]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/shmem.c
arm64: tegra: Remove duplicate nodes on Jetson Orin NX
[thirdparty/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98
99 /*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104 struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 };
111
112 struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp,
150 gfp_t gfp, struct vm_area_struct *vma,
151 vm_fault_t *fault_type);
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 int err = -ENOSPC;
215
216 if (shmem_acct_block(info->flags, pages))
217 return err;
218
219 might_sleep(); /* when quotas */
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224
225 err = dquot_alloc_block_nodirty(inode, pages);
226 if (err)
227 goto unacct;
228
229 percpu_counter_add(&sbinfo->used_blocks, pages);
230 } else {
231 err = dquot_alloc_block_nodirty(inode, pages);
232 if (err)
233 goto unacct;
234 }
235
236 return 0;
237
238 unacct:
239 shmem_unacct_blocks(info->flags, pages);
240 return err;
241 }
242
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248 might_sleep(); /* when quotas */
249 dquot_free_block_nodirty(inode, pages);
250
251 if (sbinfo->max_blocks)
252 percpu_counter_sub(&sbinfo->used_blocks, pages);
253 shmem_unacct_blocks(info->flags, pages);
254 }
255
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278
279 #ifdef CONFIG_TMPFS_QUOTA
280
281 static int shmem_enable_quotas(struct super_block *sb,
282 unsigned short quota_types)
283 {
284 int type, err = 0;
285
286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 if (!(quota_types & (1 << type)))
289 continue;
290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 DQUOT_USAGE_ENABLED |
292 DQUOT_LIMITS_ENABLED);
293 if (err)
294 goto out_err;
295 }
296 return 0;
297
298 out_err:
299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 type, err);
301 for (type--; type >= 0; type--)
302 dquot_quota_off(sb, type);
303 return err;
304 }
305
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 int type;
309
310 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 dquot_quota_off(sb, type);
312 }
313
314 static struct dquot **shmem_get_dquots(struct inode *inode)
315 {
316 return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319
320 /*
321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322 * produces a novel ino for the newly allocated inode.
323 *
324 * It may also be called when making a hard link to permit the space needed by
325 * each dentry. However, in that case, no new inode number is needed since that
326 * internally draws from another pool of inode numbers (currently global
327 * get_next_ino()). This case is indicated by passing NULL as inop.
328 */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 ino_t ino;
334
335 if (!(sb->s_flags & SB_KERNMOUNT)) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 if (sbinfo->max_inodes) {
338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 raw_spin_unlock(&sbinfo->stat_lock);
340 return -ENOSPC;
341 }
342 sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 }
344 if (inop) {
345 ino = sbinfo->next_ino++;
346 if (unlikely(is_zero_ino(ino)))
347 ino = sbinfo->next_ino++;
348 if (unlikely(!sbinfo->full_inums &&
349 ino > UINT_MAX)) {
350 /*
351 * Emulate get_next_ino uint wraparound for
352 * compatibility
353 */
354 if (IS_ENABLED(CONFIG_64BIT))
355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 __func__, MINOR(sb->s_dev));
357 sbinfo->next_ino = 1;
358 ino = sbinfo->next_ino++;
359 }
360 *inop = ino;
361 }
362 raw_spin_unlock(&sbinfo->stat_lock);
363 } else if (inop) {
364 /*
365 * __shmem_file_setup, one of our callers, is lock-free: it
366 * doesn't hold stat_lock in shmem_reserve_inode since
367 * max_inodes is always 0, and is called from potentially
368 * unknown contexts. As such, use a per-cpu batched allocator
369 * which doesn't require the per-sb stat_lock unless we are at
370 * the batch boundary.
371 *
372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 * shmem mounts are not exposed to userspace, so we don't need
374 * to worry about things like glibc compatibility.
375 */
376 ino_t *next_ino;
377
378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 ino = *next_ino;
380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 raw_spin_lock(&sbinfo->stat_lock);
382 ino = sbinfo->next_ino;
383 sbinfo->next_ino += SHMEM_INO_BATCH;
384 raw_spin_unlock(&sbinfo->stat_lock);
385 if (unlikely(is_zero_ino(ino)))
386 ino++;
387 }
388 *inop = ino;
389 *next_ino = ++ino;
390 put_cpu();
391 }
392
393 return 0;
394 }
395
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 if (sbinfo->max_inodes) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 }
404 }
405
406 /**
407 * shmem_recalc_inode - recalculate the block usage of an inode
408 * @inode: inode to recalc
409 * @alloced: the change in number of pages allocated to inode
410 * @swapped: the change in number of pages swapped from inode
411 *
412 * We have to calculate the free blocks since the mm can drop
413 * undirtied hole pages behind our back.
414 *
415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417 */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 struct shmem_inode_info *info = SHMEM_I(inode);
421 long freed;
422
423 spin_lock(&info->lock);
424 info->alloced += alloced;
425 info->swapped += swapped;
426 freed = info->alloced - info->swapped -
427 READ_ONCE(inode->i_mapping->nrpages);
428 /*
429 * Special case: whereas normally shmem_recalc_inode() is called
430 * after i_mapping->nrpages has already been adjusted (up or down),
431 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 * been freed. Compensate here, to avoid the need for a followup call.
434 */
435 if (swapped > 0)
436 freed += swapped;
437 if (freed > 0)
438 info->alloced -= freed;
439 spin_unlock(&info->lock);
440
441 /* The quota case may block */
442 if (freed > 0)
443 shmem_inode_unacct_blocks(inode, freed);
444 }
445
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 struct address_space *mapping = inode->i_mapping;
449
450 if (shmem_inode_acct_block(inode, pages))
451 return false;
452
453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 xa_lock_irq(&mapping->i_pages);
455 mapping->nrpages += pages;
456 xa_unlock_irq(&mapping->i_pages);
457
458 shmem_recalc_inode(inode, pages, 0);
459 return true;
460 }
461
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 /* pages argument is currently unused: keep it to help debugging */
465 /* nrpages adjustment done by __filemap_remove_folio() or caller */
466
467 shmem_recalc_inode(inode, 0, 0);
468 }
469
470 /*
471 * Replace item expected in xarray by a new item, while holding xa_lock.
472 */
473 static int shmem_replace_entry(struct address_space *mapping,
474 pgoff_t index, void *expected, void *replacement)
475 {
476 XA_STATE(xas, &mapping->i_pages, index);
477 void *item;
478
479 VM_BUG_ON(!expected);
480 VM_BUG_ON(!replacement);
481 item = xas_load(&xas);
482 if (item != expected)
483 return -ENOENT;
484 xas_store(&xas, replacement);
485 return 0;
486 }
487
488 /*
489 * Sometimes, before we decide whether to proceed or to fail, we must check
490 * that an entry was not already brought back from swap by a racing thread.
491 *
492 * Checking page is not enough: by the time a SwapCache page is locked, it
493 * might be reused, and again be SwapCache, using the same swap as before.
494 */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 pgoff_t index, swp_entry_t swap)
497 {
498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500
501 /*
502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503 *
504 * SHMEM_HUGE_NEVER:
505 * disables huge pages for the mount;
506 * SHMEM_HUGE_ALWAYS:
507 * enables huge pages for the mount;
508 * SHMEM_HUGE_WITHIN_SIZE:
509 * only allocate huge pages if the page will be fully within i_size,
510 * also respect fadvise()/madvise() hints;
511 * SHMEM_HUGE_ADVISE:
512 * only allocate huge pages if requested with fadvise()/madvise();
513 */
514
515 #define SHMEM_HUGE_NEVER 0
516 #define SHMEM_HUGE_ALWAYS 1
517 #define SHMEM_HUGE_WITHIN_SIZE 2
518 #define SHMEM_HUGE_ADVISE 3
519
520 /*
521 * Special values.
522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523 *
524 * SHMEM_HUGE_DENY:
525 * disables huge on shm_mnt and all mounts, for emergency use;
526 * SHMEM_HUGE_FORCE:
527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528 *
529 */
530 #define SHMEM_HUGE_DENY (-1)
531 #define SHMEM_HUGE_FORCE (-2)
532
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537
538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
539 struct mm_struct *mm, unsigned long vm_flags)
540 {
541 loff_t i_size;
542
543 if (!S_ISREG(inode->i_mode))
544 return false;
545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
546 return false;
547 if (shmem_huge == SHMEM_HUGE_DENY)
548 return false;
549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
550 return true;
551
552 switch (SHMEM_SB(inode->i_sb)->huge) {
553 case SHMEM_HUGE_ALWAYS:
554 return true;
555 case SHMEM_HUGE_WITHIN_SIZE:
556 index = round_up(index + 1, HPAGE_PMD_NR);
557 i_size = round_up(i_size_read(inode), PAGE_SIZE);
558 if (i_size >> PAGE_SHIFT >= index)
559 return true;
560 fallthrough;
561 case SHMEM_HUGE_ADVISE:
562 if (mm && (vm_flags & VM_HUGEPAGE))
563 return true;
564 fallthrough;
565 default:
566 return false;
567 }
568 }
569
570 #if defined(CONFIG_SYSFS)
571 static int shmem_parse_huge(const char *str)
572 {
573 if (!strcmp(str, "never"))
574 return SHMEM_HUGE_NEVER;
575 if (!strcmp(str, "always"))
576 return SHMEM_HUGE_ALWAYS;
577 if (!strcmp(str, "within_size"))
578 return SHMEM_HUGE_WITHIN_SIZE;
579 if (!strcmp(str, "advise"))
580 return SHMEM_HUGE_ADVISE;
581 if (!strcmp(str, "deny"))
582 return SHMEM_HUGE_DENY;
583 if (!strcmp(str, "force"))
584 return SHMEM_HUGE_FORCE;
585 return -EINVAL;
586 }
587 #endif
588
589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
590 static const char *shmem_format_huge(int huge)
591 {
592 switch (huge) {
593 case SHMEM_HUGE_NEVER:
594 return "never";
595 case SHMEM_HUGE_ALWAYS:
596 return "always";
597 case SHMEM_HUGE_WITHIN_SIZE:
598 return "within_size";
599 case SHMEM_HUGE_ADVISE:
600 return "advise";
601 case SHMEM_HUGE_DENY:
602 return "deny";
603 case SHMEM_HUGE_FORCE:
604 return "force";
605 default:
606 VM_BUG_ON(1);
607 return "bad_val";
608 }
609 }
610 #endif
611
612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
613 struct shrink_control *sc, unsigned long nr_to_split)
614 {
615 LIST_HEAD(list), *pos, *next;
616 LIST_HEAD(to_remove);
617 struct inode *inode;
618 struct shmem_inode_info *info;
619 struct folio *folio;
620 unsigned long batch = sc ? sc->nr_to_scan : 128;
621 int split = 0;
622
623 if (list_empty(&sbinfo->shrinklist))
624 return SHRINK_STOP;
625
626 spin_lock(&sbinfo->shrinklist_lock);
627 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
628 info = list_entry(pos, struct shmem_inode_info, shrinklist);
629
630 /* pin the inode */
631 inode = igrab(&info->vfs_inode);
632
633 /* inode is about to be evicted */
634 if (!inode) {
635 list_del_init(&info->shrinklist);
636 goto next;
637 }
638
639 /* Check if there's anything to gain */
640 if (round_up(inode->i_size, PAGE_SIZE) ==
641 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
642 list_move(&info->shrinklist, &to_remove);
643 goto next;
644 }
645
646 list_move(&info->shrinklist, &list);
647 next:
648 sbinfo->shrinklist_len--;
649 if (!--batch)
650 break;
651 }
652 spin_unlock(&sbinfo->shrinklist_lock);
653
654 list_for_each_safe(pos, next, &to_remove) {
655 info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 inode = &info->vfs_inode;
657 list_del_init(&info->shrinklist);
658 iput(inode);
659 }
660
661 list_for_each_safe(pos, next, &list) {
662 int ret;
663 pgoff_t index;
664
665 info = list_entry(pos, struct shmem_inode_info, shrinklist);
666 inode = &info->vfs_inode;
667
668 if (nr_to_split && split >= nr_to_split)
669 goto move_back;
670
671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
672 folio = filemap_get_folio(inode->i_mapping, index);
673 if (IS_ERR(folio))
674 goto drop;
675
676 /* No huge page at the end of the file: nothing to split */
677 if (!folio_test_large(folio)) {
678 folio_put(folio);
679 goto drop;
680 }
681
682 /*
683 * Move the inode on the list back to shrinklist if we failed
684 * to lock the page at this time.
685 *
686 * Waiting for the lock may lead to deadlock in the
687 * reclaim path.
688 */
689 if (!folio_trylock(folio)) {
690 folio_put(folio);
691 goto move_back;
692 }
693
694 ret = split_folio(folio);
695 folio_unlock(folio);
696 folio_put(folio);
697
698 /* If split failed move the inode on the list back to shrinklist */
699 if (ret)
700 goto move_back;
701
702 split++;
703 drop:
704 list_del_init(&info->shrinklist);
705 goto put;
706 move_back:
707 /*
708 * Make sure the inode is either on the global list or deleted
709 * from any local list before iput() since it could be deleted
710 * in another thread once we put the inode (then the local list
711 * is corrupted).
712 */
713 spin_lock(&sbinfo->shrinklist_lock);
714 list_move(&info->shrinklist, &sbinfo->shrinklist);
715 sbinfo->shrinklist_len++;
716 spin_unlock(&sbinfo->shrinklist_lock);
717 put:
718 iput(inode);
719 }
720
721 return split;
722 }
723
724 static long shmem_unused_huge_scan(struct super_block *sb,
725 struct shrink_control *sc)
726 {
727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
728
729 if (!READ_ONCE(sbinfo->shrinklist_len))
730 return SHRINK_STOP;
731
732 return shmem_unused_huge_shrink(sbinfo, sc, 0);
733 }
734
735 static long shmem_unused_huge_count(struct super_block *sb,
736 struct shrink_control *sc)
737 {
738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 return READ_ONCE(sbinfo->shrinklist_len);
740 }
741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
742
743 #define shmem_huge SHMEM_HUGE_DENY
744
745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
746 struct mm_struct *mm, unsigned long vm_flags)
747 {
748 return false;
749 }
750
751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757
758 /*
759 * Like filemap_add_folio, but error if expected item has gone.
760 */
761 static int shmem_add_to_page_cache(struct folio *folio,
762 struct address_space *mapping,
763 pgoff_t index, void *expected, gfp_t gfp,
764 struct mm_struct *charge_mm)
765 {
766 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
767 long nr = folio_nr_pages(folio);
768 int error;
769
770 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
773 VM_BUG_ON(expected && folio_test_large(folio));
774
775 folio_ref_add(folio, nr);
776 folio->mapping = mapping;
777 folio->index = index;
778
779 if (!folio_test_swapcache(folio)) {
780 error = mem_cgroup_charge(folio, charge_mm, gfp);
781 if (error) {
782 if (folio_test_pmd_mappable(folio)) {
783 count_vm_event(THP_FILE_FALLBACK);
784 count_vm_event(THP_FILE_FALLBACK_CHARGE);
785 }
786 goto error;
787 }
788 }
789 folio_throttle_swaprate(folio, gfp);
790
791 do {
792 xas_lock_irq(&xas);
793 if (expected != xas_find_conflict(&xas)) {
794 xas_set_err(&xas, -EEXIST);
795 goto unlock;
796 }
797 if (expected && xas_find_conflict(&xas)) {
798 xas_set_err(&xas, -EEXIST);
799 goto unlock;
800 }
801 xas_store(&xas, folio);
802 if (xas_error(&xas))
803 goto unlock;
804 if (folio_test_pmd_mappable(folio)) {
805 count_vm_event(THP_FILE_ALLOC);
806 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
807 }
808 mapping->nrpages += nr;
809 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
810 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
811 unlock:
812 xas_unlock_irq(&xas);
813 } while (xas_nomem(&xas, gfp));
814
815 if (xas_error(&xas)) {
816 error = xas_error(&xas);
817 goto error;
818 }
819
820 return 0;
821 error:
822 folio->mapping = NULL;
823 folio_ref_sub(folio, nr);
824 return error;
825 }
826
827 /*
828 * Like delete_from_page_cache, but substitutes swap for @folio.
829 */
830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
831 {
832 struct address_space *mapping = folio->mapping;
833 long nr = folio_nr_pages(folio);
834 int error;
835
836 xa_lock_irq(&mapping->i_pages);
837 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
838 folio->mapping = NULL;
839 mapping->nrpages -= nr;
840 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
841 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
842 xa_unlock_irq(&mapping->i_pages);
843 folio_put(folio);
844 BUG_ON(error);
845 }
846
847 /*
848 * Remove swap entry from page cache, free the swap and its page cache.
849 */
850 static int shmem_free_swap(struct address_space *mapping,
851 pgoff_t index, void *radswap)
852 {
853 void *old;
854
855 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
856 if (old != radswap)
857 return -ENOENT;
858 free_swap_and_cache(radix_to_swp_entry(radswap));
859 return 0;
860 }
861
862 /*
863 * Determine (in bytes) how many of the shmem object's pages mapped by the
864 * given offsets are swapped out.
865 *
866 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
867 * as long as the inode doesn't go away and racy results are not a problem.
868 */
869 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
870 pgoff_t start, pgoff_t end)
871 {
872 XA_STATE(xas, &mapping->i_pages, start);
873 struct page *page;
874 unsigned long swapped = 0;
875 unsigned long max = end - 1;
876
877 rcu_read_lock();
878 xas_for_each(&xas, page, max) {
879 if (xas_retry(&xas, page))
880 continue;
881 if (xa_is_value(page))
882 swapped++;
883 if (xas.xa_index == max)
884 break;
885 if (need_resched()) {
886 xas_pause(&xas);
887 cond_resched_rcu();
888 }
889 }
890
891 rcu_read_unlock();
892
893 return swapped << PAGE_SHIFT;
894 }
895
896 /*
897 * Determine (in bytes) how many of the shmem object's pages mapped by the
898 * given vma is swapped out.
