_flags;
2532 }
2533
2534 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2535 {
2536 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2537 }
2538
2539 static inline struct page *
2540 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2541 struct zonelist *zonelist, enum zone_type high_zoneidx,
2542 nodemask_t *nodemask, struct zone *preferred_zone,
2543 int classzone_idx, int migratetype)
2544 {
2545 const gfp_t wait = gfp_mask & __GFP_WAIT;
2546 struct page *page = NULL;
2547 int alloc_flags;
2548 unsigned long pages_reclaimed = 0;
2549 unsigned long did_some_progress;
2550 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2551 bool deferred_compaction = false;
2552 int contended_compaction = COMPACT_CONTENDED_NONE;
2553
2554 /*
2555 * In the slowpath, we sanity check order to avoid ever trying to
2556 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2557 * be using allocators in order of preference for an area that is
2558 * too large.
2559 */
2560 if (order >= MAX_ORDER) {
2561 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2562 return NULL;
2563 }
2564
2565 /*
2566 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2567 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2568 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2569 * using a larger set of nodes after it has established that the
2570 * allowed per node queues are empty and that nodes are
2571 * over allocated.
2572 */
2573 if (IS_ENABLED(CONFIG_NUMA) &&
2574 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2575 goto nopage;
2576
2577 restart:
2578 if (!(gfp_mask & __GFP_NO_KSWAPD))
2579 wake_all_kswapds(order, zonelist, high_zoneidx,
2580 preferred_zone, nodemask);
2581
2582 /*
2583 * OK, we're below the kswapd watermark and have kicked background
2584 * reclaim. Now things get more complex, so set up alloc_flags according
2585 * to how we want to proceed.
2586 */
2587 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2588
2589 /*
2590 * Find the true preferred zone if the allocation is unconstrained by
2591 * cpusets.
2592 */
2593 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2594 struct zoneref *preferred_zoneref;
2595 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2596 NULL, &preferred_zone);
2597 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2598 }
2599
2600 rebalance:
2601 /* This is the last chance, in general, before the goto nopage. */
2602 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2603 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2604 preferred_zone, classzone_idx, migratetype);
2605 if (page)
2606 goto got_pg;
2607
2608 /* Allocate without watermarks if the context allows */
2609 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2610 /*
2611 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2612 * the allocation is high priority and these type of
2613 * allocations are system rather than user orientated
2614 */
2615 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2616
2617 page = __alloc_pages_high_priority(gfp_mask, order,
2618 zonelist, high_zoneidx, nodemask,
2619 preferred_zone, classzone_idx, migratetype);
2620 if (page) {
2621 goto got_pg;
2622 }
2623 }
2624
2625 /* Atomic allocations - we can't balance anything */
2626 if (!wait) {
2627 /*
2628 * All existing users of the deprecated __GFP_NOFAIL are
2629 * blockable, so warn of any new users that actually allow this
2630 * type of allocation to fail.
2631 */
2632 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2633 goto nopage;
2634 }
2635
2636 /* Avoid recursion of direct reclaim */
2637 if (current->flags & PF_MEMALLOC)
2638 goto nopage;
2639
2640 /* Avoid allocations with no watermarks from looping endlessly */
2641 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2642 goto nopage;
2643
2644 /*
2645 * Try direct compaction. The first pass is asynchronous. Subsequent
2646 * attempts after direct reclaim are synchronous
2647 */
2648 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2649 high_zoneidx, nodemask, alloc_flags,
2650 preferred_zone,
2651 classzone_idx, migratetype,
2652 migration_mode, &contended_compaction,
2653 &deferred_compaction);
2654 if (page)
2655 goto got_pg;
2656
2657 /* Checks for THP-specific high-order allocations */
2658 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2659 /*
2660 * If compaction is deferred for high-order allocations, it is
2661 * because sync compaction recently failed. If this is the case
2662 * and the caller requested a THP allocation, we do not want
2663 * to heavily disrupt the system, so we fail the allocation
2664 * instead of entering direct reclaim.
2665 */
2666 if (deferred_compaction)
2667 goto nopage;
2668
2669 /*
2670 * In all zones where compaction was attempted (and not
2671 * deferred or skipped), lock contention has been detected.
2672 * For THP allocation we do not want to disrupt the others
2673 * so we fallback to base pages instead.
2674 */
2675 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2676 goto nopage;
2677
2678 /*
2679 * If compaction was aborted due to need_resched(), we do not
2680 * want to further increase allocation latency, unless it is
2681 * khugepaged trying to collapse.
2682 */
2683 if (contended_compaction == COMPACT_CONTENDED_SCHED
2684 && !(current->flags & PF_KTHREAD))
2685 goto nopage;
2686 }
2687
2688 /*
2689 * It can become very expensive to allocate transparent hugepages at
2690 * fault, so use asynchronous memory compaction for THP unless it is
2691 * khugepaged trying to collapse.
2692 */
2693 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2694 (current->flags & PF_KTHREAD))
2695 migration_mode = MIGRATE_SYNC_LIGHT;
2696
2697 /* Try direct reclaim and then allocating */
2698 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2699 zonelist, high_zoneidx,
2700 nodemask,
2701 alloc_flags, preferred_zone,
2702 classzone_idx, migratetype,
2703 &did_some_progress);
2704 if (page)
2705 goto got_pg;
2706
2707 /*
2708 * If we failed to make any progress reclaiming, then we are
2709 * running out of options and have to consider going OOM
2710 */
2711 if (!did_some_progress) {
2712 if (oom_gfp_allowed(gfp_mask)) {
2713 if (oom_killer_disabled)
2714 goto nopage;
2715 /* Coredumps can quickly deplete all memory reserves */
2716 if ((current->flags & PF_DUMPCORE) &&
2717 !(gfp_mask & __GFP_NOFAIL))
2718 goto nopage;
2719 page = __alloc_pages_may_oom(gfp_mask, order,
2720 zonelist, high_zoneidx,
2721 nodemask, preferred_zone,
2722 classzone_idx, migratetype);
2723 if (page)
2724 goto got_pg;
2725
2726 if (!(gfp_mask & __GFP_NOFAIL)) {
2727 /*
2728 * The oom killer is not called for high-order
2729 * allocations that may fail, so if no progress
2730 * is being made, there are no other options and
2731 * retrying is unlikely to help.
2732 */
2733 if (order > PAGE_ALLOC_COSTLY_ORDER)
2734 goto nopage;
2735 /*
2736 * The oom killer is not called for lowmem
2737 * allocations to prevent needlessly killing
2738 * innocent tasks.
2739 */
2740 if (high_zoneidx < ZONE_NORMAL)
2741 goto nopage;
2742 }
2743
2744 goto restart;
2745 }
2746 }
2747
2748 /* Check if we should retry the allocation */
2749 pages_reclaimed += did_some_progress;
2750 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2751 pages_reclaimed)) {
2752 /* Wait for some write requests to complete then retry */
2753 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2754 goto rebalance;
2755 } else {
2756 /*
2757 * High-order allocations do not necessarily loop after
2758 * direct reclaim and reclaim/compaction depends on compaction
2759 * being called after reclaim so call directly if necessary
2760 */
2761 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2762 high_zoneidx, nodemask, alloc_flags,
2763 preferred_zone,
2764 classzone_idx, migratetype,
2765 migration_mode, &contended_compaction,
2766 &deferred_compaction);
2767 if (page)
2768 goto got_pg;
2769 }
2770
2771 nopage:
2772 warn_alloc_failed(gfp_mask, order, NULL);
2773 return page;
2774 got_pg:
2775 if (kmemcheck_enabled)
2776 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2777
2778 return page;
2779 }
2780
2781 /*
2782 * This is the 'heart' of the zoned buddy allocator.
2783 */
2784 struct page *
2785 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2786 struct zonelist *zonelist, nodemask_t *nodemask)
2787 {
2788 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2789 struct zone *preferred_zone;
2790 struct zoneref *preferred_zoneref;
2791 struct page *page = NULL;
2792 int migratetype = gfpflags_to_migratetype(gfp_mask);
2793 unsigned int cpuset_mems_cookie;
2794 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2795 int classzone_idx;
2796
2797 gfp_mask &= gfp_allowed_mask;
2798
2799 lockdep_trace_alloc(gfp_mask);
2800
2801 might_sleep_if(gfp_mask & __GFP_WAIT);
2802
2803 if (should_fail_alloc_page(gfp_mask, order))
2804 return NULL;
2805
2806 /*
2807 * Check the zones suitable for the gfp_mask contain at least one
2808 * valid zone. It's possible to have an empty zonelist as a result
2809 * of GFP_THISNODE and a memoryless node
2810 */
2811 if (unlikely(!zonelist->_zonerefs->zone))
2812 return NULL;
2813
2814 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2815 alloc_flags |= ALLOC_CMA;
2816
2817 retry_cpuset:
2818 cpuset_mems_cookie = read_mems_allowed_begin();
2819
2820 /* The preferred zone is used for statistics later */
2821 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2822 nodemask ? : &cpuset_current_mems_allowed,
2823 &preferred_zone);
2824 if (!preferred_zone)
2825 goto out;
2826 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2827
2828 /* First allocation attempt */
2829 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2830 zonelist, high_zoneidx, alloc_flags,
2831 preferred_zone, classzone_idx, migratetype);
2832 if (unlikely(!page)) {
2833 /*
2834 * Runtime PM, block IO and its error handling path
2835 * can deadlock because I/O on the device might not
2836 * complete.
2837 */
2838 gfp_mask = memalloc_noio_flags(gfp_mask);
2839 page = __alloc_pages_slowpath(gfp_mask, order,
2840 zonelist, high_zoneidx, nodemask,
2841 preferred_zone, classzone_idx, migratetype);
2842 }
2843
2844 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2845
2846 out:
2847 /*
2848 * When updating a task's mems_allowed, it is possible to race with
2849 * parallel threads in such a way that an allocation can fail while
2850 * the mask is being updated. If a page allocation is about to fail,
2851 * check if the cpuset changed during allocation and if so, retry.
2852 */
2853 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2854 goto retry_cpuset;
2855
2856 return page;
2857 }
2858 EXPORT_SYMBOL(__alloc_pages_nodemask);
2859
2860 /*
2861 * Common helper functions.
2862 */
2863 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2864 {
2865 struct page *page;
2866
2867 /*
2868 * __get_free_pages() returns a 32-bit address, which cannot represent
2869 * a highmem page
2870 */
2871 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2872
2873 page = alloc_pages(gfp_mask, order);
2874 if (!page)
2875 return 0;
2876 return (unsigned long) page_address(page);
2877 }
2878 EXPORT_SYMBOL(__get_free_pages);
2879
2880 unsigned long get_zeroed_page(gfp_t gfp_mask)
2881 {
2882 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2883 }
2884 EXPORT_SYMBOL(get_zeroed_page);
2885
2886 void __free_pages(struct page *page, unsigned int order)
2887 {
2888 if (put_page_testzero(page)) {
2889 if (order == 0)
2890 free_hot_cold_page(page, false);
2891 else
2892 __free_pages_ok(page, order);
2893 }
2894 }
2895
2896 EXPORT_SYMBOL(__free_pages);
2897
2898 void free_pages(unsigned long addr, unsigned int order)
2899 {
2900 if (addr != 0) {
2901 VM_BUG_ON(!virt_addr_valid((void *)addr));
2902 __free_pages(virt_to_page((void *)addr), order);
2903 }
2904 }
2905
2906 EXPORT_SYMBOL(free_pages);
2907
2908 /*
2909 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2910 * of the current memory cgroup.
2911 *
2912 * It should be used when the caller would like to use kmalloc, but since the
2913 * allocation is large, it has to fall back to the page allocator.
2914 */
2915 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2916 {
2917 struct page *page;
2918 struct mem_cgroup *memcg = NULL;
2919
2920 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2921 return NULL;
2922 page = alloc_pages(gfp_mask, order);
2923 memcg_kmem_commit_charge(page, memcg, order);
2924 return page;
2925 }
2926
2927 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2928 {
2929 struct page *page;
2930 struct mem_cgroup *memcg = NULL;
2931
2932 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2933 return NULL;
2934 page = alloc_pages_node(nid, gfp_mask, order);
2935 memcg_kmem_commit_charge(page, memcg, order);
2936 return page;
2937 }
2938
2939 /*
2940 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2941 * alloc_kmem_pages.
2942 */
2943 void __free_kmem_pages(struct page *page, unsigned int order)
2944 {
2945 memcg_kmem_uncharge_pages(page, order);
2946 __free_pages(page, order);
2947 }
2948
2949 void free_kmem_pages(unsigned long addr, unsigned int order)
2950 {
2951 if (addr != 0) {
2952 VM_BUG_ON(!virt_addr_valid((void *)addr));
2953 __free_kmem_pages(virt_to_page((void *)addr), order);
2954 }
2955 }
2956
2957 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2958 {
2959 if (addr) {
2960 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2961 unsigned long used = addr + PAGE_ALIGN(size);
2962
2963 split_page(virt_to_page((void *)addr), order);
2964 while (used < alloc_end) {
2965 free_page(used);
2966 used += PAGE_SIZE;
2967 }
2968 }
2969 return (void *)addr;
2970 }
2971
2972 /**
2973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2974 * @size: the number of bytes to allocate
2975 * @gfp_mask: GFP flags for the allocation
2976 *
2977 * This function is similar to alloc_pages(), except that it allocates the
2978 * minimum number of pages to satisfy the request. alloc_pages() can only
2979 * allocate memory in power-of-two pages.
2980 *
2981 * This function is also limited by MAX_ORDER.
2982 *
2983 * Memory allocated by this function must be released by free_pages_exact().
2984 */
2985 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2986 {
2987 unsigned int order = get_order(size);
2988 unsigned long addr;
2989
2990 addr = __get_free_pages(gfp_mask, order);
2991 return make_alloc_exact(addr, order, size);
2992 }
2993 EXPORT_SYMBOL(alloc_pages_exact);
2994
2995 /**
2996 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2997 * pages on a node.
2998 * @nid: the preferred node ID where memory should be allocated
2999 * @size: the number of bytes to allocate
3000 * @gfp_mask: GFP flags for the allocation
3001 *
3002 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3003 * back.
3004 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3005 * but is not exact.
3006 */
3007 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3008 {
3009 unsigned order = get_order(size);
3010 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3011 if (!p)
3012 return NULL;
3013 return make_alloc_exact((unsigned long)page_address(p), order, size);
3014 }
3015
3016 /**
3017 * free_pages_exact - release memory allocated via alloc_pages_exact()
3018 * @virt: the value returned by alloc_pages_exact.
3019 * @size: size of allocation, same value as passed to alloc_pages_exact().
3020 *
3021 * Release the memory allocated by a previous call to alloc_pages_exact.
3022 */
3023 void free_pages_exact(void *virt, size_t size)
3024 {
3025 unsigned long addr = (unsigned long)virt;
3026 unsigned long end = addr + PAGE_ALIGN(size);
3027
3028 while (addr < end) {
3029 free_page(addr);
3030 addr += PAGE_SIZE;
3031 }
3032 }
3033 EXPORT_SYMBOL(free_pages_exact);
3034
3035 /**
3036 * nr_free_zone_pages - count number of pages beyond high watermark
3037 * @offset: The zone index of the highest zone
3038 *
3039 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3040 * high watermark within all zones at or below a given zone index. For each
3041 * zone, the number of pages is calculated as:
3042 * managed_pages - high_pages
3043 */
3044 static unsigned long nr_free_zone_pages(int offset)
3045 {
3046 struct zoneref *z;
3047 struct zone *zone;
3048
3049 /* Just pick one node, since fallback list is circular */
3050 unsigned long sum = 0;
3051
3052 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3053
3054 for_each_zone_zonelist(zone, z, zonelist, offset) {
3055 unsigned long size = zone->managed_pages;
3056 unsigned long high = high_wmark_pages(zone);
3057 if (size > high)
3058 sum += size - high;
3059 }
3060
3061 return sum;
3062 }
3063
3064 /**
3065 * nr_free_buffer_pages - count number of pages beyond high watermark
3066 *
3067 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3068 * watermark within ZONE_DMA and ZONE_NORMAL.
3069 */
3070 unsigned long nr_free_buffer_pages(void)
3071 {
3072 return nr_free_zone_pages(gfp_zone(GFP_USER));
3073 }
3074 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3075
3076 /**
3077 * nr_free_pagecache_pages - count number of pages beyond high watermark
3078 *
3079 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3080 * high watermark within all zones.
