]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/percpu.c
arm64: tegra: Remove duplicate nodes on Jetson Orin NX
[thirdparty/linux.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
10 *
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
38 *
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
58 *
59 * To use this allocator, arch code should do the following:
60 *
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
64 *
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
67 */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
90
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
95
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
98
99 #include "percpu-internal.h"
100
101 /*
102 * The slots are sorted by the size of the biggest continuous free area.
103 * 1-31 bytes share the same slot.
104 */
105 #define PCPU_SLOT_BASE_SHIFT 5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD 3
108
109 #define PCPU_EMPTY_POP_PAGES_LOW 2
110 #define PCPU_EMPTY_POP_PAGES_HIGH 4
111
112 #ifdef CONFIG_SMP
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr) \
116 (void __percpu *)((unsigned long)(addr) - \
117 (unsigned long)pcpu_base_addr + \
118 (unsigned long)__per_cpu_start)
119 #endif
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr) \
122 (void __force *)((unsigned long)(ptr) + \
123 (unsigned long)pcpu_base_addr - \
124 (unsigned long)__per_cpu_start)
125 #endif
126 #else /* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
130 #endif /* CONFIG_SMP */
131
132 static int pcpu_unit_pages __ro_after_init;
133 static int pcpu_unit_size __ro_after_init;
134 static int pcpu_nr_units __ro_after_init;
135 static int pcpu_atom_size __ro_after_init;
136 int pcpu_nr_slots __ro_after_init;
137 static int pcpu_free_slot __ro_after_init;
138 int pcpu_sidelined_slot __ro_after_init;
139 int pcpu_to_depopulate_slot __ro_after_init;
140 static size_t pcpu_chunk_struct_size __ro_after_init;
141
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init;
145
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init;
148
149 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
151
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init;
154 static const unsigned long *pcpu_group_offsets __ro_after_init;
155 static const size_t *pcpu_group_sizes __ro_after_init;
156
157 /*
158 * The first chunk which always exists. Note that unlike other
159 * chunks, this one can be allocated and mapped in several different
160 * ways and thus often doesn't live in the vmalloc area.
161 */
162 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
163
164 /*
165 * Optional reserved chunk. This chunk reserves part of the first
166 * chunk and serves it for reserved allocations. When the reserved
167 * region doesn't exist, the following variable is NULL.
168 */
169 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
170
171 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
173
174 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
175
176 /*
177 * The number of empty populated pages, protected by pcpu_lock.
178 * The reserved chunk doesn't contribute to the count.
179 */
180 int pcpu_nr_empty_pop_pages;
181
182 /*
183 * The number of populated pages in use by the allocator, protected by
184 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186 * and increments/decrements this count by 1).
187 */
188 static unsigned long pcpu_nr_populated;
189
190 /*
191 * Balance work is used to populate or destroy chunks asynchronously. We
192 * try to keep the number of populated free pages between
193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
194 * empty chunk.
195 */
196 static void pcpu_balance_workfn(struct work_struct *work);
197 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
198 static bool pcpu_async_enabled __read_mostly;
199 static bool pcpu_atomic_alloc_failed;
200
201 static void pcpu_schedule_balance_work(void)
202 {
203 if (pcpu_async_enabled)
204 schedule_work(&pcpu_balance_work);
205 }
206
207 /**
208 * pcpu_addr_in_chunk - check if the address is served from this chunk
209 * @chunk: chunk of interest
210 * @addr: percpu address
211 *
212 * RETURNS:
213 * True if the address is served from this chunk.
214 */
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
216 {
217 void *start_addr, *end_addr;
218
219 if (!chunk)
220 return false;
221
222 start_addr = chunk->base_addr + chunk->start_offset;
223 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
224 chunk->end_offset;
225
226 return addr >= start_addr && addr < end_addr;
227 }
228
229 static int __pcpu_size_to_slot(int size)
230 {
231 int highbit = fls(size); /* size is in bytes */
232 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
233 }
234
235 static int pcpu_size_to_slot(int size)
236 {
237 if (size == pcpu_unit_size)
238 return pcpu_free_slot;
239 return __pcpu_size_to_slot(size);
240 }
241
242 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
243 {
244 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
245
246 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
247 chunk_md->contig_hint == 0)
248 return 0;
249
250 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
251 }
252
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
255 {
256 page->index = (unsigned long)pcpu;
257 }
258
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
261 {
262 return (struct pcpu_chunk *)page->index;
263 }
264
265 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
266 {
267 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
268 }
269
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
271 {
272 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
273 }
274
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
276 unsigned int cpu, int page_idx)
277 {
278 return (unsigned long)chunk->base_addr +
279 pcpu_unit_page_offset(cpu, page_idx);
280 }
281
282 /*
283 * The following are helper functions to help access bitmaps and convert
284 * between bitmap offsets to address offsets.
285 */
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
287 {
288 return chunk->alloc_map +
289 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
290 }
291
292 static unsigned long pcpu_off_to_block_index(int off)
293 {
294 return off / PCPU_BITMAP_BLOCK_BITS;
295 }
296
297 static unsigned long pcpu_off_to_block_off(int off)
298 {
299 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
300 }
301
302 static unsigned long pcpu_block_off_to_off(int index, int off)
303 {
304 return index * PCPU_BITMAP_BLOCK_BITS + off;
305 }
306
307 /**
308 * pcpu_check_block_hint - check against the contig hint
309 * @block: block of interest
310 * @bits: size of allocation
311 * @align: alignment of area (max PAGE_SIZE)
312 *
313 * Check to see if the allocation can fit in the block's contig hint.
314 * Note, a chunk uses the same hints as a block so this can also check against
315 * the chunk's contig hint.
316 */
317 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
318 size_t align)
319 {
320 int bit_off = ALIGN(block->contig_hint_start, align) -
321 block->contig_hint_start;
322
323 return bit_off + bits <= block->contig_hint;
324 }
325
326 /*
327 * pcpu_next_hint - determine which hint to use
328 * @block: block of interest
329 * @alloc_bits: size of allocation
330 *
331 * This determines if we should scan based on the scan_hint or first_free.
332 * In general, we want to scan from first_free to fulfill allocations by
333 * first fit. However, if we know a scan_hint at position scan_hint_start
334 * cannot fulfill an allocation, we can begin scanning from there knowing
335 * the contig_hint will be our fallback.
336 */
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
338 {
339 /*
340 * The three conditions below determine if we can skip past the
341 * scan_hint. First, does the scan hint exist. Second, is the
342 * contig_hint after the scan_hint (possibly not true iff
343 * contig_hint == scan_hint). Third, is the allocation request
344 * larger than the scan_hint.
345 */
346 if (block->scan_hint &&
347 block->contig_hint_start > block->scan_hint_start &&
348 alloc_bits > block->scan_hint)
349 return block->scan_hint_start + block->scan_hint;
350
351 return block->first_free;
352 }
353
354 /**
355 * pcpu_next_md_free_region - finds the next hint free area
356 * @chunk: chunk of interest
357 * @bit_off: chunk offset
358 * @bits: size of free area
359 *
360 * Helper function for pcpu_for_each_md_free_region. It checks
361 * block->contig_hint and performs aggregation across blocks to find the
362 * next hint. It modifies bit_off and bits in-place to be consumed in the
363 * loop.
364 */
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 int *bits)
367 {
368 int i = pcpu_off_to_block_index(*bit_off);
369 int block_off = pcpu_off_to_block_off(*bit_off);
370 struct pcpu_block_md *block;
371
372 *bits = 0;
373 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 block++, i++) {
375 /* handles contig area across blocks */
376 if (*bits) {
377 *bits += block->left_free;
378 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 continue;
380 return;
381 }
382
383 /*
384 * This checks three things. First is there a contig_hint to
385 * check. Second, have we checked this hint before by
386 * comparing the block_off. Third, is this the same as the
387 * right contig hint. In the last case, it spills over into
388 * the next block and should be handled by the contig area
389 * across blocks code.
390 */
391 *bits = block->contig_hint;
392 if (*bits && block->contig_hint_start >= block_off &&
393 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 *bit_off = pcpu_block_off_to_off(i,
395 block->contig_hint_start);
396 return;
397 }
398 /* reset to satisfy the second predicate above */
399 block_off = 0;
400
401 *bits = block->right_free;
402 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
403 }
404 }
405
406 /**
407 * pcpu_next_fit_region - finds fit areas for a given allocation request
408 * @chunk: chunk of interest
409 * @alloc_bits: size of allocation
410 * @align: alignment of area (max PAGE_SIZE)
411 * @bit_off: chunk offset
412 * @bits: size of free area
413 *
414 * Finds the next free region that is viable for use with a given size and
415 * alignment. This only returns if there is a valid area to be used for this
416 * allocation. block->first_free is returned if the allocation request fits
417 * within the block to see if the request can be fulfilled prior to the contig
418 * hint.
419 */
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 int align, int *bit_off, int *bits)
422 {
423 int i = pcpu_off_to_block_index(*bit_off);
424 int block_off = pcpu_off_to_block_off(*bit_off);
425 struct pcpu_block_md *block;
426
427 *bits = 0;
428 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 block++, i++) {
430 /* handles contig area across blocks */
431 if (*bits) {
432 *bits += block->left_free;
433 if (*bits >= alloc_bits)
434 return;
435 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 continue;
437 }
438
439 /* check block->contig_hint */
440 *bits = ALIGN(block->contig_hint_start, align) -
441 block->contig_hint_start;
442 /*
443 * This uses the block offset to determine if this has been
444 * checked in the prior iteration.
445 */
446 if (block->contig_hint &&
447 block->contig_hint_start >= block_off &&
448 block->contig_hint >= *bits + alloc_bits) {
449 int start = pcpu_next_hint(block, alloc_bits);
450
451 *bits += alloc_bits + block->contig_hint_start -
452 start;
453 *bit_off = pcpu_block_off_to_off(i, start);
454 return;
455 }
456 /* reset to satisfy the second predicate above */
457 block_off = 0;
458
459 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 align);
461 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 *bit_off = pcpu_block_off_to_off(i, *bit_off);
463 if (*bits >= alloc_bits)
464 return;
465 }
466
467 /* no valid offsets were found - fail condition */
468 *bit_off = pcpu_chunk_map_bits(chunk);
469 }
470
471 /*
472 * Metadata free area iterators. These perform aggregation of free areas
473 * based on the metadata blocks and return the offset @bit_off and size in
474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
475 * a fit is found for the allocation request.
476 */
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
479 (bit_off) < pcpu_chunk_map_bits((chunk)); \
480 (bit_off) += (bits) + 1, \
481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 &(bits)); \
486 (bit_off) < pcpu_chunk_map_bits((chunk)); \
487 (bit_off) += (bits), \
488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 &(bits)))
490
491 /**
492 * pcpu_mem_zalloc - allocate memory
493 * @size: bytes to allocate
494 * @gfp: allocation flags
495 *
496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498 * This is to facilitate passing through whitelisted flags. The
499 * returned memory is always zeroed.
500 *
501 * RETURNS:
502 * Pointer to the allocated area on success, NULL on failure.
503 */
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
505 {
506 if (WARN_ON_ONCE(!slab_is_available()))
507 return NULL;
508
509 if (size <= PAGE_SIZE)
510 return kzalloc(size, gfp);
511 else
512 return __vmalloc(size, gfp | __GFP_ZERO);
513 }
514
515 /**
516 * pcpu_mem_free - free memory
517 * @ptr: memory to free
518 *
519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
520 */
521 static void pcpu_mem_free(void *ptr)
522 {
523 kvfree(ptr);
524 }
525
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 bool move_front)
528 {
529 if (chunk != pcpu_reserved_chunk) {
530 if (move_front)
531 list_move(&chunk->list, &pcpu_chunk_lists[slot]);
532 else
533 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
534 }
535 }
536
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
538 {
539 __pcpu_chunk_move(chunk, slot, true);
540 }
541
542 /**
543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544 * @chunk: chunk of interest
545 * @oslot: the previous slot it was on
546 *
547 * This function is called after an allocation or free changed @chunk.
548 * New slot according to the changed state is determined and @chunk is
549 * moved to the slot. Note that the reserved chunk is never put on
550 * chunk slots.
551 *
552 * CONTEXT:
553 * pcpu_lock.
554 */
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
556 {
557 int nslot = pcpu_chunk_slot(chunk);
558
559 /* leave isolated chunks in-place */
560 if (chunk->isolated)
561 return;
562
563 if (oslot != nslot)
564 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
565 }
566
567 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
568 {
569 lockdep_assert_held(&pcpu_lock);
570
571 if (!chunk->isolated) {
572 chunk->isolated = true;
573 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
574 }
575 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
576 }
577
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
579 {
580 lockdep_assert_held(&pcpu_lock);
581
582 if (chunk->isolated) {
583 chunk->isolated = false;
584 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
585 pcpu_chunk_relocate(chunk, -1);
586 }
587 }
588
589 /*
590 * pcpu_update_empty_pages - update empty page counters
591 * @chunk: chunk of interest
592 * @nr: nr of empty pages
593 *
594 * This is used to keep track of the empty pages now based on the premise
595 * a md_block covers a page. The hint update functions recognize if a block
596 * is made full or broken to calculate deltas for keeping track of free pages.