899 *
900 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
901 * as long as the inode doesn't go away and racy results are not a problem.
902 */
903 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
904 {
905 struct inode *inode = file_inode(vma->vm_file);
906 struct shmem_inode_info *info = SHMEM_I(inode);
907 struct address_space *mapping = inode->i_mapping;
908 unsigned long swapped;
909
910 /* Be careful as we don't hold info->lock */
911 swapped = READ_ONCE(info->swapped);
912
913 /*
914 * The easier cases are when the shmem object has nothing in swap, or
915 * the vma maps it whole. Then we can simply use the stats that we
916 * already track.
917 */
918 if (!swapped)
919 return 0;
920
921 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
922 return swapped << PAGE_SHIFT;
923
924 /* Here comes the more involved part */
925 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
926 vma->vm_pgoff + vma_pages(vma));
927 }
928
929 /*
930 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
931 */
932 void shmem_unlock_mapping(struct address_space *mapping)
933 {
934 struct folio_batch fbatch;
935 pgoff_t index = 0;
936
937 folio_batch_init(&fbatch);
938 /*
939 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
940 */
941 while (!mapping_unevictable(mapping) &&
942 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
943 check_move_unevictable_folios(&fbatch);
944 folio_batch_release(&fbatch);
945 cond_resched();
946 }
947 }
948
949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
950 {
951 struct folio *folio;
952
953 /*
954 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
955 * beyond i_size, and reports fallocated folios as holes.
956 */
957 folio = filemap_get_entry(inode->i_mapping, index);
958 if (!folio)
959 return folio;
960 if (!xa_is_value(folio)) {
961 folio_lock(folio);
962 if (folio->mapping == inode->i_mapping)
963 return folio;
964 /* The folio has been swapped out */
965 folio_unlock(folio);
966 folio_put(folio);
967 }
968 /*
969 * But read a folio back from swap if any of it is within i_size
970 * (although in some cases this is just a waste of time).
971 */
972 folio = NULL;
973 shmem_get_folio(inode, index, &folio, SGP_READ);
974 return folio;
975 }
976
977 /*
978 * Remove range of pages and swap entries from page cache, and free them.
979 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
980 */
981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
982 bool unfalloc)
983 {
984 struct address_space *mapping = inode->i_mapping;
985 struct shmem_inode_info *info = SHMEM_I(inode);
986 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
987 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
988 struct folio_batch fbatch;
989 pgoff_t indices[PAGEVEC_SIZE];
990 struct folio *folio;
991 bool same_folio;
992 long nr_swaps_freed = 0;
993 pgoff_t index;
994 int i;
995
996 if (lend == -1)
997 end = -1; /* unsigned, so actually very big */
998
999 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1000 info->fallocend = start;
1001
1002 folio_batch_init(&fbatch);
1003 index = start;
1004 while (index < end && find_lock_entries(mapping, &index, end - 1,
1005 &fbatch, indices)) {
1006 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1007 folio = fbatch.folios[i];
1008
1009 if (xa_is_value(folio)) {
1010 if (unfalloc)
1011 continue;
1012 nr_swaps_freed += !shmem_free_swap(mapping,
1013 indices[i], folio);
1014 continue;
1015 }
1016
1017 if (!unfalloc || !folio_test_uptodate(folio))
1018 truncate_inode_folio(mapping, folio);
1019 folio_unlock(folio);
1020 }
1021 folio_batch_remove_exceptionals(&fbatch);
1022 folio_batch_release(&fbatch);
1023 cond_resched();
1024 }
1025
1026 /*
1027 * When undoing a failed fallocate, we want none of the partial folio
1028 * zeroing and splitting below, but shall want to truncate the whole
1029 * folio when !uptodate indicates that it was added by this fallocate,
1030 * even when [lstart, lend] covers only a part of the folio.
1031 */
1032 if (unfalloc)
1033 goto whole_folios;
1034
1035 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1036 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1037 if (folio) {
1038 same_folio = lend < folio_pos(folio) + folio_size(folio);
1039 folio_mark_dirty(folio);
1040 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1041 start = folio_next_index(folio);
1042 if (same_folio)
1043 end = folio->index;
1044 }
1045 folio_unlock(folio);
1046 folio_put(folio);
1047 folio = NULL;
1048 }
1049
1050 if (!same_folio)
1051 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1052 if (folio) {
1053 folio_mark_dirty(folio);
1054 if (!truncate_inode_partial_folio(folio, lstart, lend))
1055 end = folio->index;
1056 folio_unlock(folio);
1057 folio_put(folio);
1058 }
1059
1060 whole_folios:
1061
1062 index = start;
1063 while (index < end) {
1064 cond_resched();
1065
1066 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1067 indices)) {
1068 /* If all gone or hole-punch or unfalloc, we're done */
1069 if (index == start || end != -1)
1070 break;
1071 /* But if truncating, restart to make sure all gone */
1072 index = start;
1073 continue;
1074 }
1075 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1076 folio = fbatch.folios[i];
1077
1078 if (xa_is_value(folio)) {
1079 if (unfalloc)
1080 continue;
1081 if (shmem_free_swap(mapping, indices[i], folio)) {
1082 /* Swap was replaced by page: retry */
1083 index = indices[i];
1084 break;
1085 }
1086 nr_swaps_freed++;
1087 continue;
1088 }
1089
1090 folio_lock(folio);
1091
1092 if (!unfalloc || !folio_test_uptodate(folio)) {
1093 if (folio_mapping(folio) != mapping) {
1094 /* Page was replaced by swap: retry */
1095 folio_unlock(folio);
1096 index = indices[i];
1097 break;
1098 }
1099 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1100 folio);
1101 truncate_inode_folio(mapping, folio);
1102 }
1103 folio_unlock(folio);
1104 }
1105 folio_batch_remove_exceptionals(&fbatch);
1106 folio_batch_release(&fbatch);
1107 }
1108
1109 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1110 }
1111
1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113 {
1114 shmem_undo_range(inode, lstart, lend, false);
1115 inode->i_mtime = inode_set_ctime_current(inode);
1116 inode_inc_iversion(inode);
1117 }
1118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119
1120 static int shmem_getattr(struct mnt_idmap *idmap,
1121 const struct path *path, struct kstat *stat,
1122 u32 request_mask, unsigned int query_flags)
1123 {
1124 struct inode *inode = path->dentry->d_inode;
1125 struct shmem_inode_info *info = SHMEM_I(inode);
1126
1127 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128 shmem_recalc_inode(inode, 0, 0);
1129
1130 if (info->fsflags & FS_APPEND_FL)
1131 stat->attributes |= STATX_ATTR_APPEND;
1132 if (info->fsflags & FS_IMMUTABLE_FL)
1133 stat->attributes |= STATX_ATTR_IMMUTABLE;
1134 if (info->fsflags & FS_NODUMP_FL)
1135 stat->attributes |= STATX_ATTR_NODUMP;
1136 stat->attributes_mask |= (STATX_ATTR_APPEND |
1137 STATX_ATTR_IMMUTABLE |
1138 STATX_ATTR_NODUMP);
1139 generic_fillattr(idmap, request_mask, inode, stat);
1140
1141 if (shmem_is_huge(inode, 0, false, NULL, 0))
1142 stat->blksize = HPAGE_PMD_SIZE;
1143
1144 if (request_mask & STATX_BTIME) {
1145 stat->result_mask |= STATX_BTIME;
1146 stat->btime.tv_sec = info->i_crtime.tv_sec;
1147 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148 }
1149
1150 return 0;
1151 }
1152
1153 static int shmem_setattr(struct mnt_idmap *idmap,
1154 struct dentry *dentry, struct iattr *attr)
1155 {
1156 struct inode *inode = d_inode(dentry);
1157 struct shmem_inode_info *info = SHMEM_I(inode);
1158 int error;
1159 bool update_mtime = false;
1160 bool update_ctime = true;
1161
1162 error = setattr_prepare(idmap, dentry, attr);
1163 if (error)
1164 return error;
1165
1166 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168 return -EPERM;
1169 }
1170 }
1171
1172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173 loff_t oldsize = inode->i_size;
1174 loff_t newsize = attr->ia_size;
1175
1176 /* protected by i_rwsem */
1177 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179 return -EPERM;
1180
1181 if (newsize != oldsize) {
1182 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183 oldsize, newsize);
1184 if (error)
1185 return error;
1186 i_size_write(inode, newsize);
1187 update_mtime = true;
1188 } else {
1189 update_ctime = false;
1190 }
1191 if (newsize <= oldsize) {
1192 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193 if (oldsize > holebegin)
1194 unmap_mapping_range(inode->i_mapping,
1195 holebegin, 0, 1);
1196 if (info->alloced)
1197 shmem_truncate_range(inode,
1198 newsize, (loff_t)-1);
1199 /* unmap again to remove racily COWed private pages */
1200 if (oldsize > holebegin)
1201 unmap_mapping_range(inode->i_mapping,
1202 holebegin, 0, 1);
1203 }
1204 }
1205
1206 if (is_quota_modification(idmap, inode, attr)) {
1207 error = dquot_initialize(inode);
1208 if (error)
1209 return error;
1210 }
1211
1212 /* Transfer quota accounting */
1213 if (i_uid_needs_update(idmap, attr, inode) ||
1214 i_gid_needs_update(idmap, attr, inode)) {
1215 error = dquot_transfer(idmap, inode, attr);
1216
1217 if (error)
1218 return error;
1219 }
1220
1221 setattr_copy(idmap, inode, attr);
1222 if (attr->ia_valid & ATTR_MODE)
1223 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1224 if (!error && update_ctime) {
1225 inode_set_ctime_current(inode);
1226 if (update_mtime)
1227 inode->i_mtime = inode_get_ctime(inode);
1228 inode_inc_iversion(inode);
1229 }
1230 return error;
1231 }
1232
1233 static void shmem_evict_inode(struct inode *inode)
1234 {
1235 struct shmem_inode_info *info = SHMEM_I(inode);
1236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1237 size_t freed = 0;
1238
1239 if (shmem_mapping(inode->i_mapping)) {
1240 shmem_unacct_size(info->flags, inode->i_size);
1241 inode->i_size = 0;
1242 mapping_set_exiting(inode->i_mapping);
1243 shmem_truncate_range(inode, 0, (loff_t)-1);
1244 if (!list_empty(&info->shrinklist)) {
1245 spin_lock(&sbinfo->shrinklist_lock);
1246 if (!list_empty(&info->shrinklist)) {
1247 list_del_init(&info->shrinklist);
1248 sbinfo->shrinklist_len--;
1249 }
1250 spin_unlock(&sbinfo->shrinklist_lock);
1251 }
1252 while (!list_empty(&info->swaplist)) {
1253 /* Wait while shmem_unuse() is scanning this inode... */
1254 wait_var_event(&info->stop_eviction,
1255 !atomic_read(&info->stop_eviction));
1256 mutex_lock(&shmem_swaplist_mutex);
1257 /* ...but beware of the race if we peeked too early */
1258 if (!atomic_read(&info->stop_eviction))
1259 list_del_init(&info->swaplist);
1260 mutex_unlock(&shmem_swaplist_mutex);
1261 }
1262 }
1263
1264 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1265 shmem_free_inode(inode->i_sb, freed);
1266 WARN_ON(inode->i_blocks);
1267 clear_inode(inode);
1268 #ifdef CONFIG_TMPFS_QUOTA
1269 dquot_free_inode(inode);
1270 dquot_drop(inode);
1271 #endif
1272 }
1273
1274 static int shmem_find_swap_entries(struct address_space *mapping,
1275 pgoff_t start, struct folio_batch *fbatch,
1276 pgoff_t *indices, unsigned int type)
1277 {
1278 XA_STATE(xas, &mapping->i_pages, start);
1279 struct folio *folio;
1280 swp_entry_t entry;
1281
1282 rcu_read_lock();
1283 xas_for_each(&xas, folio, ULONG_MAX) {
1284 if (xas_retry(&xas, folio))
1285 continue;
1286
1287 if (!xa_is_value(folio))
1288 continue;
1289
1290 entry = radix_to_swp_entry(folio);
1291 /*
1292 * swapin error entries can be found in the mapping. But they're
1293 * deliberately ignored here as we've done everything we can do.
1294 */
1295 if (swp_type(entry) != type)
1296 continue;
1297
1298 indices[folio_batch_count(fbatch)] = xas.xa_index;
1299 if (!folio_batch_add(fbatch, folio))
1300 break;
1301
1302 if (need_resched()) {
1303 xas_pause(&xas);
1304 cond_resched_rcu();
1305 }
1306 }
1307 rcu_read_unlock();
1308
1309 return xas.xa_index;
1310 }
1311
1312 /*
1313 * Move the swapped pages for an inode to page cache. Returns the count
1314 * of pages swapped in, or the error in case of failure.
1315 */
1316 static int shmem_unuse_swap_entries(struct inode *inode,
1317 struct folio_batch *fbatch, pgoff_t *indices)
1318 {
1319 int i = 0;
1320 int ret = 0;
1321 int error = 0;
1322 struct address_space *mapping = inode->i_mapping;
1323
1324 for (i = 0; i < folio_batch_count(fbatch); i++) {
1325 struct folio *folio = fbatch->folios[i];
1326
1327 if (!xa_is_value(folio))
1328 continue;
1329 error = shmem_swapin_folio(inode, indices[i],
1330 &folio, SGP_CACHE,
1331 mapping_gfp_mask(mapping),
1332 NULL, NULL);
1333 if (error == 0) {
1334 folio_unlock(folio);
1335 folio_put(folio);
1336 ret++;
1337 }
1338 if (error == -ENOMEM)
1339 break;
1340 error = 0;
1341 }
1342 return error ? error : ret;
1343 }
1344
1345 /*
1346 * If swap found in inode, free it and move page from swapcache to filecache.
1347 */
1348 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1349 {
1350 struct address_space *mapping = inode->i_mapping;
1351 pgoff_t start = 0;
1352 struct folio_batch fbatch;
1353 pgoff_t indices[PAGEVEC_SIZE];
1354 int ret = 0;
1355
1356 do {
1357 folio_batch_init(&fbatch);
1358 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1359 if (folio_batch_count(&fbatch) == 0) {
1360 ret = 0;
1361 break;
1362 }
1363
1364 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1365 if (ret < 0)
1366 break;
1367
1368 start = indices[folio_batch_count(&fbatch) - 1];
1369 } while (true);
1370
1371 return ret;
1372 }
1373
1374 /*
1375 * Read all the shared memory data that resides in the swap
1376 * device 'type' back into memory, so the swap device can be
1377 * unused.
1378 */
1379 int shmem_unuse(unsigned int type)
1380 {
1381 struct shmem_inode_info *info, *next;
1382 int error = 0;
1383
1384 if (list_empty(&shmem_swaplist))
1385 return 0;
1386
1387 mutex_lock(&shmem_swaplist_mutex);
1388 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1389 if (!info->swapped) {
1390 list_del_init(&info->swaplist);
1391 continue;
1392 }
1393 /*
1394 * Drop the swaplist mutex while searching the inode for swap;
1395 * but before doing so, make sure shmem_evict_inode() will not
1396 * remove placeholder inode from swaplist, nor let it be freed
1397 * (igrab() would protect from unlink, but not from unmount).
1398 */
1399 atomic_inc(&info->stop_eviction);
1400 mutex_unlock(&shmem_swaplist_mutex);
1401
1402 error = shmem_unuse_inode(&info->vfs_inode, type);
1403 cond_resched();
1404
1405 mutex_lock(&shmem_swaplist_mutex);
1406 next = list_next_entry(info, swaplist);
1407 if (!info->swapped)
1408 list_del_init(&info->swaplist);
1409 if (atomic_dec_and_test(&info->stop_eviction))
1410 wake_up_var(&info->stop_eviction);
1411 if (error)
1412 break;
1413 }
1414 mutex_unlock(&shmem_swaplist_mutex);
1415
1416 return error;
1417 }
1418
1419 /*
1420 * Move the page from the page cache to the swap cache.
1421 */
1422 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1423 {
1424 struct folio *folio = page_folio(page);
1425 struct address_space *mapping = folio->mapping;
1426 struct inode *inode = mapping->host;
1427 struct shmem_inode_info *info = SHMEM_I(inode);
1428 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1429 swp_entry_t swap;
1430 pgoff_t index;
1431
1432 /*
1433 * Our capabilities prevent regular writeback or sync from ever calling
1434 * shmem_writepage; but a stacking filesystem might use ->writepage of
1435 * its underlying filesystem, in which case tmpfs should write out to
1436 * swap only in response to memory pressure, and not for the writeback
1437 * threads or sync.
1438 */
1439 if (WARN_ON_ONCE(!wbc->for_reclaim))
1440 goto redirty;
1441
1442 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1443 goto redirty;
1444
1445 if (!total_swap_pages)
1446 goto redirty;
1447
1448 /*
1449 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1450 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1451 * and its shmem_writeback() needs them to be split when swapping.
1452 */
1453 if (folio_test_large(folio)) {
1454 /* Ensure the subpages are still dirty */
1455 folio_test_set_dirty(folio);
1456 if (split_huge_page(page) < 0)
1457 goto redirty;
1458 folio = page_folio(page);
1459 folio_clear_dirty(folio);
1460 }
1461
1462 index = folio->index;
1463
1464 /*
1465 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1466 * value into swapfile.c, the only way we can correctly account for a
1467 * fallocated folio arriving here is now to initialize it and write it.
1468 *
1469 * That's okay for a folio already fallocated earlier, but if we have
1470 * not yet completed the fallocation, then (a) we want to keep track
1471 * of this folio in case we have to undo it, and (b) it may not be a
1472 * good idea to continue anyway, once we're pushing into swap. So
1473 * reactivate the folio, and let shmem_fallocate() quit when too many.
