]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/shmem.c
448f393d8ab2b1bd5f22eec603195977716a8727
[thirdparty/linux.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_rwsem making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
100 */
101 struct shmem_falloc {
102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 pgoff_t start; /* start of range currently being fallocated */
104 pgoff_t next; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
107 };
108
109 struct shmem_options {
110 unsigned long long blocks;
111 unsigned long long inodes;
112 struct mempolicy *mpol;
113 kuid_t uid;
114 kgid_t gid;
115 umode_t mode;
116 bool full_inums;
117 int huge;
118 int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 struct folio **foliop, enum sgp_type sgp,
141 gfp_t gfp, struct vm_area_struct *vma,
142 vm_fault_t *fault_type);
143
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 return sb->s_fs_info;
147 }
148
149 /*
150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151 * for shared memory and for shared anonymous (/dev/zero) mappings
152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153 * consistent with the pre-accounting of private mappings ...
154 */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 return (flags & VM_NORESERVE) ?
158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 if (!(flags & VM_NORESERVE))
164 vm_unacct_memory(VM_ACCT(size));
165 }
166
167 static inline int shmem_reacct_size(unsigned long flags,
168 loff_t oldsize, loff_t newsize)
169 {
170 if (!(flags & VM_NORESERVE)) {
171 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 return security_vm_enough_memory_mm(current->mm,
173 VM_ACCT(newsize) - VM_ACCT(oldsize));
174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 }
177 return 0;
178 }
179
180 /*
181 * ... whereas tmpfs objects are accounted incrementally as
182 * pages are allocated, in order to allow large sparse files.
183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185 */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 if (!(flags & VM_NORESERVE))
189 return 0;
190
191 return security_vm_enough_memory_mm(current->mm,
192 pages * VM_ACCT(PAGE_SIZE));
193 }
194
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 if (flags & VM_NORESERVE)
198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 struct shmem_inode_info *info = SHMEM_I(inode);
204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205
206 if (shmem_acct_block(info->flags, pages))
207 return false;
208
209 if (sbinfo->max_blocks) {
210 if (percpu_counter_compare(&sbinfo->used_blocks,
211 sbinfo->max_blocks - pages) > 0)
212 goto unacct;
213 percpu_counter_add(&sbinfo->used_blocks, pages);
214 }
215
216 return true;
217
218 unacct:
219 shmem_unacct_blocks(info->flags, pages);
220 return false;
221 }
222
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227
228 if (sbinfo->max_blocks)
229 percpu_counter_sub(&sbinfo->used_blocks, pages);
230 shmem_unacct_blocks(info->flags, pages);
231 }
232
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
242
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
244 {
245 return vma->vm_ops == &shmem_anon_vm_ops;
246 }
247
248 bool vma_is_shmem(struct vm_area_struct *vma)
249 {
250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
251 }
252
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
255
256 /*
257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258 * produces a novel ino for the newly allocated inode.
259 *
260 * It may also be called when making a hard link to permit the space needed by
261 * each dentry. However, in that case, no new inode number is needed since that
262 * internally draws from another pool of inode numbers (currently global
263 * get_next_ino()). This case is indicated by passing NULL as inop.
264 */
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
267 {
268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
269 ino_t ino;
270
271 if (!(sb->s_flags & SB_KERNMOUNT)) {
272 raw_spin_lock(&sbinfo->stat_lock);
273 if (sbinfo->max_inodes) {
274 if (!sbinfo->free_inodes) {
275 raw_spin_unlock(&sbinfo->stat_lock);
276 return -ENOSPC;
277 }
278 sbinfo->free_inodes--;
279 }
280 if (inop) {
281 ino = sbinfo->next_ino++;
282 if (unlikely(is_zero_ino(ino)))
283 ino = sbinfo->next_ino++;
284 if (unlikely(!sbinfo->full_inums &&
285 ino > UINT_MAX)) {
286 /*
287 * Emulate get_next_ino uint wraparound for
288 * compatibility
289 */
290 if (IS_ENABLED(CONFIG_64BIT))
291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 __func__, MINOR(sb->s_dev));
293 sbinfo->next_ino = 1;
294 ino = sbinfo->next_ino++;
295 }
296 *inop = ino;
297 }
298 raw_spin_unlock(&sbinfo->stat_lock);
299 } else if (inop) {
300 /*
301 * __shmem_file_setup, one of our callers, is lock-free: it
302 * doesn't hold stat_lock in shmem_reserve_inode since
303 * max_inodes is always 0, and is called from potentially
304 * unknown contexts. As such, use a per-cpu batched allocator
305 * which doesn't require the per-sb stat_lock unless we are at
306 * the batch boundary.
307 *
308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 * shmem mounts are not exposed to userspace, so we don't need
310 * to worry about things like glibc compatibility.
311 */
312 ino_t *next_ino;
313
314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
315 ino = *next_ino;
316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 raw_spin_lock(&sbinfo->stat_lock);
318 ino = sbinfo->next_ino;
319 sbinfo->next_ino += SHMEM_INO_BATCH;
320 raw_spin_unlock(&sbinfo->stat_lock);
321 if (unlikely(is_zero_ino(ino)))
322 ino++;
323 }
324 *inop = ino;
325 *next_ino = ++ino;
326 put_cpu();
327 }
328
329 return 0;
330 }
331
332 static void shmem_free_inode(struct super_block *sb)
333 {
334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 if (sbinfo->max_inodes) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 sbinfo->free_inodes++;
338 raw_spin_unlock(&sbinfo->stat_lock);
339 }
340 }
341
342 /**
343 * shmem_recalc_inode - recalculate the block usage of an inode
344 * @inode: inode to recalc
345 *
346 * We have to calculate the free blocks since the mm can drop
347 * undirtied hole pages behind our back.
348 *
349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
351 *
352 * It has to be called with the spinlock held.
353 */
354 static void shmem_recalc_inode(struct inode *inode)
355 {
356 struct shmem_inode_info *info = SHMEM_I(inode);
357 long freed;
358
359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
360 if (freed > 0) {
361 info->alloced -= freed;
362 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 shmem_inode_unacct_blocks(inode, freed);
364 }
365 }
366
367 bool shmem_charge(struct inode *inode, long pages)
368 {
369 struct shmem_inode_info *info = SHMEM_I(inode);
370 unsigned long flags;
371
372 if (!shmem_inode_acct_block(inode, pages))
373 return false;
374
375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 inode->i_mapping->nrpages += pages;
377
378 spin_lock_irqsave(&info->lock, flags);
379 info->alloced += pages;
380 inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 shmem_recalc_inode(inode);
382 spin_unlock_irqrestore(&info->lock, flags);
383
384 return true;
385 }
386
387 void shmem_uncharge(struct inode *inode, long pages)
388 {
389 struct shmem_inode_info *info = SHMEM_I(inode);
390 unsigned long flags;
391
392 /* nrpages adjustment done by __filemap_remove_folio() or caller */
393
394 spin_lock_irqsave(&info->lock, flags);
395 info->alloced -= pages;
396 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 shmem_recalc_inode(inode);
398 spin_unlock_irqrestore(&info->lock, flags);
399
400 shmem_inode_unacct_blocks(inode, pages);
401 }
402
403 /*
404 * Replace item expected in xarray by a new item, while holding xa_lock.
405 */
406 static int shmem_replace_entry(struct address_space *mapping,
407 pgoff_t index, void *expected, void *replacement)
408 {
409 XA_STATE(xas, &mapping->i_pages, index);
410 void *item;
411
412 VM_BUG_ON(!expected);
413 VM_BUG_ON(!replacement);
414 item = xas_load(&xas);
415 if (item != expected)
416 return -ENOENT;
417 xas_store(&xas, replacement);
418 return 0;
419 }
420
421 /*
422 * Sometimes, before we decide whether to proceed or to fail, we must check
423 * that an entry was not already brought back from swap by a racing thread.
424 *
425 * Checking page is not enough: by the time a SwapCache page is locked, it
426 * might be reused, and again be SwapCache, using the same swap as before.
427 */
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 pgoff_t index, swp_entry_t swap)
430 {
431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
432 }
433
434 /*
435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
436 *
437 * SHMEM_HUGE_NEVER:
438 * disables huge pages for the mount;
439 * SHMEM_HUGE_ALWAYS:
440 * enables huge pages for the mount;
441 * SHMEM_HUGE_WITHIN_SIZE:
442 * only allocate huge pages if the page will be fully within i_size,
443 * also respect fadvise()/madvise() hints;
444 * SHMEM_HUGE_ADVISE:
445 * only allocate huge pages if requested with fadvise()/madvise();
446 */
447
448 #define SHMEM_HUGE_NEVER 0
449 #define SHMEM_HUGE_ALWAYS 1
450 #define SHMEM_HUGE_WITHIN_SIZE 2
451 #define SHMEM_HUGE_ADVISE 3
452
453 /*
454 * Special values.
