]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/percpu.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
10 *
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
38 *
39 * The allocator organizes chunks into lists according to free size and
40 * tries to allocate from the fullest chunk first. Each chunk is managed
41 * by a bitmap with metadata blocks. The allocation map is updated on
42 * every allocation and free to reflect the current state while the boundary
43 * map is only updated on allocation. Each metadata block contains
44 * information to help mitigate the need to iterate over large portions
45 * of the bitmap. The reverse mapping from page to chunk is stored in
46 * the page's index. Lastly, units are lazily backed and grow in unison.
47 *
48 * There is a unique conversion that goes on here between bytes and bits.
49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
50 * tracks the number of pages it is responsible for in nr_pages. Helper
51 * functions are used to convert from between the bytes, bits, and blocks.
52 * All hints are managed in bits unless explicitly stated.
53 *
54 * To use this allocator, arch code should do the following:
55 *
56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57 * regular address to percpu pointer and back if they need to be
58 * different from the default
59 *
60 * - use pcpu_setup_first_chunk() during percpu area initialization to
61 * setup the first chunk containing the kernel static percpu area
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91
92 #include "percpu-internal.h"
93
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
96 /* chunks in slots below this are subject to being sidelined on failed alloc */
97 #define PCPU_SLOT_FAIL_THRESHOLD 3
98
99 #define PCPU_EMPTY_POP_PAGES_LOW 2
100 #define PCPU_EMPTY_POP_PAGES_HIGH 4
101
102 #ifdef CONFIG_SMP
103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
104 #ifndef __addr_to_pcpu_ptr
105 #define __addr_to_pcpu_ptr(addr) \
106 (void __percpu *)((unsigned long)(addr) - \
107 (unsigned long)pcpu_base_addr + \
108 (unsigned long)__per_cpu_start)
109 #endif
110 #ifndef __pcpu_ptr_to_addr
111 #define __pcpu_ptr_to_addr(ptr) \
112 (void __force *)((unsigned long)(ptr) + \
113 (unsigned long)pcpu_base_addr - \
114 (unsigned long)__per_cpu_start)
115 #endif
116 #else /* CONFIG_SMP */
117 /* on UP, it's always identity mapped */
118 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
119 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
120 #endif /* CONFIG_SMP */
121
122 static int pcpu_unit_pages __ro_after_init;
123 static int pcpu_unit_size __ro_after_init;
124 static int pcpu_nr_units __ro_after_init;
125 static int pcpu_atom_size __ro_after_init;
126 int pcpu_nr_slots __ro_after_init;
127 static size_t pcpu_chunk_struct_size __ro_after_init;
128
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __ro_after_init;
131 static unsigned int pcpu_high_unit_cpu __ro_after_init;
132
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __ro_after_init;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
137 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
139
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __ro_after_init;
142 static const unsigned long *pcpu_group_offsets __ro_after_init;
143 static const size_t *pcpu_group_sizes __ro_after_init;
144
145 /*
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
149 */
150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
151
152 /*
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. When the reserved
155 * region doesn't exist, the following variable is NULL.
156 */
157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
158
159 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
160 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
161
162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
163
164 /* chunks which need their map areas extended, protected by pcpu_lock */
165 static LIST_HEAD(pcpu_map_extend_chunks);
166
167 /*
168 * The number of empty populated pages, protected by pcpu_lock. The
169 * reserved chunk doesn't contribute to the count.
170 */
171 int pcpu_nr_empty_pop_pages;
172
173 /*
174 * The number of populated pages in use by the allocator, protected by
175 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
176 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
177 * and increments/decrements this count by 1).
178 */
179 static unsigned long pcpu_nr_populated;
180
181 /*
182 * Balance work is used to populate or destroy chunks asynchronously. We
183 * try to keep the number of populated free pages between
184 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
185 * empty chunk.
186 */
187 static void pcpu_balance_workfn(struct work_struct *work);
188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
189 static bool pcpu_async_enabled __read_mostly;
190 static bool pcpu_atomic_alloc_failed;
191
192 static void pcpu_schedule_balance_work(void)
193 {
194 if (pcpu_async_enabled)
195 schedule_work(&pcpu_balance_work);
196 }
197
198 /**
199 * pcpu_addr_in_chunk - check if the address is served from this chunk
200 * @chunk: chunk of interest
201 * @addr: percpu address
202 *
203 * RETURNS:
204 * True if the address is served from this chunk.
205 */
206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
207 {
208 void *start_addr, *end_addr;
209
210 if (!chunk)
211 return false;
212
213 start_addr = chunk->base_addr + chunk->start_offset;
214 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
215 chunk->end_offset;
216
217 return addr >= start_addr && addr < end_addr;
218 }
219
220 static int __pcpu_size_to_slot(int size)
221 {
222 int highbit = fls(size); /* size is in bytes */
223 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
224 }
225
226 static int pcpu_size_to_slot(int size)
227 {
228 if (size == pcpu_unit_size)
229 return pcpu_nr_slots - 1;
230 return __pcpu_size_to_slot(size);
231 }
232
233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
234 {
235 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
236
237 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
238 chunk_md->contig_hint == 0)
239 return 0;
240
241 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
242 }
243
244 /* set the pointer to a chunk in a page struct */
245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
246 {
247 page->index = (unsigned long)pcpu;
248 }
249
250 /* obtain pointer to a chunk from a page struct */
251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
252 {
253 return (struct pcpu_chunk *)page->index;
254 }
255
256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
257 {
258 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
259 }
260
261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
262 {
263 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
264 }
265
266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
267 unsigned int cpu, int page_idx)
268 {
269 return (unsigned long)chunk->base_addr +
270 pcpu_unit_page_offset(cpu, page_idx);
271 }
272
273 /*
274 * The following are helper functions to help access bitmaps and convert
275 * between bitmap offsets to address offsets.
276 */
277 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
278 {
279 return chunk->alloc_map +
280 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
281 }
282
283 static unsigned long pcpu_off_to_block_index(int off)
284 {
285 return off / PCPU_BITMAP_BLOCK_BITS;
286 }
287
288 static unsigned long pcpu_off_to_block_off(int off)
289 {
290 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
291 }
292
293 static unsigned long pcpu_block_off_to_off(int index, int off)
294 {
295 return index * PCPU_BITMAP_BLOCK_BITS + off;
296 }
297
298 /*
299 * pcpu_next_hint - determine which hint to use
300 * @block: block of interest
301 * @alloc_bits: size of allocation
302 *
303 * This determines if we should scan based on the scan_hint or first_free.
304 * In general, we want to scan from first_free to fulfill allocations by
305 * first fit. However, if we know a scan_hint at position scan_hint_start
306 * cannot fulfill an allocation, we can begin scanning from there knowing
307 * the contig_hint will be our fallback.
308 */
309 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
310 {
311 /*
312 * The three conditions below determine if we can skip past the
313 * scan_hint. First, does the scan hint exist. Second, is the
314 * contig_hint after the scan_hint (possibly not true iff
315 * contig_hint == scan_hint). Third, is the allocation request
316 * larger than the scan_hint.
317 */
318 if (block->scan_hint &&
319 block->contig_hint_start > block->scan_hint_start &&
320 alloc_bits > block->scan_hint)
321 return block->scan_hint_start + block->scan_hint;
322
323 return block->first_free;
324 }
325
326 /**
327 * pcpu_next_md_free_region - finds the next hint free area
328 * @chunk: chunk of interest
329 * @bit_off: chunk offset
330 * @bits: size of free area
331 *
332 * Helper function for pcpu_for_each_md_free_region. It checks
333 * block->contig_hint and performs aggregation across blocks to find the
334 * next hint. It modifies bit_off and bits in-place to be consumed in the
335 * loop.
336 */
337 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
338 int *bits)
339 {
340 int i = pcpu_off_to_block_index(*bit_off);
341 int block_off = pcpu_off_to_block_off(*bit_off);
342 struct pcpu_block_md *block;
343
344 *bits = 0;
345 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
346 block++, i++) {
347 /* handles contig area across blocks */
348 if (*bits) {
349 *bits += block->left_free;
350 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
351 continue;
352 return;
353 }
354
355 /*
356 * This checks three things. First is there a contig_hint to
357 * check. Second, have we checked this hint before by
358 * comparing the block_off. Third, is this the same as the
359 * right contig hint. In the last case, it spills over into
360 * the next block and should be handled by the contig area
361 * across blocks code.
362 */
363 *bits = block->contig_hint;
364 if (*bits && block->contig_hint_start >= block_off &&
365 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
366 *bit_off = pcpu_block_off_to_off(i,
367 block->contig_hint_start);
368 return;
369 }
370 /* reset to satisfy the second predicate above */
371 block_off = 0;
372
373 *bits = block->right_free;
374 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
375 }
376 }
377
378 /**
379 * pcpu_next_fit_region - finds fit areas for a given allocation request
380 * @chunk: chunk of interest
381 * @alloc_bits: size of allocation
382 * @align: alignment of area (max PAGE_SIZE)
383 * @bit_off: chunk offset
384 * @bits: size of free area
385 *
386 * Finds the next free region that is viable for use with a given size and
387 * alignment. This only returns if there is a valid area to be used for this
388 * allocation. block->first_free is returned if the allocation request fits
389 * within the block to see if the request can be fulfilled prior to the contig
390 * hint.
391 */
392 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
393 int align, int *bit_off, int *bits)
394 {
395 int i = pcpu_off_to_block_index(*bit_off);
396 int block_off = pcpu_off_to_block_off(*bit_off);
397 struct pcpu_block_md *block;
398
399 *bits = 0;
400 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
401 block++, i++) {
402 /* handles contig area across blocks */
403 if (*bits) {
404 *bits += block->left_free;
405 if (*bits >= alloc_bits)
406 return;
407 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
408 continue;
409 }
410
411 /* check block->contig_hint */
412 *bits = ALIGN(block->contig_hint_start, align) -
413 block->contig_hint_start;
414 /*
415 * This uses the block offset to determine if this has been
416 * checked in the prior iteration.
417 */
418 if (block->contig_hint &&
419 block->contig_hint_start >= block_off &&
420 block->contig_hint >= *bits + alloc_bits) {
421 int start = pcpu_next_hint(block, alloc_bits);
422
423 *bits += alloc_bits + block->contig_hint_start -
424 start;
425 *bit_off = pcpu_block_off_to_off(i, start);
426 return;
427 }
428 /* reset to satisfy the second predicate above */
429 block_off = 0;
430
431 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
432 align);
433 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
434 *bit_off = pcpu_block_off_to_off(i, *bit_off);
435 if (*bits >= alloc_bits)
436 return;
437 }
438
439 /* no valid offsets were found - fail condition */
440 *bit_off = pcpu_chunk_map_bits(chunk);
441 }
442
443 /*
444 * Metadata free area iterators. These perform aggregation of free areas
445 * based on the metadata blocks and return the offset @bit_off and size in
446 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
447 * a fit is found for the allocation request.
448 */
449 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
450 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
451 (bit_off) < pcpu_chunk_map_bits((chunk)); \
452 (bit_off) += (bits) + 1, \
453 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
454
455 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
456 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
457 &(bits)); \
458 (bit_off) < pcpu_chunk_map_bits((chunk)); \
459 (bit_off) += (bits), \
460 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
461 &(bits)))
462
463 /**
464 * pcpu_mem_zalloc - allocate memory
465 * @size: bytes to allocate
466 * @gfp: allocation flags
467 *
468 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
469 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
470 * This is to facilitate passing through whitelisted flags. The
471 * returned memory is always zeroed.