3081 */
3082 unsigned long nr_free_pagecache_pages(void)
3083 {
3084 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3085 }
3086
3087 static inline void show_node(struct zone *zone)
3088 {
3089 if (IS_ENABLED(CONFIG_NUMA))
3090 printk("Node %d ", zone_to_nid(zone));
3091 }
3092
3093 void si_meminfo(struct sysinfo *val)
3094 {
3095 val->totalram = totalram_pages;
3096 val->sharedram = global_page_state(NR_SHMEM);
3097 val->freeram = global_page_state(NR_FREE_PAGES);
3098 val->bufferram = nr_blockdev_pages();
3099 val->totalhigh = totalhigh_pages;
3100 val->freehigh = nr_free_highpages();
3101 val->mem_unit = PAGE_SIZE;
3102 }
3103
3104 EXPORT_SYMBOL(si_meminfo);
3105
3106 #ifdef CONFIG_NUMA
3107 void si_meminfo_node(struct sysinfo *val, int nid)
3108 {
3109 int zone_type; /* needs to be signed */
3110 unsigned long managed_pages = 0;
3111 pg_data_t *pgdat = NODE_DATA(nid);
3112
3113 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3114 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3115 val->totalram = managed_pages;
3116 val->sharedram = node_page_state(nid, NR_SHMEM);
3117 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3118 #ifdef CONFIG_HIGHMEM
3119 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3120 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3121 NR_FREE_PAGES);
3122 #else
3123 val->totalhigh = 0;
3124 val->freehigh = 0;
3125 #endif
3126 val->mem_unit = PAGE_SIZE;
3127 }
3128 #endif
3129
3130 /*
3131 * Determine whether the node should be displayed or not, depending on whether
3132 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3133 */
3134 bool skip_free_areas_node(unsigned int flags, int nid)
3135 {
3136 bool ret = false;
3137 unsigned int cpuset_mems_cookie;
3138
3139 if (!(flags & SHOW_MEM_FILTER_NODES))
3140 goto out;
3141
3142 do {
3143 cpuset_mems_cookie = read_mems_allowed_begin();
3144 ret = !node_isset(nid, cpuset_current_mems_allowed);
3145 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3146 out:
3147 return ret;
3148 }
3149
3150 #define K(x) ((x) << (PAGE_SHIFT-10))
3151
3152 static void show_migration_types(unsigned char type)
3153 {
3154 static const char types[MIGRATE_TYPES] = {
3155 [MIGRATE_UNMOVABLE] = 'U',
3156 [MIGRATE_RECLAIMABLE] = 'E',
3157 [MIGRATE_MOVABLE] = 'M',
3158 [MIGRATE_RESERVE] = 'R',
3159 #ifdef CONFIG_CMA
3160 [MIGRATE_CMA] = 'C',
3161 #endif
3162 #ifdef CONFIG_MEMORY_ISOLATION
3163 [MIGRATE_ISOLATE] = 'I',
3164 #endif
3165 };
3166 char tmp[MIGRATE_TYPES + 1];
3167 char *p = tmp;
3168 int i;
3169
3170 for (i = 0; i < MIGRATE_TYPES; i++) {
3171 if (type & (1 << i))
3172 *p++ = types[i];
3173 }
3174
3175 *p = '\0';
3176 printk("(%s) ", tmp);
3177 }
3178
3179 /*
3180 * Show free area list (used inside shift_scroll-lock stuff)
3181 * We also calculate the percentage fragmentation. We do this by counting the
3182 * memory on each free list with the exception of the first item on the list.
3183 * Suppresses nodes that are not allowed by current's cpuset if
3184 * SHOW_MEM_FILTER_NODES is passed.
3185 */
3186 void show_free_areas(unsigned int filter)
3187 {
3188 int cpu;
3189 struct zone *zone;
3190
3191 for_each_populated_zone(zone) {
3192 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3193 continue;
3194 show_node(zone);
3195 printk("%s per-cpu:\n", zone->name);
3196
3197 for_each_online_cpu(cpu) {
3198 struct per_cpu_pageset *pageset;
3199
3200 pageset = per_cpu_ptr(zone->pageset, cpu);
3201
3202 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3203 cpu, pageset->pcp.high,
3204 pageset->pcp.batch, pageset->pcp.count);
3205 }
3206 }
3207
3208 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3209 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3210 " unevictable:%lu"
3211 " dirty:%lu writeback:%lu unstable:%lu\n"
3212 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3213 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3214 " free_cma:%lu\n",
3215 global_page_state(NR_ACTIVE_ANON),
3216 global_page_state(NR_INACTIVE_ANON),
3217 global_page_state(NR_ISOLATED_ANON),
3218 global_page_state(NR_ACTIVE_FILE),
3219 global_page_state(NR_INACTIVE_FILE),
3220 global_page_state(NR_ISOLATED_FILE),
3221 global_page_state(NR_UNEVICTABLE),
3222 global_page_state(NR_FILE_DIRTY),
3223 global_page_state(NR_WRITEBACK),
3224 global_page_state(NR_UNSTABLE_NFS),
3225 global_page_state(NR_FREE_PAGES),
3226 global_page_state(NR_SLAB_RECLAIMABLE),
3227 global_page_state(NR_SLAB_UNRECLAIMABLE),
3228 global_page_state(NR_FILE_MAPPED),
3229 global_page_state(NR_SHMEM),
3230 global_page_state(NR_PAGETABLE),
3231 global_page_state(NR_BOUNCE),
3232 global_page_state(NR_FREE_CMA_PAGES));
3233
3234 for_each_populated_zone(zone) {
3235 int i;
3236
3237 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3238 continue;
3239 show_node(zone);
3240 printk("%s"
3241 " free:%lukB"
3242 " min:%lukB"
3243 " low:%lukB"
3244 " high:%lukB"
3245 " active_anon:%lukB"
3246 " inactive_anon:%lukB"
3247 " active_file:%lukB"
3248 " inactive_file:%lukB"
3249 " unevictable:%lukB"
3250 " isolated(anon):%lukB"
3251 " isolated(file):%lukB"
3252 " present:%lukB"
3253 " managed:%lukB"
3254 " mlocked:%lukB"
3255 " dirty:%lukB"
3256 " writeback:%lukB"
3257 " mapped:%lukB"
3258 " shmem:%lukB"
3259 " slab_reclaimable:%lukB"
3260 " slab_unreclaimable:%lukB"
3261 " kernel_stack:%lukB"
3262 " pagetables:%lukB"
3263 " unstable:%lukB"
3264 " bounce:%lukB"
3265 " free_cma:%lukB"
3266 " writeback_tmp:%lukB"
3267 " pages_scanned:%lu"
3268 " all_unreclaimable? %s"
3269 "\n",
3270 zone->name,
3271 K(zone_page_state(zone, NR_FREE_PAGES)),
3272 K(min_wmark_pages(zone)),
3273 K(low_wmark_pages(zone)),
3274 K(high_wmark_pages(zone)),
3275 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3276 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3277 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3278 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3279 K(zone_page_state(zone, NR_UNEVICTABLE)),
3280 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3281 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3282 K(zone->present_pages),
3283 K(zone->managed_pages),
3284 K(zone_page_state(zone, NR_MLOCK)),
3285 K(zone_page_state(zone, NR_FILE_DIRTY)),
3286 K(zone_page_state(zone, NR_WRITEBACK)),
3287 K(zone_page_state(zone, NR_FILE_MAPPED)),
3288 K(zone_page_state(zone, NR_SHMEM)),
3289 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3290 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3291 zone_page_state(zone, NR_KERNEL_STACK) *
3292 THREAD_SIZE / 1024,
3293 K(zone_page_state(zone, NR_PAGETABLE)),
3294 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3295 K(zone_page_state(zone, NR_BOUNCE)),
3296 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3297 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3298 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3299 (!zone_reclaimable(zone) ? "yes" : "no")
3300 );
3301 printk("lowmem_reserve[]:");
3302 for (i = 0; i < MAX_NR_ZONES; i++)
3303 printk(" %ld", zone->lowmem_reserve[i]);
3304 printk("\n");
3305 }
3306
3307 for_each_populated_zone(zone) {
3308 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3309 unsigned char types[MAX_ORDER];
3310
3311 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3312 continue;
3313 show_node(zone);
3314 printk("%s: ", zone->name);
3315
3316 spin_lock_irqsave(&zone->lock, flags);
3317 for (order = 0; order < MAX_ORDER; order++) {
3318 struct free_area *area = &zone->free_area[order];
3319 int type;
3320
3321 nr[order] = area->nr_free;
3322 total += nr[order] << order;
3323
3324 types[order] = 0;
3325 for (type = 0; type < MIGRATE_TYPES; type++) {
3326 if (!list_empty(&area->free_list[type]))
3327 types[order] |= 1 << type;
3328 }
3329 }
3330 spin_unlock_irqrestore(&zone->lock, flags);
3331 for (order = 0; order < MAX_ORDER; order++) {
3332 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3333 if (nr[order])
3334 show_migration_types(types[order]);
3335 }
3336 printk("= %lukB\n", K(total));
3337 }
3338
3339 hugetlb_show_meminfo();
3340
3341 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3342
3343 show_swap_cache_info();
3344 }
3345
3346 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3347 {
3348 zoneref->zone = zone;
3349 zoneref->zone_idx = zone_idx(zone);
3350 }
3351
3352 /*
3353 * Builds allocation fallback zone lists.
3354 *
3355 * Add all populated zones of a node to the zonelist.
3356 */
3357 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3358 int nr_zones)
3359 {
3360 struct zone *zone;
3361 enum zone_type zone_type = MAX_NR_ZONES;
3362
3363 do {
3364 zone_type--;
3365 zone = pgdat->node_zones + zone_type;
3366 if (populated_zone(zone)) {
3367 zoneref_set_zone(zone,
3368 &zonelist->_zonerefs[nr_zones++]);
3369 check_highest_zone(zone_type);
3370 }
3371 } while (zone_type);
3372
3373 return nr_zones;
3374 }
3375
3376
3377 /*
3378 * zonelist_order:
3379 * 0 = automatic detection of better ordering.
3380 * 1 = order by ([node] distance, -zonetype)
3381 * 2 = order by (-zonetype, [node] distance)
3382 *
3383 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3384 * the same zonelist. So only NUMA can configure this param.
3385 */
3386 #define ZONELIST_ORDER_DEFAULT 0
3387 #define ZONELIST_ORDER_NODE 1
3388 #define ZONELIST_ORDER_ZONE 2
3389
3390 /* zonelist order in the kernel.
3391 * set_zonelist_order() will set this to NODE or ZONE.
3392 */
3393 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3394 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3395
3396
3397 #ifdef CONFIG_NUMA
3398 /* The value user specified ....changed by config */
3399 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3400 /* string for sysctl */
3401 #define NUMA_ZONELIST_ORDER_LEN 16
3402 char numa_zonelist_order[16] = "default";
3403
3404 /*
3405 * interface for configure zonelist ordering.
3406 * command line option "numa_zonelist_order"
3407 * = "[dD]efault - default, automatic configuration.
3408 * = "[nN]ode - order by node locality, then by zone within node
3409 * = "[zZ]one - order by zone, then by locality within zone
3410 */
3411
3412 static int __parse_numa_zonelist_order(char *s)
3413 {
3414 if (*s == 'd' || *s == 'D') {
3415 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3416 } else if (*s == 'n' || *s == 'N') {
3417 user_zonelist_order = ZONELIST_ORDER_NODE;
3418 } else if (*s == 'z' || *s == 'Z') {
3419 user_zonelist_order = ZONELIST_ORDER_ZONE;
3420 } else {
3421 printk(KERN_WARNING
3422 "Ignoring invalid numa_zonelist_order value: "
3423 "%s\n", s);
3424 return -EINVAL;
3425 }
3426 return 0;
3427 }
3428
3429 static __init int setup_numa_zonelist_order(char *s)
3430 {
3431 int ret;
3432
3433 if (!s)
3434 return 0;
3435
3436 ret = __parse_numa_zonelist_order(s);
3437 if (ret == 0)
3438 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3439
3440 return ret;
3441 }
3442 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3443
3444 /*
3445 * sysctl handler for numa_zonelist_order
3446 */
3447 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3448 void __user *buffer, size_t *length,
3449 loff_t *ppos)
3450 {
3451 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3452 int ret;
3453 static DEFINE_MUTEX(zl_order_mutex);
3454
3455 mutex_lock(&zl_order_mutex);
3456 if (write) {
3457 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3458 ret = -EINVAL;
3459 goto out;
3460 }
3461 strcpy(saved_string, (char *)table->data);
3462 }
3463 ret = proc_dostring(table, write, buffer, length, ppos);
3464 if (ret)
3465 goto out;
3466 if (write) {
3467 int oldval = user_zonelist_order;
3468
3469 ret = __parse_numa_zonelist_order((char *)table->data);
3470 if (ret) {
3471 /*
3472 * bogus value. restore saved string
3473 */
3474 strncpy((char *)table->data, saved_string,
3475 NUMA_ZONELIST_ORDER_LEN);
3476 user_zonelist_order = oldval;
3477 } else if (oldval != user_zonelist_order) {
3478 mutex_lock(&zonelists_mutex);
3479 build_all_zonelists(NULL, NULL);
3480 mutex_unlock(&zonelists_mutex);
3481 }
3482 }
3483 out:
3484 mutex_unlock(&zl_order_mutex);
3485 return ret;
3486 }
3487
3488
3489 #define MAX_NODE_LOAD (nr_online_nodes)
3490 static int node_load[MAX_NUMNODES];
3491
3492 /**
3493 * find_next_best_node - find the next node that should appear in a given node's fallback list
3494 * @node: node whose fallback list we're appending
3495 * @used_node_mask: nodemask_t of already used nodes
3496 *
3497 * We use a number of factors to determine which is the next node that should
3498 * appear on a given node's fallback list. The node should not have appeared
3499 * already in @node's fallback list, and it should be the next closest node
3500 * according to the distance array (which contains arbitrary distance values
3501 * from each node to each node in the system), and should also prefer nodes
3502 * with no CPUs, since presumably they'll have very little allocation pressure
3503 * on them otherwise.
3504 * It returns -1 if no node is found.
3505 */
3506 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3507 {
3508 int n, val;
3509 int min_val = INT_MAX;
3510 int best_node = NUMA_NO_NODE;
3511 const struct cpumask *tmp = cpumask_of_node(0);
3512
3513 /* Use the local node if we haven't already */
3514 if (!node_isset(node, *used_node_mask)) {
3515 node_set(node, *used_node_mask);
3516 return node;
3517 }
3518
3519 for_each_node_state(n, N_MEMORY) {
3520
3521 /* Don't want a node to appear more than once */
3522 if (node_isset(n, *used_node_mask))
3523 continue;
3524
3525 /* Use the distance array to find the distance */
3526 val = node_distance(node, n);
3527
3528 /* Penalize nodes under us ("prefer the next node") */
3529 val += (n < node);
3530
3531 /* Give preference to headless and unused nodes */
3532 tmp = cpumask_of_node(n);
3533 if (!cpumask_empty(tmp))
3534 val += PENALTY_FOR_NODE_WITH_CPUS;
3535
3536 /* Slight preference for less loaded node */
3537 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3538 val += node_load[n];
3539
3540 if (val < min_val) {
3541 min_val = val;
3542 best_node = n;
3543 }
3544 }
3545
3546 if (best_node >= 0)
3547 node_set(best_node, *used_node_mask);
3548
3549 return best_node;
3550 }
3551
3552
3553 /*
3554 * Build zonelists ordered by node and zones within node.
3555 * This results in maximum locality--normal zone overflows into local
3556 * DMA zone, if any--but risks exhausting DMA zone.
3557 */
3558 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3559 {
3560 int j;
3561 struct zonelist *zonelist;
3562
3563 zonelist = &pgdat->node_zonelists[0];
3564 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3565 ;
3566 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3567 zonelist->_zonerefs[j].zone = NULL;
3568 zonelist->_zonerefs[j].zone_idx = 0;
3569 }
3570
3571 /*
3572 * Build gfp_thisnode zonelists
3573 */
3574 static void build_thisnode_zonelists(pg_data_t *pgdat)
3575 {
3576 int j;
3577 struct zonelist *zonelist;
3578
3579 zonelist = &pgdat->node_zonelists[1];
3580 j = build_zonelists_node(pgdat, zonelist, 0);
3581 zonelist->_zonerefs[j].zone = NULL;
3582 zonelist->_zonerefs[j].zone_idx = 0;
3583 }
3584
3585 /*
3586 * Build zonelists ordered by zone and nodes within zones.
3587 * This results in conserving DMA zone[s] until all Normal memory is
3588 * exhausted, but results in overflowing to remote node while memory
3589 * may still exist in local DMA zone.