455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
456 *
457 * SHMEM_HUGE_DENY:
458 * disables huge on shm_mnt and all mounts, for emergency use;
459 * SHMEM_HUGE_FORCE:
460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
461 *
462 */
463 #define SHMEM_HUGE_DENY (-1)
464 #define SHMEM_HUGE_FORCE (-2)
465
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
468
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
470
471 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
472 struct mm_struct *mm, unsigned long vm_flags)
473 {
474 loff_t i_size;
475
476 if (!S_ISREG(inode->i_mode))
477 return false;
478 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
479 return false;
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
482 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
483 return true;
484
485 switch (SHMEM_SB(inode->i_sb)->huge) {
486 case SHMEM_HUGE_ALWAYS:
487 return true;
488 case SHMEM_HUGE_WITHIN_SIZE:
489 index = round_up(index + 1, HPAGE_PMD_NR);
490 i_size = round_up(i_size_read(inode), PAGE_SIZE);
491 if (i_size >> PAGE_SHIFT >= index)
492 return true;
493 fallthrough;
494 case SHMEM_HUGE_ADVISE:
495 if (mm && (vm_flags & VM_HUGEPAGE))
496 return true;
497 fallthrough;
498 default:
499 return false;
500 }
501 }
502
503 #if defined(CONFIG_SYSFS)
504 static int shmem_parse_huge(const char *str)
505 {
506 if (!strcmp(str, "never"))
507 return SHMEM_HUGE_NEVER;
508 if (!strcmp(str, "always"))
509 return SHMEM_HUGE_ALWAYS;
510 if (!strcmp(str, "within_size"))
511 return SHMEM_HUGE_WITHIN_SIZE;
512 if (!strcmp(str, "advise"))
513 return SHMEM_HUGE_ADVISE;
514 if (!strcmp(str, "deny"))
515 return SHMEM_HUGE_DENY;
516 if (!strcmp(str, "force"))
517 return SHMEM_HUGE_FORCE;
518 return -EINVAL;
519 }
520 #endif
521
522 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
523 static const char *shmem_format_huge(int huge)
524 {
525 switch (huge) {
526 case SHMEM_HUGE_NEVER:
527 return "never";
528 case SHMEM_HUGE_ALWAYS:
529 return "always";
530 case SHMEM_HUGE_WITHIN_SIZE:
531 return "within_size";
532 case SHMEM_HUGE_ADVISE:
533 return "advise";
534 case SHMEM_HUGE_DENY:
535 return "deny";
536 case SHMEM_HUGE_FORCE:
537 return "force";
538 default:
539 VM_BUG_ON(1);
540 return "bad_val";
541 }
542 }
543 #endif
544
545 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
546 struct shrink_control *sc, unsigned long nr_to_split)
547 {
548 LIST_HEAD(list), *pos, *next;
549 LIST_HEAD(to_remove);
550 struct inode *inode;
551 struct shmem_inode_info *info;
552 struct folio *folio;
553 unsigned long batch = sc ? sc->nr_to_scan : 128;
554 int split = 0;
555
556 if (list_empty(&sbinfo->shrinklist))
557 return SHRINK_STOP;
558
559 spin_lock(&sbinfo->shrinklist_lock);
560 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
561 info = list_entry(pos, struct shmem_inode_info, shrinklist);
562
563 /* pin the inode */
564 inode = igrab(&info->vfs_inode);
565
566 /* inode is about to be evicted */
567 if (!inode) {
568 list_del_init(&info->shrinklist);
569 goto next;
570 }
571
572 /* Check if there's anything to gain */
573 if (round_up(inode->i_size, PAGE_SIZE) ==
574 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
575 list_move(&info->shrinklist, &to_remove);
576 goto next;
577 }
578
579 list_move(&info->shrinklist, &list);
580 next:
581 sbinfo->shrinklist_len--;
582 if (!--batch)
583 break;
584 }
585 spin_unlock(&sbinfo->shrinklist_lock);
586
587 list_for_each_safe(pos, next, &to_remove) {
588 info = list_entry(pos, struct shmem_inode_info, shrinklist);
589 inode = &info->vfs_inode;
590 list_del_init(&info->shrinklist);
591 iput(inode);
592 }
593
594 list_for_each_safe(pos, next, &list) {
595 int ret;
596 pgoff_t index;
597
598 info = list_entry(pos, struct shmem_inode_info, shrinklist);
599 inode = &info->vfs_inode;
600
601 if (nr_to_split && split >= nr_to_split)
602 goto move_back;
603
604 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
605 folio = filemap_get_folio(inode->i_mapping, index);
606 if (!folio)
607 goto drop;
608
609 /* No huge page at the end of the file: nothing to split */
610 if (!folio_test_large(folio)) {
611 folio_put(folio);
612 goto drop;
613 }
614
615 /*
616 * Move the inode on the list back to shrinklist if we failed
617 * to lock the page at this time.
618 *
619 * Waiting for the lock may lead to deadlock in the
620 * reclaim path.
621 */
622 if (!folio_trylock(folio)) {
623 folio_put(folio);
624 goto move_back;
625 }
626
627 ret = split_folio(folio);
628 folio_unlock(folio);
629 folio_put(folio);
630
631 /* If split failed move the inode on the list back to shrinklist */
632 if (ret)
633 goto move_back;
634
635 split++;
636 drop:
637 list_del_init(&info->shrinklist);
638 goto put;
639 move_back:
640 /*
641 * Make sure the inode is either on the global list or deleted
642 * from any local list before iput() since it could be deleted
643 * in another thread once we put the inode (then the local list
644 * is corrupted).
645 */
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_move(&info->shrinklist, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len++;
649 spin_unlock(&sbinfo->shrinklist_lock);
650 put:
651 iput(inode);
652 }
653
654 return split;
655 }
656
657 static long shmem_unused_huge_scan(struct super_block *sb,
658 struct shrink_control *sc)
659 {
660 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
661
662 if (!READ_ONCE(sbinfo->shrinklist_len))
663 return SHRINK_STOP;
664
665 return shmem_unused_huge_shrink(sbinfo, sc, 0);
666 }
667
668 static long shmem_unused_huge_count(struct super_block *sb,
669 struct shrink_control *sc)
670 {
671 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
672 return READ_ONCE(sbinfo->shrinklist_len);
673 }
674 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
675
676 #define shmem_huge SHMEM_HUGE_DENY
677
678 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
679 struct mm_struct *mm, unsigned long vm_flags)
680 {
681 return false;
682 }
683
684 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
685 struct shrink_control *sc, unsigned long nr_to_split)
686 {
687 return 0;
688 }
689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
690
691 /*
692 * Like filemap_add_folio, but error if expected item has gone.
693 */
694 static int shmem_add_to_page_cache(struct folio *folio,
695 struct address_space *mapping,
696 pgoff_t index, void *expected, gfp_t gfp,
697 struct mm_struct *charge_mm)
698 {
699 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
700 long nr = folio_nr_pages(folio);
701 int error;
702
703 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
704 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
705 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
706 VM_BUG_ON(expected && folio_test_large(folio));
707
708 folio_ref_add(folio, nr);
709 folio->mapping = mapping;
710 folio->index = index;
711
712 if (!folio_test_swapcache(folio)) {
713 error = mem_cgroup_charge(folio, charge_mm, gfp);
714 if (error) {
715 if (folio_test_pmd_mappable(folio)) {
716 count_vm_event(THP_FILE_FALLBACK);
717 count_vm_event(THP_FILE_FALLBACK_CHARGE);
718 }
719 goto error;
720 }
721 }
722 folio_throttle_swaprate(folio, gfp);
723
724 do {
725 xas_lock_irq(&xas);
726 if (expected != xas_find_conflict(&xas)) {
727 xas_set_err(&xas, -EEXIST);
728 goto unlock;
729 }
730 if (expected && xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
732 goto unlock;
733 }
734 xas_store(&xas, folio);
735 if (xas_error(&xas))
736 goto unlock;
737 if (folio_test_pmd_mappable(folio)) {
738 count_vm_event(THP_FILE_ALLOC);
739 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
740 }
741 mapping->nrpages += nr;
742 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
743 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
744 unlock:
745 xas_unlock_irq(&xas);
746 } while (xas_nomem(&xas, gfp));
747
748 if (xas_error(&xas)) {
749 error = xas_error(&xas);
750 goto error;
751 }
752
753 return 0;
754 error:
755 folio->mapping = NULL;
756 folio_ref_sub(folio, nr);
757 return error;
758 }
759
760 /*
761 * Like delete_from_page_cache, but substitutes swap for @folio.
762 */
763 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
764 {
765 struct address_space *mapping = folio->mapping;
766 long nr = folio_nr_pages(folio);
767 int error;
768
769 xa_lock_irq(&mapping->i_pages);
770 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
771 folio->mapping = NULL;
772 mapping->nrpages -= nr;
773 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
774 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
775 xa_unlock_irq(&mapping->i_pages);
776 folio_put(folio);
777 BUG_ON(error);
778 }
779
780 /*
781 * Remove swap entry from page cache, free the swap and its page cache.
