]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/rmap.c
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * page->flags PG_locked (lock_page)
54 */
55
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84
85 #include "internal.h"
86
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108 }
109
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153 {
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159
160 /**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 *
186 * This must be called with the mmap_lock held for reading.
187 */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 struct mm_struct *mm = vma->vm_mm;
191 struct anon_vma *anon_vma, *allocated;
192 struct anon_vma_chain *avc;
193
194 might_sleep();
195
196 avc = anon_vma_chain_alloc(GFP_KERNEL);
197 if (!avc)
198 goto out_enomem;
199
200 anon_vma = find_mergeable_anon_vma(vma);
201 allocated = NULL;
202 if (!anon_vma) {
203 anon_vma = anon_vma_alloc();
204 if (unlikely(!anon_vma))
205 goto out_enomem_free_avc;
206 anon_vma->num_children++; /* self-parent link for new root */
207 allocated = anon_vma;
208 }
209
210 anon_vma_lock_write(anon_vma);
211 /* page_table_lock to protect against threads */
212 spin_lock(&mm->page_table_lock);
213 if (likely(!vma->anon_vma)) {
214 vma->anon_vma = anon_vma;
215 anon_vma_chain_link(vma, avc, anon_vma);
216 anon_vma->num_active_vmas++;
217 allocated = NULL;
218 avc = NULL;
219 }
220 spin_unlock(&mm->page_table_lock);
221 anon_vma_unlock_write(anon_vma);
222
223 if (unlikely(allocated))
224 put_anon_vma(allocated);
225 if (unlikely(avc))
226 anon_vma_chain_free(avc);
227
228 return 0;
229
230 out_enomem_free_avc:
231 anon_vma_chain_free(avc);
232 out_enomem:
233 return -ENOMEM;
234 }
235
236 /*
237 * This is a useful helper function for locking the anon_vma root as
238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239 * have the same vma.
240 *
241 * Such anon_vma's should have the same root, so you'd expect to see
242 * just a single mutex_lock for the whole traversal.
243 */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 struct anon_vma *new_root = anon_vma->root;
247 if (new_root != root) {
248 if (WARN_ON_ONCE(root))
249 up_write(&root->rwsem);
250 root = new_root;
251 down_write(&root->rwsem);
252 }
253 return root;
254 }
255
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 if (root)
259 up_write(&root->rwsem);
260 }
261
262 /*
263 * Attach the anon_vmas from src to dst.
264 * Returns 0 on success, -ENOMEM on failure.
265 *
266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270 * call, we can identify this case by checking (!dst->anon_vma &&
271 * src->anon_vma).
272 *
273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275 * This prevents degradation of anon_vma hierarchy to endless linear chain in
276 * case of constantly forking task. On the other hand, an anon_vma with more
277 * than one child isn't reused even if there was no alive vma, thus rmap
278 * walker has a good chance of avoiding scanning the whole hierarchy when it
279 * searches where page is mapped.
280 */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 struct anon_vma_chain *avc, *pavc;
284 struct anon_vma *root = NULL;
285
286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 struct anon_vma *anon_vma;
288
289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 if (unlikely(!avc)) {
291 unlock_anon_vma_root(root);
292 root = NULL;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto enomem_failure;
296 }
297 anon_vma = pavc->anon_vma;
298 root = lock_anon_vma_root(root, anon_vma);
299 anon_vma_chain_link(dst, avc, anon_vma);
300
301 /*
302 * Reuse existing anon_vma if it has no vma and only one
303 * anon_vma child.
304 *
305 * Root anon_vma is never reused:
306 * it has self-parent reference and at least one child.
307 */
308 if (!dst->anon_vma && src->anon_vma &&
309 anon_vma->num_children < 2 &&
310 anon_vma->num_active_vmas == 0)
311 dst->anon_vma = anon_vma;
312 }
313 if (dst->anon_vma)
314 dst->anon_vma->num_active_vmas++;
315 unlock_anon_vma_root(root);
316 return 0;
317
318 enomem_failure:
319 /*
320 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 * be incorrectly decremented in unlink_anon_vmas().
322 * We can safely do this because callers of anon_vma_clone() don't care
323 * about dst->anon_vma if anon_vma_clone() failed.
324 */
325 dst->anon_vma = NULL;
326 unlink_anon_vmas(dst);
327 return -ENOMEM;
328 }
329
330 /*
331 * Attach vma to its own anon_vma, as well as to the anon_vmas that
332 * the corresponding VMA in the parent process is attached to.
333 * Returns 0 on success, non-zero on failure.
334 */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 struct anon_vma_chain *avc;
338 struct anon_vma *anon_vma;
339 int error;
340
341 /* Don't bother if the parent process has no anon_vma here. */
342 if (!pvma->anon_vma)
343 return 0;
344
345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 vma->anon_vma = NULL;
347
348 /*
349 * First, attach the new VMA to the parent VMA's anon_vmas,
350 * so rmap can find non-COWed pages in child processes.
351 */
352 error = anon_vma_clone(vma, pvma);
353 if (error)
354 return error;
355
356 /* An existing anon_vma has been reused, all done then. */
357 if (vma->anon_vma)
358 return 0;
359
360 /* Then add our own anon_vma. */
361 anon_vma = anon_vma_alloc();
362 if (!anon_vma)
363 goto out_error;
364 anon_vma->num_active_vmas++;
365 avc = anon_vma_chain_alloc(GFP_KERNEL);
366 if (!avc)
367 goto out_error_free_anon_vma;
368
369 /*
370 * The root anon_vma's rwsem is the lock actually used when we
371 * lock any of the anon_vmas in this anon_vma tree.
372 */
373 anon_vma->root = pvma->anon_vma->root;
374 anon_vma->parent = pvma->anon_vma;
375 /*
376 * With refcounts, an anon_vma can stay around longer than the
377 * process it belongs to. The root anon_vma needs to be pinned until
378 * this anon_vma is freed, because the lock lives in the root.
379 */
380 get_anon_vma(anon_vma->root);
381 /* Mark this anon_vma as the one where our new (COWed) pages go. */
382 vma->anon_vma = anon_vma;
383 anon_vma_lock_write(anon_vma);
384 anon_vma_chain_link(vma, avc, anon_vma);
385 anon_vma->parent->num_children++;
386 anon_vma_unlock_write(anon_vma);
387
388 return 0;
389
390 out_error_free_anon_vma:
391 put_anon_vma(anon_vma);
392 out_error:
393 unlink_anon_vmas(vma);
394 return -ENOMEM;
395 }
396
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 struct anon_vma_chain *avc, *next;
400 struct anon_vma *root = NULL;
401
402 /*
403 * Unlink each anon_vma chained to the VMA. This list is ordered
404 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 */
406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 struct anon_vma *anon_vma = avc->anon_vma;
408
409 root = lock_anon_vma_root(root, anon_vma);
410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411
412 /*
413 * Leave empty anon_vmas on the list - we'll need
414 * to free them outside the lock.
415 */
416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 anon_vma->parent->num_children--;
418 continue;
419 }
420
421 list_del(&avc->same_vma);
422 anon_vma_chain_free(avc);
423 }
424 if (vma->anon_vma) {
425 vma->anon_vma->num_active_vmas--;
426
427 /*
428 * vma would still be needed after unlink, and anon_vma will be prepared
429 * when handle fault.
430 */
431 vma->anon_vma = NULL;
432 }
433 unlock_anon_vma_root(root);
434
435 /*
436 * Iterate the list once more, it now only contains empty and unlinked
437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 * needing to write-acquire the anon_vma->root->rwsem.
439 */
440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 struct anon_vma *anon_vma = avc->anon_vma;
442
443 VM_WARN_ON(anon_vma->num_children);
444 VM_WARN_ON(anon_vma->num_active_vmas);
445 put_anon_vma(anon_vma);
446
447 list_del(&avc->same_vma);
448 anon_vma_chain_free(avc);
449 }
450 }
451
452 static void anon_vma_ctor(void *data)
453 {
454 struct anon_vma *anon_vma = data;
455
456 init_rwsem(&anon_vma->rwsem);
457 atomic_set(&anon_vma->refcount, 0);
458 anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460
461 void __init anon_vma_init(void)
462 {
463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 anon_vma_ctor);
466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 SLAB_PANIC|SLAB_ACCOUNT);
468 }
469
470 /*
471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 *
473 * Since there is no serialization what so ever against page_remove_rmap()
474 * the best this function can do is return a refcount increased anon_vma
475 * that might have been relevant to this page.
476 *
477 * The page might have been remapped to a different anon_vma or the anon_vma
478 * returned may already be freed (and even reused).
479 *
480 * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 * ensure that any anon_vma obtained from the page will still be valid for as
483 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 *
485 * All users of this function must be very careful when walking the anon_vma
486 * chain and verify that the page in question is indeed mapped in it
487 * [ something equivalent to page_mapped_in_vma() ].
488 *
489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491 * if there is a mapcount, we can dereference the anon_vma after observing
492 * those.