472 *
473 * RETURNS:
474 * Pointer to the allocated area on success, NULL on failure.
475 */
476 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
477 {
478 if (WARN_ON_ONCE(!slab_is_available()))
479 return NULL;
480
481 if (size <= PAGE_SIZE)
482 return kzalloc(size, gfp);
483 else
484 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
485 }
486
487 /**
488 * pcpu_mem_free - free memory
489 * @ptr: memory to free
490 *
491 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
492 */
493 static void pcpu_mem_free(void *ptr)
494 {
495 kvfree(ptr);
496 }
497
498 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
499 bool move_front)
500 {
501 if (chunk != pcpu_reserved_chunk) {
502 if (move_front)
503 list_move(&chunk->list, &pcpu_slot[slot]);
504 else
505 list_move_tail(&chunk->list, &pcpu_slot[slot]);
506 }
507 }
508
509 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
510 {
511 __pcpu_chunk_move(chunk, slot, true);
512 }
513
514 /**
515 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
516 * @chunk: chunk of interest
517 * @oslot: the previous slot it was on
518 *
519 * This function is called after an allocation or free changed @chunk.
520 * New slot according to the changed state is determined and @chunk is
521 * moved to the slot. Note that the reserved chunk is never put on
522 * chunk slots.
523 *
524 * CONTEXT:
525 * pcpu_lock.
526 */
527 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
528 {
529 int nslot = pcpu_chunk_slot(chunk);
530
531 if (oslot != nslot)
532 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
533 }
534
535 /*
536 * pcpu_update_empty_pages - update empty page counters
537 * @chunk: chunk of interest
538 * @nr: nr of empty pages
539 *
540 * This is used to keep track of the empty pages now based on the premise
541 * a md_block covers a page. The hint update functions recognize if a block
542 * is made full or broken to calculate deltas for keeping track of free pages.
543 */
544 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
545 {
546 chunk->nr_empty_pop_pages += nr;
547 if (chunk != pcpu_reserved_chunk)
548 pcpu_nr_empty_pop_pages += nr;
549 }
550
551 /*
552 * pcpu_region_overlap - determines if two regions overlap
553 * @a: start of first region, inclusive
554 * @b: end of first region, exclusive
555 * @x: start of second region, inclusive
556 * @y: end of second region, exclusive
557 *
558 * This is used to determine if the hint region [a, b) overlaps with the
559 * allocated region [x, y).
560 */
561 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
562 {
563 return (a < y) && (x < b);
564 }
565
566 /**
567 * pcpu_block_update - updates a block given a free area
568 * @block: block of interest
569 * @start: start offset in block
570 * @end: end offset in block
571 *
572 * Updates a block given a known free area. The region [start, end) is
573 * expected to be the entirety of the free area within a block. Chooses
574 * the best starting offset if the contig hints are equal.
575 */
576 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
577 {
578 int contig = end - start;
579
580 block->first_free = min(block->first_free, start);
581 if (start == 0)
582 block->left_free = contig;
583
584 if (end == block->nr_bits)
585 block->right_free = contig;
586
587 if (contig > block->contig_hint) {
588 /* promote the old contig_hint to be the new scan_hint */
589 if (start > block->contig_hint_start) {
590 if (block->contig_hint > block->scan_hint) {
591 block->scan_hint_start =
592 block->contig_hint_start;
593 block->scan_hint = block->contig_hint;
594 } else if (start < block->scan_hint_start) {
595 /*
596 * The old contig_hint == scan_hint. But, the
597 * new contig is larger so hold the invariant
598 * scan_hint_start < contig_hint_start.
599 */
600 block->scan_hint = 0;
601 }
602 } else {
603 block->scan_hint = 0;
604 }
605 block->contig_hint_start = start;
606 block->contig_hint = contig;
607 } else if (contig == block->contig_hint) {
608 if (block->contig_hint_start &&
609 (!start ||
610 __ffs(start) > __ffs(block->contig_hint_start))) {
611 /* start has a better alignment so use it */
612 block->contig_hint_start = start;
613 if (start < block->scan_hint_start &&
614 block->contig_hint > block->scan_hint)
615 block->scan_hint = 0;
616 } else if (start > block->scan_hint_start ||
617 block->contig_hint > block->scan_hint) {
618 /*
619 * Knowing contig == contig_hint, update the scan_hint
620 * if it is farther than or larger than the current
621 * scan_hint.
622 */
623 block->scan_hint_start = start;
624 block->scan_hint = contig;
625 }
626 } else {
627 /*
628 * The region is smaller than the contig_hint. So only update
629 * the scan_hint if it is larger than or equal and farther than
630 * the current scan_hint.
631 */
632 if ((start < block->contig_hint_start &&
633 (contig > block->scan_hint ||
634 (contig == block->scan_hint &&
635 start > block->scan_hint_start)))) {
636 block->scan_hint_start = start;
637 block->scan_hint = contig;
638 }
639 }
640 }
641
642 /*
643 * pcpu_block_update_scan - update a block given a free area from a scan
644 * @chunk: chunk of interest
645 * @bit_off: chunk offset
646 * @bits: size of free area
647 *
648 * Finding the final allocation spot first goes through pcpu_find_block_fit()
649 * to find a block that can hold the allocation and then pcpu_alloc_area()
650 * where a scan is used. When allocations require specific alignments,
651 * we can inadvertently create holes which will not be seen in the alloc
652 * or free paths.
653 *
654 * This takes a given free area hole and updates a block as it may change the
655 * scan_hint. We need to scan backwards to ensure we don't miss free bits
656 * from alignment.
657 */
658 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
659 int bits)
660 {
661 int s_off = pcpu_off_to_block_off(bit_off);
662 int e_off = s_off + bits;
663 int s_index, l_bit;
664 struct pcpu_block_md *block;
665
666 if (e_off > PCPU_BITMAP_BLOCK_BITS)
667 return;
668
669 s_index = pcpu_off_to_block_index(bit_off);
670 block = chunk->md_blocks + s_index;
671
672 /* scan backwards in case of alignment skipping free bits */
673 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
674 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
675
676 pcpu_block_update(block, s_off, e_off);
677 }
678
679 /**
680 * pcpu_chunk_refresh_hint - updates metadata about a chunk
681 * @chunk: chunk of interest
682 * @full_scan: if we should scan from the beginning
683 *
684 * Iterates over the metadata blocks to find the largest contig area.
685 * A full scan can be avoided on the allocation path as this is triggered
686 * if we broke the contig_hint. In doing so, the scan_hint will be before
687 * the contig_hint or after if the scan_hint == contig_hint. This cannot
688 * be prevented on freeing as we want to find the largest area possibly
689 * spanning blocks.
690 */
691 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
692 {
693 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
694 int bit_off, bits;
695
696 /* promote scan_hint to contig_hint */
697 if (!full_scan && chunk_md->scan_hint) {
698 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
699 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
700 chunk_md->contig_hint = chunk_md->scan_hint;
701 chunk_md->scan_hint = 0;
702 } else {
703 bit_off = chunk_md->first_free;
704 chunk_md->contig_hint = 0;
705 }
706
707 bits = 0;
708 pcpu_for_each_md_free_region(chunk, bit_off, bits)
709 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
710 }
711
712 /**
713 * pcpu_block_refresh_hint
714 * @chunk: chunk of interest
715 * @index: index of the metadata block
716 *
717 * Scans over the block beginning at first_free and updates the block
718 * metadata accordingly.
719 */
720 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
721 {
722 struct pcpu_block_md *block = chunk->md_blocks + index;
723 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
724 unsigned int rs, re, start; /* region start, region end */
725
726 /* promote scan_hint to contig_hint */
727 if (block->scan_hint) {
728 start = block->scan_hint_start + block->scan_hint;
729 block->contig_hint_start = block->scan_hint_start;
730 block->contig_hint = block->scan_hint;
731 block->scan_hint = 0;
732 } else {
733 start = block->first_free;
734 block->contig_hint = 0;
735 }
736
737 block->right_free = 0;
738
739 /* iterate over free areas and update the contig hints */
740 bitmap_for_each_clear_region(alloc_map, rs, re, start,
741 PCPU_BITMAP_BLOCK_BITS)
742 pcpu_block_update(block, rs, re);
743 }
744
745 /**
746 * pcpu_block_update_hint_alloc - update hint on allocation path
747 * @chunk: chunk of interest
748 * @bit_off: chunk offset
749 * @bits: size of request
750 *
751 * Updates metadata for the allocation path. The metadata only has to be
752 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
753 * scans are required if the block's contig hint is broken.
754 */
755 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
756 int bits)
757 {
758 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
759 int nr_empty_pages = 0;
760 struct pcpu_block_md *s_block, *e_block, *block;
761 int s_index, e_index; /* block indexes of the freed allocation */
762 int s_off, e_off; /* block offsets of the freed allocation */
763
764 /*
765 * Calculate per block offsets.
766 * The calculation uses an inclusive range, but the resulting offsets
767 * are [start, end). e_index always points to the last block in the
768 * range.
769 */
770 s_index = pcpu_off_to_block_index(bit_off);
771 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
772 s_off = pcpu_off_to_block_off(bit_off);
773 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
774
775 s_block = chunk->md_blocks + s_index;
776 e_block = chunk->md_blocks + e_index;
777
778 /*
779 * Update s_block.
780 * block->first_free must be updated if the allocation takes its place.
781 * If the allocation breaks the contig_hint, a scan is required to
782 * restore this hint.
783 */
784 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
785 nr_empty_pages++;
786
787 if (s_off == s_block->first_free)
788 s_block->first_free = find_next_zero_bit(
789 pcpu_index_alloc_map(chunk, s_index),
790 PCPU_BITMAP_BLOCK_BITS,
791 s_off + bits);
792
793 if (pcpu_region_overlap(s_block->scan_hint_start,
794 s_block->scan_hint_start + s_block->scan_hint,
795 s_off,
796 s_off + bits))
797 s_block->scan_hint = 0;
798
799 if (pcpu_region_overlap(s_block->contig_hint_start,
800 s_block->contig_hint_start +
801 s_block->contig_hint,
802 s_off,
803 s_off + bits)) {
804 /* block contig hint is broken - scan to fix it */
805 if (!s_off)
806 s_block->left_free = 0;
807 pcpu_block_refresh_hint(chunk, s_index);
808 } else {
809 /* update left and right contig manually */
810 s_block->left_free = min(s_block->left_free, s_off);
811 if (s_index == e_index)
812 s_block->right_free = min_t(int, s_block->right_free,
813 PCPU_BITMAP_BLOCK_BITS - e_off);
814 else
815 s_block->right_free = 0;
816 }
817
818 /*
819 * Update e_block.
820 */
821 if (s_index != e_index) {
822 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
823 nr_empty_pages++;
824
825 /*
826 * When the allocation is across blocks, the end is along
827 * the left part of the e_block.
