]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/percpu.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[people/arne_f/kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91
92 #include "percpu-internal.h"
93
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
96
97 #define PCPU_EMPTY_POP_PAGES_LOW 2
98 #define PCPU_EMPTY_POP_PAGES_HIGH 4
99
100 #ifdef CONFIG_SMP
101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
102 #ifndef __addr_to_pcpu_ptr
103 #define __addr_to_pcpu_ptr(addr) \
104 (void __percpu *)((unsigned long)(addr) - \
105 (unsigned long)pcpu_base_addr + \
106 (unsigned long)__per_cpu_start)
107 #endif
108 #ifndef __pcpu_ptr_to_addr
109 #define __pcpu_ptr_to_addr(ptr) \
110 (void __force *)((unsigned long)(ptr) + \
111 (unsigned long)pcpu_base_addr - \
112 (unsigned long)__per_cpu_start)
113 #endif
114 #else /* CONFIG_SMP */
115 /* on UP, it's always identity mapped */
116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
118 #endif /* CONFIG_SMP */
119
120 static int pcpu_unit_pages __ro_after_init;
121 static int pcpu_unit_size __ro_after_init;
122 static int pcpu_nr_units __ro_after_init;
123 static int pcpu_atom_size __ro_after_init;
124 int pcpu_nr_slots __ro_after_init;
125 static size_t pcpu_chunk_struct_size __ro_after_init;
126
127 /* cpus with the lowest and highest unit addresses */
128 static unsigned int pcpu_low_unit_cpu __ro_after_init;
129 static unsigned int pcpu_high_unit_cpu __ro_after_init;
130
131 /* the address of the first chunk which starts with the kernel static area */
132 void *pcpu_base_addr __ro_after_init;
133 EXPORT_SYMBOL_GPL(pcpu_base_addr);
134
135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
137
138 /* group information, used for vm allocation */
139 static int pcpu_nr_groups __ro_after_init;
140 static const unsigned long *pcpu_group_offsets __ro_after_init;
141 static const size_t *pcpu_group_sizes __ro_after_init;
142
143 /*
144 * The first chunk which always exists. Note that unlike other
145 * chunks, this one can be allocated and mapped in several different
146 * ways and thus often doesn't live in the vmalloc area.
147 */
148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149
150 /*
151 * Optional reserved chunk. This chunk reserves part of the first
152 * chunk and serves it for reserved allocations. When the reserved
153 * region doesn't exist, the following variable is NULL.
154 */
155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156
157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
159
160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161
162 /* chunks which need their map areas extended, protected by pcpu_lock */
163 static LIST_HEAD(pcpu_map_extend_chunks);
164
165 /*
166 * The number of empty populated pages, protected by pcpu_lock. The
167 * reserved chunk doesn't contribute to the count.
168 */
169 int pcpu_nr_empty_pop_pages;
170
171 /*
172 * Balance work is used to populate or destroy chunks asynchronously. We
173 * try to keep the number of populated free pages between
174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
175 * empty chunk.
176 */
177 static void pcpu_balance_workfn(struct work_struct *work);
178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 static bool pcpu_async_enabled __read_mostly;
180 static bool pcpu_atomic_alloc_failed;
181
182 static void pcpu_schedule_balance_work(void)
183 {
184 if (pcpu_async_enabled)
185 schedule_work(&pcpu_balance_work);
186 }
187
188 /**
189 * pcpu_addr_in_chunk - check if the address is served from this chunk
190 * @chunk: chunk of interest
191 * @addr: percpu address
192 *
193 * RETURNS:
194 * True if the address is served from this chunk.
195 */
196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197 {
198 void *start_addr, *end_addr;
199
200 if (!chunk)
201 return false;
202
203 start_addr = chunk->base_addr + chunk->start_offset;
204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
205 chunk->end_offset;
206
207 return addr >= start_addr && addr < end_addr;
208 }
209
210 static int __pcpu_size_to_slot(int size)
211 {
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215
216 static int pcpu_size_to_slot(int size)
217 {
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
221 }
222
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 return 0;
227
228 return pcpu_size_to_slot(chunk->free_bytes);
229 }
230
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 page->index = (unsigned long)pcpu;
235 }
236
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 return (struct pcpu_chunk *)page->index;
241 }
242
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247
248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
249 {
250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
251 }
252
253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
254 unsigned int cpu, int page_idx)
255 {
256 return (unsigned long)chunk->base_addr +
257 pcpu_unit_page_offset(cpu, page_idx);
258 }
259
260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
261 {
262 *rs = find_next_zero_bit(bitmap, end, *rs);
263 *re = find_next_bit(bitmap, end, *rs + 1);
264 }
265
266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
267 {
268 *rs = find_next_bit(bitmap, end, *rs);
269 *re = find_next_zero_bit(bitmap, end, *rs + 1);
270 }
271
272 /*
273 * Bitmap region iterators. Iterates over the bitmap between
274 * [@start, @end) in @chunk. @rs and @re should be integer variables
275 * and will be set to start and end index of the current free region.
276 */
277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
281
282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
284 (rs) < (re); \
285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
286
287 /*
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
290 */
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292 {
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295 }
296
297 static unsigned long pcpu_off_to_block_index(int off)
298 {
299 return off / PCPU_BITMAP_BLOCK_BITS;
300 }
301
302 static unsigned long pcpu_off_to_block_off(int off)
303 {
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305 }
306
307 static unsigned long pcpu_block_off_to_off(int index, int off)
308 {
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
310 }
311
312 /**
313 * pcpu_next_md_free_region - finds the next hint free area
314 * @chunk: chunk of interest
315 * @bit_off: chunk offset
316 * @bits: size of free area
317 *
318 * Helper function for pcpu_for_each_md_free_region. It checks
319 * block->contig_hint and performs aggregation across blocks to find the
320 * next hint. It modifies bit_off and bits in-place to be consumed in the
321 * loop.
322 */
323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
324 int *bits)
325 {
326 int i = pcpu_off_to_block_index(*bit_off);
327 int block_off = pcpu_off_to_block_off(*bit_off);
328 struct pcpu_block_md *block;
329
330 *bits = 0;
331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
332 block++, i++) {
333 /* handles contig area across blocks */
334 if (*bits) {
335 *bits += block->left_free;
336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
337 continue;
338 return;
339 }
340
341 /*
342 * This checks three things. First is there a contig_hint to
343 * check. Second, have we checked this hint before by
344 * comparing the block_off. Third, is this the same as the
345 * right contig hint. In the last case, it spills over into
346 * the next block and should be handled by the contig area
347 * across blocks code.
348 */
349 *bits = block->contig_hint;
350 if (*bits && block->contig_hint_start >= block_off &&
351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
352 *bit_off = pcpu_block_off_to_off(i,
353 block->contig_hint_start);
354 return;
355 }
356 /* reset to satisfy the second predicate above */
357 block_off = 0;
358
359 *bits = block->right_free;
360 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
361 }
362 }
363
364 /**
365 * pcpu_next_fit_region - finds fit areas for a given allocation request
366 * @chunk: chunk of interest
367 * @alloc_bits: size of allocation
368 * @align: alignment of area (max PAGE_SIZE)
369 * @bit_off: chunk offset
370 * @bits: size of free area
371 *
372 * Finds the next free region that is viable for use with a given size and
373 * alignment. This only returns if there is a valid area to be used for this
374 * allocation. block->first_free is returned if the allocation request fits
375 * within the block to see if the request can be fulfilled prior to the contig
376 * hint.
377 */
378 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
379 int align, int *bit_off, int *bits)
380 {
381 int i = pcpu_off_to_block_index(*bit_off);
382 int block_off = pcpu_off_to_block_off(*bit_off);
383 struct pcpu_block_md *block;
384
385 *bits = 0;
386 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
387 block++, i++) {
388 /* handles contig area across blocks */
389 if (*bits) {
390 *bits += block->left_free;
391 if (*bits >= alloc_bits)
392 return;
393 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
394 continue;
395 }
396
397 /* check block->contig_hint */
398 *bits = ALIGN(block->contig_hint_start, align) -
399 block->contig_hint_start;
400 /*
401 * This uses the block offset to determine if this has been
402 * checked in the prior iteration.
403 */
404 if (block->contig_hint &&
405 block->contig_hint_start >= block_off &&
406 block->contig_hint >= *bits + alloc_bits) {
407 *bits += alloc_bits + block->contig_hint_start -
408 block->first_free;
409 *bit_off = pcpu_block_off_to_off(i, block->first_free);
410 return;
411 }
412 /* reset to satisfy the second predicate above */
413 block_off = 0;
414
415 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
416 align);
417 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
418 *bit_off = pcpu_block_off_to_off(i, *bit_off);
419 if (*bits >= alloc_bits)
420 return;
421 }
422
423 /* no valid offsets were found - fail condition */
424 *bit_off = pcpu_chunk_map_bits(chunk);
425 }
426
427 /*
428 * Metadata free area iterators. These perform aggregation of free areas
429 * based on the metadata blocks and return the offset @bit_off and size in
430 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
431 * a fit is found for the allocation request.
432 */
433 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
434 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
435 (bit_off) < pcpu_chunk_map_bits((chunk)); \
436 (bit_off) += (bits) + 1, \
437 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
438
439 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
440 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
441 &(bits)); \
442 (bit_off) < pcpu_chunk_map_bits((chunk)); \
443 (bit_off) += (bits), \
444 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
445 &(bits)))
446
447 /**
448 * pcpu_mem_zalloc - allocate memory
449 * @size: bytes to allocate
450 *
451 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
452 * kzalloc() is used; otherwise, vzalloc() is used. The returned
453 * memory is always zeroed.
454 *
455 * CONTEXT:
456 * Does GFP_KERNEL allocation.
457 *
458 * RETURNS:
459 * Pointer to the allocated area on success, NULL on failure.