493 */
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 {
496 struct anon_vma *anon_vma = NULL;
497 unsigned long anon_mapping;
498
499 rcu_read_lock();
500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 goto out;
503 if (!folio_mapped(folio))
504 goto out;
505
506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 anon_vma = NULL;
509 goto out;
510 }
511
512 /*
513 * If this folio is still mapped, then its anon_vma cannot have been
514 * freed. But if it has been unmapped, we have no security against the
515 * anon_vma structure being freed and reused (for another anon_vma:
516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 * above cannot corrupt).
518 */
519 if (!folio_mapped(folio)) {
520 rcu_read_unlock();
521 put_anon_vma(anon_vma);
522 return NULL;
523 }
524 out:
525 rcu_read_unlock();
526
527 return anon_vma;
528 }
529
530 /*
531 * Similar to folio_get_anon_vma() except it locks the anon_vma.
532 *
533 * Its a little more complex as it tries to keep the fast path to a single
534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535 * reference like with folio_get_anon_vma() and then block on the mutex
536 * on !rwc->try_lock case.
537 */
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 struct rmap_walk_control *rwc)
540 {
541 struct anon_vma *anon_vma = NULL;
542 struct anon_vma *root_anon_vma;
543 unsigned long anon_mapping;
544
545 rcu_read_lock();
546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 goto out;
549 if (!folio_mapped(folio))
550 goto out;
551
552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 root_anon_vma = READ_ONCE(anon_vma->root);
554 if (down_read_trylock(&root_anon_vma->rwsem)) {
555 /*
556 * If the folio is still mapped, then this anon_vma is still
557 * its anon_vma, and holding the mutex ensures that it will
558 * not go away, see anon_vma_free().
559 */
560 if (!folio_mapped(folio)) {
561 up_read(&root_anon_vma->rwsem);
562 anon_vma = NULL;
563 }
564 goto out;
565 }
566
567 if (rwc && rwc->try_lock) {
568 anon_vma = NULL;
569 rwc->contended = true;
570 goto out;
571 }
572
573 /* trylock failed, we got to sleep */
574 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 anon_vma = NULL;
576 goto out;
577 }
578
579 if (!folio_mapped(folio)) {
580 rcu_read_unlock();
581 put_anon_vma(anon_vma);
582 return NULL;
583 }
584
585 /* we pinned the anon_vma, its safe to sleep */
586 rcu_read_unlock();
587 anon_vma_lock_read(anon_vma);
588
589 if (atomic_dec_and_test(&anon_vma->refcount)) {
590 /*
591 * Oops, we held the last refcount, release the lock
592 * and bail -- can't simply use put_anon_vma() because
593 * we'll deadlock on the anon_vma_lock_write() recursion.
594 */
595 anon_vma_unlock_read(anon_vma);
596 __put_anon_vma(anon_vma);
597 anon_vma = NULL;
598 }
599
600 return anon_vma;
601
602 out:
603 rcu_read_unlock();
604 return anon_vma;
605 }
606
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610 * important if a PTE was dirty when it was unmapped that it's flushed
611 * before any IO is initiated on the page to prevent lost writes. Similarly,
612 * it must be flushed before freeing to prevent data leakage.
613 */
614 void try_to_unmap_flush(void)
615 {
616 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617
618 if (!tlb_ubc->flush_required)
619 return;
620
621 arch_tlbbatch_flush(&tlb_ubc->arch);
622 tlb_ubc->flush_required = false;
623 tlb_ubc->writable = false;
624 }
625
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 if (tlb_ubc->writable)
632 try_to_unmap_flush();
633 }
634
635 /*
636 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638 */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
640 #define TLB_FLUSH_BATCH_PENDING_MASK \
641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE \
643 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
644
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
646 unsigned long uaddr)
647 {
648 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649 int batch;
650 bool writable = pte_dirty(pteval);
651
652 if (!pte_accessible(mm, pteval))
653 return;
654
655 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
656 tlb_ubc->flush_required = true;
657
658 /*
659 * Ensure compiler does not re-order the setting of tlb_flush_batched
660 * before the PTE is cleared.
661 */
662 barrier();
663 batch = atomic_read(&mm->tlb_flush_batched);
664 retry:
665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
666 /*
667 * Prevent `pending' from catching up with `flushed' because of
668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
669 * `pending' becomes large.
670 */
671 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
672 goto retry;
673 } else {
674 atomic_inc(&mm->tlb_flush_batched);
675 }
676
677 /*
678 * If the PTE was dirty then it's best to assume it's writable. The
679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
680 * before the page is queued for IO.
681 */
682 if (writable)
683 tlb_ubc->writable = true;
684 }
685
686 /*
687 * Returns true if the TLB flush should be deferred to the end of a batch of
688 * unmap operations to reduce IPIs.
689 */
690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691 {
692 if (!(flags & TTU_BATCH_FLUSH))
693 return false;
694
695 return arch_tlbbatch_should_defer(mm);
696 }
697
698 /*
699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
701 * operation such as mprotect or munmap to race between reclaim unmapping
702 * the page and flushing the page. If this race occurs, it potentially allows
703 * access to data via a stale TLB entry. Tracking all mm's that have TLB
704 * batching in flight would be expensive during reclaim so instead track
705 * whether TLB batching occurred in the past and if so then do a flush here
706 * if required. This will cost one additional flush per reclaim cycle paid
707 * by the first operation at risk such as mprotect and mumap.
708 *
709 * This must be called under the PTL so that an access to tlb_flush_batched
710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
711 * via the PTL.
712 */
713 void flush_tlb_batched_pending(struct mm_struct *mm)
714 {
715 int batch = atomic_read(&mm->tlb_flush_batched);
716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
718
719 if (pending != flushed) {
720 arch_flush_tlb_batched_pending(mm);
721 /*
722 * If the new TLB flushing is pending during flushing, leave
723 * mm->tlb_flush_batched as is, to avoid losing flushing.
724 */
725 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
726 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
727 }
728 }
729 #else
730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
731 unsigned long uaddr)
732 {
733 }
734
735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
736 {
737 return false;
738 }
739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
740
741 /*
742 * At what user virtual address is page expected in vma?
743 * Caller should check the page is actually part of the vma.
744 */
745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
746 {
747 struct folio *folio = page_folio(page);
748 if (folio_test_anon(folio)) {
749 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
750 /*
751 * Note: swapoff's unuse_vma() is more efficient with this
752 * check, and needs it to match anon_vma when KSM is active.
753 */
754 if (!vma->anon_vma || !page__anon_vma ||
755 vma->anon_vma->root != page__anon_vma->root)
756 return -EFAULT;
757 } else if (!vma->vm_file) {
758 return -EFAULT;
759 } else if (vma->vm_file->f_mapping != folio->mapping) {
760 return -EFAULT;
761 }
762
763 return vma_address(page, vma);
764 }
765
766 /*
767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
769 * represents.
770 */
771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
772 {
773 pgd_t *pgd;
774 p4d_t *p4d;
775 pud_t *pud;
776 pmd_t *pmd = NULL;
777
778 pgd = pgd_offset(mm, address);
779 if (!pgd_present(*pgd))
780 goto out;
781
782 p4d = p4d_offset(pgd, address);
783 if (!p4d_present(*p4d))
784 goto out;
785
786 pud = pud_offset(p4d, address);
787 if (!pud_present(*pud))
788 goto out;
789
790 pmd = pmd_offset(pud, address);
791 out:
792 return pmd;
793 }
794
795 struct folio_referenced_arg {
796 int mapcount;
797 int referenced;
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
800 };
801 /*
802 * arg: folio_referenced_arg will be passed
803 */
804 static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
806 {
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 int referenced = 0;
810
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
813
814 if ((vma->vm_flags & VM_LOCKED) &&
815 (!folio_test_large(folio) || !pvmw.pte)) {
816 /* Restore the mlock which got missed */
817 mlock_vma_folio(folio, vma, !pvmw.pte);
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
820 return false; /* To break the loop */
821 }
822
823 if (pvmw.pte) {
824 if (lru_gen_enabled() &&
825 pte_young(ptep_get(pvmw.pte))) {
826 lru_gen_look_around(&pvmw);
827 referenced++;
828 }
829
830 if (ptep_clear_flush_young_notify(vma, address,
831 pvmw.pte))
832 referenced++;
833 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
834 if (pmdp_clear_flush_young_notify(vma, address,
835 pvmw.pmd))
836 referenced++;
837 } else {
838 /* unexpected pmd-mapped folio? */
839 WARN_ON_ONCE(1);
840 }
841
842 pra->mapcount--;
843 }
844
845 if (referenced)
846 folio_clear_idle(folio);
847 if (folio_test_clear_young(folio))
848 referenced++;
849
850 if (referenced) {
851 pra->referenced++;
852 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
853 }
854
855 if (!pra->mapcount)
856 return false; /* To break the loop */
857
858 return true;
859 }
860
861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
862 {
863 struct folio_referenced_arg *pra = arg;
864 struct mem_cgroup *memcg = pra->memcg;
865
866 /*
867 * Ignore references from this mapping if it has no recency. If the
868 * folio has been used in another mapping, we will catch it; if this
869 * other mapping is already gone, the unmap path will have set the
870 * referenced flag or activated the folio in zap_pte_range().
871 */
872 if (!vma_has_recency(vma))
873 return true;
874
875 /*
876 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
877 * of references from different cgroups.