828 */
829 e_block->first_free = find_next_zero_bit(
830 pcpu_index_alloc_map(chunk, e_index),
831 PCPU_BITMAP_BLOCK_BITS, e_off);
832
833 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
834 /* reset the block */
835 e_block++;
836 } else {
837 if (e_off > e_block->scan_hint_start)
838 e_block->scan_hint = 0;
839
840 e_block->left_free = 0;
841 if (e_off > e_block->contig_hint_start) {
842 /* contig hint is broken - scan to fix it */
843 pcpu_block_refresh_hint(chunk, e_index);
844 } else {
845 e_block->right_free =
846 min_t(int, e_block->right_free,
847 PCPU_BITMAP_BLOCK_BITS - e_off);
848 }
849 }
850
851 /* update in-between md_blocks */
852 nr_empty_pages += (e_index - s_index - 1);
853 for (block = s_block + 1; block < e_block; block++) {
854 block->scan_hint = 0;
855 block->contig_hint = 0;
856 block->left_free = 0;
857 block->right_free = 0;
858 }
859 }
860
861 if (nr_empty_pages)
862 pcpu_update_empty_pages(chunk, -nr_empty_pages);
863
864 if (pcpu_region_overlap(chunk_md->scan_hint_start,
865 chunk_md->scan_hint_start +
866 chunk_md->scan_hint,
867 bit_off,
868 bit_off + bits))
869 chunk_md->scan_hint = 0;
870
871 /*
872 * The only time a full chunk scan is required is if the chunk
873 * contig hint is broken. Otherwise, it means a smaller space
874 * was used and therefore the chunk contig hint is still correct.
875 */
876 if (pcpu_region_overlap(chunk_md->contig_hint_start,
877 chunk_md->contig_hint_start +
878 chunk_md->contig_hint,
879 bit_off,
880 bit_off + bits))
881 pcpu_chunk_refresh_hint(chunk, false);
882 }
883
884 /**
885 * pcpu_block_update_hint_free - updates the block hints on the free path
886 * @chunk: chunk of interest
887 * @bit_off: chunk offset
888 * @bits: size of request
889 *
890 * Updates metadata for the allocation path. This avoids a blind block
891 * refresh by making use of the block contig hints. If this fails, it scans
892 * forward and backward to determine the extent of the free area. This is
893 * capped at the boundary of blocks.
894 *
895 * A chunk update is triggered if a page becomes free, a block becomes free,
896 * or the free spans across blocks. This tradeoff is to minimize iterating
897 * over the block metadata to update chunk_md->contig_hint.
898 * chunk_md->contig_hint may be off by up to a page, but it will never be more
899 * than the available space. If the contig hint is contained in one block, it
900 * will be accurate.
901 */
902 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
903 int bits)
904 {
905 int nr_empty_pages = 0;
906 struct pcpu_block_md *s_block, *e_block, *block;
907 int s_index, e_index; /* block indexes of the freed allocation */
908 int s_off, e_off; /* block offsets of the freed allocation */
909 int start, end; /* start and end of the whole free area */
910
911 /*
912 * Calculate per block offsets.
913 * The calculation uses an inclusive range, but the resulting offsets
914 * are [start, end). e_index always points to the last block in the
915 * range.
916 */
917 s_index = pcpu_off_to_block_index(bit_off);
918 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
919 s_off = pcpu_off_to_block_off(bit_off);
920 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
921
922 s_block = chunk->md_blocks + s_index;
923 e_block = chunk->md_blocks + e_index;
924
925 /*
926 * Check if the freed area aligns with the block->contig_hint.
927 * If it does, then the scan to find the beginning/end of the
928 * larger free area can be avoided.
929 *
930 * start and end refer to beginning and end of the free area
931 * within each their respective blocks. This is not necessarily
932 * the entire free area as it may span blocks past the beginning
933 * or end of the block.
934 */
935 start = s_off;
936 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
937 start = s_block->contig_hint_start;
938 } else {
939 /*
940 * Scan backwards to find the extent of the free area.
941 * find_last_bit returns the starting bit, so if the start bit
942 * is returned, that means there was no last bit and the
943 * remainder of the chunk is free.
944 */
945 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
946 start);
947 start = (start == l_bit) ? 0 : l_bit + 1;
948 }
949
950 end = e_off;
951 if (e_off == e_block->contig_hint_start)
952 end = e_block->contig_hint_start + e_block->contig_hint;
953 else
954 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
955 PCPU_BITMAP_BLOCK_BITS, end);
956
957 /* update s_block */
958 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
959 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
960 nr_empty_pages++;
961 pcpu_block_update(s_block, start, e_off);
962
963 /* freeing in the same block */
964 if (s_index != e_index) {
965 /* update e_block */
966 if (end == PCPU_BITMAP_BLOCK_BITS)
967 nr_empty_pages++;
968 pcpu_block_update(e_block, 0, end);
969
970 /* reset md_blocks in the middle */
971 nr_empty_pages += (e_index - s_index - 1);
972 for (block = s_block + 1; block < e_block; block++) {
973 block->first_free = 0;
974 block->scan_hint = 0;
975 block->contig_hint_start = 0;
976 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
977 block->left_free = PCPU_BITMAP_BLOCK_BITS;
978 block->right_free = PCPU_BITMAP_BLOCK_BITS;
979 }
980 }
981
982 if (nr_empty_pages)
983 pcpu_update_empty_pages(chunk, nr_empty_pages);
984
985 /*
986 * Refresh chunk metadata when the free makes a block free or spans
987 * across blocks. The contig_hint may be off by up to a page, but if
988 * the contig_hint is contained in a block, it will be accurate with
989 * the else condition below.
990 */
991 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
992 pcpu_chunk_refresh_hint(chunk, true);
993 else
994 pcpu_block_update(&chunk->chunk_md,
995 pcpu_block_off_to_off(s_index, start),
996 end);
997 }
998
999 /**
1000 * pcpu_is_populated - determines if the region is populated
1001 * @chunk: chunk of interest
1002 * @bit_off: chunk offset
1003 * @bits: size of area
1004 * @next_off: return value for the next offset to start searching
1005 *
1006 * For atomic allocations, check if the backing pages are populated.
1007 *
1008 * RETURNS:
1009 * Bool if the backing pages are populated.
1010 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1011 */
1012 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1013 int *next_off)
1014 {
1015 unsigned int page_start, page_end, rs, re;
1016
1017 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1018 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1019
1020 rs = page_start;
1021 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1022 if (rs >= page_end)
1023 return true;
1024
1025 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1026 return false;
1027 }
1028
1029 /**
1030 * pcpu_find_block_fit - finds the block index to start searching
1031 * @chunk: chunk of interest
1032 * @alloc_bits: size of request in allocation units
1033 * @align: alignment of area (max PAGE_SIZE bytes)
1034 * @pop_only: use populated regions only
1035 *
1036 * Given a chunk and an allocation spec, find the offset to begin searching
1037 * for a free region. This iterates over the bitmap metadata blocks to
1038 * find an offset that will be guaranteed to fit the requirements. It is
1039 * not quite first fit as if the allocation does not fit in the contig hint
1040 * of a block or chunk, it is skipped. This errs on the side of caution
1041 * to prevent excess iteration. Poor alignment can cause the allocator to
1042 * skip over blocks and chunks that have valid free areas.
1043 *
1044 * RETURNS:
1045 * The offset in the bitmap to begin searching.
1046 * -1 if no offset is found.
1047 */
1048 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1049 size_t align, bool pop_only)
1050 {
1051 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1052 int bit_off, bits, next_off;
1053
1054 /*
1055 * Check to see if the allocation can fit in the chunk's contig hint.
1056 * This is an optimization to prevent scanning by assuming if it
1057 * cannot fit in the global hint, there is memory pressure and creating
1058 * a new chunk would happen soon.
1059 */
1060 bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1061 chunk_md->contig_hint_start;
1062 if (bit_off + alloc_bits > chunk_md->contig_hint)
1063 return -1;
1064
1065 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1066 bits = 0;
1067 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1068 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1069 &next_off))
1070 break;
1071
1072 bit_off = next_off;
1073 bits = 0;
1074 }
1075
1076 if (bit_off == pcpu_chunk_map_bits(chunk))
1077 return -1;
1078
1079 return bit_off;
1080 }
1081
1082 /*
1083 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1084 * @map: the address to base the search on
1085 * @size: the bitmap size in bits
1086 * @start: the bitnumber to start searching at
1087 * @nr: the number of zeroed bits we're looking for
1088 * @align_mask: alignment mask for zero area
1089 * @largest_off: offset of the largest area skipped
1090 * @largest_bits: size of the largest area skipped
1091 *
1092 * The @align_mask should be one less than a power of 2.
1093 *
1094 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1095 * the largest area that was skipped. This is imperfect, but in general is
1096 * good enough. The largest remembered region is the largest failed region
1097 * seen. This does not include anything we possibly skipped due to alignment.
1098 * pcpu_block_update_scan() does scan backwards to try and recover what was
1099 * lost to alignment. While this can cause scanning to miss earlier possible
1100 * free areas, smaller allocations will eventually fill those holes.
1101 */
1102 static unsigned long pcpu_find_zero_area(unsigned long *map,
1103 unsigned long size,
1104 unsigned long start,
1105 unsigned long nr,
1106 unsigned long align_mask,
1107 unsigned long *largest_off,
1108 unsigned long *largest_bits)
1109 {
1110 unsigned long index, end, i, area_off, area_bits;
1111 again:
1112 index = find_next_zero_bit(map, size, start);
1113
1114 /* Align allocation */
1115 index = __ALIGN_MASK(index, align_mask);
1116 area_off = index;
1117
1118 end = index + nr;
1119 if (end > size)
1120 return end;
1121 i = find_next_bit(map, end, index);
1122 if (i < end) {
1123 area_bits = i - area_off;
1124 /* remember largest unused area with best alignment */
1125 if (area_bits > *largest_bits ||
1126 (area_bits == *largest_bits && *largest_off &&
1127 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1128 *largest_off = area_off;
1129 *largest_bits = area_bits;
1130 }
1131
1132 start = i + 1;
1133 goto again;
1134 }
1135 return index;
1136 }
1137
1138 /**
1139 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1140 * @chunk: chunk of interest
1141 * @alloc_bits: size of request in allocation units
1142 * @align: alignment of area (max PAGE_SIZE)
1143 * @start: bit_off to start searching
1144 *
1145 * This function takes in a @start offset to begin searching to fit an
1146 * allocation of @alloc_bits with alignment @align. It needs to scan
1147 * the allocation map because if it fits within the block's contig hint,
1148 * @start will be block->first_free. This is an attempt to fill the
1149 * allocation prior to breaking the contig hint. The allocation and
1150 * boundary maps are updated accordingly if it confirms a valid
1151 * free area.
1152 *
1153 * RETURNS:
1154 * Allocated addr offset in @chunk on success.
1155 * -1 if no matching area is found.
1156 */
1157 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1158 size_t align, int start)
1159 {
1160 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1161 size_t align_mask = (align) ? (align - 1) : 0;
1162 unsigned long area_off = 0, area_bits = 0;
1163 int bit_off, end, oslot;
1164
1165 lockdep_assert_held(&pcpu_lock);
1166
1167 oslot = pcpu_chunk_slot(chunk);
1168
1169 /*
1170 * Search to find a fit.
1171 */
1172 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1173 pcpu_chunk_map_bits(chunk));
1174 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1175 align_mask, &area_off, &area_bits);
1176 if (bit_off >= end)
1177 return -1;
1178
1179 if (area_bits)
1180 pcpu_block_update_scan(chunk, area_off, area_bits);
1181
1182 /* update alloc map */
1183 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1184
1185 /* update boundary map */
1186 set_bit(bit_off, chunk->bound_map);
1187 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1188 set_bit(bit_off + alloc_bits, chunk->bound_map);
1189
1190 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1191
1192 /* update first free bit */
1193 if (bit_off == chunk_md->first_free)
1194 chunk_md->first_free = find_next_zero_bit(
1195 chunk->alloc_map,
1196 pcpu_chunk_map_bits(chunk),
1197 bit_off + alloc_bits);
1198
1199 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1200
1201 pcpu_chunk_relocate(chunk, oslot);
1202
1203 return bit_off * PCPU_MIN_ALLOC_SIZE;
1204 }
1205
1206 /**
1207 * pcpu_free_area - frees the corresponding offset
1208 * @chunk: chunk of interest
1209 * @off: addr offset into chunk
1210 *
1211 * This function determines the size of an allocation to free using
1212 * the boundary bitmap and clears the allocation map.