460 */
461 static void *pcpu_mem_zalloc(size_t size)
462 {
463 if (WARN_ON_ONCE(!slab_is_available()))
464 return NULL;
465
466 if (size <= PAGE_SIZE)
467 return kzalloc(size, GFP_KERNEL);
468 else
469 return vzalloc(size);
470 }
471
472 /**
473 * pcpu_mem_free - free memory
474 * @ptr: memory to free
475 *
476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
477 */
478 static void pcpu_mem_free(void *ptr)
479 {
480 kvfree(ptr);
481 }
482
483 /**
484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485 * @chunk: chunk of interest
486 * @oslot: the previous slot it was on
487 *
488 * This function is called after an allocation or free changed @chunk.
489 * New slot according to the changed state is determined and @chunk is
490 * moved to the slot. Note that the reserved chunk is never put on
491 * chunk slots.
492 *
493 * CONTEXT:
494 * pcpu_lock.
495 */
496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
497 {
498 int nslot = pcpu_chunk_slot(chunk);
499
500 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 if (oslot < nslot)
502 list_move(&chunk->list, &pcpu_slot[nslot]);
503 else
504 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
505 }
506 }
507
508 /**
509 * pcpu_cnt_pop_pages- counts populated backing pages in range
510 * @chunk: chunk of interest
511 * @bit_off: start offset
512 * @bits: size of area to check
513 *
514 * Calculates the number of populated pages in the region
515 * [page_start, page_end). This keeps track of how many empty populated
516 * pages are available and decide if async work should be scheduled.
517 *
518 * RETURNS:
519 * The nr of populated pages.
520 */
521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
522 int bits)
523 {
524 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
525 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526
527 if (page_start >= page_end)
528 return 0;
529
530 /*
531 * bitmap_weight counts the number of bits set in a bitmap up to
532 * the specified number of bits. This is counting the populated
533 * pages up to page_end and then subtracting the populated pages
534 * up to page_start to count the populated pages in
535 * [page_start, page_end).
536 */
537 return bitmap_weight(chunk->populated, page_end) -
538 bitmap_weight(chunk->populated, page_start);
539 }
540
541 /**
542 * pcpu_chunk_update - updates the chunk metadata given a free area
543 * @chunk: chunk of interest
544 * @bit_off: chunk offset
545 * @bits: size of free area
546 *
547 * This updates the chunk's contig hint and starting offset given a free area.
548 * Choose the best starting offset if the contig hint is equal.
549 */
550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
551 {
552 if (bits > chunk->contig_bits) {
553 chunk->contig_bits_start = bit_off;
554 chunk->contig_bits = bits;
555 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
556 (!bit_off ||
557 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
558 /* use the start with the best alignment */
559 chunk->contig_bits_start = bit_off;
560 }
561 }
562
563 /**
564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
565 * @chunk: chunk of interest
566 *
567 * Iterates over the metadata blocks to find the largest contig area.
568 * It also counts the populated pages and uses the delta to update the
569 * global count.
570 *
571 * Updates:
572 * chunk->contig_bits
573 * chunk->contig_bits_start
574 * nr_empty_pop_pages (chunk and global)
575 */
576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577 {
578 int bit_off, bits, nr_empty_pop_pages;
579
580 /* clear metadata */
581 chunk->contig_bits = 0;
582
583 bit_off = chunk->first_bit;
584 bits = nr_empty_pop_pages = 0;
585 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
586 pcpu_chunk_update(chunk, bit_off, bits);
587
588 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589 }
590
591 /*
592 * Keep track of nr_empty_pop_pages.
593 *
594 * The chunk maintains the previous number of free pages it held,
595 * so the delta is used to update the global counter. The reserved
596 * chunk is not part of the free page count as they are populated
597 * at init and are special to serving reserved allocations.
598 */
599 if (chunk != pcpu_reserved_chunk)
600 pcpu_nr_empty_pop_pages +=
601 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602
603 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
604 }
605
606 /**
607 * pcpu_block_update - updates a block given a free area
608 * @block: block of interest
609 * @start: start offset in block
610 * @end: end offset in block
611 *
612 * Updates a block given a known free area. The region [start, end) is
613 * expected to be the entirety of the free area within a block. Chooses
614 * the best starting offset if the contig hints are equal.
615 */
616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
617 {
618 int contig = end - start;
619
620 block->first_free = min(block->first_free, start);
621 if (start == 0)
622 block->left_free = contig;
623
624 if (end == PCPU_BITMAP_BLOCK_BITS)
625 block->right_free = contig;
626
627 if (contig > block->contig_hint) {
628 block->contig_hint_start = start;
629 block->contig_hint = contig;
630 } else if (block->contig_hint_start && contig == block->contig_hint &&
631 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
632 /* use the start with the best alignment */
633 block->contig_hint_start = start;
634 }
635 }
636
637 /**
638 * pcpu_block_refresh_hint
639 * @chunk: chunk of interest
640 * @index: index of the metadata block
641 *
642 * Scans over the block beginning at first_free and updates the block
643 * metadata accordingly.
644 */
645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
646 {
647 struct pcpu_block_md *block = chunk->md_blocks + index;
648 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
649 int rs, re; /* region start, region end */
650
651 /* clear hints */
652 block->contig_hint = 0;
653 block->left_free = block->right_free = 0;
654
655 /* iterate over free areas and update the contig hints */
656 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
657 PCPU_BITMAP_BLOCK_BITS) {
658 pcpu_block_update(block, rs, re);
659 }
660 }
661
662 /**
663 * pcpu_block_update_hint_alloc - update hint on allocation path
664 * @chunk: chunk of interest
665 * @bit_off: chunk offset
666 * @bits: size of request
667 *
668 * Updates metadata for the allocation path. The metadata only has to be
669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
670 * scans are required if the block's contig hint is broken.
671 */
672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
673 int bits)
674 {
675 struct pcpu_block_md *s_block, *e_block, *block;
676 int s_index, e_index; /* block indexes of the freed allocation */
677 int s_off, e_off; /* block offsets of the freed allocation */
678
679 /*
680 * Calculate per block offsets.
681 * The calculation uses an inclusive range, but the resulting offsets
682 * are [start, end). e_index always points to the last block in the
683 * range.
684 */
685 s_index = pcpu_off_to_block_index(bit_off);
686 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
687 s_off = pcpu_off_to_block_off(bit_off);
688 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
689
690 s_block = chunk->md_blocks + s_index;
691 e_block = chunk->md_blocks + e_index;
692
693 /*
694 * Update s_block.
695 * block->first_free must be updated if the allocation takes its place.
696 * If the allocation breaks the contig_hint, a scan is required to
697 * restore this hint.
698 */
699 if (s_off == s_block->first_free)
700 s_block->first_free = find_next_zero_bit(
701 pcpu_index_alloc_map(chunk, s_index),
702 PCPU_BITMAP_BLOCK_BITS,
703 s_off + bits);
704
705 if (s_off >= s_block->contig_hint_start &&
706 s_off < s_block->contig_hint_start + s_block->contig_hint) {
707 /* block contig hint is broken - scan to fix it */
708 pcpu_block_refresh_hint(chunk, s_index);
709 } else {
710 /* update left and right contig manually */
711 s_block->left_free = min(s_block->left_free, s_off);
712 if (s_index == e_index)
713 s_block->right_free = min_t(int, s_block->right_free,
714 PCPU_BITMAP_BLOCK_BITS - e_off);
715 else
716 s_block->right_free = 0;
717 }
718
719 /*
720 * Update e_block.
721 */
722 if (s_index != e_index) {
723 /*
724 * When the allocation is across blocks, the end is along
725 * the left part of the e_block.
726 */
727 e_block->first_free = find_next_zero_bit(
728 pcpu_index_alloc_map(chunk, e_index),
729 PCPU_BITMAP_BLOCK_BITS, e_off);
730
731 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
732 /* reset the block */
733 e_block++;
734 } else {
735 if (e_off > e_block->contig_hint_start) {
736 /* contig hint is broken - scan to fix it */
737 pcpu_block_refresh_hint(chunk, e_index);
738 } else {
739 e_block->left_free = 0;
740 e_block->right_free =
741 min_t(int, e_block->right_free,
742 PCPU_BITMAP_BLOCK_BITS - e_off);
743 }
744 }
745
746 /* update in-between md_blocks */
747 for (block = s_block + 1; block < e_block; block++) {
748 block->contig_hint = 0;
749 block->left_free = 0;
750 block->right_free = 0;
751 }
752 }
753
754 /*
755 * The only time a full chunk scan is required is if the chunk
756 * contig hint is broken. Otherwise, it means a smaller space
757 * was used and therefore the chunk contig hint is still correct.
758 */
759 if (bit_off >= chunk->contig_bits_start &&
760 bit_off < chunk->contig_bits_start + chunk->contig_bits)
761 pcpu_chunk_refresh_hint(chunk);
762 }
763
764 /**
765 * pcpu_block_update_hint_free - updates the block hints on the free path
766 * @chunk: chunk of interest
767 * @bit_off: chunk offset
768 * @bits: size of request
769 *
770 * Updates metadata for the allocation path. This avoids a blind block
771 * refresh by making use of the block contig hints. If this fails, it scans
772 * forward and backward to determine the extent of the free area. This is
773 * capped at the boundary of blocks.
774 *
775 * A chunk update is triggered if a page becomes free, a block becomes free,
776 * or the free spans across blocks. This tradeoff is to minimize iterating
777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
778 * may be off by up to a page, but it will never be more than the available
779 * space. If the contig hint is contained in one block, it will be accurate.
780 */
781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
782 int bits)
783 {
784 struct pcpu_block_md *s_block, *e_block, *block;
785 int s_index, e_index; /* block indexes of the freed allocation */
786 int s_off, e_off; /* block offsets of the freed allocation */
787 int start, end; /* start and end of the whole free area */
788
789 /*
790 * Calculate per block offsets.
791 * The calculation uses an inclusive range, but the resulting offsets
792 * are [start, end). e_index always points to the last block in the
793 * range.