782 */
783 static int shmem_free_swap(struct address_space *mapping,
784 pgoff_t index, void *radswap)
785 {
786 void *old;
787
788 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
789 if (old != radswap)
790 return -ENOENT;
791 free_swap_and_cache(radix_to_swp_entry(radswap));
792 return 0;
793 }
794
795 /*
796 * Determine (in bytes) how many of the shmem object's pages mapped by the
797 * given offsets are swapped out.
798 *
799 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
800 * as long as the inode doesn't go away and racy results are not a problem.
801 */
802 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
803 pgoff_t start, pgoff_t end)
804 {
805 XA_STATE(xas, &mapping->i_pages, start);
806 struct page *page;
807 unsigned long swapped = 0;
808
809 rcu_read_lock();
810 xas_for_each(&xas, page, end - 1) {
811 if (xas_retry(&xas, page))
812 continue;
813 if (xa_is_value(page))
814 swapped++;
815
816 if (need_resched()) {
817 xas_pause(&xas);
818 cond_resched_rcu();
819 }
820 }
821
822 rcu_read_unlock();
823
824 return swapped << PAGE_SHIFT;
825 }
826
827 /*
828 * Determine (in bytes) how many of the shmem object's pages mapped by the
829 * given vma is swapped out.
830 *
831 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
832 * as long as the inode doesn't go away and racy results are not a problem.
833 */
834 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
835 {
836 struct inode *inode = file_inode(vma->vm_file);
837 struct shmem_inode_info *info = SHMEM_I(inode);
838 struct address_space *mapping = inode->i_mapping;
839 unsigned long swapped;
840
841 /* Be careful as we don't hold info->lock */
842 swapped = READ_ONCE(info->swapped);
843
844 /*
845 * The easier cases are when the shmem object has nothing in swap, or
846 * the vma maps it whole. Then we can simply use the stats that we
847 * already track.
848 */
849 if (!swapped)
850 return 0;
851
852 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
853 return swapped << PAGE_SHIFT;
854
855 /* Here comes the more involved part */
856 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
857 vma->vm_pgoff + vma_pages(vma));
858 }
859
860 /*
861 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
862 */
863 void shmem_unlock_mapping(struct address_space *mapping)
864 {
865 struct folio_batch fbatch;
866 pgoff_t index = 0;
867
868 folio_batch_init(&fbatch);
869 /*
870 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
871 */
872 while (!mapping_unevictable(mapping) &&
873 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
874 check_move_unevictable_folios(&fbatch);
875 folio_batch_release(&fbatch);
876 cond_resched();
877 }
878 }
879
880 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
881 {
882 struct folio *folio;
883
884 /*
885 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
886 * beyond i_size, and reports fallocated pages as holes.
887 */
888 folio = __filemap_get_folio(inode->i_mapping, index,
889 FGP_ENTRY | FGP_LOCK, 0);
890 if (!xa_is_value(folio))
891 return folio;
892 /*
893 * But read a page back from swap if any of it is within i_size
894 * (although in some cases this is just a waste of time).
895 */
896 folio = NULL;
897 shmem_get_folio(inode, index, &folio, SGP_READ);
898 return folio;
899 }
900
901 /*
902 * Remove range of pages and swap entries from page cache, and free them.
903 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
904 */
905 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
906 bool unfalloc)
907 {
908 struct address_space *mapping = inode->i_mapping;
909 struct shmem_inode_info *info = SHMEM_I(inode);
910 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
911 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
912 struct folio_batch fbatch;
913 pgoff_t indices[PAGEVEC_SIZE];
914 struct folio *folio;
915 bool same_folio;
916 long nr_swaps_freed = 0;
917 pgoff_t index;
918 int i;
919
920 if (lend == -1)
921 end = -1; /* unsigned, so actually very big */
922
923 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
924 info->fallocend = start;
925
926 folio_batch_init(&fbatch);
927 index = start;
928 while (index < end && find_lock_entries(mapping, &index, end - 1,
929 &fbatch, indices)) {
930 for (i = 0; i < folio_batch_count(&fbatch); i++) {
931 folio = fbatch.folios[i];
932
933 if (xa_is_value(folio)) {
934 if (unfalloc)
935 continue;
936 nr_swaps_freed += !shmem_free_swap(mapping,
937 indices[i], folio);
938 continue;
939 }
940
941 if (!unfalloc || !folio_test_uptodate(folio))
942 truncate_inode_folio(mapping, folio);
943 folio_unlock(folio);
944 }
945 folio_batch_remove_exceptionals(&fbatch);
946 folio_batch_release(&fbatch);
947 cond_resched();
948 }
949
950 /*
951 * When undoing a failed fallocate, we want none of the partial folio
952 * zeroing and splitting below, but shall want to truncate the whole
953 * folio when !uptodate indicates that it was added by this fallocate,
954 * even when [lstart, lend] covers only a part of the folio.
955 */
956 if (unfalloc)
957 goto whole_folios;
958
959 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
960 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
961 if (folio) {
962 same_folio = lend < folio_pos(folio) + folio_size(folio);
963 folio_mark_dirty(folio);
964 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
965 start = folio->index + folio_nr_pages(folio);
966 if (same_folio)
967 end = folio->index;
968 }
969 folio_unlock(folio);
970 folio_put(folio);
971 folio = NULL;
972 }
973
974 if (!same_folio)
975 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
976 if (folio) {
977 folio_mark_dirty(folio);
978 if (!truncate_inode_partial_folio(folio, lstart, lend))
979 end = folio->index;
980 folio_unlock(folio);
981 folio_put(folio);
982 }
983
984 whole_folios:
985
986 index = start;
987 while (index < end) {
988 cond_resched();
989
990 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
991 indices)) {
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
994 break;
995 /* But if truncating, restart to make sure all gone */
996 index = start;
997 continue;
998 }
999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 folio = fbatch.folios[i];
1001
1002 if (xa_is_value(folio)) {
1003 if (unfalloc)
1004 continue;
1005 if (shmem_free_swap(mapping, indices[i], folio)) {
1006 /* Swap was replaced by page: retry */
1007 index = indices[i];
1008 break;
1009 }
1010 nr_swaps_freed++;
1011 continue;
1012 }
1013
1014 folio_lock(folio);
1015
1016 if (!unfalloc || !folio_test_uptodate(folio)) {
1017 if (folio_mapping(folio) != mapping) {
1018 /* Page was replaced by swap: retry */
1019 folio_unlock(folio);
1020 index = indices[i];
1021 break;
1022 }
1023 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1024 folio);
1025 truncate_inode_folio(mapping, folio);
1026 }
1027 folio_unlock(folio);
1028 }
1029 folio_batch_remove_exceptionals(&fbatch);
1030 folio_batch_release(&fbatch);
1031 }
1032
1033 spin_lock_irq(&info->lock);
1034 info->swapped -= nr_swaps_freed;
1035 shmem_recalc_inode(inode);
1036 spin_unlock_irq(&info->lock);
1037 }
1038
1039 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1040 {
1041 shmem_undo_range(inode, lstart, lend, false);
1042 inode->i_ctime = inode->i_mtime = current_time(inode);
1043 inode_inc_iversion(inode);
1044 }
1045 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1046
1047 static int shmem_getattr(struct mnt_idmap *idmap,
1048 const struct path *path, struct kstat *stat,
1049 u32 request_mask, unsigned int query_flags)
1050 {
1051 struct inode *inode = path->dentry->d_inode;
1052 struct shmem_inode_info *info = SHMEM_I(inode);
1053
1054 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1055 spin_lock_irq(&info->lock);
1056 shmem_recalc_inode(inode);
1057 spin_unlock_irq(&info->lock);
1058 }
1059 if (info->fsflags & FS_APPEND_FL)
1060 stat->attributes |= STATX_ATTR_APPEND;
1061 if (info->fsflags & FS_IMMUTABLE_FL)
1062 stat->attributes |= STATX_ATTR_IMMUTABLE;
1063 if (info->fsflags & FS_NODUMP_FL)
1064 stat->attributes |= STATX_ATTR_NODUMP;
1065 stat->attributes_mask |= (STATX_ATTR_APPEND |
1066 STATX_ATTR_IMMUTABLE |
1067 STATX_ATTR_NODUMP);
1068 generic_fillattr(idmap, inode, stat);
1069
1070 if (shmem_is_huge(inode, 0, false, NULL, 0))
1071 stat->blksize = HPAGE_PMD_SIZE;
1072
1073 if (request_mask & STATX_BTIME) {
1074 stat->result_mask |= STATX_BTIME;
1075 stat->btime.tv_sec = info->i_crtime.tv_sec;
1076 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1077 }
1078
1079 return 0;
1080 }
1081