1213 */
1214 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1215 {
1216 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1217 int bit_off, bits, end, oslot;
1218
1219 lockdep_assert_held(&pcpu_lock);
1220 pcpu_stats_area_dealloc(chunk);
1221
1222 oslot = pcpu_chunk_slot(chunk);
1223
1224 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1225
1226 /* find end index */
1227 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1228 bit_off + 1);
1229 bits = end - bit_off;
1230 bitmap_clear(chunk->alloc_map, bit_off, bits);
1231
1232 /* update metadata */
1233 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1234
1235 /* update first free bit */
1236 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1237
1238 pcpu_block_update_hint_free(chunk, bit_off, bits);
1239
1240 pcpu_chunk_relocate(chunk, oslot);
1241 }
1242
1243 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1244 {
1245 block->scan_hint = 0;
1246 block->contig_hint = nr_bits;
1247 block->left_free = nr_bits;
1248 block->right_free = nr_bits;
1249 block->first_free = 0;
1250 block->nr_bits = nr_bits;
1251 }
1252
1253 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1254 {
1255 struct pcpu_block_md *md_block;
1256
1257 /* init the chunk's block */
1258 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1259
1260 for (md_block = chunk->md_blocks;
1261 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1262 md_block++)
1263 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1264 }
1265
1266 /**
1267 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1268 * @tmp_addr: the start of the region served
1269 * @map_size: size of the region served
1270 *
1271 * This is responsible for creating the chunks that serve the first chunk. The
1272 * base_addr is page aligned down of @tmp_addr while the region end is page
1273 * aligned up. Offsets are kept track of to determine the region served. All
1274 * this is done to appease the bitmap allocator in avoiding partial blocks.
1275 *
1276 * RETURNS:
1277 * Chunk serving the region at @tmp_addr of @map_size.
1278 */
1279 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1280 int map_size)
1281 {
1282 struct pcpu_chunk *chunk;
1283 unsigned long aligned_addr, lcm_align;
1284 int start_offset, offset_bits, region_size, region_bits;
1285 size_t alloc_size;
1286
1287 /* region calculations */
1288 aligned_addr = tmp_addr & PAGE_MASK;
1289
1290 start_offset = tmp_addr - aligned_addr;
1291
1292 /*
1293 * Align the end of the region with the LCM of PAGE_SIZE and
1294 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1295 * the other.
1296 */
1297 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1298 region_size = ALIGN(start_offset + map_size, lcm_align);
1299
1300 /* allocate chunk */
1301 alloc_size = sizeof(struct pcpu_chunk) +
1302 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1303 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1304 if (!chunk)
1305 panic("%s: Failed to allocate %zu bytes\n", __func__,
1306 alloc_size);
1307
1308 INIT_LIST_HEAD(&chunk->list);
1309
1310 chunk->base_addr = (void *)aligned_addr;
1311 chunk->start_offset = start_offset;
1312 chunk->end_offset = region_size - chunk->start_offset - map_size;
1313
1314 chunk->nr_pages = region_size >> PAGE_SHIFT;
1315 region_bits = pcpu_chunk_map_bits(chunk);
1316
1317 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1318 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1319 if (!chunk->alloc_map)
1320 panic("%s: Failed to allocate %zu bytes\n", __func__,
1321 alloc_size);
1322
1323 alloc_size =
1324 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1325 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1326 if (!chunk->bound_map)
1327 panic("%s: Failed to allocate %zu bytes\n", __func__,
1328 alloc_size);
1329
1330 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1331 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1332 if (!chunk->md_blocks)
1333 panic("%s: Failed to allocate %zu bytes\n", __func__,
1334 alloc_size);
1335
1336 pcpu_init_md_blocks(chunk);
1337
1338 /* manage populated page bitmap */
1339 chunk->immutable = true;
1340 bitmap_fill(chunk->populated, chunk->nr_pages);
1341 chunk->nr_populated = chunk->nr_pages;
1342 chunk->nr_empty_pop_pages = chunk->nr_pages;
1343
1344 chunk->free_bytes = map_size;
1345
1346 if (chunk->start_offset) {
1347 /* hide the beginning of the bitmap */
1348 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1349 bitmap_set(chunk->alloc_map, 0, offset_bits);
1350 set_bit(0, chunk->bound_map);
1351 set_bit(offset_bits, chunk->bound_map);
1352
1353 chunk->chunk_md.first_free = offset_bits;
1354
1355 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1356 }
1357
1358 if (chunk->end_offset) {
1359 /* hide the end of the bitmap */
1360 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1361 bitmap_set(chunk->alloc_map,
1362 pcpu_chunk_map_bits(chunk) - offset_bits,
1363 offset_bits);
1364 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1365 chunk->bound_map);
1366 set_bit(region_bits, chunk->bound_map);
1367
1368 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1369 - offset_bits, offset_bits);
1370 }
1371
1372 return chunk;
1373 }
1374
1375 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1376 {
1377 struct pcpu_chunk *chunk;
1378 int region_bits;
1379
1380 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1381 if (!chunk)
1382 return NULL;
1383
1384 INIT_LIST_HEAD(&chunk->list);
1385 chunk->nr_pages = pcpu_unit_pages;
1386 region_bits = pcpu_chunk_map_bits(chunk);
1387
1388 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1389 sizeof(chunk->alloc_map[0]), gfp);
1390 if (!chunk->alloc_map)
1391 goto alloc_map_fail;
1392
1393 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1394 sizeof(chunk->bound_map[0]), gfp);
1395 if (!chunk->bound_map)
1396 goto bound_map_fail;
1397
1398 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1399 sizeof(chunk->md_blocks[0]), gfp);
1400 if (!chunk->md_blocks)
1401 goto md_blocks_fail;
1402
1403 pcpu_init_md_blocks(chunk);
1404
1405 /* init metadata */
1406 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1407
1408 return chunk;
1409
1410 md_blocks_fail:
1411 pcpu_mem_free(chunk->bound_map);
1412 bound_map_fail:
1413 pcpu_mem_free(chunk->alloc_map);
1414 alloc_map_fail:
1415 pcpu_mem_free(chunk);
1416
1417 return NULL;
1418 }
1419
1420 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1421 {
1422 if (!chunk)
1423 return;
1424 pcpu_mem_free(chunk->md_blocks);
1425 pcpu_mem_free(chunk->bound_map);
1426 pcpu_mem_free(chunk->alloc_map);
1427 pcpu_mem_free(chunk);
1428 }
1429
1430 /**
1431 * pcpu_chunk_populated - post-population bookkeeping
1432 * @chunk: pcpu_chunk which got populated
1433 * @page_start: the start page
1434 * @page_end: the end page
1435 *
1436 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1437 * the bookkeeping information accordingly. Must be called after each
1438 * successful population.
1439 *
1440 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1441 * is to serve an allocation in that area.
1442 */
1443 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1444 int page_end)
1445 {
1446 int nr = page_end - page_start;
1447
1448 lockdep_assert_held(&pcpu_lock);
1449
1450 bitmap_set(chunk->populated, page_start, nr);
1451 chunk->nr_populated += nr;
1452 pcpu_nr_populated += nr;
1453
1454 pcpu_update_empty_pages(chunk, nr);
1455 }
1456
1457 /**
1458 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1459 * @chunk: pcpu_chunk which got depopulated
1460 * @page_start: the start page
1461 * @page_end: the end page
1462 *
1463 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1464 * Update the bookkeeping information accordingly. Must be called after
1465 * each successful depopulation.
1466 */
1467 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1468 int page_start, int page_end)
1469 {
1470 int nr = page_end - page_start;
1471
1472 lockdep_assert_held(&pcpu_lock);
1473
1474 bitmap_clear(chunk->populated, page_start, nr);
1475 chunk->nr_populated -= nr;
1476 pcpu_nr_populated -= nr;
1477
1478 pcpu_update_empty_pages(chunk, -nr);
1479 }
1480
1481 /*
1482 * Chunk management implementation.
1483 *
1484 * To allow different implementations, chunk alloc/free and
1485 * [de]population are implemented in a separate file which is pulled
1486 * into this file and compiled together. The following functions
1487 * should be implemented.
1488 *
1489 * pcpu_populate_chunk - populate the specified range of a chunk
1490 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1491 * pcpu_create_chunk - create a new chunk
1492 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1493 * pcpu_addr_to_page - translate address to physical address
1494 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1495 */
1496 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1497 int page_start, int page_end, gfp_t gfp);
1498 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1499 int page_start, int page_end);
1500 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1501 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1502 static struct page *pcpu_addr_to_page(void *addr);
1503 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1504
1505 #ifdef CONFIG_NEED_PER_CPU_KM
1506 #include "percpu-km.c"
1507 #else
1508 #include "percpu-vm.c"
1509 #endif
1510
1511 /**
1512 * pcpu_chunk_addr_search - determine chunk containing specified address
1513 * @addr: address for which the chunk needs to be determined.
1514 *
1515 * This is an internal function that handles all but static allocations.
1516 * Static percpu address values should never be passed into the allocator.
1517 *
1518 * RETURNS:
1519 * The address of the found chunk.
1520 */
1521 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1522 {
1523 /* is it in the dynamic region (first chunk)? */
1524 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1525 return pcpu_first_chunk;
1526
1527 /* is it in the reserved region? */
1528 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1529 return pcpu_reserved_chunk;
1530
1531 /*
1532 * The address is relative to unit0 which might be unused and
1533 * thus unmapped. Offset the address to the unit space of the
1534 * current processor before looking it up in the vmalloc
1535 * space. Note that any possible cpu id can be used here, so
1536 * there's no need to worry about preemption or cpu hotplug.
1537 */
1538 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1539 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1540 }
1541
1542 /**
1543 * pcpu_alloc - the percpu allocator
1544 * @size: size of area to allocate in bytes
1545 * @align: alignment of area (max PAGE_SIZE)
1546 * @reserved: allocate from the reserved chunk if available
1547 * @gfp: allocation flags
1548 *
1549 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1550 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1551 * then no warning will be triggered on invalid or failed allocation
1552 * requests.
1553 *
1554 * RETURNS:
1555 * Percpu pointer to the allocated area on success, NULL on failure.
1556 */
1557 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1558 gfp_t gfp)
1559 {
1560 /* whitelisted flags that can be passed to the backing allocators */
1561 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1562 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1563 bool do_warn = !(gfp & __GFP_NOWARN);
1564 static int warn_limit = 10;
1565 struct pcpu_chunk *chunk, *next;
1566 const char *err;
1567 int slot, off, cpu, ret;
1568 unsigned long flags;
1569 void __percpu *ptr;
1570 size_t bits, bit_align;
1571
1572 /*
1573 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1574 * therefore alignment must be a minimum of that many bytes.