794 */
795 s_index = pcpu_off_to_block_index(bit_off);
796 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
797 s_off = pcpu_off_to_block_off(bit_off);
798 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
799
800 s_block = chunk->md_blocks + s_index;
801 e_block = chunk->md_blocks + e_index;
802
803 /*
804 * Check if the freed area aligns with the block->contig_hint.
805 * If it does, then the scan to find the beginning/end of the
806 * larger free area can be avoided.
807 *
808 * start and end refer to beginning and end of the free area
809 * within each their respective blocks. This is not necessarily
810 * the entire free area as it may span blocks past the beginning
811 * or end of the block.
812 */
813 start = s_off;
814 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
815 start = s_block->contig_hint_start;
816 } else {
817 /*
818 * Scan backwards to find the extent of the free area.
819 * find_last_bit returns the starting bit, so if the start bit
820 * is returned, that means there was no last bit and the
821 * remainder of the chunk is free.
822 */
823 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
824 start);
825 start = (start == l_bit) ? 0 : l_bit + 1;
826 }
827
828 end = e_off;
829 if (e_off == e_block->contig_hint_start)
830 end = e_block->contig_hint_start + e_block->contig_hint;
831 else
832 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
833 PCPU_BITMAP_BLOCK_BITS, end);
834
835 /* update s_block */
836 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
837 pcpu_block_update(s_block, start, e_off);
838
839 /* freeing in the same block */
840 if (s_index != e_index) {
841 /* update e_block */
842 pcpu_block_update(e_block, 0, end);
843
844 /* reset md_blocks in the middle */
845 for (block = s_block + 1; block < e_block; block++) {
846 block->first_free = 0;
847 block->contig_hint_start = 0;
848 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
849 block->left_free = PCPU_BITMAP_BLOCK_BITS;
850 block->right_free = PCPU_BITMAP_BLOCK_BITS;
851 }
852 }
853
854 /*
855 * Refresh chunk metadata when the free makes a page free, a block
856 * free, or spans across blocks. The contig hint may be off by up to
857 * a page, but if the hint is contained in a block, it will be accurate
858 * with the else condition below.
859 */
860 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
861 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
862 s_index != e_index)
863 pcpu_chunk_refresh_hint(chunk);
864 else
865 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
866 s_block->contig_hint);
867 }
868
869 /**
870 * pcpu_is_populated - determines if the region is populated
871 * @chunk: chunk of interest
872 * @bit_off: chunk offset
873 * @bits: size of area
874 * @next_off: return value for the next offset to start searching
875 *
876 * For atomic allocations, check if the backing pages are populated.
877 *
878 * RETURNS:
879 * Bool if the backing pages are populated.
880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
881 */
882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
883 int *next_off)
884 {
885 int page_start, page_end, rs, re;
886
887 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
888 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889
890 rs = page_start;
891 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
892 if (rs >= page_end)
893 return true;
894
895 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
896 return false;
897 }
898
899 /**
900 * pcpu_find_block_fit - finds the block index to start searching
901 * @chunk: chunk of interest
902 * @alloc_bits: size of request in allocation units
903 * @align: alignment of area (max PAGE_SIZE bytes)
904 * @pop_only: use populated regions only
905 *
906 * Given a chunk and an allocation spec, find the offset to begin searching
907 * for a free region. This iterates over the bitmap metadata blocks to
908 * find an offset that will be guaranteed to fit the requirements. It is
909 * not quite first fit as if the allocation does not fit in the contig hint
910 * of a block or chunk, it is skipped. This errs on the side of caution
911 * to prevent excess iteration. Poor alignment can cause the allocator to
912 * skip over blocks and chunks that have valid free areas.
913 *
914 * RETURNS:
915 * The offset in the bitmap to begin searching.
916 * -1 if no offset is found.
917 */
918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
919 size_t align, bool pop_only)
920 {
921 int bit_off, bits, next_off;
922
923 /*
924 * Check to see if the allocation can fit in the chunk's contig hint.
925 * This is an optimization to prevent scanning by assuming if it
926 * cannot fit in the global hint, there is memory pressure and creating
927 * a new chunk would happen soon.
928 */
929 bit_off = ALIGN(chunk->contig_bits_start, align) -
930 chunk->contig_bits_start;
931 if (bit_off + alloc_bits > chunk->contig_bits)
932 return -1;
933
934 bit_off = chunk->first_bit;
935 bits = 0;
936 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938 &next_off))
939 break;
940
941 bit_off = next_off;
942 bits = 0;
943 }
944
945 if (bit_off == pcpu_chunk_map_bits(chunk))
946 return -1;
947
948 return bit_off;
949 }
950
951 /**
952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953 * @chunk: chunk of interest
954 * @alloc_bits: size of request in allocation units
955 * @align: alignment of area (max PAGE_SIZE)
956 * @start: bit_off to start searching
957 *
958 * This function takes in a @start offset to begin searching to fit an
959 * allocation of @alloc_bits with alignment @align. It needs to scan
960 * the allocation map because if it fits within the block's contig hint,
961 * @start will be block->first_free. This is an attempt to fill the
962 * allocation prior to breaking the contig hint. The allocation and
963 * boundary maps are updated accordingly if it confirms a valid
964 * free area.
965 *
966 * RETURNS:
967 * Allocated addr offset in @chunk on success.
968 * -1 if no matching area is found.
969 */
970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
971 size_t align, int start)
972 {
973 size_t align_mask = (align) ? (align - 1) : 0;
974 int bit_off, end, oslot;
975
976 lockdep_assert_held(&pcpu_lock);
977
978 oslot = pcpu_chunk_slot(chunk);
979
980 /*
981 * Search to find a fit.
982 */
983 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
985 alloc_bits, align_mask);
986 if (bit_off >= end)
987 return -1;
988
989 /* update alloc map */
990 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
991
992 /* update boundary map */
993 set_bit(bit_off, chunk->bound_map);
994 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
995 set_bit(bit_off + alloc_bits, chunk->bound_map);
996
997 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998
999 /* update first free bit */
1000 if (bit_off == chunk->first_bit)
1001 chunk->first_bit = find_next_zero_bit(
1002 chunk->alloc_map,
1003 pcpu_chunk_map_bits(chunk),
1004 bit_off + alloc_bits);
1005
1006 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007
1008 pcpu_chunk_relocate(chunk, oslot);
1009
1010 return bit_off * PCPU_MIN_ALLOC_SIZE;
1011 }
1012
1013 /**
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1017 *
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
1020 */
1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022 {
1023 int bit_off, bits, end, oslot;
1024
1025 lockdep_assert_held(&pcpu_lock);
1026 pcpu_stats_area_dealloc(chunk);
1027
1028 oslot = pcpu_chunk_slot(chunk);
1029
1030 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031
1032 /* find end index */
1033 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034 bit_off + 1);
1035 bits = end - bit_off;
1036 bitmap_clear(chunk->alloc_map, bit_off, bits);
1037
1038 /* update metadata */
1039 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040
1041 /* update first free bit */
1042 chunk->first_bit = min(chunk->first_bit, bit_off);
1043
1044 pcpu_block_update_hint_free(chunk, bit_off, bits);
1045
1046 pcpu_chunk_relocate(chunk, oslot);
1047 }
1048
1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050 {
1051 struct pcpu_block_md *md_block;
1052
1053 for (md_block = chunk->md_blocks;
1054 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055 md_block++) {
1056 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059 }
1060 }
1061
1062 /**
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1066 *
1067 * This is responsible for creating the chunks that serve the first chunk. The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up. Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1071 *
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1074 */
1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076 int map_size)
1077 {
1078 struct pcpu_chunk *chunk;
1079 unsigned long aligned_addr, lcm_align;
1080 int start_offset, offset_bits, region_size, region_bits;
1081
1082 /* region calculations */
1083 aligned_addr = tmp_addr & PAGE_MASK;
1084
1085 start_offset = tmp_addr - aligned_addr;
1086
1087 /*
1088 * Align the end of the region with the LCM of PAGE_SIZE and
1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1090 * the other.
1091 */
1092 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093 region_size = ALIGN(start_offset + map_size, lcm_align);
1094
1095 /* allocate chunk */
1096 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098 0);
1099
1100 INIT_LIST_HEAD(&chunk->list);
1101
1102 chunk->base_addr = (void *)aligned_addr;
1103 chunk->start_offset = start_offset;
1104 chunk->end_offset = region_size - chunk->start_offset - map_size;
1105
1106 chunk->nr_pages = region_size >> PAGE_SHIFT;
1107 region_bits = pcpu_chunk_map_bits(chunk);
1108
1109 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110 sizeof(chunk->alloc_map[0]), 0);
1111 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112 sizeof(chunk->bound_map[0]), 0);
1113 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114 sizeof(chunk->md_blocks[0]), 0);
1115 pcpu_init_md_blocks(chunk);
1116
1117 /* manage populated page bitmap */
1118 chunk->immutable = true;
1119 bitmap_fill(chunk->populated, chunk->nr_pages);
1120 chunk->nr_populated = chunk->nr_pages;
1121 chunk->nr_empty_pop_pages =
1122 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123 map_size / PCPU_MIN_ALLOC_SIZE);
1124
1125 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126 chunk->free_bytes = map_size;
1127
1128 if (chunk->start_offset) {
1129 /* hide the beginning of the bitmap */
1130 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131 bitmap_set(chunk->alloc_map, 0, offset_bits);
1132 set_bit(0, chunk->bound_map);
1133 set_bit(offset_bits, chunk->bound_map);
1134
1135 chunk->first_bit = offset_bits;
1136
1137 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 }
1139
1140 if (chunk->end_offset) {
1141 /* hide the end of the bitmap */
1142 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143 bitmap_set(chunk->alloc_map,
1144 pcpu_chunk_map_bits(chunk) - offset_bits,
1145 offset_bits);
1146 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147 chunk->bound_map);
1148 set_bit(region_bits, chunk->bound_map);
1149
1150 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151 - offset_bits, offset_bits);
1152 }
1153
1154 return chunk;
1155 }
1156
1157 static struct pcpu_chunk *pcpu_alloc_chunk(void)
1158 {
1159 struct pcpu_chunk *chunk;
1160 int region_bits;
1161
1162 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1163 if (!chunk)
1164 return NULL;
1165
1166 INIT_LIST_HEAD(&chunk->list);
1167 chunk->nr_pages = pcpu_unit_pages;
1168 region_bits = pcpu_chunk_map_bits(chunk);
1169
1170 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171 sizeof(chunk->alloc_map[0]));
1172 if (!chunk->alloc_map)
1173 goto alloc_map_fail;
1174
1175 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176 sizeof(chunk->bound_map[0]));
1177 if (!chunk->bound_map)
1178 goto bound_map_fail;
1179
1180 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181 sizeof(chunk->md_blocks[0]));
1182 if (!chunk->md_blocks)
1183 goto md_blocks_fail;
1184
1185 pcpu_init_md_blocks(chunk);
1186
1187 /* init metadata */
1188 chunk->contig_bits = region_bits;
1189 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190
1191 return chunk;
1192
1193 md_blocks_fail:
1194 pcpu_mem_free(chunk->bound_map);
1195 bound_map_fail:
1196 pcpu_mem_free(chunk->alloc_map);
1197 alloc_map_fail:
1198 pcpu_mem_free(chunk);
1199
1200 return NULL;
1201 }
1202
1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204 {
1205 if (!chunk)
1206 return;
1207 pcpu_mem_free(chunk->bound_map);
1208 pcpu_mem_free(chunk->alloc_map);
1209 pcpu_mem_free(chunk);
1210 }
1211
1212 /**
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1218 *
1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1220 * the bookkeeping information accordingly. Must be called after each
1221 * successful population.