878 */
879 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
880 return true;
881
882 return false;
883 }
884
885 /**
886 * folio_referenced() - Test if the folio was referenced.
887 * @folio: The folio to test.
888 * @is_locked: Caller holds lock on the folio.
889 * @memcg: target memory cgroup
890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
891 *
892 * Quick test_and_clear_referenced for all mappings of a folio,
893 *
894 * Return: The number of mappings which referenced the folio. Return -1 if
895 * the function bailed out due to rmap lock contention.
896 */
897 int folio_referenced(struct folio *folio, int is_locked,
898 struct mem_cgroup *memcg, unsigned long *vm_flags)
899 {
900 int we_locked = 0;
901 struct folio_referenced_arg pra = {
902 .mapcount = folio_mapcount(folio),
903 .memcg = memcg,
904 };
905 struct rmap_walk_control rwc = {
906 .rmap_one = folio_referenced_one,
907 .arg = (void *)&pra,
908 .anon_lock = folio_lock_anon_vma_read,
909 .try_lock = true,
910 .invalid_vma = invalid_folio_referenced_vma,
911 };
912
913 *vm_flags = 0;
914 if (!pra.mapcount)
915 return 0;
916
917 if (!folio_raw_mapping(folio))
918 return 0;
919
920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
921 we_locked = folio_trylock(folio);
922 if (!we_locked)
923 return 1;
924 }
925
926 rmap_walk(folio, &rwc);
927 *vm_flags = pra.vm_flags;
928
929 if (we_locked)
930 folio_unlock(folio);
931
932 return rwc.contended ? -1 : pra.referenced;
933 }
934
935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
936 {
937 int cleaned = 0;
938 struct vm_area_struct *vma = pvmw->vma;
939 struct mmu_notifier_range range;
940 unsigned long address = pvmw->address;
941
942 /*
943 * We have to assume the worse case ie pmd for invalidation. Note that
944 * the folio can not be freed from this function.
945 */
946 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
947 vma->vm_mm, address, vma_address_end(pvmw));
948 mmu_notifier_invalidate_range_start(&range);
949
950 while (page_vma_mapped_walk(pvmw)) {
951 int ret = 0;
952
953 address = pvmw->address;
954 if (pvmw->pte) {
955 pte_t *pte = pvmw->pte;
956 pte_t entry = ptep_get(pte);
957
958 if (!pte_dirty(entry) && !pte_write(entry))
959 continue;
960
961 flush_cache_page(vma, address, pte_pfn(entry));
962 entry = ptep_clear_flush(vma, address, pte);
963 entry = pte_wrprotect(entry);
964 entry = pte_mkclean(entry);
965 set_pte_at(vma->vm_mm, address, pte, entry);
966 ret = 1;
967 } else {
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 pmd_t *pmd = pvmw->pmd;
970 pmd_t entry;
971
972 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
973 continue;
974
975 flush_cache_range(vma, address,
976 address + HPAGE_PMD_SIZE);
977 entry = pmdp_invalidate(vma, address, pmd);
978 entry = pmd_wrprotect(entry);
979 entry = pmd_mkclean(entry);
980 set_pmd_at(vma->vm_mm, address, pmd, entry);
981 ret = 1;
982 #else
983 /* unexpected pmd-mapped folio? */
984 WARN_ON_ONCE(1);
985 #endif
986 }
987
988 if (ret)
989 cleaned++;
990 }
991
992 mmu_notifier_invalidate_range_end(&range);
993
994 return cleaned;
995 }
996
997 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
998 unsigned long address, void *arg)
999 {
1000 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1001 int *cleaned = arg;
1002
1003 *cleaned += page_vma_mkclean_one(&pvmw);
1004
1005 return true;
1006 }
1007
1008 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1009 {
1010 if (vma->vm_flags & VM_SHARED)
1011 return false;
1012
1013 return true;
1014 }
1015
1016 int folio_mkclean(struct folio *folio)
1017 {
1018 int cleaned = 0;
1019 struct address_space *mapping;
1020 struct rmap_walk_control rwc = {
1021 .arg = (void *)&cleaned,
1022 .rmap_one = page_mkclean_one,
1023 .invalid_vma = invalid_mkclean_vma,
1024 };
1025
1026 BUG_ON(!folio_test_locked(folio));
1027
1028 if (!folio_mapped(folio))
1029 return 0;
1030
1031 mapping = folio_mapping(folio);
1032 if (!mapping)
1033 return 0;
1034
1035 rmap_walk(folio, &rwc);
1036
1037 return cleaned;
1038 }
1039 EXPORT_SYMBOL_GPL(folio_mkclean);
1040
1041 /**
1042 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1043 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1044 * within the @vma of shared mappings. And since clean PTEs
1045 * should also be readonly, write protects them too.
1046 * @pfn: start pfn.
1047 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1048 * @pgoff: page offset that the @pfn mapped with.
1049 * @vma: vma that @pfn mapped within.
1050 *
1051 * Returns the number of cleaned PTEs (including PMDs).
1052 */
1053 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1054 struct vm_area_struct *vma)
1055 {
1056 struct page_vma_mapped_walk pvmw = {
1057 .pfn = pfn,
1058 .nr_pages = nr_pages,
1059 .pgoff = pgoff,
1060 .vma = vma,
1061 .flags = PVMW_SYNC,
1062 };
1063
1064 if (invalid_mkclean_vma(vma, NULL))
1065 return 0;
1066
1067 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1068 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1069
1070 return page_vma_mkclean_one(&pvmw);
1071 }
1072
1073 int folio_total_mapcount(struct folio *folio)
1074 {
1075 int mapcount = folio_entire_mapcount(folio);
1076 int nr_pages;
1077 int i;
1078
1079 /* In the common case, avoid the loop when no pages mapped by PTE */
1080 if (folio_nr_pages_mapped(folio) == 0)
1081 return mapcount;
1082 /*
1083 * Add all the PTE mappings of those pages mapped by PTE.
1084 * Limit the loop to folio_nr_pages_mapped()?
1085 * Perhaps: given all the raciness, that may be a good or a bad idea.
1086 */
1087 nr_pages = folio_nr_pages(folio);
1088 for (i = 0; i < nr_pages; i++)
1089 mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1090
1091 /* But each of those _mapcounts was based on -1 */
1092 mapcount += nr_pages;
1093 return mapcount;
1094 }
1095
1096 /**
1097 * page_move_anon_rmap - move a page to our anon_vma
1098 * @page: the page to move to our anon_vma
1099 * @vma: the vma the page belongs to
1100 *
1101 * When a page belongs exclusively to one process after a COW event,
1102 * that page can be moved into the anon_vma that belongs to just that
1103 * process, so the rmap code will not search the parent or sibling
1104 * processes.
1105 */
1106 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1107 {
1108 void *anon_vma = vma->anon_vma;
1109 struct folio *folio = page_folio(page);
1110
1111 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1112 VM_BUG_ON_VMA(!anon_vma, vma);
1113
1114 anon_vma += PAGE_MAPPING_ANON;
1115 /*
1116 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1117 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1118 * folio_test_anon()) will not see one without the other.
1119 */
1120 WRITE_ONCE(folio->mapping, anon_vma);
1121 SetPageAnonExclusive(page);
1122 }
1123
1124 /**
1125 * __page_set_anon_rmap - set up new anonymous rmap
1126 * @folio: Folio which contains page.
1127 * @page: Page to add to rmap.
1128 * @vma: VM area to add page to.
1129 * @address: User virtual address of the mapping
1130 * @exclusive: the page is exclusively owned by the current process
1131 */
1132 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1133 struct vm_area_struct *vma, unsigned long address, int exclusive)
1134 {
1135 struct anon_vma *anon_vma = vma->anon_vma;
1136
1137 BUG_ON(!anon_vma);
1138
1139 if (folio_test_anon(folio))
1140 goto out;
1141
1142 /*
1143 * If the page isn't exclusively mapped into this vma,
1144 * we must use the _oldest_ possible anon_vma for the
1145 * page mapping!
1146 */
1147 if (!exclusive)
1148 anon_vma = anon_vma->root;
1149
1150 /*
1151 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1152 * Make sure the compiler doesn't split the stores of anon_vma and
1153 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1154 * could mistake the mapping for a struct address_space and crash.
1155 */
1156 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1157 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1158 folio->index = linear_page_index(vma, address);
1159 out:
1160 if (exclusive)
1161 SetPageAnonExclusive(page);
1162 }
1163
1164 /**
1165 * __page_check_anon_rmap - sanity check anonymous rmap addition
1166 * @folio: The folio containing @page.
1167 * @page: the page to check the mapping of
1168 * @vma: the vm area in which the mapping is added
1169 * @address: the user virtual address mapped
1170 */
1171 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1172 struct vm_area_struct *vma, unsigned long address)
1173 {
1174 /*
1175 * The page's anon-rmap details (mapping and index) are guaranteed to
1176 * be set up correctly at this point.
1177 *
1178 * We have exclusion against page_add_anon_rmap because the caller
1179 * always holds the page locked.