597 */
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
599 {
600 chunk->nr_empty_pop_pages += nr;
601 if (chunk != pcpu_reserved_chunk && !chunk->isolated)
602 pcpu_nr_empty_pop_pages += nr;
603 }
604
605 /*
606 * pcpu_region_overlap - determines if two regions overlap
607 * @a: start of first region, inclusive
608 * @b: end of first region, exclusive
609 * @x: start of second region, inclusive
610 * @y: end of second region, exclusive
611 *
612 * This is used to determine if the hint region [a, b) overlaps with the
613 * allocated region [x, y).
614 */
615 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
616 {
617 return (a < y) && (x < b);
618 }
619
620 /**
621 * pcpu_block_update - updates a block given a free area
622 * @block: block of interest
623 * @start: start offset in block
624 * @end: end offset in block
625 *
626 * Updates a block given a known free area. The region [start, end) is
627 * expected to be the entirety of the free area within a block. Chooses
628 * the best starting offset if the contig hints are equal.
629 */
630 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
631 {
632 int contig = end - start;
633
634 block->first_free = min(block->first_free, start);
635 if (start == 0)
636 block->left_free = contig;
637
638 if (end == block->nr_bits)
639 block->right_free = contig;
640
641 if (contig > block->contig_hint) {
642 /* promote the old contig_hint to be the new scan_hint */
643 if (start > block->contig_hint_start) {
644 if (block->contig_hint > block->scan_hint) {
645 block->scan_hint_start =
646 block->contig_hint_start;
647 block->scan_hint = block->contig_hint;
648 } else if (start < block->scan_hint_start) {
649 /*
650 * The old contig_hint == scan_hint. But, the
651 * new contig is larger so hold the invariant
652 * scan_hint_start < contig_hint_start.
653 */
654 block->scan_hint = 0;
655 }
656 } else {
657 block->scan_hint = 0;
658 }
659 block->contig_hint_start = start;
660 block->contig_hint = contig;
661 } else if (contig == block->contig_hint) {
662 if (block->contig_hint_start &&
663 (!start ||
664 __ffs(start) > __ffs(block->contig_hint_start))) {
665 /* start has a better alignment so use it */
666 block->contig_hint_start = start;
667 if (start < block->scan_hint_start &&
668 block->contig_hint > block->scan_hint)
669 block->scan_hint = 0;
670 } else if (start > block->scan_hint_start ||
671 block->contig_hint > block->scan_hint) {
672 /*
673 * Knowing contig == contig_hint, update the scan_hint
674 * if it is farther than or larger than the current
675 * scan_hint.
676 */
677 block->scan_hint_start = start;
678 block->scan_hint = contig;
679 }
680 } else {
681 /*
682 * The region is smaller than the contig_hint. So only update
683 * the scan_hint if it is larger than or equal and farther than
684 * the current scan_hint.
685 */
686 if ((start < block->contig_hint_start &&
687 (contig > block->scan_hint ||
688 (contig == block->scan_hint &&
689 start > block->scan_hint_start)))) {
690 block->scan_hint_start = start;
691 block->scan_hint = contig;
692 }
693 }
694 }
695
696 /*
697 * pcpu_block_update_scan - update a block given a free area from a scan
698 * @chunk: chunk of interest
699 * @bit_off: chunk offset
700 * @bits: size of free area
701 *
702 * Finding the final allocation spot first goes through pcpu_find_block_fit()
703 * to find a block that can hold the allocation and then pcpu_alloc_area()
704 * where a scan is used. When allocations require specific alignments,
705 * we can inadvertently create holes which will not be seen in the alloc
706 * or free paths.
707 *
708 * This takes a given free area hole and updates a block as it may change the
709 * scan_hint. We need to scan backwards to ensure we don't miss free bits
710 * from alignment.
711 */
712 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
713 int bits)
714 {
715 int s_off = pcpu_off_to_block_off(bit_off);
716 int e_off = s_off + bits;
717 int s_index, l_bit;
718 struct pcpu_block_md *block;
719
720 if (e_off > PCPU_BITMAP_BLOCK_BITS)
721 return;
722
723 s_index = pcpu_off_to_block_index(bit_off);
724 block = chunk->md_blocks + s_index;
725
726 /* scan backwards in case of alignment skipping free bits */
727 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
728 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
729
730 pcpu_block_update(block, s_off, e_off);
731 }
732
733 /**
734 * pcpu_chunk_refresh_hint - updates metadata about a chunk
735 * @chunk: chunk of interest
736 * @full_scan: if we should scan from the beginning
737 *
738 * Iterates over the metadata blocks to find the largest contig area.
739 * A full scan can be avoided on the allocation path as this is triggered
740 * if we broke the contig_hint. In doing so, the scan_hint will be before
741 * the contig_hint or after if the scan_hint == contig_hint. This cannot
742 * be prevented on freeing as we want to find the largest area possibly
743 * spanning blocks.
744 */
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
746 {
747 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
748 int bit_off, bits;
749
750 /* promote scan_hint to contig_hint */
751 if (!full_scan && chunk_md->scan_hint) {
752 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
753 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
754 chunk_md->contig_hint = chunk_md->scan_hint;
755 chunk_md->scan_hint = 0;
756 } else {
757 bit_off = chunk_md->first_free;
758 chunk_md->contig_hint = 0;
759 }
760
761 bits = 0;
762 pcpu_for_each_md_free_region(chunk, bit_off, bits)
763 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
764 }
765
766 /**
767 * pcpu_block_refresh_hint
768 * @chunk: chunk of interest
769 * @index: index of the metadata block
770 *
771 * Scans over the block beginning at first_free and updates the block
772 * metadata accordingly.
773 */
774 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
775 {
776 struct pcpu_block_md *block = chunk->md_blocks + index;
777 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
778 unsigned int start, end; /* region start, region end */
779
780 /* promote scan_hint to contig_hint */
781 if (block->scan_hint) {
782 start = block->scan_hint_start + block->scan_hint;
783 block->contig_hint_start = block->scan_hint_start;
784 block->contig_hint = block->scan_hint;
785 block->scan_hint = 0;
786 } else {
787 start = block->first_free;
788 block->contig_hint = 0;
789 }
790
791 block->right_free = 0;
792
793 /* iterate over free areas and update the contig hints */
794 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
795 pcpu_block_update(block, start, end);
796 }
797
798 /**
799 * pcpu_block_update_hint_alloc - update hint on allocation path
800 * @chunk: chunk of interest
801 * @bit_off: chunk offset
802 * @bits: size of request
803 *
804 * Updates metadata for the allocation path. The metadata only has to be
805 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
806 * scans are required if the block's contig hint is broken.
807 */
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
809 int bits)
810 {
811 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
812 int nr_empty_pages = 0;
813 struct pcpu_block_md *s_block, *e_block, *block;
814 int s_index, e_index; /* block indexes of the freed allocation */
815 int s_off, e_off; /* block offsets of the freed allocation */
816
817 /*
818 * Calculate per block offsets.
819 * The calculation uses an inclusive range, but the resulting offsets
820 * are [start, end). e_index always points to the last block in the
821 * range.
822 */
823 s_index = pcpu_off_to_block_index(bit_off);
824 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
825 s_off = pcpu_off_to_block_off(bit_off);
826 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
827
828 s_block = chunk->md_blocks + s_index;
829 e_block = chunk->md_blocks + e_index;
830
831 /*
832 * Update s_block.
833 */
834 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
835 nr_empty_pages++;
836
837 /*
838 * block->first_free must be updated if the allocation takes its place.
839 * If the allocation breaks the contig_hint, a scan is required to
840 * restore this hint.
841 */
842 if (s_off == s_block->first_free)
843 s_block->first_free = find_next_zero_bit(
844 pcpu_index_alloc_map(chunk, s_index),
845 PCPU_BITMAP_BLOCK_BITS,
846 s_off + bits);
847
848 if (pcpu_region_overlap(s_block->scan_hint_start,
849 s_block->scan_hint_start + s_block->scan_hint,
850 s_off,
851 s_off + bits))
852 s_block->scan_hint = 0;
853
854 if (pcpu_region_overlap(s_block->contig_hint_start,
855 s_block->contig_hint_start +
856 s_block->contig_hint,
857 s_off,
858 s_off + bits)) {
859 /* block contig hint is broken - scan to fix it */
860 if (!s_off)
861 s_block->left_free = 0;
862 pcpu_block_refresh_hint(chunk, s_index);
863 } else {
864 /* update left and right contig manually */
865 s_block->left_free = min(s_block->left_free, s_off);
866 if (s_index == e_index)
867 s_block->right_free = min_t(int, s_block->right_free,
868 PCPU_BITMAP_BLOCK_BITS - e_off);
869 else
870 s_block->right_free = 0;
871 }
872
873 /*
874 * Update e_block.
875 */
876 if (s_index != e_index) {
877 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
878 nr_empty_pages++;
879
880 /*
881 * When the allocation is across blocks, the end is along
882 * the left part of the e_block.
883 */
884 e_block->first_free = find_next_zero_bit(
885 pcpu_index_alloc_map(chunk, e_index),
886 PCPU_BITMAP_BLOCK_BITS, e_off);
887
888 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
889 /* reset the block */
890 e_block++;
891 } else {
892 if (e_off > e_block->scan_hint_start)
893 e_block->scan_hint = 0;
894
895 e_block->left_free = 0;
896 if (e_off > e_block->contig_hint_start) {
897 /* contig hint is broken - scan to fix it */
898 pcpu_block_refresh_hint(chunk, e_index);
899 } else {
900 e_block->right_free =
901 min_t(int, e_block->right_free,
902 PCPU_BITMAP_BLOCK_BITS - e_off);
903 }
904 }
905
906 /* update in-between md_blocks */
907 nr_empty_pages += (e_index - s_index - 1);
908 for (block = s_block + 1; block < e_block; block++) {
909 block->scan_hint = 0;
910 block->contig_hint = 0;
911 block->left_free = 0;
912 block->right_free = 0;
913 }
914 }
915
916 /*
917 * If the allocation is not atomic, some blocks may not be
918 * populated with pages, while we account it here. The number
919 * of pages will be added back with pcpu_chunk_populated()
920 * when populating pages.
921 */
922 if (nr_empty_pages)
923 pcpu_update_empty_pages(chunk, -nr_empty_pages);
924
925 if (pcpu_region_overlap(chunk_md->scan_hint_start,
926 chunk_md->scan_hint_start +
927 chunk_md->scan_hint,
928 bit_off,
929 bit_off + bits))
930 chunk_md->scan_hint = 0;
931
932 /*
933 * The only time a full chunk scan is required is if the chunk
934 * contig hint is broken. Otherwise, it means a smaller space
935 * was used and therefore the chunk contig hint is still correct.
936 */
937 if (pcpu_region_overlap(chunk_md->contig_hint_start,
938 chunk_md->contig_hint_start +
939 chunk_md->contig_hint,
940 bit_off,
941 bit_off + bits))
942 pcpu_chunk_refresh_hint(chunk, false);
943 }
944
945 /**
946 * pcpu_block_update_hint_free - updates the block hints on the free path
947 * @chunk: chunk of interest
948 * @bit_off: chunk offset
949 * @bits: size of request
950 *
951 * Updates metadata for the allocation path. This avoids a blind block
952 * refresh by making use of the block contig hints. If this fails, it scans
953 * forward and backward to determine the extent of the free area. This is
954 * capped at the boundary of blocks.
955 *
956 * A chunk update is triggered if a page becomes free, a block becomes free,
957 * or the free spans across blocks. This tradeoff is to minimize iterating
958 * over the block metadata to update chunk_md->contig_hint.
959 * chunk_md->contig_hint may be off by up to a page, but it will never be more
960 * than the available space. If the contig hint is contained in one block, it
961 * will be accurate.
962 */
963 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
964 int bits)
965 {
966 int nr_empty_pages = 0;
967 struct pcpu_block_md *s_block, *e_block, *block;
968 int s_index, e_index; /* block indexes of the freed allocation */
969 int s_off, e_off; /* block offsets of the freed allocation */
970 int start, end; /* start and end of the whole free area */
971
972 /*
973 * Calculate per block offsets.
974 * The calculation uses an inclusive range, but the resulting offsets
975 * are [start, end). e_index always points to the last block in the
976 * range.