1222 *
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1225 */
1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227 int page_end, bool for_alloc)
1228 {
1229 int nr = page_end - page_start;
1230
1231 lockdep_assert_held(&pcpu_lock);
1232
1233 bitmap_set(chunk->populated, page_start, nr);
1234 chunk->nr_populated += nr;
1235
1236 if (!for_alloc) {
1237 chunk->nr_empty_pop_pages += nr;
1238 pcpu_nr_empty_pop_pages += nr;
1239 }
1240 }
1241
1242 /**
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1247 *
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly. Must be called after
1250 * each successful depopulation.
1251 */
1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253 int page_start, int page_end)
1254 {
1255 int nr = page_end - page_start;
1256
1257 lockdep_assert_held(&pcpu_lock);
1258
1259 bitmap_clear(chunk->populated, page_start, nr);
1260 chunk->nr_populated -= nr;
1261 chunk->nr_empty_pop_pages -= nr;
1262 pcpu_nr_empty_pop_pages -= nr;
1263 }
1264
1265 /*
1266 * Chunk management implementation.
1267 *
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together. The following functions
1271 * should be implemented.
1272 *
1273 * pcpu_populate_chunk - populate the specified range of a chunk
1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1275 * pcpu_create_chunk - create a new chunk
1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page - translate address to physical address
1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1279 */
1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1281 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1282 static struct pcpu_chunk *pcpu_create_chunk(void);
1283 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1284 static struct page *pcpu_addr_to_page(void *addr);
1285 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1286
1287 #ifdef CONFIG_NEED_PER_CPU_KM
1288 #include "percpu-km.c"
1289 #else
1290 #include "percpu-vm.c"
1291 #endif
1292
1293 /**
1294 * pcpu_chunk_addr_search - determine chunk containing specified address
1295 * @addr: address for which the chunk needs to be determined.
1296 *
1297 * This is an internal function that handles all but static allocations.
1298 * Static percpu address values should never be passed into the allocator.
1299 *
1300 * RETURNS:
1301 * The address of the found chunk.
1302 */
1303 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1304 {
1305 /* is it in the dynamic region (first chunk)? */
1306 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1307 return pcpu_first_chunk;
1308
1309 /* is it in the reserved region? */
1310 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1311 return pcpu_reserved_chunk;
1312
1313 /*
1314 * The address is relative to unit0 which might be unused and
1315 * thus unmapped. Offset the address to the unit space of the
1316 * current processor before looking it up in the vmalloc
1317 * space. Note that any possible cpu id can be used here, so
1318 * there's no need to worry about preemption or cpu hotplug.
1319 */
1320 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1321 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1322 }
1323
1324 /**
1325 * pcpu_alloc - the percpu allocator
1326 * @size: size of area to allocate in bytes
1327 * @align: alignment of area (max PAGE_SIZE)
1328 * @reserved: allocate from the reserved chunk if available
1329 * @gfp: allocation flags
1330 *
1331 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1332 * contain %GFP_KERNEL, the allocation is atomic.
1333 *
1334 * RETURNS:
1335 * Percpu pointer to the allocated area on success, NULL on failure.
1336 */
1337 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1338 gfp_t gfp)
1339 {
1340 static int warn_limit = 10;
1341 struct pcpu_chunk *chunk;
1342 const char *err;
1343 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1344 int slot, off, cpu, ret;
1345 unsigned long flags;
1346 void __percpu *ptr;
1347 size_t bits, bit_align;
1348
1349 /*
1350 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1351 * therefore alignment must be a minimum of that many bytes.
1352 * An allocation may have internal fragmentation from rounding up
1353 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1354 */
1355 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1356 align = PCPU_MIN_ALLOC_SIZE;
1357
1358 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1359 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1360 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1361
1362 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1363 !is_power_of_2(align))) {
1364 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1365 size, align);
1366 return NULL;
1367 }
1368
1369 if (!is_atomic)
1370 mutex_lock(&pcpu_alloc_mutex);
1371
1372 spin_lock_irqsave(&pcpu_lock, flags);
1373
1374 /* serve reserved allocations from the reserved chunk if available */
1375 if (reserved && pcpu_reserved_chunk) {
1376 chunk = pcpu_reserved_chunk;
1377
1378 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1379 if (off < 0) {
1380 err = "alloc from reserved chunk failed";
1381 goto fail_unlock;
1382 }
1383
1384 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1385 if (off >= 0)
1386 goto area_found;
1387
1388 err = "alloc from reserved chunk failed";
1389 goto fail_unlock;
1390 }
1391
1392 restart:
1393 /* search through normal chunks */
1394 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1395 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1396 off = pcpu_find_block_fit(chunk, bits, bit_align,
1397 is_atomic);
1398 if (off < 0)
1399 continue;
1400
1401 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1402 if (off >= 0)
1403 goto area_found;
1404
1405 }
1406 }
1407
1408 spin_unlock_irqrestore(&pcpu_lock, flags);
1409
1410 /*
1411 * No space left. Create a new chunk. We don't want multiple
1412 * tasks to create chunks simultaneously. Serialize and create iff
1413 * there's still no empty chunk after grabbing the mutex.
1414 */
1415 if (is_atomic) {
1416 err = "atomic alloc failed, no space left";
1417 goto fail;
1418 }
1419
1420 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1421 chunk = pcpu_create_chunk();
1422 if (!chunk) {
1423 err = "failed to allocate new chunk";
1424 goto fail;
1425 }
1426
1427 spin_lock_irqsave(&pcpu_lock, flags);
1428 pcpu_chunk_relocate(chunk, -1);
1429 } else {
1430 spin_lock_irqsave(&pcpu_lock, flags);
1431 }
1432
1433 goto restart;
1434
1435 area_found:
1436 pcpu_stats_area_alloc(chunk, size);
1437 spin_unlock_irqrestore(&pcpu_lock, flags);
1438
1439 /* populate if not all pages are already there */
1440 if (!is_atomic) {
1441 int page_start, page_end, rs, re;
1442
1443 page_start = PFN_DOWN(off);
1444 page_end = PFN_UP(off + size);
1445
1446 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1447 page_start, page_end) {
1448 WARN_ON(chunk->immutable);
1449
1450 ret = pcpu_populate_chunk(chunk, rs, re);
1451
1452 spin_lock_irqsave(&pcpu_lock, flags);
1453 if (ret) {
1454 pcpu_free_area(chunk, off);
1455 err = "failed to populate";
1456 goto fail_unlock;
1457 }
1458 pcpu_chunk_populated(chunk, rs, re, true);
1459 spin_unlock_irqrestore(&pcpu_lock, flags);
1460 }
1461
1462 mutex_unlock(&pcpu_alloc_mutex);
1463 }
1464
1465 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1466 pcpu_schedule_balance_work();
1467
1468 /* clear the areas and return address relative to base address */
1469 for_each_possible_cpu(cpu)
1470 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1471
1472 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1473 kmemleak_alloc_percpu(ptr, size, gfp);
1474
1475 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1476 chunk->base_addr, off, ptr);
1477
1478 return ptr;
1479
1480 fail_unlock:
1481 spin_unlock_irqrestore(&pcpu_lock, flags);
1482 fail:
1483 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1484
1485 if (!is_atomic && warn_limit) {
1486 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1487 size, align, is_atomic, err);
1488 dump_stack();
1489 if (!--warn_limit)
1490 pr_info("limit reached, disable warning\n");
1491 }
1492 if (is_atomic) {
1493 /* see the flag handling in pcpu_blance_workfn() */
1494 pcpu_atomic_alloc_failed = true;
1495 pcpu_schedule_balance_work();
1496 } else {
1497 mutex_unlock(&pcpu_alloc_mutex);
1498 }
1499 return NULL;
1500 }
1501
1502 /**
1503 * __alloc_percpu_gfp - allocate dynamic percpu area
1504 * @size: size of area to allocate in bytes
1505 * @align: alignment of area (max PAGE_SIZE)
1506 * @gfp: allocation flags
1507 *
1508 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1509 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1510 * be called from any context but is a lot more likely to fail.
1511 *
1512 * RETURNS:
1513 * Percpu pointer to the allocated area on success, NULL on failure.