1082 static int shmem_setattr(struct mnt_idmap *idmap,
1083 struct dentry *dentry, struct iattr *attr)
1084 {
1085 struct inode *inode = d_inode(dentry);
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 int error;
1088 bool update_mtime = false;
1089 bool update_ctime = true;
1090
1091 error = setattr_prepare(idmap, dentry, attr);
1092 if (error)
1093 return error;
1094
1095 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1096 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1097 return -EPERM;
1098 }
1099 }
1100
1101 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1102 loff_t oldsize = inode->i_size;
1103 loff_t newsize = attr->ia_size;
1104
1105 /* protected by i_rwsem */
1106 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1107 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1108 return -EPERM;
1109
1110 if (newsize != oldsize) {
1111 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1112 oldsize, newsize);
1113 if (error)
1114 return error;
1115 i_size_write(inode, newsize);
1116 update_mtime = true;
1117 } else {
1118 update_ctime = false;
1119 }
1120 if (newsize <= oldsize) {
1121 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1122 if (oldsize > holebegin)
1123 unmap_mapping_range(inode->i_mapping,
1124 holebegin, 0, 1);
1125 if (info->alloced)
1126 shmem_truncate_range(inode,
1127 newsize, (loff_t)-1);
1128 /* unmap again to remove racily COWed private pages */
1129 if (oldsize > holebegin)
1130 unmap_mapping_range(inode->i_mapping,
1131 holebegin, 0, 1);
1132 }
1133 }
1134
1135 setattr_copy(idmap, inode, attr);
1136 if (attr->ia_valid & ATTR_MODE)
1137 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1138 if (!error && update_ctime) {
1139 inode->i_ctime = current_time(inode);
1140 if (update_mtime)
1141 inode->i_mtime = inode->i_ctime;
1142 inode_inc_iversion(inode);
1143 }
1144 return error;
1145 }
1146
1147 static void shmem_evict_inode(struct inode *inode)
1148 {
1149 struct shmem_inode_info *info = SHMEM_I(inode);
1150 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1151
1152 if (shmem_mapping(inode->i_mapping)) {
1153 shmem_unacct_size(info->flags, inode->i_size);
1154 inode->i_size = 0;
1155 mapping_set_exiting(inode->i_mapping);
1156 shmem_truncate_range(inode, 0, (loff_t)-1);
1157 if (!list_empty(&info->shrinklist)) {
1158 spin_lock(&sbinfo->shrinklist_lock);
1159 if (!list_empty(&info->shrinklist)) {
1160 list_del_init(&info->shrinklist);
1161 sbinfo->shrinklist_len--;
1162 }
1163 spin_unlock(&sbinfo->shrinklist_lock);
1164 }
1165 while (!list_empty(&info->swaplist)) {
1166 /* Wait while shmem_unuse() is scanning this inode... */
1167 wait_var_event(&info->stop_eviction,
1168 !atomic_read(&info->stop_eviction));
1169 mutex_lock(&shmem_swaplist_mutex);
1170 /* ...but beware of the race if we peeked too early */
1171 if (!atomic_read(&info->stop_eviction))
1172 list_del_init(&info->swaplist);
1173 mutex_unlock(&shmem_swaplist_mutex);
1174 }
1175 }
1176
1177 simple_xattrs_free(&info->xattrs);
1178 WARN_ON(inode->i_blocks);
1179 shmem_free_inode(inode->i_sb);
1180 clear_inode(inode);
1181 }
1182
1183 static int shmem_find_swap_entries(struct address_space *mapping,
1184 pgoff_t start, struct folio_batch *fbatch,
1185 pgoff_t *indices, unsigned int type)
1186 {
1187 XA_STATE(xas, &mapping->i_pages, start);
1188 struct folio *folio;
1189 swp_entry_t entry;
1190
1191 rcu_read_lock();
1192 xas_for_each(&xas, folio, ULONG_MAX) {
1193 if (xas_retry(&xas, folio))
1194 continue;
1195
1196 if (!xa_is_value(folio))
1197 continue;
1198
1199 entry = radix_to_swp_entry(folio);
1200 /*
1201 * swapin error entries can be found in the mapping. But they're
1202 * deliberately ignored here as we've done everything we can do.
1203 */
1204 if (swp_type(entry) != type)
1205 continue;
1206
1207 indices[folio_batch_count(fbatch)] = xas.xa_index;
1208 if (!folio_batch_add(fbatch, folio))
1209 break;
1210
1211 if (need_resched()) {
1212 xas_pause(&xas);
1213 cond_resched_rcu();
1214 }
1215 }
1216 rcu_read_unlock();
1217
1218 return xas.xa_index;
1219 }
1220
1221 /*
1222 * Move the swapped pages for an inode to page cache. Returns the count
1223 * of pages swapped in, or the error in case of failure.
1224 */
1225 static int shmem_unuse_swap_entries(struct inode *inode,
1226 struct folio_batch *fbatch, pgoff_t *indices)
1227 {
1228 int i = 0;
1229 int ret = 0;
1230 int error = 0;
1231 struct address_space *mapping = inode->i_mapping;
1232
1233 for (i = 0; i < folio_batch_count(fbatch); i++) {
1234 struct folio *folio = fbatch->folios[i];
1235
1236 if (!xa_is_value(folio))
1237 continue;
1238 error = shmem_swapin_folio(inode, indices[i],
1239 &folio, SGP_CACHE,
1240 mapping_gfp_mask(mapping),
1241 NULL, NULL);
1242 if (error == 0) {
1243 folio_unlock(folio);
1244 folio_put(folio);
1245 ret++;
1246 }
1247 if (error == -ENOMEM)
1248 break;
1249 error = 0;
1250 }
1251 return error ? error : ret;
1252 }
1253
1254 /*
1255 * If swap found in inode, free it and move page from swapcache to filecache.
1256 */
1257 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1258 {
1259 struct address_space *mapping = inode->i_mapping;
1260 pgoff_t start = 0;
1261 struct folio_batch fbatch;
1262 pgoff_t indices[PAGEVEC_SIZE];
1263 int ret = 0;
1264
1265 do {
1266 folio_batch_init(&fbatch);
1267 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1268 if (folio_batch_count(&fbatch) == 0) {
1269 ret = 0;
1270 break;
1271 }
1272
1273 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1274 if (ret < 0)
1275 break;
1276
1277 start = indices[folio_batch_count(&fbatch) - 1];
1278 } while (true);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288 int shmem_unuse(unsigned int type)
1289 {
1290 struct shmem_inode_info *info, *next;
1291 int error = 0;
1292
1293 if (list_empty(&shmem_swaplist))
1294 return 0;
1295
1296 mutex_lock(&shmem_swaplist_mutex);
1297 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1298 if (!info->swapped) {
1299 list_del_init(&info->swaplist);
1300 continue;
1301 }
1302 /*
1303 * Drop the swaplist mutex while searching the inode for swap;
1304 * but before doing so, make sure shmem_evict_inode() will not
1305 * remove placeholder inode from swaplist, nor let it be freed
1306 * (igrab() would protect from unlink, but not from unmount).
1307 */
1308 atomic_inc(&info->stop_eviction);
1309 mutex_unlock(&shmem_swaplist_mutex);
1310
1311 error = shmem_unuse_inode(&info->vfs_inode, type);
1312 cond_resched();
1313
1314 mutex_lock(&shmem_swaplist_mutex);
1315 next = list_next_entry(info, swaplist);
1316 if (!info->swapped)
1317 list_del_init(&info->swaplist);
1318 if (atomic_dec_and_test(&info->stop_eviction))
1319 wake_up_var(&info->stop_eviction);
1320 if (error)
1321 break;
1322 }
1323 mutex_unlock(&shmem_swaplist_mutex);
1324
1325 return error;
1326 }
1327
1328 /*
1329 * Move the page from the page cache to the swap cache.
1330 */
1331 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1332 {
1333 struct folio *folio = page_folio(page);
1334 struct shmem_inode_info *info;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 swp_entry_t swap;
1338 pgoff_t index;
1339
1340 /*
1341 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1342 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1343 * and its shmem_writeback() needs them to be split when swapping.
1344 */
1345 if (folio_test_large(folio)) {
1346 /* Ensure the subpages are still dirty */
1347 folio_test_set_dirty(folio);
1348 if (split_huge_page(page) < 0)
1349 goto redirty;
1350 folio = page_folio(page);
1351 folio_clear_dirty(folio);
1352 }
1353
1354 BUG_ON(!folio_test_locked(folio));
1355 mapping = folio->mapping;
1356 index = folio->index;
1357 inode = mapping->host;
1358 info = SHMEM_I(inode);
1359 if (info->flags & VM_LOCKED)
1360 goto redirty;
1361 if (!total_swap_pages)
1362 goto redirty;
1363
1364 /*
1365 * Our capabilities prevent regular writeback or sync from ever calling
1366 * shmem_writepage; but a stacking filesystem might use ->writepage of
1367 * its underlying filesystem, in which case tmpfs should write out to
1368 * swap only in response to memory pressure, and not for the writeback
1369 * threads or sync.
1370 */
1371 if (!wbc->for_reclaim) {
1372 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1373 goto redirty;
1374 }
1375
1376 /*
1377 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1378 * value into swapfile.c, the only way we can correctly account for a
1379 * fallocated folio arriving here is now to initialize it and write it.