1180 *
1181 * We have exclusion against page_add_new_anon_rmap because those pages
1182 * are initially only visible via the pagetables, and the pte is locked
1183 * over the call to page_add_new_anon_rmap.
1184 */
1185 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1186 folio);
1187 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1188 page);
1189 }
1190
1191 /**
1192 * page_add_anon_rmap - add pte mapping to an anonymous page
1193 * @page: the page to add the mapping to
1194 * @vma: the vm area in which the mapping is added
1195 * @address: the user virtual address mapped
1196 * @flags: the rmap flags
1197 *
1198 * The caller needs to hold the pte lock, and the page must be locked in
1199 * the anon_vma case: to serialize mapping,index checking after setting,
1200 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1201 * (but PageKsm is never downgraded to PageAnon).
1202 */
1203 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1204 unsigned long address, rmap_t flags)
1205 {
1206 struct folio *folio = page_folio(page);
1207 atomic_t *mapped = &folio->_nr_pages_mapped;
1208 int nr = 0, nr_pmdmapped = 0;
1209 bool compound = flags & RMAP_COMPOUND;
1210 bool first = true;
1211
1212 /* Is page being mapped by PTE? Is this its first map to be added? */
1213 if (likely(!compound)) {
1214 first = atomic_inc_and_test(&page->_mapcount);
1215 nr = first;
1216 if (first && folio_test_large(folio)) {
1217 nr = atomic_inc_return_relaxed(mapped);
1218 nr = (nr < COMPOUND_MAPPED);
1219 }
1220 } else if (folio_test_pmd_mappable(folio)) {
1221 /* That test is redundant: it's for safety or to optimize out */
1222
1223 first = atomic_inc_and_test(&folio->_entire_mapcount);
1224 if (first) {
1225 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1226 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1227 nr_pmdmapped = folio_nr_pages(folio);
1228 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1229 /* Raced ahead of a remove and another add? */
1230 if (unlikely(nr < 0))
1231 nr = 0;
1232 } else {
1233 /* Raced ahead of a remove of COMPOUND_MAPPED */
1234 nr = 0;
1235 }
1236 }
1237 }
1238
1239 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1240 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1241
1242 if (nr_pmdmapped)
1243 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1244 if (nr)
1245 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1246
1247 if (likely(!folio_test_ksm(folio))) {
1248 /* address might be in next vma when migration races vma_merge */
1249 if (first)
1250 __page_set_anon_rmap(folio, page, vma, address,
1251 !!(flags & RMAP_EXCLUSIVE));
1252 else
1253 __page_check_anon_rmap(folio, page, vma, address);
1254 }
1255
1256 mlock_vma_folio(folio, vma, compound);
1257 }
1258
1259 /**
1260 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1261 * @folio: The folio to add the mapping to.
1262 * @vma: the vm area in which the mapping is added
1263 * @address: the user virtual address mapped
1264 *
1265 * Like page_add_anon_rmap() but must only be called on *new* folios.
1266 * This means the inc-and-test can be bypassed.
1267 * The folio does not have to be locked.
1268 *
1269 * If the folio is large, it is accounted as a THP. As the folio
1270 * is new, it's assumed to be mapped exclusively by a single process.
1271 */
1272 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1273 unsigned long address)
1274 {
1275 int nr;
1276
1277 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1278 __folio_set_swapbacked(folio);
1279
1280 if (likely(!folio_test_pmd_mappable(folio))) {
1281 /* increment count (starts at -1) */
1282 atomic_set(&folio->_mapcount, 0);
1283 nr = 1;
1284 } else {
1285 /* increment count (starts at -1) */
1286 atomic_set(&folio->_entire_mapcount, 0);
1287 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1288 nr = folio_nr_pages(folio);
1289 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1290 }
1291
1292 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1293 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1294 }
1295
1296 /**
1297 * folio_add_file_rmap_range - add pte mapping to page range of a folio
1298 * @folio: The folio to add the mapping to
1299 * @page: The first page to add
1300 * @nr_pages: The number of pages which will be mapped
1301 * @vma: the vm area in which the mapping is added
1302 * @compound: charge the page as compound or small page
1303 *
1304 * The page range of folio is defined by [first_page, first_page + nr_pages)
1305 *
1306 * The caller needs to hold the pte lock.
1307 */
1308 void folio_add_file_rmap_range(struct folio *folio, struct page *page,
1309 unsigned int nr_pages, struct vm_area_struct *vma,
1310 bool compound)
1311 {
1312 atomic_t *mapped = &folio->_nr_pages_mapped;
1313 unsigned int nr_pmdmapped = 0, first;
1314 int nr = 0;
1315
1316 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio);
1317
1318 /* Is page being mapped by PTE? Is this its first map to be added? */
1319 if (likely(!compound)) {
1320 do {
1321 first = atomic_inc_and_test(&page->_mapcount);
1322 if (first && folio_test_large(folio)) {
1323 first = atomic_inc_return_relaxed(mapped);
1324 first = (first < COMPOUND_MAPPED);
1325 }
1326
1327 if (first)
1328 nr++;
1329 } while (page++, --nr_pages > 0);
1330 } else if (folio_test_pmd_mappable(folio)) {
1331 /* That test is redundant: it's for safety or to optimize out */
1332
1333 first = atomic_inc_and_test(&folio->_entire_mapcount);
1334 if (first) {
1335 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1336 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1337 nr_pmdmapped = folio_nr_pages(folio);
1338 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1339 /* Raced ahead of a remove and another add? */
1340 if (unlikely(nr < 0))
1341 nr = 0;
1342 } else {
1343 /* Raced ahead of a remove of COMPOUND_MAPPED */
1344 nr = 0;
1345 }
1346 }
1347 }
1348
1349 if (nr_pmdmapped)
1350 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1351 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1352 if (nr)
1353 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1354
1355 mlock_vma_folio(folio, vma, compound);
1356 }
1357
1358 /**
1359 * page_add_file_rmap - add pte mapping to a file page
1360 * @page: the page to add the mapping to
1361 * @vma: the vm area in which the mapping is added
1362 * @compound: charge the page as compound or small page
1363 *
1364 * The caller needs to hold the pte lock.
1365 */
1366 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1367 bool compound)
1368 {
1369 struct folio *folio = page_folio(page);
1370 unsigned int nr_pages;
1371
1372 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page);
1373
1374 if (likely(!compound))
1375 nr_pages = 1;
1376 else
1377 nr_pages = folio_nr_pages(folio);
1378
1379 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound);
1380 }
1381
1382 /**
1383 * page_remove_rmap - take down pte mapping from a page
1384 * @page: page to remove mapping from
1385 * @vma: the vm area from which the mapping is removed
1386 * @compound: uncharge the page as compound or small page
1387 *
1388 * The caller needs to hold the pte lock.
1389 */
1390 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1391 bool compound)
1392 {
1393 struct folio *folio = page_folio(page);
1394 atomic_t *mapped = &folio->_nr_pages_mapped;
1395 int nr = 0, nr_pmdmapped = 0;
1396 bool last;
1397 enum node_stat_item idx;
1398
1399 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1400
1401 /* Hugetlb pages are not counted in NR_*MAPPED */
1402 if (unlikely(folio_test_hugetlb(folio))) {
1403 /* hugetlb pages are always mapped with pmds */
1404 atomic_dec(&folio->_entire_mapcount);
1405 return;
1406 }
1407
1408 /* Is page being unmapped by PTE? Is this its last map to be removed? */
1409 if (likely(!compound)) {
1410 last = atomic_add_negative(-1, &page->_mapcount);
1411 nr = last;
1412 if (last && folio_test_large(folio)) {
1413 nr = atomic_dec_return_relaxed(mapped);
1414 nr = (nr < COMPOUND_MAPPED);
1415 }
1416 } else if (folio_test_pmd_mappable(folio)) {
1417 /* That test is redundant: it's for safety or to optimize out */
1418
1419 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1420 if (last) {
1421 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1422 if (likely(nr < COMPOUND_MAPPED)) {
1423 nr_pmdmapped = folio_nr_pages(folio);
1424 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1425 /* Raced ahead of another remove and an add? */
1426 if (unlikely(nr < 0))
1427 nr = 0;
1428 } else {
1429 /* An add of COMPOUND_MAPPED raced ahead */
1430 nr = 0;
1431 }
1432 }
1433 }
1434
1435 if (nr_pmdmapped) {
1436 if (folio_test_anon(folio))
1437 idx = NR_ANON_THPS;
1438 else if (folio_test_swapbacked(folio))
1439 idx = NR_SHMEM_PMDMAPPED;
1440 else
1441 idx = NR_FILE_PMDMAPPED;
1442 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1443 }
1444 if (nr) {
1445 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1446 __lruvec_stat_mod_folio(folio, idx, -nr);
1447
1448 /*
1449 * Queue anon THP for deferred split if at least one
1450 * page of the folio is unmapped and at least one page
1451 * is still mapped.
1452 */
1453 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1454 if (!compound || nr < nr_pmdmapped)
1455 deferred_split_folio(folio);
1456 }
1457
1458 /*
1459 * It would be tidy to reset folio_test_anon mapping when fully
1460 * unmapped, but that might overwrite a racing page_add_anon_rmap
1461 * which increments mapcount after us but sets mapping before us:
1462 * so leave the reset to free_pages_prepare, and remember that
1463 * it's only reliable while mapped.