1514 */
1515 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1516 {
1517 return pcpu_alloc(size, align, false, gfp);
1518 }
1519 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1520
1521 /**
1522 * __alloc_percpu - allocate dynamic percpu area
1523 * @size: size of area to allocate in bytes
1524 * @align: alignment of area (max PAGE_SIZE)
1525 *
1526 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1527 */
1528 void __percpu *__alloc_percpu(size_t size, size_t align)
1529 {
1530 return pcpu_alloc(size, align, false, GFP_KERNEL);
1531 }
1532 EXPORT_SYMBOL_GPL(__alloc_percpu);
1533
1534 /**
1535 * __alloc_reserved_percpu - allocate reserved percpu area
1536 * @size: size of area to allocate in bytes
1537 * @align: alignment of area (max PAGE_SIZE)
1538 *
1539 * Allocate zero-filled percpu area of @size bytes aligned at @align
1540 * from reserved percpu area if arch has set it up; otherwise,
1541 * allocation is served from the same dynamic area. Might sleep.
1542 * Might trigger writeouts.
1543 *
1544 * CONTEXT:
1545 * Does GFP_KERNEL allocation.
1546 *
1547 * RETURNS:
1548 * Percpu pointer to the allocated area on success, NULL on failure.
1549 */
1550 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1551 {
1552 return pcpu_alloc(size, align, true, GFP_KERNEL);
1553 }
1554
1555 /**
1556 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1557 * @work: unused
1558 *
1559 * Reclaim all fully free chunks except for the first one.
1560 */
1561 static void pcpu_balance_workfn(struct work_struct *work)
1562 {
1563 LIST_HEAD(to_free);
1564 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1565 struct pcpu_chunk *chunk, *next;
1566 int slot, nr_to_pop, ret;
1567
1568 /*
1569 * There's no reason to keep around multiple unused chunks and VM
1570 * areas can be scarce. Destroy all free chunks except for one.
1571 */
1572 mutex_lock(&pcpu_alloc_mutex);
1573 spin_lock_irq(&pcpu_lock);
1574
1575 list_for_each_entry_safe(chunk, next, free_head, list) {
1576 WARN_ON(chunk->immutable);
1577
1578 /* spare the first one */
1579 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1580 continue;
1581
1582 list_move(&chunk->list, &to_free);
1583 }
1584
1585 spin_unlock_irq(&pcpu_lock);
1586
1587 list_for_each_entry_safe(chunk, next, &to_free, list) {
1588 int rs, re;
1589
1590 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1591 chunk->nr_pages) {
1592 pcpu_depopulate_chunk(chunk, rs, re);
1593 spin_lock_irq(&pcpu_lock);
1594 pcpu_chunk_depopulated(chunk, rs, re);
1595 spin_unlock_irq(&pcpu_lock);
1596 }
1597 pcpu_destroy_chunk(chunk);
1598 }
1599
1600 /*
1601 * Ensure there are certain number of free populated pages for
1602 * atomic allocs. Fill up from the most packed so that atomic
1603 * allocs don't increase fragmentation. If atomic allocation
1604 * failed previously, always populate the maximum amount. This
1605 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1606 * failing indefinitely; however, large atomic allocs are not
1607 * something we support properly and can be highly unreliable and
1608 * inefficient.
1609 */
1610 retry_pop:
1611 if (pcpu_atomic_alloc_failed) {
1612 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1613 /* best effort anyway, don't worry about synchronization */
1614 pcpu_atomic_alloc_failed = false;
1615 } else {
1616 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1617 pcpu_nr_empty_pop_pages,
1618 0, PCPU_EMPTY_POP_PAGES_HIGH);
1619 }
1620
1621 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1622 int nr_unpop = 0, rs, re;
1623
1624 if (!nr_to_pop)
1625 break;
1626
1627 spin_lock_irq(&pcpu_lock);
1628 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1629 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1630 if (nr_unpop)
1631 break;
1632 }
1633 spin_unlock_irq(&pcpu_lock);
1634
1635 if (!nr_unpop)
1636 continue;
1637
1638 /* @chunk can't go away while pcpu_alloc_mutex is held */
1639 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1640 chunk->nr_pages) {
1641 int nr = min(re - rs, nr_to_pop);
1642
1643 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1644 if (!ret) {
1645 nr_to_pop -= nr;
1646 spin_lock_irq(&pcpu_lock);
1647 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1648 spin_unlock_irq(&pcpu_lock);
1649 } else {
1650 nr_to_pop = 0;
1651 }
1652
1653 if (!nr_to_pop)
1654 break;
1655 }
1656 }
1657
1658 if (nr_to_pop) {
1659 /* ran out of chunks to populate, create a new one and retry */
1660 chunk = pcpu_create_chunk();
1661 if (chunk) {
1662 spin_lock_irq(&pcpu_lock);
1663 pcpu_chunk_relocate(chunk, -1);
1664 spin_unlock_irq(&pcpu_lock);
1665 goto retry_pop;
1666 }
1667 }
1668
1669 mutex_unlock(&pcpu_alloc_mutex);
1670 }
1671
1672 /**
1673 * free_percpu - free percpu area
1674 * @ptr: pointer to area to free
1675 *
1676 * Free percpu area @ptr.
1677 *
1678 * CONTEXT:
1679 * Can be called from atomic context.
1680 */
1681 void free_percpu(void __percpu *ptr)
1682 {
1683 void *addr;
1684 struct pcpu_chunk *chunk;
1685 unsigned long flags;
1686 int off;
1687
1688 if (!ptr)
1689 return;
1690
1691 kmemleak_free_percpu(ptr);
1692
1693 addr = __pcpu_ptr_to_addr(ptr);
1694
1695 spin_lock_irqsave(&pcpu_lock, flags);
1696
1697 chunk = pcpu_chunk_addr_search(addr);
1698 off = addr - chunk->base_addr;
1699
1700 pcpu_free_area(chunk, off);
1701
1702 /* if there are more than one fully free chunks, wake up grim reaper */
1703 if (chunk->free_bytes == pcpu_unit_size) {
1704 struct pcpu_chunk *pos;
1705
1706 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1707 if (pos != chunk) {
1708 pcpu_schedule_balance_work();
1709 break;
1710 }
1711 }
1712
1713 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1714
1715 spin_unlock_irqrestore(&pcpu_lock, flags);
1716 }
1717 EXPORT_SYMBOL_GPL(free_percpu);
1718
1719 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1720 {
1721 #ifdef CONFIG_SMP
1722 const size_t static_size = __per_cpu_end - __per_cpu_start;
1723 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1724 unsigned int cpu;
1725
1726 for_each_possible_cpu(cpu) {
1727 void *start = per_cpu_ptr(base, cpu);
1728 void *va = (void *)addr;
1729
1730 if (va >= start && va < start + static_size) {
1731 if (can_addr) {
1732 *can_addr = (unsigned long) (va - start);
1733 *can_addr += (unsigned long)
1734 per_cpu_ptr(base, get_boot_cpu_id());
1735 }
1736 return true;
1737 }
1738 }
1739 #endif
1740 /* on UP, can't distinguish from other static vars, always false */
1741 return false;
1742 }
1743
1744 /**
1745 * is_kernel_percpu_address - test whether address is from static percpu area
1746 * @addr: address to test
1747 *
1748 * Test whether @addr belongs to in-kernel static percpu area. Module
1749 * static percpu areas are not considered. For those, use
1750 * is_module_percpu_address().
1751 *
1752 * RETURNS:
1753 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1754 */
1755 bool is_kernel_percpu_address(unsigned long addr)
1756 {
1757 return __is_kernel_percpu_address(addr, NULL);
1758 }
1759
1760 /**
1761 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1762 * @addr: the address to be converted to physical address
1763 *
1764 * Given @addr which is dereferenceable address obtained via one of
1765 * percpu access macros, this function translates it into its physical
1766 * address. The caller is responsible for ensuring @addr stays valid
1767 * until this function finishes.
1768 *
1769 * percpu allocator has special setup for the first chunk, which currently
1770 * supports either embedding in linear address space or vmalloc mapping,
1771 * and, from the second one, the backing allocator (currently either vm or
1772 * km) provides translation.
1773 *
1774 * The addr can be translated simply without checking if it falls into the
1775 * first chunk. But the current code reflects better how percpu allocator
1776 * actually works, and the verification can discover both bugs in percpu
1777 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1778 * code.
1779 *
1780 * RETURNS:
1781 * The physical address for @addr.
1782 */
1783 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1784 {
1785 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1786 bool in_first_chunk = false;
1787 unsigned long first_low, first_high;
1788 unsigned int cpu;
1789
1790 /*
1791 * The following test on unit_low/high isn't strictly
1792 * necessary but will speed up lookups of addresses which
1793 * aren't in the first chunk.
1794 *
1795 * The address check is against full chunk sizes. pcpu_base_addr
1796 * points to the beginning of the first chunk including the
1797 * static region. Assumes good intent as the first chunk may
1798 * not be full (ie. < pcpu_unit_pages in size).
1799 */
1800 first_low = (unsigned long)pcpu_base_addr +
1801 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1802 first_high = (unsigned long)pcpu_base_addr +
1803 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1804 if ((unsigned long)addr >= first_low &&
1805 (unsigned long)addr < first_high) {
1806 for_each_possible_cpu(cpu) {
1807 void *start = per_cpu_ptr(base, cpu);
1808
1809 if (addr >= start && addr < start + pcpu_unit_size) {
1810 in_first_chunk = true;
1811 break;
1812 }
1813 }
1814 }
1815
1816 if (in_first_chunk) {
1817 if (!is_vmalloc_addr(addr))
1818 return __pa(addr);
1819 else
1820 return page_to_phys(vmalloc_to_page(addr)) +
1821 offset_in_page(addr);
1822 } else
1823 return page_to_phys(pcpu_addr_to_page(addr)) +
1824 offset_in_page(addr);
1825 }
1826
1827 /**
1828 * pcpu_alloc_alloc_info - allocate percpu allocation info
1829 * @nr_groups: the number of groups
1830 * @nr_units: the number of units
1831 *
1832 * Allocate ai which is large enough for @nr_groups groups containing
1833 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1834 * cpu_map array which is long enough for @nr_units and filled with
1835 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1836 * pointer of other groups.