1474 */
1475 if (!folio_test_uptodate(folio)) {
1476 if (inode->i_private) {
1477 struct shmem_falloc *shmem_falloc;
1478 spin_lock(&inode->i_lock);
1479 shmem_falloc = inode->i_private;
1480 if (shmem_falloc &&
1481 !shmem_falloc->waitq &&
1482 index >= shmem_falloc->start &&
1483 index < shmem_falloc->next)
1484 shmem_falloc->nr_unswapped++;
1485 else
1486 shmem_falloc = NULL;
1487 spin_unlock(&inode->i_lock);
1488 if (shmem_falloc)
1489 goto redirty;
1490 }
1491 folio_zero_range(folio, 0, folio_size(folio));
1492 flush_dcache_folio(folio);
1493 folio_mark_uptodate(folio);
1494 }
1495
1496 swap = folio_alloc_swap(folio);
1497 if (!swap.val)
1498 goto redirty;
1499
1500 /*
1501 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1502 * if it's not already there. Do it now before the folio is
1503 * moved to swap cache, when its pagelock no longer protects
1504 * the inode from eviction. But don't unlock the mutex until
1505 * we've incremented swapped, because shmem_unuse_inode() will
1506 * prune a !swapped inode from the swaplist under this mutex.
1507 */
1508 mutex_lock(&shmem_swaplist_mutex);
1509 if (list_empty(&info->swaplist))
1510 list_add(&info->swaplist, &shmem_swaplist);
1511
1512 if (add_to_swap_cache(folio, swap,
1513 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1514 NULL) == 0) {
1515 shmem_recalc_inode(inode, 0, 1);
1516 swap_shmem_alloc(swap);
1517 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1518
1519 mutex_unlock(&shmem_swaplist_mutex);
1520 BUG_ON(folio_mapped(folio));
1521 swap_writepage(&folio->page, wbc);
1522 return 0;
1523 }
1524
1525 mutex_unlock(&shmem_swaplist_mutex);
1526 put_swap_folio(folio, swap);
1527 redirty:
1528 folio_mark_dirty(folio);
1529 if (wbc->for_reclaim)
1530 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1531 folio_unlock(folio);
1532 return 0;
1533 }
1534
1535 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1536 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1537 {
1538 char buffer[64];
1539
1540 if (!mpol || mpol->mode == MPOL_DEFAULT)
1541 return; /* show nothing */
1542
1543 mpol_to_str(buffer, sizeof(buffer), mpol);
1544
1545 seq_printf(seq, ",mpol=%s", buffer);
1546 }
1547
1548 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1549 {
1550 struct mempolicy *mpol = NULL;
1551 if (sbinfo->mpol) {
1552 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1553 mpol = sbinfo->mpol;
1554 mpol_get(mpol);
1555 raw_spin_unlock(&sbinfo->stat_lock);
1556 }
1557 return mpol;
1558 }
1559 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1560 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1561 {
1562 }
1563 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1564 {
1565 return NULL;
1566 }
1567 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1568 #ifndef CONFIG_NUMA
1569 #define vm_policy vm_private_data
1570 #endif
1571
1572 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1573 struct shmem_inode_info *info, pgoff_t index)
1574 {
1575 /* Create a pseudo vma that just contains the policy */
1576 vma_init(vma, NULL);
1577 /* Bias interleave by inode number to distribute better across nodes */
1578 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1579 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1580 }
1581
1582 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1583 {
1584 /* Drop reference taken by mpol_shared_policy_lookup() */
1585 mpol_cond_put(vma->vm_policy);
1586 }
1587
1588 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1589 struct shmem_inode_info *info, pgoff_t index)
1590 {
1591 struct vm_area_struct pvma;
1592 struct page *page;
1593 struct vm_fault vmf = {
1594 .vma = &pvma,
1595 };
1596
1597 shmem_pseudo_vma_init(&pvma, info, index);
1598 page = swap_cluster_readahead(swap, gfp, &vmf);
1599 shmem_pseudo_vma_destroy(&pvma);
1600
1601 if (!page)
1602 return NULL;
1603 return page_folio(page);
1604 }
1605
1606 /*
1607 * Make sure huge_gfp is always more limited than limit_gfp.
1608 * Some of the flags set permissions, while others set limitations.
1609 */
1610 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1611 {
1612 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1613 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1614 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1615 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1616
1617 /* Allow allocations only from the originally specified zones. */
1618 result |= zoneflags;
1619
1620 /*
1621 * Minimize the result gfp by taking the union with the deny flags,
1622 * and the intersection of the allow flags.
1623 */
1624 result |= (limit_gfp & denyflags);
1625 result |= (huge_gfp & limit_gfp) & allowflags;
1626
1627 return result;
1628 }
1629
1630 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1631 struct shmem_inode_info *info, pgoff_t index)
1632 {
1633 struct vm_area_struct pvma;
1634 struct address_space *mapping = info->vfs_inode.i_mapping;
1635 pgoff_t hindex;
1636 struct folio *folio;
1637
1638 hindex = round_down(index, HPAGE_PMD_NR);
1639 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1640 XA_PRESENT))
1641 return NULL;
1642
1643 shmem_pseudo_vma_init(&pvma, info, hindex);
1644 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1645 shmem_pseudo_vma_destroy(&pvma);
1646 if (!folio)
1647 count_vm_event(THP_FILE_FALLBACK);
1648 return folio;
1649 }
1650
1651 static struct folio *shmem_alloc_folio(gfp_t gfp,
1652 struct shmem_inode_info *info, pgoff_t index)
1653 {
1654 struct vm_area_struct pvma;
1655 struct folio *folio;
1656
1657 shmem_pseudo_vma_init(&pvma, info, index);
1658 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1659 shmem_pseudo_vma_destroy(&pvma);
1660
1661 return folio;
1662 }
1663
1664 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1665 pgoff_t index, bool huge)
1666 {
1667 struct shmem_inode_info *info = SHMEM_I(inode);
1668 struct folio *folio;
1669 int nr;
1670 int err;
1671
1672 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1673 huge = false;
1674 nr = huge ? HPAGE_PMD_NR : 1;
1675
1676 err = shmem_inode_acct_block(inode, nr);
1677 if (err)
1678 goto failed;
1679
1680 if (huge)
1681 folio = shmem_alloc_hugefolio(gfp, info, index);
1682 else
1683 folio = shmem_alloc_folio(gfp, info, index);
1684 if (folio) {
1685 __folio_set_locked(folio);
1686 __folio_set_swapbacked(folio);
1687 return folio;
1688 }
1689
1690 err = -ENOMEM;
1691 shmem_inode_unacct_blocks(inode, nr);
1692 failed:
1693 return ERR_PTR(err);
1694 }
1695
1696 /*
1697 * When a page is moved from swapcache to shmem filecache (either by the
1698 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1699 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1700 * ignorance of the mapping it belongs to. If that mapping has special
1701 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1702 * we may need to copy to a suitable page before moving to filecache.
1703 *
1704 * In a future release, this may well be extended to respect cpuset and
1705 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1706 * but for now it is a simple matter of zone.
1707 */
1708 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1709 {
1710 return folio_zonenum(folio) > gfp_zone(gfp);
1711 }
1712
1713 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1714 struct shmem_inode_info *info, pgoff_t index)
1715 {
1716 struct folio *old, *new;
1717 struct address_space *swap_mapping;
1718 swp_entry_t entry;
1719 pgoff_t swap_index;
1720 int error;
1721
1722 old = *foliop;
1723 entry = old->swap;
1724 swap_index = swp_offset(entry);
1725 swap_mapping = swap_address_space(entry);
1726
1727 /*
1728 * We have arrived here because our zones are constrained, so don't
1729 * limit chance of success by further cpuset and node constraints.
1730 */
1731 gfp &= ~GFP_CONSTRAINT_MASK;
1732 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1733 new = shmem_alloc_folio(gfp, info, index);
1734 if (!new)
1735 return -ENOMEM;
1736
1737 folio_get(new);
1738 folio_copy(new, old);
1739 flush_dcache_folio(new);
1740
1741 __folio_set_locked(new);
1742 __folio_set_swapbacked(new);
1743 folio_mark_uptodate(new);
1744 new->swap = entry;
1745 folio_set_swapcache(new);
1746
1747 /*
1748 * Our caller will very soon move newpage out of swapcache, but it's
1749 * a nice clean interface for us to replace oldpage by newpage there.
1750 */
1751 xa_lock_irq(&swap_mapping->i_pages);
1752 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1753 if (!error) {
1754 mem_cgroup_migrate(old, new);
1755 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1756 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1757 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1758 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1759 }
1760 xa_unlock_irq(&swap_mapping->i_pages);
1761
1762 if (unlikely(error)) {
1763 /*
1764 * Is this possible? I think not, now that our callers check
1765 * both PageSwapCache and page_private after getting page lock;
1766 * but be defensive. Reverse old to newpage for clear and free.
1767 */
1768 old = new;
1769 } else {
1770 folio_add_lru(new);
1771 *foliop = new;
1772 }
1773
1774 folio_clear_swapcache(old);
1775 old->private = NULL;
1776
1777 folio_unlock(old);
1778 folio_put_refs(old, 2);
1779 return error;
1780 }
1781
1782 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1783 struct folio *folio, swp_entry_t swap)
1784 {
1785 struct address_space *mapping = inode->i_mapping;
1786 swp_entry_t swapin_error;
1787 void *old;
1788
1789 swapin_error = make_poisoned_swp_entry();
1790 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1791 swp_to_radix_entry(swap),
1792 swp_to_radix_entry(swapin_error), 0);
1793 if (old != swp_to_radix_entry(swap))
1794 return;
1795
1796 folio_wait_writeback(folio);
1797 delete_from_swap_cache(folio);
1798 /*
1799 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1800 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1801 * in shmem_evict_inode().
1802 */
1803 shmem_recalc_inode(inode, -1, -1);
1804 swap_free(swap);
1805 }
1806
1807 /*
1808 * Swap in the folio pointed to by *foliop.
1809 * Caller has to make sure that *foliop contains a valid swapped folio.
1810 * Returns 0 and the folio in foliop if success. On failure, returns the
1811 * error code and NULL in *foliop.
1812 */
1813 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1814 struct folio **foliop, enum sgp_type sgp,
1815 gfp_t gfp, struct vm_area_struct *vma,
1816 vm_fault_t *fault_type)
1817 {
1818 struct address_space *mapping = inode->i_mapping;
1819 struct shmem_inode_info *info = SHMEM_I(inode);
1820 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1821 struct swap_info_struct *si;
1822 struct folio *folio = NULL;
1823 swp_entry_t swap;
1824 int error;
1825
1826 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1827 swap = radix_to_swp_entry(*foliop);
1828 *foliop = NULL;
1829
1830 if (is_poisoned_swp_entry(swap))
1831 return -EIO;
1832
1833 si = get_swap_device(swap);
1834 if (!si) {
1835 if (!shmem_confirm_swap(mapping, index, swap))
1836 return -EEXIST;
1837 else
1838 return -EINVAL;
1839 }
1840
1841 /* Look it up and read it in.. */
1842 folio = swap_cache_get_folio(swap, NULL, 0);
1843 if (!folio) {
1844 /* Or update major stats only when swapin succeeds?? */
1845 if (fault_type) {
1846 *fault_type |= VM_FAULT_MAJOR;
1847 count_vm_event(PGMAJFAULT);
1848 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1849 }
1850 /* Here we actually start the io */
1851 folio = shmem_swapin(swap, gfp, info, index);
1852 if (!folio) {
1853 error = -ENOMEM;
1854 goto failed;
1855 }
1856 }
1857
1858 /* We have to do this with folio locked to prevent races */
1859 folio_lock(folio);
1860 if (!folio_test_swapcache(folio) ||
1861 folio->swap.val != swap.val ||
1862 !shmem_confirm_swap(mapping, index, swap)) {
1863 error = -EEXIST;
1864 goto unlock;
1865 }
1866 if (!folio_test_uptodate(folio)) {
1867 error = -EIO;
1868 goto failed;
1869 }
1870 folio_wait_writeback(folio);
1871
1872 /*
1873 * Some architectures may have to restore extra metadata to the
1874 * folio after reading from swap.
1875 */
1876 arch_swap_restore(swap, folio);
1877
1878 if (shmem_should_replace_folio(folio, gfp)) {
1879 error = shmem_replace_folio(&folio, gfp, info, index);
1880 if (error)
1881 goto failed;
1882 }
1883
1884 error = shmem_add_to_page_cache(folio, mapping, index,
1885 swp_to_radix_entry(swap), gfp,
1886 charge_mm);
1887 if (error)
1888 goto failed;
1889
1890 shmem_recalc_inode(inode, 0, -1);
1891
1892 if (sgp == SGP_WRITE)
1893 folio_mark_accessed(folio);
1894
1895 delete_from_swap_cache(folio);
1896 folio_mark_dirty(folio);
1897 swap_free(swap);
1898 put_swap_device(si);
1899
1900 *foliop = folio;
1901 return 0;
1902 failed:
1903 if (!shmem_confirm_swap(mapping, index, swap))
1904 error = -EEXIST;
1905 if (error == -EIO)
1906 shmem_set_folio_swapin_error(inode, index, folio, swap);
1907 unlock:
1908 if (folio) {
1909 folio_unlock(folio);
1910 folio_put(folio);
1911 }
1912 put_swap_device(si);
1913
1914 return error;
1915 }
1916
1917 /*
1918 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1919 *
1920 * If we allocate a new one we do not mark it dirty. That's up to the
1921 * vm. If we swap it in we mark it dirty since we also free the swap
1922 * entry since a page cannot live in both the swap and page cache.
1923 *
1924 * vma, vmf, and fault_type are only supplied by shmem_fault:
1925 * otherwise they are NULL.
1926 */
1927 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1928 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1929 struct vm_area_struct *vma, struct vm_fault *vmf,
1930 vm_fault_t *fault_type)
1931 {
1932 struct address_space *mapping = inode->i_mapping;
1933 struct shmem_inode_info *info = SHMEM_I(inode);
1934 struct shmem_sb_info *sbinfo;
1935 struct mm_struct *charge_mm;
1936 struct folio *folio;
1937 pgoff_t hindex;
1938 gfp_t huge_gfp;
1939 int error;
1940 int once = 0;
1941 int alloced = 0;
1942
1943 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1944 return -EFBIG;
1945 repeat:
1946 if (sgp <= SGP_CACHE &&
1947 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1948 return -EINVAL;
1949 }
1950
1951 sbinfo = SHMEM_SB(inode->i_sb);
1952 charge_mm = vma ? vma->vm_mm : NULL;
1953
1954 folio = filemap_get_entry(mapping, index);
1955 if (folio && vma && userfaultfd_minor(vma)) {
1956 if (!xa_is_value(folio))
1957 folio_put(folio);
1958 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1959 return 0;
1960 }
1961
1962 if (xa_is_value(folio)) {
1963 error = shmem_swapin_folio(inode, index, &folio,
1964 sgp, gfp, vma, fault_type);
1965 if (error == -EEXIST)
1966 goto repeat;
1967
1968 *foliop = folio;
1969 return error;
1970 }
1971
1972 if (folio) {
1973 folio_lock(folio);
1974
1975 /* Has the folio been truncated or swapped out? */
1976 if (unlikely(folio->mapping != mapping)) {
1977 folio_unlock(folio);
1978 folio_put(folio);
1979 goto repeat;
1980 }
1981 if (sgp == SGP_WRITE)
1982 folio_mark_accessed(folio);
1983 if (folio_test_uptodate(folio))
1984 goto out;
1985 /* fallocated folio */
1986 if (sgp != SGP_READ)
1987 goto clear;
1988 folio_unlock(folio);
1989 folio_put(folio);
1990 }
1991
1992 /*
1993 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1994 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1995 */
1996 *foliop = NULL;
1997 if (sgp == SGP_READ)
1998 return 0;
1999 if (sgp == SGP_NOALLOC)
2000 return -ENOENT;
2001
2002 /*
2003 * Fast cache lookup and swap lookup did not find it: allocate.
2004 */
2005
2006 if (vma && userfaultfd_missing(vma)) {
2007 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2008 return 0;
2009 }
2010
2011 if (!shmem_is_huge(inode, index, false,
2012 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2013 goto alloc_nohuge;
2014
2015 huge_gfp = vma_thp_gfp_mask(vma);
2016 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2017 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2018 if (IS_ERR(folio)) {
2019 alloc_nohuge:
2020 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2021 }
2022 if (IS_ERR(folio)) {
2023 int retry = 5;
2024
2025 error = PTR_ERR(folio);
2026 folio = NULL;
2027 if (error != -ENOSPC)
2028 goto unlock;
2029 /*
2030 * Try to reclaim some space by splitting a large folio
2031 * beyond i_size on the filesystem.
2032 */
2033 while (retry--) {
2034 int ret;
2035
2036 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2037 if (ret == SHRINK_STOP)
2038 break;
2039 if (ret)
2040 goto alloc_nohuge;
2041 }
2042 goto unlock;
2043 }
2044
2045 hindex = round_down(index, folio_nr_pages(folio));
2046
2047 if (sgp == SGP_WRITE)
2048 __folio_set_referenced(folio);
2049
2050 error = shmem_add_to_page_cache(folio, mapping, hindex,
2051 NULL, gfp & GFP_RECLAIM_MASK,
2052 charge_mm);
2053 if (error)
2054 goto unacct;
2055
2056 folio_add_lru(folio);
2057 shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2058 alloced = true;
2059
2060 if (folio_test_pmd_mappable(folio) &&
2061 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2062 folio_next_index(folio) - 1) {
2063 /*
2064 * Part of the large folio is beyond i_size: subject
2065 * to shrink under memory pressure.