1464 */
1465
1466 munlock_vma_folio(folio, vma, compound);
1467 }
1468
1469 /*
1470 * @arg: enum ttu_flags will be passed to this argument
1471 */
1472 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1473 unsigned long address, void *arg)
1474 {
1475 struct mm_struct *mm = vma->vm_mm;
1476 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1477 pte_t pteval;
1478 struct page *subpage;
1479 bool anon_exclusive, ret = true;
1480 struct mmu_notifier_range range;
1481 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1482 unsigned long pfn;
1483 unsigned long hsz = 0;
1484
1485 /*
1486 * When racing against e.g. zap_pte_range() on another cpu,
1487 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1488 * try_to_unmap() may return before page_mapped() has become false,
1489 * if page table locking is skipped: use TTU_SYNC to wait for that.
1490 */
1491 if (flags & TTU_SYNC)
1492 pvmw.flags = PVMW_SYNC;
1493
1494 if (flags & TTU_SPLIT_HUGE_PMD)
1495 split_huge_pmd_address(vma, address, false, folio);
1496
1497 /*
1498 * For THP, we have to assume the worse case ie pmd for invalidation.
1499 * For hugetlb, it could be much worse if we need to do pud
1500 * invalidation in the case of pmd sharing.
1501 *
1502 * Note that the folio can not be freed in this function as call of
1503 * try_to_unmap() must hold a reference on the folio.
1504 */
1505 range.end = vma_address_end(&pvmw);
1506 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1507 address, range.end);
1508 if (folio_test_hugetlb(folio)) {
1509 /*
1510 * If sharing is possible, start and end will be adjusted
1511 * accordingly.
1512 */
1513 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1514 &range.end);
1515
1516 /* We need the huge page size for set_huge_pte_at() */
1517 hsz = huge_page_size(hstate_vma(vma));
1518 }
1519 mmu_notifier_invalidate_range_start(&range);
1520
1521 while (page_vma_mapped_walk(&pvmw)) {
1522 /* Unexpected PMD-mapped THP? */
1523 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1524
1525 /*
1526 * If the folio is in an mlock()d vma, we must not swap it out.
1527 */
1528 if (!(flags & TTU_IGNORE_MLOCK) &&
1529 (vma->vm_flags & VM_LOCKED)) {
1530 /* Restore the mlock which got missed */
1531 mlock_vma_folio(folio, vma, false);
1532 page_vma_mapped_walk_done(&pvmw);
1533 ret = false;
1534 break;
1535 }
1536
1537 pfn = pte_pfn(ptep_get(pvmw.pte));
1538 subpage = folio_page(folio, pfn - folio_pfn(folio));
1539 address = pvmw.address;
1540 anon_exclusive = folio_test_anon(folio) &&
1541 PageAnonExclusive(subpage);
1542
1543 if (folio_test_hugetlb(folio)) {
1544 bool anon = folio_test_anon(folio);
1545
1546 /*
1547 * The try_to_unmap() is only passed a hugetlb page
1548 * in the case where the hugetlb page is poisoned.
1549 */
1550 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1551 /*
1552 * huge_pmd_unshare may unmap an entire PMD page.
1553 * There is no way of knowing exactly which PMDs may
1554 * be cached for this mm, so we must flush them all.
1555 * start/end were already adjusted above to cover this
1556 * range.
1557 */
1558 flush_cache_range(vma, range.start, range.end);
1559
1560 /*
1561 * To call huge_pmd_unshare, i_mmap_rwsem must be
1562 * held in write mode. Caller needs to explicitly
1563 * do this outside rmap routines.
1564 *
1565 * We also must hold hugetlb vma_lock in write mode.
1566 * Lock order dictates acquiring vma_lock BEFORE
1567 * i_mmap_rwsem. We can only try lock here and fail
1568 * if unsuccessful.
1569 */
1570 if (!anon) {
1571 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1572 if (!hugetlb_vma_trylock_write(vma)) {
1573 page_vma_mapped_walk_done(&pvmw);
1574 ret = false;
1575 break;
1576 }
1577 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1578 hugetlb_vma_unlock_write(vma);
1579 flush_tlb_range(vma,
1580 range.start, range.end);
1581 /*
1582 * The ref count of the PMD page was
1583 * dropped which is part of the way map
1584 * counting is done for shared PMDs.
1585 * Return 'true' here. When there is
1586 * no other sharing, huge_pmd_unshare
1587 * returns false and we will unmap the
1588 * actual page and drop map count
1589 * to zero.
1590 */
1591 page_vma_mapped_walk_done(&pvmw);
1592 break;
1593 }
1594 hugetlb_vma_unlock_write(vma);
1595 }
1596 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1597 } else {
1598 flush_cache_page(vma, address, pfn);
1599 /* Nuke the page table entry. */
1600 if (should_defer_flush(mm, flags)) {
1601 /*
1602 * We clear the PTE but do not flush so potentially
1603 * a remote CPU could still be writing to the folio.
1604 * If the entry was previously clean then the
1605 * architecture must guarantee that a clear->dirty
1606 * transition on a cached TLB entry is written through
1607 * and traps if the PTE is unmapped.
1608 */
1609 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1610
1611 set_tlb_ubc_flush_pending(mm, pteval, address);
1612 } else {
1613 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1614 }
1615 }
1616
1617 /*
1618 * Now the pte is cleared. If this pte was uffd-wp armed,
1619 * we may want to replace a none pte with a marker pte if
1620 * it's file-backed, so we don't lose the tracking info.
1621 */
1622 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1623
1624 /* Set the dirty flag on the folio now the pte is gone. */
1625 if (pte_dirty(pteval))
1626 folio_mark_dirty(folio);
1627
1628 /* Update high watermark before we lower rss */
1629 update_hiwater_rss(mm);
1630
1631 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1632 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1633 if (folio_test_hugetlb(folio)) {
1634 hugetlb_count_sub(folio_nr_pages(folio), mm);
1635 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1636 hsz);
1637 } else {
1638 dec_mm_counter(mm, mm_counter(&folio->page));
1639 set_pte_at(mm, address, pvmw.pte, pteval);
1640 }
1641
1642 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1643 /*
1644 * The guest indicated that the page content is of no
1645 * interest anymore. Simply discard the pte, vmscan
1646 * will take care of the rest.
1647 * A future reference will then fault in a new zero
1648 * page. When userfaultfd is active, we must not drop
1649 * this page though, as its main user (postcopy
1650 * migration) will not expect userfaults on already
1651 * copied pages.
1652 */
1653 dec_mm_counter(mm, mm_counter(&folio->page));
1654 } else if (folio_test_anon(folio)) {
1655 swp_entry_t entry = page_swap_entry(subpage);
1656 pte_t swp_pte;
1657 /*
1658 * Store the swap location in the pte.
1659 * See handle_pte_fault() ...
1660 */
1661 if (unlikely(folio_test_swapbacked(folio) !=
1662 folio_test_swapcache(folio))) {
1663 WARN_ON_ONCE(1);
1664 ret = false;
1665 page_vma_mapped_walk_done(&pvmw);
1666 break;
1667 }
1668
1669 /* MADV_FREE page check */
1670 if (!folio_test_swapbacked(folio)) {
1671 int ref_count, map_count;
1672
1673 /*
1674 * Synchronize with gup_pte_range():
1675 * - clear PTE; barrier; read refcount
1676 * - inc refcount; barrier; read PTE
1677 */
1678 smp_mb();
1679
1680 ref_count = folio_ref_count(folio);
1681 map_count = folio_mapcount(folio);
1682
1683 /*
1684 * Order reads for page refcount and dirty flag
1685 * (see comments in __remove_mapping()).
1686 */
1687 smp_rmb();
1688
1689 /*
1690 * The only page refs must be one from isolation
1691 * plus the rmap(s) (dropped by discard:).
1692 */
1693 if (ref_count == 1 + map_count &&
1694 !folio_test_dirty(folio)) {
1695 dec_mm_counter(mm, MM_ANONPAGES);
1696 goto discard;
1697 }
1698
1699 /*
1700 * If the folio was redirtied, it cannot be
1701 * discarded. Remap the page to page table.