1837 *
1838 * RETURNS:
1839 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1840 * failure.
1841 */
1842 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1843 int nr_units)
1844 {
1845 struct pcpu_alloc_info *ai;
1846 size_t base_size, ai_size;
1847 void *ptr;
1848 int unit;
1849
1850 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1851 __alignof__(ai->groups[0].cpu_map[0]));
1852 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1853
1854 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1855 if (!ptr)
1856 return NULL;
1857 ai = ptr;
1858 ptr += base_size;
1859
1860 ai->groups[0].cpu_map = ptr;
1861
1862 for (unit = 0; unit < nr_units; unit++)
1863 ai->groups[0].cpu_map[unit] = NR_CPUS;
1864
1865 ai->nr_groups = nr_groups;
1866 ai->__ai_size = PFN_ALIGN(ai_size);
1867
1868 return ai;
1869 }
1870
1871 /**
1872 * pcpu_free_alloc_info - free percpu allocation info
1873 * @ai: pcpu_alloc_info to free
1874 *
1875 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1876 */
1877 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1878 {
1879 memblock_free_early(__pa(ai), ai->__ai_size);
1880 }
1881
1882 /**
1883 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1884 * @lvl: loglevel
1885 * @ai: allocation info to dump
1886 *
1887 * Print out information about @ai using loglevel @lvl.
1888 */
1889 static void pcpu_dump_alloc_info(const char *lvl,
1890 const struct pcpu_alloc_info *ai)
1891 {
1892 int group_width = 1, cpu_width = 1, width;
1893 char empty_str[] = "--------";
1894 int alloc = 0, alloc_end = 0;
1895 int group, v;
1896 int upa, apl; /* units per alloc, allocs per line */
1897
1898 v = ai->nr_groups;
1899 while (v /= 10)
1900 group_width++;
1901
1902 v = num_possible_cpus();
1903 while (v /= 10)
1904 cpu_width++;
1905 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1906
1907 upa = ai->alloc_size / ai->unit_size;
1908 width = upa * (cpu_width + 1) + group_width + 3;
1909 apl = rounddown_pow_of_two(max(60 / width, 1));
1910
1911 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1912 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1913 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1914
1915 for (group = 0; group < ai->nr_groups; group++) {
1916 const struct pcpu_group_info *gi = &ai->groups[group];
1917 int unit = 0, unit_end = 0;
1918
1919 BUG_ON(gi->nr_units % upa);
1920 for (alloc_end += gi->nr_units / upa;
1921 alloc < alloc_end; alloc++) {
1922 if (!(alloc % apl)) {
1923 pr_cont("\n");
1924 printk("%spcpu-alloc: ", lvl);
1925 }
1926 pr_cont("[%0*d] ", group_width, group);
1927
1928 for (unit_end += upa; unit < unit_end; unit++)
1929 if (gi->cpu_map[unit] != NR_CPUS)
1930 pr_cont("%0*d ",
1931 cpu_width, gi->cpu_map[unit]);
1932 else
1933 pr_cont("%s ", empty_str);
1934 }
1935 }
1936 pr_cont("\n");
1937 }
1938
1939 /**
1940 * pcpu_setup_first_chunk - initialize the first percpu chunk
1941 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1942 * @base_addr: mapped address
1943 *
1944 * Initialize the first percpu chunk which contains the kernel static
1945 * perpcu area. This function is to be called from arch percpu area
1946 * setup path.
1947 *
1948 * @ai contains all information necessary to initialize the first
1949 * chunk and prime the dynamic percpu allocator.
1950 *
1951 * @ai->static_size is the size of static percpu area.
1952 *
1953 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1954 * reserve after the static area in the first chunk. This reserves
1955 * the first chunk such that it's available only through reserved
1956 * percpu allocation. This is primarily used to serve module percpu
1957 * static areas on architectures where the addressing model has
1958 * limited offset range for symbol relocations to guarantee module
1959 * percpu symbols fall inside the relocatable range.
1960 *
1961 * @ai->dyn_size determines the number of bytes available for dynamic
1962 * allocation in the first chunk. The area between @ai->static_size +
1963 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1964 *
1965 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1966 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1967 * @ai->dyn_size.
1968 *
1969 * @ai->atom_size is the allocation atom size and used as alignment
1970 * for vm areas.
1971 *
1972 * @ai->alloc_size is the allocation size and always multiple of
1973 * @ai->atom_size. This is larger than @ai->atom_size if
1974 * @ai->unit_size is larger than @ai->atom_size.
1975 *
1976 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1977 * percpu areas. Units which should be colocated are put into the
1978 * same group. Dynamic VM areas will be allocated according to these
1979 * groupings. If @ai->nr_groups is zero, a single group containing
1980 * all units is assumed.
1981 *
1982 * The caller should have mapped the first chunk at @base_addr and
1983 * copied static data to each unit.
1984 *
1985 * The first chunk will always contain a static and a dynamic region.
1986 * However, the static region is not managed by any chunk. If the first
1987 * chunk also contains a reserved region, it is served by two chunks -
1988 * one for the reserved region and one for the dynamic region. They
1989 * share the same vm, but use offset regions in the area allocation map.
1990 * The chunk serving the dynamic region is circulated in the chunk slots
1991 * and available for dynamic allocation like any other chunk.
1992 *
1993 * RETURNS:
1994 * 0 on success, -errno on failure.
1995 */
1996 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1997 void *base_addr)
1998 {
1999 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2000 size_t static_size, dyn_size;
2001 struct pcpu_chunk *chunk;
2002 unsigned long *group_offsets;
2003 size_t *group_sizes;
2004 unsigned long *unit_off;
2005 unsigned int cpu;
2006 int *unit_map;
2007 int group, unit, i;
2008 int map_size;
2009 unsigned long tmp_addr;
2010
2011 #define PCPU_SETUP_BUG_ON(cond) do { \
2012 if (unlikely(cond)) { \
2013 pr_emerg("failed to initialize, %s\n", #cond); \
2014 pr_emerg("cpu_possible_mask=%*pb\n", \
2015 cpumask_pr_args(cpu_possible_mask)); \
2016 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2017 BUG(); \
2018 } \
2019 } while (0)
2020
2021 /* sanity checks */
2022 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2023 #ifdef CONFIG_SMP
2024 PCPU_SETUP_BUG_ON(!ai->static_size);
2025 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2026 #endif
2027 PCPU_SETUP_BUG_ON(!base_addr);
2028 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2029 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2030 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2031 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2032 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2033 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2034 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2035 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2036 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2037 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2038 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2039
2040 /* process group information and build config tables accordingly */
2041 group_offsets = memblock_virt_alloc(ai->nr_groups *
2042 sizeof(group_offsets[0]), 0);
2043 group_sizes = memblock_virt_alloc(ai->nr_groups *
2044 sizeof(group_sizes[0]), 0);
2045 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2046 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2047
2048 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2049 unit_map[cpu] = UINT_MAX;
2050
2051 pcpu_low_unit_cpu = NR_CPUS;
2052 pcpu_high_unit_cpu = NR_CPUS;
2053
2054 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2055 const struct pcpu_group_info *gi = &ai->groups[group];
2056
2057 group_offsets[group] = gi->base_offset;
2058 group_sizes[group] = gi->nr_units * ai->unit_size;
2059
2060 for (i = 0; i < gi->nr_units; i++) {
2061 cpu = gi->cpu_map[i];
2062 if (cpu == NR_CPUS)
2063 continue;
2064
2065 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2066 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2067 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2068
2069 unit_map[cpu] = unit + i;
2070 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2071
2072 /* determine low/high unit_cpu */
2073 if (pcpu_low_unit_cpu == NR_CPUS ||
2074 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2075 pcpu_low_unit_cpu = cpu;
2076 if (pcpu_high_unit_cpu == NR_CPUS ||
2077 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2078 pcpu_high_unit_cpu = cpu;
2079 }
2080 }
2081 pcpu_nr_units = unit;
2082
2083 for_each_possible_cpu(cpu)
2084 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2085
2086 /* we're done parsing the input, undefine BUG macro and dump config */
2087 #undef PCPU_SETUP_BUG_ON
2088 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2089
2090 pcpu_nr_groups = ai->nr_groups;
2091 pcpu_group_offsets = group_offsets;
2092 pcpu_group_sizes = group_sizes;
2093 pcpu_unit_map = unit_map;
2094 pcpu_unit_offsets = unit_off;
2095
2096 /* determine basic parameters */
2097 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2098 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2099 pcpu_atom_size = ai->atom_size;
2100 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2101 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2102
2103 pcpu_stats_save_ai(ai);
2104
2105 /*
2106 * Allocate chunk slots. The additional last slot is for
2107 * empty chunks.
2108 */
2109 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2110 pcpu_slot = memblock_virt_alloc(
2111 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2112 for (i = 0; i < pcpu_nr_slots; i++)
2113 INIT_LIST_HEAD(&pcpu_slot[i]);
2114
2115 /*
2116 * The end of the static region needs to be aligned with the
2117 * minimum allocation size as this offsets the reserved and
2118 * dynamic region. The first chunk ends page aligned by
2119 * expanding the dynamic region, therefore the dynamic region
2120 * can be shrunk to compensate while still staying above the
2121 * configured sizes.
2122 */
2123 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2124 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2125
2126 /*
2127 * Initialize first chunk.
2128 * If the reserved_size is non-zero, this initializes the reserved
2129 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2130 * and the dynamic region is initialized here. The first chunk,
2131 * pcpu_first_chunk, will always point to the chunk that serves
2132 * the dynamic region.