2066 */
2067 spin_lock(&sbinfo->shrinklist_lock);
2068 /*
2069 * _careful to defend against unlocked access to
2070 * ->shrink_list in shmem_unused_huge_shrink()
2071 */
2072 if (list_empty_careful(&info->shrinklist)) {
2073 list_add_tail(&info->shrinklist,
2074 &sbinfo->shrinklist);
2075 sbinfo->shrinklist_len++;
2076 }
2077 spin_unlock(&sbinfo->shrinklist_lock);
2078 }
2079
2080 /*
2081 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2082 */
2083 if (sgp == SGP_FALLOC)
2084 sgp = SGP_WRITE;
2085 clear:
2086 /*
2087 * Let SGP_WRITE caller clear ends if write does not fill folio;
2088 * but SGP_FALLOC on a folio fallocated earlier must initialize
2089 * it now, lest undo on failure cancel our earlier guarantee.
2090 */
2091 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2092 long i, n = folio_nr_pages(folio);
2093
2094 for (i = 0; i < n; i++)
2095 clear_highpage(folio_page(folio, i));
2096 flush_dcache_folio(folio);
2097 folio_mark_uptodate(folio);
2098 }
2099
2100 /* Perhaps the file has been truncated since we checked */
2101 if (sgp <= SGP_CACHE &&
2102 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2103 if (alloced) {
2104 folio_clear_dirty(folio);
2105 filemap_remove_folio(folio);
2106 shmem_recalc_inode(inode, 0, 0);
2107 }
2108 error = -EINVAL;
2109 goto unlock;
2110 }
2111 out:
2112 *foliop = folio;
2113 return 0;
2114
2115 /*
2116 * Error recovery.
2117 */
2118 unacct:
2119 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2120
2121 if (folio_test_large(folio)) {
2122 folio_unlock(folio);
2123 folio_put(folio);
2124 goto alloc_nohuge;
2125 }
2126 unlock:
2127 if (folio) {
2128 folio_unlock(folio);
2129 folio_put(folio);
2130 }
2131 if (error == -ENOSPC && !once++) {
2132 shmem_recalc_inode(inode, 0, 0);
2133 goto repeat;
2134 }
2135 if (error == -EEXIST)
2136 goto repeat;
2137 return error;
2138 }
2139
2140 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2141 enum sgp_type sgp)
2142 {
2143 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2144 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2145 }
2146
2147 /*
2148 * This is like autoremove_wake_function, but it removes the wait queue
2149 * entry unconditionally - even if something else had already woken the
2150 * target.
2151 */
2152 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2153 {
2154 int ret = default_wake_function(wait, mode, sync, key);
2155 list_del_init(&wait->entry);
2156 return ret;
2157 }
2158
2159 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2160 {
2161 struct vm_area_struct *vma = vmf->vma;
2162 struct inode *inode = file_inode(vma->vm_file);
2163 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2164 struct folio *folio = NULL;
2165 int err;
2166 vm_fault_t ret = VM_FAULT_LOCKED;
2167
2168 /*
2169 * Trinity finds that probing a hole which tmpfs is punching can
2170 * prevent the hole-punch from ever completing: which in turn
2171 * locks writers out with its hold on i_rwsem. So refrain from
2172 * faulting pages into the hole while it's being punched. Although
2173 * shmem_undo_range() does remove the additions, it may be unable to
2174 * keep up, as each new page needs its own unmap_mapping_range() call,
2175 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2176 *
2177 * It does not matter if we sometimes reach this check just before the
2178 * hole-punch begins, so that one fault then races with the punch:
2179 * we just need to make racing faults a rare case.
2180 *
2181 * The implementation below would be much simpler if we just used a
2182 * standard mutex or completion: but we cannot take i_rwsem in fault,
2183 * and bloating every shmem inode for this unlikely case would be sad.
2184 */
2185 if (unlikely(inode->i_private)) {
2186 struct shmem_falloc *shmem_falloc;
2187
2188 spin_lock(&inode->i_lock);
2189 shmem_falloc = inode->i_private;
2190 if (shmem_falloc &&
2191 shmem_falloc->waitq &&
2192 vmf->pgoff >= shmem_falloc->start &&
2193 vmf->pgoff < shmem_falloc->next) {
2194 struct file *fpin;
2195 wait_queue_head_t *shmem_falloc_waitq;
2196 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2197
2198 ret = VM_FAULT_NOPAGE;
2199 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2200 if (fpin)
2201 ret = VM_FAULT_RETRY;
2202
2203 shmem_falloc_waitq = shmem_falloc->waitq;
2204 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2205 TASK_UNINTERRUPTIBLE);
2206 spin_unlock(&inode->i_lock);
2207 schedule();
2208
2209 /*
2210 * shmem_falloc_waitq points into the shmem_fallocate()
2211 * stack of the hole-punching task: shmem_falloc_waitq
2212 * is usually invalid by the time we reach here, but
2213 * finish_wait() does not dereference it in that case;
2214 * though i_lock needed lest racing with wake_up_all().
2215 */
2216 spin_lock(&inode->i_lock);
2217 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2218 spin_unlock(&inode->i_lock);
2219
2220 if (fpin)
2221 fput(fpin);
2222 return ret;
2223 }
2224 spin_unlock(&inode->i_lock);
2225 }
2226
2227 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2228 gfp, vma, vmf, &ret);
2229 if (err)
2230 return vmf_error(err);
2231 if (folio)
2232 vmf->page = folio_file_page(folio, vmf->pgoff);
2233 return ret;
2234 }
2235
2236 unsigned long shmem_get_unmapped_area(struct file *file,
2237 unsigned long uaddr, unsigned long len,
2238 unsigned long pgoff, unsigned long flags)
2239 {
2240 unsigned long (*get_area)(struct file *,
2241 unsigned long, unsigned long, unsigned long, unsigned long);
2242 unsigned long addr;
2243 unsigned long offset;
2244 unsigned long inflated_len;
2245 unsigned long inflated_addr;
2246 unsigned long inflated_offset;
2247
2248 if (len > TASK_SIZE)
2249 return -ENOMEM;
2250
2251 get_area = current->mm->get_unmapped_area;
2252 addr = get_area(file, uaddr, len, pgoff, flags);
2253
2254 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2255 return addr;
2256 if (IS_ERR_VALUE(addr))
2257 return addr;
2258 if (addr & ~PAGE_MASK)
2259 return addr;
2260 if (addr > TASK_SIZE - len)
2261 return addr;
2262
2263 if (shmem_huge == SHMEM_HUGE_DENY)
2264 return addr;
2265 if (len < HPAGE_PMD_SIZE)
2266 return addr;
2267 if (flags & MAP_FIXED)
2268 return addr;
2269 /*
2270 * Our priority is to support MAP_SHARED mapped hugely;
2271 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2272 * But if caller specified an address hint and we allocated area there
2273 * successfully, respect that as before.
2274 */
2275 if (uaddr == addr)
2276 return addr;
2277
2278 if (shmem_huge != SHMEM_HUGE_FORCE) {
2279 struct super_block *sb;
2280
2281 if (file) {
2282 VM_BUG_ON(file->f_op != &shmem_file_operations);
2283 sb = file_inode(file)->i_sb;
2284 } else {
2285 /*
2286 * Called directly from mm/mmap.c, or drivers/char/mem.c
2287 * for "/dev/zero", to create a shared anonymous object.
2288 */
2289 if (IS_ERR(shm_mnt))
2290 return addr;
2291 sb = shm_mnt->mnt_sb;
2292 }
2293 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2294 return addr;
2295 }
2296
2297 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2298 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2299 return addr;
2300 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2301 return addr;
2302
2303 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2304 if (inflated_len > TASK_SIZE)
2305 return addr;
2306 if (inflated_len < len)
2307 return addr;
2308
2309 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2310 if (IS_ERR_VALUE(inflated_addr))
2311 return addr;
2312 if (inflated_addr & ~PAGE_MASK)
2313 return addr;
2314
2315 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2316 inflated_addr += offset - inflated_offset;
2317 if (inflated_offset > offset)
2318 inflated_addr += HPAGE_PMD_SIZE;
2319
2320 if (inflated_addr > TASK_SIZE - len)
2321 return addr;
2322 return inflated_addr;
2323 }
2324
2325 #ifdef CONFIG_NUMA
2326 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2327 {
2328 struct inode *inode = file_inode(vma->vm_file);
2329 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2330 }
2331
2332 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2333 unsigned long addr)
2334 {
2335 struct inode *inode = file_inode(vma->vm_file);
2336 pgoff_t index;
2337
2338 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2339 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2340 }
2341 #endif
2342
2343 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2344 {
2345 struct inode *inode = file_inode(file);
2346 struct shmem_inode_info *info = SHMEM_I(inode);
2347 int retval = -ENOMEM;
2348
2349 /*
2350 * What serializes the accesses to info->flags?
2351 * ipc_lock_object() when called from shmctl_do_lock(),
2352 * no serialization needed when called from shm_destroy().
2353 */
2354 if (lock && !(info->flags & VM_LOCKED)) {
2355 if (!user_shm_lock(inode->i_size, ucounts))
2356 goto out_nomem;
2357 info->flags |= VM_LOCKED;
2358 mapping_set_unevictable(file->f_mapping);
2359 }
2360 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2361 user_shm_unlock(inode->i_size, ucounts);
2362 info->flags &= ~VM_LOCKED;
2363 mapping_clear_unevictable(file->f_mapping);
2364 }
2365 retval = 0;
2366
2367 out_nomem:
2368 return retval;
2369 }
2370
2371 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2372 {
2373 struct inode *inode = file_inode(file);
2374 struct shmem_inode_info *info = SHMEM_I(inode);
2375 int ret;
2376
2377 ret = seal_check_future_write(info->seals, vma);
2378 if (ret)
2379 return ret;
2380
2381 /* arm64 - allow memory tagging on RAM-based files */
2382 vm_flags_set(vma, VM_MTE_ALLOWED);
2383
2384 file_accessed(file);
2385 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2386 if (inode->i_nlink)
2387 vma->vm_ops = &shmem_vm_ops;
2388 else
2389 vma->vm_ops = &shmem_anon_vm_ops;
2390 return 0;
2391 }
2392
2393 static int shmem_file_open(struct inode *inode, struct file *file)
2394 {
2395 file->f_mode |= FMODE_CAN_ODIRECT;
2396 return generic_file_open(inode, file);
2397 }
2398
2399 #ifdef CONFIG_TMPFS_XATTR
2400 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2401
2402 /*
2403 * chattr's fsflags are unrelated to extended attributes,
2404 * but tmpfs has chosen to enable them under the same config option.
2405 */
2406 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2407 {
2408 unsigned int i_flags = 0;
2409
2410 if (fsflags & FS_NOATIME_FL)
2411 i_flags |= S_NOATIME;
2412 if (fsflags & FS_APPEND_FL)
2413 i_flags |= S_APPEND;
2414 if (fsflags & FS_IMMUTABLE_FL)
2415 i_flags |= S_IMMUTABLE;
2416 /*
2417 * But FS_NODUMP_FL does not require any action in i_flags.
2418 */
2419 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2420 }
2421 #else
2422 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2423 {
2424 }
2425 #define shmem_initxattrs NULL
2426 #endif
2427
2428 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2429 {
2430 return &SHMEM_I(inode)->dir_offsets;
2431 }
2432
2433 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2434 struct super_block *sb,
2435 struct inode *dir, umode_t mode,
2436 dev_t dev, unsigned long flags)
2437 {
2438 struct inode *inode;
2439 struct shmem_inode_info *info;
2440 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2441 ino_t ino;
2442 int err;
2443
2444 err = shmem_reserve_inode(sb, &ino);
2445 if (err)
2446 return ERR_PTR(err);
2447
2448
2449 inode = new_inode(sb);
2450 if (!inode) {
2451 shmem_free_inode(sb, 0);
2452 return ERR_PTR(-ENOSPC);
2453 }
2454
2455 inode->i_ino = ino;
2456 inode_init_owner(idmap, inode, dir, mode);
2457 inode->i_blocks = 0;
2458 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2459 inode->i_generation = get_random_u32();
2460 info = SHMEM_I(inode);
2461 memset(info, 0, (char *)inode - (char *)info);
2462 spin_lock_init(&info->lock);
2463 atomic_set(&info->stop_eviction, 0);
2464 info->seals = F_SEAL_SEAL;
2465 info->flags = flags & VM_NORESERVE;
2466 info->i_crtime = inode->i_mtime;
2467 info->fsflags = (dir == NULL) ? 0 :
2468 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2469 if (info->fsflags)
2470 shmem_set_inode_flags(inode, info->fsflags);
2471 INIT_LIST_HEAD(&info->shrinklist);
2472 INIT_LIST_HEAD(&info->swaplist);
2473 INIT_LIST_HEAD(&info->swaplist);
2474 if (sbinfo->noswap)
2475 mapping_set_unevictable(inode->i_mapping);
2476 simple_xattrs_init(&info->xattrs);
2477 cache_no_acl(inode);
2478 mapping_set_large_folios(inode->i_mapping);
2479
2480 switch (mode & S_IFMT) {
2481 default:
2482 inode->i_op = &shmem_special_inode_operations;
2483 init_special_inode(inode, mode, dev);
2484 break;
2485 case S_IFREG:
2486 inode->i_mapping->a_ops = &shmem_aops;
2487 inode->i_op = &shmem_inode_operations;
2488 inode->i_fop = &shmem_file_operations;
2489 mpol_shared_policy_init(&info->policy,
2490 shmem_get_sbmpol(sbinfo));
2491 break;
2492 case S_IFDIR:
2493 inc_nlink(inode);
2494 /* Some things misbehave if size == 0 on a directory */
2495 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2496 inode->i_op = &shmem_dir_inode_operations;
2497 inode->i_fop = &simple_offset_dir_operations;
2498 simple_offset_init(shmem_get_offset_ctx(inode));
2499 break;
2500 case S_IFLNK:
2501 /*
2502 * Must not load anything in the rbtree,
2503 * mpol_free_shared_policy will not be called.
2504 */
2505 mpol_shared_policy_init(&info->policy, NULL);
2506 break;
2507 }
2508
2509 lockdep_annotate_inode_mutex_key(inode);
2510 return inode;
2511 }
2512
2513 #ifdef CONFIG_TMPFS_QUOTA
2514 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2515 struct super_block *sb, struct inode *dir,
2516 umode_t mode, dev_t dev, unsigned long flags)
2517 {
2518 int err;
2519 struct inode *inode;
2520
2521 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2522 if (IS_ERR(inode))
2523 return inode;
2524
2525 err = dquot_initialize(inode);
2526 if (err)
2527 goto errout;
2528
2529 err = dquot_alloc_inode(inode);
2530 if (err) {
2531 dquot_drop(inode);
2532 goto errout;
2533 }
2534 return inode;
2535
2536 errout:
2537 inode->i_flags |= S_NOQUOTA;
2538 iput(inode);
2539 return ERR_PTR(err);
2540 }
2541 #else
2542 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2543 struct super_block *sb, struct inode *dir,
2544 umode_t mode, dev_t dev, unsigned long flags)
2545 {
2546 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2547 }
2548 #endif /* CONFIG_TMPFS_QUOTA */
2549
2550 #ifdef CONFIG_USERFAULTFD
2551 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2552 struct vm_area_struct *dst_vma,
2553 unsigned long dst_addr,
2554 unsigned long src_addr,
2555 uffd_flags_t flags,
2556 struct folio **foliop)
2557 {
2558 struct inode *inode = file_inode(dst_vma->vm_file);
2559 struct shmem_inode_info *info = SHMEM_I(inode);
2560 struct address_space *mapping = inode->i_mapping;
2561 gfp_t gfp = mapping_gfp_mask(mapping);
2562 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2563 void *page_kaddr;
2564 struct folio *folio;
2565 int ret;
2566 pgoff_t max_off;
2567
2568 if (shmem_inode_acct_block(inode, 1)) {
2569 /*
2570 * We may have got a page, returned -ENOENT triggering a retry,
2571 * and now we find ourselves with -ENOMEM. Release the page, to
2572 * avoid a BUG_ON in our caller.
2573 */
2574 if (unlikely(*foliop)) {
2575 folio_put(*foliop);
2576 *foliop = NULL;
2577 }
2578 return -ENOMEM;
2579 }
2580
2581 if (!*foliop) {
2582 ret = -ENOMEM;
2583 folio = shmem_alloc_folio(gfp, info, pgoff);
2584 if (!folio)
2585 goto out_unacct_blocks;
2586
2587 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2588 page_kaddr = kmap_local_folio(folio, 0);
2589 /*
2590 * The read mmap_lock is held here. Despite the
2591 * mmap_lock being read recursive a deadlock is still
2592 * possible if a writer has taken a lock. For example:
2593 *
2594 * process A thread 1 takes read lock on own mmap_lock
2595 * process A thread 2 calls mmap, blocks taking write lock
2596 * process B thread 1 takes page fault, read lock on own mmap lock
2597 * process B thread 2 calls mmap, blocks taking write lock
2598 * process A thread 1 blocks taking read lock on process B
2599 * process B thread 1 blocks taking read lock on process A
2600 *
2601 * Disable page faults to prevent potential deadlock
2602 * and retry the copy outside the mmap_lock.