1702 */
1703 set_pte_at(mm, address, pvmw.pte, pteval);
1704 folio_set_swapbacked(folio);
1705 ret = false;
1706 page_vma_mapped_walk_done(&pvmw);
1707 break;
1708 }
1709
1710 if (swap_duplicate(entry) < 0) {
1711 set_pte_at(mm, address, pvmw.pte, pteval);
1712 ret = false;
1713 page_vma_mapped_walk_done(&pvmw);
1714 break;
1715 }
1716 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1717 swap_free(entry);
1718 set_pte_at(mm, address, pvmw.pte, pteval);
1719 ret = false;
1720 page_vma_mapped_walk_done(&pvmw);
1721 break;
1722 }
1723
1724 /* See page_try_share_anon_rmap(): clear PTE first. */
1725 if (anon_exclusive &&
1726 page_try_share_anon_rmap(subpage)) {
1727 swap_free(entry);
1728 set_pte_at(mm, address, pvmw.pte, pteval);
1729 ret = false;
1730 page_vma_mapped_walk_done(&pvmw);
1731 break;
1732 }
1733 if (list_empty(&mm->mmlist)) {
1734 spin_lock(&mmlist_lock);
1735 if (list_empty(&mm->mmlist))
1736 list_add(&mm->mmlist, &init_mm.mmlist);
1737 spin_unlock(&mmlist_lock);
1738 }
1739 dec_mm_counter(mm, MM_ANONPAGES);
1740 inc_mm_counter(mm, MM_SWAPENTS);
1741 swp_pte = swp_entry_to_pte(entry);
1742 if (anon_exclusive)
1743 swp_pte = pte_swp_mkexclusive(swp_pte);
1744 if (pte_soft_dirty(pteval))
1745 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1746 if (pte_uffd_wp(pteval))
1747 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1748 set_pte_at(mm, address, pvmw.pte, swp_pte);
1749 } else {
1750 /*
1751 * This is a locked file-backed folio,
1752 * so it cannot be removed from the page
1753 * cache and replaced by a new folio before
1754 * mmu_notifier_invalidate_range_end, so no
1755 * concurrent thread might update its page table
1756 * to point at a new folio while a device is
1757 * still using this folio.
1758 *
1759 * See Documentation/mm/mmu_notifier.rst
1760 */
1761 dec_mm_counter(mm, mm_counter_file(&folio->page));
1762 }
1763 discard:
1764 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1765 if (vma->vm_flags & VM_LOCKED)
1766 mlock_drain_local();
1767 folio_put(folio);
1768 }
1769
1770 mmu_notifier_invalidate_range_end(&range);
1771
1772 return ret;
1773 }
1774
1775 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1776 {
1777 return vma_is_temporary_stack(vma);
1778 }
1779
1780 static int folio_not_mapped(struct folio *folio)
1781 {
1782 return !folio_mapped(folio);
1783 }
1784
1785 /**
1786 * try_to_unmap - Try to remove all page table mappings to a folio.
1787 * @folio: The folio to unmap.
1788 * @flags: action and flags
1789 *
1790 * Tries to remove all the page table entries which are mapping this
1791 * folio. It is the caller's responsibility to check if the folio is
1792 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1793 *
1794 * Context: Caller must hold the folio lock.
1795 */
1796 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1797 {
1798 struct rmap_walk_control rwc = {
1799 .rmap_one = try_to_unmap_one,
1800 .arg = (void *)flags,
1801 .done = folio_not_mapped,
1802 .anon_lock = folio_lock_anon_vma_read,
1803 };
1804
1805 if (flags & TTU_RMAP_LOCKED)
1806 rmap_walk_locked(folio, &rwc);
1807 else
1808 rmap_walk(folio, &rwc);
1809 }
1810
1811 /*
1812 * @arg: enum ttu_flags will be passed to this argument.
1813 *
1814 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1815 * containing migration entries.
1816 */
1817 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1818 unsigned long address, void *arg)
1819 {
1820 struct mm_struct *mm = vma->vm_mm;
1821 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1822 pte_t pteval;
1823 struct page *subpage;
1824 bool anon_exclusive, ret = true;
1825 struct mmu_notifier_range range;
1826 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1827 unsigned long pfn;
1828 unsigned long hsz = 0;
1829
1830 /*
1831 * When racing against e.g. zap_pte_range() on another cpu,
1832 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1833 * try_to_migrate() may return before page_mapped() has become false,
1834 * if page table locking is skipped: use TTU_SYNC to wait for that.
1835 */
1836 if (flags & TTU_SYNC)
1837 pvmw.flags = PVMW_SYNC;
1838
1839 /*
1840 * unmap_page() in mm/huge_memory.c is the only user of migration with
1841 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1842 */
1843 if (flags & TTU_SPLIT_HUGE_PMD)
1844 split_huge_pmd_address(vma, address, true, folio);
1845
1846 /*
1847 * For THP, we have to assume the worse case ie pmd for invalidation.
1848 * For hugetlb, it could be much worse if we need to do pud
1849 * invalidation in the case of pmd sharing.
1850 *
1851 * Note that the page can not be free in this function as call of
1852 * try_to_unmap() must hold a reference on the page.
1853 */
1854 range.end = vma_address_end(&pvmw);
1855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1856 address, range.end);
1857 if (folio_test_hugetlb(folio)) {
1858 /*
1859 * If sharing is possible, start and end will be adjusted
1860 * accordingly.
1861 */
1862 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1863 &range.end);
1864
1865 /* We need the huge page size for set_huge_pte_at() */
1866 hsz = huge_page_size(hstate_vma(vma));
1867 }
1868 mmu_notifier_invalidate_range_start(&range);
1869
1870 while (page_vma_mapped_walk(&pvmw)) {
1871 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1872 /* PMD-mapped THP migration entry */
1873 if (!pvmw.pte) {
1874 subpage = folio_page(folio,
1875 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1876 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1877 !folio_test_pmd_mappable(folio), folio);
1878
1879 if (set_pmd_migration_entry(&pvmw, subpage)) {
1880 ret = false;
1881 page_vma_mapped_walk_done(&pvmw);
1882 break;
1883 }
1884 continue;
1885 }
1886 #endif
1887
1888 /* Unexpected PMD-mapped THP? */
1889 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1890
1891 pfn = pte_pfn(ptep_get(pvmw.pte));
1892
1893 if (folio_is_zone_device(folio)) {
1894 /*
1895 * Our PTE is a non-present device exclusive entry and
1896 * calculating the subpage as for the common case would
1897 * result in an invalid pointer.
1898 *
1899 * Since only PAGE_SIZE pages can currently be
1900 * migrated, just set it to page. This will need to be
1901 * changed when hugepage migrations to device private
1902 * memory are supported.
1903 */
1904 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1905 subpage = &folio->page;
1906 } else {
1907 subpage = folio_page(folio, pfn - folio_pfn(folio));
1908 }
1909 address = pvmw.address;
1910 anon_exclusive = folio_test_anon(folio) &&
1911 PageAnonExclusive(subpage);
1912
1913 if (folio_test_hugetlb(folio)) {
1914 bool anon = folio_test_anon(folio);
1915
1916 /*
1917 * huge_pmd_unshare may unmap an entire PMD page.
1918 * There is no way of knowing exactly which PMDs may
1919 * be cached for this mm, so we must flush them all.
1920 * start/end were already adjusted above to cover this
1921 * range.
1922 */
1923 flush_cache_range(vma, range.start, range.end);
1924
1925 /*
1926 * To call huge_pmd_unshare, i_mmap_rwsem must be
1927 * held in write mode. Caller needs to explicitly
1928 * do this outside rmap routines.
1929 *
1930 * We also must hold hugetlb vma_lock in write mode.
1931 * Lock order dictates acquiring vma_lock BEFORE
1932 * i_mmap_rwsem. We can only try lock here and
1933 * fail if unsuccessful.
1934 */
1935 if (!anon) {
1936 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1937 if (!hugetlb_vma_trylock_write(vma)) {
1938 page_vma_mapped_walk_done(&pvmw);
1939 ret = false;
1940 break;
1941 }
1942 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1943 hugetlb_vma_unlock_write(vma);
1944 flush_tlb_range(vma,
1945 range.start, range.end);
1946
1947 /*
1948 * The ref count of the PMD page was
1949 * dropped which is part of the way map
1950 * counting is done for shared PMDs.
1951 * Return 'true' here. When there is
1952 * no other sharing, huge_pmd_unshare
1953 * returns false and we will unmap the
1954 * actual page and drop map count
1955 * to zero.
1956 */
1957 page_vma_mapped_walk_done(&pvmw);
1958 break;
1959 }
1960 hugetlb_vma_unlock_write(vma);
1961 }
1962 /* Nuke the hugetlb page table entry */
1963 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1964 } else {
1965 flush_cache_page(vma, address, pfn);
1966 /* Nuke the page table entry. */
1967 if (should_defer_flush(mm, flags)) {
1968 /*
1969 * We clear the PTE but do not flush so potentially
1970 * a remote CPU could still be writing to the folio.
1971 * If the entry was previously clean then the
1972 * architecture must guarantee that a clear->dirty
1973 * transition on a cached TLB entry is written through
1974 * and traps if the PTE is unmapped.
1975 */
1976 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1977
1978 set_tlb_ubc_flush_pending(mm, pteval, address);
1979 } else {
1980 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1981 }
1982 }
1983
1984 /* Set the dirty flag on the folio now the pte is gone. */
1985 if (pte_dirty(pteval))
1986 folio_mark_dirty(folio);
1987
1988 /* Update high watermark before we lower rss */
1989 update_hiwater_rss(mm);
1990
1991 if (folio_is_device_private(folio)) {
1992 unsigned long pfn = folio_pfn(folio);
1993 swp_entry_t entry;
1994 pte_t swp_pte;
1995
1996 if (anon_exclusive)
1997 BUG_ON(page_try_share_anon_rmap(subpage));
1998
1999 /*
2000 * Store the pfn of the page in a special migration
2001 * pte. do_swap_page() will wait until the migration
2002 * pte is removed and then restart fault handling.