977 */
978 s_index = pcpu_off_to_block_index(bit_off);
979 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
980 s_off = pcpu_off_to_block_off(bit_off);
981 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
982
983 s_block = chunk->md_blocks + s_index;
984 e_block = chunk->md_blocks + e_index;
985
986 /*
987 * Check if the freed area aligns with the block->contig_hint.
988 * If it does, then the scan to find the beginning/end of the
989 * larger free area can be avoided.
990 *
991 * start and end refer to beginning and end of the free area
992 * within each their respective blocks. This is not necessarily
993 * the entire free area as it may span blocks past the beginning
994 * or end of the block.
995 */
996 start = s_off;
997 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
998 start = s_block->contig_hint_start;
999 } else {
1000 /*
1001 * Scan backwards to find the extent of the free area.
1002 * find_last_bit returns the starting bit, so if the start bit
1003 * is returned, that means there was no last bit and the
1004 * remainder of the chunk is free.
1005 */
1006 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1007 start);
1008 start = (start == l_bit) ? 0 : l_bit + 1;
1009 }
1010
1011 end = e_off;
1012 if (e_off == e_block->contig_hint_start)
1013 end = e_block->contig_hint_start + e_block->contig_hint;
1014 else
1015 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016 PCPU_BITMAP_BLOCK_BITS, end);
1017
1018 /* update s_block */
1019 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1021 nr_empty_pages++;
1022 pcpu_block_update(s_block, start, e_off);
1023
1024 /* freeing in the same block */
1025 if (s_index != e_index) {
1026 /* update e_block */
1027 if (end == PCPU_BITMAP_BLOCK_BITS)
1028 nr_empty_pages++;
1029 pcpu_block_update(e_block, 0, end);
1030
1031 /* reset md_blocks in the middle */
1032 nr_empty_pages += (e_index - s_index - 1);
1033 for (block = s_block + 1; block < e_block; block++) {
1034 block->first_free = 0;
1035 block->scan_hint = 0;
1036 block->contig_hint_start = 0;
1037 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1040 }
1041 }
1042
1043 if (nr_empty_pages)
1044 pcpu_update_empty_pages(chunk, nr_empty_pages);
1045
1046 /*
1047 * Refresh chunk metadata when the free makes a block free or spans
1048 * across blocks. The contig_hint may be off by up to a page, but if
1049 * the contig_hint is contained in a block, it will be accurate with
1050 * the else condition below.
1051 */
1052 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053 pcpu_chunk_refresh_hint(chunk, true);
1054 else
1055 pcpu_block_update(&chunk->chunk_md,
1056 pcpu_block_off_to_off(s_index, start),
1057 end);
1058 }
1059
1060 /**
1061 * pcpu_is_populated - determines if the region is populated
1062 * @chunk: chunk of interest
1063 * @bit_off: chunk offset
1064 * @bits: size of area
1065 * @next_off: return value for the next offset to start searching
1066 *
1067 * For atomic allocations, check if the backing pages are populated.
1068 *
1069 * RETURNS:
1070 * Bool if the backing pages are populated.
1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1072 */
1073 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1074 int *next_off)
1075 {
1076 unsigned int start, end;
1077
1078 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1080
1081 start = find_next_zero_bit(chunk->populated, end, start);
1082 if (start >= end)
1083 return true;
1084
1085 end = find_next_bit(chunk->populated, end, start + 1);
1086
1087 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1088 return false;
1089 }
1090
1091 /**
1092 * pcpu_find_block_fit - finds the block index to start searching
1093 * @chunk: chunk of interest
1094 * @alloc_bits: size of request in allocation units
1095 * @align: alignment of area (max PAGE_SIZE bytes)
1096 * @pop_only: use populated regions only
1097 *
1098 * Given a chunk and an allocation spec, find the offset to begin searching
1099 * for a free region. This iterates over the bitmap metadata blocks to
1100 * find an offset that will be guaranteed to fit the requirements. It is
1101 * not quite first fit as if the allocation does not fit in the contig hint
1102 * of a block or chunk, it is skipped. This errs on the side of caution
1103 * to prevent excess iteration. Poor alignment can cause the allocator to
1104 * skip over blocks and chunks that have valid free areas.
1105 *
1106 * RETURNS:
1107 * The offset in the bitmap to begin searching.
1108 * -1 if no offset is found.
1109 */
1110 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111 size_t align, bool pop_only)
1112 {
1113 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114 int bit_off, bits, next_off;
1115
1116 /*
1117 * This is an optimization to prevent scanning by assuming if the
1118 * allocation cannot fit in the global hint, there is memory pressure
1119 * and creating a new chunk would happen soon.
1120 */
1121 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1122 return -1;
1123
1124 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1125 bits = 0;
1126 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1128 &next_off))
1129 break;
1130
1131 bit_off = next_off;
1132 bits = 0;
1133 }
1134
1135 if (bit_off == pcpu_chunk_map_bits(chunk))
1136 return -1;
1137
1138 return bit_off;
1139 }
1140
1141 /*
1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143 * @map: the address to base the search on
1144 * @size: the bitmap size in bits
1145 * @start: the bitnumber to start searching at
1146 * @nr: the number of zeroed bits we're looking for
1147 * @align_mask: alignment mask for zero area
1148 * @largest_off: offset of the largest area skipped
1149 * @largest_bits: size of the largest area skipped
1150 *
1151 * The @align_mask should be one less than a power of 2.
1152 *
1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154 * the largest area that was skipped. This is imperfect, but in general is
1155 * good enough. The largest remembered region is the largest failed region
1156 * seen. This does not include anything we possibly skipped due to alignment.
1157 * pcpu_block_update_scan() does scan backwards to try and recover what was
1158 * lost to alignment. While this can cause scanning to miss earlier possible
1159 * free areas, smaller allocations will eventually fill those holes.
1160 */
1161 static unsigned long pcpu_find_zero_area(unsigned long *map,
1162 unsigned long size,
1163 unsigned long start,
1164 unsigned long nr,
1165 unsigned long align_mask,
1166 unsigned long *largest_off,
1167 unsigned long *largest_bits)
1168 {
1169 unsigned long index, end, i, area_off, area_bits;
1170 again:
1171 index = find_next_zero_bit(map, size, start);
1172
1173 /* Align allocation */
1174 index = __ALIGN_MASK(index, align_mask);
1175 area_off = index;
1176
1177 end = index + nr;
1178 if (end > size)
1179 return end;
1180 i = find_next_bit(map, end, index);
1181 if (i < end) {
1182 area_bits = i - area_off;
1183 /* remember largest unused area with best alignment */
1184 if (area_bits > *largest_bits ||
1185 (area_bits == *largest_bits && *largest_off &&
1186 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187 *largest_off = area_off;
1188 *largest_bits = area_bits;
1189 }
1190
1191 start = i + 1;
1192 goto again;
1193 }
1194 return index;
1195 }
1196
1197 /**
1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199 * @chunk: chunk of interest
1200 * @alloc_bits: size of request in allocation units
1201 * @align: alignment of area (max PAGE_SIZE)
1202 * @start: bit_off to start searching
1203 *
1204 * This function takes in a @start offset to begin searching to fit an
1205 * allocation of @alloc_bits with alignment @align. It needs to scan
1206 * the allocation map because if it fits within the block's contig hint,
1207 * @start will be block->first_free. This is an attempt to fill the
1208 * allocation prior to breaking the contig hint. The allocation and
1209 * boundary maps are updated accordingly if it confirms a valid
1210 * free area.
1211 *
1212 * RETURNS:
1213 * Allocated addr offset in @chunk on success.
1214 * -1 if no matching area is found.
1215 */
1216 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217 size_t align, int start)
1218 {
1219 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220 size_t align_mask = (align) ? (align - 1) : 0;
1221 unsigned long area_off = 0, area_bits = 0;
1222 int bit_off, end, oslot;
1223
1224 lockdep_assert_held(&pcpu_lock);
1225
1226 oslot = pcpu_chunk_slot(chunk);
1227
1228 /*
1229 * Search to find a fit.
1230 */
1231 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232 pcpu_chunk_map_bits(chunk));
1233 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234 align_mask, &area_off, &area_bits);
1235 if (bit_off >= end)
1236 return -1;
1237
1238 if (area_bits)
1239 pcpu_block_update_scan(chunk, area_off, area_bits);
1240
1241 /* update alloc map */
1242 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1243
1244 /* update boundary map */
1245 set_bit(bit_off, chunk->bound_map);
1246 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247 set_bit(bit_off + alloc_bits, chunk->bound_map);
1248
1249 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1250
1251 /* update first free bit */
1252 if (bit_off == chunk_md->first_free)
1253 chunk_md->first_free = find_next_zero_bit(
1254 chunk->alloc_map,
1255 pcpu_chunk_map_bits(chunk),
1256 bit_off + alloc_bits);
1257
1258 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1259
1260 pcpu_chunk_relocate(chunk, oslot);
1261
1262 return bit_off * PCPU_MIN_ALLOC_SIZE;
1263 }
1264
1265 /**
1266 * pcpu_free_area - frees the corresponding offset
1267 * @chunk: chunk of interest
1268 * @off: addr offset into chunk
1269 *
1270 * This function determines the size of an allocation to free using
1271 * the boundary bitmap and clears the allocation map.
1272 *
1273 * RETURNS:
1274 * Number of freed bytes.
1275 */
1276 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1277 {
1278 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279 int bit_off, bits, end, oslot, freed;
1280
1281 lockdep_assert_held(&pcpu_lock);
1282 pcpu_stats_area_dealloc(chunk);
1283
1284 oslot = pcpu_chunk_slot(chunk);
1285
1286 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1287
1288 /* find end index */
1289 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1290 bit_off + 1);
1291 bits = end - bit_off;
1292 bitmap_clear(chunk->alloc_map, bit_off, bits);
1293
1294 freed = bits * PCPU_MIN_ALLOC_SIZE;
1295
1296 /* update metadata */
1297 chunk->free_bytes += freed;
1298
1299 /* update first free bit */
1300 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1301
1302 pcpu_block_update_hint_free(chunk, bit_off, bits);
1303
1304 pcpu_chunk_relocate(chunk, oslot);
1305
1306 return freed;
1307 }
1308
1309 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1310 {
1311 block->scan_hint = 0;
1312 block->contig_hint = nr_bits;
1313 block->left_free = nr_bits;
1314 block->right_free = nr_bits;
1315 block->first_free = 0;
1316 block->nr_bits = nr_bits;
1317 }
1318
1319 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1320 {
1321 struct pcpu_block_md *md_block;
1322
1323 /* init the chunk's block */
1324 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1325
1326 for (md_block = chunk->md_blocks;
1327 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1328 md_block++)
1329 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1330 }
1331
1332 /**
1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334 * @tmp_addr: the start of the region served
1335 * @map_size: size of the region served
1336 *
1337 * This is responsible for creating the chunks that serve the first chunk. The
1338 * base_addr is page aligned down of @tmp_addr while the region end is page
1339 * aligned up. Offsets are kept track of to determine the region served. All
1340 * this is done to appease the bitmap allocator in avoiding partial blocks.
1341 *
1342 * RETURNS:
1343 * Chunk serving the region at @tmp_addr of @map_size.