2603 */
2604 pagefault_disable();
2605 ret = copy_from_user(page_kaddr,
2606 (const void __user *)src_addr,
2607 PAGE_SIZE);
2608 pagefault_enable();
2609 kunmap_local(page_kaddr);
2610
2611 /* fallback to copy_from_user outside mmap_lock */
2612 if (unlikely(ret)) {
2613 *foliop = folio;
2614 ret = -ENOENT;
2615 /* don't free the page */
2616 goto out_unacct_blocks;
2617 }
2618
2619 flush_dcache_folio(folio);
2620 } else { /* ZEROPAGE */
2621 clear_user_highpage(&folio->page, dst_addr);
2622 }
2623 } else {
2624 folio = *foliop;
2625 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2626 *foliop = NULL;
2627 }
2628
2629 VM_BUG_ON(folio_test_locked(folio));
2630 VM_BUG_ON(folio_test_swapbacked(folio));
2631 __folio_set_locked(folio);
2632 __folio_set_swapbacked(folio);
2633 __folio_mark_uptodate(folio);
2634
2635 ret = -EFAULT;
2636 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2637 if (unlikely(pgoff >= max_off))
2638 goto out_release;
2639
2640 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2641 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2642 if (ret)
2643 goto out_release;
2644
2645 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2646 &folio->page, true, flags);
2647 if (ret)
2648 goto out_delete_from_cache;
2649
2650 shmem_recalc_inode(inode, 1, 0);
2651 folio_unlock(folio);
2652 return 0;
2653 out_delete_from_cache:
2654 filemap_remove_folio(folio);
2655 out_release:
2656 folio_unlock(folio);
2657 folio_put(folio);
2658 out_unacct_blocks:
2659 shmem_inode_unacct_blocks(inode, 1);
2660 return ret;
2661 }
2662 #endif /* CONFIG_USERFAULTFD */
2663
2664 #ifdef CONFIG_TMPFS
2665 static const struct inode_operations shmem_symlink_inode_operations;
2666 static const struct inode_operations shmem_short_symlink_operations;
2667
2668 static int
2669 shmem_write_begin(struct file *file, struct address_space *mapping,
2670 loff_t pos, unsigned len,
2671 struct page **pagep, void **fsdata)
2672 {
2673 struct inode *inode = mapping->host;
2674 struct shmem_inode_info *info = SHMEM_I(inode);
2675 pgoff_t index = pos >> PAGE_SHIFT;
2676 struct folio *folio;
2677 int ret = 0;
2678
2679 /* i_rwsem is held by caller */
2680 if (unlikely(info->seals & (F_SEAL_GROW |
2681 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2682 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2683 return -EPERM;
2684 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2685 return -EPERM;
2686 }
2687
2688 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2689
2690 if (ret)
2691 return ret;
2692
2693 *pagep = folio_file_page(folio, index);
2694 if (PageHWPoison(*pagep)) {
2695 folio_unlock(folio);
2696 folio_put(folio);
2697 *pagep = NULL;
2698 return -EIO;
2699 }
2700
2701 return 0;
2702 }
2703
2704 static int
2705 shmem_write_end(struct file *file, struct address_space *mapping,
2706 loff_t pos, unsigned len, unsigned copied,
2707 struct page *page, void *fsdata)
2708 {
2709 struct folio *folio = page_folio(page);
2710 struct inode *inode = mapping->host;
2711
2712 if (pos + copied > inode->i_size)
2713 i_size_write(inode, pos + copied);
2714
2715 if (!folio_test_uptodate(folio)) {
2716 if (copied < folio_size(folio)) {
2717 size_t from = offset_in_folio(folio, pos);
2718 folio_zero_segments(folio, 0, from,
2719 from + copied, folio_size(folio));
2720 }
2721 folio_mark_uptodate(folio);
2722 }
2723 folio_mark_dirty(folio);
2724 folio_unlock(folio);
2725 folio_put(folio);
2726
2727 return copied;
2728 }
2729
2730 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2731 {
2732 struct file *file = iocb->ki_filp;
2733 struct inode *inode = file_inode(file);
2734 struct address_space *mapping = inode->i_mapping;
2735 pgoff_t index;
2736 unsigned long offset;
2737 int error = 0;
2738 ssize_t retval = 0;
2739 loff_t *ppos = &iocb->ki_pos;
2740
2741 index = *ppos >> PAGE_SHIFT;
2742 offset = *ppos & ~PAGE_MASK;
2743
2744 for (;;) {
2745 struct folio *folio = NULL;
2746 struct page *page = NULL;
2747 pgoff_t end_index;
2748 unsigned long nr, ret;
2749 loff_t i_size = i_size_read(inode);
2750
2751 end_index = i_size >> PAGE_SHIFT;
2752 if (index > end_index)
2753 break;
2754 if (index == end_index) {
2755 nr = i_size & ~PAGE_MASK;
2756 if (nr <= offset)
2757 break;
2758 }
2759
2760 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2761 if (error) {
2762 if (error == -EINVAL)
2763 error = 0;
2764 break;
2765 }
2766 if (folio) {
2767 folio_unlock(folio);
2768
2769 page = folio_file_page(folio, index);
2770 if (PageHWPoison(page)) {
2771 folio_put(folio);
2772 error = -EIO;
2773 break;
2774 }
2775 }
2776
2777 /*
2778 * We must evaluate after, since reads (unlike writes)
2779 * are called without i_rwsem protection against truncate
2780 */
2781 nr = PAGE_SIZE;
2782 i_size = i_size_read(inode);
2783 end_index = i_size >> PAGE_SHIFT;
2784 if (index == end_index) {
2785 nr = i_size & ~PAGE_MASK;
2786 if (nr <= offset) {
2787 if (folio)
2788 folio_put(folio);
2789 break;
2790 }
2791 }
2792 nr -= offset;
2793
2794 if (folio) {
2795 /*
2796 * If users can be writing to this page using arbitrary
2797 * virtual addresses, take care about potential aliasing
2798 * before reading the page on the kernel side.
2799 */
2800 if (mapping_writably_mapped(mapping))
2801 flush_dcache_page(page);
2802 /*
2803 * Mark the page accessed if we read the beginning.
2804 */
2805 if (!offset)
2806 folio_mark_accessed(folio);
2807 /*
2808 * Ok, we have the page, and it's up-to-date, so
2809 * now we can copy it to user space...
2810 */
2811 ret = copy_page_to_iter(page, offset, nr, to);
2812 folio_put(folio);
2813
2814 } else if (user_backed_iter(to)) {
2815 /*
2816 * Copy to user tends to be so well optimized, but
2817 * clear_user() not so much, that it is noticeably
2818 * faster to copy the zero page instead of clearing.
2819 */
2820 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2821 } else {
2822 /*
2823 * But submitting the same page twice in a row to
2824 * splice() - or others? - can result in confusion:
2825 * so don't attempt that optimization on pipes etc.
2826 */
2827 ret = iov_iter_zero(nr, to);
2828 }
2829
2830 retval += ret;
2831 offset += ret;
2832 index += offset >> PAGE_SHIFT;
2833 offset &= ~PAGE_MASK;
2834
2835 if (!iov_iter_count(to))
2836 break;
2837 if (ret < nr) {
2838 error = -EFAULT;
2839 break;
2840 }
2841 cond_resched();
2842 }
2843
2844 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2845 file_accessed(file);
2846 return retval ? retval : error;
2847 }
2848
2849 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2850 {
2851 struct file *file = iocb->ki_filp;
2852 struct inode *inode = file->f_mapping->host;
2853 ssize_t ret;
2854
2855 inode_lock(inode);
2856 ret = generic_write_checks(iocb, from);
2857 if (ret <= 0)
2858 goto unlock;
2859 ret = file_remove_privs(file);
2860 if (ret)
2861 goto unlock;
2862 ret = file_update_time(file);
2863 if (ret)
2864 goto unlock;
2865 ret = generic_perform_write(iocb, from);
2866 unlock:
2867 inode_unlock(inode);
2868 return ret;
2869 }
2870
2871 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2872 struct pipe_buffer *buf)
2873 {
2874 return true;
2875 }
2876
2877 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2878 struct pipe_buffer *buf)
2879 {
2880 }
2881
2882 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2883 struct pipe_buffer *buf)
2884 {
2885 return false;
2886 }
2887
2888 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2889 .release = zero_pipe_buf_release,
2890 .try_steal = zero_pipe_buf_try_steal,
2891 .get = zero_pipe_buf_get,
2892 };
2893
2894 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2895 loff_t fpos, size_t size)
2896 {
2897 size_t offset = fpos & ~PAGE_MASK;
2898
2899 size = min_t(size_t, size, PAGE_SIZE - offset);
2900
2901 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2902 struct pipe_buffer *buf = pipe_head_buf(pipe);
2903
2904 *buf = (struct pipe_buffer) {
2905 .ops = &zero_pipe_buf_ops,
2906 .page = ZERO_PAGE(0),
2907 .offset = offset,
2908 .len = size,
2909 };
2910 pipe->head++;
2911 }
2912
2913 return size;
2914 }
2915
2916 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2917 struct pipe_inode_info *pipe,
2918 size_t len, unsigned int flags)
2919 {
2920 struct inode *inode = file_inode(in);
2921 struct address_space *mapping = inode->i_mapping;
2922 struct folio *folio = NULL;
2923 size_t total_spliced = 0, used, npages, n, part;
2924 loff_t isize;
2925 int error = 0;
2926
2927 /* Work out how much data we can actually add into the pipe */
2928 used = pipe_occupancy(pipe->head, pipe->tail);
2929 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2930 len = min_t(size_t, len, npages * PAGE_SIZE);
2931
2932 do {
2933 if (*ppos >= i_size_read(inode))
2934 break;
2935
2936 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2937 SGP_READ);
2938 if (error) {
2939 if (error == -EINVAL)
2940 error = 0;
2941 break;
2942 }
2943 if (folio) {
2944 folio_unlock(folio);
2945
2946 if (folio_test_hwpoison(folio) ||
2947 (folio_test_large(folio) &&
2948 folio_test_has_hwpoisoned(folio))) {
2949 error = -EIO;
2950 break;
2951 }
2952 }
2953
2954 /*
2955 * i_size must be checked after we know the pages are Uptodate.
2956 *
2957 * Checking i_size after the check allows us to calculate
2958 * the correct value for "nr", which means the zero-filled
2959 * part of the page is not copied back to userspace (unless
2960 * another truncate extends the file - this is desired though).
2961 */
2962 isize = i_size_read(inode);
2963 if (unlikely(*ppos >= isize))
2964 break;
2965 part = min_t(loff_t, isize - *ppos, len);
2966
2967 if (folio) {
2968 /*
2969 * If users can be writing to this page using arbitrary
2970 * virtual addresses, take care about potential aliasing
2971 * before reading the page on the kernel side.
2972 */
2973 if (mapping_writably_mapped(mapping))
2974 flush_dcache_folio(folio);
2975 folio_mark_accessed(folio);
2976 /*
2977 * Ok, we have the page, and it's up-to-date, so we can
2978 * now splice it into the pipe.
2979 */
2980 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2981 folio_put(folio);
2982 folio = NULL;
2983 } else {
2984 n = splice_zeropage_into_pipe(pipe, *ppos, part);
2985 }
2986
2987 if (!n)
2988 break;
2989 len -= n;
2990 total_spliced += n;
2991 *ppos += n;
2992 in->f_ra.prev_pos = *ppos;
2993 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2994 break;
2995
2996 cond_resched();
2997 } while (len);
2998
2999 if (folio)
3000 folio_put(folio);
3001
3002 file_accessed(in);
3003 return total_spliced ? total_spliced : error;
3004 }
3005
3006 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3007 {
3008 struct address_space *mapping = file->f_mapping;
3009 struct inode *inode = mapping->host;
3010
3011 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3012 return generic_file_llseek_size(file, offset, whence,
3013 MAX_LFS_FILESIZE, i_size_read(inode));
3014 if (offset < 0)
3015 return -ENXIO;
3016
3017 inode_lock(inode);
3018 /* We're holding i_rwsem so we can access i_size directly */
3019 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3020 if (offset >= 0)
3021 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3022 inode_unlock(inode);
3023 return offset;
3024 }
3025
3026 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3027 loff_t len)
3028 {
3029 struct inode *inode = file_inode(file);
3030 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3031 struct shmem_inode_info *info = SHMEM_I(inode);
3032 struct shmem_falloc shmem_falloc;
3033 pgoff_t start, index, end, undo_fallocend;
3034 int error;
3035
3036 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3037 return -EOPNOTSUPP;
3038
3039 inode_lock(inode);
3040
3041 if (mode & FALLOC_FL_PUNCH_HOLE) {
3042 struct address_space *mapping = file->f_mapping;
3043 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3044 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3045 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3046
3047 /* protected by i_rwsem */
3048 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3049 error = -EPERM;
3050 goto out;
3051 }
3052
3053 shmem_falloc.waitq = &shmem_falloc_waitq;
3054 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3055 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3056 spin_lock(&inode->i_lock);
3057 inode->i_private = &shmem_falloc;
3058 spin_unlock(&inode->i_lock);
3059
3060 if ((u64)unmap_end > (u64)unmap_start)
3061 unmap_mapping_range(mapping, unmap_start,
3062 1 + unmap_end - unmap_start, 0);
3063 shmem_truncate_range(inode, offset, offset + len - 1);
3064 /* No need to unmap again: hole-punching leaves COWed pages */
3065
3066 spin_lock(&inode->i_lock);
3067 inode->i_private = NULL;
3068 wake_up_all(&shmem_falloc_waitq);
3069 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3070 spin_unlock(&inode->i_lock);
3071 error = 0;
3072 goto out;
3073 }
3074
3075 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3076 error = inode_newsize_ok(inode, offset + len);
3077 if (error)
3078 goto out;
3079
3080 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3081 error = -EPERM;
3082 goto out;
3083 }
3084
3085 start = offset >> PAGE_SHIFT;
3086 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3087 /* Try to avoid a swapstorm if len is impossible to satisfy */
3088 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3089 error = -ENOSPC;
3090 goto out;
3091 }
3092
3093 shmem_falloc.waitq = NULL;
3094 shmem_falloc.start = start;
3095 shmem_falloc.next = start;
3096 shmem_falloc.nr_falloced = 0;
3097 shmem_falloc.nr_unswapped = 0;
3098 spin_lock(&inode->i_lock);
3099 inode->i_private = &shmem_falloc;
3100 spin_unlock(&inode->i_lock);
3101
3102 /*
3103 * info->fallocend is only relevant when huge pages might be
3104 * involved: to prevent split_huge_page() freeing fallocated
3105 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3106 */
3107 undo_fallocend = info->fallocend;
3108 if (info->fallocend < end)
3109 info->fallocend = end;
3110
3111 for (index = start; index < end; ) {
3112 struct folio *folio;
3113
3114 /*
3115 * Good, the fallocate(2) manpage permits EINTR: we may have
3116 * been interrupted because we are using up too much memory.
3117 */
3118 if (signal_pending(current))
3119 error = -EINTR;
3120 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3121 error = -ENOMEM;
3122 else
3123 error = shmem_get_folio(inode, index, &folio,
3124 SGP_FALLOC);
3125 if (error) {
3126 info->fallocend = undo_fallocend;
3127 /* Remove the !uptodate folios we added */
3128 if (index > start) {
3129 shmem_undo_range(inode,
3130 (loff_t)start << PAGE_SHIFT,
3131 ((loff_t)index << PAGE_SHIFT) - 1, true);
3132 }
3133 goto undone;
3134 }
3135
3136 /*
3137 * Here is a more important optimization than it appears:
3138 * a second SGP_FALLOC on the same large folio will clear it,
3139 * making it uptodate and un-undoable if we fail later.
3140 */
3141 index = folio_next_index(folio);
3142 /* Beware 32-bit wraparound */
3143 if (!index)
3144 index--;
3145
3146 /*
3147 * Inform shmem_writepage() how far we have reached.
3148 * No need for lock or barrier: we have the page lock.
3149 */
3150 if (!folio_test_uptodate(folio))
3151 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3152 shmem_falloc.next = index;
3153
3154 /*
3155 * If !uptodate, leave it that way so that freeable folios
3156 * can be recognized if we need to rollback on error later.
3157 * But mark it dirty so that memory pressure will swap rather
3158 * than free the folios we are allocating (and SGP_CACHE folios
3159 * might still be clean: we now need to mark those dirty too).
3160 */
3161 folio_mark_dirty(folio);
3162 folio_unlock(folio);
3163 folio_put(folio);
3164 cond_resched();
3165 }
3166
3167 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3168 i_size_write(inode, offset + len);
3169 undone:
3170 spin_lock(&inode->i_lock);
3171 inode->i_private = NULL;
3172 spin_unlock(&inode->i_lock);
3173 out:
3174 if (!error)
3175 file_modified(file);
3176 inode_unlock(inode);
3177 return error;
3178 }
3179
3180 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3181 {
3182 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3183
3184 buf->f_type = TMPFS_MAGIC;
3185 buf->f_bsize = PAGE_SIZE;
3186 buf->f_namelen = NAME_MAX;
3187 if (sbinfo->max_blocks) {
3188 buf->f_blocks = sbinfo->max_blocks;
3189 buf->f_bavail =
3190 buf->f_bfree = sbinfo->max_blocks -
3191 percpu_counter_sum(&sbinfo->used_blocks);
3192 }
3193 if (sbinfo->max_inodes) {
3194 buf->f_files = sbinfo->max_inodes;
3195 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3196 }
3197 /* else leave those fields 0 like simple_statfs */
3198
3199 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3200
3201 return 0;
3202 }
3203
3204 /*
3205 * File creation. Allocate an inode, and we're done..
