]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/rmap.c
Linux 6.10-rc3
[thirdparty/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * folio_lock
54 */
55
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84
85 #include "internal.h"
86
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108 }
109
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153 {
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159
160 /**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
191
192 mmap_assert_locked(mm);
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
270 * src->anon_vma).
271 *
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
279 */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
284
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
287
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
291 root = NULL;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto enomem_failure;
295 }
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
299
300 /*
301 * Reuse existing anon_vma if it has no vma and only one
302 * anon_vma child.
303 *
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
306 */
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
311 }
312 if (dst->anon_vma)
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
315 return 0;
316
317 enomem_failure:
318 /*
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
323 */
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
326 return -ENOMEM;
327 }
328
329 /*
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
333 */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
338 int error;
339
340 /* Don't bother if the parent process has no anon_vma here. */
341 if (!pvma->anon_vma)
342 return 0;
343
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
346
347 /*
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
350 */
351 error = anon_vma_clone(vma, pvma);
352 if (error)
353 return error;
354
355 /* An existing anon_vma has been reused, all done then. */
356 if (vma->anon_vma)
357 return 0;
358
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
361 if (!anon_vma)
362 goto out_error;
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
367
368 /*
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
374 /*
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
378 */
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
386
387 return 0;
388
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
394 }
395
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
400
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
417 continue;
418 }
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
423 if (vma->anon_vma) {
424 vma->anon_vma->num_active_vmas--;
425
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 }
432 unlock_anon_vma_root(root);
433
434 /*
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
438 */
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
441
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
445
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
448 }
449 }
450
451 static void anon_vma_ctor(void *data)
452 {
453 struct anon_vma *anon_vma = data;
454
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459
460 void __init anon_vma_init(void)
461 {
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 anon_vma_ctor);
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
467 }
468
469 /*
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471 *
472 * Since there is no serialization what so ever against folio_remove_rmap_*()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
475 *
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
478 *
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483 *
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
487 *
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
491 * those.
492 *
493 * NOTE: the caller should normally hold folio lock when calling this. If
494 * not, the caller needs to double check the anon_vma didn't change after
495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497 * which has already covered that, and comment above remap_pages().
498 */
499 struct anon_vma *folio_get_anon_vma(struct folio *folio)
500 {
501 struct anon_vma *anon_vma = NULL;
502 unsigned long anon_mapping;
503
504 rcu_read_lock();
505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 goto out;
508 if (!folio_mapped(folio))
509 goto out;
510
511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 anon_vma = NULL;
514 goto out;
515 }
516
517 /*
518 * If this folio is still mapped, then its anon_vma cannot have been
519 * freed. But if it has been unmapped, we have no security against the
520 * anon_vma structure being freed and reused (for another anon_vma:
521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 * above cannot corrupt).
523 */
524 if (!folio_mapped(folio)) {
525 rcu_read_unlock();
526 put_anon_vma(anon_vma);
527 return NULL;
528 }
529 out:
530 rcu_read_unlock();
531
532 return anon_vma;
533 }
534
535 /*
536 * Similar to folio_get_anon_vma() except it locks the anon_vma.
537 *
538 * Its a little more complex as it tries to keep the fast path to a single
539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540 * reference like with folio_get_anon_vma() and then block on the mutex
541 * on !rwc->try_lock case.
542 */
543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544 struct rmap_walk_control *rwc)
545 {
546 struct anon_vma *anon_vma = NULL;
547 struct anon_vma *root_anon_vma;
548 unsigned long anon_mapping;
549
550 retry:
551 rcu_read_lock();
552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 goto out;
555 if (!folio_mapped(folio))
556 goto out;
557
558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 root_anon_vma = READ_ONCE(anon_vma->root);
560 if (down_read_trylock(&root_anon_vma->rwsem)) {
561 /*
562 * folio_move_anon_rmap() might have changed the anon_vma as we
563 * might not hold the folio lock here.
564 */
565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 anon_mapping)) {
567 up_read(&root_anon_vma->rwsem);
568 rcu_read_unlock();
569 goto retry;
570 }
571
572 /*
573 * If the folio is still mapped, then this anon_vma is still
574 * its anon_vma, and holding the mutex ensures that it will
575 * not go away, see anon_vma_free().
576 */
577 if (!folio_mapped(folio)) {
578 up_read(&root_anon_vma->rwsem);
579 anon_vma = NULL;
580 }
581 goto out;
582 }
583
584 if (rwc && rwc->try_lock) {
585 anon_vma = NULL;
586 rwc->contended = true;
587 goto out;
588 }
589
590 /* trylock failed, we got to sleep */
591 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 anon_vma = NULL;
593 goto out;
594 }
595
596 if (!folio_mapped(folio)) {
597 rcu_read_unlock();
598 put_anon_vma(anon_vma);
599 return NULL;
600 }
601
602 /* we pinned the anon_vma, its safe to sleep */
603 rcu_read_unlock();
604 anon_vma_lock_read(anon_vma);
605
606 /*
607 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 * not hold the folio lock here.
609 */
610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 anon_mapping)) {
612 anon_vma_unlock_read(anon_vma);
613 put_anon_vma(anon_vma);
614 anon_vma = NULL;
615 goto retry;
616 }
617
618 if (atomic_dec_and_test(&anon_vma->refcount)) {
619 /*
620 * Oops, we held the last refcount, release the lock
621 * and bail -- can't simply use put_anon_vma() because
622 * we'll deadlock on the anon_vma_lock_write() recursion.
623 */
624 anon_vma_unlock_read(anon_vma);
625 __put_anon_vma(anon_vma);
626 anon_vma = NULL;
627 }
628
629 return anon_vma;
630
631 out:
632 rcu_read_unlock();
633 return anon_vma;
634 }
635
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639 * important if a PTE was dirty when it was unmapped that it's flushed
640 * before any IO is initiated on the page to prevent lost writes. Similarly,
641 * it must be flushed before freeing to prevent data leakage.
642 */
643 void try_to_unmap_flush(void)
644 {
645 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646
647 if (!tlb_ubc->flush_required)
648 return;
649
650 arch_tlbbatch_flush(&tlb_ubc->arch);
651 tlb_ubc->flush_required = false;
652 tlb_ubc->writable = false;
653 }
654
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659
660 if (tlb_ubc->writable)
661 try_to_unmap_flush();
662 }
663
664 /*
665 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667 */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
669 #define TLB_FLUSH_BATCH_PENDING_MASK \
670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE \
672 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
673
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 unsigned long uaddr)
676 {
677 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 int batch;
679 bool writable = pte_dirty(pteval);
680
681 if (!pte_accessible(mm, pteval))
682 return;
683
684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 tlb_ubc->flush_required = true;
686
687 /*
688 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 * before the PTE is cleared.
690 */
691 barrier();
692 batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 /*
696 * Prevent `pending' from catching up with `flushed' because of
697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
698 * `pending' becomes large.
699 */
700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 goto retry;
702 } else {
703 atomic_inc(&mm->tlb_flush_batched);
704 }
705
706 /*
707 * If the PTE was dirty then it's best to assume it's writable. The
708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 * before the page is queued for IO.
710 */
711 if (writable)
712 tlb_ubc->writable = true;
713 }
714
715 /*
716 * Returns true if the TLB flush should be deferred to the end of a batch of
717 * unmap operations to reduce IPIs.
718 */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 if (!(flags & TTU_BATCH_FLUSH))
722 return false;
723
724 return arch_tlbbatch_should_defer(mm);
725 }
726
727 /*
728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730 * operation such as mprotect or munmap to race between reclaim unmapping
731 * the page and flushing the page. If this race occurs, it potentially allows
732 * access to data via a stale TLB entry. Tracking all mm's that have TLB
733 * batching in flight would be expensive during reclaim so instead track
734 * whether TLB batching occurred in the past and if so then do a flush here
735 * if required. This will cost one additional flush per reclaim cycle paid
736 * by the first operation at risk such as mprotect and mumap.
737 *
738 * This must be called under the PTL so that an access to tlb_flush_batched
739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740 * via the PTL.
741 */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 int batch = atomic_read(&mm->tlb_flush_batched);
745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747
748 if (pending != flushed) {
749 arch_flush_tlb_batched_pending(mm);
750 /*
751 * If the new TLB flushing is pending during flushing, leave
752 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 */
754 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 }
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 unsigned long uaddr)
761 {
762 }
763
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769
770 /*
771 * At what user virtual address is page expected in vma?
772 * Caller should check the page is actually part of the vma.
773 */
774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775 {
776 struct folio *folio = page_folio(page);
777 pgoff_t pgoff;
778
779 if (folio_test_anon(folio)) {
780 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781 /*
782 * Note: swapoff's unuse_vma() is more efficient with this
783 * check, and needs it to match anon_vma when KSM is active.