1344 */
1345 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1346 int map_size)
1347 {
1348 struct pcpu_chunk *chunk;
1349 unsigned long aligned_addr;
1350 int start_offset, offset_bits, region_size, region_bits;
1351 size_t alloc_size;
1352
1353 /* region calculations */
1354 aligned_addr = tmp_addr & PAGE_MASK;
1355
1356 start_offset = tmp_addr - aligned_addr;
1357 region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1358
1359 /* allocate chunk */
1360 alloc_size = struct_size(chunk, populated,
1361 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1362 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1363 if (!chunk)
1364 panic("%s: Failed to allocate %zu bytes\n", __func__,
1365 alloc_size);
1366
1367 INIT_LIST_HEAD(&chunk->list);
1368
1369 chunk->base_addr = (void *)aligned_addr;
1370 chunk->start_offset = start_offset;
1371 chunk->end_offset = region_size - chunk->start_offset - map_size;
1372
1373 chunk->nr_pages = region_size >> PAGE_SHIFT;
1374 region_bits = pcpu_chunk_map_bits(chunk);
1375
1376 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1377 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1378 if (!chunk->alloc_map)
1379 panic("%s: Failed to allocate %zu bytes\n", __func__,
1380 alloc_size);
1381
1382 alloc_size =
1383 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1385 if (!chunk->bound_map)
1386 panic("%s: Failed to allocate %zu bytes\n", __func__,
1387 alloc_size);
1388
1389 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1390 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1391 if (!chunk->md_blocks)
1392 panic("%s: Failed to allocate %zu bytes\n", __func__,
1393 alloc_size);
1394
1395 #ifdef CONFIG_MEMCG_KMEM
1396 /* first chunk is free to use */
1397 chunk->obj_cgroups = NULL;
1398 #endif
1399 pcpu_init_md_blocks(chunk);
1400
1401 /* manage populated page bitmap */
1402 chunk->immutable = true;
1403 bitmap_fill(chunk->populated, chunk->nr_pages);
1404 chunk->nr_populated = chunk->nr_pages;
1405 chunk->nr_empty_pop_pages = chunk->nr_pages;
1406
1407 chunk->free_bytes = map_size;
1408
1409 if (chunk->start_offset) {
1410 /* hide the beginning of the bitmap */
1411 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1412 bitmap_set(chunk->alloc_map, 0, offset_bits);
1413 set_bit(0, chunk->bound_map);
1414 set_bit(offset_bits, chunk->bound_map);
1415
1416 chunk->chunk_md.first_free = offset_bits;
1417
1418 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1419 }
1420
1421 if (chunk->end_offset) {
1422 /* hide the end of the bitmap */
1423 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1424 bitmap_set(chunk->alloc_map,
1425 pcpu_chunk_map_bits(chunk) - offset_bits,
1426 offset_bits);
1427 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1428 chunk->bound_map);
1429 set_bit(region_bits, chunk->bound_map);
1430
1431 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1432 - offset_bits, offset_bits);
1433 }
1434
1435 return chunk;
1436 }
1437
1438 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1439 {
1440 struct pcpu_chunk *chunk;
1441 int region_bits;
1442
1443 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1444 if (!chunk)
1445 return NULL;
1446
1447 INIT_LIST_HEAD(&chunk->list);
1448 chunk->nr_pages = pcpu_unit_pages;
1449 region_bits = pcpu_chunk_map_bits(chunk);
1450
1451 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1452 sizeof(chunk->alloc_map[0]), gfp);
1453 if (!chunk->alloc_map)
1454 goto alloc_map_fail;
1455
1456 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1457 sizeof(chunk->bound_map[0]), gfp);
1458 if (!chunk->bound_map)
1459 goto bound_map_fail;
1460
1461 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1462 sizeof(chunk->md_blocks[0]), gfp);
1463 if (!chunk->md_blocks)
1464 goto md_blocks_fail;
1465
1466 #ifdef CONFIG_MEMCG_KMEM
1467 if (!mem_cgroup_kmem_disabled()) {
1468 chunk->obj_cgroups =
1469 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1470 sizeof(struct obj_cgroup *), gfp);
1471 if (!chunk->obj_cgroups)
1472 goto objcg_fail;
1473 }
1474 #endif
1475
1476 pcpu_init_md_blocks(chunk);
1477
1478 /* init metadata */
1479 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1480
1481 return chunk;
1482
1483 #ifdef CONFIG_MEMCG_KMEM
1484 objcg_fail:
1485 pcpu_mem_free(chunk->md_blocks);
1486 #endif
1487 md_blocks_fail:
1488 pcpu_mem_free(chunk->bound_map);
1489 bound_map_fail:
1490 pcpu_mem_free(chunk->alloc_map);
1491 alloc_map_fail:
1492 pcpu_mem_free(chunk);
1493
1494 return NULL;
1495 }
1496
1497 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1498 {
1499 if (!chunk)
1500 return;
1501 #ifdef CONFIG_MEMCG_KMEM
1502 pcpu_mem_free(chunk->obj_cgroups);
1503 #endif
1504 pcpu_mem_free(chunk->md_blocks);
1505 pcpu_mem_free(chunk->bound_map);
1506 pcpu_mem_free(chunk->alloc_map);
1507 pcpu_mem_free(chunk);
1508 }
1509
1510 /**
1511 * pcpu_chunk_populated - post-population bookkeeping
1512 * @chunk: pcpu_chunk which got populated
1513 * @page_start: the start page
1514 * @page_end: the end page
1515 *
1516 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1517 * the bookkeeping information accordingly. Must be called after each
1518 * successful population.
1519 */
1520 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1521 int page_end)
1522 {
1523 int nr = page_end - page_start;
1524
1525 lockdep_assert_held(&pcpu_lock);
1526
1527 bitmap_set(chunk->populated, page_start, nr);
1528 chunk->nr_populated += nr;
1529 pcpu_nr_populated += nr;
1530
1531 pcpu_update_empty_pages(chunk, nr);
1532 }
1533
1534 /**
1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536 * @chunk: pcpu_chunk which got depopulated
1537 * @page_start: the start page
1538 * @page_end: the end page
1539 *
1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541 * Update the bookkeeping information accordingly. Must be called after
1542 * each successful depopulation.
1543 */
1544 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1545 int page_start, int page_end)
1546 {
1547 int nr = page_end - page_start;
1548
1549 lockdep_assert_held(&pcpu_lock);
1550
1551 bitmap_clear(chunk->populated, page_start, nr);
1552 chunk->nr_populated -= nr;
1553 pcpu_nr_populated -= nr;
1554
1555 pcpu_update_empty_pages(chunk, -nr);
1556 }
1557
1558 /*
1559 * Chunk management implementation.
1560 *
1561 * To allow different implementations, chunk alloc/free and
1562 * [de]population are implemented in a separate file which is pulled
1563 * into this file and compiled together. The following functions
1564 * should be implemented.
1565 *
1566 * pcpu_populate_chunk - populate the specified range of a chunk
1567 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1568 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
1569 * pcpu_create_chunk - create a new chunk
1570 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1571 * pcpu_addr_to_page - translate address to physical address
1572 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1573 */
1574 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1575 int page_start, int page_end, gfp_t gfp);
1576 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1577 int page_start, int page_end);
1578 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1579 int page_start, int page_end);
1580 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1581 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1582 static struct page *pcpu_addr_to_page(void *addr);
1583 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1584
1585 #ifdef CONFIG_NEED_PER_CPU_KM
1586 #include "percpu-km.c"
1587 #else
1588 #include "percpu-vm.c"
1589 #endif
1590
1591 /**
1592 * pcpu_chunk_addr_search - determine chunk containing specified address
1593 * @addr: address for which the chunk needs to be determined.
1594 *
1595 * This is an internal function that handles all but static allocations.
1596 * Static percpu address values should never be passed into the allocator.
1597 *
1598 * RETURNS:
1599 * The address of the found chunk.
1600 */
1601 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1602 {
1603 /* is it in the dynamic region (first chunk)? */
1604 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1605 return pcpu_first_chunk;
1606
1607 /* is it in the reserved region? */
1608 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1609 return pcpu_reserved_chunk;
1610
1611 /*
1612 * The address is relative to unit0 which might be unused and
1613 * thus unmapped. Offset the address to the unit space of the
1614 * current processor before looking it up in the vmalloc
1615 * space. Note that any possible cpu id can be used here, so
1616 * there's no need to worry about preemption or cpu hotplug.
1617 */
1618 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1619 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1620 }
1621
1622 #ifdef CONFIG_MEMCG_KMEM
1623 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1624 struct obj_cgroup **objcgp)
1625 {
1626 struct obj_cgroup *objcg;
1627
1628 if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1629 return true;
1630
1631 objcg = get_obj_cgroup_from_current();
1632 if (!objcg)
1633 return true;
1634
1635 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) {
1636 obj_cgroup_put(objcg);
1637 return false;
1638 }
1639
1640 *objcgp = objcg;
1641 return true;
1642 }
1643
1644 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1645 struct pcpu_chunk *chunk, int off,
1646 size_t size)
1647 {
1648 if (!objcg)
1649 return;
1650
1651 if (likely(chunk && chunk->obj_cgroups)) {
1652 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1653
1654 rcu_read_lock();
1655 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1656 pcpu_obj_full_size(size));
1657 rcu_read_unlock();
1658 } else {
1659 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1660 obj_cgroup_put(objcg);
1661 }
1662 }
1663
1664 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1665 {
1666 struct obj_cgroup *objcg;
1667
1668 if (unlikely(!chunk->obj_cgroups))
1669 return;
1670
1671 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1672 if (!objcg)
1673 return;
1674 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1675
1676 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1677
1678 rcu_read_lock();
1679 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1680 -pcpu_obj_full_size(size));
1681 rcu_read_unlock();
1682
1683 obj_cgroup_put(objcg);
1684 }
1685
1686 #else /* CONFIG_MEMCG_KMEM */
1687 static bool
1688 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1689 {
1690 return true;
1691 }
1692
1693 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1694 struct pcpu_chunk *chunk, int off,
1695 size_t size)
1696 {
1697 }
1698
1699 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1700 {
1701 }
1702 #endif /* CONFIG_MEMCG_KMEM */
1703
1704 /**
1705 * pcpu_alloc - the percpu allocator
1706 * @size: size of area to allocate in bytes
1707 * @align: alignment of area (max PAGE_SIZE)
1708 * @reserved: allocate from the reserved chunk if available
1709 * @gfp: allocation flags
1710 *
1711 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1712 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1713 * then no warning will be triggered on invalid or failed allocation
1714 * requests.
1715 *
1716 * RETURNS:
1717 * Percpu pointer to the allocated area on success, NULL on failure.
1718 */
1719 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1720 gfp_t gfp)
1721 {
1722 gfp_t pcpu_gfp;
1723 bool is_atomic;
1724 bool do_warn;
1725 struct obj_cgroup *objcg = NULL;
1726 static int warn_limit = 10;
1727 struct pcpu_chunk *chunk, *next;
1728 const char *err;
1729 int slot, off, cpu, ret;
1730 unsigned long flags;
1731 void __percpu *ptr;
1732 size_t bits, bit_align;
1733
1734 gfp = current_gfp_context(gfp);
1735 /* whitelisted flags that can be passed to the backing allocators */
1736 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1737 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1738 do_warn = !(gfp & __GFP_NOWARN);
1739
1740 /*
1741 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1742 * therefore alignment must be a minimum of that many bytes.
1743 * An allocation may have internal fragmentation from rounding up
1744 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1745 */
1746 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1747 align = PCPU_MIN_ALLOC_SIZE;
1748
1749 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1750 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1751 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1752
1753 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1754 !is_power_of_2(align))) {
1755 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1756 size, align);
1757 return NULL;
1758 }
1759
1760 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1761 return NULL;
1762
1763 if (!is_atomic) {
1764 /*
1765 * pcpu_balance_workfn() allocates memory under this mutex,
1766 * and it may wait for memory reclaim. Allow current task
1767 * to become OOM victim, in case of memory pressure.
1768 */
1769 if (gfp & __GFP_NOFAIL) {
1770 mutex_lock(&pcpu_alloc_mutex);
1771 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1772 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1773 return NULL;
1774 }
1775 }
1776
1777 spin_lock_irqsave(&pcpu_lock, flags);
1778
1779 /* serve reserved allocations from the reserved chunk if available */
1780 if (reserved && pcpu_reserved_chunk) {
1781 chunk = pcpu_reserved_chunk;
1782
1783 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1784 if (off < 0) {
1785 err = "alloc from reserved chunk failed";
1786 goto fail_unlock;
1787 }
1788
1789 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1790 if (off >= 0)
1791 goto area_found;
1792
1793 err = "alloc from reserved chunk failed";
1794 goto fail_unlock;
1795 }
1796
1797 restart:
1798 /* search through normal chunks */
1799 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1800 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1801 list) {
1802 off = pcpu_find_block_fit(chunk, bits, bit_align,
1803 is_atomic);
1804 if (off < 0) {
1805 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1806 pcpu_chunk_move(chunk, 0);
1807 continue;
1808 }
1809
1810 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1811 if (off >= 0) {
1812 pcpu_reintegrate_chunk(chunk);
1813 goto area_found;
1814 }
1815 }
1816 }
1817
1818 spin_unlock_irqrestore(&pcpu_lock, flags);
1819
1820 if (is_atomic) {
1821 err = "atomic alloc failed, no space left";
1822 goto fail;
1823 }
1824
1825 /* No space left. Create a new chunk. */
1826 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1827 chunk = pcpu_create_chunk(pcpu_gfp);
1828 if (!chunk) {
1829 err = "failed to allocate new chunk";
1830 goto fail;
1831 }
1832
1833 spin_lock_irqsave(&pcpu_lock, flags);
1834 pcpu_chunk_relocate(chunk, -1);
1835 } else {
1836 spin_lock_irqsave(&pcpu_lock, flags);
1837 }
1838
1839 goto restart;
1840
1841 area_found:
1842 pcpu_stats_area_alloc(chunk, size);
1843 spin_unlock_irqrestore(&pcpu_lock, flags);
1844
1845 /* populate if not all pages are already there */
1846 if (!is_atomic) {
1847 unsigned int page_end, rs, re;
1848
1849 rs = PFN_DOWN(off);
1850 page_end = PFN_UP(off + size);
1851
1852 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1853 WARN_ON(chunk->immutable);
1854
1855 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1856
1857 spin_lock_irqsave(&pcpu_lock, flags);
1858 if (ret) {
1859 pcpu_free_area(chunk, off);
1860 err = "failed to populate";
1861 goto fail_unlock;
1862 }
1863 pcpu_chunk_populated(chunk, rs, re);
1864 spin_unlock_irqrestore(&pcpu_lock, flags);
1865 }
1866
1867 mutex_unlock(&pcpu_alloc_mutex);
1868 }
1869
1870 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1871 pcpu_schedule_balance_work();
1872
1873 /* clear the areas and return address relative to base address */
1874 for_each_possible_cpu(cpu)
1875 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1876
1877 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1878 kmemleak_alloc_percpu(ptr, size, gfp);
1879
1880 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1881 chunk->base_addr, off, ptr,
1882 pcpu_obj_full_size(size), gfp);
1883
1884 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1885
1886 return ptr;
1887
1888 fail_unlock:
1889 spin_unlock_irqrestore(&pcpu_lock, flags);
1890 fail:
1891 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1892
1893 if (do_warn && warn_limit) {
1894 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1895 size, align, is_atomic, err);
1896 if (!is_atomic)
1897 dump_stack();
1898 if (!--warn_limit)
1899 pr_info("limit reached, disable warning\n");
1900 }
1901
1902 if (is_atomic) {
1903 /* see the flag handling in pcpu_balance_workfn() */
1904 pcpu_atomic_alloc_failed = true;
1905 pcpu_schedule_balance_work();
1906 } else {
1907 mutex_unlock(&pcpu_alloc_mutex);
1908 }
1909
1910 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1911
1912 return NULL;
1913 }
1914
1915 /**
1916 * __alloc_percpu_gfp - allocate dynamic percpu area
1917 * @size: size of area to allocate in bytes
1918 * @align: alignment of area (max PAGE_SIZE)
1919 * @gfp: allocation flags
1920 *
1921 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1922 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1923 * be called from any context but is a lot more likely to fail. If @gfp
1924 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1925 * allocation requests.