1380 *
1381 * That's okay for a folio already fallocated earlier, but if we have
1382 * not yet completed the fallocation, then (a) we want to keep track
1383 * of this folio in case we have to undo it, and (b) it may not be a
1384 * good idea to continue anyway, once we're pushing into swap. So
1385 * reactivate the folio, and let shmem_fallocate() quit when too many.
1386 */
1387 if (!folio_test_uptodate(folio)) {
1388 if (inode->i_private) {
1389 struct shmem_falloc *shmem_falloc;
1390 spin_lock(&inode->i_lock);
1391 shmem_falloc = inode->i_private;
1392 if (shmem_falloc &&
1393 !shmem_falloc->waitq &&
1394 index >= shmem_falloc->start &&
1395 index < shmem_falloc->next)
1396 shmem_falloc->nr_unswapped++;
1397 else
1398 shmem_falloc = NULL;
1399 spin_unlock(&inode->i_lock);
1400 if (shmem_falloc)
1401 goto redirty;
1402 }
1403 folio_zero_range(folio, 0, folio_size(folio));
1404 flush_dcache_folio(folio);
1405 folio_mark_uptodate(folio);
1406 }
1407
1408 swap = folio_alloc_swap(folio);
1409 if (!swap.val)
1410 goto redirty;
1411
1412 /*
1413 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1414 * if it's not already there. Do it now before the folio is
1415 * moved to swap cache, when its pagelock no longer protects
1416 * the inode from eviction. But don't unlock the mutex until
1417 * we've incremented swapped, because shmem_unuse_inode() will
1418 * prune a !swapped inode from the swaplist under this mutex.
1419 */
1420 mutex_lock(&shmem_swaplist_mutex);
1421 if (list_empty(&info->swaplist))
1422 list_add(&info->swaplist, &shmem_swaplist);
1423
1424 if (add_to_swap_cache(folio, swap,
1425 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1426 NULL) == 0) {
1427 spin_lock_irq(&info->lock);
1428 shmem_recalc_inode(inode);
1429 info->swapped++;
1430 spin_unlock_irq(&info->lock);
1431
1432 swap_shmem_alloc(swap);
1433 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1434
1435 mutex_unlock(&shmem_swaplist_mutex);
1436 BUG_ON(folio_mapped(folio));
1437 swap_writepage(&folio->page, wbc);
1438 return 0;
1439 }
1440
1441 mutex_unlock(&shmem_swaplist_mutex);
1442 put_swap_folio(folio, swap);
1443 redirty:
1444 folio_mark_dirty(folio);
1445 if (wbc->for_reclaim)
1446 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1447 folio_unlock(folio);
1448 return 0;
1449 }
1450
1451 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1452 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1453 {
1454 char buffer[64];
1455
1456 if (!mpol || mpol->mode == MPOL_DEFAULT)
1457 return; /* show nothing */
1458
1459 mpol_to_str(buffer, sizeof(buffer), mpol);
1460
1461 seq_printf(seq, ",mpol=%s", buffer);
1462 }
1463
1464 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466 struct mempolicy *mpol = NULL;
1467 if (sbinfo->mpol) {
1468 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1469 mpol = sbinfo->mpol;
1470 mpol_get(mpol);
1471 raw_spin_unlock(&sbinfo->stat_lock);
1472 }
1473 return mpol;
1474 }
1475 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1476 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1477 {
1478 }
1479 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1480 {
1481 return NULL;
1482 }
1483 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1484 #ifndef CONFIG_NUMA
1485 #define vm_policy vm_private_data
1486 #endif
1487
1488 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1489 struct shmem_inode_info *info, pgoff_t index)
1490 {
1491 /* Create a pseudo vma that just contains the policy */
1492 vma_init(vma, NULL);
1493 /* Bias interleave by inode number to distribute better across nodes */
1494 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1495 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1496 }
1497
1498 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1499 {
1500 /* Drop reference taken by mpol_shared_policy_lookup() */
1501 mpol_cond_put(vma->vm_policy);
1502 }
1503
1504 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1505 struct shmem_inode_info *info, pgoff_t index)
1506 {
1507 struct vm_area_struct pvma;
1508 struct page *page;
1509 struct vm_fault vmf = {
1510 .vma = &pvma,
1511 };
1512
1513 shmem_pseudo_vma_init(&pvma, info, index);
1514 page = swap_cluster_readahead(swap, gfp, &vmf);
1515 shmem_pseudo_vma_destroy(&pvma);
1516
1517 if (!page)
1518 return NULL;
1519 return page_folio(page);
1520 }
1521
1522 /*
1523 * Make sure huge_gfp is always more limited than limit_gfp.
1524 * Some of the flags set permissions, while others set limitations.
1525 */
1526 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1527 {
1528 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1529 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1530 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1531 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1532
1533 /* Allow allocations only from the originally specified zones. */
1534 result |= zoneflags;
1535
1536 /*
1537 * Minimize the result gfp by taking the union with the deny flags,
1538 * and the intersection of the allow flags.
1539 */
1540 result |= (limit_gfp & denyflags);
1541 result |= (huge_gfp & limit_gfp) & allowflags;
1542
1543 return result;
1544 }
1545
1546 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1547 struct shmem_inode_info *info, pgoff_t index)
1548 {
1549 struct vm_area_struct pvma;
1550 struct address_space *mapping = info->vfs_inode.i_mapping;
1551 pgoff_t hindex;
1552 struct folio *folio;
1553
1554 hindex = round_down(index, HPAGE_PMD_NR);
1555 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1556 XA_PRESENT))
1557 return NULL;
1558
1559 shmem_pseudo_vma_init(&pvma, info, hindex);
1560 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1561 shmem_pseudo_vma_destroy(&pvma);
1562 if (!folio)
1563 count_vm_event(THP_FILE_FALLBACK);
1564 return folio;
1565 }
1566
1567 static struct folio *shmem_alloc_folio(gfp_t gfp,
1568 struct shmem_inode_info *info, pgoff_t index)
1569 {
1570 struct vm_area_struct pvma;
1571 struct folio *folio;
1572
1573 shmem_pseudo_vma_init(&pvma, info, index);
1574 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1575 shmem_pseudo_vma_destroy(&pvma);
1576
1577 return folio;
1578 }
1579
1580 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1581 pgoff_t index, bool huge)
1582 {
1583 struct shmem_inode_info *info = SHMEM_I(inode);
1584 struct folio *folio;
1585 int nr;
1586 int err = -ENOSPC;
1587
1588 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1589 huge = false;
1590 nr = huge ? HPAGE_PMD_NR : 1;
1591
1592 if (!shmem_inode_acct_block(inode, nr))
1593 goto failed;
1594
1595 if (huge)
1596 folio = shmem_alloc_hugefolio(gfp, info, index);
1597 else
1598 folio = shmem_alloc_folio(gfp, info, index);
1599 if (folio) {
1600 __folio_set_locked(folio);
1601 __folio_set_swapbacked(folio);
1602 return folio;
1603 }
1604
1605 err = -ENOMEM;
1606 shmem_inode_unacct_blocks(inode, nr);
1607 failed:
1608 return ERR_PTR(err);
1609 }
1610
1611 /*
1612 * When a page is moved from swapcache to shmem filecache (either by the
1613 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1614 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1615 * ignorance of the mapping it belongs to. If that mapping has special
1616 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1617 * we may need to copy to a suitable page before moving to filecache.
1618 *
1619 * In a future release, this may well be extended to respect cpuset and
1620 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1621 * but for now it is a simple matter of zone.
1622 */
1623 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1624 {
1625 return folio_zonenum(folio) > gfp_zone(gfp);
1626 }
1627
1628 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1629 struct shmem_inode_info *info, pgoff_t index)
1630 {
1631 struct folio *old, *new;
1632 struct address_space *swap_mapping;
1633 swp_entry_t entry;
1634 pgoff_t swap_index;
1635 int error;
1636
1637 old = *foliop;
1638 entry = folio_swap_entry(old);
1639 swap_index = swp_offset(entry);
1640 swap_mapping = swap_address_space(entry);
1641
1642 /*
1643 * We have arrived here because our zones are constrained, so don't
1644 * limit chance of success by further cpuset and node constraints.
1645 */
1646 gfp &= ~GFP_CONSTRAINT_MASK;
1647 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1648 new = shmem_alloc_folio(gfp, info, index);
1649 if (!new)
1650 return -ENOMEM;
1651
1652 folio_get(new);
1653 folio_copy(new, old);
1654 flush_dcache_folio(new);
1655
1656 __folio_set_locked(new);
1657 __folio_set_swapbacked(new);
1658 folio_mark_uptodate(new);
1659 folio_set_swap_entry(new, entry);
1660 folio_set_swapcache(new);
1661
1662 /*
1663 * Our caller will very soon move newpage out of swapcache, but it's
1664 * a nice clean interface for us to replace oldpage by newpage there.