784 */
785 if (!vma->anon_vma || !page__anon_vma ||
786 vma->anon_vma->root != page__anon_vma->root)
787 return -EFAULT;
788 } else if (!vma->vm_file) {
789 return -EFAULT;
790 } else if (vma->vm_file->f_mapping != folio->mapping) {
791 return -EFAULT;
792 }
793
794 /* The !page__anon_vma above handles KSM folios */
795 pgoff = folio->index + folio_page_idx(folio, page);
796 return vma_address(vma, pgoff, 1);
797 }
798
799 /*
800 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
802 * represents.
803 */
804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805 {
806 pgd_t *pgd;
807 p4d_t *p4d;
808 pud_t *pud;
809 pmd_t *pmd = NULL;
810
811 pgd = pgd_offset(mm, address);
812 if (!pgd_present(*pgd))
813 goto out;
814
815 p4d = p4d_offset(pgd, address);
816 if (!p4d_present(*p4d))
817 goto out;
818
819 pud = pud_offset(p4d, address);
820 if (!pud_present(*pud))
821 goto out;
822
823 pmd = pmd_offset(pud, address);
824 out:
825 return pmd;
826 }
827
828 struct folio_referenced_arg {
829 int mapcount;
830 int referenced;
831 unsigned long vm_flags;
832 struct mem_cgroup *memcg;
833 };
834
835 /*
836 * arg: folio_referenced_arg will be passed
837 */
838 static bool folio_referenced_one(struct folio *folio,
839 struct vm_area_struct *vma, unsigned long address, void *arg)
840 {
841 struct folio_referenced_arg *pra = arg;
842 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843 int referenced = 0;
844 unsigned long start = address, ptes = 0;
845
846 while (page_vma_mapped_walk(&pvmw)) {
847 address = pvmw.address;
848
849 if (vma->vm_flags & VM_LOCKED) {
850 if (!folio_test_large(folio) || !pvmw.pte) {
851 /* Restore the mlock which got missed */
852 mlock_vma_folio(folio, vma);
853 page_vma_mapped_walk_done(&pvmw);
854 pra->vm_flags |= VM_LOCKED;
855 return false; /* To break the loop */
856 }
857 /*
858 * For large folio fully mapped to VMA, will
859 * be handled after the pvmw loop.
860 *
861 * For large folio cross VMA boundaries, it's
862 * expected to be picked by page reclaim. But
863 * should skip reference of pages which are in
864 * the range of VM_LOCKED vma. As page reclaim
865 * should just count the reference of pages out
866 * the range of VM_LOCKED vma.
867 */
868 ptes++;
869 pra->mapcount--;
870 continue;
871 }
872
873 if (pvmw.pte) {
874 if (lru_gen_enabled() &&
875 pte_young(ptep_get(pvmw.pte))) {
876 lru_gen_look_around(&pvmw);
877 referenced++;
878 }
879
880 if (ptep_clear_flush_young_notify(vma, address,
881 pvmw.pte))
882 referenced++;
883 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
884 if (pmdp_clear_flush_young_notify(vma, address,
885 pvmw.pmd))
886 referenced++;
887 } else {
888 /* unexpected pmd-mapped folio? */
889 WARN_ON_ONCE(1);
890 }
891
892 pra->mapcount--;
893 }
894
895 if ((vma->vm_flags & VM_LOCKED) &&
896 folio_test_large(folio) &&
897 folio_within_vma(folio, vma)) {
898 unsigned long s_align, e_align;
899
900 s_align = ALIGN_DOWN(start, PMD_SIZE);
901 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
902
903 /* folio doesn't cross page table boundary and fully mapped */
904 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
905 /* Restore the mlock which got missed */
906 mlock_vma_folio(folio, vma);
907 pra->vm_flags |= VM_LOCKED;
908 return false; /* To break the loop */
909 }
910 }
911
912 if (referenced)
913 folio_clear_idle(folio);
914 if (folio_test_clear_young(folio))
915 referenced++;
916
917 if (referenced) {
918 pra->referenced++;
919 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
920 }
921
922 if (!pra->mapcount)
923 return false; /* To break the loop */
924
925 return true;
926 }
927
928 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
929 {
930 struct folio_referenced_arg *pra = arg;
931 struct mem_cgroup *memcg = pra->memcg;
932
933 /*
934 * Ignore references from this mapping if it has no recency. If the
935 * folio has been used in another mapping, we will catch it; if this
936 * other mapping is already gone, the unmap path will have set the
937 * referenced flag or activated the folio in zap_pte_range().
938 */
939 if (!vma_has_recency(vma))
940 return true;
941
942 /*
943 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
944 * of references from different cgroups.
945 */
946 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
947 return true;
948
949 return false;
950 }
951
952 /**
953 * folio_referenced() - Test if the folio was referenced.
954 * @folio: The folio to test.
955 * @is_locked: Caller holds lock on the folio.
956 * @memcg: target memory cgroup
957 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
958 *
959 * Quick test_and_clear_referenced for all mappings of a folio,
960 *
961 * Return: The number of mappings which referenced the folio. Return -1 if
962 * the function bailed out due to rmap lock contention.
963 */
964 int folio_referenced(struct folio *folio, int is_locked,
965 struct mem_cgroup *memcg, unsigned long *vm_flags)
966 {
967 bool we_locked = false;
968 struct folio_referenced_arg pra = {
969 .mapcount = folio_mapcount(folio),
970 .memcg = memcg,
971 };
972 struct rmap_walk_control rwc = {
973 .rmap_one = folio_referenced_one,
974 .arg = (void *)&pra,
975 .anon_lock = folio_lock_anon_vma_read,
976 .try_lock = true,
977 .invalid_vma = invalid_folio_referenced_vma,
978 };
979
980 *vm_flags = 0;
981 if (!pra.mapcount)
982 return 0;
983
984 if (!folio_raw_mapping(folio))
985 return 0;
986
987 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
988 we_locked = folio_trylock(folio);
989 if (!we_locked)
990 return 1;
991 }
992
993 rmap_walk(folio, &rwc);
994 *vm_flags = pra.vm_flags;
995
996 if (we_locked)
997 folio_unlock(folio);
998
999 return rwc.contended ? -1 : pra.referenced;
1000 }
1001
1002 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1003 {
1004 int cleaned = 0;
1005 struct vm_area_struct *vma = pvmw->vma;
1006 struct mmu_notifier_range range;
1007 unsigned long address = pvmw->address;
1008
1009 /*
1010 * We have to assume the worse case ie pmd for invalidation. Note that
1011 * the folio can not be freed from this function.
1012 */
1013 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1014 vma->vm_mm, address, vma_address_end(pvmw));
1015 mmu_notifier_invalidate_range_start(&range);
1016
1017 while (page_vma_mapped_walk(pvmw)) {
1018 int ret = 0;
1019
1020 address = pvmw->address;
1021 if (pvmw->pte) {
1022 pte_t *pte = pvmw->pte;
1023 pte_t entry = ptep_get(pte);
1024
1025 if (!pte_dirty(entry) && !pte_write(entry))
1026 continue;
1027
1028 flush_cache_page(vma, address, pte_pfn(entry));
1029 entry = ptep_clear_flush(vma, address, pte);
1030 entry = pte_wrprotect(entry);
1031 entry = pte_mkclean(entry);
1032 set_pte_at(vma->vm_mm, address, pte, entry);
1033 ret = 1;
1034 } else {
1035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036 pmd_t *pmd = pvmw->pmd;
1037 pmd_t entry;
1038
1039 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1040 continue;
1041
1042 flush_cache_range(vma, address,
1043 address + HPAGE_PMD_SIZE);
1044 entry = pmdp_invalidate(vma, address, pmd);
1045 entry = pmd_wrprotect(entry);
1046 entry = pmd_mkclean(entry);
1047 set_pmd_at(vma->vm_mm, address, pmd, entry);
1048 ret = 1;
1049 #else
1050 /* unexpected pmd-mapped folio? */
1051 WARN_ON_ONCE(1);
1052 #endif
1053 }
1054
1055 if (ret)
1056 cleaned++;
1057 }
1058
1059 mmu_notifier_invalidate_range_end(&range);
1060
1061 return cleaned;
1062 }
1063
1064 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1065 unsigned long address, void *arg)
1066 {
1067 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1068 int *cleaned = arg;
1069
1070 *cleaned += page_vma_mkclean_one(&pvmw);
1071
1072 return true;
1073 }
1074
1075 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1076 {
1077 if (vma->vm_flags & VM_SHARED)
1078 return false;
1079
1080 return true;
1081 }
1082
1083 int folio_mkclean(struct folio *folio)
1084 {
1085 int cleaned = 0;
1086 struct address_space *mapping;
1087 struct rmap_walk_control rwc = {
1088 .arg = (void *)&cleaned,
1089 .rmap_one = page_mkclean_one,
1090 .invalid_vma = invalid_mkclean_vma,
1091 };
1092
1093 BUG_ON(!folio_test_locked(folio));
1094
1095 if (!folio_mapped(folio))
1096 return 0;
1097
1098 mapping = folio_mapping(folio);
1099 if (!mapping)
1100 return 0;
1101
1102 rmap_walk(folio, &rwc);
1103
1104 return cleaned;
1105 }
1106 EXPORT_SYMBOL_GPL(folio_mkclean);
1107
1108 /**
1109 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1110 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1111 * within the @vma of shared mappings. And since clean PTEs
1112 * should also be readonly, write protects them too.