1926 *
1927 * RETURNS:
1928 * Percpu pointer to the allocated area on success, NULL on failure.
1929 */
1930 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1931 {
1932 return pcpu_alloc(size, align, false, gfp);
1933 }
1934 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1935
1936 /**
1937 * __alloc_percpu - allocate dynamic percpu area
1938 * @size: size of area to allocate in bytes
1939 * @align: alignment of area (max PAGE_SIZE)
1940 *
1941 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1942 */
1943 void __percpu *__alloc_percpu(size_t size, size_t align)
1944 {
1945 return pcpu_alloc(size, align, false, GFP_KERNEL);
1946 }
1947 EXPORT_SYMBOL_GPL(__alloc_percpu);
1948
1949 /**
1950 * __alloc_reserved_percpu - allocate reserved percpu area
1951 * @size: size of area to allocate in bytes
1952 * @align: alignment of area (max PAGE_SIZE)
1953 *
1954 * Allocate zero-filled percpu area of @size bytes aligned at @align
1955 * from reserved percpu area if arch has set it up; otherwise,
1956 * allocation is served from the same dynamic area. Might sleep.
1957 * Might trigger writeouts.
1958 *
1959 * CONTEXT:
1960 * Does GFP_KERNEL allocation.
1961 *
1962 * RETURNS:
1963 * Percpu pointer to the allocated area on success, NULL on failure.
1964 */
1965 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1966 {
1967 return pcpu_alloc(size, align, true, GFP_KERNEL);
1968 }
1969
1970 /**
1971 * pcpu_balance_free - manage the amount of free chunks
1972 * @empty_only: free chunks only if there are no populated pages
1973 *
1974 * If empty_only is %false, reclaim all fully free chunks regardless of the
1975 * number of populated pages. Otherwise, only reclaim chunks that have no
1976 * populated pages.
1977 *
1978 * CONTEXT:
1979 * pcpu_lock (can be dropped temporarily)
1980 */
1981 static void pcpu_balance_free(bool empty_only)
1982 {
1983 LIST_HEAD(to_free);
1984 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1985 struct pcpu_chunk *chunk, *next;
1986
1987 lockdep_assert_held(&pcpu_lock);
1988
1989 /*
1990 * There's no reason to keep around multiple unused chunks and VM
1991 * areas can be scarce. Destroy all free chunks except for one.
1992 */
1993 list_for_each_entry_safe(chunk, next, free_head, list) {
1994 WARN_ON(chunk->immutable);
1995
1996 /* spare the first one */
1997 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1998 continue;
1999
2000 if (!empty_only || chunk->nr_empty_pop_pages == 0)
2001 list_move(&chunk->list, &to_free);
2002 }
2003
2004 if (list_empty(&to_free))
2005 return;
2006
2007 spin_unlock_irq(&pcpu_lock);
2008 list_for_each_entry_safe(chunk, next, &to_free, list) {
2009 unsigned int rs, re;
2010
2011 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2012 pcpu_depopulate_chunk(chunk, rs, re);
2013 spin_lock_irq(&pcpu_lock);
2014 pcpu_chunk_depopulated(chunk, rs, re);
2015 spin_unlock_irq(&pcpu_lock);
2016 }
2017 pcpu_destroy_chunk(chunk);
2018 cond_resched();
2019 }
2020 spin_lock_irq(&pcpu_lock);
2021 }
2022
2023 /**
2024 * pcpu_balance_populated - manage the amount of populated pages
2025 *
2026 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2027 * It is possible that this is called when physical memory is scarce causing
2028 * OOM killer to be triggered. We should avoid doing so until an actual
2029 * allocation causes the failure as it is possible that requests can be
2030 * serviced from already backed regions.
2031 *
2032 * CONTEXT:
2033 * pcpu_lock (can be dropped temporarily)
2034 */
2035 static void pcpu_balance_populated(void)
2036 {
2037 /* gfp flags passed to underlying allocators */
2038 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2039 struct pcpu_chunk *chunk;
2040 int slot, nr_to_pop, ret;
2041
2042 lockdep_assert_held(&pcpu_lock);
2043
2044 /*
2045 * Ensure there are certain number of free populated pages for
2046 * atomic allocs. Fill up from the most packed so that atomic
2047 * allocs don't increase fragmentation. If atomic allocation
2048 * failed previously, always populate the maximum amount. This
2049 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2050 * failing indefinitely; however, large atomic allocs are not
2051 * something we support properly and can be highly unreliable and
2052 * inefficient.
2053 */
2054 retry_pop:
2055 if (pcpu_atomic_alloc_failed) {
2056 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2057 /* best effort anyway, don't worry about synchronization */
2058 pcpu_atomic_alloc_failed = false;
2059 } else {
2060 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2061 pcpu_nr_empty_pop_pages,
2062 0, PCPU_EMPTY_POP_PAGES_HIGH);
2063 }
2064
2065 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2066 unsigned int nr_unpop = 0, rs, re;
2067
2068 if (!nr_to_pop)
2069 break;
2070
2071 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2072 nr_unpop = chunk->nr_pages - chunk->nr_populated;
2073 if (nr_unpop)
2074 break;
2075 }
2076
2077 if (!nr_unpop)
2078 continue;
2079
2080 /* @chunk can't go away while pcpu_alloc_mutex is held */
2081 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2082 int nr = min_t(int, re - rs, nr_to_pop);
2083
2084 spin_unlock_irq(&pcpu_lock);
2085 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2086 cond_resched();
2087 spin_lock_irq(&pcpu_lock);
2088 if (!ret) {
2089 nr_to_pop -= nr;
2090 pcpu_chunk_populated(chunk, rs, rs + nr);
2091 } else {
2092 nr_to_pop = 0;
2093 }
2094
2095 if (!nr_to_pop)
2096 break;
2097 }
2098 }
2099
2100 if (nr_to_pop) {
2101 /* ran out of chunks to populate, create a new one and retry */
2102 spin_unlock_irq(&pcpu_lock);
2103 chunk = pcpu_create_chunk(gfp);
2104 cond_resched();
2105 spin_lock_irq(&pcpu_lock);
2106 if (chunk) {
2107 pcpu_chunk_relocate(chunk, -1);
2108 goto retry_pop;
2109 }
2110 }
2111 }
2112
2113 /**
2114 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2115 *
2116 * Scan over chunks in the depopulate list and try to release unused populated
2117 * pages back to the system. Depopulated chunks are sidelined to prevent
2118 * repopulating these pages unless required. Fully free chunks are reintegrated
2119 * and freed accordingly (1 is kept around). If we drop below the empty
2120 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2121 * Each chunk is scanned in the reverse order to keep populated pages close to
2122 * the beginning of the chunk.
2123 *
2124 * CONTEXT:
2125 * pcpu_lock (can be dropped temporarily)
2126 *
2127 */
2128 static void pcpu_reclaim_populated(void)
2129 {
2130 struct pcpu_chunk *chunk;
2131 struct pcpu_block_md *block;
2132 int freed_page_start, freed_page_end;
2133 int i, end;
2134 bool reintegrate;
2135
2136 lockdep_assert_held(&pcpu_lock);
2137
2138 /*
2139 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2140 * longer discoverable to allocations whom may populate pages. The only
2141 * other accessor is the free path which only returns area back to the
2142 * allocator not touching the populated bitmap.
2143 */
2144 while ((chunk = list_first_entry_or_null(
2145 &pcpu_chunk_lists[pcpu_to_depopulate_slot],
2146 struct pcpu_chunk, list))) {
2147 WARN_ON(chunk->immutable);
2148
2149 /*
2150 * Scan chunk's pages in the reverse order to keep populated
2151 * pages close to the beginning of the chunk.
2152 */
2153 freed_page_start = chunk->nr_pages;
2154 freed_page_end = 0;
2155 reintegrate = false;
2156 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2157 /* no more work to do */
2158 if (chunk->nr_empty_pop_pages == 0)
2159 break;
2160
2161 /* reintegrate chunk to prevent atomic alloc failures */
2162 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2163 reintegrate = true;
2164 break;
2165 }
2166
2167 /*
2168 * If the page is empty and populated, start or
2169 * extend the (i, end) range. If i == 0, decrease
2170 * i and perform the depopulation to cover the last
2171 * (first) page in the chunk.
2172 */
2173 block = chunk->md_blocks + i;
2174 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2175 test_bit(i, chunk->populated)) {
2176 if (end == -1)
2177 end = i;
2178 if (i > 0)
2179 continue;
2180 i--;
2181 }
2182
2183 /* depopulate if there is an active range */
2184 if (end == -1)
2185 continue;
2186
2187 spin_unlock_irq(&pcpu_lock);
2188 pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2189 cond_resched();
2190 spin_lock_irq(&pcpu_lock);
2191
2192 pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2193 freed_page_start = min(freed_page_start, i + 1);
2194 freed_page_end = max(freed_page_end, end + 1);
2195
2196 /* reset the range and continue */
2197 end = -1;
2198 }
2199
2200 /* batch tlb flush per chunk to amortize cost */
2201 if (freed_page_start < freed_page_end) {
2202 spin_unlock_irq(&pcpu_lock);
2203 pcpu_post_unmap_tlb_flush(chunk,
2204 freed_page_start,
2205 freed_page_end);
2206 cond_resched();
2207 spin_lock_irq(&pcpu_lock);
2208 }
2209
2210 if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2211 pcpu_reintegrate_chunk(chunk);
2212 else
2213 list_move_tail(&chunk->list,
2214 &pcpu_chunk_lists[pcpu_sidelined_slot]);
2215 }
2216 }
2217
2218 /**
2219 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2220 * @work: unused
2221 *
2222 * For each chunk type, manage the number of fully free chunks and the number of
2223 * populated pages. An important thing to consider is when pages are freed and
2224 * how they contribute to the global counts.
2225 */
2226 static void pcpu_balance_workfn(struct work_struct *work)
2227 {
2228 /*
2229 * pcpu_balance_free() is called twice because the first time we may
2230 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2231 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2232 * to move fully free chunks to the active list to be freed if
2233 * appropriate.
2234 */
2235 mutex_lock(&pcpu_alloc_mutex);
2236 spin_lock_irq(&pcpu_lock);
2237
2238 pcpu_balance_free(false);
2239 pcpu_reclaim_populated();
2240 pcpu_balance_populated();
2241 pcpu_balance_free(true);
2242
2243 spin_unlock_irq(&pcpu_lock);
2244 mutex_unlock(&pcpu_alloc_mutex);
2245 }
2246
2247 /**
2248 * free_percpu - free percpu area
2249 * @ptr: pointer to area to free
2250 *
2251 * Free percpu area @ptr.
2252 *
2253 * CONTEXT:
2254 * Can be called from atomic context.