1665 */
1666 xa_lock_irq(&swap_mapping->i_pages);
1667 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1668 if (!error) {
1669 mem_cgroup_migrate(old, new);
1670 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1671 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1672 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1673 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1674 }
1675 xa_unlock_irq(&swap_mapping->i_pages);
1676
1677 if (unlikely(error)) {
1678 /*
1679 * Is this possible? I think not, now that our callers check
1680 * both PageSwapCache and page_private after getting page lock;
1681 * but be defensive. Reverse old to newpage for clear and free.
1682 */
1683 old = new;
1684 } else {
1685 folio_add_lru(new);
1686 *foliop = new;
1687 }
1688
1689 folio_clear_swapcache(old);
1690 old->private = NULL;
1691
1692 folio_unlock(old);
1693 folio_put_refs(old, 2);
1694 return error;
1695 }
1696
1697 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1698 struct folio *folio, swp_entry_t swap)
1699 {
1700 struct address_space *mapping = inode->i_mapping;
1701 struct shmem_inode_info *info = SHMEM_I(inode);
1702 swp_entry_t swapin_error;
1703 void *old;
1704
1705 swapin_error = make_swapin_error_entry();
1706 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1707 swp_to_radix_entry(swap),
1708 swp_to_radix_entry(swapin_error), 0);
1709 if (old != swp_to_radix_entry(swap))
1710 return;
1711
1712 folio_wait_writeback(folio);
1713 delete_from_swap_cache(folio);
1714 spin_lock_irq(&info->lock);
1715 /*
1716 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1717 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1718 * shmem_evict_inode.
1719 */
1720 info->alloced--;
1721 info->swapped--;
1722 shmem_recalc_inode(inode);
1723 spin_unlock_irq(&info->lock);
1724 swap_free(swap);
1725 }
1726
1727 /*
1728 * Swap in the folio pointed to by *foliop.
1729 * Caller has to make sure that *foliop contains a valid swapped folio.
1730 * Returns 0 and the folio in foliop if success. On failure, returns the
1731 * error code and NULL in *foliop.
1732 */
1733 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1734 struct folio **foliop, enum sgp_type sgp,
1735 gfp_t gfp, struct vm_area_struct *vma,
1736 vm_fault_t *fault_type)
1737 {
1738 struct address_space *mapping = inode->i_mapping;
1739 struct shmem_inode_info *info = SHMEM_I(inode);
1740 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1741 struct swap_info_struct *si;
1742 struct folio *folio = NULL;
1743 swp_entry_t swap;
1744 int error;
1745
1746 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1747 swap = radix_to_swp_entry(*foliop);
1748 *foliop = NULL;
1749
1750 if (is_swapin_error_entry(swap))
1751 return -EIO;
1752
1753 si = get_swap_device(swap);
1754 if (!si) {
1755 if (!shmem_confirm_swap(mapping, index, swap))
1756 return -EEXIST;
1757 else
1758 return -EINVAL;
1759 }
1760
1761 /* Look it up and read it in.. */
1762 folio = swap_cache_get_folio(swap, NULL, 0);
1763 if (!folio) {
1764 /* Or update major stats only when swapin succeeds?? */
1765 if (fault_type) {
1766 *fault_type |= VM_FAULT_MAJOR;
1767 count_vm_event(PGMAJFAULT);
1768 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1769 }
1770 /* Here we actually start the io */
1771 folio = shmem_swapin(swap, gfp, info, index);
1772 if (!folio) {
1773 error = -ENOMEM;
1774 goto failed;
1775 }
1776 }
1777
1778 /* We have to do this with folio locked to prevent races */
1779 folio_lock(folio);
1780 if (!folio_test_swapcache(folio) ||
1781 folio_swap_entry(folio).val != swap.val ||
1782 !shmem_confirm_swap(mapping, index, swap)) {
1783 error = -EEXIST;
1784 goto unlock;
1785 }
1786 if (!folio_test_uptodate(folio)) {
1787 error = -EIO;
1788 goto failed;
1789 }
1790 folio_wait_writeback(folio);
1791
1792 /*
1793 * Some architectures may have to restore extra metadata to the
1794 * folio after reading from swap.
1795 */
1796 arch_swap_restore(swap, folio);
1797
1798 if (shmem_should_replace_folio(folio, gfp)) {
1799 error = shmem_replace_folio(&folio, gfp, info, index);
1800 if (error)
1801 goto failed;
1802 }
1803
1804 error = shmem_add_to_page_cache(folio, mapping, index,
1805 swp_to_radix_entry(swap), gfp,
1806 charge_mm);
1807 if (error)
1808 goto failed;
1809
1810 spin_lock_irq(&info->lock);
1811 info->swapped--;
1812 shmem_recalc_inode(inode);
1813 spin_unlock_irq(&info->lock);
1814
1815 if (sgp == SGP_WRITE)
1816 folio_mark_accessed(folio);
1817
1818 delete_from_swap_cache(folio);
1819 folio_mark_dirty(folio);
1820 swap_free(swap);
1821 put_swap_device(si);
1822
1823 *foliop = folio;
1824 return 0;
1825 failed:
1826 if (!shmem_confirm_swap(mapping, index, swap))
1827 error = -EEXIST;
1828 if (error == -EIO)
1829 shmem_set_folio_swapin_error(inode, index, folio, swap);
1830 unlock:
1831 if (folio) {
1832 folio_unlock(folio);
1833 folio_put(folio);
1834 }
1835 put_swap_device(si);
1836
1837 return error;
1838 }
1839
1840 /*
1841 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1842 *
1843 * If we allocate a new one we do not mark it dirty. That's up to the
1844 * vm. If we swap it in we mark it dirty since we also free the swap
1845 * entry since a page cannot live in both the swap and page cache.
1846 *
1847 * vma, vmf, and fault_type are only supplied by shmem_fault:
1848 * otherwise they are NULL.
1849 */
1850 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1851 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1852 struct vm_area_struct *vma, struct vm_fault *vmf,
1853 vm_fault_t *fault_type)
1854 {
1855 struct address_space *mapping = inode->i_mapping;
1856 struct shmem_inode_info *info = SHMEM_I(inode);
1857 struct shmem_sb_info *sbinfo;
1858 struct mm_struct *charge_mm;
1859 struct folio *folio;
1860 pgoff_t hindex;
1861 gfp_t huge_gfp;
1862 int error;
1863 int once = 0;
1864 int alloced = 0;
1865
1866 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1867 return -EFBIG;
1868 repeat:
1869 if (sgp <= SGP_CACHE &&
1870 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1871 return -EINVAL;
1872 }
1873
1874 sbinfo = SHMEM_SB(inode->i_sb);
1875 charge_mm = vma ? vma->vm_mm : NULL;
1876
1877 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1878 if (folio && vma && userfaultfd_minor(vma)) {
1879 if (!xa_is_value(folio)) {
1880 folio_unlock(folio);
1881 folio_put(folio);
1882 }
1883 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1884 return 0;
1885 }
1886
1887 if (xa_is_value(folio)) {
1888 error = shmem_swapin_folio(inode, index, &folio,
1889 sgp, gfp, vma, fault_type);
1890 if (error == -EEXIST)
1891 goto repeat;
1892
1893 *foliop = folio;
1894 return error;
1895 }
1896
1897 if (folio) {
1898 if (sgp == SGP_WRITE)
1899 folio_mark_accessed(folio);
1900 if (folio_test_uptodate(folio))
1901 goto out;
1902 /* fallocated folio */
1903 if (sgp != SGP_READ)
1904 goto clear;
1905 folio_unlock(folio);
1906 folio_put(folio);
1907 }
1908
1909 /*
1910 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1911 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1912 */
1913 *foliop = NULL;
1914 if (sgp == SGP_READ)
1915 return 0;
1916 if (sgp == SGP_NOALLOC)
1917 return -ENOENT;
1918
1919 /*
1920 * Fast cache lookup and swap lookup did not find it: allocate.
1921 */
1922
1923 if (vma && userfaultfd_missing(vma)) {
1924 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1925 return 0;
1926 }
1927
1928 if (!shmem_is_huge(inode, index, false,
1929 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1930 goto alloc_nohuge;
1931
1932 huge_gfp = vma_thp_gfp_mask(vma);
1933 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1934 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1935 if (IS_ERR(folio)) {
1936 alloc_nohuge:
1937 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1938 }
1939 if (IS_ERR(folio)) {
1940 int retry = 5;
1941
1942 error = PTR_ERR(folio);
1943 folio = NULL;
1944 if (error != -ENOSPC)
1945 goto unlock;
1946 /*
1947 * Try to reclaim some space by splitting a large folio
1948 * beyond i_size on the filesystem.