3206 */
3207 static int
3208 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3209 struct dentry *dentry, umode_t mode, dev_t dev)
3210 {
3211 struct inode *inode;
3212 int error;
3213
3214 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3215 if (IS_ERR(inode))
3216 return PTR_ERR(inode);
3217
3218 error = simple_acl_create(dir, inode);
3219 if (error)
3220 goto out_iput;
3221 error = security_inode_init_security(inode, dir,
3222 &dentry->d_name,
3223 shmem_initxattrs, NULL);
3224 if (error && error != -EOPNOTSUPP)
3225 goto out_iput;
3226
3227 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3228 if (error)
3229 goto out_iput;
3230
3231 dir->i_size += BOGO_DIRENT_SIZE;
3232 dir->i_mtime = inode_set_ctime_current(dir);
3233 inode_inc_iversion(dir);
3234 d_instantiate(dentry, inode);
3235 dget(dentry); /* Extra count - pin the dentry in core */
3236 return error;
3237
3238 out_iput:
3239 iput(inode);
3240 return error;
3241 }
3242
3243 static int
3244 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3245 struct file *file, umode_t mode)
3246 {
3247 struct inode *inode;
3248 int error;
3249
3250 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3251
3252 if (IS_ERR(inode)) {
3253 error = PTR_ERR(inode);
3254 goto err_out;
3255 }
3256
3257 error = security_inode_init_security(inode, dir,
3258 NULL,
3259 shmem_initxattrs, NULL);
3260 if (error && error != -EOPNOTSUPP)
3261 goto out_iput;
3262 error = simple_acl_create(dir, inode);
3263 if (error)
3264 goto out_iput;
3265 d_tmpfile(file, inode);
3266
3267 err_out:
3268 return finish_open_simple(file, error);
3269 out_iput:
3270 iput(inode);
3271 return error;
3272 }
3273
3274 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3275 struct dentry *dentry, umode_t mode)
3276 {
3277 int error;
3278
3279 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3280 if (error)
3281 return error;
3282 inc_nlink(dir);
3283 return 0;
3284 }
3285
3286 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3287 struct dentry *dentry, umode_t mode, bool excl)
3288 {
3289 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3290 }
3291
3292 /*
3293 * Link a file..
3294 */
3295 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3296 {
3297 struct inode *inode = d_inode(old_dentry);
3298 int ret = 0;
3299
3300 /*
3301 * No ordinary (disk based) filesystem counts links as inodes;
3302 * but each new link needs a new dentry, pinning lowmem, and
3303 * tmpfs dentries cannot be pruned until they are unlinked.
3304 * But if an O_TMPFILE file is linked into the tmpfs, the
3305 * first link must skip that, to get the accounting right.
3306 */
3307 if (inode->i_nlink) {
3308 ret = shmem_reserve_inode(inode->i_sb, NULL);
3309 if (ret)
3310 goto out;
3311 }
3312
3313 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3314 if (ret) {
3315 if (inode->i_nlink)
3316 shmem_free_inode(inode->i_sb, 0);
3317 goto out;
3318 }
3319
3320 dir->i_size += BOGO_DIRENT_SIZE;
3321 dir->i_mtime = inode_set_ctime_to_ts(dir,
3322 inode_set_ctime_current(inode));
3323 inode_inc_iversion(dir);
3324 inc_nlink(inode);
3325 ihold(inode); /* New dentry reference */
3326 dget(dentry); /* Extra pinning count for the created dentry */
3327 d_instantiate(dentry, inode);
3328 out:
3329 return ret;
3330 }
3331
3332 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3333 {
3334 struct inode *inode = d_inode(dentry);
3335
3336 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3337 shmem_free_inode(inode->i_sb, 0);
3338
3339 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3340
3341 dir->i_size -= BOGO_DIRENT_SIZE;
3342 dir->i_mtime = inode_set_ctime_to_ts(dir,
3343 inode_set_ctime_current(inode));
3344 inode_inc_iversion(dir);
3345 drop_nlink(inode);
3346 dput(dentry); /* Undo the count from "create" - this does all the work */
3347 return 0;
3348 }
3349
3350 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3351 {
3352 if (!simple_empty(dentry))
3353 return -ENOTEMPTY;
3354
3355 drop_nlink(d_inode(dentry));
3356 drop_nlink(dir);
3357 return shmem_unlink(dir, dentry);
3358 }
3359
3360 static int shmem_whiteout(struct mnt_idmap *idmap,
3361 struct inode *old_dir, struct dentry *old_dentry)
3362 {
3363 struct dentry *whiteout;
3364 int error;
3365
3366 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3367 if (!whiteout)
3368 return -ENOMEM;
3369
3370 error = shmem_mknod(idmap, old_dir, whiteout,
3371 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3372 dput(whiteout);
3373 if (error)
3374 return error;
3375
3376 /*
3377 * Cheat and hash the whiteout while the old dentry is still in
3378 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3379 *
3380 * d_lookup() will consistently find one of them at this point,
3381 * not sure which one, but that isn't even important.
3382 */
3383 d_rehash(whiteout);
3384 return 0;
3385 }
3386
3387 /*
3388 * The VFS layer already does all the dentry stuff for rename,
3389 * we just have to decrement the usage count for the target if
3390 * it exists so that the VFS layer correctly free's it when it
3391 * gets overwritten.
3392 */
3393 static int shmem_rename2(struct mnt_idmap *idmap,
3394 struct inode *old_dir, struct dentry *old_dentry,
3395 struct inode *new_dir, struct dentry *new_dentry,
3396 unsigned int flags)
3397 {
3398 struct inode *inode = d_inode(old_dentry);
3399 int they_are_dirs = S_ISDIR(inode->i_mode);
3400 int error;
3401
3402 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3403 return -EINVAL;
3404
3405 if (flags & RENAME_EXCHANGE)
3406 return simple_offset_rename_exchange(old_dir, old_dentry,
3407 new_dir, new_dentry);
3408
3409 if (!simple_empty(new_dentry))
3410 return -ENOTEMPTY;
3411
3412 if (flags & RENAME_WHITEOUT) {
3413 error = shmem_whiteout(idmap, old_dir, old_dentry);
3414 if (error)
3415 return error;
3416 }
3417
3418 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3419 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3420 if (error)
3421 return error;
3422
3423 if (d_really_is_positive(new_dentry)) {
3424 (void) shmem_unlink(new_dir, new_dentry);
3425 if (they_are_dirs) {
3426 drop_nlink(d_inode(new_dentry));
3427 drop_nlink(old_dir);
3428 }
3429 } else if (they_are_dirs) {
3430 drop_nlink(old_dir);
3431 inc_nlink(new_dir);
3432 }
3433
3434 old_dir->i_size -= BOGO_DIRENT_SIZE;
3435 new_dir->i_size += BOGO_DIRENT_SIZE;
3436 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3437 inode_inc_iversion(old_dir);
3438 inode_inc_iversion(new_dir);
3439 return 0;
3440 }
3441
3442 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3443 struct dentry *dentry, const char *symname)
3444 {
3445 int error;
3446 int len;
3447 struct inode *inode;
3448 struct folio *folio;
3449
3450 len = strlen(symname) + 1;
3451 if (len > PAGE_SIZE)
3452 return -ENAMETOOLONG;
3453
3454 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3455 VM_NORESERVE);
3456
3457 if (IS_ERR(inode))
3458 return PTR_ERR(inode);
3459
3460 error = security_inode_init_security(inode, dir, &dentry->d_name,
3461 shmem_initxattrs, NULL);
3462 if (error && error != -EOPNOTSUPP)
3463 goto out_iput;
3464
3465 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3466 if (error)
3467 goto out_iput;
3468
3469 inode->i_size = len-1;
3470 if (len <= SHORT_SYMLINK_LEN) {
3471 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3472 if (!inode->i_link) {
3473 error = -ENOMEM;
3474 goto out_remove_offset;
3475 }
3476 inode->i_op = &shmem_short_symlink_operations;
3477 } else {
3478 inode_nohighmem(inode);
3479 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3480 if (error)
3481 goto out_remove_offset;
3482 inode->i_mapping->a_ops = &shmem_aops;
3483 inode->i_op = &shmem_symlink_inode_operations;
3484 memcpy(folio_address(folio), symname, len);
3485 folio_mark_uptodate(folio);
3486 folio_mark_dirty(folio);
3487 folio_unlock(folio);
3488 folio_put(folio);
3489 }
3490 dir->i_size += BOGO_DIRENT_SIZE;
3491 dir->i_mtime = inode_set_ctime_current(dir);
3492 inode_inc_iversion(dir);
3493 d_instantiate(dentry, inode);
3494 dget(dentry);
3495 return 0;
3496
3497 out_remove_offset:
3498 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3499 out_iput:
3500 iput(inode);
3501 return error;
3502 }
3503
3504 static void shmem_put_link(void *arg)
3505 {
3506 folio_mark_accessed(arg);
3507 folio_put(arg);
3508 }
3509
3510 static const char *shmem_get_link(struct dentry *dentry,
3511 struct inode *inode,
3512 struct delayed_call *done)
3513 {
3514 struct folio *folio = NULL;
3515 int error;
3516
3517 if (!dentry) {
3518 folio = filemap_get_folio(inode->i_mapping, 0);
3519 if (IS_ERR(folio))
3520 return ERR_PTR(-ECHILD);
3521 if (PageHWPoison(folio_page(folio, 0)) ||
3522 !folio_test_uptodate(folio)) {
3523 folio_put(folio);
3524 return ERR_PTR(-ECHILD);
3525 }
3526 } else {
3527 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3528 if (error)
3529 return ERR_PTR(error);
3530 if (!folio)
3531 return ERR_PTR(-ECHILD);
3532 if (PageHWPoison(folio_page(folio, 0))) {
3533 folio_unlock(folio);
3534 folio_put(folio);
3535 return ERR_PTR(-ECHILD);
3536 }
3537 folio_unlock(folio);
3538 }
3539 set_delayed_call(done, shmem_put_link, folio);
3540 return folio_address(folio);
3541 }
3542
3543 #ifdef CONFIG_TMPFS_XATTR
3544
3545 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3546 {
3547 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3548
3549 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3550
3551 return 0;
3552 }
3553
3554 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3555 struct dentry *dentry, struct fileattr *fa)
3556 {
3557 struct inode *inode = d_inode(dentry);
3558 struct shmem_inode_info *info = SHMEM_I(inode);
3559
3560 if (fileattr_has_fsx(fa))
3561 return -EOPNOTSUPP;
3562 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3563 return -EOPNOTSUPP;
3564
3565 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3566 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3567
3568 shmem_set_inode_flags(inode, info->fsflags);
3569 inode_set_ctime_current(inode);
3570 inode_inc_iversion(inode);
3571 return 0;
3572 }
3573
3574 /*
3575 * Superblocks without xattr inode operations may get some security.* xattr
3576 * support from the LSM "for free". As soon as we have any other xattrs
3577 * like ACLs, we also need to implement the security.* handlers at
3578 * filesystem level, though.
3579 */
3580
3581 /*
3582 * Callback for security_inode_init_security() for acquiring xattrs.
3583 */
3584 static int shmem_initxattrs(struct inode *inode,
3585 const struct xattr *xattr_array,
3586 void *fs_info)
3587 {
3588 struct shmem_inode_info *info = SHMEM_I(inode);
3589 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3590 const struct xattr *xattr;
3591 struct simple_xattr *new_xattr;
3592 size_t ispace = 0;
3593 size_t len;
3594
3595 if (sbinfo->max_inodes) {
3596 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3597 ispace += simple_xattr_space(xattr->name,
3598 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3599 }
3600 if (ispace) {
3601 raw_spin_lock(&sbinfo->stat_lock);
3602 if (sbinfo->free_ispace < ispace)
3603 ispace = 0;
3604 else
3605 sbinfo->free_ispace -= ispace;
3606 raw_spin_unlock(&sbinfo->stat_lock);
3607 if (!ispace)
3608 return -ENOSPC;
3609 }
3610 }
3611
3612 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3613 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3614 if (!new_xattr)
3615 break;
3616
3617 len = strlen(xattr->name) + 1;
3618 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3619 GFP_KERNEL_ACCOUNT);
3620 if (!new_xattr->name) {
3621 kvfree(new_xattr);
3622 break;
3623 }
3624
3625 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3626 XATTR_SECURITY_PREFIX_LEN);
3627 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3628 xattr->name, len);
3629
3630 simple_xattr_add(&info->xattrs, new_xattr);
3631 }
3632
3633 if (xattr->name != NULL) {
3634 if (ispace) {
3635 raw_spin_lock(&sbinfo->stat_lock);
3636 sbinfo->free_ispace += ispace;
3637 raw_spin_unlock(&sbinfo->stat_lock);
3638 }
3639 simple_xattrs_free(&info->xattrs, NULL);
3640 return -ENOMEM;
3641 }
3642
3643 return 0;
3644 }
3645
3646 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3647 struct dentry *unused, struct inode *inode,
3648 const char *name, void *buffer, size_t size)
3649 {
3650 struct shmem_inode_info *info = SHMEM_I(inode);
3651
3652 name = xattr_full_name(handler, name);
3653 return simple_xattr_get(&info->xattrs, name, buffer, size);
3654 }
3655
3656 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3657 struct mnt_idmap *idmap,
3658 struct dentry *unused, struct inode *inode,
3659 const char *name, const void *value,
3660 size_t size, int flags)
3661 {
3662 struct shmem_inode_info *info = SHMEM_I(inode);
3663 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3664 struct simple_xattr *old_xattr;
3665 size_t ispace = 0;
3666
3667 name = xattr_full_name(handler, name);
3668 if (value && sbinfo->max_inodes) {
3669 ispace = simple_xattr_space(name, size);
3670 raw_spin_lock(&sbinfo->stat_lock);
3671 if (sbinfo->free_ispace < ispace)
3672 ispace = 0;
3673 else
3674 sbinfo->free_ispace -= ispace;
3675 raw_spin_unlock(&sbinfo->stat_lock);
3676 if (!ispace)
3677 return -ENOSPC;
3678 }
3679
3680 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3681 if (!IS_ERR(old_xattr)) {
3682 ispace = 0;
3683 if (old_xattr && sbinfo->max_inodes)
3684 ispace = simple_xattr_space(old_xattr->name,
3685 old_xattr->size);
3686 simple_xattr_free(old_xattr);
3687 old_xattr = NULL;
3688 inode_set_ctime_current(inode);
3689 inode_inc_iversion(inode);
3690 }
3691 if (ispace) {
3692 raw_spin_lock(&sbinfo->stat_lock);
3693 sbinfo->free_ispace += ispace;
3694 raw_spin_unlock(&sbinfo->stat_lock);
3695 }
3696 return PTR_ERR(old_xattr);
3697 }
3698
3699 static const struct xattr_handler shmem_security_xattr_handler = {
3700 .prefix = XATTR_SECURITY_PREFIX,
3701 .get = shmem_xattr_handler_get,
3702 .set = shmem_xattr_handler_set,
3703 };
3704
3705 static const struct xattr_handler shmem_trusted_xattr_handler = {
3706 .prefix = XATTR_TRUSTED_PREFIX,
3707 .get = shmem_xattr_handler_get,
3708 .set = shmem_xattr_handler_set,
3709 };
3710
3711 static const struct xattr_handler shmem_user_xattr_handler = {
3712 .prefix = XATTR_USER_PREFIX,
3713 .get = shmem_xattr_handler_get,
3714 .set = shmem_xattr_handler_set,
3715 };
3716
3717 static const struct xattr_handler *shmem_xattr_handlers[] = {
3718 &shmem_security_xattr_handler,
3719 &shmem_trusted_xattr_handler,
3720 &shmem_user_xattr_handler,
3721 NULL
3722 };
3723
3724 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3725 {
3726 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3727 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3728 }
3729 #endif /* CONFIG_TMPFS_XATTR */
3730
3731 static const struct inode_operations shmem_short_symlink_operations = {
3732 .getattr = shmem_getattr,
3733 .setattr = shmem_setattr,
3734 .get_link = simple_get_link,
3735 #ifdef CONFIG_TMPFS_XATTR
3736 .listxattr = shmem_listxattr,
3737 #endif
3738 };
3739
3740 static const struct inode_operations shmem_symlink_inode_operations = {
3741 .getattr = shmem_getattr,
3742 .setattr = shmem_setattr,
3743 .get_link = shmem_get_link,
3744 #ifdef CONFIG_TMPFS_XATTR
3745 .listxattr = shmem_listxattr,
3746 #endif
3747 };
3748
3749 static struct dentry *shmem_get_parent(struct dentry *child)
3750 {
3751 return ERR_PTR(-ESTALE);
3752 }
3753
3754 static int shmem_match(struct inode *ino, void *vfh)
3755 {
3756 __u32 *fh = vfh;
3757 __u64 inum = fh[2];
3758 inum = (inum << 32) | fh[1];
3759 return ino->i_ino == inum && fh[0] == ino->i_generation;
3760 }
3761
3762 /* Find any alias of inode, but prefer a hashed alias */
3763 static struct dentry *shmem_find_alias(struct inode *inode)
3764 {
3765 struct dentry *alias = d_find_alias(inode);
3766
3767 return alias ?: d_find_any_alias(inode);
3768 }
3769
3770
3771 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3772 struct fid *fid, int fh_len, int fh_type)
3773 {
3774 struct inode *inode;
3775 struct dentry *dentry = NULL;
3776 u64 inum;
3777
3778 if (fh_len < 3)
3779 return NULL;
3780
3781 inum = fid->raw[2];
3782 inum = (inum << 32) | fid->raw[1];
3783
3784 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3785 shmem_match, fid->raw);
3786 if (inode) {
3787 dentry = shmem_find_alias(inode);
3788 iput(inode);
3789 }
3790
3791 return dentry;
3792 }
3793
3794 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3795 struct inode *parent)
3796 {
3797 if (*len < 3) {
3798 *len = 3;
3799 return FILEID_INVALID;
3800 }
3801
3802 if (inode_unhashed(inode)) {
3803 /* Unfortunately insert_inode_hash is not idempotent,
3804 * so as we hash inodes here rather than at creation
3805 * time, we need a lock to ensure we only try
3806 * to do it once
3807 */
3808 static DEFINE_SPINLOCK(lock);
3809 spin_lock(&lock);
3810 if (inode_unhashed(inode))
3811 __insert_inode_hash(inode,
3812 inode->i_ino + inode->i_generation);
3813 spin_unlock(&lock);
3814 }
3815
3816 fh[0] = inode->i_generation;
3817 fh[1] = inode->i_ino;
3818 fh[2] = ((__u64)inode->i_ino) >> 32;
3819
3820 *len = 3;
3821 return 1;
3822 }
3823
3824 static const struct export_operations shmem_export_ops = {
3825 .get_parent = shmem_get_parent,
3826 .encode_fh = shmem_encode_fh,
3827 .fh_to_dentry = shmem_fh_to_dentry,
3828 };
3829
3830 enum shmem_param {
3831 Opt_gid,
3832 Opt_huge,
3833 Opt_mode,
3834 Opt_mpol,
3835 Opt_nr_blocks,
3836 Opt_nr_inodes,
3837 Opt_size,
3838 Opt_uid,
3839 Opt_inode32,
3840 Opt_inode64,
3841 Opt_noswap,
3842 Opt_quota,
3843 Opt_usrquota,
3844 Opt_grpquota,
3845 Opt_usrquota_block_hardlimit,
3846 Opt_usrquota_inode_hardlimit,
3847 Opt_grpquota_block_hardlimit,
3848 Opt_grpquota_inode_hardlimit,
3849 };
3850
3851 static const struct constant_table shmem_param_enums_huge[] = {
3852 {"never", SHMEM_HUGE_NEVER },
3853 {"always", SHMEM_HUGE_ALWAYS },
3854 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3855 {"advise", SHMEM_HUGE_ADVISE },
3856 {}
3857 };
3858
3859 const struct fs_parameter_spec shmem_fs_parameters[] = {
3860 fsparam_u32 ("gid", Opt_gid),
3861 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3862 fsparam_u32oct("mode", Opt_mode),
3863 fsparam_string("mpol", Opt_mpol),
3864 fsparam_string("nr_blocks", Opt_nr_blocks),
3865 fsparam_string("nr_inodes", Opt_nr_inodes),
3866 fsparam_string("size", Opt_size),
3867 fsparam_u32 ("uid", Opt_uid),
3868 fsparam_flag ("inode32", Opt_inode32),
3869 fsparam_flag ("inode64", Opt_inode64),
3870 fsparam_flag ("noswap", Opt_noswap),
3871 #ifdef CONFIG_TMPFS_QUOTA
3872 fsparam_flag ("quota", Opt_quota),
3873 fsparam_flag ("usrquota", Opt_usrquota),
3874 fsparam_flag ("grpquota", Opt_grpquota),
3875 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3876 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3877 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3878 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3879 #endif
3880 {}
3881 };
3882
3883 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3884 {
3885 struct shmem_options *ctx = fc->fs_private;
3886 struct fs_parse_result result;
3887 unsigned long long size;
3888 char *rest;
3889 int opt;
3890 kuid_t kuid;
3891 kgid_t kgid;
3892
3893 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3894 if (opt < 0)
3895 return opt;
3896
3897 switch (opt) {
3898 case Opt_size:
3899 size = memparse(param->string, &rest);
3900 if (*rest == '%') {
3901 size <<= PAGE_SHIFT;
3902 size *= totalram_pages();
3903 do_div(size, 100);
3904 rest++;
3905 }
3906 if (*rest)
3907 goto bad_value;
3908 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3909 ctx->seen |= SHMEM_SEEN_BLOCKS;
3910 break;
3911 case Opt_nr_blocks:
3912 ctx->blocks = memparse(param->string, &rest);
3913 if (*rest || ctx->blocks > LONG_MAX)
3914 goto bad_value;
3915 ctx->seen |= SHMEM_SEEN_BLOCKS;
3916 break;
3917 case Opt_nr_inodes:
3918 ctx->inodes = memparse(param->string, &rest);
3919 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3920 goto bad_value;
3921 ctx->seen |= SHMEM_SEEN_INODES;
3922 break;
3923 case Opt_mode:
3924 ctx->mode = result.uint_32 & 07777;
3925 break;
3926 case Opt_uid:
3927 kuid = make_kuid(current_user_ns(), result.uint_32);
3928 if (!uid_valid(kuid))
3929 goto bad_value;
3930
3931 /*
3932 * The requested uid must be representable in the
3933 * filesystem's idmapping.