1113 * @pfn: start pfn.
1114 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1115 * @pgoff: page offset that the @pfn mapped with.
1116 * @vma: vma that @pfn mapped within.
1117 *
1118 * Returns the number of cleaned PTEs (including PMDs).
1119 */
1120 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1121 struct vm_area_struct *vma)
1122 {
1123 struct page_vma_mapped_walk pvmw = {
1124 .pfn = pfn,
1125 .nr_pages = nr_pages,
1126 .pgoff = pgoff,
1127 .vma = vma,
1128 .flags = PVMW_SYNC,
1129 };
1130
1131 if (invalid_mkclean_vma(vma, NULL))
1132 return 0;
1133
1134 pvmw.address = vma_address(vma, pgoff, nr_pages);
1135 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1136
1137 return page_vma_mkclean_one(&pvmw);
1138 }
1139
1140 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1141 struct page *page, int nr_pages, enum rmap_level level,
1142 int *nr_pmdmapped)
1143 {
1144 atomic_t *mapped = &folio->_nr_pages_mapped;
1145 const int orig_nr_pages = nr_pages;
1146 int first, nr = 0;
1147
1148 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1149
1150 switch (level) {
1151 case RMAP_LEVEL_PTE:
1152 if (!folio_test_large(folio)) {
1153 nr = atomic_inc_and_test(&page->_mapcount);
1154 break;
1155 }
1156
1157 do {
1158 first = atomic_inc_and_test(&page->_mapcount);
1159 if (first) {
1160 first = atomic_inc_return_relaxed(mapped);
1161 if (first < ENTIRELY_MAPPED)
1162 nr++;
1163 }
1164 } while (page++, --nr_pages > 0);
1165 atomic_add(orig_nr_pages, &folio->_large_mapcount);
1166 break;
1167 case RMAP_LEVEL_PMD:
1168 first = atomic_inc_and_test(&folio->_entire_mapcount);
1169 if (first) {
1170 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1171 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1172 *nr_pmdmapped = folio_nr_pages(folio);
1173 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1174 /* Raced ahead of a remove and another add? */
1175 if (unlikely(nr < 0))
1176 nr = 0;
1177 } else {
1178 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1179 nr = 0;
1180 }
1181 }
1182 atomic_inc(&folio->_large_mapcount);
1183 break;
1184 }
1185 return nr;
1186 }
1187
1188 /**
1189 * folio_move_anon_rmap - move a folio to our anon_vma
1190 * @folio: The folio to move to our anon_vma
1191 * @vma: The vma the folio belongs to
1192 *
1193 * When a folio belongs exclusively to one process after a COW event,
1194 * that folio can be moved into the anon_vma that belongs to just that
1195 * process, so the rmap code will not search the parent or sibling processes.
1196 */
1197 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1198 {
1199 void *anon_vma = vma->anon_vma;
1200
1201 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1202 VM_BUG_ON_VMA(!anon_vma, vma);
1203
1204 anon_vma += PAGE_MAPPING_ANON;
1205 /*
1206 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1207 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1208 * folio_test_anon()) will not see one without the other.
1209 */
1210 WRITE_ONCE(folio->mapping, anon_vma);
1211 }
1212
1213 /**
1214 * __folio_set_anon - set up a new anonymous rmap for a folio
1215 * @folio: The folio to set up the new anonymous rmap for.
1216 * @vma: VM area to add the folio to.
1217 * @address: User virtual address of the mapping
1218 * @exclusive: Whether the folio is exclusive to the process.
1219 */
1220 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1221 unsigned long address, bool exclusive)
1222 {
1223 struct anon_vma *anon_vma = vma->anon_vma;
1224
1225 BUG_ON(!anon_vma);
1226
1227 /*
1228 * If the folio isn't exclusive to this vma, we must use the _oldest_
1229 * possible anon_vma for the folio mapping!
1230 */
1231 if (!exclusive)
1232 anon_vma = anon_vma->root;
1233
1234 /*
1235 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1236 * Make sure the compiler doesn't split the stores of anon_vma and
1237 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1238 * could mistake the mapping for a struct address_space and crash.
1239 */
1240 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1241 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1242 folio->index = linear_page_index(vma, address);
1243 }
1244
1245 /**
1246 * __page_check_anon_rmap - sanity check anonymous rmap addition
1247 * @folio: The folio containing @page.
1248 * @page: the page to check the mapping of
1249 * @vma: the vm area in which the mapping is added
1250 * @address: the user virtual address mapped
1251 */
1252 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1253 struct vm_area_struct *vma, unsigned long address)
1254 {
1255 /*
1256 * The page's anon-rmap details (mapping and index) are guaranteed to
1257 * be set up correctly at this point.
1258 *
1259 * We have exclusion against folio_add_anon_rmap_*() because the caller
1260 * always holds the page locked.
1261 *
1262 * We have exclusion against folio_add_new_anon_rmap because those pages
1263 * are initially only visible via the pagetables, and the pte is locked
1264 * over the call to folio_add_new_anon_rmap.
1265 */
1266 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1267 folio);
1268 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1269 page);
1270 }
1271
1272 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1273 struct page *page, int nr_pages, struct vm_area_struct *vma,
1274 unsigned long address, rmap_t flags, enum rmap_level level)
1275 {
1276 int i, nr, nr_pmdmapped = 0;
1277
1278 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1279 if (nr_pmdmapped)
1280 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1281 if (nr)
1282 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1283
1284 if (unlikely(!folio_test_anon(folio))) {
1285 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1286 /*
1287 * For a PTE-mapped large folio, we only know that the single
1288 * PTE is exclusive. Further, __folio_set_anon() might not get
1289 * folio->index right when not given the address of the head
1290 * page.
1291 */
1292 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1293 level != RMAP_LEVEL_PMD, folio);
1294 __folio_set_anon(folio, vma, address,
1295 !!(flags & RMAP_EXCLUSIVE));
1296 } else if (likely(!folio_test_ksm(folio))) {
1297 __page_check_anon_rmap(folio, page, vma, address);
1298 }
1299
1300 if (flags & RMAP_EXCLUSIVE) {
1301 switch (level) {
1302 case RMAP_LEVEL_PTE:
1303 for (i = 0; i < nr_pages; i++)
1304 SetPageAnonExclusive(page + i);
1305 break;
1306 case RMAP_LEVEL_PMD:
1307 SetPageAnonExclusive(page);
1308 break;
1309 }
1310 }
1311 for (i = 0; i < nr_pages; i++) {
1312 struct page *cur_page = page + i;
1313
1314 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1315 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1316 (folio_test_large(folio) &&
1317 folio_entire_mapcount(folio) > 1)) &&
1318 PageAnonExclusive(cur_page), folio);
1319 }
1320
1321 /*
1322 * For large folio, only mlock it if it's fully mapped to VMA. It's
1323 * not easy to check whether the large folio is fully mapped to VMA
1324 * here. Only mlock normal 4K folio and leave page reclaim to handle
1325 * large folio.
1326 */
1327 if (!folio_test_large(folio))
1328 mlock_vma_folio(folio, vma);
1329 }
1330
1331 /**
1332 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1333 * @folio: The folio to add the mappings to
1334 * @page: The first page to add
1335 * @nr_pages: The number of pages which will be mapped
1336 * @vma: The vm area in which the mappings are added
1337 * @address: The user virtual address of the first page to map
1338 * @flags: The rmap flags
1339 *
1340 * The page range of folio is defined by [first_page, first_page + nr_pages)
1341 *
1342 * The caller needs to hold the page table lock, and the page must be locked in
1343 * the anon_vma case: to serialize mapping,index checking after setting,
1344 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1345 * (but KSM folios are never downgraded).
1346 */
1347 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1348 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1349 rmap_t flags)
1350 {
1351 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1352 RMAP_LEVEL_PTE);
1353 }
1354
1355 /**
1356 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1357 * @folio: The folio to add the mapping to
1358 * @page: The first page to add
1359 * @vma: The vm area in which the mapping is added
1360 * @address: The user virtual address of the first page to map
1361 * @flags: The rmap flags
1362 *
1363 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1364 *
1365 * The caller needs to hold the page table lock, and the page must be locked in
1366 * the anon_vma case: to serialize mapping,index checking after setting.
1367 */
1368 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1369 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1370 {
1371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1372 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1373 RMAP_LEVEL_PMD);
1374 #else
1375 WARN_ON_ONCE(true);
1376 #endif
1377 }
1378
1379 /**
1380 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1381 * @folio: The folio to add the mapping to.