1949 */
1950 while (retry--) {
1951 int ret;
1952
1953 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1954 if (ret == SHRINK_STOP)
1955 break;
1956 if (ret)
1957 goto alloc_nohuge;
1958 }
1959 goto unlock;
1960 }
1961
1962 hindex = round_down(index, folio_nr_pages(folio));
1963
1964 if (sgp == SGP_WRITE)
1965 __folio_set_referenced(folio);
1966
1967 error = shmem_add_to_page_cache(folio, mapping, hindex,
1968 NULL, gfp & GFP_RECLAIM_MASK,
1969 charge_mm);
1970 if (error)
1971 goto unacct;
1972 folio_add_lru(folio);
1973
1974 spin_lock_irq(&info->lock);
1975 info->alloced += folio_nr_pages(folio);
1976 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1977 shmem_recalc_inode(inode);
1978 spin_unlock_irq(&info->lock);
1979 alloced = true;
1980
1981 if (folio_test_pmd_mappable(folio) &&
1982 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1983 folio_next_index(folio) - 1) {
1984 /*
1985 * Part of the large folio is beyond i_size: subject
1986 * to shrink under memory pressure.
1987 */
1988 spin_lock(&sbinfo->shrinklist_lock);
1989 /*
1990 * _careful to defend against unlocked access to
1991 * ->shrink_list in shmem_unused_huge_shrink()
1992 */
1993 if (list_empty_careful(&info->shrinklist)) {
1994 list_add_tail(&info->shrinklist,
1995 &sbinfo->shrinklist);
1996 sbinfo->shrinklist_len++;
1997 }
1998 spin_unlock(&sbinfo->shrinklist_lock);
1999 }
2000
2001 /*
2002 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2003 */
2004 if (sgp == SGP_FALLOC)
2005 sgp = SGP_WRITE;
2006 clear:
2007 /*
2008 * Let SGP_WRITE caller clear ends if write does not fill folio;
2009 * but SGP_FALLOC on a folio fallocated earlier must initialize
2010 * it now, lest undo on failure cancel our earlier guarantee.
2011 */
2012 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2013 long i, n = folio_nr_pages(folio);
2014
2015 for (i = 0; i < n; i++)
2016 clear_highpage(folio_page(folio, i));
2017 flush_dcache_folio(folio);
2018 folio_mark_uptodate(folio);
2019 }
2020
2021 /* Perhaps the file has been truncated since we checked */
2022 if (sgp <= SGP_CACHE &&
2023 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2024 if (alloced) {
2025 folio_clear_dirty(folio);
2026 filemap_remove_folio(folio);
2027 spin_lock_irq(&info->lock);
2028 shmem_recalc_inode(inode);
2029 spin_unlock_irq(&info->lock);
2030 }
2031 error = -EINVAL;
2032 goto unlock;
2033 }
2034 out:
2035 *foliop = folio;
2036 return 0;
2037
2038 /*
2039 * Error recovery.
2040 */
2041 unacct:
2042 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2043
2044 if (folio_test_large(folio)) {
2045 folio_unlock(folio);
2046 folio_put(folio);
2047 goto alloc_nohuge;
2048 }
2049 unlock:
2050 if (folio) {
2051 folio_unlock(folio);
2052 folio_put(folio);
2053 }
2054 if (error == -ENOSPC && !once++) {
2055 spin_lock_irq(&info->lock);
2056 shmem_recalc_inode(inode);
2057 spin_unlock_irq(&info->lock);
2058 goto repeat;
2059 }
2060 if (error == -EEXIST)
2061 goto repeat;
2062 return error;
2063 }
2064
2065 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2066 enum sgp_type sgp)
2067 {
2068 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2069 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2070 }
2071
2072 /*
2073 * This is like autoremove_wake_function, but it removes the wait queue
2074 * entry unconditionally - even if something else had already woken the
2075 * target.
2076 */
2077 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2078 {
2079 int ret = default_wake_function(wait, mode, sync, key);
2080 list_del_init(&wait->entry);
2081 return ret;
2082 }
2083
2084 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2085 {
2086 struct vm_area_struct *vma = vmf->vma;
2087 struct inode *inode = file_inode(vma->vm_file);
2088 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2089 struct folio *folio = NULL;
2090 int err;
2091 vm_fault_t ret = VM_FAULT_LOCKED;
2092
2093 /*
2094 * Trinity finds that probing a hole which tmpfs is punching can
2095 * prevent the hole-punch from ever completing: which in turn
2096 * locks writers out with its hold on i_rwsem. So refrain from
2097 * faulting pages into the hole while it's being punched. Although
2098 * shmem_undo_range() does remove the additions, it may be unable to
2099 * keep up, as each new page needs its own unmap_mapping_range() call,
2100 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2101 *
2102 * It does not matter if we sometimes reach this check just before the
2103 * hole-punch begins, so that one fault then races with the punch:
2104 * we just need to make racing faults a rare case.
2105 *
2106 * The implementation below would be much simpler if we just used a
2107 * standard mutex or completion: but we cannot take i_rwsem in fault,
2108 * and bloating every shmem inode for this unlikely case would be sad.
2109 */
2110 if (unlikely(inode->i_private)) {
2111 struct shmem_falloc *shmem_falloc;
2112
2113 spin_lock(&inode->i_lock);
2114 shmem_falloc = inode->i_private;
2115 if (shmem_falloc &&
2116 shmem_falloc->waitq &&
2117 vmf->pgoff >= shmem_falloc->start &&
2118 vmf->pgoff < shmem_falloc->next) {
2119 struct file *fpin;
2120 wait_queue_head_t *shmem_falloc_waitq;
2121 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2122
2123 ret = VM_FAULT_NOPAGE;
2124 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2125 if (fpin)
2126 ret = VM_FAULT_RETRY;
2127
2128 shmem_falloc_waitq = shmem_falloc->waitq;
2129 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2130 TASK_UNINTERRUPTIBLE);
2131 spin_unlock(&inode->i_lock);
2132 schedule();
2133
2134 /*
2135 * shmem_falloc_waitq points into the shmem_fallocate()
2136 * stack of the hole-punching task: shmem_falloc_waitq
2137 * is usually invalid by the time we reach here, but
2138 * finish_wait() does not dereference it in that case;
2139 * though i_lock needed lest racing with wake_up_all().
2140 */
2141 spin_lock(&inode->i_lock);
2142 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2143 spin_unlock(&inode->i_lock);
2144
2145 if (fpin)
2146 fput(fpin);
2147 return ret;
2148 }
2149 spin_unlock(&inode->i_lock);
2150 }
2151
2152 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2153 gfp, vma, vmf, &ret);
2154 if (err)
2155 return vmf_error(err);
2156 if (folio)
2157 vmf->page = folio_file_page(folio, vmf->pgoff);
2158 return ret;
2159 }
2160
2161 unsigned long shmem_get_unmapped_area(struct file *file,
2162 unsigned long uaddr, unsigned long len,
2163 unsigned long pgoff, unsigned long flags)
2164 {
2165 unsigned long (*get_area)(struct file *,
2166 unsigned long, unsigned long, unsigned long, unsigned long);
2167 unsigned long addr;
2168 unsigned long offset;
2169 unsigned long inflated_len;
2170 unsigned long inflated_addr;
2171 unsigned long inflated_offset;
2172
2173 if (len > TASK_SIZE)
2174 return -ENOMEM;
2175
2176 get_area = current->mm->get_unmapped_area;
2177 addr = get_area(file, uaddr, len, pgoff, flags);
2178
2179 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2180 return addr;
2181 if (IS_ERR_VALUE(addr))
2182 return addr;
2183 if (addr & ~PAGE_MASK)
2184 return addr;
2185 if (addr > TASK_SIZE - len)
2186 return addr;
2187
2188 if (shmem_huge == SHMEM_HUGE_DENY)
2189 return addr;
2190 if (len < HPAGE_PMD_SIZE)
2191 return addr;
2192 if (flags & MAP_FIXED)
2193 return addr;
2194 /*
2195 * Our priority is to support MAP_SHARED mapped hugely;
2196 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2197 * But if caller specified an address hint and we allocated area there
2198 * successfully, respect that as before.
2199 */
2200 if (uaddr == addr)
2201 return addr;
2202
2203 if (shmem_huge != SHMEM_HUGE_FORCE) {
2204 struct super_block *sb;
2205
2206 if (file) {
2207 VM_BUG_ON(file->f_op != &shmem_file_operations);
2208 sb = file_inode(file)->i_sb;
2209 } else {
2210 /*
2211 * Called directly from mm/mmap.c, or drivers/char/mem.c
2212 * for "/dev/zero", to create a shared anonymous object.
2213 */
2214 if (IS_ERR(shm_mnt))
2215 return addr;
2216 sb = shm_mnt->mnt_sb;
2217 }
2218 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2219 return addr;
2220 }
2221
2222 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2223 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2224 return addr;
2225 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2226 return addr;
2227
2228 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2229 if (inflated_len > TASK_SIZE)
2230 return addr;
2231 if (inflated_len < len)
2232 return addr;
2233
2234 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2235 if (IS_ERR_VALUE(inflated_addr))
2236 return addr;
2237 if (inflated_addr & ~PAGE_MASK)
2238 return addr;
2239
2240 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2241 inflated_addr += offset - inflated_offset;
2242 if (inflated_offset > offset)
2243 inflated_addr += HPAGE_PMD_SIZE;
2244
2245 if (inflated_addr > TASK_SIZE - len)
2246 return addr;
2247 return inflated_addr;
2248 }
2249
2250 #ifdef CONFIG_NUMA
2251 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2252 {
2253 struct inode *inode = file_inode(vma->vm_file);
2254 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2255 }
2256
2257 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2258 unsigned long addr)
2259 {
2260 struct inode *inode = file_inode(vma->vm_file);
2261 pgoff_t index;
2262
2263 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2264 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2265 }
2266 #endif
2267
2268 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2269 {
2270 struct inode *inode = file_inode(file);
2271 struct shmem_inode_info *info = SHMEM_I(inode);
2272 int retval = -ENOMEM;
2273
2274 /*
2275 * What serializes the accesses to info->flags?