3934 */
3935 if (!kuid_has_mapping(fc->user_ns, kuid))
3936 goto bad_value;
3937
3938 ctx->uid = kuid;
3939 break;
3940 case Opt_gid:
3941 kgid = make_kgid(current_user_ns(), result.uint_32);
3942 if (!gid_valid(kgid))
3943 goto bad_value;
3944
3945 /*
3946 * The requested gid must be representable in the
3947 * filesystem's idmapping.
3948 */
3949 if (!kgid_has_mapping(fc->user_ns, kgid))
3950 goto bad_value;
3951
3952 ctx->gid = kgid;
3953 break;
3954 case Opt_huge:
3955 ctx->huge = result.uint_32;
3956 if (ctx->huge != SHMEM_HUGE_NEVER &&
3957 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3958 has_transparent_hugepage()))
3959 goto unsupported_parameter;
3960 ctx->seen |= SHMEM_SEEN_HUGE;
3961 break;
3962 case Opt_mpol:
3963 if (IS_ENABLED(CONFIG_NUMA)) {
3964 mpol_put(ctx->mpol);
3965 ctx->mpol = NULL;
3966 if (mpol_parse_str(param->string, &ctx->mpol))
3967 goto bad_value;
3968 break;
3969 }
3970 goto unsupported_parameter;
3971 case Opt_inode32:
3972 ctx->full_inums = false;
3973 ctx->seen |= SHMEM_SEEN_INUMS;
3974 break;
3975 case Opt_inode64:
3976 if (sizeof(ino_t) < 8) {
3977 return invalfc(fc,
3978 "Cannot use inode64 with <64bit inums in kernel\n");
3979 }
3980 ctx->full_inums = true;
3981 ctx->seen |= SHMEM_SEEN_INUMS;
3982 break;
3983 case Opt_noswap:
3984 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3985 return invalfc(fc,
3986 "Turning off swap in unprivileged tmpfs mounts unsupported");
3987 }
3988 ctx->noswap = true;
3989 ctx->seen |= SHMEM_SEEN_NOSWAP;
3990 break;
3991 case Opt_quota:
3992 if (fc->user_ns != &init_user_ns)
3993 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
3994 ctx->seen |= SHMEM_SEEN_QUOTA;
3995 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
3996 break;
3997 case Opt_usrquota:
3998 if (fc->user_ns != &init_user_ns)
3999 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4000 ctx->seen |= SHMEM_SEEN_QUOTA;
4001 ctx->quota_types |= QTYPE_MASK_USR;
4002 break;
4003 case Opt_grpquota:
4004 if (fc->user_ns != &init_user_ns)
4005 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4006 ctx->seen |= SHMEM_SEEN_QUOTA;
4007 ctx->quota_types |= QTYPE_MASK_GRP;
4008 break;
4009 case Opt_usrquota_block_hardlimit:
4010 size = memparse(param->string, &rest);
4011 if (*rest || !size)
4012 goto bad_value;
4013 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4014 return invalfc(fc,
4015 "User quota block hardlimit too large.");
4016 ctx->qlimits.usrquota_bhardlimit = size;
4017 break;
4018 case Opt_grpquota_block_hardlimit:
4019 size = memparse(param->string, &rest);
4020 if (*rest || !size)
4021 goto bad_value;
4022 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4023 return invalfc(fc,
4024 "Group quota block hardlimit too large.");
4025 ctx->qlimits.grpquota_bhardlimit = size;
4026 break;
4027 case Opt_usrquota_inode_hardlimit:
4028 size = memparse(param->string, &rest);
4029 if (*rest || !size)
4030 goto bad_value;
4031 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4032 return invalfc(fc,
4033 "User quota inode hardlimit too large.");
4034 ctx->qlimits.usrquota_ihardlimit = size;
4035 break;
4036 case Opt_grpquota_inode_hardlimit:
4037 size = memparse(param->string, &rest);
4038 if (*rest || !size)
4039 goto bad_value;
4040 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4041 return invalfc(fc,
4042 "Group quota inode hardlimit too large.");
4043 ctx->qlimits.grpquota_ihardlimit = size;
4044 break;
4045 }
4046 return 0;
4047
4048 unsupported_parameter:
4049 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4050 bad_value:
4051 return invalfc(fc, "Bad value for '%s'", param->key);
4052 }
4053
4054 static int shmem_parse_options(struct fs_context *fc, void *data)
4055 {
4056 char *options = data;
4057
4058 if (options) {
4059 int err = security_sb_eat_lsm_opts(options, &fc->security);
4060 if (err)
4061 return err;
4062 }
4063
4064 while (options != NULL) {
4065 char *this_char = options;
4066 for (;;) {
4067 /*
4068 * NUL-terminate this option: unfortunately,
4069 * mount options form a comma-separated list,
4070 * but mpol's nodelist may also contain commas.
4071 */
4072 options = strchr(options, ',');
4073 if (options == NULL)
4074 break;
4075 options++;
4076 if (!isdigit(*options)) {
4077 options[-1] = '\0';
4078 break;
4079 }
4080 }
4081 if (*this_char) {
4082 char *value = strchr(this_char, '=');
4083 size_t len = 0;
4084 int err;
4085
4086 if (value) {
4087 *value++ = '\0';
4088 len = strlen(value);
4089 }
4090 err = vfs_parse_fs_string(fc, this_char, value, len);
4091 if (err < 0)
4092 return err;
4093 }
4094 }
4095 return 0;
4096 }
4097
4098 /*
4099 * Reconfigure a shmem filesystem.
4100 */
4101 static int shmem_reconfigure(struct fs_context *fc)
4102 {
4103 struct shmem_options *ctx = fc->fs_private;
4104 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4105 unsigned long used_isp;
4106 struct mempolicy *mpol = NULL;
4107 const char *err;
4108
4109 raw_spin_lock(&sbinfo->stat_lock);
4110 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4111
4112 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4113 if (!sbinfo->max_blocks) {
4114 err = "Cannot retroactively limit size";
4115 goto out;
4116 }
4117 if (percpu_counter_compare(&sbinfo->used_blocks,
4118 ctx->blocks) > 0) {
4119 err = "Too small a size for current use";
4120 goto out;
4121 }
4122 }
4123 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4124 if (!sbinfo->max_inodes) {
4125 err = "Cannot retroactively limit inodes";
4126 goto out;
4127 }
4128 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4129 err = "Too few inodes for current use";
4130 goto out;
4131 }
4132 }
4133
4134 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4135 sbinfo->next_ino > UINT_MAX) {
4136 err = "Current inum too high to switch to 32-bit inums";
4137 goto out;
4138 }
4139 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4140 err = "Cannot disable swap on remount";
4141 goto out;
4142 }
4143 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4144 err = "Cannot enable swap on remount if it was disabled on first mount";
4145 goto out;
4146 }
4147
4148 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4149 !sb_any_quota_loaded(fc->root->d_sb)) {
4150 err = "Cannot enable quota on remount";
4151 goto out;
4152 }
4153
4154 #ifdef CONFIG_TMPFS_QUOTA
4155 #define CHANGED_LIMIT(name) \
4156 (ctx->qlimits.name## hardlimit && \
4157 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4158
4159 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4160 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4161 err = "Cannot change global quota limit on remount";
4162 goto out;
4163 }
4164 #endif /* CONFIG_TMPFS_QUOTA */
4165
4166 if (ctx->seen & SHMEM_SEEN_HUGE)
4167 sbinfo->huge = ctx->huge;
4168 if (ctx->seen & SHMEM_SEEN_INUMS)
4169 sbinfo->full_inums = ctx->full_inums;
4170 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4171 sbinfo->max_blocks = ctx->blocks;
4172 if (ctx->seen & SHMEM_SEEN_INODES) {
4173 sbinfo->max_inodes = ctx->inodes;
4174 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4175 }
4176
4177 /*
4178 * Preserve previous mempolicy unless mpol remount option was specified.
4179 */
4180 if (ctx->mpol) {
4181 mpol = sbinfo->mpol;
4182 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4183 ctx->mpol = NULL;
4184 }
4185
4186 if (ctx->noswap)
4187 sbinfo->noswap = true;
4188
4189 raw_spin_unlock(&sbinfo->stat_lock);
4190 mpol_put(mpol);
4191 return 0;
4192 out:
4193 raw_spin_unlock(&sbinfo->stat_lock);
4194 return invalfc(fc, "%s", err);
4195 }
4196
4197 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4198 {
4199 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4200 struct mempolicy *mpol;
4201
4202 if (sbinfo->max_blocks != shmem_default_max_blocks())
4203 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4204 if (sbinfo->max_inodes != shmem_default_max_inodes())
4205 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4206 if (sbinfo->mode != (0777 | S_ISVTX))
4207 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4208 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4209 seq_printf(seq, ",uid=%u",
4210 from_kuid_munged(&init_user_ns, sbinfo->uid));
4211 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4212 seq_printf(seq, ",gid=%u",
4213 from_kgid_munged(&init_user_ns, sbinfo->gid));
4214
4215 /*
4216 * Showing inode{64,32} might be useful even if it's the system default,
4217 * since then people don't have to resort to checking both here and
4218 * /proc/config.gz to confirm 64-bit inums were successfully applied
4219 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4220 *
4221 * We hide it when inode64 isn't the default and we are using 32-bit
4222 * inodes, since that probably just means the feature isn't even under
4223 * consideration.
4224 *
4225 * As such:
4226 *
4227 * +-----------------+-----------------+
4228 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4229 * +------------------+-----------------+-----------------+
4230 * | full_inums=true | show | show |
4231 * | full_inums=false | show | hide |
4232 * +------------------+-----------------+-----------------+
4233 *
4234 */
4235 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4236 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4238 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4239 if (sbinfo->huge)
4240 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4241 #endif
4242 mpol = shmem_get_sbmpol(sbinfo);
4243 shmem_show_mpol(seq, mpol);
4244 mpol_put(mpol);
4245 if (sbinfo->noswap)
4246 seq_printf(seq, ",noswap");
4247 return 0;
4248 }
4249
4250 #endif /* CONFIG_TMPFS */
4251
4252 static void shmem_put_super(struct super_block *sb)
4253 {
4254 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4255
4256 #ifdef CONFIG_TMPFS_QUOTA
4257 shmem_disable_quotas(sb);
4258 #endif
4259 free_percpu(sbinfo->ino_batch);
4260 percpu_counter_destroy(&sbinfo->used_blocks);
4261 mpol_put(sbinfo->mpol);
4262 kfree(sbinfo);
4263 sb->s_fs_info = NULL;
4264 }
4265
4266 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4267 {
4268 struct shmem_options *ctx = fc->fs_private;
4269 struct inode *inode;
4270 struct shmem_sb_info *sbinfo;
4271 int error = -ENOMEM;
4272
4273 /* Round up to L1_CACHE_BYTES to resist false sharing */
4274 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4275 L1_CACHE_BYTES), GFP_KERNEL);
4276 if (!sbinfo)
4277 return error;
4278
4279 sb->s_fs_info = sbinfo;
4280
4281 #ifdef CONFIG_TMPFS
4282 /*
4283 * Per default we only allow half of the physical ram per
4284 * tmpfs instance, limiting inodes to one per page of lowmem;
4285 * but the internal instance is left unlimited.