2133 */
2134 tmp_addr = (unsigned long)base_addr + static_size;
2135 map_size = ai->reserved_size ?: dyn_size;
2136 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2137
2138 /* init dynamic chunk if necessary */
2139 if (ai->reserved_size) {
2140 pcpu_reserved_chunk = chunk;
2141
2142 tmp_addr = (unsigned long)base_addr + static_size +
2143 ai->reserved_size;
2144 map_size = dyn_size;
2145 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2146 }
2147
2148 /* link the first chunk in */
2149 pcpu_first_chunk = chunk;
2150 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2151 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2152
2153 pcpu_stats_chunk_alloc();
2154 trace_percpu_create_chunk(base_addr);
2155
2156 /* we're done */
2157 pcpu_base_addr = base_addr;
2158 return 0;
2159 }
2160
2161 #ifdef CONFIG_SMP
2162
2163 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2164 [PCPU_FC_AUTO] = "auto",
2165 [PCPU_FC_EMBED] = "embed",
2166 [PCPU_FC_PAGE] = "page",
2167 };
2168
2169 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2170
2171 static int __init percpu_alloc_setup(char *str)
2172 {
2173 if (!str)
2174 return -EINVAL;
2175
2176 if (0)
2177 /* nada */;
2178 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2179 else if (!strcmp(str, "embed"))
2180 pcpu_chosen_fc = PCPU_FC_EMBED;
2181 #endif
2182 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2183 else if (!strcmp(str, "page"))
2184 pcpu_chosen_fc = PCPU_FC_PAGE;
2185 #endif
2186 else
2187 pr_warn("unknown allocator %s specified\n", str);
2188
2189 return 0;
2190 }
2191 early_param("percpu_alloc", percpu_alloc_setup);
2192
2193 /*
2194 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2195 * Build it if needed by the arch config or the generic setup is going
2196 * to be used.
2197 */
2198 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2199 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2200 #define BUILD_EMBED_FIRST_CHUNK
2201 #endif
2202
2203 /* build pcpu_page_first_chunk() iff needed by the arch config */
2204 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2205 #define BUILD_PAGE_FIRST_CHUNK
2206 #endif
2207
2208 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2209 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2210 /**
2211 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2212 * @reserved_size: the size of reserved percpu area in bytes
2213 * @dyn_size: minimum free size for dynamic allocation in bytes
2214 * @atom_size: allocation atom size
2215 * @cpu_distance_fn: callback to determine distance between cpus, optional
2216 *
2217 * This function determines grouping of units, their mappings to cpus
2218 * and other parameters considering needed percpu size, allocation
2219 * atom size and distances between CPUs.
2220 *
2221 * Groups are always multiples of atom size and CPUs which are of
2222 * LOCAL_DISTANCE both ways are grouped together and share space for
2223 * units in the same group. The returned configuration is guaranteed
2224 * to have CPUs on different nodes on different groups and >=75% usage
2225 * of allocated virtual address space.
2226 *
2227 * RETURNS:
2228 * On success, pointer to the new allocation_info is returned. On
2229 * failure, ERR_PTR value is returned.
2230 */
2231 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2232 size_t reserved_size, size_t dyn_size,
2233 size_t atom_size,
2234 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2235 {
2236 static int group_map[NR_CPUS] __initdata;
2237 static int group_cnt[NR_CPUS] __initdata;
2238 const size_t static_size = __per_cpu_end - __per_cpu_start;
2239 int nr_groups = 1, nr_units = 0;
2240 size_t size_sum, min_unit_size, alloc_size;
2241 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2242 int last_allocs, group, unit;
2243 unsigned int cpu, tcpu;
2244 struct pcpu_alloc_info *ai;
2245 unsigned int *cpu_map;
2246
2247 /* this function may be called multiple times */
2248 memset(group_map, 0, sizeof(group_map));
2249 memset(group_cnt, 0, sizeof(group_cnt));
2250
2251 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2252 size_sum = PFN_ALIGN(static_size + reserved_size +
2253 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2254 dyn_size = size_sum - static_size - reserved_size;
2255
2256 /*
2257 * Determine min_unit_size, alloc_size and max_upa such that
2258 * alloc_size is multiple of atom_size and is the smallest
2259 * which can accommodate 4k aligned segments which are equal to
2260 * or larger than min_unit_size.
2261 */
2262 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2263
2264 /* determine the maximum # of units that can fit in an allocation */
2265 alloc_size = roundup(min_unit_size, atom_size);
2266 upa = alloc_size / min_unit_size;
2267 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2268 upa--;
2269 max_upa = upa;
2270
2271 /* group cpus according to their proximity */
2272 for_each_possible_cpu(cpu) {
2273 group = 0;
2274 next_group:
2275 for_each_possible_cpu(tcpu) {
2276 if (cpu == tcpu)
2277 break;
2278 if (group_map[tcpu] == group && cpu_distance_fn &&
2279 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2280 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2281 group++;
2282 nr_groups = max(nr_groups, group + 1);
2283 goto next_group;
2284 }
2285 }
2286 group_map[cpu] = group;
2287 group_cnt[group]++;
2288 }
2289
2290 /*
2291 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2292 * Expand the unit_size until we use >= 75% of the units allocated.
2293 * Related to atom_size, which could be much larger than the unit_size.
2294 */
2295 last_allocs = INT_MAX;
2296 for (upa = max_upa; upa; upa--) {
2297 int allocs = 0, wasted = 0;
2298
2299 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2300 continue;
2301
2302 for (group = 0; group < nr_groups; group++) {
2303 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2304 allocs += this_allocs;
2305 wasted += this_allocs * upa - group_cnt[group];
2306 }
2307
2308 /*
2309 * Don't accept if wastage is over 1/3. The
2310 * greater-than comparison ensures upa==1 always
2311 * passes the following check.
2312 */
2313 if (wasted > num_possible_cpus() / 3)
2314 continue;
2315
2316 /* and then don't consume more memory */
2317 if (allocs > last_allocs)
2318 break;
2319 last_allocs = allocs;
2320 best_upa = upa;
2321 }
2322 upa = best_upa;
2323
2324 /* allocate and fill alloc_info */
2325 for (group = 0; group < nr_groups; group++)
2326 nr_units += roundup(group_cnt[group], upa);
2327
2328 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2329 if (!ai)
2330 return ERR_PTR(-ENOMEM);
2331 cpu_map = ai->groups[0].cpu_map;
2332
2333 for (group = 0; group < nr_groups; group++) {
2334 ai->groups[group].cpu_map = cpu_map;
2335 cpu_map += roundup(group_cnt[group], upa);
2336 }
2337
2338 ai->static_size = static_size;
2339 ai->reserved_size = reserved_size;
2340 ai->dyn_size = dyn_size;
2341 ai->unit_size = alloc_size / upa;
2342 ai->atom_size = atom_size;
2343 ai->alloc_size = alloc_size;
2344
2345 for (group = 0, unit = 0; group_cnt[group]; group++) {
2346 struct pcpu_group_info *gi = &ai->groups[group];
2347
2348 /*
2349 * Initialize base_offset as if all groups are located
2350 * back-to-back. The caller should update this to
2351 * reflect actual allocation.
2352 */
2353 gi->base_offset = unit * ai->unit_size;
2354
2355 for_each_possible_cpu(cpu)
2356 if (group_map[cpu] == group)
2357 gi->cpu_map[gi->nr_units++] = cpu;
2358 gi->nr_units = roundup(gi->nr_units, upa);
2359 unit += gi->nr_units;
2360 }
2361 BUG_ON(unit != nr_units);
2362
2363 return ai;
2364 }
2365 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2366
2367 #if defined(BUILD_EMBED_FIRST_CHUNK)
2368 /**
2369 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2370 * @reserved_size: the size of reserved percpu area in bytes
2371 * @dyn_size: minimum free size for dynamic allocation in bytes
2372 * @atom_size: allocation atom size
2373 * @cpu_distance_fn: callback to determine distance between cpus, optional
2374 * @alloc_fn: function to allocate percpu page
2375 * @free_fn: function to free percpu page
2376 *
2377 * This is a helper to ease setting up embedded first percpu chunk and
2378 * can be called where pcpu_setup_first_chunk() is expected.
2379 *
2380 * If this function is used to setup the first chunk, it is allocated
2381 * by calling @alloc_fn and used as-is without being mapped into
2382 * vmalloc area. Allocations are always whole multiples of @atom_size
2383 * aligned to @atom_size.
2384 *
2385 * This enables the first chunk to piggy back on the linear physical
2386 * mapping which often uses larger page size. Please note that this
2387 * can result in very sparse cpu->unit mapping on NUMA machines thus
2388 * requiring large vmalloc address space. Don't use this allocator if
2389 * vmalloc space is not orders of magnitude larger than distances
2390 * between node memory addresses (ie. 32bit NUMA machines).
2391 *
2392 * @dyn_size specifies the minimum dynamic area size.
2393 *
2394 * If the needed size is smaller than the minimum or specified unit
2395 * size, the leftover is returned using @free_fn.
2396 *
2397 * RETURNS:
2398 * 0 on success, -errno on failure.