1575 * An allocation may have internal fragmentation from rounding up
1576 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1577 */
1578 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1579 align = PCPU_MIN_ALLOC_SIZE;
1580
1581 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1582 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1583 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1584
1585 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1586 !is_power_of_2(align))) {
1587 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1588 size, align);
1589 return NULL;
1590 }
1591
1592 if (!is_atomic) {
1593 /*
1594 * pcpu_balance_workfn() allocates memory under this mutex,
1595 * and it may wait for memory reclaim. Allow current task
1596 * to become OOM victim, in case of memory pressure.
1597 */
1598 if (gfp & __GFP_NOFAIL)
1599 mutex_lock(&pcpu_alloc_mutex);
1600 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1601 return NULL;
1602 }
1603
1604 spin_lock_irqsave(&pcpu_lock, flags);
1605
1606 /* serve reserved allocations from the reserved chunk if available */
1607 if (reserved && pcpu_reserved_chunk) {
1608 chunk = pcpu_reserved_chunk;
1609
1610 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1611 if (off < 0) {
1612 err = "alloc from reserved chunk failed";
1613 goto fail_unlock;
1614 }
1615
1616 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1617 if (off >= 0)
1618 goto area_found;
1619
1620 err = "alloc from reserved chunk failed";
1621 goto fail_unlock;
1622 }
1623
1624 restart:
1625 /* search through normal chunks */
1626 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1627 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1628 off = pcpu_find_block_fit(chunk, bits, bit_align,
1629 is_atomic);
1630 if (off < 0) {
1631 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1632 pcpu_chunk_move(chunk, 0);
1633 continue;
1634 }
1635
1636 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1637 if (off >= 0)
1638 goto area_found;
1639
1640 }
1641 }
1642
1643 spin_unlock_irqrestore(&pcpu_lock, flags);
1644
1645 /*
1646 * No space left. Create a new chunk. We don't want multiple
1647 * tasks to create chunks simultaneously. Serialize and create iff
1648 * there's still no empty chunk after grabbing the mutex.
1649 */
1650 if (is_atomic) {
1651 err = "atomic alloc failed, no space left";
1652 goto fail;
1653 }
1654
1655 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1656 chunk = pcpu_create_chunk(pcpu_gfp);
1657 if (!chunk) {
1658 err = "failed to allocate new chunk";
1659 goto fail;
1660 }
1661
1662 spin_lock_irqsave(&pcpu_lock, flags);
1663 pcpu_chunk_relocate(chunk, -1);
1664 } else {
1665 spin_lock_irqsave(&pcpu_lock, flags);
1666 }
1667
1668 goto restart;
1669
1670 area_found:
1671 pcpu_stats_area_alloc(chunk, size);
1672 spin_unlock_irqrestore(&pcpu_lock, flags);
1673
1674 /* populate if not all pages are already there */
1675 if (!is_atomic) {
1676 unsigned int page_start, page_end, rs, re;
1677
1678 page_start = PFN_DOWN(off);
1679 page_end = PFN_UP(off + size);
1680
1681 bitmap_for_each_clear_region(chunk->populated, rs, re,
1682 page_start, page_end) {
1683 WARN_ON(chunk->immutable);
1684
1685 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1686
1687 spin_lock_irqsave(&pcpu_lock, flags);
1688 if (ret) {
1689 pcpu_free_area(chunk, off);
1690 err = "failed to populate";
1691 goto fail_unlock;
1692 }
1693 pcpu_chunk_populated(chunk, rs, re);
1694 spin_unlock_irqrestore(&pcpu_lock, flags);
1695 }
1696
1697 mutex_unlock(&pcpu_alloc_mutex);
1698 }
1699
1700 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1701 pcpu_schedule_balance_work();
1702
1703 /* clear the areas and return address relative to base address */
1704 for_each_possible_cpu(cpu)
1705 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1706
1707 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1708 kmemleak_alloc_percpu(ptr, size, gfp);
1709
1710 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1711 chunk->base_addr, off, ptr);
1712
1713 return ptr;
1714
1715 fail_unlock:
1716 spin_unlock_irqrestore(&pcpu_lock, flags);
1717 fail:
1718 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1719
1720 if (!is_atomic && do_warn && warn_limit) {
1721 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1722 size, align, is_atomic, err);
1723 dump_stack();
1724 if (!--warn_limit)
1725 pr_info("limit reached, disable warning\n");
1726 }
1727 if (is_atomic) {
1728 /* see the flag handling in pcpu_blance_workfn() */
1729 pcpu_atomic_alloc_failed = true;
1730 pcpu_schedule_balance_work();
1731 } else {
1732 mutex_unlock(&pcpu_alloc_mutex);
1733 }
1734 return NULL;
1735 }
1736
1737 /**
1738 * __alloc_percpu_gfp - allocate dynamic percpu area
1739 * @size: size of area to allocate in bytes
1740 * @align: alignment of area (max PAGE_SIZE)
1741 * @gfp: allocation flags
1742 *
1743 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1744 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1745 * be called from any context but is a lot more likely to fail. If @gfp
1746 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1747 * allocation requests.
1748 *
1749 * RETURNS:
1750 * Percpu pointer to the allocated area on success, NULL on failure.
1751 */
1752 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1753 {
1754 return pcpu_alloc(size, align, false, gfp);
1755 }
1756 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1757
1758 /**
1759 * __alloc_percpu - allocate dynamic percpu area
1760 * @size: size of area to allocate in bytes
1761 * @align: alignment of area (max PAGE_SIZE)
1762 *
1763 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1764 */
1765 void __percpu *__alloc_percpu(size_t size, size_t align)
1766 {
1767 return pcpu_alloc(size, align, false, GFP_KERNEL);
1768 }
1769 EXPORT_SYMBOL_GPL(__alloc_percpu);
1770
1771 /**
1772 * __alloc_reserved_percpu - allocate reserved percpu area
1773 * @size: size of area to allocate in bytes
1774 * @align: alignment of area (max PAGE_SIZE)
1775 *
1776 * Allocate zero-filled percpu area of @size bytes aligned at @align
1777 * from reserved percpu area if arch has set it up; otherwise,
1778 * allocation is served from the same dynamic area. Might sleep.
1779 * Might trigger writeouts.
1780 *
1781 * CONTEXT:
1782 * Does GFP_KERNEL allocation.
1783 *
1784 * RETURNS:
1785 * Percpu pointer to the allocated area on success, NULL on failure.
1786 */
1787 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1788 {
1789 return pcpu_alloc(size, align, true, GFP_KERNEL);
1790 }
1791
1792 /**
1793 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1794 * @work: unused
1795 *
1796 * Reclaim all fully free chunks except for the first one. This is also
1797 * responsible for maintaining the pool of empty populated pages. However,
1798 * it is possible that this is called when physical memory is scarce causing
1799 * OOM killer to be triggered. We should avoid doing so until an actual
1800 * allocation causes the failure as it is possible that requests can be
1801 * serviced from already backed regions.
1802 */
1803 static void pcpu_balance_workfn(struct work_struct *work)
1804 {
1805 /* gfp flags passed to underlying allocators */
1806 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1807 LIST_HEAD(to_free);
1808 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1809 struct pcpu_chunk *chunk, *next;
1810 int slot, nr_to_pop, ret;
1811
1812 /*
1813 * There's no reason to keep around multiple unused chunks and VM
1814 * areas can be scarce. Destroy all free chunks except for one.
1815 */
1816 mutex_lock(&pcpu_alloc_mutex);
1817 spin_lock_irq(&pcpu_lock);
1818
1819 list_for_each_entry_safe(chunk, next, free_head, list) {
1820 WARN_ON(chunk->immutable);
1821
1822 /* spare the first one */
1823 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1824 continue;
1825
1826 list_move(&chunk->list, &to_free);
1827 }
1828
1829 spin_unlock_irq(&pcpu_lock);
1830
1831 list_for_each_entry_safe(chunk, next, &to_free, list) {
1832 unsigned int rs, re;
1833
1834 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1835 chunk->nr_pages) {
1836 pcpu_depopulate_chunk(chunk, rs, re);
1837 spin_lock_irq(&pcpu_lock);
1838 pcpu_chunk_depopulated(chunk, rs, re);
1839 spin_unlock_irq(&pcpu_lock);
1840 }
1841 pcpu_destroy_chunk(chunk);
1842 cond_resched();
1843 }
1844
1845 /*
1846 * Ensure there are certain number of free populated pages for
1847 * atomic allocs. Fill up from the most packed so that atomic
1848 * allocs don't increase fragmentation. If atomic allocation
1849 * failed previously, always populate the maximum amount. This
1850 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1851 * failing indefinitely; however, large atomic allocs are not
1852 * something we support properly and can be highly unreliable and
1853 * inefficient.
1854 */
1855 retry_pop:
1856 if (pcpu_atomic_alloc_failed) {
1857 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1858 /* best effort anyway, don't worry about synchronization */
1859 pcpu_atomic_alloc_failed = false;
1860 } else {
1861 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1862 pcpu_nr_empty_pop_pages,
1863 0, PCPU_EMPTY_POP_PAGES_HIGH);
1864 }
1865
1866 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1867 unsigned int nr_unpop = 0, rs, re;
1868
1869 if (!nr_to_pop)
1870 break;
1871
1872 spin_lock_irq(&pcpu_lock);
1873 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1874 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1875 if (nr_unpop)
1876 break;
1877 }
1878 spin_unlock_irq(&pcpu_lock);
1879
1880 if (!nr_unpop)
1881 continue;
1882
1883 /* @chunk can't go away while pcpu_alloc_mutex is held */
1884 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
1885 chunk->nr_pages) {
1886 int nr = min_t(int, re - rs, nr_to_pop);
1887
1888 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1889 if (!ret) {
1890 nr_to_pop -= nr;
1891 spin_lock_irq(&pcpu_lock);
1892 pcpu_chunk_populated(chunk, rs, rs + nr);
1893 spin_unlock_irq(&pcpu_lock);
1894 } else {
1895 nr_to_pop = 0;
1896 }
1897
1898 if (!nr_to_pop)
1899 break;
1900 }
1901 }
1902
1903 if (nr_to_pop) {
1904 /* ran out of chunks to populate, create a new one and retry */
1905 chunk = pcpu_create_chunk(gfp);
1906 if (chunk) {
1907 spin_lock_irq(&pcpu_lock);
1908 pcpu_chunk_relocate(chunk, -1);
1909 spin_unlock_irq(&pcpu_lock);
1910 goto retry_pop;
1911 }
1912 }
1913
1914 mutex_unlock(&pcpu_alloc_mutex);
1915 }
1916
1917 /**
1918 * free_percpu - free percpu area
1919 * @ptr: pointer to area to free
1920 *
1921 * Free percpu area @ptr.
1922 *
1923 * CONTEXT:
1924 * Can be called from atomic context.