2003 */
2004 entry = pte_to_swp_entry(pteval);
2005 if (is_writable_device_private_entry(entry))
2006 entry = make_writable_migration_entry(pfn);
2007 else if (anon_exclusive)
2008 entry = make_readable_exclusive_migration_entry(pfn);
2009 else
2010 entry = make_readable_migration_entry(pfn);
2011 swp_pte = swp_entry_to_pte(entry);
2012
2013 /*
2014 * pteval maps a zone device page and is therefore
2015 * a swap pte.
2016 */
2017 if (pte_swp_soft_dirty(pteval))
2018 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2019 if (pte_swp_uffd_wp(pteval))
2020 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2021 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2022 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2023 compound_order(&folio->page));
2024 /*
2025 * No need to invalidate here it will synchronize on
2026 * against the special swap migration pte.
2027 */
2028 } else if (PageHWPoison(subpage)) {
2029 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2030 if (folio_test_hugetlb(folio)) {
2031 hugetlb_count_sub(folio_nr_pages(folio), mm);
2032 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2033 hsz);
2034 } else {
2035 dec_mm_counter(mm, mm_counter(&folio->page));
2036 set_pte_at(mm, address, pvmw.pte, pteval);
2037 }
2038
2039 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2040 /*
2041 * The guest indicated that the page content is of no
2042 * interest anymore. Simply discard the pte, vmscan
2043 * will take care of the rest.
2044 * A future reference will then fault in a new zero
2045 * page. When userfaultfd is active, we must not drop
2046 * this page though, as its main user (postcopy
2047 * migration) will not expect userfaults on already
2048 * copied pages.
2049 */
2050 dec_mm_counter(mm, mm_counter(&folio->page));
2051 } else {
2052 swp_entry_t entry;
2053 pte_t swp_pte;
2054
2055 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2056 if (folio_test_hugetlb(folio))
2057 set_huge_pte_at(mm, address, pvmw.pte,
2058 pteval, hsz);
2059 else
2060 set_pte_at(mm, address, pvmw.pte, pteval);
2061 ret = false;
2062 page_vma_mapped_walk_done(&pvmw);
2063 break;
2064 }
2065 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2066 !anon_exclusive, subpage);
2067
2068 /* See page_try_share_anon_rmap(): clear PTE first. */
2069 if (anon_exclusive &&
2070 page_try_share_anon_rmap(subpage)) {
2071 if (folio_test_hugetlb(folio))
2072 set_huge_pte_at(mm, address, pvmw.pte,
2073 pteval, hsz);
2074 else
2075 set_pte_at(mm, address, pvmw.pte, pteval);
2076 ret = false;
2077 page_vma_mapped_walk_done(&pvmw);
2078 break;
2079 }
2080
2081 /*
2082 * Store the pfn of the page in a special migration
2083 * pte. do_swap_page() will wait until the migration
2084 * pte is removed and then restart fault handling.
2085 */
2086 if (pte_write(pteval))
2087 entry = make_writable_migration_entry(
2088 page_to_pfn(subpage));
2089 else if (anon_exclusive)
2090 entry = make_readable_exclusive_migration_entry(
2091 page_to_pfn(subpage));
2092 else
2093 entry = make_readable_migration_entry(
2094 page_to_pfn(subpage));
2095 if (pte_young(pteval))
2096 entry = make_migration_entry_young(entry);
2097 if (pte_dirty(pteval))
2098 entry = make_migration_entry_dirty(entry);
2099 swp_pte = swp_entry_to_pte(entry);
2100 if (pte_soft_dirty(pteval))
2101 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2102 if (pte_uffd_wp(pteval))
2103 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2104 if (folio_test_hugetlb(folio))
2105 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2106 hsz);
2107 else
2108 set_pte_at(mm, address, pvmw.pte, swp_pte);
2109 trace_set_migration_pte(address, pte_val(swp_pte),
2110 compound_order(&folio->page));
2111 /*
2112 * No need to invalidate here it will synchronize on
2113 * against the special swap migration pte.
2114 */
2115 }
2116
2117 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2118 if (vma->vm_flags & VM_LOCKED)
2119 mlock_drain_local();
2120 folio_put(folio);
2121 }
2122
2123 mmu_notifier_invalidate_range_end(&range);
2124
2125 return ret;
2126 }
2127
2128 /**
2129 * try_to_migrate - try to replace all page table mappings with swap entries
2130 * @folio: the folio to replace page table entries for
2131 * @flags: action and flags
2132 *
2133 * Tries to remove all the page table entries which are mapping this folio and
2134 * replace them with special swap entries. Caller must hold the folio lock.
2135 */
2136 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2137 {
2138 struct rmap_walk_control rwc = {
2139 .rmap_one = try_to_migrate_one,
2140 .arg = (void *)flags,
2141 .done = folio_not_mapped,
2142 .anon_lock = folio_lock_anon_vma_read,
2143 };
2144
2145 /*
2146 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2147 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2148 */
2149 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2150 TTU_SYNC | TTU_BATCH_FLUSH)))
2151 return;
2152
2153 if (folio_is_zone_device(folio) &&
2154 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2155 return;
2156
2157 /*
2158 * During exec, a temporary VMA is setup and later moved.
2159 * The VMA is moved under the anon_vma lock but not the
2160 * page tables leading to a race where migration cannot
2161 * find the migration ptes. Rather than increasing the
2162 * locking requirements of exec(), migration skips
2163 * temporary VMAs until after exec() completes.
2164 */
2165 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2166 rwc.invalid_vma = invalid_migration_vma;
2167
2168 if (flags & TTU_RMAP_LOCKED)
2169 rmap_walk_locked(folio, &rwc);
2170 else
2171 rmap_walk(folio, &rwc);
2172 }
2173
2174 #ifdef CONFIG_DEVICE_PRIVATE
2175 struct make_exclusive_args {
2176 struct mm_struct *mm;
2177 unsigned long address;
2178 void *owner;
2179 bool valid;
2180 };
2181
2182 static bool page_make_device_exclusive_one(struct folio *folio,
2183 struct vm_area_struct *vma, unsigned long address, void *priv)
2184 {
2185 struct mm_struct *mm = vma->vm_mm;
2186 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2187 struct make_exclusive_args *args = priv;
2188 pte_t pteval;
2189 struct page *subpage;
2190 bool ret = true;
2191 struct mmu_notifier_range range;
2192 swp_entry_t entry;
2193 pte_t swp_pte;
2194 pte_t ptent;
2195
2196 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2197 vma->vm_mm, address, min(vma->vm_end,
2198 address + folio_size(folio)),
2199 args->owner);
2200 mmu_notifier_invalidate_range_start(&range);
2201
2202 while (page_vma_mapped_walk(&pvmw)) {
2203 /* Unexpected PMD-mapped THP? */
2204 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2205
2206 ptent = ptep_get(pvmw.pte);
2207 if (!pte_present(ptent)) {
2208 ret = false;
2209 page_vma_mapped_walk_done(&pvmw);
2210 break;
2211 }
2212
2213 subpage = folio_page(folio,
2214 pte_pfn(ptent) - folio_pfn(folio));
2215 address = pvmw.address;
2216
2217 /* Nuke the page table entry. */
2218 flush_cache_page(vma, address, pte_pfn(ptent));
2219 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2220
2221 /* Set the dirty flag on the folio now the pte is gone. */
2222 if (pte_dirty(pteval))
2223 folio_mark_dirty(folio);
2224
2225 /*
2226 * Check that our target page is still mapped at the expected
2227 * address.
2228 */
2229 if (args->mm == mm && args->address == address &&
2230 pte_write(pteval))
2231 args->valid = true;
2232
2233 /*
2234 * Store the pfn of the page in a special migration
2235 * pte. do_swap_page() will wait until the migration
2236 * pte is removed and then restart fault handling.
2237 */
2238 if (pte_write(pteval))
2239 entry = make_writable_device_exclusive_entry(
2240 page_to_pfn(subpage));
2241 else
2242 entry = make_readable_device_exclusive_entry(
2243 page_to_pfn(subpage));
2244 swp_pte = swp_entry_to_pte(entry);
2245 if (pte_soft_dirty(pteval))
2246 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2247 if (pte_uffd_wp(pteval))
2248 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2249
2250 set_pte_at(mm, address, pvmw.pte, swp_pte);
2251
2252 /*
2253 * There is a reference on the page for the swap entry which has
2254 * been removed, so shouldn't take another.
2255 */
2256 page_remove_rmap(subpage, vma, false);
2257 }
2258
2259 mmu_notifier_invalidate_range_end(&range);
2260
2261 return ret;
2262 }
2263
2264 /**
2265 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2266 * @folio: The folio to replace page table entries for.
2267 * @mm: The mm_struct where the folio is expected to be mapped.
2268 * @address: Address where the folio is expected to be mapped.
2269 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2270 *
2271 * Tries to remove all the page table entries which are mapping this
2272 * folio and replace them with special device exclusive swap entries to
2273 * grant a device exclusive access to the folio.
2274 *
2275 * Context: Caller must hold the folio lock.
2276 * Return: false if the page is still mapped, or if it could not be unmapped
2277 * from the expected address. Otherwise returns true (success).