4286 */
4287 if (!(sb->s_flags & SB_KERNMOUNT)) {
4288 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4289 ctx->blocks = shmem_default_max_blocks();
4290 if (!(ctx->seen & SHMEM_SEEN_INODES))
4291 ctx->inodes = shmem_default_max_inodes();
4292 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4293 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4294 sbinfo->noswap = ctx->noswap;
4295 } else {
4296 sb->s_flags |= SB_NOUSER;
4297 }
4298 sb->s_export_op = &shmem_export_ops;
4299 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4300 #else
4301 sb->s_flags |= SB_NOUSER;
4302 #endif
4303 sbinfo->max_blocks = ctx->blocks;
4304 sbinfo->max_inodes = ctx->inodes;
4305 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4306 if (sb->s_flags & SB_KERNMOUNT) {
4307 sbinfo->ino_batch = alloc_percpu(ino_t);
4308 if (!sbinfo->ino_batch)
4309 goto failed;
4310 }
4311 sbinfo->uid = ctx->uid;
4312 sbinfo->gid = ctx->gid;
4313 sbinfo->full_inums = ctx->full_inums;
4314 sbinfo->mode = ctx->mode;
4315 sbinfo->huge = ctx->huge;
4316 sbinfo->mpol = ctx->mpol;
4317 ctx->mpol = NULL;
4318
4319 raw_spin_lock_init(&sbinfo->stat_lock);
4320 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4321 goto failed;
4322 spin_lock_init(&sbinfo->shrinklist_lock);
4323 INIT_LIST_HEAD(&sbinfo->shrinklist);
4324
4325 sb->s_maxbytes = MAX_LFS_FILESIZE;
4326 sb->s_blocksize = PAGE_SIZE;
4327 sb->s_blocksize_bits = PAGE_SHIFT;
4328 sb->s_magic = TMPFS_MAGIC;
4329 sb->s_op = &shmem_ops;
4330 sb->s_time_gran = 1;
4331 #ifdef CONFIG_TMPFS_XATTR
4332 sb->s_xattr = shmem_xattr_handlers;
4333 #endif
4334 #ifdef CONFIG_TMPFS_POSIX_ACL
4335 sb->s_flags |= SB_POSIXACL;
4336 #endif
4337 uuid_gen(&sb->s_uuid);
4338
4339 #ifdef CONFIG_TMPFS_QUOTA
4340 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4341 sb->dq_op = &shmem_quota_operations;
4342 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4343 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4344
4345 /* Copy the default limits from ctx into sbinfo */
4346 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4347 sizeof(struct shmem_quota_limits));
4348
4349 if (shmem_enable_quotas(sb, ctx->quota_types))
4350 goto failed;
4351 }
4352 #endif /* CONFIG_TMPFS_QUOTA */
4353
4354 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4355 VM_NORESERVE);
4356 if (IS_ERR(inode)) {
4357 error = PTR_ERR(inode);
4358 goto failed;
4359 }
4360 inode->i_uid = sbinfo->uid;
4361 inode->i_gid = sbinfo->gid;
4362 sb->s_root = d_make_root(inode);
4363 if (!sb->s_root)
4364 goto failed;
4365 return 0;
4366
4367 failed:
4368 shmem_put_super(sb);
4369 return error;
4370 }
4371
4372 static int shmem_get_tree(struct fs_context *fc)
4373 {
4374 return get_tree_nodev(fc, shmem_fill_super);
4375 }
4376
4377 static void shmem_free_fc(struct fs_context *fc)
4378 {
4379 struct shmem_options *ctx = fc->fs_private;
4380
4381 if (ctx) {
4382 mpol_put(ctx->mpol);
4383 kfree(ctx);
4384 }
4385 }
4386
4387 static const struct fs_context_operations shmem_fs_context_ops = {
4388 .free = shmem_free_fc,
4389 .get_tree = shmem_get_tree,
4390 #ifdef CONFIG_TMPFS
4391 .parse_monolithic = shmem_parse_options,
4392 .parse_param = shmem_parse_one,
4393 .reconfigure = shmem_reconfigure,
4394 #endif
4395 };
4396
4397 static struct kmem_cache *shmem_inode_cachep;
4398
4399 static struct inode *shmem_alloc_inode(struct super_block *sb)
4400 {
4401 struct shmem_inode_info *info;
4402 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4403 if (!info)
4404 return NULL;
4405 return &info->vfs_inode;
4406 }
4407
4408 static void shmem_free_in_core_inode(struct inode *inode)
4409 {
4410 if (S_ISLNK(inode->i_mode))
4411 kfree(inode->i_link);
4412 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4413 }
4414
4415 static void shmem_destroy_inode(struct inode *inode)
4416 {
4417 if (S_ISREG(inode->i_mode))
4418 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4419 if (S_ISDIR(inode->i_mode))
4420 simple_offset_destroy(shmem_get_offset_ctx(inode));
4421 }
4422
4423 static void shmem_init_inode(void *foo)
4424 {
4425 struct shmem_inode_info *info = foo;
4426 inode_init_once(&info->vfs_inode);
4427 }
4428
4429 static void shmem_init_inodecache(void)
4430 {
4431 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4432 sizeof(struct shmem_inode_info),
4433 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4434 }
4435
4436 static void shmem_destroy_inodecache(void)
4437 {
4438 kmem_cache_destroy(shmem_inode_cachep);
4439 }
4440
4441 /* Keep the page in page cache instead of truncating it */
4442 static int shmem_error_remove_page(struct address_space *mapping,
4443 struct page *page)
4444 {
4445 return 0;
4446 }
4447
4448 const struct address_space_operations shmem_aops = {
4449 .writepage = shmem_writepage,
4450 .dirty_folio = noop_dirty_folio,
4451 #ifdef CONFIG_TMPFS
4452 .write_begin = shmem_write_begin,
4453 .write_end = shmem_write_end,
4454 #endif
4455 #ifdef CONFIG_MIGRATION
4456 .migrate_folio = migrate_folio,
4457 #endif
4458 .error_remove_page = shmem_error_remove_page,
4459 };
4460 EXPORT_SYMBOL(shmem_aops);
4461
4462 static const struct file_operations shmem_file_operations = {
4463 .mmap = shmem_mmap,
4464 .open = shmem_file_open,
4465 .get_unmapped_area = shmem_get_unmapped_area,
4466 #ifdef CONFIG_TMPFS
4467 .llseek = shmem_file_llseek,
4468 .read_iter = shmem_file_read_iter,
4469 .write_iter = shmem_file_write_iter,
4470 .fsync = noop_fsync,
4471 .splice_read = shmem_file_splice_read,
4472 .splice_write = iter_file_splice_write,
4473 .fallocate = shmem_fallocate,
4474 #endif
4475 };
4476
4477 static const struct inode_operations shmem_inode_operations = {
4478 .getattr = shmem_getattr,
4479 .setattr = shmem_setattr,
4480 #ifdef CONFIG_TMPFS_XATTR
4481 .listxattr = shmem_listxattr,
4482 .set_acl = simple_set_acl,
4483 .fileattr_get = shmem_fileattr_get,
4484 .fileattr_set = shmem_fileattr_set,
4485 #endif
4486 };
4487
4488 static const struct inode_operations shmem_dir_inode_operations = {
4489 #ifdef CONFIG_TMPFS
4490 .getattr = shmem_getattr,
4491 .create = shmem_create,
4492 .lookup = simple_lookup,
4493 .link = shmem_link,
4494 .unlink = shmem_unlink,
4495 .symlink = shmem_symlink,
4496 .mkdir = shmem_mkdir,
4497 .rmdir = shmem_rmdir,
4498 .mknod = shmem_mknod,
4499 .rename = shmem_rename2,
4500 .tmpfile = shmem_tmpfile,
4501 .get_offset_ctx = shmem_get_offset_ctx,
4502 #endif
4503 #ifdef CONFIG_TMPFS_XATTR
4504 .listxattr = shmem_listxattr,
4505 .fileattr_get = shmem_fileattr_get,
4506 .fileattr_set = shmem_fileattr_set,
4507 #endif
4508 #ifdef CONFIG_TMPFS_POSIX_ACL
4509 .setattr = shmem_setattr,
4510 .set_acl = simple_set_acl,
4511 #endif
4512 };
4513
4514 static const struct inode_operations shmem_special_inode_operations = {
4515 .getattr = shmem_getattr,
4516 #ifdef CONFIG_TMPFS_XATTR
4517 .listxattr = shmem_listxattr,
4518 #endif
4519 #ifdef CONFIG_TMPFS_POSIX_ACL
4520 .setattr = shmem_setattr,
4521 .set_acl = simple_set_acl,
4522 #endif
4523 };
4524
4525 static const struct super_operations shmem_ops = {
4526 .alloc_inode = shmem_alloc_inode,
4527 .free_inode = shmem_free_in_core_inode,
4528 .destroy_inode = shmem_destroy_inode,
4529 #ifdef CONFIG_TMPFS
4530 .statfs = shmem_statfs,
4531 .show_options = shmem_show_options,
4532 #endif
4533 #ifdef CONFIG_TMPFS_QUOTA
4534 .get_dquots = shmem_get_dquots,
4535 #endif
4536 .evict_inode = shmem_evict_inode,
4537 .drop_inode = generic_delete_inode,
4538 .put_super = shmem_put_super,
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 .nr_cached_objects = shmem_unused_huge_count,
4541 .free_cached_objects = shmem_unused_huge_scan,
4542 #endif
4543 };
4544
4545 static const struct vm_operations_struct shmem_vm_ops = {
4546 .fault = shmem_fault,
4547 .map_pages = filemap_map_pages,
4548 #ifdef CONFIG_NUMA
4549 .set_policy = shmem_set_policy,
4550 .get_policy = shmem_get_policy,
4551 #endif
4552 };
4553
4554 static const struct vm_operations_struct shmem_anon_vm_ops = {
4555 .fault = shmem_fault,
4556 .map_pages = filemap_map_pages,
4557 #ifdef CONFIG_NUMA
4558 .set_policy = shmem_set_policy,
4559 .get_policy = shmem_get_policy,
4560 #endif
4561 };
4562
4563 int shmem_init_fs_context(struct fs_context *fc)
4564 {
4565 struct shmem_options *ctx;
4566
4567 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4568 if (!ctx)
4569 return -ENOMEM;
4570
4571 ctx->mode = 0777 | S_ISVTX;
4572 ctx->uid = current_fsuid();
4573 ctx->gid = current_fsgid();
4574
4575 fc->fs_private = ctx;
4576 fc->ops = &shmem_fs_context_ops;
4577 return 0;
4578 }
4579
4580 static struct file_system_type shmem_fs_type = {
4581 .owner = THIS_MODULE,
4582 .name = "tmpfs",
4583 .init_fs_context = shmem_init_fs_context,
4584 #ifdef CONFIG_TMPFS
4585 .parameters = shmem_fs_parameters,
4586 #endif
4587 .kill_sb = kill_litter_super,
4588 #ifdef CONFIG_SHMEM
4589 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
4590 #else
4591 .fs_flags = FS_USERNS_MOUNT,
4592 #endif
4593 };
4594
4595 void __init shmem_init(void)
4596 {
4597 int error;
4598
4599 shmem_init_inodecache();
4600
4601 #ifdef CONFIG_TMPFS_QUOTA
4602 error = register_quota_format(&shmem_quota_format);
4603 if (error < 0) {
4604 pr_err("Could not register quota format\n");
4605 goto out3;
4606 }
4607 #endif
4608
4609 error = register_filesystem(&shmem_fs_type);
4610 if (error) {
4611 pr_err("Could not register tmpfs\n");
4612 goto out2;
4613 }
4614
4615 shm_mnt = kern_mount(&shmem_fs_type);
4616 if (IS_ERR(shm_mnt)) {
4617 error = PTR_ERR(shm_mnt);
4618 pr_err("Could not kern_mount tmpfs\n");
4619 goto out1;
4620 }
4621
4622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4623 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4624 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4625 else
4626 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4627 #endif
4628 return;
4629
4630 out1:
4631 unregister_filesystem(&shmem_fs_type);
4632 out2:
4633 #ifdef CONFIG_TMPFS_QUOTA
4634 unregister_quota_format(&shmem_quota_format);
4635 out3:
4636 #endif
4637 shmem_destroy_inodecache();
4638 shm_mnt = ERR_PTR(error);
4639 }
4640
4641 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4642 static ssize_t shmem_enabled_show(struct kobject *kobj,
4643 struct kobj_attribute *attr, char *buf)
4644 {
4645 static const int values[] = {
4646 SHMEM_HUGE_ALWAYS,
4647 SHMEM_HUGE_WITHIN_SIZE,
4648 SHMEM_HUGE_ADVISE,
4649 SHMEM_HUGE_NEVER,
4650 SHMEM_HUGE_DENY,
4651 SHMEM_HUGE_FORCE,
4652 };
4653 int len = 0;
4654 int i;
4655
4656 for (i = 0; i < ARRAY_SIZE(values); i++) {
4657 len += sysfs_emit_at(buf, len,
4658 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4659 i ? " " : "",
4660 shmem_format_huge(values[i]));
4661 }
4662
4663 len += sysfs_emit_at(buf, len, "\n");
4664
4665 return len;
4666 }
4667
4668 static ssize_t shmem_enabled_store(struct kobject *kobj,
4669 struct kobj_attribute *attr, const char *buf, size_t count)
4670 {
4671 char tmp[16];
4672 int huge;
4673
4674 if (count + 1 > sizeof(tmp))
4675 return -EINVAL;
4676 memcpy(tmp, buf, count);
4677 tmp[count] = '\0';
4678 if (count && tmp[count - 1] == '\n')
4679 tmp[count - 1] = '\0';
4680
4681 huge = shmem_parse_huge(tmp);
4682 if (huge == -EINVAL)
4683 return -EINVAL;
4684 if (!has_transparent_hugepage() &&
4685 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4686 return -EINVAL;
4687
4688 shmem_huge = huge;
4689 if (shmem_huge > SHMEM_HUGE_DENY)
4690 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4691 return count;
4692 }
4693
4694 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4696
4697 #else /* !CONFIG_SHMEM */
4698
4699 /*
4700 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4701 *
4702 * This is intended for small system where the benefits of the full
4703 * shmem code (swap-backed and resource-limited) are outweighed by
4704 * their complexity. On systems without swap this code should be
4705 * effectively equivalent, but much lighter weight.
4706 */
4707
4708 static struct file_system_type shmem_fs_type = {
4709 .name = "tmpfs",
4710 .init_fs_context = ramfs_init_fs_context,
4711 .parameters = ramfs_fs_parameters,
4712 .kill_sb = ramfs_kill_sb,
4713 .fs_flags = FS_USERNS_MOUNT,
4714 };
4715
4716 void __init shmem_init(void)
4717 {
4718 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4719
4720 shm_mnt = kern_mount(&shmem_fs_type);
4721 BUG_ON(IS_ERR(shm_mnt));
4722 }
4723
4724 int shmem_unuse(unsigned int type)
4725 {
4726 return 0;
4727 }
4728
4729 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4730 {
4731 return 0;
4732 }
4733
4734 void shmem_unlock_mapping(struct address_space *mapping)
4735 {
4736 }
4737
4738 #ifdef CONFIG_MMU
4739 unsigned long shmem_get_unmapped_area(struct file *file,
4740 unsigned long addr, unsigned long len,
4741 unsigned long pgoff, unsigned long flags)
4742 {
4743 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4744 }
4745 #endif
4746
4747 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4748 {
4749 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4750 }
4751 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4752
4753 #define shmem_vm_ops generic_file_vm_ops
4754 #define shmem_anon_vm_ops generic_file_vm_ops
4755 #define shmem_file_operations ramfs_file_operations
4756 #define shmem_acct_size(flags, size) 0
4757 #define shmem_unacct_size(flags, size) do {} while (0)
4758
4759 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4760 umode_t mode, dev_t dev, unsigned long flags)
4761 {
4762 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4763 return inode ? inode : ERR_PTR(-ENOSPC);
4764 }
4765
4766 #endif /* CONFIG_SHMEM */
4767
4768 /* common code */
4769
4770 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4771 unsigned long flags, unsigned int i_flags)
4772 {
4773 struct inode *inode;
4774 struct file *res;
4775
4776 if (IS_ERR(mnt))
4777 return ERR_CAST(mnt);
4778
4779 if (size < 0 || size > MAX_LFS_FILESIZE)
4780 return ERR_PTR(-EINVAL);
4781
4782 if (shmem_acct_size(flags, size))
4783 return ERR_PTR(-ENOMEM);
4784
4785 if (is_idmapped_mnt(mnt))
4786 return ERR_PTR(-EINVAL);
4787
4788 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4789 S_IFREG | S_IRWXUGO, 0, flags);
4790
4791 if (IS_ERR(inode)) {
4792 shmem_unacct_size(flags, size);
4793 return ERR_CAST(inode);
4794 }
4795 inode->i_flags |= i_flags;
4796 inode->i_size = size;
4797 clear_nlink(inode); /* It is unlinked */
4798 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4799 if (!IS_ERR(res))
4800 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4801 &shmem_file_operations);
4802 if (IS_ERR(res))
4803 iput(inode);
4804 return res;
4805 }
4806
4807 /**
4808 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4809 * kernel internal. There will be NO LSM permission checks against the
4810 * underlying inode. So users of this interface must do LSM checks at a
4811 * higher layer. The users are the big_key and shm implementations. LSM
4812 * checks are provided at the key or shm level rather than the inode.
4813 * @name: name for dentry (to be seen in /proc/<pid>/maps
4814 * @size: size to be set for the file
4815 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4816 */
4817 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4818 {
4819 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4820 }
4821
4822 /**
4823 * shmem_file_setup - get an unlinked file living in tmpfs
4824 * @name: name for dentry (to be seen in /proc/<pid>/maps
4825 * @size: size to be set for the file
4826 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4827 */
4828 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4829 {
4830 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4831 }
4832 EXPORT_SYMBOL_GPL(shmem_file_setup);
4833
4834 /**
4835 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4836 * @mnt: the tmpfs mount where the file will be created
4837 * @name: name for dentry (to be seen in /proc/<pid>/maps
4838 * @size: size to be set for the file
4839 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840 */
4841 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4842 loff_t size, unsigned long flags)
4843 {
4844 return __shmem_file_setup(mnt, name, size, flags, 0);
4845 }
4846 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4847
4848 /**
4849 * shmem_zero_setup - setup a shared anonymous mapping
4850 * @vma: the vma to be mmapped is prepared by do_mmap
4851 */
4852 int shmem_zero_setup(struct vm_area_struct *vma)
4853 {
4854 struct file *file;
4855 loff_t size = vma->vm_end - vma->vm_start;
4856
4857 /*
4858 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4859 * between XFS directory reading and selinux: since this file is only
4860 * accessible to the user through its mapping, use S_PRIVATE flag to
4861 * bypass file security, in the same way as shmem_kernel_file_setup().
4862 */
4863 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4864 if (IS_ERR(file))
4865 return PTR_ERR(file);
4866
4867 if (vma->vm_file)
4868 fput(vma->vm_file);
4869 vma->vm_file = file;
4870 vma->vm_ops = &shmem_anon_vm_ops;
4871
4872 return 0;
4873 }
4874
4875 /**
4876 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4877 * @mapping: the folio's address_space
4878 * @index: the folio index
4879 * @gfp: the page allocator flags to use if allocating
4880 *
4881 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4882 * with any new page allocations done using the specified allocation flags.
4883 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4884 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4885 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4886 *
4887 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4888 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4889 */
4890 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4891 pgoff_t index, gfp_t gfp)
4892 {
4893 #ifdef CONFIG_SHMEM
4894 struct inode *inode = mapping->host;
4895 struct folio *folio;
4896 int error;
4897
4898 BUG_ON(!shmem_mapping(mapping));
4899 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4900 gfp, NULL, NULL, NULL);
4901 if (error)
4902 return ERR_PTR(error);
4903
4904 folio_unlock(folio);
4905 return folio;
4906 #else
4907 /*
4908 * The tiny !SHMEM case uses ramfs without swap
4909 */
4910 return mapping_read_folio_gfp(mapping, index, gfp);
4911 #endif
4912 }
4913 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4914
4915 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4916 pgoff_t index, gfp_t gfp)
4917 {
4918 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4919 struct page *page;
4920
4921 if (IS_ERR(folio))
4922 return &folio->page;
4923
4924 page = folio_file_page(folio, index);
4925 if (PageHWPoison(page)) {
4926 folio_put(folio);
4927 return ERR_PTR(-EIO);
4928 }
4929
4930 return page;
4931 }
4932 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);