1382 * @vma: the vm area in which the mapping is added
1383 * @address: the user virtual address mapped
1384 *
1385 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1386 * This means the inc-and-test can be bypassed.
1387 * The folio does not have to be locked.
1388 *
1389 * If the folio is pmd-mappable, it is accounted as a THP. As the folio
1390 * is new, it's assumed to be mapped exclusively by a single process.
1391 */
1392 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1393 unsigned long address)
1394 {
1395 int nr = folio_nr_pages(folio);
1396
1397 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1398 VM_BUG_ON_VMA(address < vma->vm_start ||
1399 address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1400 __folio_set_swapbacked(folio);
1401 __folio_set_anon(folio, vma, address, true);
1402
1403 if (likely(!folio_test_large(folio))) {
1404 /* increment count (starts at -1) */
1405 atomic_set(&folio->_mapcount, 0);
1406 SetPageAnonExclusive(&folio->page);
1407 } else if (!folio_test_pmd_mappable(folio)) {
1408 int i;
1409
1410 for (i = 0; i < nr; i++) {
1411 struct page *page = folio_page(folio, i);
1412
1413 /* increment count (starts at -1) */
1414 atomic_set(&page->_mapcount, 0);
1415 SetPageAnonExclusive(page);
1416 }
1417
1418 /* increment count (starts at -1) */
1419 atomic_set(&folio->_large_mapcount, nr - 1);
1420 atomic_set(&folio->_nr_pages_mapped, nr);
1421 } else {
1422 /* increment count (starts at -1) */
1423 atomic_set(&folio->_entire_mapcount, 0);
1424 /* increment count (starts at -1) */
1425 atomic_set(&folio->_large_mapcount, 0);
1426 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1427 SetPageAnonExclusive(&folio->page);
1428 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1429 }
1430
1431 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1432 }
1433
1434 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1435 struct page *page, int nr_pages, struct vm_area_struct *vma,
1436 enum rmap_level level)
1437 {
1438 pg_data_t *pgdat = folio_pgdat(folio);
1439 int nr, nr_pmdmapped = 0;
1440
1441 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1442
1443 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1444 if (nr_pmdmapped)
1445 __mod_node_page_state(pgdat, folio_test_swapbacked(folio) ?
1446 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1447 if (nr)
1448 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1449
1450 /* See comments in folio_add_anon_rmap_*() */
1451 if (!folio_test_large(folio))
1452 mlock_vma_folio(folio, vma);
1453 }
1454
1455 /**
1456 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1457 * @folio: The folio to add the mappings to
1458 * @page: The first page to add
1459 * @nr_pages: The number of pages that will be mapped using PTEs
1460 * @vma: The vm area in which the mappings are added
1461 *
1462 * The page range of the folio is defined by [page, page + nr_pages)
1463 *
1464 * The caller needs to hold the page table lock.
1465 */
1466 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1467 int nr_pages, struct vm_area_struct *vma)
1468 {
1469 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1470 }
1471
1472 /**
1473 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1474 * @folio: The folio to add the mapping to
1475 * @page: The first page to add
1476 * @vma: The vm area in which the mapping is added
1477 *
1478 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1479 *
1480 * The caller needs to hold the page table lock.
1481 */
1482 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1483 struct vm_area_struct *vma)
1484 {
1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1487 #else
1488 WARN_ON_ONCE(true);
1489 #endif
1490 }
1491
1492 static __always_inline void __folio_remove_rmap(struct folio *folio,
1493 struct page *page, int nr_pages, struct vm_area_struct *vma,
1494 enum rmap_level level)
1495 {
1496 atomic_t *mapped = &folio->_nr_pages_mapped;
1497 pg_data_t *pgdat = folio_pgdat(folio);
1498 int last, nr = 0, nr_pmdmapped = 0;
1499 bool partially_mapped = false;
1500 enum node_stat_item idx;
1501
1502 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1503
1504 switch (level) {
1505 case RMAP_LEVEL_PTE:
1506 if (!folio_test_large(folio)) {
1507 nr = atomic_add_negative(-1, &page->_mapcount);
1508 break;
1509 }
1510
1511 atomic_sub(nr_pages, &folio->_large_mapcount);
1512 do {
1513 last = atomic_add_negative(-1, &page->_mapcount);
1514 if (last) {
1515 last = atomic_dec_return_relaxed(mapped);
1516 if (last < ENTIRELY_MAPPED)
1517 nr++;
1518 }
1519 } while (page++, --nr_pages > 0);
1520
1521 partially_mapped = nr && atomic_read(mapped);
1522 break;
1523 case RMAP_LEVEL_PMD:
1524 atomic_dec(&folio->_large_mapcount);
1525 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1526 if (last) {
1527 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1528 if (likely(nr < ENTIRELY_MAPPED)) {
1529 nr_pmdmapped = folio_nr_pages(folio);
1530 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1531 /* Raced ahead of another remove and an add? */
1532 if (unlikely(nr < 0))
1533 nr = 0;
1534 } else {
1535 /* An add of ENTIRELY_MAPPED raced ahead */
1536 nr = 0;
1537 }
1538 }
1539
1540 partially_mapped = nr < nr_pmdmapped;
1541 break;
1542 }
1543
1544 if (nr_pmdmapped) {
1545 /* NR_{FILE/SHMEM}_PMDMAPPED are not maintained per-memcg */
1546 if (folio_test_anon(folio))
1547 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, -nr_pmdmapped);
1548 else
1549 __mod_node_page_state(pgdat,
1550 folio_test_swapbacked(folio) ?
1551 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED,
1552 -nr_pmdmapped);
1553 }
1554 if (nr) {
1555 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1556 __lruvec_stat_mod_folio(folio, idx, -nr);
1557
1558 /*
1559 * Queue anon large folio for deferred split if at least one
1560 * page of the folio is unmapped and at least one page
1561 * is still mapped.
1562 *
1563 * Check partially_mapped first to ensure it is a large folio.
1564 */
1565 if (folio_test_anon(folio) && partially_mapped &&
1566 list_empty(&folio->_deferred_list))
1567 deferred_split_folio(folio);
1568 }
1569
1570 /*
1571 * It would be tidy to reset folio_test_anon mapping when fully
1572 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1573 * which increments mapcount after us but sets mapping before us:
1574 * so leave the reset to free_pages_prepare, and remember that
1575 * it's only reliable while mapped.
1576 */
1577
1578 munlock_vma_folio(folio, vma);
1579 }
1580
1581 /**
1582 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1583 * @folio: The folio to remove the mappings from
1584 * @page: The first page to remove
1585 * @nr_pages: The number of pages that will be removed from the mapping
1586 * @vma: The vm area from which the mappings are removed
1587 *
1588 * The page range of the folio is defined by [page, page + nr_pages)
1589 *
1590 * The caller needs to hold the page table lock.
1591 */
1592 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1593 int nr_pages, struct vm_area_struct *vma)
1594 {
1595 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1596 }
1597
1598 /**
1599 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1600 * @folio: The folio to remove the mapping from
1601 * @page: The first page to remove
1602 * @vma: The vm area from which the mapping is removed
1603 *
1604 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1605 *
1606 * The caller needs to hold the page table lock.
1607 */
1608 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1609 struct vm_area_struct *vma)
1610 {
1611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1612 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1613 #else
1614 WARN_ON_ONCE(true);
1615 #endif
1616 }
1617
1618 /*
1619 * @arg: enum ttu_flags will be passed to this argument
1620 */
1621 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1622 unsigned long address, void *arg)
1623 {
1624 struct mm_struct *mm = vma->vm_mm;
1625 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1626 pte_t pteval;
1627 struct page *subpage;
1628 bool anon_exclusive, ret = true;
1629 struct mmu_notifier_range range;
1630 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1631 unsigned long pfn;
1632 unsigned long hsz = 0;
1633
1634 /*
1635 * When racing against e.g. zap_pte_range() on another cpu,
1636 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1637 * try_to_unmap() may return before page_mapped() has become false,
1638 * if page table locking is skipped: use TTU_SYNC to wait for that.
1639 */
1640 if (flags & TTU_SYNC)
1641 pvmw.flags = PVMW_SYNC;
1642
1643 if (flags & TTU_SPLIT_HUGE_PMD)
1644 split_huge_pmd_address(vma, address, false, folio);
1645
1646 /*
1647 * For THP, we have to assume the worse case ie pmd for invalidation.
1648 * For hugetlb, it could be much worse if we need to do pud
1649 * invalidation in the case of pmd sharing.
1650 *
1651 * Note that the folio can not be freed in this function as call of
1652 * try_to_unmap() must hold a reference on the folio.
1653 */
1654 range.end = vma_address_end(&pvmw);
1655 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1656 address, range.end);
1657 if (folio_test_hugetlb(folio)) {
1658 /*
1659 * If sharing is possible, start and end will be adjusted
1660 * accordingly.