3590 */
3591 static int node_order[MAX_NUMNODES];
3592
3593 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3594 {
3595 int pos, j, node;
3596 int zone_type; /* needs to be signed */
3597 struct zone *z;
3598 struct zonelist *zonelist;
3599
3600 zonelist = &pgdat->node_zonelists[0];
3601 pos = 0;
3602 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3603 for (j = 0; j < nr_nodes; j++) {
3604 node = node_order[j];
3605 z = &NODE_DATA(node)->node_zones[zone_type];
3606 if (populated_zone(z)) {
3607 zoneref_set_zone(z,
3608 &zonelist->_zonerefs[pos++]);
3609 check_highest_zone(zone_type);
3610 }
3611 }
3612 }
3613 zonelist->_zonerefs[pos].zone = NULL;
3614 zonelist->_zonerefs[pos].zone_idx = 0;
3615 }
3616
3617 static int default_zonelist_order(void)
3618 {
3619 int nid, zone_type;
3620 unsigned long low_kmem_size, total_size;
3621 struct zone *z;
3622 int average_size;
3623 /*
3624 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3625 * If they are really small and used heavily, the system can fall
3626 * into OOM very easily.
3627 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3628 */
3629 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3630 low_kmem_size = 0;
3631 total_size = 0;
3632 for_each_online_node(nid) {
3633 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3634 z = &NODE_DATA(nid)->node_zones[zone_type];
3635 if (populated_zone(z)) {
3636 if (zone_type < ZONE_NORMAL)
3637 low_kmem_size += z->managed_pages;
3638 total_size += z->managed_pages;
3639 } else if (zone_type == ZONE_NORMAL) {
3640 /*
3641 * If any node has only lowmem, then node order
3642 * is preferred to allow kernel allocations
3643 * locally; otherwise, they can easily infringe
3644 * on other nodes when there is an abundance of
3645 * lowmem available to allocate from.
3646 */
3647 return ZONELIST_ORDER_NODE;
3648 }
3649 }
3650 }
3651 if (!low_kmem_size || /* there are no DMA area. */
3652 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3653 return ZONELIST_ORDER_NODE;
3654 /*
3655 * look into each node's config.
3656 * If there is a node whose DMA/DMA32 memory is very big area on
3657 * local memory, NODE_ORDER may be suitable.
3658 */
3659 average_size = total_size /
3660 (nodes_weight(node_states[N_MEMORY]) + 1);
3661 for_each_online_node(nid) {
3662 low_kmem_size = 0;
3663 total_size = 0;
3664 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3665 z = &NODE_DATA(nid)->node_zones[zone_type];
3666 if (populated_zone(z)) {
3667 if (zone_type < ZONE_NORMAL)
3668 low_kmem_size += z->present_pages;
3669 total_size += z->present_pages;
3670 }
3671 }
3672 if (low_kmem_size &&
3673 total_size > average_size && /* ignore small node */
3674 low_kmem_size > total_size * 70/100)
3675 return ZONELIST_ORDER_NODE;
3676 }
3677 return ZONELIST_ORDER_ZONE;
3678 }
3679
3680 static void set_zonelist_order(void)
3681 {
3682 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3683 current_zonelist_order = default_zonelist_order();
3684 else
3685 current_zonelist_order = user_zonelist_order;
3686 }
3687
3688 static void build_zonelists(pg_data_t *pgdat)
3689 {
3690 int j, node, load;
3691 enum zone_type i;
3692 nodemask_t used_mask;
3693 int local_node, prev_node;
3694 struct zonelist *zonelist;
3695 int order = current_zonelist_order;
3696
3697 /* initialize zonelists */
3698 for (i = 0; i < MAX_ZONELISTS; i++) {
3699 zonelist = pgdat->node_zonelists + i;
3700 zonelist->_zonerefs[0].zone = NULL;
3701 zonelist->_zonerefs[0].zone_idx = 0;
3702 }
3703
3704 /* NUMA-aware ordering of nodes */
3705 local_node = pgdat->node_id;
3706 load = nr_online_nodes;
3707 prev_node = local_node;
3708 nodes_clear(used_mask);
3709
3710 memset(node_order, 0, sizeof(node_order));
3711 j = 0;
3712
3713 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3714 /*
3715 * We don't want to pressure a particular node.
3716 * So adding penalty to the first node in same
3717 * distance group to make it round-robin.
3718 */
3719 if (node_distance(local_node, node) !=
3720 node_distance(local_node, prev_node))
3721 node_load[node] = load;
3722
3723 prev_node = node;
3724 load--;
3725 if (order == ZONELIST_ORDER_NODE)
3726 build_zonelists_in_node_order(pgdat, node);
3727 else
3728 node_order[j++] = node; /* remember order */
3729 }
3730
3731 if (order == ZONELIST_ORDER_ZONE) {
3732 /* calculate node order -- i.e., DMA last! */
3733 build_zonelists_in_zone_order(pgdat, j);
3734 }
3735
3736 build_thisnode_zonelists(pgdat);
3737 }
3738
3739 /* Construct the zonelist performance cache - see further mmzone.h */
3740 static void build_zonelist_cache(pg_data_t *pgdat)
3741 {
3742 struct zonelist *zonelist;
3743 struct zonelist_cache *zlc;
3744 struct zoneref *z;
3745
3746 zonelist = &pgdat->node_zonelists[0];
3747 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3748 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3749 for (z = zonelist->_zonerefs; z->zone; z++)
3750 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3751 }
3752
3753 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3754 /*
3755 * Return node id of node used for "local" allocations.
3756 * I.e., first node id of first zone in arg node's generic zonelist.
3757 * Used for initializing percpu 'numa_mem', which is used primarily
3758 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3759 */
3760 int local_memory_node(int node)
3761 {
3762 struct zone *zone;
3763
3764 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3765 gfp_zone(GFP_KERNEL),
3766 NULL,
3767 &zone);
3768 return zone->node;
3769 }
3770 #endif
3771
3772 #else /* CONFIG_NUMA */
3773
3774 static void set_zonelist_order(void)
3775 {
3776 current_zonelist_order = ZONELIST_ORDER_ZONE;
3777 }
3778
3779 static void build_zonelists(pg_data_t *pgdat)
3780 {
3781 int node, local_node;
3782 enum zone_type j;
3783 struct zonelist *zonelist;
3784
3785 local_node = pgdat->node_id;
3786
3787 zonelist = &pgdat->node_zonelists[0];
3788 j = build_zonelists_node(pgdat, zonelist, 0);
3789
3790 /*
3791 * Now we build the zonelist so that it contains the zones
3792 * of all the other nodes.
3793 * We don't want to pressure a particular node, so when
3794 * building the zones for node N, we make sure that the
3795 * zones coming right after the local ones are those from
3796 * node N+1 (modulo N)
3797 */
3798 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3799 if (!node_online(node))
3800 continue;
3801 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3802 }
3803 for (node = 0; node < local_node; node++) {
3804 if (!node_online(node))
3805 continue;
3806 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3807 }
3808
3809 zonelist->_zonerefs[j].zone = NULL;
3810 zonelist->_zonerefs[j].zone_idx = 0;
3811 }
3812
3813 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3814 static void build_zonelist_cache(pg_data_t *pgdat)
3815 {
3816 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3817 }
3818
3819 #endif /* CONFIG_NUMA */
3820
3821 /*
3822 * Boot pageset table. One per cpu which is going to be used for all
3823 * zones and all nodes. The parameters will be set in such a way
3824 * that an item put on a list will immediately be handed over to
3825 * the buddy list. This is safe since pageset manipulation is done
3826 * with interrupts disabled.
3827 *
3828 * The boot_pagesets must be kept even after bootup is complete for
3829 * unused processors and/or zones. They do play a role for bootstrapping
3830 * hotplugged processors.
3831 *
3832 * zoneinfo_show() and maybe other functions do
3833 * not check if the processor is online before following the pageset pointer.
3834 * Other parts of the kernel may not check if the zone is available.
3835 */
3836 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3837 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3838 static void setup_zone_pageset(struct zone *zone);
3839
3840 /*
3841 * Global mutex to protect against size modification of zonelists
3842 * as well as to serialize pageset setup for the new populated zone.
3843 */
3844 DEFINE_MUTEX(zonelists_mutex);
3845
3846 /* return values int ....just for stop_machine() */
3847 static int __build_all_zonelists(void *data)
3848 {
3849 int nid;
3850 int cpu;
3851 pg_data_t *self = data;
3852
3853 #ifdef CONFIG_NUMA
3854 memset(node_load, 0, sizeof(node_load));
3855 #endif
3856
3857 if (self && !node_online(self->node_id)) {
3858 build_zonelists(self);
3859 build_zonelist_cache(self);
3860 }
3861
3862 for_each_online_node(nid) {
3863 pg_data_t *pgdat = NODE_DATA(nid);
3864
3865 build_zonelists(pgdat);
3866 build_zonelist_cache(pgdat);
3867 }
3868
3869 /*
3870 * Initialize the boot_pagesets that are going to be used
3871 * for bootstrapping processors. The real pagesets for
3872 * each zone will be allocated later when the per cpu
3873 * allocator is available.
3874 *
3875 * boot_pagesets are used also for bootstrapping offline
3876 * cpus if the system is already booted because the pagesets
3877 * are needed to initialize allocators on a specific cpu too.
3878 * F.e. the percpu allocator needs the page allocator which
3879 * needs the percpu allocator in order to allocate its pagesets
3880 * (a chicken-egg dilemma).
3881 */
3882 for_each_possible_cpu(cpu) {
3883 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3884
3885 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3886 /*
3887 * We now know the "local memory node" for each node--
3888 * i.e., the node of the first zone in the generic zonelist.
3889 * Set up numa_mem percpu variable for on-line cpus. During
3890 * boot, only the boot cpu should be on-line; we'll init the
3891 * secondary cpus' numa_mem as they come on-line. During
3892 * node/memory hotplug, we'll fixup all on-line cpus.
3893 */
3894 if (cpu_online(cpu))
3895 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3896 #endif
3897 }
3898
3899 return 0;
3900 }
3901
3902 /*
3903 * Called with zonelists_mutex held always
3904 * unless system_state == SYSTEM_BOOTING.
3905 */
3906 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3907 {
3908 set_zonelist_order();
3909
3910 if (system_state == SYSTEM_BOOTING) {
3911 __build_all_zonelists(NULL);
3912 mminit_verify_zonelist();
3913 cpuset_init_current_mems_allowed();
3914 } else {
3915 #ifdef CONFIG_MEMORY_HOTPLUG
3916 if (zone)
3917 setup_zone_pageset(zone);
3918 #endif
3919 /* we have to stop all cpus to guarantee there is no user
3920 of zonelist */
3921 stop_machine(__build_all_zonelists, pgdat, NULL);
3922 /* cpuset refresh routine should be here */
3923 }
3924 vm_total_pages = nr_free_pagecache_pages();
3925 /*
3926 * Disable grouping by mobility if the number of pages in the
3927 * system is too low to allow the mechanism to work. It would be
3928 * more accurate, but expensive to check per-zone. This check is
3929 * made on memory-hotadd so a system can start with mobility
3930 * disabled and enable it later
3931 */
3932 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3933 page_group_by_mobility_disabled = 1;
3934 else
3935 page_group_by_mobility_disabled = 0;
3936
3937 printk("Built %i zonelists in %s order, mobility grouping %s. "
3938 "Total pages: %ld\n",
3939 nr_online_nodes,
3940 zonelist_order_name[current_zonelist_order],
3941 page_group_by_mobility_disabled ? "off" : "on",
3942 vm_total_pages);
3943 #ifdef CONFIG_NUMA
3944 printk("Policy zone: %s\n", zone_names[policy_zone]);
3945 #endif
3946 }
3947
3948 /*
3949 * Helper functions to size the waitqueue hash table.
3950 * Essentially these want to choose hash table sizes sufficiently
3951 * large so that collisions trying to wait on pages are rare.
3952 * But in fact, the number of active page waitqueues on typical
3953 * systems is ridiculously low, less than 200. So this is even
3954 * conservative, even though it seems large.
3955 *
3956 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3957 * waitqueues, i.e. the size of the waitq table given the number of pages.
3958 */
3959 #define PAGES_PER_WAITQUEUE 256
3960
3961 #ifndef CONFIG_MEMORY_HOTPLUG
3962 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3963 {
3964 unsigned long size = 1;
3965
3966 pages /= PAGES_PER_WAITQUEUE;
3967
3968 while (size < pages)
3969 size <<= 1;
3970
3971 /*
3972 * Once we have dozens or even hundreds of threads sleeping
3973 * on IO we've got bigger problems than wait queue collision.
3974 * Limit the size of the wait table to a reasonable size.
3975 */
3976 size = min(size, 4096UL);
3977
3978 return max(size, 4UL);
3979 }
3980 #else
3981 /*
3982 * A zone's size might be changed by hot-add, so it is not possible to determine
3983 * a suitable size for its wait_table. So we use the maximum size now.
3984 *
3985 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3986 *
3987 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3988 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3989 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3990 *
3991 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3992 * or more by the traditional way. (See above). It equals:
3993 *
3994 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3995 * ia64(16K page size) : = ( 8G + 4M)byte.
3996 * powerpc (64K page size) : = (32G +16M)byte.
3997 */
3998 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3999 {
4000 return 4096UL;
4001 }
4002 #endif
4003
4004 /*
4005 * This is an integer logarithm so that shifts can be used later
4006 * to extract the more random high bits from the multiplicative
4007 * hash function before the remainder is taken.
4008 */
4009 static inline unsigned long wait_table_bits(unsigned long size)
4010 {
4011 return ffz(~size);
4012 }
4013
4014 /*
4015 * Check if a pageblock contains reserved pages
4016 */
4017 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4018 {
4019 unsigned long pfn;
4020
4021 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4022 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4023 return 1;
4024 }
4025 return 0;
4026 }
4027
4028 /*
4029 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4030 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4031 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4032 * higher will lead to a bigger reserve which will get freed as contiguous
4033 * blocks as reclaim kicks in
4034 */
4035 static void setup_zone_migrate_reserve(struct zone *zone)
4036 {
4037 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4038 struct page *page;
4039 unsigned long block_migratetype;
4040 int reserve;
4041 int old_reserve;
4042
4043 /*
4044 * Get the start pfn, end pfn and the number of blocks to reserve
4045 * We have to be careful to be aligned to pageblock_nr_pages to
4046 * make sure that we always check pfn_valid for the first page in
4047 * the block.
4048 */
4049 start_pfn = zone->zone_start_pfn;
4050 end_pfn = zone_end_pfn(zone);
4051 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4052 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4053 pageblock_order;
4054
4055 /*
4056 * Reserve blocks are generally in place to help high-order atomic
4057 * allocations that are short-lived. A min_free_kbytes value that
4058 * would result in more than 2 reserve blocks for atomic allocations
4059 * is assumed to be in place to help anti-fragmentation for the
4060 * future allocation of hugepages at runtime.
4061 */
4062 reserve = min(2, reserve);
4063 old_reserve = zone->nr_migrate_reserve_block;
4064
4065 /* When memory hot-add, we almost always need to do nothing */
4066 if (reserve == old_reserve)
4067 return;
4068 zone->nr_migrate_reserve_block = reserve;
4069
4070 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4071 if (!pfn_valid(pfn))
4072 continue;
4073 page = pfn_to_page(pfn);
4074
4075 /* Watch out for overlapping nodes */
4076 if (page_to_nid(page) != zone_to_nid(zone))
4077 continue;
4078
4079 block_migratetype = get_pageblock_migratetype(page);
4080
4081 /* Only test what is necessary when the reserves are not met */
4082 if (reserve > 0) {
4083 /*
4084 * Blocks with reserved pages will never free, skip
4085 * them.
4086 */
4087 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4088 if (pageblock_is_reserved(pfn, block_end_pfn))
4089 continue;
4090
4091 /* If this block is reserved, account for it */
4092 if (block_migratetype == MIGRATE_RESERVE) {
4093 reserve--;
4094 continue;
4095 }
4096
4097 /* Suitable for reserving if this block is movable */
4098 if (block_migratetype == MIGRATE_MOVABLE) {
4099 set_pageblock_migratetype(page,
4100 MIGRATE_RESERVE);
4101 move_freepages_block(zone, page,
4102 MIGRATE_RESERVE);
4103 reserve--;
4104 continue;
4105 }
4106 } else if (!old_reserve) {
4107 /*
4108 * At boot time we don't need to scan the whole zone
4109 * for turning off MIGRATE_RESERVE.