2278 */
2279 static bool folio_make_device_exclusive(struct folio *folio,
2280 struct mm_struct *mm, unsigned long address, void *owner)
2281 {
2282 struct make_exclusive_args args = {
2283 .mm = mm,
2284 .address = address,
2285 .owner = owner,
2286 .valid = false,
2287 };
2288 struct rmap_walk_control rwc = {
2289 .rmap_one = page_make_device_exclusive_one,
2290 .done = folio_not_mapped,
2291 .anon_lock = folio_lock_anon_vma_read,
2292 .arg = &args,
2293 };
2294
2295 /*
2296 * Restrict to anonymous folios for now to avoid potential writeback
2297 * issues.
2298 */
2299 if (!folio_test_anon(folio))
2300 return false;
2301
2302 rmap_walk(folio, &rwc);
2303
2304 return args.valid && !folio_mapcount(folio);
2305 }
2306
2307 /**
2308 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2309 * @mm: mm_struct of associated target process
2310 * @start: start of the region to mark for exclusive device access
2311 * @end: end address of region
2312 * @pages: returns the pages which were successfully marked for exclusive access
2313 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2314 *
2315 * Returns: number of pages found in the range by GUP. A page is marked for
2316 * exclusive access only if the page pointer is non-NULL.
2317 *
2318 * This function finds ptes mapping page(s) to the given address range, locks
2319 * them and replaces mappings with special swap entries preventing userspace CPU
2320 * access. On fault these entries are replaced with the original mapping after
2321 * calling MMU notifiers.
2322 *
2323 * A driver using this to program access from a device must use a mmu notifier
2324 * critical section to hold a device specific lock during programming. Once
2325 * programming is complete it should drop the page lock and reference after
2326 * which point CPU access to the page will revoke the exclusive access.
2327 */
2328 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2329 unsigned long end, struct page **pages,
2330 void *owner)
2331 {
2332 long npages = (end - start) >> PAGE_SHIFT;
2333 long i;
2334
2335 npages = get_user_pages_remote(mm, start, npages,
2336 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2337 pages, NULL);
2338 if (npages < 0)
2339 return npages;
2340
2341 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2342 struct folio *folio = page_folio(pages[i]);
2343 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2344 folio_put(folio);
2345 pages[i] = NULL;
2346 continue;
2347 }
2348
2349 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2350 folio_unlock(folio);
2351 folio_put(folio);
2352 pages[i] = NULL;
2353 }
2354 }
2355
2356 return npages;
2357 }
2358 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2359 #endif
2360
2361 void __put_anon_vma(struct anon_vma *anon_vma)
2362 {
2363 struct anon_vma *root = anon_vma->root;
2364
2365 anon_vma_free(anon_vma);
2366 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2367 anon_vma_free(root);
2368 }
2369
2370 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2371 struct rmap_walk_control *rwc)
2372 {
2373 struct anon_vma *anon_vma;
2374
2375 if (rwc->anon_lock)
2376 return rwc->anon_lock(folio, rwc);
2377
2378 /*
2379 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2380 * because that depends on page_mapped(); but not all its usages
2381 * are holding mmap_lock. Users without mmap_lock are required to
2382 * take a reference count to prevent the anon_vma disappearing
2383 */
2384 anon_vma = folio_anon_vma(folio);
2385 if (!anon_vma)
2386 return NULL;
2387
2388 if (anon_vma_trylock_read(anon_vma))
2389 goto out;
2390
2391 if (rwc->try_lock) {
2392 anon_vma = NULL;
2393 rwc->contended = true;
2394 goto out;
2395 }
2396
2397 anon_vma_lock_read(anon_vma);
2398 out:
2399 return anon_vma;
2400 }
2401
2402 /*
2403 * rmap_walk_anon - do something to anonymous page using the object-based
2404 * rmap method
2405 * @folio: the folio to be handled
2406 * @rwc: control variable according to each walk type
2407 * @locked: caller holds relevant rmap lock
2408 *
2409 * Find all the mappings of a folio using the mapping pointer and the vma
2410 * chains contained in the anon_vma struct it points to.
2411 */
2412 static void rmap_walk_anon(struct folio *folio,
2413 struct rmap_walk_control *rwc, bool locked)
2414 {
2415 struct anon_vma *anon_vma;
2416 pgoff_t pgoff_start, pgoff_end;
2417 struct anon_vma_chain *avc;
2418
2419 if (locked) {
2420 anon_vma = folio_anon_vma(folio);
2421 /* anon_vma disappear under us? */
2422 VM_BUG_ON_FOLIO(!anon_vma, folio);
2423 } else {
2424 anon_vma = rmap_walk_anon_lock(folio, rwc);
2425 }
2426 if (!anon_vma)
2427 return;
2428
2429 pgoff_start = folio_pgoff(folio);
2430 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2431 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2432 pgoff_start, pgoff_end) {
2433 struct vm_area_struct *vma = avc->vma;
2434 unsigned long address = vma_address(&folio->page, vma);
2435
2436 VM_BUG_ON_VMA(address == -EFAULT, vma);
2437 cond_resched();
2438
2439 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2440 continue;
2441
2442 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2443 break;
2444 if (rwc->done && rwc->done(folio))
2445 break;
2446 }
2447
2448 if (!locked)
2449 anon_vma_unlock_read(anon_vma);
2450 }
2451
2452 /*
2453 * rmap_walk_file - do something to file page using the object-based rmap method
2454 * @folio: the folio to be handled
2455 * @rwc: control variable according to each walk type
2456 * @locked: caller holds relevant rmap lock
2457 *
2458 * Find all the mappings of a folio using the mapping pointer and the vma chains
2459 * contained in the address_space struct it points to.
2460 */
2461 static void rmap_walk_file(struct folio *folio,
2462 struct rmap_walk_control *rwc, bool locked)
2463 {
2464 struct address_space *mapping = folio_mapping(folio);
2465 pgoff_t pgoff_start, pgoff_end;
2466 struct vm_area_struct *vma;
2467
2468 /*
2469 * The page lock not only makes sure that page->mapping cannot
2470 * suddenly be NULLified by truncation, it makes sure that the
2471 * structure at mapping cannot be freed and reused yet,
2472 * so we can safely take mapping->i_mmap_rwsem.
2473 */
2474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2475
2476 if (!mapping)
2477 return;
2478
2479 pgoff_start = folio_pgoff(folio);
2480 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2481 if (!locked) {
2482 if (i_mmap_trylock_read(mapping))
2483 goto lookup;
2484
2485 if (rwc->try_lock) {
2486 rwc->contended = true;
2487 return;
2488 }
2489
2490 i_mmap_lock_read(mapping);
2491 }
2492 lookup:
2493 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2494 pgoff_start, pgoff_end) {
2495 unsigned long address = vma_address(&folio->page, vma);
2496
2497 VM_BUG_ON_VMA(address == -EFAULT, vma);
2498 cond_resched();
2499
2500 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2501 continue;
2502
2503 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2504 goto done;
2505 if (rwc->done && rwc->done(folio))
2506 goto done;
2507 }
2508
2509 done:
2510 if (!locked)
2511 i_mmap_unlock_read(mapping);
2512 }
2513
2514 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2515 {
2516 if (unlikely(folio_test_ksm(folio)))
2517 rmap_walk_ksm(folio, rwc);
2518 else if (folio_test_anon(folio))
2519 rmap_walk_anon(folio, rwc, false);
2520 else
2521 rmap_walk_file(folio, rwc, false);
2522 }
2523
2524 /* Like rmap_walk, but caller holds relevant rmap lock */
2525 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2526 {
2527 /* no ksm support for now */
2528 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2529 if (folio_test_anon(folio))
2530 rmap_walk_anon(folio, rwc, true);
2531 else
2532 rmap_walk_file(folio, rwc, true);
2533 }
2534
2535 #ifdef CONFIG_HUGETLB_PAGE
2536 /*
2537 * The following two functions are for anonymous (private mapped) hugepages.
2538 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2539 * and no lru code, because we handle hugepages differently from common pages.
2540 *
2541 * RMAP_COMPOUND is ignored.
2542 */
2543 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2544 unsigned long address, rmap_t flags)
2545 {
2546 struct folio *folio = page_folio(page);
2547 struct anon_vma *anon_vma = vma->anon_vma;
2548 int first;
2549
2550 BUG_ON(!folio_test_locked(folio));
2551 BUG_ON(!anon_vma);
2552 /* address might be in next vma when migration races vma_merge */
2553 first = atomic_inc_and_test(&folio->_entire_mapcount);
2554 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2555 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2556 if (first)
2557 __page_set_anon_rmap(folio, page, vma, address,
2558 !!(flags & RMAP_EXCLUSIVE));
2559 }
2560
2561 void hugepage_add_new_anon_rmap(struct folio *folio,
2562 struct vm_area_struct *vma, unsigned long address)
2563 {
2564 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2565 /* increment count (starts at -1) */
2566 atomic_set(&folio->_entire_mapcount, 0);
2567 folio_clear_hugetlb_restore_reserve(folio);
2568 __page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2569 }
2570 #endif /* CONFIG_HUGETLB_PAGE */