1661 */
1662 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1663 &range.end);
1664
1665 /* We need the huge page size for set_huge_pte_at() */
1666 hsz = huge_page_size(hstate_vma(vma));
1667 }
1668 mmu_notifier_invalidate_range_start(&range);
1669
1670 while (page_vma_mapped_walk(&pvmw)) {
1671 /* Unexpected PMD-mapped THP? */
1672 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1673
1674 /*
1675 * If the folio is in an mlock()d vma, we must not swap it out.
1676 */
1677 if (!(flags & TTU_IGNORE_MLOCK) &&
1678 (vma->vm_flags & VM_LOCKED)) {
1679 /* Restore the mlock which got missed */
1680 if (!folio_test_large(folio))
1681 mlock_vma_folio(folio, vma);
1682 page_vma_mapped_walk_done(&pvmw);
1683 ret = false;
1684 break;
1685 }
1686
1687 pfn = pte_pfn(ptep_get(pvmw.pte));
1688 subpage = folio_page(folio, pfn - folio_pfn(folio));
1689 address = pvmw.address;
1690 anon_exclusive = folio_test_anon(folio) &&
1691 PageAnonExclusive(subpage);
1692
1693 if (folio_test_hugetlb(folio)) {
1694 bool anon = folio_test_anon(folio);
1695
1696 /*
1697 * The try_to_unmap() is only passed a hugetlb page
1698 * in the case where the hugetlb page is poisoned.
1699 */
1700 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1701 /*
1702 * huge_pmd_unshare may unmap an entire PMD page.
1703 * There is no way of knowing exactly which PMDs may
1704 * be cached for this mm, so we must flush them all.
1705 * start/end were already adjusted above to cover this
1706 * range.
1707 */
1708 flush_cache_range(vma, range.start, range.end);
1709
1710 /*
1711 * To call huge_pmd_unshare, i_mmap_rwsem must be
1712 * held in write mode. Caller needs to explicitly
1713 * do this outside rmap routines.
1714 *
1715 * We also must hold hugetlb vma_lock in write mode.
1716 * Lock order dictates acquiring vma_lock BEFORE
1717 * i_mmap_rwsem. We can only try lock here and fail
1718 * if unsuccessful.
1719 */
1720 if (!anon) {
1721 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1722 if (!hugetlb_vma_trylock_write(vma)) {
1723 page_vma_mapped_walk_done(&pvmw);
1724 ret = false;
1725 break;
1726 }
1727 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1728 hugetlb_vma_unlock_write(vma);
1729 flush_tlb_range(vma,
1730 range.start, range.end);
1731 /*
1732 * The ref count of the PMD page was
1733 * dropped which is part of the way map
1734 * counting is done for shared PMDs.
1735 * Return 'true' here. When there is
1736 * no other sharing, huge_pmd_unshare
1737 * returns false and we will unmap the
1738 * actual page and drop map count
1739 * to zero.
1740 */
1741 page_vma_mapped_walk_done(&pvmw);
1742 break;
1743 }
1744 hugetlb_vma_unlock_write(vma);
1745 }
1746 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1747 } else {
1748 flush_cache_page(vma, address, pfn);
1749 /* Nuke the page table entry. */
1750 if (should_defer_flush(mm, flags)) {
1751 /*
1752 * We clear the PTE but do not flush so potentially
1753 * a remote CPU could still be writing to the folio.
1754 * If the entry was previously clean then the
1755 * architecture must guarantee that a clear->dirty
1756 * transition on a cached TLB entry is written through
1757 * and traps if the PTE is unmapped.
1758 */
1759 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1760
1761 set_tlb_ubc_flush_pending(mm, pteval, address);
1762 } else {
1763 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1764 }
1765 }
1766
1767 /*
1768 * Now the pte is cleared. If this pte was uffd-wp armed,
1769 * we may want to replace a none pte with a marker pte if
1770 * it's file-backed, so we don't lose the tracking info.
1771 */
1772 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1773
1774 /* Set the dirty flag on the folio now the pte is gone. */
1775 if (pte_dirty(pteval))
1776 folio_mark_dirty(folio);
1777
1778 /* Update high watermark before we lower rss */
1779 update_hiwater_rss(mm);
1780
1781 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1782 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1783 if (folio_test_hugetlb(folio)) {
1784 hugetlb_count_sub(folio_nr_pages(folio), mm);
1785 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1786 hsz);
1787 } else {
1788 dec_mm_counter(mm, mm_counter(folio));
1789 set_pte_at(mm, address, pvmw.pte, pteval);
1790 }
1791
1792 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1793 /*
1794 * The guest indicated that the page content is of no
1795 * interest anymore. Simply discard the pte, vmscan
1796 * will take care of the rest.
1797 * A future reference will then fault in a new zero
1798 * page. When userfaultfd is active, we must not drop
1799 * this page though, as its main user (postcopy
1800 * migration) will not expect userfaults on already
1801 * copied pages.
1802 */
1803 dec_mm_counter(mm, mm_counter(folio));
1804 } else if (folio_test_anon(folio)) {
1805 swp_entry_t entry = page_swap_entry(subpage);
1806 pte_t swp_pte;
1807 /*
1808 * Store the swap location in the pte.
1809 * See handle_pte_fault() ...
1810 */
1811 if (unlikely(folio_test_swapbacked(folio) !=
1812 folio_test_swapcache(folio))) {
1813 WARN_ON_ONCE(1);
1814 ret = false;
1815 page_vma_mapped_walk_done(&pvmw);
1816 break;
1817 }
1818
1819 /* MADV_FREE page check */
1820 if (!folio_test_swapbacked(folio)) {
1821 int ref_count, map_count;
1822
1823 /*
1824 * Synchronize with gup_pte_range():
1825 * - clear PTE; barrier; read refcount
1826 * - inc refcount; barrier; read PTE
1827 */
1828 smp_mb();
1829
1830 ref_count = folio_ref_count(folio);
1831 map_count = folio_mapcount(folio);
1832
1833 /*
1834 * Order reads for page refcount and dirty flag
1835 * (see comments in __remove_mapping()).
1836 */
1837 smp_rmb();
1838
1839 /*
1840 * The only page refs must be one from isolation
1841 * plus the rmap(s) (dropped by discard:).
1842 */
1843 if (ref_count == 1 + map_count &&
1844 !folio_test_dirty(folio)) {
1845 dec_mm_counter(mm, MM_ANONPAGES);
1846 goto discard;
1847 }
1848
1849 /*
1850 * If the folio was redirtied, it cannot be
1851 * discarded. Remap the page to page table.
1852 */
1853 set_pte_at(mm, address, pvmw.pte, pteval);
1854 folio_set_swapbacked(folio);
1855 ret = false;
1856 page_vma_mapped_walk_done(&pvmw);
1857 break;
1858 }
1859
1860 if (swap_duplicate(entry) < 0) {
1861 set_pte_at(mm, address, pvmw.pte, pteval);
1862 ret = false;
1863 page_vma_mapped_walk_done(&pvmw);
1864 break;
1865 }
1866 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1867 swap_free(entry);
1868 set_pte_at(mm, address, pvmw.pte, pteval);
1869 ret = false;
1870 page_vma_mapped_walk_done(&pvmw);
1871 break;
1872 }
1873
1874 /* See folio_try_share_anon_rmap(): clear PTE first. */
1875 if (anon_exclusive &&
1876 folio_try_share_anon_rmap_pte(folio, subpage)) {
1877 swap_free(entry);
1878 set_pte_at(mm, address, pvmw.pte, pteval);
1879 ret = false;
1880 page_vma_mapped_walk_done(&pvmw);
1881 break;
1882 }
1883 if (list_empty(&mm->mmlist)) {
1884 spin_lock(&mmlist_lock);
1885 if (list_empty(&mm->mmlist))
1886 list_add(&mm->mmlist, &init_mm.mmlist);
1887 spin_unlock(&mmlist_lock);
1888 }
1889 dec_mm_counter(mm, MM_ANONPAGES);
1890 inc_mm_counter(mm, MM_SWAPENTS);
1891 swp_pte = swp_entry_to_pte(entry);
1892 if (anon_exclusive)
1893 swp_pte = pte_swp_mkexclusive(swp_pte);
1894 if (pte_soft_dirty(pteval))
1895 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1896 if (pte_uffd_wp(pteval))
1897 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1898 set_pte_at(mm, address, pvmw.pte, swp_pte);
1899 } else {
1900 /*
1901 * This is a locked file-backed folio,
1902 * so it cannot be removed from the page
1903 * cache and replaced by a new folio before
1904 * mmu_notifier_invalidate_range_end, so no
1905 * concurrent thread might update its page table
1906 * to point at a new folio while a device is
1907 * still using this folio.