4110 */
4111 break;
4112 }
4113
4114 /*
4115 * If the reserve is met and this is a previous reserved block,
4116 * take it back
4117 */
4118 if (block_migratetype == MIGRATE_RESERVE) {
4119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4120 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4121 }
4122 }
4123 }
4124
4125 /*
4126 * Initially all pages are reserved - free ones are freed
4127 * up by free_all_bootmem() once the early boot process is
4128 * done. Non-atomic initialization, single-pass.
4129 */
4130 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4131 unsigned long start_pfn, enum memmap_context context)
4132 {
4133 struct page *page;
4134 unsigned long end_pfn = start_pfn + size;
4135 unsigned long pfn;
4136 struct zone *z;
4137
4138 if (highest_memmap_pfn < end_pfn - 1)
4139 highest_memmap_pfn = end_pfn - 1;
4140
4141 z = &NODE_DATA(nid)->node_zones[zone];
4142 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4143 /*
4144 * There can be holes in boot-time mem_map[]s
4145 * handed to this function. They do not
4146 * exist on hotplugged memory.
4147 */
4148 if (context == MEMMAP_EARLY) {
4149 if (!early_pfn_valid(pfn))
4150 continue;
4151 if (!early_pfn_in_nid(pfn, nid))
4152 continue;
4153 }
4154 page = pfn_to_page(pfn);
4155 set_page_links(page, zone, nid, pfn);
4156 mminit_verify_page_links(page, zone, nid, pfn);
4157 init_page_count(page);
4158 page_mapcount_reset(page);
4159 page_cpupid_reset_last(page);
4160 SetPageReserved(page);
4161 /*
4162 * Mark the block movable so that blocks are reserved for
4163 * movable at startup. This will force kernel allocations
4164 * to reserve their blocks rather than leaking throughout
4165 * the address space during boot when many long-lived
4166 * kernel allocations are made. Later some blocks near
4167 * the start are marked MIGRATE_RESERVE by
4168 * setup_zone_migrate_reserve()
4169 *
4170 * bitmap is created for zone's valid pfn range. but memmap
4171 * can be created for invalid pages (for alignment)
4172 * check here not to call set_pageblock_migratetype() against
4173 * pfn out of zone.
4174 */
4175 if ((z->zone_start_pfn <= pfn)
4176 && (pfn < zone_end_pfn(z))
4177 && !(pfn & (pageblock_nr_pages - 1)))
4178 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4179
4180 INIT_LIST_HEAD(&page->lru);
4181 #ifdef WANT_PAGE_VIRTUAL
4182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4183 if (!is_highmem_idx(zone))
4184 set_page_address(page, __va(pfn << PAGE_SHIFT));
4185 #endif
4186 }
4187 }
4188
4189 static void __meminit zone_init_free_lists(struct zone *zone)
4190 {
4191 unsigned int order, t;
4192 for_each_migratetype_order(order, t) {
4193 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4194 zone->free_area[order].nr_free = 0;
4195 }
4196 }
4197
4198 #ifndef __HAVE_ARCH_MEMMAP_INIT
4199 #define memmap_init(size, nid, zone, start_pfn) \
4200 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4201 #endif
4202
4203 static int zone_batchsize(struct zone *zone)
4204 {
4205 #ifdef CONFIG_MMU
4206 int batch;
4207
4208 /*
4209 * The per-cpu-pages pools are set to around 1000th of the
4210 * size of the zone. But no more than 1/2 of a meg.
4211 *
4212 * OK, so we don't know how big the cache is. So guess.
4213 */
4214 batch = zone->managed_pages / 1024;
4215 if (batch * PAGE_SIZE > 512 * 1024)
4216 batch = (512 * 1024) / PAGE_SIZE;
4217 batch /= 4; /* We effectively *= 4 below */
4218 if (batch < 1)
4219 batch = 1;
4220
4221 /*
4222 * Clamp the batch to a 2^n - 1 value. Having a power
4223 * of 2 value was found to be more likely to have
4224 * suboptimal cache aliasing properties in some cases.
4225 *
4226 * For example if 2 tasks are alternately allocating
4227 * batches of pages, one task can end up with a lot
4228 * of pages of one half of the possible page colors
4229 * and the other with pages of the other colors.
4230 */
4231 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4232
4233 return batch;
4234
4235 #else
4236 /* The deferral and batching of frees should be suppressed under NOMMU
4237 * conditions.
4238 *
4239 * The problem is that NOMMU needs to be able to allocate large chunks
4240 * of contiguous memory as there's no hardware page translation to
4241 * assemble apparent contiguous memory from discontiguous pages.
4242 *
4243 * Queueing large contiguous runs of pages for batching, however,
4244 * causes the pages to actually be freed in smaller chunks. As there
4245 * can be a significant delay between the individual batches being
4246 * recycled, this leads to the once large chunks of space being
4247 * fragmented and becoming unavailable for high-order allocations.
4248 */
4249 return 0;
4250 #endif
4251 }
4252
4253 /*
4254 * pcp->high and pcp->batch values are related and dependent on one another:
4255 * ->batch must never be higher then ->high.
4256 * The following function updates them in a safe manner without read side
4257 * locking.
4258 *
4259 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4260 * those fields changing asynchronously (acording the the above rule).
4261 *
4262 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4263 * outside of boot time (or some other assurance that no concurrent updaters
4264 * exist).
4265 */
4266 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4267 unsigned long batch)
4268 {
4269 /* start with a fail safe value for batch */
4270 pcp->batch = 1;
4271 smp_wmb();
4272
4273 /* Update high, then batch, in order */
4274 pcp->high = high;
4275 smp_wmb();
4276
4277 pcp->batch = batch;
4278 }
4279
4280 /* a companion to pageset_set_high() */
4281 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4282 {
4283 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4284 }
4285
4286 static void pageset_init(struct per_cpu_pageset *p)
4287 {
4288 struct per_cpu_pages *pcp;
4289 int migratetype;
4290
4291 memset(p, 0, sizeof(*p));
4292
4293 pcp = &p->pcp;
4294 pcp->count = 0;
4295 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4296 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4297 }
4298
4299 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4300 {
4301 pageset_init(p);
4302 pageset_set_batch(p, batch);
4303 }
4304
4305 /*
4306 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4307 * to the value high for the pageset p.
4308 */
4309 static void pageset_set_high(struct per_cpu_pageset *p,
4310 unsigned long high)
4311 {
4312 unsigned long batch = max(1UL, high / 4);
4313 if ((high / 4) > (PAGE_SHIFT * 8))
4314 batch = PAGE_SHIFT * 8;
4315
4316 pageset_update(&p->pcp, high, batch);
4317 }
4318
4319 static void pageset_set_high_and_batch(struct zone *zone,
4320 struct per_cpu_pageset *pcp)
4321 {
4322 if (percpu_pagelist_fraction)
4323 pageset_set_high(pcp,
4324 (zone->managed_pages /
4325 percpu_pagelist_fraction));
4326 else
4327 pageset_set_batch(pcp, zone_batchsize(zone));
4328 }
4329
4330 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4331 {
4332 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4333
4334 pageset_init(pcp);
4335 pageset_set_high_and_batch(zone, pcp);
4336 }
4337
4338 static void __meminit setup_zone_pageset(struct zone *zone)
4339 {
4340 int cpu;
4341 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4342 for_each_possible_cpu(cpu)
4343 zone_pageset_init(zone, cpu);
4344 }
4345
4346 /*
4347 * Allocate per cpu pagesets and initialize them.
4348 * Before this call only boot pagesets were available.
4349 */
4350 void __init setup_per_cpu_pageset(void)
4351 {
4352 struct zone *zone;
4353
4354 for_each_populated_zone(zone)
4355 setup_zone_pageset(zone);
4356 }
4357
4358 static noinline __init_refok
4359 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4360 {
4361 int i;
4362 size_t alloc_size;
4363
4364 /*
4365 * The per-page waitqueue mechanism uses hashed waitqueues
4366 * per zone.
4367 */
4368 zone->wait_table_hash_nr_entries =
4369 wait_table_hash_nr_entries(zone_size_pages);
4370 zone->wait_table_bits =
4371 wait_table_bits(zone->wait_table_hash_nr_entries);
4372 alloc_size = zone->wait_table_hash_nr_entries
4373 * sizeof(wait_queue_head_t);
4374
4375 if (!slab_is_available()) {
4376 zone->wait_table = (wait_queue_head_t *)
4377 memblock_virt_alloc_node_nopanic(
4378 alloc_size, zone->zone_pgdat->node_id);
4379 } else {
4380 /*
4381 * This case means that a zone whose size was 0 gets new memory
4382 * via memory hot-add.
4383 * But it may be the case that a new node was hot-added. In
4384 * this case vmalloc() will not be able to use this new node's
4385 * memory - this wait_table must be initialized to use this new
4386 * node itself as well.
4387 * To use this new node's memory, further consideration will be
4388 * necessary.
4389 */
4390 zone->wait_table = vmalloc(alloc_size);
4391 }
4392 if (!zone->wait_table)
4393 return -ENOMEM;
4394
4395 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4396 init_waitqueue_head(zone->wait_table + i);
4397
4398 return 0;
4399 }
4400
4401 static __meminit void zone_pcp_init(struct zone *zone)
4402 {
4403 /*
4404 * per cpu subsystem is not up at this point. The following code
4405 * relies on the ability of the linker to provide the
4406 * offset of a (static) per cpu variable into the per cpu area.
4407 */
4408 zone->pageset = &boot_pageset;
4409
4410 if (populated_zone(zone))
4411 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4412 zone->name, zone->present_pages,
4413 zone_batchsize(zone));
4414 }
4415
4416 int __meminit init_currently_empty_zone(struct zone *zone,
4417 unsigned long zone_start_pfn,
4418 unsigned long size,
4419 enum memmap_context context)
4420 {
4421 struct pglist_data *pgdat = zone->zone_pgdat;
4422 int ret;
4423 ret = zone_wait_table_init(zone, size);
4424 if (ret)
4425 return ret;
4426 pgdat->nr_zones = zone_idx(zone) + 1;
4427
4428 zone->zone_start_pfn = zone_start_pfn;
4429
4430 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4431 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4432 pgdat->node_id,
4433 (unsigned long)zone_idx(zone),
4434 zone_start_pfn, (zone_start_pfn + size));
4435
4436 zone_init_free_lists(zone);
4437
4438 return 0;
4439 }
4440
4441 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4442 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4443 /*
4444 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4445 */
4446 int __meminit __early_pfn_to_nid(unsigned long pfn)
4447 {
4448 unsigned long start_pfn, end_pfn;
4449 int nid;
4450 /*
4451 * NOTE: The following SMP-unsafe globals are only used early in boot
4452 * when the kernel is running single-threaded.
4453 */
4454 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4455 static int __meminitdata last_nid;
4456
4457 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4458 return last_nid;
4459
4460 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4461 if (nid != -1) {
4462 last_start_pfn = start_pfn;
4463 last_end_pfn = end_pfn;
4464 last_nid = nid;
4465 }
4466
4467 return nid;
4468 }
4469 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4470
4471 int __meminit early_pfn_to_nid(unsigned long pfn)
4472 {
4473 int nid;
4474
4475 nid = __early_pfn_to_nid(pfn);
4476 if (nid >= 0)
4477 return nid;
4478 /* just returns 0 */
4479 return 0;
4480 }
4481
4482 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4483 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4484 {
4485 int nid;
4486
4487 nid = __early_pfn_to_nid(pfn);
4488 if (nid >= 0 && nid != node)
4489 return false;
4490 return true;
4491 }
4492 #endif
4493
4494 /**
4495 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4496 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4497 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4498 *
4499 * If an architecture guarantees that all ranges registered contain no holes
4500 * and may be freed, this this function may be used instead of calling
4501 * memblock_free_early_nid() manually.
4502 */
4503 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4504 {
4505 unsigned long start_pfn, end_pfn;
4506 int i, this_nid;
4507
4508 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4509 start_pfn = min(start_pfn, max_low_pfn);
4510 end_pfn = min(end_pfn, max_low_pfn);
4511
4512 if (start_pfn < end_pfn)
4513 memblock_free_early_nid(PFN_PHYS(start_pfn),
4514 (end_pfn - start_pfn) << PAGE_SHIFT,
4515 this_nid);
4516 }
4517 }
4518
4519 /**
4520 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4521 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4522 *
4523 * If an architecture guarantees that all ranges registered contain no holes and may
4524 * be freed, this function may be used instead of calling memory_present() manually.
4525 */
4526 void __init sparse_memory_present_with_active_regions(int nid)
4527 {
4528 unsigned long start_pfn, end_pfn;
4529 int i, this_nid;
4530
4531 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4532 memory_present(this_nid, start_pfn, end_pfn);
4533 }
4534
4535 /**
4536 * get_pfn_range_for_nid - Return the start and end page frames for a node
4537 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4538 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4539 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4540 *
4541 * It returns the start and end page frame of a node based on information
4542 * provided by memblock_set_node(). If called for a node
4543 * with no available memory, a warning is printed and the start and end
4544 * PFNs will be 0.
4545 */
4546 void __meminit get_pfn_range_for_nid(unsigned int nid,
4547 unsigned long *start_pfn, unsigned long *end_pfn)
4548 {
4549 unsigned long this_start_pfn, this_end_pfn;
4550 int i;
4551
4552 *start_pfn = -1UL;
4553 *end_pfn = 0;
4554
4555 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4556 *start_pfn = min(*start_pfn, this_start_pfn);
4557 *end_pfn = max(*end_pfn, this_end_pfn);
4558 }
4559
4560 if (*start_pfn == -1UL)
4561 *start_pfn = 0;
4562 }
4563
4564 /*
4565 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4566 * assumption is made that zones within a node are ordered in monotonic
4567 * increasing memory addresses so that the "highest" populated zone is used
4568 */
4569 static void __init find_usable_zone_for_movable(void)
4570 {
4571 int zone_index;
4572 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4573 if (zone_index == ZONE_MOVABLE)
4574 continue;
4575
4576 if (arch_zone_highest_possible_pfn[zone_index] >
4577 arch_zone_lowest_possible_pfn[zone_index])
4578 break;
4579 }
4580
4581 VM_BUG_ON(zone_index == -1);
4582 movable_zone = zone_index;
4583 }
4584
4585 /*
4586 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4587 * because it is sized independent of architecture. Unlike the other zones,
4588 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4589 * in each node depending on the size of each node and how evenly kernelcore
4590 * is distributed. This helper function adjusts the zone ranges
4591 * provided by the architecture for a given node by using the end of the
4592 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4593 * zones within a node are in order of monotonic increases memory addresses
4594 */
4595 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4596 unsigned long zone_type,
4597 unsigned long node_start_pfn,
4598 unsigned long node_end_pfn,
4599 unsigned long *zone_start_pfn,
4600 unsigned long *zone_end_pfn)
4601 {
4602 /* Only adjust if ZONE_MOVABLE is on this node */
4603 if (zone_movable_pfn[nid]) {
4604 /* Size ZONE_MOVABLE */
4605 if (zone_type == ZONE_MOVABLE) {
4606 *zone_start_pfn = zone_movable_pfn[nid];
4607 *zone_end_pfn = min(node_end_pfn,
4608 arch_zone_highest_possible_pfn[movable_zone]);
4609
4610 /* Adjust for ZONE_MOVABLE starting within this range */
4611 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4612 *zone_end_pfn > zone_movable_pfn[nid]) {
4613 *zone_end_pfn = zone_movable_pfn[nid];
4614
4615 /* Check if this whole range is within ZONE_MOVABLE */
4616 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4617 *zone_start_pfn = *zone_end_pfn;
4618 }
4619 }
4620
4621 /*
4622 * Return the number of pages a zone spans in a node, including holes
4623 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4624 */
4625 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4626 unsigned long zone_type,
4627 unsigned long node_start_pfn,
4628 unsigned long node_end_pfn,
4629 unsigned long *ignored)
4630 {
4631 unsigned long zone_start_pfn, zone_end_pfn;
4632
4633 /* Get the start and end of the zone */
4634 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4635 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4636 adjust_zone_range_for_zone_movable(nid, zone_type,
4637 node_start_pfn, node_end_pfn,
4638 &zone_start_pfn, &zone_end_pfn);
4639
4640 /* Check that this node has pages within the zone's required range */
4641 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4642 return 0;
4643
4644 /* Move the zone boundaries inside the node if necessary */
4645 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4646 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4647
4648 /* Return the spanned pages */
4649 return zone_end_pfn - zone_start_pfn;
4650 }
4651
4652 /*
4653 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4654 * then all holes in the requested range will be accounted for.