2399 */
2400 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2401 size_t atom_size,
2402 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2403 pcpu_fc_alloc_fn_t alloc_fn,
2404 pcpu_fc_free_fn_t free_fn)
2405 {
2406 void *base = (void *)ULONG_MAX;
2407 void **areas = NULL;
2408 struct pcpu_alloc_info *ai;
2409 size_t size_sum, areas_size;
2410 unsigned long max_distance;
2411 int group, i, highest_group, rc;
2412
2413 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2414 cpu_distance_fn);
2415 if (IS_ERR(ai))
2416 return PTR_ERR(ai);
2417
2418 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2419 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2420
2421 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2422 if (!areas) {
2423 rc = -ENOMEM;
2424 goto out_free;
2425 }
2426
2427 /* allocate, copy and determine base address & max_distance */
2428 highest_group = 0;
2429 for (group = 0; group < ai->nr_groups; group++) {
2430 struct pcpu_group_info *gi = &ai->groups[group];
2431 unsigned int cpu = NR_CPUS;
2432 void *ptr;
2433
2434 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2435 cpu = gi->cpu_map[i];
2436 BUG_ON(cpu == NR_CPUS);
2437
2438 /* allocate space for the whole group */
2439 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2440 if (!ptr) {
2441 rc = -ENOMEM;
2442 goto out_free_areas;
2443 }
2444 /* kmemleak tracks the percpu allocations separately */
2445 kmemleak_free(ptr);
2446 areas[group] = ptr;
2447
2448 base = min(ptr, base);
2449 if (ptr > areas[highest_group])
2450 highest_group = group;
2451 }
2452 max_distance = areas[highest_group] - base;
2453 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2454
2455 /* warn if maximum distance is further than 75% of vmalloc space */
2456 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2457 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2458 max_distance, VMALLOC_TOTAL);
2459 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2460 /* and fail if we have fallback */
2461 rc = -EINVAL;
2462 goto out_free_areas;
2463 #endif
2464 }
2465
2466 /*
2467 * Copy data and free unused parts. This should happen after all
2468 * allocations are complete; otherwise, we may end up with
2469 * overlapping groups.
2470 */
2471 for (group = 0; group < ai->nr_groups; group++) {
2472 struct pcpu_group_info *gi = &ai->groups[group];
2473 void *ptr = areas[group];
2474
2475 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2476 if (gi->cpu_map[i] == NR_CPUS) {
2477 /* unused unit, free whole */
2478 free_fn(ptr, ai->unit_size);
2479 continue;
2480 }
2481 /* copy and return the unused part */
2482 memcpy(ptr, __per_cpu_load, ai->static_size);
2483 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2484 }
2485 }
2486
2487 /* base address is now known, determine group base offsets */
2488 for (group = 0; group < ai->nr_groups; group++) {
2489 ai->groups[group].base_offset = areas[group] - base;
2490 }
2491
2492 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2493 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2494 ai->dyn_size, ai->unit_size);
2495
2496 rc = pcpu_setup_first_chunk(ai, base);
2497 goto out_free;
2498
2499 out_free_areas:
2500 for (group = 0; group < ai->nr_groups; group++)
2501 if (areas[group])
2502 free_fn(areas[group],
2503 ai->groups[group].nr_units * ai->unit_size);
2504 out_free:
2505 pcpu_free_alloc_info(ai);
2506 if (areas)
2507 memblock_free_early(__pa(areas), areas_size);
2508 return rc;
2509 }
2510 #endif /* BUILD_EMBED_FIRST_CHUNK */
2511
2512 #ifdef BUILD_PAGE_FIRST_CHUNK
2513 /**
2514 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2515 * @reserved_size: the size of reserved percpu area in bytes
2516 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2517 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2518 * @populate_pte_fn: function to populate pte
2519 *
2520 * This is a helper to ease setting up page-remapped first percpu
2521 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2522 *
2523 * This is the basic allocator. Static percpu area is allocated
2524 * page-by-page into vmalloc area.
2525 *
2526 * RETURNS:
2527 * 0 on success, -errno on failure.
2528 */
2529 int __init pcpu_page_first_chunk(size_t reserved_size,
2530 pcpu_fc_alloc_fn_t alloc_fn,
2531 pcpu_fc_free_fn_t free_fn,
2532 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2533 {
2534 static struct vm_struct vm;
2535 struct pcpu_alloc_info *ai;
2536 char psize_str[16];
2537 int unit_pages;
2538 size_t pages_size;
2539 struct page **pages;
2540 int unit, i, j, rc;
2541 int upa;
2542 int nr_g0_units;
2543
2544 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2545
2546 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2547 if (IS_ERR(ai))
2548 return PTR_ERR(ai);
2549 BUG_ON(ai->nr_groups != 1);
2550 upa = ai->alloc_size/ai->unit_size;
2551 nr_g0_units = roundup(num_possible_cpus(), upa);
2552 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2553 pcpu_free_alloc_info(ai);
2554 return -EINVAL;
2555 }
2556
2557 unit_pages = ai->unit_size >> PAGE_SHIFT;
2558
2559 /* unaligned allocations can't be freed, round up to page size */
2560 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2561 sizeof(pages[0]));
2562 pages = memblock_virt_alloc(pages_size, 0);
2563
2564 /* allocate pages */
2565 j = 0;
2566 for (unit = 0; unit < num_possible_cpus(); unit++) {
2567 unsigned int cpu = ai->groups[0].cpu_map[unit];
2568 for (i = 0; i < unit_pages; i++) {
2569 void *ptr;
2570
2571 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2572 if (!ptr) {
2573 pr_warn("failed to allocate %s page for cpu%u\n",
2574 psize_str, cpu);
2575 goto enomem;
2576 }
2577 /* kmemleak tracks the percpu allocations separately */
2578 kmemleak_free(ptr);
2579 pages[j++] = virt_to_page(ptr);
2580 }
2581 }
2582
2583 /* allocate vm area, map the pages and copy static data */
2584 vm.flags = VM_ALLOC;
2585 vm.size = num_possible_cpus() * ai->unit_size;
2586 vm_area_register_early(&vm, PAGE_SIZE);
2587
2588 for (unit = 0; unit < num_possible_cpus(); unit++) {
2589 unsigned long unit_addr =
2590 (unsigned long)vm.addr + unit * ai->unit_size;
2591
2592 for (i = 0; i < unit_pages; i++)
2593 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2594
2595 /* pte already populated, the following shouldn't fail */
2596 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2597 unit_pages);
2598 if (rc < 0)
2599 panic("failed to map percpu area, err=%d\n", rc);
2600
2601 /*
2602 * FIXME: Archs with virtual cache should flush local
2603 * cache for the linear mapping here - something
2604 * equivalent to flush_cache_vmap() on the local cpu.
2605 * flush_cache_vmap() can't be used as most supporting
2606 * data structures are not set up yet.
2607 */
2608
2609 /* copy static data */
2610 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2611 }
2612
2613 /* we're ready, commit */
2614 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2615 unit_pages, psize_str, vm.addr, ai->static_size,
2616 ai->reserved_size, ai->dyn_size);
2617
2618 rc = pcpu_setup_first_chunk(ai, vm.addr);
2619 goto out_free_ar;
2620
2621 enomem:
2622 while (--j >= 0)
2623 free_fn(page_address(pages[j]), PAGE_SIZE);
2624 rc = -ENOMEM;
2625 out_free_ar:
2626 memblock_free_early(__pa(pages), pages_size);
2627 pcpu_free_alloc_info(ai);
2628 return rc;
2629 }
2630 #endif /* BUILD_PAGE_FIRST_CHUNK */
2631
2632 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2633 /*
2634 * Generic SMP percpu area setup.
2635 *
2636 * The embedding helper is used because its behavior closely resembles
2637 * the original non-dynamic generic percpu area setup. This is
2638 * important because many archs have addressing restrictions and might
2639 * fail if the percpu area is located far away from the previous
2640 * location. As an added bonus, in non-NUMA cases, embedding is
2641 * generally a good idea TLB-wise because percpu area can piggy back
2642 * on the physical linear memory mapping which uses large page
2643 * mappings on applicable archs.
2644 */
2645 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2646 EXPORT_SYMBOL(__per_cpu_offset);
2647
2648 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2649 size_t align)
2650 {
2651 return memblock_virt_alloc_from_nopanic(
2652 size, align, __pa(MAX_DMA_ADDRESS));
2653 }
2654
2655 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2656 {
2657 memblock_free_early(__pa(ptr), size);
2658 }
2659
2660 void __init setup_per_cpu_areas(void)
2661 {
2662 unsigned long delta;
2663 unsigned int cpu;
2664 int rc;
2665
2666 /*
2667 * Always reserve area for module percpu variables. That's
2668 * what the legacy allocator did.
2669 */
2670 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2671 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2672 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2673 if (rc < 0)
2674 panic("Failed to initialize percpu areas.");
2675
2676 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2677 for_each_possible_cpu(cpu)
2678 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2679 }
2680 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2681
2682 #else /* CONFIG_SMP */
2683
2684 /*
2685 * UP percpu area setup.
2686 *
2687 * UP always uses km-based percpu allocator with identity mapping.
2688 * Static percpu variables are indistinguishable from the usual static
2689 * variables and don't require any special preparation.
2690 */
2691 void __init setup_per_cpu_areas(void)
2692 {
2693 const size_t unit_size =
2694 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2695 PERCPU_DYNAMIC_RESERVE));
2696 struct pcpu_alloc_info *ai;
2697 void *fc;
2698
2699 ai = pcpu_alloc_alloc_info(1, 1);
2700 fc = memblock_virt_alloc_from_nopanic(unit_size,
2701 PAGE_SIZE,
2702 __pa(MAX_DMA_ADDRESS));
2703 if (!ai || !fc)
2704 panic("Failed to allocate memory for percpu areas.");
2705 /* kmemleak tracks the percpu allocations separately */
2706 kmemleak_free(fc);
2707
2708 ai->dyn_size = unit_size;
2709 ai->unit_size = unit_size;
2710 ai->atom_size = unit_size;
2711 ai->alloc_size = unit_size;
2712 ai->groups[0].nr_units = 1;
2713 ai->groups[0].cpu_map[0] = 0;
2714
2715 if (pcpu_setup_first_chunk(ai, fc) < 0)
2716 panic("Failed to initialize percpu areas.");
2717 }
2718
2719 #endif /* CONFIG_SMP */
2720
2721 /*
2722 * Percpu allocator is initialized early during boot when neither slab or
2723 * workqueue is available. Plug async management until everything is up
2724 * and running.
2725 */
2726 static int __init percpu_enable_async(void)
2727 {
2728 pcpu_async_enabled = true;
2729 return 0;
2730 }
2731 subsys_initcall(percpu_enable_async);