1908 *
1909 * See Documentation/mm/mmu_notifier.rst
1910 */
1911 dec_mm_counter(mm, mm_counter_file(folio));
1912 }
1913 discard:
1914 if (unlikely(folio_test_hugetlb(folio)))
1915 hugetlb_remove_rmap(folio);
1916 else
1917 folio_remove_rmap_pte(folio, subpage, vma);
1918 if (vma->vm_flags & VM_LOCKED)
1919 mlock_drain_local();
1920 folio_put(folio);
1921 }
1922
1923 mmu_notifier_invalidate_range_end(&range);
1924
1925 return ret;
1926 }
1927
1928 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1929 {
1930 return vma_is_temporary_stack(vma);
1931 }
1932
1933 static int folio_not_mapped(struct folio *folio)
1934 {
1935 return !folio_mapped(folio);
1936 }
1937
1938 /**
1939 * try_to_unmap - Try to remove all page table mappings to a folio.
1940 * @folio: The folio to unmap.
1941 * @flags: action and flags
1942 *
1943 * Tries to remove all the page table entries which are mapping this
1944 * folio. It is the caller's responsibility to check if the folio is
1945 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1946 *
1947 * Context: Caller must hold the folio lock.
1948 */
1949 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1950 {
1951 struct rmap_walk_control rwc = {
1952 .rmap_one = try_to_unmap_one,
1953 .arg = (void *)flags,
1954 .done = folio_not_mapped,
1955 .anon_lock = folio_lock_anon_vma_read,
1956 };
1957
1958 if (flags & TTU_RMAP_LOCKED)
1959 rmap_walk_locked(folio, &rwc);
1960 else
1961 rmap_walk(folio, &rwc);
1962 }
1963
1964 /*
1965 * @arg: enum ttu_flags will be passed to this argument.
1966 *
1967 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1968 * containing migration entries.
1969 */
1970 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1971 unsigned long address, void *arg)
1972 {
1973 struct mm_struct *mm = vma->vm_mm;
1974 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1975 pte_t pteval;
1976 struct page *subpage;
1977 bool anon_exclusive, ret = true;
1978 struct mmu_notifier_range range;
1979 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1980 unsigned long pfn;
1981 unsigned long hsz = 0;
1982
1983 /*
1984 * When racing against e.g. zap_pte_range() on another cpu,
1985 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1986 * try_to_migrate() may return before page_mapped() has become false,
1987 * if page table locking is skipped: use TTU_SYNC to wait for that.
1988 */
1989 if (flags & TTU_SYNC)
1990 pvmw.flags = PVMW_SYNC;
1991
1992 /*
1993 * unmap_page() in mm/huge_memory.c is the only user of migration with
1994 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1995 */
1996 if (flags & TTU_SPLIT_HUGE_PMD)
1997 split_huge_pmd_address(vma, address, true, folio);
1998
1999 /*
2000 * For THP, we have to assume the worse case ie pmd for invalidation.
2001 * For hugetlb, it could be much worse if we need to do pud
2002 * invalidation in the case of pmd sharing.
2003 *
2004 * Note that the page can not be free in this function as call of
2005 * try_to_unmap() must hold a reference on the page.
2006 */
2007 range.end = vma_address_end(&pvmw);
2008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2009 address, range.end);
2010 if (folio_test_hugetlb(folio)) {
2011 /*
2012 * If sharing is possible, start and end will be adjusted
2013 * accordingly.
2014 */
2015 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2016 &range.end);
2017
2018 /* We need the huge page size for set_huge_pte_at() */
2019 hsz = huge_page_size(hstate_vma(vma));
2020 }
2021 mmu_notifier_invalidate_range_start(&range);
2022
2023 while (page_vma_mapped_walk(&pvmw)) {
2024 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2025 /* PMD-mapped THP migration entry */
2026 if (!pvmw.pte) {
2027 subpage = folio_page(folio,
2028 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2029 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2030 !folio_test_pmd_mappable(folio), folio);
2031
2032 if (set_pmd_migration_entry(&pvmw, subpage)) {
2033 ret = false;
2034 page_vma_mapped_walk_done(&pvmw);
2035 break;
2036 }
2037 continue;
2038 }
2039 #endif
2040
2041 /* Unexpected PMD-mapped THP? */
2042 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2043
2044 pfn = pte_pfn(ptep_get(pvmw.pte));
2045
2046 if (folio_is_zone_device(folio)) {
2047 /*
2048 * Our PTE is a non-present device exclusive entry and
2049 * calculating the subpage as for the common case would
2050 * result in an invalid pointer.
2051 *
2052 * Since only PAGE_SIZE pages can currently be
2053 * migrated, just set it to page. This will need to be
2054 * changed when hugepage migrations to device private
2055 * memory are supported.
2056 */
2057 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2058 subpage = &folio->page;
2059 } else {
2060 subpage = folio_page(folio, pfn - folio_pfn(folio));
2061 }
2062 address = pvmw.address;
2063 anon_exclusive = folio_test_anon(folio) &&
2064 PageAnonExclusive(subpage);
2065
2066 if (folio_test_hugetlb(folio)) {
2067 bool anon = folio_test_anon(folio);
2068
2069 /*
2070 * huge_pmd_unshare may unmap an entire PMD page.
2071 * There is no way of knowing exactly which PMDs may
2072 * be cached for this mm, so we must flush them all.
2073 * start/end were already adjusted above to cover this
2074 * range.
2075 */
2076 flush_cache_range(vma, range.start, range.end);
2077
2078 /*
2079 * To call huge_pmd_unshare, i_mmap_rwsem must be
2080 * held in write mode. Caller needs to explicitly
2081 * do this outside rmap routines.
2082 *
2083 * We also must hold hugetlb vma_lock in write mode.
2084 * Lock order dictates acquiring vma_lock BEFORE
2085 * i_mmap_rwsem. We can only try lock here and
2086 * fail if unsuccessful.
2087 */
2088 if (!anon) {
2089 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2090 if (!hugetlb_vma_trylock_write(vma)) {
2091 page_vma_mapped_walk_done(&pvmw);
2092 ret = false;
2093 break;
2094 }
2095 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2096 hugetlb_vma_unlock_write(vma);
2097 flush_tlb_range(vma,
2098 range.start, range.end);
2099
2100 /*
2101 * The ref count of the PMD page was
2102 * dropped which is part of the way map
2103 * counting is done for shared PMDs.
2104 * Return 'true' here. When there is
2105 * no other sharing, huge_pmd_unshare
2106 * returns false and we will unmap the
2107 * actual page and drop map count
2108 * to zero.
2109 */
2110 page_vma_mapped_walk_done(&pvmw);
2111 break;
2112 }
2113 hugetlb_vma_unlock_write(vma);
2114 }
2115 /* Nuke the hugetlb page table entry */
2116 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2117 } else {
2118 flush_cache_page(vma, address, pfn);
2119 /* Nuke the page table entry. */
2120 if (should_defer_flush(mm, flags)) {
2121 /*
2122 * We clear the PTE but do not flush so potentially
2123 * a remote CPU could still be writing to the folio.
2124 * If the entry was previously clean then the
2125 * architecture must guarantee that a clear->dirty
2126 * transition on a cached TLB entry is written through
2127 * and traps if the PTE is unmapped.
2128 */
2129 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2130
2131 set_tlb_ubc_flush_pending(mm, pteval, address);
2132 } else {
2133 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2134 }
2135 }
2136
2137 /* Set the dirty flag on the folio now the pte is gone. */
2138 if (pte_dirty(pteval))
2139 folio_mark_dirty(folio);
2140
2141 /* Update high watermark before we lower rss */
2142 update_hiwater_rss(mm);
2143
2144 if (folio_is_device_private(folio)) {
2145 unsigned long pfn = folio_pfn(folio);
2146 swp_entry_t entry;
2147 pte_t swp_pte;
2148
2149 if (anon_exclusive)
2150 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2151 subpage));
2152
2153 /*
2154 * Store the pfn of the page in a special migration
2155 * pte. do_swap_page() will wait until the migration
2156 * pte is removed and then restart fault handling.
2157 */
2158 entry = pte_to_swp_entry(pteval);
2159 if (is_writable_device_private_entry(entry))
2160 entry = make_writable_migration_entry(pfn);
2161 else if (anon_exclusive)
2162 entry = make_readable_exclusive_migration_entry(pfn);
2163 else
2164 entry = make_readable_migration_entry(pfn);
2165 swp_pte = swp_entry_to_pte(entry);
2166
2167 /*
2168 * pteval maps a zone device page and is therefore
2169 * a swap pte.
2170 */
2171 if (pte_swp_soft_dirty(pteval))
2172 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2173 if (pte_swp_uffd_wp(pteval))
2174 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2175 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2176 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2177 folio_order(folio));
2178 /*
2179 * No need to invalidate here it will synchronize on
2180 * against the special swap migration pte.