4655 */
4656 unsigned long __meminit __absent_pages_in_range(int nid,
4657 unsigned long range_start_pfn,
4658 unsigned long range_end_pfn)
4659 {
4660 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4661 unsigned long start_pfn, end_pfn;
4662 int i;
4663
4664 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4665 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4666 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4667 nr_absent -= end_pfn - start_pfn;
4668 }
4669 return nr_absent;
4670 }
4671
4672 /**
4673 * absent_pages_in_range - Return number of page frames in holes within a range
4674 * @start_pfn: The start PFN to start searching for holes
4675 * @end_pfn: The end PFN to stop searching for holes
4676 *
4677 * It returns the number of pages frames in memory holes within a range.
4678 */
4679 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4680 unsigned long end_pfn)
4681 {
4682 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4683 }
4684
4685 /* Return the number of page frames in holes in a zone on a node */
4686 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4687 unsigned long zone_type,
4688 unsigned long node_start_pfn,
4689 unsigned long node_end_pfn,
4690 unsigned long *ignored)
4691 {
4692 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4693 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4694 unsigned long zone_start_pfn, zone_end_pfn;
4695
4696 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4697 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4698
4699 adjust_zone_range_for_zone_movable(nid, zone_type,
4700 node_start_pfn, node_end_pfn,
4701 &zone_start_pfn, &zone_end_pfn);
4702 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4703 }
4704
4705 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4706 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4707 unsigned long zone_type,
4708 unsigned long node_start_pfn,
4709 unsigned long node_end_pfn,
4710 unsigned long *zones_size)
4711 {
4712 return zones_size[zone_type];
4713 }
4714
4715 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4716 unsigned long zone_type,
4717 unsigned long node_start_pfn,
4718 unsigned long node_end_pfn,
4719 unsigned long *zholes_size)
4720 {
4721 if (!zholes_size)
4722 return 0;
4723
4724 return zholes_size[zone_type];
4725 }
4726
4727 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4728
4729 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4730 unsigned long node_start_pfn,
4731 unsigned long node_end_pfn,
4732 unsigned long *zones_size,
4733 unsigned long *zholes_size)
4734 {
4735 unsigned long realtotalpages, totalpages = 0;
4736 enum zone_type i;
4737
4738 for (i = 0; i < MAX_NR_ZONES; i++)
4739 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4740 node_start_pfn,
4741 node_end_pfn,
4742 zones_size);
4743 pgdat->node_spanned_pages = totalpages;
4744
4745 realtotalpages = totalpages;
4746 for (i = 0; i < MAX_NR_ZONES; i++)
4747 realtotalpages -=
4748 zone_absent_pages_in_node(pgdat->node_id, i,
4749 node_start_pfn, node_end_pfn,
4750 zholes_size);
4751 pgdat->node_present_pages = realtotalpages;
4752 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4753 realtotalpages);
4754 }
4755
4756 #ifndef CONFIG_SPARSEMEM
4757 /*
4758 * Calculate the size of the zone->blockflags rounded to an unsigned long
4759 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4760 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4761 * round what is now in bits to nearest long in bits, then return it in
4762 * bytes.
4763 */
4764 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4765 {
4766 unsigned long usemapsize;
4767
4768 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4769 usemapsize = roundup(zonesize, pageblock_nr_pages);
4770 usemapsize = usemapsize >> pageblock_order;
4771 usemapsize *= NR_PAGEBLOCK_BITS;
4772 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4773
4774 return usemapsize / 8;
4775 }
4776
4777 static void __init setup_usemap(struct pglist_data *pgdat,
4778 struct zone *zone,
4779 unsigned long zone_start_pfn,
4780 unsigned long zonesize)
4781 {
4782 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4783 zone->pageblock_flags = NULL;
4784 if (usemapsize)
4785 zone->pageblock_flags =
4786 memblock_virt_alloc_node_nopanic(usemapsize,
4787 pgdat->node_id);
4788 }
4789 #else
4790 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4791 unsigned long zone_start_pfn, unsigned long zonesize) {}
4792 #endif /* CONFIG_SPARSEMEM */
4793
4794 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4795
4796 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4797 void __paginginit set_pageblock_order(void)
4798 {
4799 unsigned int order;
4800
4801 /* Check that pageblock_nr_pages has not already been setup */
4802 if (pageblock_order)
4803 return;
4804
4805 if (HPAGE_SHIFT > PAGE_SHIFT)
4806 order = HUGETLB_PAGE_ORDER;
4807 else
4808 order = MAX_ORDER - 1;
4809
4810 /*
4811 * Assume the largest contiguous order of interest is a huge page.
4812 * This value may be variable depending on boot parameters on IA64 and
4813 * powerpc.
4814 */
4815 pageblock_order = order;
4816 }
4817 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4818
4819 /*
4820 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4821 * is unused as pageblock_order is set at compile-time. See
4822 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4823 * the kernel config
4824 */
4825 void __paginginit set_pageblock_order(void)
4826 {
4827 }
4828
4829 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4830
4831 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4832 unsigned long present_pages)
4833 {
4834 unsigned long pages = spanned_pages;
4835
4836 /*
4837 * Provide a more accurate estimation if there are holes within
4838 * the zone and SPARSEMEM is in use. If there are holes within the
4839 * zone, each populated memory region may cost us one or two extra
4840 * memmap pages due to alignment because memmap pages for each
4841 * populated regions may not naturally algined on page boundary.
4842 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4843 */
4844 if (spanned_pages > present_pages + (present_pages >> 4) &&
4845 IS_ENABLED(CONFIG_SPARSEMEM))
4846 pages = present_pages;
4847
4848 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4849 }
4850
4851 /*
4852 * Set up the zone data structures:
4853 * - mark all pages reserved
4854 * - mark all memory queues empty
4855 * - clear the memory bitmaps
4856 *
4857 * NOTE: pgdat should get zeroed by caller.
4858 */
4859 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4860 unsigned long node_start_pfn, unsigned long node_end_pfn,
4861 unsigned long *zones_size, unsigned long *zholes_size)
4862 {
4863 enum zone_type j;
4864 int nid = pgdat->node_id;
4865 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4866 int ret;
4867
4868 pgdat_resize_init(pgdat);
4869 #ifdef CONFIG_NUMA_BALANCING
4870 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4871 pgdat->numabalancing_migrate_nr_pages = 0;
4872 pgdat->numabalancing_migrate_next_window = jiffies;
4873 #endif
4874 init_waitqueue_head(&pgdat->kswapd_wait);
4875 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4876 pgdat_page_cgroup_init(pgdat);
4877
4878 for (j = 0; j < MAX_NR_ZONES; j++) {
4879 struct zone *zone = pgdat->node_zones + j;
4880 unsigned long size, realsize, freesize, memmap_pages;
4881
4882 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4883 node_end_pfn, zones_size);
4884 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4885 node_start_pfn,
4886 node_end_pfn,
4887 zholes_size);
4888
4889 /*
4890 * Adjust freesize so that it accounts for how much memory
4891 * is used by this zone for memmap. This affects the watermark
4892 * and per-cpu initialisations
4893 */
4894 memmap_pages = calc_memmap_size(size, realsize);
4895 if (freesize >= memmap_pages) {
4896 freesize -= memmap_pages;
4897 if (memmap_pages)
4898 printk(KERN_DEBUG
4899 " %s zone: %lu pages used for memmap\n",
4900 zone_names[j], memmap_pages);
4901 } else
4902 printk(KERN_WARNING
4903 " %s zone: %lu pages exceeds freesize %lu\n",
4904 zone_names[j], memmap_pages, freesize);
4905
4906 /* Account for reserved pages */
4907 if (j == 0 && freesize > dma_reserve) {
4908 freesize -= dma_reserve;
4909 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4910 zone_names[0], dma_reserve);
4911 }
4912
4913 if (!is_highmem_idx(j))
4914 nr_kernel_pages += freesize;
4915 /* Charge for highmem memmap if there are enough kernel pages */
4916 else if (nr_kernel_pages > memmap_pages * 2)
4917 nr_kernel_pages -= memmap_pages;
4918 nr_all_pages += freesize;
4919
4920 zone->spanned_pages = size;
4921 zone->present_pages = realsize;
4922 /*
4923 * Set an approximate value for lowmem here, it will be adjusted
4924 * when the bootmem allocator frees pages into the buddy system.
4925 * And all highmem pages will be managed by the buddy system.
4926 */
4927 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4928 #ifdef CONFIG_NUMA
4929 zone->node = nid;
4930 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4931 / 100;
4932 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4933 #endif
4934 zone->name = zone_names[j];
4935 spin_lock_init(&zone->lock);
4936 spin_lock_init(&zone->lru_lock);
4937 zone_seqlock_init(zone);
4938 zone->zone_pgdat = pgdat;
4939 zone_pcp_init(zone);
4940
4941 /* For bootup, initialized properly in watermark setup */
4942 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4943
4944 lruvec_init(&zone->lruvec);
4945 if (!size)
4946 continue;
4947
4948 set_pageblock_order();
4949 setup_usemap(pgdat, zone, zone_start_pfn, size);
4950 ret = init_currently_empty_zone(zone, zone_start_pfn,
4951 size, MEMMAP_EARLY);
4952 BUG_ON(ret);
4953 memmap_init(size, nid, j, zone_start_pfn);
4954 zone_start_pfn += size;
4955 }
4956 }
4957
4958 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4959 {
4960 /* Skip empty nodes */
4961 if (!pgdat->node_spanned_pages)
4962 return;
4963
4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4965 /* ia64 gets its own node_mem_map, before this, without bootmem */
4966 if (!pgdat->node_mem_map) {
4967 unsigned long size, start, end;
4968 struct page *map;
4969
4970 /*
4971 * The zone's endpoints aren't required to be MAX_ORDER
4972 * aligned but the node_mem_map endpoints must be in order
4973 * for the buddy allocator to function correctly.
4974 */
4975 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4976 end = pgdat_end_pfn(pgdat);
4977 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4978 size = (end - start) * sizeof(struct page);
4979 map = alloc_remap(pgdat->node_id, size);
4980 if (!map)
4981 map = memblock_virt_alloc_node_nopanic(size,
4982 pgdat->node_id);
4983 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4984 }
4985 #ifndef CONFIG_NEED_MULTIPLE_NODES
4986 /*
4987 * With no DISCONTIG, the global mem_map is just set as node 0's
4988 */
4989 if (pgdat == NODE_DATA(0)) {
4990 mem_map = NODE_DATA(0)->node_mem_map;
4991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4992 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4993 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4994 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4995 }
4996 #endif
4997 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4998 }
4999
5000 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5001 unsigned long node_start_pfn, unsigned long *zholes_size)
5002 {
5003 pg_data_t *pgdat = NODE_DATA(nid);
5004 unsigned long start_pfn = 0;
5005 unsigned long end_pfn = 0;
5006
5007 /* pg_data_t should be reset to zero when it's allocated */
5008 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5009
5010 pgdat->node_id = nid;
5011 pgdat->node_start_pfn = node_start_pfn;
5012 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5013 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5014 #endif
5015 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5016 zones_size, zholes_size);
5017
5018 alloc_node_mem_map(pgdat);
5019 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5020 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5021 nid, (unsigned long)pgdat,
5022 (unsigned long)pgdat->node_mem_map);
5023 #endif
5024
5025 free_area_init_core(pgdat, start_pfn, end_pfn,
5026 zones_size, zholes_size);
5027 }
5028
5029 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5030
5031 #if MAX_NUMNODES > 1
5032 /*
5033 * Figure out the number of possible node ids.
5034 */
5035 void __init setup_nr_node_ids(void)
5036 {
5037 unsigned int node;
5038 unsigned int highest = 0;
5039
5040 for_each_node_mask(node, node_possible_map)
5041 highest = node;
5042 nr_node_ids = highest + 1;
5043 }
5044 #endif
5045
5046 /**
5047 * node_map_pfn_alignment - determine the maximum internode alignment
5048 *
5049 * This function should be called after node map is populated and sorted.
5050 * It calculates the maximum power of two alignment which can distinguish
5051 * all the nodes.
5052 *
5053 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5054 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5055 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5056 * shifted, 1GiB is enough and this function will indicate so.
5057 *
5058 * This is used to test whether pfn -> nid mapping of the chosen memory
5059 * model has fine enough granularity to avoid incorrect mapping for the
5060 * populated node map.
5061 *
5062 * Returns the determined alignment in pfn's. 0 if there is no alignment
5063 * requirement (single node).
5064 */
5065 unsigned long __init node_map_pfn_alignment(void)
5066 {
5067 unsigned long accl_mask = 0, last_end = 0;
5068 unsigned long start, end, mask;
5069 int last_nid = -1;
5070 int i, nid;
5071
5072 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5073 if (!start || last_nid < 0 || last_nid == nid) {
5074 last_nid = nid;
5075 last_end = end;
5076 continue;
5077 }
5078
5079 /*
5080 * Start with a mask granular enough to pin-point to the
5081 * start pfn and tick off bits one-by-one until it becomes
5082 * too coarse to separate the current node from the last.
5083 */
5084 mask = ~((1 << __ffs(start)) - 1);
5085 while (mask && last_end <= (start & (mask << 1)))
5086 mask <<= 1;
5087
5088 /* accumulate all internode masks */
5089 accl_mask |= mask;
5090 }
5091
5092 /* convert mask to number of pages */
5093 return ~accl_mask + 1;
5094 }
5095
5096 /* Find the lowest pfn for a node */
5097 static unsigned long __init find_min_pfn_for_node(int nid)
5098 {
5099 unsigned long min_pfn = ULONG_MAX;
5100 unsigned long start_pfn;
5101 int i;
5102
5103 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5104 min_pfn = min(min_pfn, start_pfn);
5105
5106 if (min_pfn == ULONG_MAX) {
5107 printk(KERN_WARNING
5108 "Could not find start_pfn for node %d\n", nid);
5109 return 0;
5110 }
5111
5112 return min_pfn;
5113 }
5114
5115 /**
5116 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5117 *
5118 * It returns the minimum PFN based on information provided via
5119 * memblock_set_node().
5120 */
5121 unsigned long __init find_min_pfn_with_active_regions(void)
5122 {
5123 return find_min_pfn_for_node(MAX_NUMNODES);
5124 }
5125
5126 /*
5127 * early_calculate_totalpages()
5128 * Sum pages in active regions for movable zone.
5129 * Populate N_MEMORY for calculating usable_nodes.
5130 */
5131 static unsigned long __init early_calculate_totalpages(void)
5132 {
5133 unsigned long totalpages = 0;
5134 unsigned long start_pfn, end_pfn;
5135 int i, nid;
5136
5137 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5138 unsigned long pages = end_pfn - start_pfn;
5139
5140 totalpages += pages;
5141 if (pages)
5142 node_set_state(nid, N_MEMORY);
5143 }
5144 return totalpages;
5145 }
5146
5147 /*
5148 * Find the PFN the Movable zone begins in each node. Kernel memory
5149 * is spread evenly between nodes as long as the nodes have enough
5150 * memory. When they don't, some nodes will have more kernelcore than
5151 * others
5152 */
5153 static void __init find_zone_movable_pfns_for_nodes(void)
5154 {
5155 int i, nid;
5156 unsigned long usable_startpfn;
5157 unsigned long kernelcore_node, kernelcore_remaining;
5158 /* save the state before borrow the nodemask */
5159 nodemask_t saved_node_state = node_states[N_MEMORY];
5160 unsigned long totalpages = early_calculate_totalpages();
5161 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5162 struct memblock_region *r;
5163
5164 /* Need to find movable_zone earlier when movable_node is specified. */
5165 find_usable_zone_for_movable();
5166
5167 /*
5168 * If movable_node is specified, ignore kernelcore and movablecore
5169 * options.
5170 */
5171 if (movable_node_is_enabled()) {
5172 for_each_memblock(memory, r) {
5173 if (!memblock_is_hotpluggable(r))
5174 continue;
5175
5176 nid = r->nid;
5177
5178 usable_startpfn = PFN_DOWN(r->base);
5179 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5180 min(usable_startpfn, zone_movable_pfn[nid]) :
5181 usable_startpfn;
5182 }
5183
5184 goto out2;
5185 }
5186
5187 /*
5188 * If movablecore=nn[KMG] was specified, calculate what size of
5189 * kernelcore that corresponds so that memory usable for
5190 * any allocation type is evenly spread. If both kernelcore
5191 * and movablecore are specified, then the value of kernelcore
5192 * will be used for required_kernelcore if it's greater than
5193 * what movablecore would have allowed.