1925 */
1926 void free_percpu(void __percpu *ptr)
1927 {
1928 void *addr;
1929 struct pcpu_chunk *chunk;
1930 unsigned long flags;
1931 int off;
1932 bool need_balance = false;
1933
1934 if (!ptr)
1935 return;
1936
1937 kmemleak_free_percpu(ptr);
1938
1939 addr = __pcpu_ptr_to_addr(ptr);
1940
1941 spin_lock_irqsave(&pcpu_lock, flags);
1942
1943 chunk = pcpu_chunk_addr_search(addr);
1944 off = addr - chunk->base_addr;
1945
1946 pcpu_free_area(chunk, off);
1947
1948 /* if there are more than one fully free chunks, wake up grim reaper */
1949 if (chunk->free_bytes == pcpu_unit_size) {
1950 struct pcpu_chunk *pos;
1951
1952 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1953 if (pos != chunk) {
1954 need_balance = true;
1955 break;
1956 }
1957 }
1958
1959 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1960
1961 spin_unlock_irqrestore(&pcpu_lock, flags);
1962
1963 if (need_balance)
1964 pcpu_schedule_balance_work();
1965 }
1966 EXPORT_SYMBOL_GPL(free_percpu);
1967
1968 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1969 {
1970 #ifdef CONFIG_SMP
1971 const size_t static_size = __per_cpu_end - __per_cpu_start;
1972 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1973 unsigned int cpu;
1974
1975 for_each_possible_cpu(cpu) {
1976 void *start = per_cpu_ptr(base, cpu);
1977 void *va = (void *)addr;
1978
1979 if (va >= start && va < start + static_size) {
1980 if (can_addr) {
1981 *can_addr = (unsigned long) (va - start);
1982 *can_addr += (unsigned long)
1983 per_cpu_ptr(base, get_boot_cpu_id());
1984 }
1985 return true;
1986 }
1987 }
1988 #endif
1989 /* on UP, can't distinguish from other static vars, always false */
1990 return false;
1991 }
1992
1993 /**
1994 * is_kernel_percpu_address - test whether address is from static percpu area
1995 * @addr: address to test
1996 *
1997 * Test whether @addr belongs to in-kernel static percpu area. Module
1998 * static percpu areas are not considered. For those, use
1999 * is_module_percpu_address().
2000 *
2001 * RETURNS:
2002 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2003 */
2004 bool is_kernel_percpu_address(unsigned long addr)
2005 {
2006 return __is_kernel_percpu_address(addr, NULL);
2007 }
2008
2009 /**
2010 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2011 * @addr: the address to be converted to physical address
2012 *
2013 * Given @addr which is dereferenceable address obtained via one of
2014 * percpu access macros, this function translates it into its physical
2015 * address. The caller is responsible for ensuring @addr stays valid
2016 * until this function finishes.
2017 *
2018 * percpu allocator has special setup for the first chunk, which currently
2019 * supports either embedding in linear address space or vmalloc mapping,
2020 * and, from the second one, the backing allocator (currently either vm or
2021 * km) provides translation.
2022 *
2023 * The addr can be translated simply without checking if it falls into the
2024 * first chunk. But the current code reflects better how percpu allocator
2025 * actually works, and the verification can discover both bugs in percpu
2026 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2027 * code.
2028 *
2029 * RETURNS:
2030 * The physical address for @addr.
2031 */
2032 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2033 {
2034 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2035 bool in_first_chunk = false;
2036 unsigned long first_low, first_high;
2037 unsigned int cpu;
2038
2039 /*
2040 * The following test on unit_low/high isn't strictly
2041 * necessary but will speed up lookups of addresses which
2042 * aren't in the first chunk.
2043 *
2044 * The address check is against full chunk sizes. pcpu_base_addr
2045 * points to the beginning of the first chunk including the
2046 * static region. Assumes good intent as the first chunk may
2047 * not be full (ie. < pcpu_unit_pages in size).
2048 */
2049 first_low = (unsigned long)pcpu_base_addr +
2050 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2051 first_high = (unsigned long)pcpu_base_addr +
2052 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2053 if ((unsigned long)addr >= first_low &&
2054 (unsigned long)addr < first_high) {
2055 for_each_possible_cpu(cpu) {
2056 void *start = per_cpu_ptr(base, cpu);
2057
2058 if (addr >= start && addr < start + pcpu_unit_size) {
2059 in_first_chunk = true;
2060 break;
2061 }
2062 }
2063 }
2064
2065 if (in_first_chunk) {
2066 if (!is_vmalloc_addr(addr))
2067 return __pa(addr);
2068 else
2069 return page_to_phys(vmalloc_to_page(addr)) +
2070 offset_in_page(addr);
2071 } else
2072 return page_to_phys(pcpu_addr_to_page(addr)) +
2073 offset_in_page(addr);
2074 }
2075
2076 /**
2077 * pcpu_alloc_alloc_info - allocate percpu allocation info
2078 * @nr_groups: the number of groups
2079 * @nr_units: the number of units
2080 *
2081 * Allocate ai which is large enough for @nr_groups groups containing
2082 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2083 * cpu_map array which is long enough for @nr_units and filled with
2084 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2085 * pointer of other groups.
2086 *
2087 * RETURNS:
2088 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2089 * failure.
2090 */
2091 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2092 int nr_units)
2093 {
2094 struct pcpu_alloc_info *ai;
2095 size_t base_size, ai_size;
2096 void *ptr;
2097 int unit;
2098
2099 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2100 __alignof__(ai->groups[0].cpu_map[0]));
2101 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2102
2103 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2104 if (!ptr)
2105 return NULL;
2106 ai = ptr;
2107 ptr += base_size;
2108
2109 ai->groups[0].cpu_map = ptr;
2110
2111 for (unit = 0; unit < nr_units; unit++)
2112 ai->groups[0].cpu_map[unit] = NR_CPUS;
2113
2114 ai->nr_groups = nr_groups;
2115 ai->__ai_size = PFN_ALIGN(ai_size);
2116
2117 return ai;
2118 }
2119
2120 /**
2121 * pcpu_free_alloc_info - free percpu allocation info
2122 * @ai: pcpu_alloc_info to free
2123 *
2124 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2125 */
2126 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2127 {
2128 memblock_free_early(__pa(ai), ai->__ai_size);
2129 }
2130
2131 /**
2132 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2133 * @lvl: loglevel
2134 * @ai: allocation info to dump
2135 *
2136 * Print out information about @ai using loglevel @lvl.
2137 */
2138 static void pcpu_dump_alloc_info(const char *lvl,
2139 const struct pcpu_alloc_info *ai)
2140 {
2141 int group_width = 1, cpu_width = 1, width;
2142 char empty_str[] = "--------";
2143 int alloc = 0, alloc_end = 0;
2144 int group, v;
2145 int upa, apl; /* units per alloc, allocs per line */
2146
2147 v = ai->nr_groups;
2148 while (v /= 10)
2149 group_width++;
2150
2151 v = num_possible_cpus();
2152 while (v /= 10)
2153 cpu_width++;
2154 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2155
2156 upa = ai->alloc_size / ai->unit_size;
2157 width = upa * (cpu_width + 1) + group_width + 3;
2158 apl = rounddown_pow_of_two(max(60 / width, 1));
2159
2160 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2161 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2162 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2163
2164 for (group = 0; group < ai->nr_groups; group++) {
2165 const struct pcpu_group_info *gi = &ai->groups[group];
2166 int unit = 0, unit_end = 0;
2167
2168 BUG_ON(gi->nr_units % upa);
2169 for (alloc_end += gi->nr_units / upa;
2170 alloc < alloc_end; alloc++) {
2171 if (!(alloc % apl)) {
2172 pr_cont("\n");
2173 printk("%spcpu-alloc: ", lvl);
2174 }
2175 pr_cont("[%0*d] ", group_width, group);
2176
2177 for (unit_end += upa; unit < unit_end; unit++)
2178 if (gi->cpu_map[unit] != NR_CPUS)
2179 pr_cont("%0*d ",
2180 cpu_width, gi->cpu_map[unit]);
2181 else
2182 pr_cont("%s ", empty_str);
2183 }
2184 }
2185 pr_cont("\n");
2186 }
2187
2188 /**
2189 * pcpu_setup_first_chunk - initialize the first percpu chunk
2190 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2191 * @base_addr: mapped address
2192 *
2193 * Initialize the first percpu chunk which contains the kernel static
2194 * percpu area. This function is to be called from arch percpu area
2195 * setup path.
2196 *
2197 * @ai contains all information necessary to initialize the first
2198 * chunk and prime the dynamic percpu allocator.
2199 *
2200 * @ai->static_size is the size of static percpu area.
2201 *
2202 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2203 * reserve after the static area in the first chunk. This reserves
2204 * the first chunk such that it's available only through reserved
2205 * percpu allocation. This is primarily used to serve module percpu
2206 * static areas on architectures where the addressing model has
2207 * limited offset range for symbol relocations to guarantee module
2208 * percpu symbols fall inside the relocatable range.
2209 *
2210 * @ai->dyn_size determines the number of bytes available for dynamic
2211 * allocation in the first chunk. The area between @ai->static_size +
2212 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2213 *
2214 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2215 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2216 * @ai->dyn_size.
2217 *
2218 * @ai->atom_size is the allocation atom size and used as alignment
2219 * for vm areas.
2220 *
2221 * @ai->alloc_size is the allocation size and always multiple of
2222 * @ai->atom_size. This is larger than @ai->atom_size if
2223 * @ai->unit_size is larger than @ai->atom_size.
2224 *
2225 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2226 * percpu areas. Units which should be colocated are put into the
2227 * same group. Dynamic VM areas will be allocated according to these
2228 * groupings. If @ai->nr_groups is zero, a single group containing
2229 * all units is assumed.
2230 *
2231 * The caller should have mapped the first chunk at @base_addr and
2232 * copied static data to each unit.
2233 *
2234 * The first chunk will always contain a static and a dynamic region.
2235 * However, the static region is not managed by any chunk. If the first
2236 * chunk also contains a reserved region, it is served by two chunks -
2237 * one for the reserved region and one for the dynamic region. They
2238 * share the same vm, but use offset regions in the area allocation map.
2239 * The chunk serving the dynamic region is circulated in the chunk slots
2240 * and available for dynamic allocation like any other chunk.
2241 */
2242 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2243 void *base_addr)
2244 {
2245 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2246 size_t static_size, dyn_size;
2247 struct pcpu_chunk *chunk;
2248 unsigned long *group_offsets;
2249 size_t *group_sizes;
2250 unsigned long *unit_off;
2251 unsigned int cpu;
2252 int *unit_map;
2253 int group, unit, i;
2254 int map_size;
2255 unsigned long tmp_addr;
2256 size_t alloc_size;
2257
2258 #define PCPU_SETUP_BUG_ON(cond) do { \
2259 if (unlikely(cond)) { \
2260 pr_emerg("failed to initialize, %s\n", #cond); \
2261 pr_emerg("cpu_possible_mask=%*pb\n", \
2262 cpumask_pr_args(cpu_possible_mask)); \
2263 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2264 BUG(); \
2265 } \
2266 } while (0)
2267
2268 /* sanity checks */
2269 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2270 #ifdef CONFIG_SMP
2271 PCPU_SETUP_BUG_ON(!ai->static_size);
2272 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2273 #endif
2274 PCPU_SETUP_BUG_ON(!base_addr);
2275 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2276 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2277 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2278 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2279 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2280 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2281 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2282 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2283 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2284 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2285 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2286
2287 /* process group information and build config tables accordingly */
2288 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2289 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2290 if (!group_offsets)
2291 panic("%s: Failed to allocate %zu bytes\n", __func__,
2292 alloc_size);
2293
2294 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2295 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2296 if (!group_sizes)
2297 panic("%s: Failed to allocate %zu bytes\n", __func__,
2298 alloc_size);
2299
2300 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2301 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2302 if (!unit_map)
2303 panic("%s: Failed to allocate %zu bytes\n", __func__,
2304 alloc_size);
2305
2306 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2307 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2308 if (!unit_off)
2309 panic("%s: Failed to allocate %zu bytes\n", __func__,
2310 alloc_size);
2311
2312 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2313 unit_map[cpu] = UINT_MAX;
2314
2315 pcpu_low_unit_cpu = NR_CPUS;
2316 pcpu_high_unit_cpu = NR_CPUS;
2317
2318 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2319 const struct pcpu_group_info *gi = &ai->groups[group];
2320
2321 group_offsets[group] = gi->base_offset;
2322 group_sizes[group] = gi->nr_units * ai->unit_size;
2323
2324 for (i = 0; i < gi->nr_units; i++) {
2325 cpu = gi->cpu_map[i];
2326 if (cpu == NR_CPUS)
2327 continue;
2328
2329 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2330 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2331 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2332
2333 unit_map[cpu] = unit + i;
2334 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2335
2336 /* determine low/high unit_cpu */
2337 if (pcpu_low_unit_cpu == NR_CPUS ||
2338 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2339 pcpu_low_unit_cpu = cpu;
2340 if (pcpu_high_unit_cpu == NR_CPUS ||
2341 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2342 pcpu_high_unit_cpu = cpu;
2343 }
2344 }
2345 pcpu_nr_units = unit;
2346
2347 for_each_possible_cpu(cpu)
2348 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2349
2350 /* we're done parsing the input, undefine BUG macro and dump config */
2351 #undef PCPU_SETUP_BUG_ON
2352 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2353
2354 pcpu_nr_groups = ai->nr_groups;
2355 pcpu_group_offsets = group_offsets;
2356 pcpu_group_sizes = group_sizes;
2357 pcpu_unit_map = unit_map;
2358 pcpu_unit_offsets = unit_off;
2359
2360 /* determine basic parameters */
2361 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2362 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2363 pcpu_atom_size = ai->atom_size;
2364 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2365 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2366
2367 pcpu_stats_save_ai(ai);
2368
2369 /*
2370 * Allocate chunk slots. The additional last slot is for
2371 * empty chunks.