2255 */
2256 void free_percpu(void __percpu *ptr)
2257 {
2258 void *addr;
2259 struct pcpu_chunk *chunk;
2260 unsigned long flags;
2261 int size, off;
2262 bool need_balance = false;
2263
2264 if (!ptr)
2265 return;
2266
2267 kmemleak_free_percpu(ptr);
2268
2269 addr = __pcpu_ptr_to_addr(ptr);
2270
2271 spin_lock_irqsave(&pcpu_lock, flags);
2272
2273 chunk = pcpu_chunk_addr_search(addr);
2274 off = addr - chunk->base_addr;
2275
2276 size = pcpu_free_area(chunk, off);
2277
2278 pcpu_memcg_free_hook(chunk, off, size);
2279
2280 /*
2281 * If there are more than one fully free chunks, wake up grim reaper.
2282 * If the chunk is isolated, it may be in the process of being
2283 * reclaimed. Let reclaim manage cleaning up of that chunk.
2284 */
2285 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2286 struct pcpu_chunk *pos;
2287
2288 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2289 if (pos != chunk) {
2290 need_balance = true;
2291 break;
2292 }
2293 } else if (pcpu_should_reclaim_chunk(chunk)) {
2294 pcpu_isolate_chunk(chunk);
2295 need_balance = true;
2296 }
2297
2298 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2299
2300 spin_unlock_irqrestore(&pcpu_lock, flags);
2301
2302 if (need_balance)
2303 pcpu_schedule_balance_work();
2304 }
2305 EXPORT_SYMBOL_GPL(free_percpu);
2306
2307 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2308 {
2309 #ifdef CONFIG_SMP
2310 const size_t static_size = __per_cpu_end - __per_cpu_start;
2311 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2312 unsigned int cpu;
2313
2314 for_each_possible_cpu(cpu) {
2315 void *start = per_cpu_ptr(base, cpu);
2316 void *va = (void *)addr;
2317
2318 if (va >= start && va < start + static_size) {
2319 if (can_addr) {
2320 *can_addr = (unsigned long) (va - start);
2321 *can_addr += (unsigned long)
2322 per_cpu_ptr(base, get_boot_cpu_id());
2323 }
2324 return true;
2325 }
2326 }
2327 #endif
2328 /* on UP, can't distinguish from other static vars, always false */
2329 return false;
2330 }
2331
2332 /**
2333 * is_kernel_percpu_address - test whether address is from static percpu area
2334 * @addr: address to test
2335 *
2336 * Test whether @addr belongs to in-kernel static percpu area. Module
2337 * static percpu areas are not considered. For those, use
2338 * is_module_percpu_address().
2339 *
2340 * RETURNS:
2341 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2342 */
2343 bool is_kernel_percpu_address(unsigned long addr)
2344 {
2345 return __is_kernel_percpu_address(addr, NULL);
2346 }
2347
2348 /**
2349 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2350 * @addr: the address to be converted to physical address
2351 *
2352 * Given @addr which is dereferenceable address obtained via one of
2353 * percpu access macros, this function translates it into its physical
2354 * address. The caller is responsible for ensuring @addr stays valid
2355 * until this function finishes.
2356 *
2357 * percpu allocator has special setup for the first chunk, which currently
2358 * supports either embedding in linear address space or vmalloc mapping,
2359 * and, from the second one, the backing allocator (currently either vm or
2360 * km) provides translation.
2361 *
2362 * The addr can be translated simply without checking if it falls into the
2363 * first chunk. But the current code reflects better how percpu allocator
2364 * actually works, and the verification can discover both bugs in percpu
2365 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2366 * code.
2367 *
2368 * RETURNS:
2369 * The physical address for @addr.
2370 */
2371 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2372 {
2373 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2374 bool in_first_chunk = false;
2375 unsigned long first_low, first_high;
2376 unsigned int cpu;
2377
2378 /*
2379 * The following test on unit_low/high isn't strictly
2380 * necessary but will speed up lookups of addresses which
2381 * aren't in the first chunk.
2382 *
2383 * The address check is against full chunk sizes. pcpu_base_addr
2384 * points to the beginning of the first chunk including the
2385 * static region. Assumes good intent as the first chunk may
2386 * not be full (ie. < pcpu_unit_pages in size).
2387 */
2388 first_low = (unsigned long)pcpu_base_addr +
2389 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2390 first_high = (unsigned long)pcpu_base_addr +
2391 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2392 if ((unsigned long)addr >= first_low &&
2393 (unsigned long)addr < first_high) {
2394 for_each_possible_cpu(cpu) {
2395 void *start = per_cpu_ptr(base, cpu);
2396
2397 if (addr >= start && addr < start + pcpu_unit_size) {
2398 in_first_chunk = true;
2399 break;
2400 }
2401 }
2402 }
2403
2404 if (in_first_chunk) {
2405 if (!is_vmalloc_addr(addr))
2406 return __pa(addr);
2407 else
2408 return page_to_phys(vmalloc_to_page(addr)) +
2409 offset_in_page(addr);
2410 } else
2411 return page_to_phys(pcpu_addr_to_page(addr)) +
2412 offset_in_page(addr);
2413 }
2414
2415 /**
2416 * pcpu_alloc_alloc_info - allocate percpu allocation info
2417 * @nr_groups: the number of groups
2418 * @nr_units: the number of units
2419 *
2420 * Allocate ai which is large enough for @nr_groups groups containing
2421 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2422 * cpu_map array which is long enough for @nr_units and filled with
2423 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2424 * pointer of other groups.
2425 *
2426 * RETURNS:
2427 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2428 * failure.
2429 */
2430 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2431 int nr_units)
2432 {
2433 struct pcpu_alloc_info *ai;
2434 size_t base_size, ai_size;
2435 void *ptr;
2436 int unit;
2437
2438 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2439 __alignof__(ai->groups[0].cpu_map[0]));
2440 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2441
2442 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2443 if (!ptr)
2444 return NULL;
2445 ai = ptr;
2446 ptr += base_size;
2447
2448 ai->groups[0].cpu_map = ptr;
2449
2450 for (unit = 0; unit < nr_units; unit++)
2451 ai->groups[0].cpu_map[unit] = NR_CPUS;
2452
2453 ai->nr_groups = nr_groups;
2454 ai->__ai_size = PFN_ALIGN(ai_size);
2455
2456 return ai;
2457 }
2458
2459 /**
2460 * pcpu_free_alloc_info - free percpu allocation info
2461 * @ai: pcpu_alloc_info to free
2462 *
2463 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2464 */
2465 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2466 {
2467 memblock_free(ai, ai->__ai_size);
2468 }
2469
2470 /**
2471 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2472 * @lvl: loglevel
2473 * @ai: allocation info to dump
2474 *
2475 * Print out information about @ai using loglevel @lvl.
2476 */
2477 static void pcpu_dump_alloc_info(const char *lvl,
2478 const struct pcpu_alloc_info *ai)
2479 {
2480 int group_width = 1, cpu_width = 1, width;
2481 char empty_str[] = "--------";
2482 int alloc = 0, alloc_end = 0;
2483 int group, v;
2484 int upa, apl; /* units per alloc, allocs per line */
2485
2486 v = ai->nr_groups;
2487 while (v /= 10)
2488 group_width++;
2489
2490 v = num_possible_cpus();
2491 while (v /= 10)
2492 cpu_width++;
2493 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2494
2495 upa = ai->alloc_size / ai->unit_size;
2496 width = upa * (cpu_width + 1) + group_width + 3;
2497 apl = rounddown_pow_of_two(max(60 / width, 1));
2498
2499 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2500 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2501 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2502
2503 for (group = 0; group < ai->nr_groups; group++) {
2504 const struct pcpu_group_info *gi = &ai->groups[group];
2505 int unit = 0, unit_end = 0;
2506
2507 BUG_ON(gi->nr_units % upa);
2508 for (alloc_end += gi->nr_units / upa;
2509 alloc < alloc_end; alloc++) {
2510 if (!(alloc % apl)) {
2511 pr_cont("\n");
2512 printk("%spcpu-alloc: ", lvl);
2513 }
2514 pr_cont("[%0*d] ", group_width, group);
2515
2516 for (unit_end += upa; unit < unit_end; unit++)
2517 if (gi->cpu_map[unit] != NR_CPUS)
2518 pr_cont("%0*d ",
2519 cpu_width, gi->cpu_map[unit]);
2520 else
2521 pr_cont("%s ", empty_str);
2522 }
2523 }
2524 pr_cont("\n");
2525 }
2526
2527 /**
2528 * pcpu_setup_first_chunk - initialize the first percpu chunk
2529 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2530 * @base_addr: mapped address
2531 *
2532 * Initialize the first percpu chunk which contains the kernel static
2533 * percpu area. This function is to be called from arch percpu area
2534 * setup path.
2535 *
2536 * @ai contains all information necessary to initialize the first
2537 * chunk and prime the dynamic percpu allocator.
2538 *
2539 * @ai->static_size is the size of static percpu area.
2540 *
2541 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2542 * reserve after the static area in the first chunk. This reserves
2543 * the first chunk such that it's available only through reserved
2544 * percpu allocation. This is primarily used to serve module percpu
2545 * static areas on architectures where the addressing model has
2546 * limited offset range for symbol relocations to guarantee module
2547 * percpu symbols fall inside the relocatable range.
2548 *
2549 * @ai->dyn_size determines the number of bytes available for dynamic
2550 * allocation in the first chunk. The area between @ai->static_size +
2551 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2552 *
2553 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2554 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2555 * @ai->dyn_size.
2556 *
2557 * @ai->atom_size is the allocation atom size and used as alignment
2558 * for vm areas.
2559 *
2560 * @ai->alloc_size is the allocation size and always multiple of
2561 * @ai->atom_size. This is larger than @ai->atom_size if
2562 * @ai->unit_size is larger than @ai->atom_size.
2563 *
2564 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2565 * percpu areas. Units which should be colocated are put into the
2566 * same group. Dynamic VM areas will be allocated according to these
2567 * groupings. If @ai->nr_groups is zero, a single group containing
2568 * all units is assumed.
2569 *
2570 * The caller should have mapped the first chunk at @base_addr and
2571 * copied static data to each unit.
2572 *
2573 * The first chunk will always contain a static and a dynamic region.
2574 * However, the static region is not managed by any chunk. If the first
2575 * chunk also contains a reserved region, it is served by two chunks -
2576 * one for the reserved region and one for the dynamic region. They
2577 * share the same vm, but use offset regions in the area allocation map.
2578 * The chunk serving the dynamic region is circulated in the chunk slots
2579 * and available for dynamic allocation like any other chunk.