5194 */
5195 if (required_movablecore) {
5196 unsigned long corepages;
5197
5198 /*
5199 * Round-up so that ZONE_MOVABLE is at least as large as what
5200 * was requested by the user
5201 */
5202 required_movablecore =
5203 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5204 corepages = totalpages - required_movablecore;
5205
5206 required_kernelcore = max(required_kernelcore, corepages);
5207 }
5208
5209 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5210 if (!required_kernelcore)
5211 goto out;
5212
5213 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5214 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5215
5216 restart:
5217 /* Spread kernelcore memory as evenly as possible throughout nodes */
5218 kernelcore_node = required_kernelcore / usable_nodes;
5219 for_each_node_state(nid, N_MEMORY) {
5220 unsigned long start_pfn, end_pfn;
5221
5222 /*
5223 * Recalculate kernelcore_node if the division per node
5224 * now exceeds what is necessary to satisfy the requested
5225 * amount of memory for the kernel
5226 */
5227 if (required_kernelcore < kernelcore_node)
5228 kernelcore_node = required_kernelcore / usable_nodes;
5229
5230 /*
5231 * As the map is walked, we track how much memory is usable
5232 * by the kernel using kernelcore_remaining. When it is
5233 * 0, the rest of the node is usable by ZONE_MOVABLE
5234 */
5235 kernelcore_remaining = kernelcore_node;
5236
5237 /* Go through each range of PFNs within this node */
5238 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5239 unsigned long size_pages;
5240
5241 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5242 if (start_pfn >= end_pfn)
5243 continue;
5244
5245 /* Account for what is only usable for kernelcore */
5246 if (start_pfn < usable_startpfn) {
5247 unsigned long kernel_pages;
5248 kernel_pages = min(end_pfn, usable_startpfn)
5249 - start_pfn;
5250
5251 kernelcore_remaining -= min(kernel_pages,
5252 kernelcore_remaining);
5253 required_kernelcore -= min(kernel_pages,
5254 required_kernelcore);
5255
5256 /* Continue if range is now fully accounted */
5257 if (end_pfn <= usable_startpfn) {
5258
5259 /*
5260 * Push zone_movable_pfn to the end so
5261 * that if we have to rebalance
5262 * kernelcore across nodes, we will
5263 * not double account here
5264 */
5265 zone_movable_pfn[nid] = end_pfn;
5266 continue;
5267 }
5268 start_pfn = usable_startpfn;
5269 }
5270
5271 /*
5272 * The usable PFN range for ZONE_MOVABLE is from
5273 * start_pfn->end_pfn. Calculate size_pages as the
5274 * number of pages used as kernelcore
5275 */
5276 size_pages = end_pfn - start_pfn;
5277 if (size_pages > kernelcore_remaining)
5278 size_pages = kernelcore_remaining;
5279 zone_movable_pfn[nid] = start_pfn + size_pages;
5280
5281 /*
5282 * Some kernelcore has been met, update counts and
5283 * break if the kernelcore for this node has been
5284 * satisfied
5285 */
5286 required_kernelcore -= min(required_kernelcore,
5287 size_pages);
5288 kernelcore_remaining -= size_pages;
5289 if (!kernelcore_remaining)
5290 break;
5291 }
5292 }
5293
5294 /*
5295 * If there is still required_kernelcore, we do another pass with one
5296 * less node in the count. This will push zone_movable_pfn[nid] further
5297 * along on the nodes that still have memory until kernelcore is
5298 * satisfied
5299 */
5300 usable_nodes--;
5301 if (usable_nodes && required_kernelcore > usable_nodes)
5302 goto restart;
5303
5304 out2:
5305 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5306 for (nid = 0; nid < MAX_NUMNODES; nid++)
5307 zone_movable_pfn[nid] =
5308 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5309
5310 out:
5311 /* restore the node_state */
5312 node_states[N_MEMORY] = saved_node_state;
5313 }
5314
5315 /* Any regular or high memory on that node ? */
5316 static void check_for_memory(pg_data_t *pgdat, int nid)
5317 {
5318 enum zone_type zone_type;
5319
5320 if (N_MEMORY == N_NORMAL_MEMORY)
5321 return;
5322
5323 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5324 struct zone *zone = &pgdat->node_zones[zone_type];
5325 if (populated_zone(zone)) {
5326 node_set_state(nid, N_HIGH_MEMORY);
5327 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5328 zone_type <= ZONE_NORMAL)
5329 node_set_state(nid, N_NORMAL_MEMORY);
5330 break;
5331 }
5332 }
5333 }
5334
5335 /**
5336 * free_area_init_nodes - Initialise all pg_data_t and zone data
5337 * @max_zone_pfn: an array of max PFNs for each zone
5338 *
5339 * This will call free_area_init_node() for each active node in the system.
5340 * Using the page ranges provided by memblock_set_node(), the size of each
5341 * zone in each node and their holes is calculated. If the maximum PFN
5342 * between two adjacent zones match, it is assumed that the zone is empty.
5343 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5344 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5345 * starts where the previous one ended. For example, ZONE_DMA32 starts
5346 * at arch_max_dma_pfn.
5347 */
5348 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5349 {
5350 unsigned long start_pfn, end_pfn;
5351 int i, nid;
5352
5353 /* Record where the zone boundaries are */
5354 memset(arch_zone_lowest_possible_pfn, 0,
5355 sizeof(arch_zone_lowest_possible_pfn));
5356 memset(arch_zone_highest_possible_pfn, 0,
5357 sizeof(arch_zone_highest_possible_pfn));
5358 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5359 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5360 for (i = 1; i < MAX_NR_ZONES; i++) {
5361 if (i == ZONE_MOVABLE)
5362 continue;
5363 arch_zone_lowest_possible_pfn[i] =
5364 arch_zone_highest_possible_pfn[i-1];
5365 arch_zone_highest_possible_pfn[i] =
5366 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5367 }
5368 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5369 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5370
5371 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5372 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5373 find_zone_movable_pfns_for_nodes();
5374
5375 /* Print out the zone ranges */
5376 printk("Zone ranges:\n");
5377 for (i = 0; i < MAX_NR_ZONES; i++) {
5378 if (i == ZONE_MOVABLE)
5379 continue;
5380 printk(KERN_CONT " %-8s ", zone_names[i]);
5381 if (arch_zone_lowest_possible_pfn[i] ==
5382 arch_zone_highest_possible_pfn[i])
5383 printk(KERN_CONT "empty\n");
5384 else
5385 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5386 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5387 (arch_zone_highest_possible_pfn[i]
5388 << PAGE_SHIFT) - 1);
5389 }
5390
5391 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5392 printk("Movable zone start for each node\n");
5393 for (i = 0; i < MAX_NUMNODES; i++) {
5394 if (zone_movable_pfn[i])
5395 printk(" Node %d: %#010lx\n", i,
5396 zone_movable_pfn[i] << PAGE_SHIFT);
5397 }
5398
5399 /* Print out the early node map */
5400 printk("Early memory node ranges\n");
5401 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5402 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5403 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5404
5405 /* Initialise every node */
5406 mminit_verify_pageflags_layout();
5407 setup_nr_node_ids();
5408 for_each_online_node(nid) {
5409 pg_data_t *pgdat = NODE_DATA(nid);
5410 free_area_init_node(nid, NULL,
5411 find_min_pfn_for_node(nid), NULL);
5412
5413 /* Any memory on that node */
5414 if (pgdat->node_present_pages)
5415 node_set_state(nid, N_MEMORY);
5416 check_for_memory(pgdat, nid);
5417 }
5418 }
5419
5420 static int __init cmdline_parse_core(char *p, unsigned long *core)
5421 {
5422 unsigned long long coremem;
5423 if (!p)
5424 return -EINVAL;
5425
5426 coremem = memparse(p, &p);
5427 *core = coremem >> PAGE_SHIFT;
5428
5429 /* Paranoid check that UL is enough for the coremem value */
5430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5431
5432 return 0;
5433 }
5434
5435 /*
5436 * kernelcore=size sets the amount of memory for use for allocations that
5437 * cannot be reclaimed or migrated.
5438 */
5439 static int __init cmdline_parse_kernelcore(char *p)
5440 {
5441 return cmdline_parse_core(p, &required_kernelcore);
5442 }
5443
5444 /*
5445 * movablecore=size sets the amount of memory for use for allocations that
5446 * can be reclaimed or migrated.
5447 */
5448 static int __init cmdline_parse_movablecore(char *p)
5449 {
5450 return cmdline_parse_core(p, &required_movablecore);
5451 }
5452
5453 early_param("kernelcore", cmdline_parse_kernelcore);
5454 early_param("movablecore", cmdline_parse_movablecore);
5455
5456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5457
5458 void adjust_managed_page_count(struct page *page, long count)
5459 {
5460 spin_lock(&managed_page_count_lock);
5461 page_zone(page)->managed_pages += count;
5462 totalram_pages += count;
5463 #ifdef CONFIG_HIGHMEM
5464 if (PageHighMem(page))
5465 totalhigh_pages += count;
5466 #endif
5467 spin_unlock(&managed_page_count_lock);
5468 }
5469 EXPORT_SYMBOL(adjust_managed_page_count);
5470
5471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5472 {
5473 void *pos;
5474 unsigned long pages = 0;
5475
5476 start = (void *)PAGE_ALIGN((unsigned long)start);
5477 end = (void *)((unsigned long)end & PAGE_MASK);
5478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5479 if ((unsigned int)poison <= 0xFF)
5480 memset(pos, poison, PAGE_SIZE);
5481 free_reserved_page(virt_to_page(pos));
5482 }
5483
5484 if (pages && s)
5485 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5486 s, pages << (PAGE_SHIFT - 10), start, end);
5487
5488 return pages;
5489 }
5490 EXPORT_SYMBOL(free_reserved_area);
5491
5492 #ifdef CONFIG_HIGHMEM
5493 void free_highmem_page(struct page *page)
5494 {
5495 __free_reserved_page(page);
5496 totalram_pages++;
5497 page_zone(page)->managed_pages++;
5498 totalhigh_pages++;
5499 }
5500 #endif
5501
5502
5503 void __init mem_init_print_info(const char *str)
5504 {
5505 unsigned long physpages, codesize, datasize, rosize, bss_size;
5506 unsigned long init_code_size, init_data_size;
5507
5508 physpages = get_num_physpages();
5509 codesize = _etext - _stext;
5510 datasize = _edata - _sdata;
5511 rosize = __end_rodata - __start_rodata;
5512 bss_size = __bss_stop - __bss_start;
5513 init_data_size = __init_end - __init_begin;
5514 init_code_size = _einittext - _sinittext;
5515
5516 /*
5517 * Detect special cases and adjust section sizes accordingly:
5518 * 1) .init.* may be embedded into .data sections
5519 * 2) .init.text.* may be out of [__init_begin, __init_end],
5520 * please refer to arch/tile/kernel/vmlinux.lds.S.
5521 * 3) .rodata.* may be embedded into .text or .data sections.
5522 */
5523 #define adj_init_size(start, end, size, pos, adj) \
5524 do { \
5525 if (start <= pos && pos < end && size > adj) \
5526 size -= adj; \
5527 } while (0)
5528
5529 adj_init_size(__init_begin, __init_end, init_data_size,
5530 _sinittext, init_code_size);
5531 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5532 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5533 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5534 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5535
5536 #undef adj_init_size
5537
5538 printk("Memory: %luK/%luK available "
5539 "(%luK kernel code, %luK rwdata, %luK rodata, "
5540 "%luK init, %luK bss, %luK reserved"
5541 #ifdef CONFIG_HIGHMEM
5542 ", %luK highmem"
5543 #endif
5544 "%s%s)\n",
5545 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5546 codesize >> 10, datasize >> 10, rosize >> 10,
5547 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5548 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5549 #ifdef CONFIG_HIGHMEM
5550 totalhigh_pages << (PAGE_SHIFT-10),
5551 #endif
5552 str ? ", " : "", str ? str : "");
5553 }
5554
5555 /**
5556 * set_dma_reserve - set the specified number of pages reserved in the first zone
5557 * @new_dma_reserve: The number of pages to mark reserved
5558 *
5559 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5560 * In the DMA zone, a significant percentage may be consumed by kernel image
5561 * and other unfreeable allocations which can skew the watermarks badly. This
5562 * function may optionally be used to account for unfreeable pages in the
5563 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5564 * smaller per-cpu batchsize.
5565 */
5566 void __init set_dma_reserve(unsigned long new_dma_reserve)
5567 {
5568 dma_reserve = new_dma_reserve;
5569 }
5570
5571 void __init free_area_init(unsigned long *zones_size)
5572 {
5573 free_area_init_node(0, zones_size,
5574 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5575 }
5576
5577 static int page_alloc_cpu_notify(struct notifier_block *self,
5578 unsigned long action, void *hcpu)
5579 {
5580 int cpu = (unsigned long)hcpu;
5581
5582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5583 lru_add_drain_cpu(cpu);
5584 drain_pages(cpu);
5585
5586 /*
5587 * Spill the event counters of the dead processor
5588 * into the current processors event counters.
5589 * This artificially elevates the count of the current
5590 * processor.
5591 */
5592 vm_events_fold_cpu(cpu);
5593
5594 /*
5595 * Zero the differential counters of the dead processor
5596 * so that the vm statistics are consistent.
5597 *
5598 * This is only okay since the processor is dead and cannot
5599 * race with what we are doing.
5600 */
5601 cpu_vm_stats_fold(cpu);
5602 }
5603 return NOTIFY_OK;
5604 }
5605
5606 void __init page_alloc_init(void)
5607 {
5608 hotcpu_notifier(page_alloc_cpu_notify, 0);
5609 }
5610
5611 /*
5612 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5613 * or min_free_kbytes changes.
5614 */
5615 static void calculate_totalreserve_pages(void)
5616 {
5617 struct pglist_data *pgdat;
5618 unsigned long reserve_pages = 0;
5619 enum zone_type i, j;
5620
5621 for_each_online_pgdat(pgdat) {
5622 for (i = 0; i < MAX_NR_ZONES; i++) {
5623 struct zone *zone = pgdat->node_zones + i;
5624 long max = 0;
5625
5626 /* Find valid and maximum lowmem_reserve in the zone */
5627 for (j = i; j < MAX_NR_ZONES; j++) {
5628 if (zone->lowmem_reserve[j] > max)
5629 max = zone->lowmem_reserve[j];
5630 }
5631
5632 /* we treat the high watermark as reserved pages. */
5633 max += high_wmark_pages(zone);
5634
5635 if (max > zone->managed_pages)
5636 max = zone->managed_pages;
5637 reserve_pages += max;
5638 /*
5639 * Lowmem reserves are not available to
5640 * GFP_HIGHUSER page cache allocations and
5641 * kswapd tries to balance zones to their high
5642 * watermark. As a result, neither should be
5643 * regarded as dirtyable memory, to prevent a
5644 * situation where reclaim has to clean pages
5645 * in order to balance the zones.
5646 */
5647 zone->dirty_balance_reserve = max;
5648 }
5649 }
5650 dirty_balance_reserve = reserve_pages;
5651 totalreserve_pages = reserve_pages;
5652 }
5653
5654 /*
5655 * setup_per_zone_lowmem_reserve - called whenever
5656 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5657 * has a correct pages reserved value, so an adequate number of
5658 * pages are left in the zone after a successful __alloc_pages().
5659 */
5660 static void setup_per_zone_lowmem_reserve(void)
5661 {
5662 struct pglist_data *pgdat;
5663 enum zone_type j, idx;
5664
5665 for_each_online_pgdat(pgdat) {
5666 for (j = 0; j < MAX_NR_ZONES; j++) {
5667 struct zone *zone = pgdat->node_zones + j;
5668 unsigned long managed_pages = zone->managed_pages;
5669
5670 zone->lowmem_reserve[j] = 0;
5671
5672 idx = j;
5673 while (idx) {
5674 struct zone *lower_zone;
5675
5676 idx--;
5677
5678 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5679 sysctl_lowmem_reserve_ratio[idx] = 1;
5680
5681 lower_zone = pgdat->node_zones + idx;
5682 lower_zone->lowmem_reserve[j] = managed_pages /
5683 sysctl_lowmem_reserve_ratio[idx];
5684 managed_pages += lower_zone->managed_pages;
5685 }
5686 }
5687 }
5688
5689 /* update totalreserve_pages */
5690 calculate_totalreserve_pages();
5691 }
5692
5693 static void __setup_per_zone_wmarks(void)
5694 {
5695 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5696 unsigned long lowmem_pages = 0;
5697 struct zone *zone;
5698 unsigned long flags;
5699
5700 /* Calculate total number of !ZONE_HIGHMEM pages */
5701 for_each_zone(zone) {
5702 if (!is_highmem(zone))
5703 lowmem_pages += zone->managed_pages;
5704 }
5705
5706 for_each_zone(zone) {
5707 u64 tmp;
5708
5709 spin_lock_irqsave(&zone->lock, flags);
5710 tmp = (u64)pages_min * zone->managed_pages;
5711 do_div(tmp, lowmem_pages);
5712 if (is_highmem(zone)) {
5713 /*
5714 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5715 * need highmem pages, so cap pages_min to a small
5716 * value here.