2181 */
2182 } else if (PageHWPoison(subpage)) {
2183 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2184 if (folio_test_hugetlb(folio)) {
2185 hugetlb_count_sub(folio_nr_pages(folio), mm);
2186 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2187 hsz);
2188 } else {
2189 dec_mm_counter(mm, mm_counter(folio));
2190 set_pte_at(mm, address, pvmw.pte, pteval);
2191 }
2192
2193 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2194 /*
2195 * The guest indicated that the page content is of no
2196 * interest anymore. Simply discard the pte, vmscan
2197 * will take care of the rest.
2198 * A future reference will then fault in a new zero
2199 * page. When userfaultfd is active, we must not drop
2200 * this page though, as its main user (postcopy
2201 * migration) will not expect userfaults on already
2202 * copied pages.
2203 */
2204 dec_mm_counter(mm, mm_counter(folio));
2205 } else {
2206 swp_entry_t entry;
2207 pte_t swp_pte;
2208
2209 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2210 if (folio_test_hugetlb(folio))
2211 set_huge_pte_at(mm, address, pvmw.pte,
2212 pteval, hsz);
2213 else
2214 set_pte_at(mm, address, pvmw.pte, pteval);
2215 ret = false;
2216 page_vma_mapped_walk_done(&pvmw);
2217 break;
2218 }
2219 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2220 !anon_exclusive, subpage);
2221
2222 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2223 if (folio_test_hugetlb(folio)) {
2224 if (anon_exclusive &&
2225 hugetlb_try_share_anon_rmap(folio)) {
2226 set_huge_pte_at(mm, address, pvmw.pte,
2227 pteval, hsz);
2228 ret = false;
2229 page_vma_mapped_walk_done(&pvmw);
2230 break;
2231 }
2232 } else if (anon_exclusive &&
2233 folio_try_share_anon_rmap_pte(folio, subpage)) {
2234 set_pte_at(mm, address, pvmw.pte, pteval);
2235 ret = false;
2236 page_vma_mapped_walk_done(&pvmw);
2237 break;
2238 }
2239
2240 /*
2241 * Store the pfn of the page in a special migration
2242 * pte. do_swap_page() will wait until the migration
2243 * pte is removed and then restart fault handling.
2244 */
2245 if (pte_write(pteval))
2246 entry = make_writable_migration_entry(
2247 page_to_pfn(subpage));
2248 else if (anon_exclusive)
2249 entry = make_readable_exclusive_migration_entry(
2250 page_to_pfn(subpage));
2251 else
2252 entry = make_readable_migration_entry(
2253 page_to_pfn(subpage));
2254 if (pte_young(pteval))
2255 entry = make_migration_entry_young(entry);
2256 if (pte_dirty(pteval))
2257 entry = make_migration_entry_dirty(entry);
2258 swp_pte = swp_entry_to_pte(entry);
2259 if (pte_soft_dirty(pteval))
2260 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2261 if (pte_uffd_wp(pteval))
2262 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2263 if (folio_test_hugetlb(folio))
2264 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2265 hsz);
2266 else
2267 set_pte_at(mm, address, pvmw.pte, swp_pte);
2268 trace_set_migration_pte(address, pte_val(swp_pte),
2269 folio_order(folio));
2270 /*
2271 * No need to invalidate here it will synchronize on
2272 * against the special swap migration pte.
2273 */
2274 }
2275
2276 if (unlikely(folio_test_hugetlb(folio)))
2277 hugetlb_remove_rmap(folio);
2278 else
2279 folio_remove_rmap_pte(folio, subpage, vma);
2280 if (vma->vm_flags & VM_LOCKED)
2281 mlock_drain_local();
2282 folio_put(folio);
2283 }
2284
2285 mmu_notifier_invalidate_range_end(&range);
2286
2287 return ret;
2288 }
2289
2290 /**
2291 * try_to_migrate - try to replace all page table mappings with swap entries
2292 * @folio: the folio to replace page table entries for
2293 * @flags: action and flags
2294 *
2295 * Tries to remove all the page table entries which are mapping this folio and
2296 * replace them with special swap entries. Caller must hold the folio lock.
2297 */
2298 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2299 {
2300 struct rmap_walk_control rwc = {
2301 .rmap_one = try_to_migrate_one,
2302 .arg = (void *)flags,
2303 .done = folio_not_mapped,
2304 .anon_lock = folio_lock_anon_vma_read,
2305 };
2306
2307 /*
2308 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2309 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2310 */
2311 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2312 TTU_SYNC | TTU_BATCH_FLUSH)))
2313 return;
2314
2315 if (folio_is_zone_device(folio) &&
2316 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2317 return;
2318
2319 /*
2320 * During exec, a temporary VMA is setup and later moved.
2321 * The VMA is moved under the anon_vma lock but not the
2322 * page tables leading to a race where migration cannot
2323 * find the migration ptes. Rather than increasing the
2324 * locking requirements of exec(), migration skips
2325 * temporary VMAs until after exec() completes.
2326 */
2327 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2328 rwc.invalid_vma = invalid_migration_vma;
2329
2330 if (flags & TTU_RMAP_LOCKED)
2331 rmap_walk_locked(folio, &rwc);
2332 else
2333 rmap_walk(folio, &rwc);
2334 }
2335
2336 #ifdef CONFIG_DEVICE_PRIVATE
2337 struct make_exclusive_args {
2338 struct mm_struct *mm;
2339 unsigned long address;
2340 void *owner;
2341 bool valid;
2342 };
2343
2344 static bool page_make_device_exclusive_one(struct folio *folio,
2345 struct vm_area_struct *vma, unsigned long address, void *priv)
2346 {
2347 struct mm_struct *mm = vma->vm_mm;
2348 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2349 struct make_exclusive_args *args = priv;
2350 pte_t pteval;
2351 struct page *subpage;
2352 bool ret = true;
2353 struct mmu_notifier_range range;
2354 swp_entry_t entry;
2355 pte_t swp_pte;
2356 pte_t ptent;
2357
2358 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2359 vma->vm_mm, address, min(vma->vm_end,
2360 address + folio_size(folio)),
2361 args->owner);
2362 mmu_notifier_invalidate_range_start(&range);
2363
2364 while (page_vma_mapped_walk(&pvmw)) {
2365 /* Unexpected PMD-mapped THP? */
2366 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2367
2368 ptent = ptep_get(pvmw.pte);
2369 if (!pte_present(ptent)) {
2370 ret = false;
2371 page_vma_mapped_walk_done(&pvmw);
2372 break;
2373 }
2374
2375 subpage = folio_page(folio,
2376 pte_pfn(ptent) - folio_pfn(folio));
2377 address = pvmw.address;
2378
2379 /* Nuke the page table entry. */
2380 flush_cache_page(vma, address, pte_pfn(ptent));
2381 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2382
2383 /* Set the dirty flag on the folio now the pte is gone. */
2384 if (pte_dirty(pteval))
2385 folio_mark_dirty(folio);
2386
2387 /*
2388 * Check that our target page is still mapped at the expected
2389 * address.
2390 */
2391 if (args->mm == mm && args->address == address &&
2392 pte_write(pteval))
2393 args->valid = true;
2394
2395 /*
2396 * Store the pfn of the page in a special migration
2397 * pte. do_swap_page() will wait until the migration
2398 * pte is removed and then restart fault handling.
2399 */
2400 if (pte_write(pteval))
2401 entry = make_writable_device_exclusive_entry(
2402 page_to_pfn(subpage));
2403 else
2404 entry = make_readable_device_exclusive_entry(
2405 page_to_pfn(subpage));
2406 swp_pte = swp_entry_to_pte(entry);
2407 if (pte_soft_dirty(pteval))
2408 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2409 if (pte_uffd_wp(pteval))
2410 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2411
2412 set_pte_at(mm, address, pvmw.pte, swp_pte);
2413
2414 /*
2415 * There is a reference on the page for the swap entry which has
2416 * been removed, so shouldn't take another.
2417 */
2418 folio_remove_rmap_pte(folio, subpage, vma);
2419 }
2420
2421 mmu_notifier_invalidate_range_end(&range);
2422
2423 return ret;
2424 }
2425
2426 /**
2427 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2428 * @folio: The folio to replace page table entries for.
2429 * @mm: The mm_struct where the folio is expected to be mapped.
2430 * @address: Address where the folio is expected to be mapped.
2431 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2432 *
2433 * Tries to remove all the page table entries which are mapping this
2434 * folio and replace them with special device exclusive swap entries to
2435 * grant a device exclusive access to the folio.
2436 *
2437 * Context: Caller must hold the folio lock.
2438 * Return: false if the page is still mapped, or if it could not be unmapped
2439 * from the expected address. Otherwise returns true (success).