2580 */
2581 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2582 void *base_addr)
2583 {
2584 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2585 size_t static_size, dyn_size;
2586 unsigned long *group_offsets;
2587 size_t *group_sizes;
2588 unsigned long *unit_off;
2589 unsigned int cpu;
2590 int *unit_map;
2591 int group, unit, i;
2592 unsigned long tmp_addr;
2593 size_t alloc_size;
2594
2595 #define PCPU_SETUP_BUG_ON(cond) do { \
2596 if (unlikely(cond)) { \
2597 pr_emerg("failed to initialize, %s\n", #cond); \
2598 pr_emerg("cpu_possible_mask=%*pb\n", \
2599 cpumask_pr_args(cpu_possible_mask)); \
2600 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2601 BUG(); \
2602 } \
2603 } while (0)
2604
2605 /* sanity checks */
2606 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2607 #ifdef CONFIG_SMP
2608 PCPU_SETUP_BUG_ON(!ai->static_size);
2609 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2610 #endif
2611 PCPU_SETUP_BUG_ON(!base_addr);
2612 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2613 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2614 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2615 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2616 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2617 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2618 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2619 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2620 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2621 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2622
2623 /* process group information and build config tables accordingly */
2624 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2625 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2626 if (!group_offsets)
2627 panic("%s: Failed to allocate %zu bytes\n", __func__,
2628 alloc_size);
2629
2630 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2631 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2632 if (!group_sizes)
2633 panic("%s: Failed to allocate %zu bytes\n", __func__,
2634 alloc_size);
2635
2636 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2637 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2638 if (!unit_map)
2639 panic("%s: Failed to allocate %zu bytes\n", __func__,
2640 alloc_size);
2641
2642 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2643 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2644 if (!unit_off)
2645 panic("%s: Failed to allocate %zu bytes\n", __func__,
2646 alloc_size);
2647
2648 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2649 unit_map[cpu] = UINT_MAX;
2650
2651 pcpu_low_unit_cpu = NR_CPUS;
2652 pcpu_high_unit_cpu = NR_CPUS;
2653
2654 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2655 const struct pcpu_group_info *gi = &ai->groups[group];
2656
2657 group_offsets[group] = gi->base_offset;
2658 group_sizes[group] = gi->nr_units * ai->unit_size;
2659
2660 for (i = 0; i < gi->nr_units; i++) {
2661 cpu = gi->cpu_map[i];
2662 if (cpu == NR_CPUS)
2663 continue;
2664
2665 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2666 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2667 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2668
2669 unit_map[cpu] = unit + i;
2670 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2671
2672 /* determine low/high unit_cpu */
2673 if (pcpu_low_unit_cpu == NR_CPUS ||
2674 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2675 pcpu_low_unit_cpu = cpu;
2676 if (pcpu_high_unit_cpu == NR_CPUS ||
2677 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2678 pcpu_high_unit_cpu = cpu;
2679 }
2680 }
2681 pcpu_nr_units = unit;
2682
2683 for_each_possible_cpu(cpu)
2684 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2685
2686 /* we're done parsing the input, undefine BUG macro and dump config */
2687 #undef PCPU_SETUP_BUG_ON
2688 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2689
2690 pcpu_nr_groups = ai->nr_groups;
2691 pcpu_group_offsets = group_offsets;
2692 pcpu_group_sizes = group_sizes;
2693 pcpu_unit_map = unit_map;
2694 pcpu_unit_offsets = unit_off;
2695
2696 /* determine basic parameters */
2697 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2698 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2699 pcpu_atom_size = ai->atom_size;
2700 pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
2701 BITS_TO_LONGS(pcpu_unit_pages));
2702
2703 pcpu_stats_save_ai(ai);
2704
2705 /*
2706 * Allocate chunk slots. The slots after the active slots are:
2707 * sidelined_slot - isolated, depopulated chunks
2708 * free_slot - fully free chunks
2709 * to_depopulate_slot - isolated, chunks to depopulate
2710 */
2711 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2712 pcpu_free_slot = pcpu_sidelined_slot + 1;
2713 pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2714 pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2715 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2716 sizeof(pcpu_chunk_lists[0]),
2717 SMP_CACHE_BYTES);
2718 if (!pcpu_chunk_lists)
2719 panic("%s: Failed to allocate %zu bytes\n", __func__,
2720 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2721
2722 for (i = 0; i < pcpu_nr_slots; i++)
2723 INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2724
2725 /*
2726 * The end of the static region needs to be aligned with the
2727 * minimum allocation size as this offsets the reserved and
2728 * dynamic region. The first chunk ends page aligned by
2729 * expanding the dynamic region, therefore the dynamic region
2730 * can be shrunk to compensate while still staying above the
2731 * configured sizes.
2732 */
2733 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2734 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2735
2736 /*
2737 * Initialize first chunk:
2738 * This chunk is broken up into 3 parts:
2739 * < static | [reserved] | dynamic >
2740 * - static - there is no backing chunk because these allocations can
2741 * never be freed.
2742 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2743 * allocations from module load.
2744 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2745 * chunk.
2746 */
2747 tmp_addr = (unsigned long)base_addr + static_size;
2748 if (ai->reserved_size)
2749 pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
2750 ai->reserved_size);
2751 tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
2752 pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
2753
2754 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2755 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2756
2757 /* include all regions of the first chunk */
2758 pcpu_nr_populated += PFN_DOWN(size_sum);
2759
2760 pcpu_stats_chunk_alloc();
2761 trace_percpu_create_chunk(base_addr);
2762
2763 /* we're done */
2764 pcpu_base_addr = base_addr;
2765 }
2766
2767 #ifdef CONFIG_SMP
2768
2769 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2770 [PCPU_FC_AUTO] = "auto",
2771 [PCPU_FC_EMBED] = "embed",
2772 [PCPU_FC_PAGE] = "page",
2773 };
2774
2775 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2776
2777 static int __init percpu_alloc_setup(char *str)
2778 {
2779 if (!str)
2780 return -EINVAL;
2781
2782 if (0)
2783 /* nada */;
2784 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2785 else if (!strcmp(str, "embed"))
2786 pcpu_chosen_fc = PCPU_FC_EMBED;
2787 #endif
2788 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2789 else if (!strcmp(str, "page"))
2790 pcpu_chosen_fc = PCPU_FC_PAGE;
2791 #endif
2792 else
2793 pr_warn("unknown allocator %s specified\n", str);
2794
2795 return 0;
2796 }
2797 early_param("percpu_alloc", percpu_alloc_setup);
2798
2799 /*
2800 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2801 * Build it if needed by the arch config or the generic setup is going
2802 * to be used.
2803 */
2804 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2805 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2806 #define BUILD_EMBED_FIRST_CHUNK
2807 #endif
2808
2809 /* build pcpu_page_first_chunk() iff needed by the arch config */
2810 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2811 #define BUILD_PAGE_FIRST_CHUNK
2812 #endif
2813
2814 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2815 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2816 /**
2817 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2818 * @reserved_size: the size of reserved percpu area in bytes
2819 * @dyn_size: minimum free size for dynamic allocation in bytes
2820 * @atom_size: allocation atom size
2821 * @cpu_distance_fn: callback to determine distance between cpus, optional
2822 *
2823 * This function determines grouping of units, their mappings to cpus
2824 * and other parameters considering needed percpu size, allocation
2825 * atom size and distances between CPUs.
2826 *
2827 * Groups are always multiples of atom size and CPUs which are of
2828 * LOCAL_DISTANCE both ways are grouped together and share space for
2829 * units in the same group. The returned configuration is guaranteed
2830 * to have CPUs on different nodes on different groups and >=75% usage
2831 * of allocated virtual address space.
2832 *
2833 * RETURNS:
2834 * On success, pointer to the new allocation_info is returned. On
2835 * failure, ERR_PTR value is returned.
2836 */
2837 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2838 size_t reserved_size, size_t dyn_size,
2839 size_t atom_size,
2840 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2841 {
2842 static int group_map[NR_CPUS] __initdata;
2843 static int group_cnt[NR_CPUS] __initdata;
2844 static struct cpumask mask __initdata;
2845 const size_t static_size = __per_cpu_end - __per_cpu_start;
2846 int nr_groups = 1, nr_units = 0;
2847 size_t size_sum, min_unit_size, alloc_size;
2848 int upa, max_upa, best_upa; /* units_per_alloc */
2849 int last_allocs, group, unit;
2850 unsigned int cpu, tcpu;
2851 struct pcpu_alloc_info *ai;
2852 unsigned int *cpu_map;
2853
2854 /* this function may be called multiple times */
2855 memset(group_map, 0, sizeof(group_map));
2856 memset(group_cnt, 0, sizeof(group_cnt));
2857 cpumask_clear(&mask);
2858
2859 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2860 size_sum = PFN_ALIGN(static_size + reserved_size +
2861 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2862 dyn_size = size_sum - static_size - reserved_size;
2863
2864 /*
2865 * Determine min_unit_size, alloc_size and max_upa such that
2866 * alloc_size is multiple of atom_size and is the smallest
2867 * which can accommodate 4k aligned segments which are equal to
2868 * or larger than min_unit_size.
2869 */
2870 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2871
2872 /* determine the maximum # of units that can fit in an allocation */
2873 alloc_size = roundup(min_unit_size, atom_size);
2874 upa = alloc_size / min_unit_size;
2875 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2876 upa--;
2877 max_upa = upa;
2878
2879 cpumask_copy(&mask, cpu_possible_mask);
2880
2881 /* group cpus according to their proximity */
2882 for (group = 0; !cpumask_empty(&mask); group++) {
2883 /* pop the group's first cpu */
2884 cpu = cpumask_first(&mask);
2885 group_map[cpu] = group;
2886 group_cnt[group]++;
2887 cpumask_clear_cpu(cpu, &mask);
2888
2889 for_each_cpu(tcpu, &mask) {
2890 if (!cpu_distance_fn ||
2891 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2892 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2893 group_map[tcpu] = group;
2894 group_cnt[group]++;
2895 cpumask_clear_cpu(tcpu, &mask);
2896 }
2897 }
2898 }
2899 nr_groups = group;
2900
2901 /*
2902 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2903 * Expand the unit_size until we use >= 75% of the units allocated.
2904 * Related to atom_size, which could be much larger than the unit_size.
2905 */
2906 last_allocs = INT_MAX;
2907 best_upa = 0;
2908 for (upa = max_upa; upa; upa--) {
2909 int allocs = 0, wasted = 0;
2910
2911 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2912 continue;
2913
2914 for (group = 0; group < nr_groups; group++) {
2915 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2916 allocs += this_allocs;
2917 wasted += this_allocs * upa - group_cnt[group];
2918 }
2919
2920 /*
2921 * Don't accept if wastage is over 1/3. The
2922 * greater-than comparison ensures upa==1 always
2923 * passes the following check.
2924 */
2925 if (wasted > num_possible_cpus() / 3)
2926 continue;
2927
2928 /* and then don't consume more memory */
2929 if (allocs > last_allocs)
2930 break;
2931 last_allocs = allocs;
2932 best_upa = upa;
2933 }
2934 BUG_ON(!best_upa);
2935 upa = best_upa;
2936
2937 /* allocate and fill alloc_info */
2938 for (group = 0; group < nr_groups; group++)
2939 nr_units += roundup(group_cnt[group], upa);
2940
2941 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2942 if (!ai)
2943 return ERR_PTR(-ENOMEM);
2944 cpu_map = ai->groups[0].cpu_map;
2945
2946 for (group = 0; group < nr_groups; group++) {
2947 ai->groups[group].cpu_map = cpu_map;
2948 cpu_map += roundup(group_cnt[group], upa);
2949 }
2950
2951 ai->static_size = static_size;
2952 ai->reserved_size = reserved_size;
2953 ai->dyn_size = dyn_size;
2954 ai->unit_size = alloc_size / upa;
2955 ai->atom_size = atom_size;
2956 ai->alloc_size = alloc_size;
2957
2958 for (group = 0, unit = 0; group < nr_groups; group++) {
2959 struct pcpu_group_info *gi = &ai->groups[group];
2960
2961 /*
2962 * Initialize base_offset as if all groups are located
2963 * back-to-back. The caller should update this to
2964 * reflect actual allocation.
2965 */
2966 gi->base_offset = unit * ai->unit_size;
2967
2968 for_each_possible_cpu(cpu)
2969 if (group_map[cpu] == group)
2970 gi->cpu_map[gi->nr_units++] = cpu;
2971 gi->nr_units = roundup(gi->nr_units, upa);
2972 unit += gi->nr_units;
2973 }
2974 BUG_ON(unit != nr_units);
2975
2976 return ai;
2977 }
2978
2979 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2980 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2981 {
2982 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2983 #ifdef CONFIG_NUMA
2984 int node = NUMA_NO_NODE;
2985 void *ptr;
2986
2987 if (cpu_to_nd_fn)
2988 node = cpu_to_nd_fn(cpu);
2989
2990 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
2991 ptr = memblock_alloc_from(size, align, goal);
2992 pr_info("cpu %d has no node %d or node-local memory\n",
2993 cpu, node);
2994 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
2995 cpu, size, (u64)__pa(ptr));
2996 } else {
2997 ptr = memblock_alloc_try_nid(size, align, goal,
2998 MEMBLOCK_ALLOC_ACCESSIBLE,
2999 node);
3000
3001 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
3002 cpu, size, node, (u64)__pa(ptr));
3003 }
3004 return ptr;
3005 #else
3006 return memblock_alloc_from(size, align, goal);
3007 #endif
3008 }
3009
3010 static void __init pcpu_fc_free(void *ptr, size_t size)
3011 {
3012 memblock_free(ptr, size);
3013 }
3014 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3015
3016 #if defined(BUILD_EMBED_FIRST_CHUNK)
3017 /**
3018 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3019 * @reserved_size: the size of reserved percpu area in bytes
3020 * @dyn_size: minimum free size for dynamic allocation in bytes
3021 * @atom_size: allocation atom size
3022 * @cpu_distance_fn: callback to determine distance between cpus, optional
3023 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3024 *
3025 * This is a helper to ease setting up embedded first percpu chunk and
3026 * can be called where pcpu_setup_first_chunk() is expected.
3027 *
3028 * If this function is used to setup the first chunk, it is allocated
3029 * by calling pcpu_fc_alloc and used as-is without being mapped into
3030 * vmalloc area. Allocations are always whole multiples of @atom_size
3031 * aligned to @atom_size.
3032 *
3033 * This enables the first chunk to piggy back on the linear physical
3034 * mapping which often uses larger page size. Please note that this
3035 * can result in very sparse cpu->unit mapping on NUMA machines thus
3036 * requiring large vmalloc address space. Don't use this allocator if
3037 * vmalloc space is not orders of magnitude larger than distances
3038 * between node memory addresses (ie. 32bit NUMA machines).
3039 *
3040 * @dyn_size specifies the minimum dynamic area size.