5717 *
5718 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5719 * deltas controls asynch page reclaim, and so should
5720 * not be capped for highmem.
5721 */
5722 unsigned long min_pages;
5723
5724 min_pages = zone->managed_pages / 1024;
5725 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5726 zone->watermark[WMARK_MIN] = min_pages;
5727 } else {
5728 /*
5729 * If it's a lowmem zone, reserve a number of pages
5730 * proportionate to the zone's size.
5731 */
5732 zone->watermark[WMARK_MIN] = tmp;
5733 }
5734
5735 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5736 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5737
5738 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5739 high_wmark_pages(zone) - low_wmark_pages(zone) -
5740 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5741
5742 setup_zone_migrate_reserve(zone);
5743 spin_unlock_irqrestore(&zone->lock, flags);
5744 }
5745
5746 /* update totalreserve_pages */
5747 calculate_totalreserve_pages();
5748 }
5749
5750 /**
5751 * setup_per_zone_wmarks - called when min_free_kbytes changes
5752 * or when memory is hot-{added|removed}
5753 *
5754 * Ensures that the watermark[min,low,high] values for each zone are set
5755 * correctly with respect to min_free_kbytes.
5756 */
5757 void setup_per_zone_wmarks(void)
5758 {
5759 mutex_lock(&zonelists_mutex);
5760 __setup_per_zone_wmarks();
5761 mutex_unlock(&zonelists_mutex);
5762 }
5763
5764 /*
5765 * The inactive anon list should be small enough that the VM never has to
5766 * do too much work, but large enough that each inactive page has a chance
5767 * to be referenced again before it is swapped out.
5768 *
5769 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5770 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5771 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5772 * the anonymous pages are kept on the inactive list.
5773 *
5774 * total target max
5775 * memory ratio inactive anon
5776 * -------------------------------------
5777 * 10MB 1 5MB
5778 * 100MB 1 50MB
5779 * 1GB 3 250MB
5780 * 10GB 10 0.9GB
5781 * 100GB 31 3GB
5782 * 1TB 101 10GB
5783 * 10TB 320 32GB
5784 */
5785 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5786 {
5787 unsigned int gb, ratio;
5788
5789 /* Zone size in gigabytes */
5790 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5791 if (gb)
5792 ratio = int_sqrt(10 * gb);
5793 else
5794 ratio = 1;
5795
5796 zone->inactive_ratio = ratio;
5797 }
5798
5799 static void __meminit setup_per_zone_inactive_ratio(void)
5800 {
5801 struct zone *zone;
5802
5803 for_each_zone(zone)
5804 calculate_zone_inactive_ratio(zone);
5805 }
5806
5807 /*
5808 * Initialise min_free_kbytes.
5809 *
5810 * For small machines we want it small (128k min). For large machines
5811 * we want it large (64MB max). But it is not linear, because network
5812 * bandwidth does not increase linearly with machine size. We use
5813 *
5814 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5815 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5816 *
5817 * which yields
5818 *
5819 * 16MB: 512k
5820 * 32MB: 724k
5821 * 64MB: 1024k
5822 * 128MB: 1448k
5823 * 256MB: 2048k
5824 * 512MB: 2896k
5825 * 1024MB: 4096k
5826 * 2048MB: 5792k
5827 * 4096MB: 8192k
5828 * 8192MB: 11584k
5829 * 16384MB: 16384k
5830 */
5831 int __meminit init_per_zone_wmark_min(void)
5832 {
5833 unsigned long lowmem_kbytes;
5834 int new_min_free_kbytes;
5835
5836 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5837 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5838
5839 if (new_min_free_kbytes > user_min_free_kbytes) {
5840 min_free_kbytes = new_min_free_kbytes;
5841 if (min_free_kbytes < 128)
5842 min_free_kbytes = 128;
5843 if (min_free_kbytes > 65536)
5844 min_free_kbytes = 65536;
5845 } else {
5846 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5847 new_min_free_kbytes, user_min_free_kbytes);
5848 }
5849 setup_per_zone_wmarks();
5850 refresh_zone_stat_thresholds();
5851 setup_per_zone_lowmem_reserve();
5852 setup_per_zone_inactive_ratio();
5853 return 0;
5854 }
5855 module_init(init_per_zone_wmark_min)
5856
5857 /*
5858 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5859 * that we can call two helper functions whenever min_free_kbytes
5860 * changes.
5861 */
5862 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5863 void __user *buffer, size_t *length, loff_t *ppos)
5864 {
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5871 if (write) {
5872 user_min_free_kbytes = min_free_kbytes;
5873 setup_per_zone_wmarks();
5874 }
5875 return 0;
5876 }
5877
5878 #ifdef CONFIG_NUMA
5879 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 void __user *buffer, size_t *length, loff_t *ppos)
5881 {
5882 struct zone *zone;
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 for_each_zone(zone)
5890 zone->min_unmapped_pages = (zone->managed_pages *
5891 sysctl_min_unmapped_ratio) / 100;
5892 return 0;
5893 }
5894
5895 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5896 void __user *buffer, size_t *length, loff_t *ppos)
5897 {
5898 struct zone *zone;
5899 int rc;
5900
5901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5902 if (rc)
5903 return rc;
5904
5905 for_each_zone(zone)
5906 zone->min_slab_pages = (zone->managed_pages *
5907 sysctl_min_slab_ratio) / 100;
5908 return 0;
5909 }
5910 #endif
5911
5912 /*
5913 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5914 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5915 * whenever sysctl_lowmem_reserve_ratio changes.
5916 *
5917 * The reserve ratio obviously has absolutely no relation with the
5918 * minimum watermarks. The lowmem reserve ratio can only make sense
5919 * if in function of the boot time zone sizes.
5920 */
5921 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5922 void __user *buffer, size_t *length, loff_t *ppos)
5923 {
5924 proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 setup_per_zone_lowmem_reserve();
5926 return 0;
5927 }
5928
5929 /*
5930 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5931 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5932 * pagelist can have before it gets flushed back to buddy allocator.
5933 */
5934 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5935 void __user *buffer, size_t *length, loff_t *ppos)
5936 {
5937 struct zone *zone;
5938 int old_percpu_pagelist_fraction;
5939 int ret;
5940
5941 mutex_lock(&pcp_batch_high_lock);
5942 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5943
5944 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5945 if (!write || ret < 0)
5946 goto out;
5947
5948 /* Sanity checking to avoid pcp imbalance */
5949 if (percpu_pagelist_fraction &&
5950 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5951 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5952 ret = -EINVAL;
5953 goto out;
5954 }
5955
5956 /* No change? */
5957 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5958 goto out;
5959
5960 for_each_populated_zone(zone) {
5961 unsigned int cpu;
5962
5963 for_each_possible_cpu(cpu)
5964 pageset_set_high_and_batch(zone,
5965 per_cpu_ptr(zone->pageset, cpu));
5966 }
5967 out:
5968 mutex_unlock(&pcp_batch_high_lock);
5969 return ret;
5970 }
5971
5972 int hashdist = HASHDIST_DEFAULT;
5973
5974 #ifdef CONFIG_NUMA
5975 static int __init set_hashdist(char *str)
5976 {
5977 if (!str)
5978 return 0;
5979 hashdist = simple_strtoul(str, &str, 0);
5980 return 1;
5981 }
5982 __setup("hashdist=", set_hashdist);
5983 #endif
5984
5985 /*
5986 * allocate a large system hash table from bootmem
5987 * - it is assumed that the hash table must contain an exact power-of-2
5988 * quantity of entries
5989 * - limit is the number of hash buckets, not the total allocation size
5990 */
5991 void *__init alloc_large_system_hash(const char *tablename,
5992 unsigned long bucketsize,
5993 unsigned long numentries,
5994 int scale,
5995 int flags,
5996 unsigned int *_hash_shift,
5997 unsigned int *_hash_mask,
5998 unsigned long low_limit,
5999 unsigned long high_limit)
6000 {
6001 unsigned long long max = high_limit;
6002 unsigned long log2qty, size;
6003 void *table = NULL;
6004
6005 /* allow the kernel cmdline to have a say */
6006 if (!numentries) {
6007 /* round applicable memory size up to nearest megabyte */
6008 numentries = nr_kernel_pages;
6009
6010 /* It isn't necessary when PAGE_SIZE >= 1MB */
6011 if (PAGE_SHIFT < 20)
6012 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6013
6014 /* limit to 1 bucket per 2^scale bytes of low memory */
6015 if (scale > PAGE_SHIFT)
6016 numentries >>= (scale - PAGE_SHIFT);
6017 else
6018 numentries <<= (PAGE_SHIFT - scale);
6019
6020 /* Make sure we've got at least a 0-order allocation.. */
6021 if (unlikely(flags & HASH_SMALL)) {
6022 /* Makes no sense without HASH_EARLY */
6023 WARN_ON(!(flags & HASH_EARLY));
6024 if (!(numentries >> *_hash_shift)) {
6025 numentries = 1UL << *_hash_shift;
6026 BUG_ON(!numentries);
6027 }
6028 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6029 numentries = PAGE_SIZE / bucketsize;
6030 }
6031 numentries = roundup_pow_of_two(numentries);
6032
6033 /* limit allocation size to 1/16 total memory by default */
6034 if (max == 0) {
6035 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6036 do_div(max, bucketsize);
6037 }
6038 max = min(max, 0x80000000ULL);
6039
6040 if (numentries < low_limit)
6041 numentries = low_limit;
6042 if (numentries > max)
6043 numentries = max;
6044
6045 log2qty = ilog2(numentries);
6046
6047 do {
6048 size = bucketsize << log2qty;
6049 if (flags & HASH_EARLY)
6050 table = memblock_virt_alloc_nopanic(size, 0);
6051 else if (hashdist)
6052 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6053 else {
6054 /*
6055 * If bucketsize is not a power-of-two, we may free
6056 * some pages at the end of hash table which
6057 * alloc_pages_exact() automatically does
6058 */
6059 if (get_order(size) < MAX_ORDER) {
6060 table = alloc_pages_exact(size, GFP_ATOMIC);
6061 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6062 }
6063 }
6064 } while (!table && size > PAGE_SIZE && --log2qty);
6065
6066 if (!table)
6067 panic("Failed to allocate %s hash table\n", tablename);
6068
6069 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6070 tablename,
6071 (1UL << log2qty),
6072 ilog2(size) - PAGE_SHIFT,
6073 size);
6074
6075 if (_hash_shift)
6076 *_hash_shift = log2qty;
6077 if (_hash_mask)
6078 *_hash_mask = (1 << log2qty) - 1;
6079
6080 return table;
6081 }
6082
6083 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6084 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6085 unsigned long pfn)
6086 {
6087 #ifdef CONFIG_SPARSEMEM
6088 return __pfn_to_section(pfn)->pageblock_flags;
6089 #else
6090 return zone->pageblock_flags;
6091 #endif /* CONFIG_SPARSEMEM */
6092 }
6093
6094 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6095 {
6096 #ifdef CONFIG_SPARSEMEM
6097 pfn &= (PAGES_PER_SECTION-1);
6098 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6099 #else
6100 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6101 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6102 #endif /* CONFIG_SPARSEMEM */
6103 }
6104
6105 /**
6106 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6107 * @page: The page within the block of interest
6108 * @pfn: The target page frame number
6109 * @end_bitidx: The last bit of interest to retrieve
6110 * @mask: mask of bits that the caller is interested in
6111 *
6112 * Return: pageblock_bits flags
6113 */
6114 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6115 unsigned long end_bitidx,
6116 unsigned long mask)
6117 {
6118 struct zone *zone;
6119 unsigned long *bitmap;
6120 unsigned long bitidx, word_bitidx;
6121 unsigned long word;
6122
6123 zone = page_zone(page);
6124 bitmap = get_pageblock_bitmap(zone, pfn);
6125 bitidx = pfn_to_bitidx(zone, pfn);
6126 word_bitidx = bitidx / BITS_PER_LONG;
6127 bitidx &= (BITS_PER_LONG-1);
6128
6129 word = bitmap[word_bitidx];
6130 bitidx += end_bitidx;
6131 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6132 }
6133
6134 /**
6135 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6136 * @page: The page within the block of interest
6137 * @flags: The flags to set
6138 * @pfn: The target page frame number
6139 * @end_bitidx: The last bit of interest
6140 * @mask: mask of bits that the caller is interested in
6141 */
6142 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6143 unsigned long pfn,
6144 unsigned long end_bitidx,
6145 unsigned long mask)
6146 {
6147 struct zone *zone;
6148 unsigned long *bitmap;
6149 unsigned long bitidx, word_bitidx;
6150 unsigned long old_word, word;
6151
6152 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6153
6154 zone = page_zone(page);
6155 bitmap = get_pageblock_bitmap(zone, pfn);
6156 bitidx = pfn_to_bitidx(zone, pfn);
6157 word_bitidx = bitidx / BITS_PER_LONG;
6158 bitidx &= (BITS_PER_LONG-1);
6159
6160 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6161
6162 bitidx += end_bitidx;
6163 mask <<= (BITS_PER_LONG - bitidx - 1);
6164 flags <<= (BITS_PER_LONG - bitidx - 1);
6165
6166 word = ACCESS_ONCE(bitmap[word_bitidx]);
6167 for (;;) {
6168 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6169 if (word == old_word)
6170 break;
6171 word = old_word;
6172 }
6173 }
6174
6175 /*
6176 * This function checks whether pageblock includes unmovable pages or not.
6177 * If @count is not zero, it is okay to include less @count unmovable pages
6178 *
6179 * PageLRU check without isolation or lru_lock could race so that
6180 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6181 * expect this function should be exact.
6182 */
6183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6184 bool skip_hwpoisoned_pages)
6185 {
6186 unsigned long pfn, iter, found;
6187 int mt;
6188
6189 /*
6190 * For avoiding noise data, lru_add_drain_all() should be called
6191 * If ZONE_MOVABLE, the zone never contains unmovable pages
6192 */
6193 if (zone_idx(zone) == ZONE_MOVABLE)
6194 return false;
6195 mt = get_pageblock_migratetype(page);
6196 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6197 return false;
6198
6199 pfn = page_to_pfn(page);
6200 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6201 unsigned long check = pfn + iter;
6202
6203 if (!pfn_valid_within(check))
6204 continue;
6205
6206 page = pfn_to_page(check);
6207
6208 /*
6209 * Hugepages are not in LRU lists, but they're movable.
6210 * We need not scan over tail pages bacause we don't
6211 * handle each tail page individually in migration.
6212 */
6213 if (PageHuge(page)) {
6214 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6215 continue;
6216 }
6217
6218 /*
6219 * We can't use page_count without pin a page
6220 * because another CPU can free compound page.
6221 * This check already skips compound tails of THP
6222 * because their page->_count is zero at all time.
6223 */
6224 if (!atomic_read(&page->_count)) {
6225 if (PageBuddy(page))
6226 iter += (1 << page_order(page)) - 1;
6227 continue;
6228 }
6229
6230 /*
6231 * The HWPoisoned page may be not in buddy system, and
6232 * page_count() is not 0.
6233 */
6234 if (skip_hwpoisoned_pages && PageHWPoison(page))
6235 continue;
6236
6237 if (!PageLRU(page))
6238 found++;
6239 /*
6240 * If there are RECLAIMABLE pages, we need to check it.
6241 * But now, memory offline itself doesn't call shrink_slab()
6242 * and it still to be fixed.
6243 */
6244 /*
6245 * If the page is not RAM, page_count()should be 0.
6246 * we don't need more check. This is an _used_ not-movable page.
6247 *
6248 * The problematic thing here is PG_reserved pages. PG_reserved
6249 * is set to both of a memory hole page and a _used_ kernel
6250 * page at boot.
6251 */
6252 if (found > count)
6253 return true;
6254 }
6255 return false;
6256 }
6257
6258 bool is_pageblock_removable_nolock(struct page *page)
6259 {
6260 struct zone *zone;
6261 unsigned long pfn;
6262
6263 /*
6264 * We have to be careful here because we are iterating over memory
6265 * sections which are not zone aware so we might end up outside of
6266 * the zone but still within the section.
6267 * We have to take care about the node as well. If the node is offline
6268 * its NODE_DATA will be NULL - see page_zone.