2440 */
2441 static bool folio_make_device_exclusive(struct folio *folio,
2442 struct mm_struct *mm, unsigned long address, void *owner)
2443 {
2444 struct make_exclusive_args args = {
2445 .mm = mm,
2446 .address = address,
2447 .owner = owner,
2448 .valid = false,
2449 };
2450 struct rmap_walk_control rwc = {
2451 .rmap_one = page_make_device_exclusive_one,
2452 .done = folio_not_mapped,
2453 .anon_lock = folio_lock_anon_vma_read,
2454 .arg = &args,
2455 };
2456
2457 /*
2458 * Restrict to anonymous folios for now to avoid potential writeback
2459 * issues.
2460 */
2461 if (!folio_test_anon(folio))
2462 return false;
2463
2464 rmap_walk(folio, &rwc);
2465
2466 return args.valid && !folio_mapcount(folio);
2467 }
2468
2469 /**
2470 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2471 * @mm: mm_struct of associated target process
2472 * @start: start of the region to mark for exclusive device access
2473 * @end: end address of region
2474 * @pages: returns the pages which were successfully marked for exclusive access
2475 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2476 *
2477 * Returns: number of pages found in the range by GUP. A page is marked for
2478 * exclusive access only if the page pointer is non-NULL.
2479 *
2480 * This function finds ptes mapping page(s) to the given address range, locks
2481 * them and replaces mappings with special swap entries preventing userspace CPU
2482 * access. On fault these entries are replaced with the original mapping after
2483 * calling MMU notifiers.
2484 *
2485 * A driver using this to program access from a device must use a mmu notifier
2486 * critical section to hold a device specific lock during programming. Once
2487 * programming is complete it should drop the page lock and reference after
2488 * which point CPU access to the page will revoke the exclusive access.
2489 */
2490 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2491 unsigned long end, struct page **pages,
2492 void *owner)
2493 {
2494 long npages = (end - start) >> PAGE_SHIFT;
2495 long i;
2496
2497 npages = get_user_pages_remote(mm, start, npages,
2498 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2499 pages, NULL);
2500 if (npages < 0)
2501 return npages;
2502
2503 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2504 struct folio *folio = page_folio(pages[i]);
2505 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2506 folio_put(folio);
2507 pages[i] = NULL;
2508 continue;
2509 }
2510
2511 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2512 folio_unlock(folio);
2513 folio_put(folio);
2514 pages[i] = NULL;
2515 }
2516 }
2517
2518 return npages;
2519 }
2520 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2521 #endif
2522
2523 void __put_anon_vma(struct anon_vma *anon_vma)
2524 {
2525 struct anon_vma *root = anon_vma->root;
2526
2527 anon_vma_free(anon_vma);
2528 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2529 anon_vma_free(root);
2530 }
2531
2532 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2533 struct rmap_walk_control *rwc)
2534 {
2535 struct anon_vma *anon_vma;
2536
2537 if (rwc->anon_lock)
2538 return rwc->anon_lock(folio, rwc);
2539
2540 /*
2541 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2542 * because that depends on page_mapped(); but not all its usages
2543 * are holding mmap_lock. Users without mmap_lock are required to
2544 * take a reference count to prevent the anon_vma disappearing
2545 */
2546 anon_vma = folio_anon_vma(folio);
2547 if (!anon_vma)
2548 return NULL;
2549
2550 if (anon_vma_trylock_read(anon_vma))
2551 goto out;
2552
2553 if (rwc->try_lock) {
2554 anon_vma = NULL;
2555 rwc->contended = true;
2556 goto out;
2557 }
2558
2559 anon_vma_lock_read(anon_vma);
2560 out:
2561 return anon_vma;
2562 }
2563
2564 /*
2565 * rmap_walk_anon - do something to anonymous page using the object-based
2566 * rmap method
2567 * @folio: the folio to be handled
2568 * @rwc: control variable according to each walk type
2569 * @locked: caller holds relevant rmap lock
2570 *
2571 * Find all the mappings of a folio using the mapping pointer and the vma
2572 * chains contained in the anon_vma struct it points to.
2573 */
2574 static void rmap_walk_anon(struct folio *folio,
2575 struct rmap_walk_control *rwc, bool locked)
2576 {
2577 struct anon_vma *anon_vma;
2578 pgoff_t pgoff_start, pgoff_end;
2579 struct anon_vma_chain *avc;
2580
2581 if (locked) {
2582 anon_vma = folio_anon_vma(folio);
2583 /* anon_vma disappear under us? */
2584 VM_BUG_ON_FOLIO(!anon_vma, folio);
2585 } else {
2586 anon_vma = rmap_walk_anon_lock(folio, rwc);
2587 }
2588 if (!anon_vma)
2589 return;
2590
2591 pgoff_start = folio_pgoff(folio);
2592 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2593 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2594 pgoff_start, pgoff_end) {
2595 struct vm_area_struct *vma = avc->vma;
2596 unsigned long address = vma_address(vma, pgoff_start,
2597 folio_nr_pages(folio));
2598
2599 VM_BUG_ON_VMA(address == -EFAULT, vma);
2600 cond_resched();
2601
2602 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2603 continue;
2604
2605 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2606 break;
2607 if (rwc->done && rwc->done(folio))
2608 break;
2609 }
2610
2611 if (!locked)
2612 anon_vma_unlock_read(anon_vma);
2613 }
2614
2615 /*
2616 * rmap_walk_file - do something to file page using the object-based rmap method
2617 * @folio: the folio to be handled
2618 * @rwc: control variable according to each walk type
2619 * @locked: caller holds relevant rmap lock
2620 *
2621 * Find all the mappings of a folio using the mapping pointer and the vma chains
2622 * contained in the address_space struct it points to.
2623 */
2624 static void rmap_walk_file(struct folio *folio,
2625 struct rmap_walk_control *rwc, bool locked)
2626 {
2627 struct address_space *mapping = folio_mapping(folio);
2628 pgoff_t pgoff_start, pgoff_end;
2629 struct vm_area_struct *vma;
2630
2631 /*
2632 * The page lock not only makes sure that page->mapping cannot
2633 * suddenly be NULLified by truncation, it makes sure that the
2634 * structure at mapping cannot be freed and reused yet,
2635 * so we can safely take mapping->i_mmap_rwsem.
2636 */
2637 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2638
2639 if (!mapping)
2640 return;
2641
2642 pgoff_start = folio_pgoff(folio);
2643 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2644 if (!locked) {
2645 if (i_mmap_trylock_read(mapping))
2646 goto lookup;
2647
2648 if (rwc->try_lock) {
2649 rwc->contended = true;
2650 return;
2651 }
2652
2653 i_mmap_lock_read(mapping);
2654 }
2655 lookup:
2656 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2657 pgoff_start, pgoff_end) {
2658 unsigned long address = vma_address(vma, pgoff_start,
2659 folio_nr_pages(folio));
2660
2661 VM_BUG_ON_VMA(address == -EFAULT, vma);
2662 cond_resched();
2663
2664 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2665 continue;
2666
2667 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2668 goto done;
2669 if (rwc->done && rwc->done(folio))
2670 goto done;
2671 }
2672
2673 done:
2674 if (!locked)
2675 i_mmap_unlock_read(mapping);
2676 }
2677
2678 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2679 {
2680 if (unlikely(folio_test_ksm(folio)))
2681 rmap_walk_ksm(folio, rwc);
2682 else if (folio_test_anon(folio))
2683 rmap_walk_anon(folio, rwc, false);
2684 else
2685 rmap_walk_file(folio, rwc, false);
2686 }
2687
2688 /* Like rmap_walk, but caller holds relevant rmap lock */
2689 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2690 {
2691 /* no ksm support for now */
2692 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2693 if (folio_test_anon(folio))
2694 rmap_walk_anon(folio, rwc, true);
2695 else
2696 rmap_walk_file(folio, rwc, true);
2697 }
2698
2699 #ifdef CONFIG_HUGETLB_PAGE
2700 /*
2701 * The following two functions are for anonymous (private mapped) hugepages.
2702 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2703 * and no lru code, because we handle hugepages differently from common pages.
2704 */
2705 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2706 unsigned long address, rmap_t flags)
2707 {
2708 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2709 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2710
2711 atomic_inc(&folio->_entire_mapcount);
2712 atomic_inc(&folio->_large_mapcount);
2713 if (flags & RMAP_EXCLUSIVE)
2714 SetPageAnonExclusive(&folio->page);
2715 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2716 PageAnonExclusive(&folio->page), folio);
2717 }
2718
2719 void hugetlb_add_new_anon_rmap(struct folio *folio,
2720 struct vm_area_struct *vma, unsigned long address)
2721 {
2722 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2723
2724 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2725 /* increment count (starts at -1) */
2726 atomic_set(&folio->_entire_mapcount, 0);
2727 atomic_set(&folio->_large_mapcount, 0);
2728 folio_clear_hugetlb_restore_reserve(folio);
2729 __folio_set_anon(folio, vma, address, true);
2730 SetPageAnonExclusive(&folio->page);
2731 }
2732 #endif /* CONFIG_HUGETLB_PAGE */