3041 *
3042 * If the needed size is smaller than the minimum or specified unit
3043 * size, the leftover is returned using pcpu_fc_free.
3044 *
3045 * RETURNS:
3046 * 0 on success, -errno on failure.
3047 */
3048 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3049 size_t atom_size,
3050 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3051 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3052 {
3053 void *base = (void *)ULONG_MAX;
3054 void **areas = NULL;
3055 struct pcpu_alloc_info *ai;
3056 size_t size_sum, areas_size;
3057 unsigned long max_distance;
3058 int group, i, highest_group, rc = 0;
3059
3060 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3061 cpu_distance_fn);
3062 if (IS_ERR(ai))
3063 return PTR_ERR(ai);
3064
3065 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3066 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3067
3068 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3069 if (!areas) {
3070 rc = -ENOMEM;
3071 goto out_free;
3072 }
3073
3074 /* allocate, copy and determine base address & max_distance */
3075 highest_group = 0;
3076 for (group = 0; group < ai->nr_groups; group++) {
3077 struct pcpu_group_info *gi = &ai->groups[group];
3078 unsigned int cpu = NR_CPUS;
3079 void *ptr;
3080
3081 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3082 cpu = gi->cpu_map[i];
3083 BUG_ON(cpu == NR_CPUS);
3084
3085 /* allocate space for the whole group */
3086 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3087 if (!ptr) {
3088 rc = -ENOMEM;
3089 goto out_free_areas;
3090 }
3091 /* kmemleak tracks the percpu allocations separately */
3092 kmemleak_ignore_phys(__pa(ptr));
3093 areas[group] = ptr;
3094
3095 base = min(ptr, base);
3096 if (ptr > areas[highest_group])
3097 highest_group = group;
3098 }
3099 max_distance = areas[highest_group] - base;
3100 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3101
3102 /* warn if maximum distance is further than 75% of vmalloc space */
3103 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3104 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3105 max_distance, VMALLOC_TOTAL);
3106 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3107 /* and fail if we have fallback */
3108 rc = -EINVAL;
3109 goto out_free_areas;
3110 #endif
3111 }
3112
3113 /*
3114 * Copy data and free unused parts. This should happen after all
3115 * allocations are complete; otherwise, we may end up with
3116 * overlapping groups.
3117 */
3118 for (group = 0; group < ai->nr_groups; group++) {
3119 struct pcpu_group_info *gi = &ai->groups[group];
3120 void *ptr = areas[group];
3121
3122 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3123 if (gi->cpu_map[i] == NR_CPUS) {
3124 /* unused unit, free whole */
3125 pcpu_fc_free(ptr, ai->unit_size);
3126 continue;
3127 }
3128 /* copy and return the unused part */
3129 memcpy(ptr, __per_cpu_load, ai->static_size);
3130 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3131 }
3132 }
3133
3134 /* base address is now known, determine group base offsets */
3135 for (group = 0; group < ai->nr_groups; group++) {
3136 ai->groups[group].base_offset = areas[group] - base;
3137 }
3138
3139 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3140 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3141 ai->dyn_size, ai->unit_size);
3142
3143 pcpu_setup_first_chunk(ai, base);
3144 goto out_free;
3145
3146 out_free_areas:
3147 for (group = 0; group < ai->nr_groups; group++)
3148 if (areas[group])
3149 pcpu_fc_free(areas[group],
3150 ai->groups[group].nr_units * ai->unit_size);
3151 out_free:
3152 pcpu_free_alloc_info(ai);
3153 if (areas)
3154 memblock_free(areas, areas_size);
3155 return rc;
3156 }
3157 #endif /* BUILD_EMBED_FIRST_CHUNK */
3158
3159 #ifdef BUILD_PAGE_FIRST_CHUNK
3160 #include <asm/pgalloc.h>
3161
3162 #ifndef P4D_TABLE_SIZE
3163 #define P4D_TABLE_SIZE PAGE_SIZE
3164 #endif
3165
3166 #ifndef PUD_TABLE_SIZE
3167 #define PUD_TABLE_SIZE PAGE_SIZE
3168 #endif
3169
3170 #ifndef PMD_TABLE_SIZE
3171 #define PMD_TABLE_SIZE PAGE_SIZE
3172 #endif
3173
3174 #ifndef PTE_TABLE_SIZE
3175 #define PTE_TABLE_SIZE PAGE_SIZE
3176 #endif
3177 void __init __weak pcpu_populate_pte(unsigned long addr)
3178 {
3179 pgd_t *pgd = pgd_offset_k(addr);
3180 p4d_t *p4d;
3181 pud_t *pud;
3182 pmd_t *pmd;
3183
3184 if (pgd_none(*pgd)) {
3185 p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3186 if (!p4d)
3187 goto err_alloc;
3188 pgd_populate(&init_mm, pgd, p4d);
3189 }
3190
3191 p4d = p4d_offset(pgd, addr);
3192 if (p4d_none(*p4d)) {
3193 pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3194 if (!pud)
3195 goto err_alloc;
3196 p4d_populate(&init_mm, p4d, pud);
3197 }
3198
3199 pud = pud_offset(p4d, addr);
3200 if (pud_none(*pud)) {
3201 pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3202 if (!pmd)
3203 goto err_alloc;
3204 pud_populate(&init_mm, pud, pmd);
3205 }
3206
3207 pmd = pmd_offset(pud, addr);
3208 if (!pmd_present(*pmd)) {
3209 pte_t *new;
3210
3211 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3212 if (!new)
3213 goto err_alloc;
3214 pmd_populate_kernel(&init_mm, pmd, new);
3215 }
3216
3217 return;
3218
3219 err_alloc:
3220 panic("%s: Failed to allocate memory\n", __func__);
3221 }
3222
3223 /**
3224 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3225 * @reserved_size: the size of reserved percpu area in bytes
3226 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3227 *
3228 * This is a helper to ease setting up page-remapped first percpu
3229 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3230 *
3231 * This is the basic allocator. Static percpu area is allocated
3232 * page-by-page into vmalloc area.
3233 *
3234 * RETURNS:
3235 * 0 on success, -errno on failure.
3236 */
3237 int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
3238 {
3239 static struct vm_struct vm;
3240 struct pcpu_alloc_info *ai;
3241 char psize_str[16];
3242 int unit_pages;
3243 size_t pages_size;
3244 struct page **pages;
3245 int unit, i, j, rc = 0;
3246 int upa;
3247 int nr_g0_units;
3248
3249 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3250
3251 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3252 if (IS_ERR(ai))
3253 return PTR_ERR(ai);
3254 BUG_ON(ai->nr_groups != 1);
3255 upa = ai->alloc_size/ai->unit_size;
3256 nr_g0_units = roundup(num_possible_cpus(), upa);
3257 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3258 pcpu_free_alloc_info(ai);
3259 return -EINVAL;
3260 }
3261
3262 unit_pages = ai->unit_size >> PAGE_SHIFT;
3263
3264 /* unaligned allocations can't be freed, round up to page size */
3265 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3266 sizeof(pages[0]));
3267 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3268 if (!pages)
3269 panic("%s: Failed to allocate %zu bytes\n", __func__,
3270 pages_size);
3271
3272 /* allocate pages */
3273 j = 0;
3274 for (unit = 0; unit < num_possible_cpus(); unit++) {
3275 unsigned int cpu = ai->groups[0].cpu_map[unit];
3276 for (i = 0; i < unit_pages; i++) {
3277 void *ptr;
3278
3279 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3280 if (!ptr) {
3281 pr_warn("failed to allocate %s page for cpu%u\n",
3282 psize_str, cpu);
3283 goto enomem;
3284 }
3285 /* kmemleak tracks the percpu allocations separately */
3286 kmemleak_ignore_phys(__pa(ptr));
3287 pages[j++] = virt_to_page(ptr);
3288 }
3289 }
3290
3291 /* allocate vm area, map the pages and copy static data */
3292 vm.flags = VM_ALLOC;
3293 vm.size = num_possible_cpus() * ai->unit_size;
3294 vm_area_register_early(&vm, PAGE_SIZE);
3295
3296 for (unit = 0; unit < num_possible_cpus(); unit++) {
3297 unsigned long unit_addr =
3298 (unsigned long)vm.addr + unit * ai->unit_size;
3299
3300 for (i = 0; i < unit_pages; i++)
3301 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3302
3303 /* pte already populated, the following shouldn't fail */
3304 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3305 unit_pages);
3306 if (rc < 0)
3307 panic("failed to map percpu area, err=%d\n", rc);
3308
3309 /*
3310 * FIXME: Archs with virtual cache should flush local
3311 * cache for the linear mapping here - something
3312 * equivalent to flush_cache_vmap() on the local cpu.
3313 * flush_cache_vmap() can't be used as most supporting
3314 * data structures are not set up yet.
3315 */
3316
3317 /* copy static data */
3318 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3319 }
3320
3321 /* we're ready, commit */
3322 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3323 unit_pages, psize_str, ai->static_size,
3324 ai->reserved_size, ai->dyn_size);
3325
3326 pcpu_setup_first_chunk(ai, vm.addr);
3327 goto out_free_ar;
3328
3329 enomem:
3330 while (--j >= 0)
3331 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3332 rc = -ENOMEM;
3333 out_free_ar:
3334 memblock_free(pages, pages_size);
3335 pcpu_free_alloc_info(ai);
3336 return rc;
3337 }
3338 #endif /* BUILD_PAGE_FIRST_CHUNK */
3339
3340 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3341 /*
3342 * Generic SMP percpu area setup.
3343 *
3344 * The embedding helper is used because its behavior closely resembles
3345 * the original non-dynamic generic percpu area setup. This is
3346 * important because many archs have addressing restrictions and might
3347 * fail if the percpu area is located far away from the previous
3348 * location. As an added bonus, in non-NUMA cases, embedding is
3349 * generally a good idea TLB-wise because percpu area can piggy back
3350 * on the physical linear memory mapping which uses large page
3351 * mappings on applicable archs.
3352 */
3353 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3354 EXPORT_SYMBOL(__per_cpu_offset);
3355
3356 void __init setup_per_cpu_areas(void)
3357 {
3358 unsigned long delta;
3359 unsigned int cpu;
3360 int rc;
3361
3362 /*
3363 * Always reserve area for module percpu variables. That's
3364 * what the legacy allocator did.
3365 */
3366 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3367 PAGE_SIZE, NULL, NULL);
3368 if (rc < 0)
3369 panic("Failed to initialize percpu areas.");
3370
3371 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3372 for_each_possible_cpu(cpu)
3373 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3374 }
3375 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3376
3377 #else /* CONFIG_SMP */
3378
3379 /*
3380 * UP percpu area setup.
3381 *
3382 * UP always uses km-based percpu allocator with identity mapping.
3383 * Static percpu variables are indistinguishable from the usual static
3384 * variables and don't require any special preparation.
3385 */
3386 void __init setup_per_cpu_areas(void)
3387 {
3388 const size_t unit_size =
3389 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3390 PERCPU_DYNAMIC_RESERVE));
3391 struct pcpu_alloc_info *ai;
3392 void *fc;
3393
3394 ai = pcpu_alloc_alloc_info(1, 1);
3395 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3396 if (!ai || !fc)
3397 panic("Failed to allocate memory for percpu areas.");
3398 /* kmemleak tracks the percpu allocations separately */
3399 kmemleak_ignore_phys(__pa(fc));
3400
3401 ai->dyn_size = unit_size;
3402 ai->unit_size = unit_size;
3403 ai->atom_size = unit_size;
3404 ai->alloc_size = unit_size;
3405 ai->groups[0].nr_units = 1;
3406 ai->groups[0].cpu_map[0] = 0;
3407
3408 pcpu_setup_first_chunk(ai, fc);
3409 pcpu_free_alloc_info(ai);
3410 }
3411
3412 #endif /* CONFIG_SMP */
3413
3414 /*
3415 * pcpu_nr_pages - calculate total number of populated backing pages
3416 *
3417 * This reflects the number of pages populated to back chunks. Metadata is
3418 * excluded in the number exposed in meminfo as the number of backing pages
3419 * scales with the number of cpus and can quickly outweigh the memory used for
3420 * metadata. It also keeps this calculation nice and simple.
3421 *
3422 * RETURNS:
3423 * Total number of populated backing pages in use by the allocator.
3424 */
3425 unsigned long pcpu_nr_pages(void)
3426 {
3427 return pcpu_nr_populated * pcpu_nr_units;
3428 }
3429
3430 /*
3431 * Percpu allocator is initialized early during boot when neither slab or
3432 * workqueue is available. Plug async management until everything is up
3433 * and running.
3434 */
3435 static int __init percpu_enable_async(void)
3436 {
3437 pcpu_async_enabled = true;
3438 return 0;
3439 }
3440 subsys_initcall(percpu_enable_async);