2372 */
2373 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2374 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2375 SMP_CACHE_BYTES);
2376 if (!pcpu_slot)
2377 panic("%s: Failed to allocate %zu bytes\n", __func__,
2378 pcpu_nr_slots * sizeof(pcpu_slot[0]));
2379 for (i = 0; i < pcpu_nr_slots; i++)
2380 INIT_LIST_HEAD(&pcpu_slot[i]);
2381
2382 /*
2383 * The end of the static region needs to be aligned with the
2384 * minimum allocation size as this offsets the reserved and
2385 * dynamic region. The first chunk ends page aligned by
2386 * expanding the dynamic region, therefore the dynamic region
2387 * can be shrunk to compensate while still staying above the
2388 * configured sizes.
2389 */
2390 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2391 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2392
2393 /*
2394 * Initialize first chunk.
2395 * If the reserved_size is non-zero, this initializes the reserved
2396 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2397 * and the dynamic region is initialized here. The first chunk,
2398 * pcpu_first_chunk, will always point to the chunk that serves
2399 * the dynamic region.
2400 */
2401 tmp_addr = (unsigned long)base_addr + static_size;
2402 map_size = ai->reserved_size ?: dyn_size;
2403 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2404
2405 /* init dynamic chunk if necessary */
2406 if (ai->reserved_size) {
2407 pcpu_reserved_chunk = chunk;
2408
2409 tmp_addr = (unsigned long)base_addr + static_size +
2410 ai->reserved_size;
2411 map_size = dyn_size;
2412 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2413 }
2414
2415 /* link the first chunk in */
2416 pcpu_first_chunk = chunk;
2417 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2418 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2419
2420 /* include all regions of the first chunk */
2421 pcpu_nr_populated += PFN_DOWN(size_sum);
2422
2423 pcpu_stats_chunk_alloc();
2424 trace_percpu_create_chunk(base_addr);
2425
2426 /* we're done */
2427 pcpu_base_addr = base_addr;
2428 }
2429
2430 #ifdef CONFIG_SMP
2431
2432 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2433 [PCPU_FC_AUTO] = "auto",
2434 [PCPU_FC_EMBED] = "embed",
2435 [PCPU_FC_PAGE] = "page",
2436 };
2437
2438 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2439
2440 static int __init percpu_alloc_setup(char *str)
2441 {
2442 if (!str)
2443 return -EINVAL;
2444
2445 if (0)
2446 /* nada */;
2447 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2448 else if (!strcmp(str, "embed"))
2449 pcpu_chosen_fc = PCPU_FC_EMBED;
2450 #endif
2451 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2452 else if (!strcmp(str, "page"))
2453 pcpu_chosen_fc = PCPU_FC_PAGE;
2454 #endif
2455 else
2456 pr_warn("unknown allocator %s specified\n", str);
2457
2458 return 0;
2459 }
2460 early_param("percpu_alloc", percpu_alloc_setup);
2461
2462 /*
2463 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2464 * Build it if needed by the arch config or the generic setup is going
2465 * to be used.
2466 */
2467 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2468 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2469 #define BUILD_EMBED_FIRST_CHUNK
2470 #endif
2471
2472 /* build pcpu_page_first_chunk() iff needed by the arch config */
2473 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2474 #define BUILD_PAGE_FIRST_CHUNK
2475 #endif
2476
2477 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2478 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2479 /**
2480 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2481 * @reserved_size: the size of reserved percpu area in bytes
2482 * @dyn_size: minimum free size for dynamic allocation in bytes
2483 * @atom_size: allocation atom size
2484 * @cpu_distance_fn: callback to determine distance between cpus, optional
2485 *
2486 * This function determines grouping of units, their mappings to cpus
2487 * and other parameters considering needed percpu size, allocation
2488 * atom size and distances between CPUs.
2489 *
2490 * Groups are always multiples of atom size and CPUs which are of
2491 * LOCAL_DISTANCE both ways are grouped together and share space for
2492 * units in the same group. The returned configuration is guaranteed
2493 * to have CPUs on different nodes on different groups and >=75% usage
2494 * of allocated virtual address space.
2495 *
2496 * RETURNS:
2497 * On success, pointer to the new allocation_info is returned. On
2498 * failure, ERR_PTR value is returned.
2499 */
2500 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2501 size_t reserved_size, size_t dyn_size,
2502 size_t atom_size,
2503 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2504 {
2505 static int group_map[NR_CPUS] __initdata;
2506 static int group_cnt[NR_CPUS] __initdata;
2507 const size_t static_size = __per_cpu_end - __per_cpu_start;
2508 int nr_groups = 1, nr_units = 0;
2509 size_t size_sum, min_unit_size, alloc_size;
2510 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2511 int last_allocs, group, unit;
2512 unsigned int cpu, tcpu;
2513 struct pcpu_alloc_info *ai;
2514 unsigned int *cpu_map;
2515
2516 /* this function may be called multiple times */
2517 memset(group_map, 0, sizeof(group_map));
2518 memset(group_cnt, 0, sizeof(group_cnt));
2519
2520 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2521 size_sum = PFN_ALIGN(static_size + reserved_size +
2522 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2523 dyn_size = size_sum - static_size - reserved_size;
2524
2525 /*
2526 * Determine min_unit_size, alloc_size and max_upa such that
2527 * alloc_size is multiple of atom_size and is the smallest
2528 * which can accommodate 4k aligned segments which are equal to
2529 * or larger than min_unit_size.
2530 */
2531 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2532
2533 /* determine the maximum # of units that can fit in an allocation */
2534 alloc_size = roundup(min_unit_size, atom_size);
2535 upa = alloc_size / min_unit_size;
2536 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2537 upa--;
2538 max_upa = upa;
2539
2540 /* group cpus according to their proximity */
2541 for_each_possible_cpu(cpu) {
2542 group = 0;
2543 next_group:
2544 for_each_possible_cpu(tcpu) {
2545 if (cpu == tcpu)
2546 break;
2547 if (group_map[tcpu] == group && cpu_distance_fn &&
2548 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2549 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2550 group++;
2551 nr_groups = max(nr_groups, group + 1);
2552 goto next_group;
2553 }
2554 }
2555 group_map[cpu] = group;
2556 group_cnt[group]++;
2557 }
2558
2559 /*
2560 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2561 * Expand the unit_size until we use >= 75% of the units allocated.
2562 * Related to atom_size, which could be much larger than the unit_size.
2563 */
2564 last_allocs = INT_MAX;
2565 for (upa = max_upa; upa; upa--) {
2566 int allocs = 0, wasted = 0;
2567
2568 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2569 continue;
2570
2571 for (group = 0; group < nr_groups; group++) {
2572 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2573 allocs += this_allocs;
2574 wasted += this_allocs * upa - group_cnt[group];
2575 }
2576
2577 /*
2578 * Don't accept if wastage is over 1/3. The
2579 * greater-than comparison ensures upa==1 always
2580 * passes the following check.
2581 */
2582 if (wasted > num_possible_cpus() / 3)
2583 continue;
2584
2585 /* and then don't consume more memory */
2586 if (allocs > last_allocs)
2587 break;
2588 last_allocs = allocs;
2589 best_upa = upa;
2590 }
2591 upa = best_upa;
2592
2593 /* allocate and fill alloc_info */
2594 for (group = 0; group < nr_groups; group++)
2595 nr_units += roundup(group_cnt[group], upa);
2596
2597 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2598 if (!ai)
2599 return ERR_PTR(-ENOMEM);
2600 cpu_map = ai->groups[0].cpu_map;
2601
2602 for (group = 0; group < nr_groups; group++) {
2603 ai->groups[group].cpu_map = cpu_map;
2604 cpu_map += roundup(group_cnt[group], upa);
2605 }
2606
2607 ai->static_size = static_size;
2608 ai->reserved_size = reserved_size;
2609 ai->dyn_size = dyn_size;
2610 ai->unit_size = alloc_size / upa;
2611 ai->atom_size = atom_size;
2612 ai->alloc_size = alloc_size;
2613
2614 for (group = 0, unit = 0; group < nr_groups; group++) {
2615 struct pcpu_group_info *gi = &ai->groups[group];
2616
2617 /*
2618 * Initialize base_offset as if all groups are located
2619 * back-to-back. The caller should update this to
2620 * reflect actual allocation.
2621 */
2622 gi->base_offset = unit * ai->unit_size;
2623
2624 for_each_possible_cpu(cpu)
2625 if (group_map[cpu] == group)
2626 gi->cpu_map[gi->nr_units++] = cpu;
2627 gi->nr_units = roundup(gi->nr_units, upa);
2628 unit += gi->nr_units;
2629 }
2630 BUG_ON(unit != nr_units);
2631
2632 return ai;
2633 }
2634 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2635
2636 #if defined(BUILD_EMBED_FIRST_CHUNK)
2637 /**
2638 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2639 * @reserved_size: the size of reserved percpu area in bytes
2640 * @dyn_size: minimum free size for dynamic allocation in bytes
2641 * @atom_size: allocation atom size
2642 * @cpu_distance_fn: callback to determine distance between cpus, optional
2643 * @alloc_fn: function to allocate percpu page
2644 * @free_fn: function to free percpu page
2645 *
2646 * This is a helper to ease setting up embedded first percpu chunk and
2647 * can be called where pcpu_setup_first_chunk() is expected.
2648 *
2649 * If this function is used to setup the first chunk, it is allocated
2650 * by calling @alloc_fn and used as-is without being mapped into
2651 * vmalloc area. Allocations are always whole multiples of @atom_size
2652 * aligned to @atom_size.
2653 *
2654 * This enables the first chunk to piggy back on the linear physical
2655 * mapping which often uses larger page size. Please note that this
2656 * can result in very sparse cpu->unit mapping on NUMA machines thus
2657 * requiring large vmalloc address space. Don't use this allocator if
2658 * vmalloc space is not orders of magnitude larger than distances
2659 * between node memory addresses (ie. 32bit NUMA machines).