6269 */
6270 if (!node_online(page_to_nid(page)))
6271 return false;
6272
6273 zone = page_zone(page);
6274 pfn = page_to_pfn(page);
6275 if (!zone_spans_pfn(zone, pfn))
6276 return false;
6277
6278 return !has_unmovable_pages(zone, page, 0, true);
6279 }
6280
6281 #ifdef CONFIG_CMA
6282
6283 static unsigned long pfn_max_align_down(unsigned long pfn)
6284 {
6285 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6286 pageblock_nr_pages) - 1);
6287 }
6288
6289 static unsigned long pfn_max_align_up(unsigned long pfn)
6290 {
6291 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6292 pageblock_nr_pages));
6293 }
6294
6295 /* [start, end) must belong to a single zone. */
6296 static int __alloc_contig_migrate_range(struct compact_control *cc,
6297 unsigned long start, unsigned long end)
6298 {
6299 /* This function is based on compact_zone() from compaction.c. */
6300 unsigned long nr_reclaimed;
6301 unsigned long pfn = start;
6302 unsigned int tries = 0;
6303 int ret = 0;
6304
6305 migrate_prep();
6306
6307 while (pfn < end || !list_empty(&cc->migratepages)) {
6308 if (fatal_signal_pending(current)) {
6309 ret = -EINTR;
6310 break;
6311 }
6312
6313 if (list_empty(&cc->migratepages)) {
6314 cc->nr_migratepages = 0;
6315 pfn = isolate_migratepages_range(cc, pfn, end);
6316 if (!pfn) {
6317 ret = -EINTR;
6318 break;
6319 }
6320 tries = 0;
6321 } else if (++tries == 5) {
6322 ret = ret < 0 ? ret : -EBUSY;
6323 break;
6324 }
6325
6326 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6327 &cc->migratepages);
6328 cc->nr_migratepages -= nr_reclaimed;
6329
6330 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6331 NULL, 0, cc->mode, MR_CMA);
6332 }
6333 if (ret < 0) {
6334 putback_movable_pages(&cc->migratepages);
6335 return ret;
6336 }
6337 return 0;
6338 }
6339
6340 /**
6341 * alloc_contig_range() -- tries to allocate given range of pages
6342 * @start: start PFN to allocate
6343 * @end: one-past-the-last PFN to allocate
6344 * @migratetype: migratetype of the underlaying pageblocks (either
6345 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6346 * in range must have the same migratetype and it must
6347 * be either of the two.
6348 *
6349 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6350 * aligned, however it's the caller's responsibility to guarantee that
6351 * we are the only thread that changes migrate type of pageblocks the
6352 * pages fall in.
6353 *
6354 * The PFN range must belong to a single zone.
6355 *
6356 * Returns zero on success or negative error code. On success all
6357 * pages which PFN is in [start, end) are allocated for the caller and
6358 * need to be freed with free_contig_range().
6359 */
6360 int alloc_contig_range(unsigned long start, unsigned long end,
6361 unsigned migratetype)
6362 {
6363 unsigned long outer_start, outer_end;
6364 int ret = 0, order;
6365
6366 struct compact_control cc = {
6367 .nr_migratepages = 0,
6368 .order = -1,
6369 .zone = page_zone(pfn_to_page(start)),
6370 .mode = MIGRATE_SYNC,
6371 .ignore_skip_hint = true,
6372 };
6373 INIT_LIST_HEAD(&cc.migratepages);
6374
6375 /*
6376 * What we do here is we mark all pageblocks in range as
6377 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6378 * have different sizes, and due to the way page allocator
6379 * work, we align the range to biggest of the two pages so
6380 * that page allocator won't try to merge buddies from
6381 * different pageblocks and change MIGRATE_ISOLATE to some
6382 * other migration type.
6383 *
6384 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6385 * migrate the pages from an unaligned range (ie. pages that
6386 * we are interested in). This will put all the pages in
6387 * range back to page allocator as MIGRATE_ISOLATE.
6388 *
6389 * When this is done, we take the pages in range from page
6390 * allocator removing them from the buddy system. This way
6391 * page allocator will never consider using them.
6392 *
6393 * This lets us mark the pageblocks back as
6394 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6395 * aligned range but not in the unaligned, original range are
6396 * put back to page allocator so that buddy can use them.
6397 */
6398
6399 ret = start_isolate_page_range(pfn_max_align_down(start),
6400 pfn_max_align_up(end), migratetype,
6401 false);
6402 if (ret)
6403 return ret;
6404
6405 ret = __alloc_contig_migrate_range(&cc, start, end);
6406 if (ret)
6407 goto done;
6408
6409 /*
6410 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6411 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6412 * more, all pages in [start, end) are free in page allocator.
6413 * What we are going to do is to allocate all pages from
6414 * [start, end) (that is remove them from page allocator).
6415 *
6416 * The only problem is that pages at the beginning and at the
6417 * end of interesting range may be not aligned with pages that
6418 * page allocator holds, ie. they can be part of higher order
6419 * pages. Because of this, we reserve the bigger range and
6420 * once this is done free the pages we are not interested in.
6421 *
6422 * We don't have to hold zone->lock here because the pages are
6423 * isolated thus they won't get removed from buddy.
6424 */
6425
6426 lru_add_drain_all();
6427 drain_all_pages();
6428
6429 order = 0;
6430 outer_start = start;
6431 while (!PageBuddy(pfn_to_page(outer_start))) {
6432 if (++order >= MAX_ORDER) {
6433 ret = -EBUSY;
6434 goto done;
6435 }
6436 outer_start &= ~0UL << order;
6437 }
6438
6439 /* Make sure the range is really isolated. */
6440 if (test_pages_isolated(outer_start, end, false)) {
6441 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6442 outer_start, end);
6443 ret = -EBUSY;
6444 goto done;
6445 }
6446
6447
6448 /* Grab isolated pages from freelists. */
6449 outer_end = isolate_freepages_range(&cc, outer_start, end);
6450 if (!outer_end) {
6451 ret = -EBUSY;
6452 goto done;
6453 }
6454
6455 /* Free head and tail (if any) */
6456 if (start != outer_start)
6457 free_contig_range(outer_start, start - outer_start);
6458 if (end != outer_end)
6459 free_contig_range(end, outer_end - end);
6460
6461 done:
6462 undo_isolate_page_range(pfn_max_align_down(start),
6463 pfn_max_align_up(end), migratetype);
6464 return ret;
6465 }
6466
6467 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6468 {
6469 unsigned int count = 0;
6470
6471 for (; nr_pages--; pfn++) {
6472 struct page *page = pfn_to_page(pfn);
6473
6474 count += page_count(page) != 1;
6475 __free_page(page);
6476 }
6477 WARN(count != 0, "%d pages are still in use!\n", count);
6478 }
6479 #endif
6480
6481 #ifdef CONFIG_MEMORY_HOTPLUG
6482 /*
6483 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6484 * page high values need to be recalulated.
6485 */
6486 void __meminit zone_pcp_update(struct zone *zone)
6487 {
6488 unsigned cpu;
6489 mutex_lock(&pcp_batch_high_lock);
6490 for_each_possible_cpu(cpu)
6491 pageset_set_high_and_batch(zone,
6492 per_cpu_ptr(zone->pageset, cpu));
6493 mutex_unlock(&pcp_batch_high_lock);
6494 }
6495 #endif
6496
6497 void zone_pcp_reset(struct zone *zone)
6498 {
6499 unsigned long flags;
6500 int cpu;
6501 struct per_cpu_pageset *pset;
6502
6503 /* avoid races with drain_pages() */
6504 local_irq_save(flags);
6505 if (zone->pageset != &boot_pageset) {
6506 for_each_online_cpu(cpu) {
6507 pset = per_cpu_ptr(zone->pageset, cpu);
6508 drain_zonestat(zone, pset);
6509 }
6510 free_percpu(zone->pageset);
6511 zone->pageset = &boot_pageset;
6512 }
6513 local_irq_restore(flags);
6514 }
6515
6516 #ifdef CONFIG_MEMORY_HOTREMOVE
6517 /*
6518 * All pages in the range must be isolated before calling this.
6519 */
6520 void
6521 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6522 {
6523 struct page *page;
6524 struct zone *zone;
6525 unsigned int order, i;
6526 unsigned long pfn;
6527 unsigned long flags;
6528 /* find the first valid pfn */
6529 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6530 if (pfn_valid(pfn))
6531 break;
6532 if (pfn == end_pfn)
6533 return;
6534 zone = page_zone(pfn_to_page(pfn));
6535 spin_lock_irqsave(&zone->lock, flags);
6536 pfn = start_pfn;
6537 while (pfn < end_pfn) {
6538 if (!pfn_valid(pfn)) {
6539 pfn++;
6540 continue;
6541 }
6542 page = pfn_to_page(pfn);
6543 /*
6544 * The HWPoisoned page may be not in buddy system, and
6545 * page_count() is not 0.
6546 */
6547 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6548 pfn++;
6549 SetPageReserved(page);
6550 continue;
6551 }
6552
6553 BUG_ON(page_count(page));
6554 BUG_ON(!PageBuddy(page));
6555 order = page_order(page);
6556 #ifdef CONFIG_DEBUG_VM
6557 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6558 pfn, 1 << order, end_pfn);
6559 #endif
6560 list_del(&page->lru);
6561 rmv_page_order(page);
6562 zone->free_area[order].nr_free--;
6563 for (i = 0; i < (1 << order); i++)
6564 SetPageReserved((page+i));
6565 pfn += (1 << order);
6566 }
6567 spin_unlock_irqrestore(&zone->lock, flags);
6568 }
6569 #endif
6570
6571 #ifdef CONFIG_MEMORY_FAILURE
6572 bool is_free_buddy_page(struct page *page)
6573 {
6574 struct zone *zone = page_zone(page);
6575 unsigned long pfn = page_to_pfn(page);
6576 unsigned long flags;
6577 unsigned int order;
6578
6579 spin_lock_irqsave(&zone->lock, flags);
6580 for (order = 0; order < MAX_ORDER; order++) {
6581 struct page *page_head = page - (pfn & ((1 << order) - 1));
6582
6583 if (PageBuddy(page_head) && page_order(page_head) >= order)
6584 break;
6585 }
6586 spin_unlock_irqrestore(&zone->lock, flags);
6587
6588 return order < MAX_ORDER;
6589 }
6590 #endif
6591
6592 static const struct trace_print_flags pageflag_names[] = {
6593 {1UL << PG_locked, "locked" },
6594 {1UL << PG_error, "error" },
6595 {1UL << PG_referenced, "referenced" },
6596 {1UL << PG_uptodate, "uptodate" },
6597 {1UL << PG_dirty, "dirty" },
6598 {1UL << PG_lru, "lru" },
6599 {1UL << PG_active, "active" },
6600 {1UL << PG_slab, "slab" },
6601 {1UL << PG_owner_priv_1, "owner_priv_1" },
6602 {1UL << PG_arch_1, "arch_1" },
6603 {1UL << PG_reserved, "reserved" },
6604 {1UL << PG_private, "private" },
6605 {1UL << PG_private_2, "private_2" },
6606 {1UL << PG_writeback, "writeback" },
6607 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6608 {1UL << PG_head, "head" },
6609 {1UL << PG_tail, "tail" },
6610 #else
6611 {1UL << PG_compound, "compound" },
6612 #endif
6613 {1UL << PG_swapcache, "swapcache" },
6614 {1UL << PG_mappedtodisk, "mappedtodisk" },
6615 {1UL << PG_reclaim, "reclaim" },
6616 {1UL << PG_swapbacked, "swapbacked" },
6617 {1UL << PG_unevictable, "unevictable" },
6618 #ifdef CONFIG_MMU
6619 {1UL << PG_mlocked, "mlocked" },
6620 #endif
6621 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6622 {1UL << PG_uncached, "uncached" },
6623 #endif
6624 #ifdef CONFIG_MEMORY_FAILURE
6625 {1UL << PG_hwpoison, "hwpoison" },
6626 #endif
6627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6628 {1UL << PG_compound_lock, "compound_lock" },
6629 #endif
6630 };
6631
6632 static void dump_flags(unsigned long flags,
6633 const struct trace_print_flags *names, int count)
6634 {
6635 const char *delim = "";
6636 unsigned long mask;
6637 int i;
6638
6639 printk(KERN_ALERT "flags: %#lx(", flags);
6640
6641 /* remove zone id */
6642 flags &= (1UL << NR_PAGEFLAGS) - 1;
6643
6644 for (i = 0; i < count && flags; i++) {
6645
6646 mask = names[i].mask;
6647 if ((flags & mask) != mask)
6648 continue;
6649
6650 flags &= ~mask;
6651 printk("%s%s", delim, names[i].name);
6652 delim = "|";
6653 }
6654
6655 /* check for left over flags */
6656 if (flags)
6657 printk("%s%#lx", delim, flags);
6658
6659 printk(")\n");
6660 }
6661
6662 void dump_page_badflags(struct page *page, const char *reason,
6663 unsigned long badflags)
6664 {
6665 printk(KERN_ALERT
6666 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6667 page, atomic_read(&page->_count), page_mapcount(page),
6668 page->mapping, page->index);
6669 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6670 dump_flags(page->flags, pageflag_names, ARRAY_SIZE(pageflag_names));
6671 if (reason)
6672 pr_alert("page dumped because: %s\n", reason);
6673 if (page->flags & badflags) {
6674 pr_alert("bad because of flags:\n");
6675 dump_flags(page->flags & badflags,
6676 pageflag_names, ARRAY_SIZE(pageflag_names));
6677 }
6678 mem_cgroup_print_bad_page(page);
6679 }
6680
6681 void dump_page(struct page *page, const char *reason)
6682 {
6683 dump_page_badflags(page, reason, 0);
6684 }
6685 EXPORT_SYMBOL(dump_page);
6686
6687 #ifdef CONFIG_DEBUG_VM
6688
6689 static const struct trace_print_flags vmaflags_names[] = {
6690 {VM_READ, "read" },
6691 {VM_WRITE, "write" },
6692 {VM_EXEC, "exec" },
6693 {VM_SHARED, "shared" },
6694 {VM_MAYREAD, "mayread" },
6695 {VM_MAYWRITE, "maywrite" },
6696 {VM_MAYEXEC, "mayexec" },
6697 {VM_MAYSHARE, "mayshare" },
6698 {VM_GROWSDOWN, "growsdown" },
6699 {VM_PFNMAP, "pfnmap" },
6700 {VM_DENYWRITE, "denywrite" },
6701 {VM_LOCKED, "locked" },
6702 {VM_IO, "io" },
6703 {VM_SEQ_READ, "seqread" },
6704 {VM_RAND_READ, "randread" },
6705 {VM_DONTCOPY, "dontcopy" },
6706 {VM_DONTEXPAND, "dontexpand" },
6707 {VM_ACCOUNT, "account" },
6708 {VM_NORESERVE, "noreserve" },
6709 {VM_HUGETLB, "hugetlb" },
6710 {VM_NONLINEAR, "nonlinear" },
6711 #if defined(CONFIG_X86)
6712 {VM_PAT, "pat" },
6713 #elif defined(CONFIG_PPC)
6714 {VM_SAO, "sao" },
6715 #elif defined(CONFIG_PARISC) || defined(CONFIG_METAG) || defined(CONFIG_IA64)
6716 {VM_GROWSUP, "growsup" },
6717 #elif !defined(CONFIG_MMU)
6718 {VM_MAPPED_COPY, "mappedcopy" },
6719 #else
6720 {VM_ARCH_1, "arch_1" },
6721 #endif
6722 {VM_DONTDUMP, "dontdump" },
6723 #ifdef CONFIG_MEM_SOFT_DIRTY
6724 {VM_SOFTDIRTY, "softdirty" },
6725 #endif
6726 {VM_MIXEDMAP, "mixedmap" },
6727 {VM_HUGEPAGE, "hugepage" },
6728 {VM_NOHUGEPAGE, "nohugepage" },
6729 {VM_MERGEABLE, "mergeable" },
6730 };
6731
6732 void dump_vma(const struct vm_area_struct *vma)
6733 {
6734 printk(KERN_ALERT
6735 "vma %p start %p end %p\n"
6736 "next %p prev %p mm %p\n"
6737 "prot %lx anon_vma %p vm_ops %p\n"
6738 "pgoff %lx file %p private_data %p\n",
6739 vma, (void *)vma->vm_start, (void *)vma->vm_end, vma->vm_next,
6740 vma->vm_prev, vma->vm_mm,
6741 (unsigned long)pgprot_val(vma->vm_page_prot),
6742 vma->anon_vma, vma->vm_ops, vma->vm_pgoff,
6743 vma->vm_file, vma->vm_private_data);
6744 dump_flags(vma->vm_flags, vmaflags_names, ARRAY_SIZE(vmaflags_names));
6745 }
6746 EXPORT_SYMBOL(dump_vma);
6747
6748 #endif /* CONFIG_DEBUG_VM */