2660 *
2661 * @dyn_size specifies the minimum dynamic area size.
2662 *
2663 * If the needed size is smaller than the minimum or specified unit
2664 * size, the leftover is returned using @free_fn.
2665 *
2666 * RETURNS:
2667 * 0 on success, -errno on failure.
2668 */
2669 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2670 size_t atom_size,
2671 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2672 pcpu_fc_alloc_fn_t alloc_fn,
2673 pcpu_fc_free_fn_t free_fn)
2674 {
2675 void *base = (void *)ULONG_MAX;
2676 void **areas = NULL;
2677 struct pcpu_alloc_info *ai;
2678 size_t size_sum, areas_size;
2679 unsigned long max_distance;
2680 int group, i, highest_group, rc = 0;
2681
2682 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2683 cpu_distance_fn);
2684 if (IS_ERR(ai))
2685 return PTR_ERR(ai);
2686
2687 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2688 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2689
2690 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2691 if (!areas) {
2692 rc = -ENOMEM;
2693 goto out_free;
2694 }
2695
2696 /* allocate, copy and determine base address & max_distance */
2697 highest_group = 0;
2698 for (group = 0; group < ai->nr_groups; group++) {
2699 struct pcpu_group_info *gi = &ai->groups[group];
2700 unsigned int cpu = NR_CPUS;
2701 void *ptr;
2702
2703 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2704 cpu = gi->cpu_map[i];
2705 BUG_ON(cpu == NR_CPUS);
2706
2707 /* allocate space for the whole group */
2708 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2709 if (!ptr) {
2710 rc = -ENOMEM;
2711 goto out_free_areas;
2712 }
2713 /* kmemleak tracks the percpu allocations separately */
2714 kmemleak_free(ptr);
2715 areas[group] = ptr;
2716
2717 base = min(ptr, base);
2718 if (ptr > areas[highest_group])
2719 highest_group = group;
2720 }
2721 max_distance = areas[highest_group] - base;
2722 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2723
2724 /* warn if maximum distance is further than 75% of vmalloc space */
2725 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2726 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2727 max_distance, VMALLOC_TOTAL);
2728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2729 /* and fail if we have fallback */
2730 rc = -EINVAL;
2731 goto out_free_areas;
2732 #endif
2733 }
2734
2735 /*
2736 * Copy data and free unused parts. This should happen after all
2737 * allocations are complete; otherwise, we may end up with
2738 * overlapping groups.
2739 */
2740 for (group = 0; group < ai->nr_groups; group++) {
2741 struct pcpu_group_info *gi = &ai->groups[group];
2742 void *ptr = areas[group];
2743
2744 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2745 if (gi->cpu_map[i] == NR_CPUS) {
2746 /* unused unit, free whole */
2747 free_fn(ptr, ai->unit_size);
2748 continue;
2749 }
2750 /* copy and return the unused part */
2751 memcpy(ptr, __per_cpu_load, ai->static_size);
2752 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2753 }
2754 }
2755
2756 /* base address is now known, determine group base offsets */
2757 for (group = 0; group < ai->nr_groups; group++) {
2758 ai->groups[group].base_offset = areas[group] - base;
2759 }
2760
2761 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2762 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2763 ai->dyn_size, ai->unit_size);
2764
2765 pcpu_setup_first_chunk(ai, base);
2766 goto out_free;
2767
2768 out_free_areas:
2769 for (group = 0; group < ai->nr_groups; group++)
2770 if (areas[group])
2771 free_fn(areas[group],
2772 ai->groups[group].nr_units * ai->unit_size);
2773 out_free:
2774 pcpu_free_alloc_info(ai);
2775 if (areas)
2776 memblock_free_early(__pa(areas), areas_size);
2777 return rc;
2778 }
2779 #endif /* BUILD_EMBED_FIRST_CHUNK */
2780
2781 #ifdef BUILD_PAGE_FIRST_CHUNK
2782 /**
2783 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2784 * @reserved_size: the size of reserved percpu area in bytes
2785 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2786 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2787 * @populate_pte_fn: function to populate pte
2788 *
2789 * This is a helper to ease setting up page-remapped first percpu
2790 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2791 *
2792 * This is the basic allocator. Static percpu area is allocated
2793 * page-by-page into vmalloc area.
2794 *
2795 * RETURNS:
2796 * 0 on success, -errno on failure.
2797 */
2798 int __init pcpu_page_first_chunk(size_t reserved_size,
2799 pcpu_fc_alloc_fn_t alloc_fn,
2800 pcpu_fc_free_fn_t free_fn,
2801 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2802 {
2803 static struct vm_struct vm;
2804 struct pcpu_alloc_info *ai;
2805 char psize_str[16];
2806 int unit_pages;
2807 size_t pages_size;
2808 struct page **pages;
2809 int unit, i, j, rc = 0;
2810 int upa;
2811 int nr_g0_units;
2812
2813 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2814
2815 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2816 if (IS_ERR(ai))
2817 return PTR_ERR(ai);
2818 BUG_ON(ai->nr_groups != 1);
2819 upa = ai->alloc_size/ai->unit_size;
2820 nr_g0_units = roundup(num_possible_cpus(), upa);
2821 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2822 pcpu_free_alloc_info(ai);
2823 return -EINVAL;
2824 }
2825
2826 unit_pages = ai->unit_size >> PAGE_SHIFT;
2827
2828 /* unaligned allocations can't be freed, round up to page size */
2829 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2830 sizeof(pages[0]));
2831 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2832 if (!pages)
2833 panic("%s: Failed to allocate %zu bytes\n", __func__,
2834 pages_size);
2835
2836 /* allocate pages */
2837 j = 0;
2838 for (unit = 0; unit < num_possible_cpus(); unit++) {
2839 unsigned int cpu = ai->groups[0].cpu_map[unit];
2840 for (i = 0; i < unit_pages; i++) {
2841 void *ptr;
2842
2843 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2844 if (!ptr) {
2845 pr_warn("failed to allocate %s page for cpu%u\n",
2846 psize_str, cpu);
2847 goto enomem;
2848 }
2849 /* kmemleak tracks the percpu allocations separately */
2850 kmemleak_free(ptr);
2851 pages[j++] = virt_to_page(ptr);
2852 }
2853 }
2854
2855 /* allocate vm area, map the pages and copy static data */
2856 vm.flags = VM_ALLOC;
2857 vm.size = num_possible_cpus() * ai->unit_size;
2858 vm_area_register_early(&vm, PAGE_SIZE);
2859
2860 for (unit = 0; unit < num_possible_cpus(); unit++) {
2861 unsigned long unit_addr =
2862 (unsigned long)vm.addr + unit * ai->unit_size;
2863
2864 for (i = 0; i < unit_pages; i++)
2865 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2866
2867 /* pte already populated, the following shouldn't fail */
2868 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2869 unit_pages);
2870 if (rc < 0)
2871 panic("failed to map percpu area, err=%d\n", rc);
2872
2873 /*
2874 * FIXME: Archs with virtual cache should flush local
2875 * cache for the linear mapping here - something
2876 * equivalent to flush_cache_vmap() on the local cpu.
2877 * flush_cache_vmap() can't be used as most supporting
2878 * data structures are not set up yet.
2879 */
2880
2881 /* copy static data */
2882 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2883 }
2884
2885 /* we're ready, commit */
2886 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2887 unit_pages, psize_str, ai->static_size,
2888 ai->reserved_size, ai->dyn_size);
2889
2890 pcpu_setup_first_chunk(ai, vm.addr);
2891 goto out_free_ar;
2892
2893 enomem:
2894 while (--j >= 0)
2895 free_fn(page_address(pages[j]), PAGE_SIZE);
2896 rc = -ENOMEM;
2897 out_free_ar:
2898 memblock_free_early(__pa(pages), pages_size);
2899 pcpu_free_alloc_info(ai);
2900 return rc;
2901 }
2902 #endif /* BUILD_PAGE_FIRST_CHUNK */
2903
2904 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2905 /*
2906 * Generic SMP percpu area setup.
2907 *
2908 * The embedding helper is used because its behavior closely resembles
2909 * the original non-dynamic generic percpu area setup. This is
2910 * important because many archs have addressing restrictions and might
2911 * fail if the percpu area is located far away from the previous
2912 * location. As an added bonus, in non-NUMA cases, embedding is
2913 * generally a good idea TLB-wise because percpu area can piggy back
2914 * on the physical linear memory mapping which uses large page
2915 * mappings on applicable archs.
2916 */
2917 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2918 EXPORT_SYMBOL(__per_cpu_offset);
2919
2920 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2921 size_t align)
2922 {
2923 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2924 }
2925
2926 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2927 {
2928 memblock_free_early(__pa(ptr), size);
2929 }
2930
2931 void __init setup_per_cpu_areas(void)
2932 {
2933 unsigned long delta;
2934 unsigned int cpu;
2935 int rc;
2936
2937 /*
2938 * Always reserve area for module percpu variables. That's
2939 * what the legacy allocator did.
2940 */
2941 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2942 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2943 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2944 if (rc < 0)
2945 panic("Failed to initialize percpu areas.");
2946
2947 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2948 for_each_possible_cpu(cpu)
2949 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2950 }
2951 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2952
2953 #else /* CONFIG_SMP */
2954
2955 /*
2956 * UP percpu area setup.
2957 *
2958 * UP always uses km-based percpu allocator with identity mapping.
2959 * Static percpu variables are indistinguishable from the usual static
2960 * variables and don't require any special preparation.
2961 */
2962 void __init setup_per_cpu_areas(void)
2963 {
2964 const size_t unit_size =
2965 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2966 PERCPU_DYNAMIC_RESERVE));
2967 struct pcpu_alloc_info *ai;
2968 void *fc;
2969
2970 ai = pcpu_alloc_alloc_info(1, 1);
2971 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2972 if (!ai || !fc)
2973 panic("Failed to allocate memory for percpu areas.");
2974 /* kmemleak tracks the percpu allocations separately */
2975 kmemleak_free(fc);
2976
2977 ai->dyn_size = unit_size;
2978 ai->unit_size = unit_size;
2979 ai->atom_size = unit_size;
2980 ai->alloc_size = unit_size;
2981 ai->groups[0].nr_units = 1;
2982 ai->groups[0].cpu_map[0] = 0;
2983
2984 pcpu_setup_first_chunk(ai, fc);
2985 pcpu_free_alloc_info(ai);
2986 }
2987
2988 #endif /* CONFIG_SMP */
2989
2990 /*
2991 * pcpu_nr_pages - calculate total number of populated backing pages
2992 *
2993 * This reflects the number of pages populated to back chunks. Metadata is
2994 * excluded in the number exposed in meminfo as the number of backing pages
2995 * scales with the number of cpus and can quickly outweigh the memory used for
2996 * metadata. It also keeps this calculation nice and simple.
2997 *
2998 * RETURNS:
2999 * Total number of populated backing pages in use by the allocator.
3000 */
3001 unsigned long pcpu_nr_pages(void)
3002 {
3003 return pcpu_nr_populated * pcpu_nr_units;
3004 }
3005
3006 /*
3007 * Percpu allocator is initialized early during boot when neither slab or
3008 * workqueue is available. Plug async management until everything is up
3009 * and running.
3010 */
3011 static int __init percpu_enable_async(void)
3012 {
3013 pcpu_async_enabled = true;
3014 return 0;
3015 }
3016 subsys_initcall(percpu_enable_async);