2276 * ipc_lock_object() when called from shmctl_do_lock(),
2277 * no serialization needed when called from shm_destroy().
2278 */
2279 if (lock && !(info->flags & VM_LOCKED)) {
2280 if (!user_shm_lock(inode->i_size, ucounts))
2281 goto out_nomem;
2282 info->flags |= VM_LOCKED;
2283 mapping_set_unevictable(file->f_mapping);
2284 }
2285 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2286 user_shm_unlock(inode->i_size, ucounts);
2287 info->flags &= ~VM_LOCKED;
2288 mapping_clear_unevictable(file->f_mapping);
2289 }
2290 retval = 0;
2291
2292 out_nomem:
2293 return retval;
2294 }
2295
2296 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2297 {
2298 struct inode *inode = file_inode(file);
2299 struct shmem_inode_info *info = SHMEM_I(inode);
2300 int ret;
2301
2302 ret = seal_check_future_write(info->seals, vma);
2303 if (ret)
2304 return ret;
2305
2306 /* arm64 - allow memory tagging on RAM-based files */
2307 vm_flags_set(vma, VM_MTE_ALLOWED);
2308
2309 file_accessed(file);
2310 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2311 if (inode->i_nlink)
2312 vma->vm_ops = &shmem_vm_ops;
2313 else
2314 vma->vm_ops = &shmem_anon_vm_ops;
2315 return 0;
2316 }
2317
2318 #ifdef CONFIG_TMPFS_XATTR
2319 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2320
2321 /*
2322 * chattr's fsflags are unrelated to extended attributes,
2323 * but tmpfs has chosen to enable them under the same config option.
2324 */
2325 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2326 {
2327 unsigned int i_flags = 0;
2328
2329 if (fsflags & FS_NOATIME_FL)
2330 i_flags |= S_NOATIME;
2331 if (fsflags & FS_APPEND_FL)
2332 i_flags |= S_APPEND;
2333 if (fsflags & FS_IMMUTABLE_FL)
2334 i_flags |= S_IMMUTABLE;
2335 /*
2336 * But FS_NODUMP_FL does not require any action in i_flags.
2337 */
2338 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2339 }
2340 #else
2341 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2342 {
2343 }
2344 #define shmem_initxattrs NULL
2345 #endif
2346
2347 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2348 struct inode *dir, umode_t mode, dev_t dev,
2349 unsigned long flags)
2350 {
2351 struct inode *inode;
2352 struct shmem_inode_info *info;
2353 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2354 ino_t ino;
2355
2356 if (shmem_reserve_inode(sb, &ino))
2357 return NULL;
2358
2359 inode = new_inode(sb);
2360 if (inode) {
2361 inode->i_ino = ino;
2362 inode_init_owner(idmap, inode, dir, mode);
2363 inode->i_blocks = 0;
2364 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2365 inode->i_generation = get_random_u32();
2366 info = SHMEM_I(inode);
2367 memset(info, 0, (char *)inode - (char *)info);
2368 spin_lock_init(&info->lock);
2369 atomic_set(&info->stop_eviction, 0);
2370 info->seals = F_SEAL_SEAL;
2371 info->flags = flags & VM_NORESERVE;
2372 info->i_crtime = inode->i_mtime;
2373 info->fsflags = (dir == NULL) ? 0 :
2374 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2375 if (info->fsflags)
2376 shmem_set_inode_flags(inode, info->fsflags);
2377 INIT_LIST_HEAD(&info->shrinklist);
2378 INIT_LIST_HEAD(&info->swaplist);
2379 simple_xattrs_init(&info->xattrs);
2380 cache_no_acl(inode);
2381 mapping_set_large_folios(inode->i_mapping);
2382
2383 switch (mode & S_IFMT) {
2384 default:
2385 inode->i_op = &shmem_special_inode_operations;
2386 init_special_inode(inode, mode, dev);
2387 break;
2388 case S_IFREG:
2389 inode->i_mapping->a_ops = &shmem_aops;
2390 inode->i_op = &shmem_inode_operations;
2391 inode->i_fop = &shmem_file_operations;
2392 mpol_shared_policy_init(&info->policy,
2393 shmem_get_sbmpol(sbinfo));
2394 break;
2395 case S_IFDIR:
2396 inc_nlink(inode);
2397 /* Some things misbehave if size == 0 on a directory */
2398 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2399 inode->i_op = &shmem_dir_inode_operations;
2400 inode->i_fop = &simple_dir_operations;
2401 break;
2402 case S_IFLNK:
2403 /*
2404 * Must not load anything in the rbtree,
2405 * mpol_free_shared_policy will not be called.
2406 */
2407 mpol_shared_policy_init(&info->policy, NULL);
2408 break;
2409 }
2410
2411 lockdep_annotate_inode_mutex_key(inode);
2412 } else
2413 shmem_free_inode(sb);
2414 return inode;
2415 }
2416
2417 #ifdef CONFIG_USERFAULTFD
2418 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2419 pmd_t *dst_pmd,
2420 struct vm_area_struct *dst_vma,
2421 unsigned long dst_addr,
2422 unsigned long src_addr,
2423 bool zeropage, bool wp_copy,
2424 struct page **pagep)
2425 {
2426 struct inode *inode = file_inode(dst_vma->vm_file);
2427 struct shmem_inode_info *info = SHMEM_I(inode);
2428 struct address_space *mapping = inode->i_mapping;
2429 gfp_t gfp = mapping_gfp_mask(mapping);
2430 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2431 void *page_kaddr;
2432 struct folio *folio;
2433 int ret;
2434 pgoff_t max_off;
2435
2436 if (!shmem_inode_acct_block(inode, 1)) {
2437 /*
2438 * We may have got a page, returned -ENOENT triggering a retry,
2439 * and now we find ourselves with -ENOMEM. Release the page, to
2440 * avoid a BUG_ON in our caller.
2441 */
2442 if (unlikely(*pagep)) {
2443 put_page(*pagep);
2444 *pagep = NULL;
2445 }
2446 return -ENOMEM;
2447 }
2448
2449 if (!*pagep) {
2450 ret = -ENOMEM;
2451 folio = shmem_alloc_folio(gfp, info, pgoff);
2452 if (!folio)
2453 goto out_unacct_blocks;
2454
2455 if (!zeropage) { /* COPY */
2456 page_kaddr = kmap_local_folio(folio, 0);
2457 /*
2458 * The read mmap_lock is held here. Despite the
2459 * mmap_lock being read recursive a deadlock is still
2460 * possible if a writer has taken a lock. For example:
2461 *
2462 * process A thread 1 takes read lock on own mmap_lock
2463 * process A thread 2 calls mmap, blocks taking write lock
2464 * process B thread 1 takes page fault, read lock on own mmap lock
2465 * process B thread 2 calls mmap, blocks taking write lock
2466 * process A thread 1 blocks taking read lock on process B
2467 * process B thread 1 blocks taking read lock on process A
2468 *
2469 * Disable page faults to prevent potential deadlock
2470 * and retry the copy outside the mmap_lock.
2471 */
2472 pagefault_disable();
2473 ret = copy_from_user(page_kaddr,
2474 (const void __user *)src_addr,
2475 PAGE_SIZE);
2476 pagefault_enable();
2477 kunmap_local(page_kaddr);
2478
2479 /* fallback to copy_from_user outside mmap_lock */
2480 if (unlikely(ret)) {
2481 *pagep = &folio->page;
2482 ret = -ENOENT;
2483 /* don't free the page */
2484 goto out_unacct_blocks;
2485 }
2486
2487 flush_dcache_folio(folio);
2488 } else { /* ZEROPAGE */
2489 clear_user_highpage(&folio->page, dst_addr);
2490 }
2491 } else {
2492 folio = page_folio(*pagep);
2493 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2494 *pagep = NULL;
2495 }
2496
2497 VM_BUG_ON(folio_test_locked(folio));
2498 VM_BUG_ON(folio_test_swapbacked(folio));
2499 __folio_set_locked(folio);
2500 __folio_set_swapbacked(folio);
2501 __folio_mark_uptodate(folio);
2502
2503 ret = -EFAULT;
2504 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505 if (unlikely(pgoff >= max_off))
2506 goto out_release;
2507
2508 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2509 gfp & GFP_RECLAIM_MASK, dst_mm);
2510 if (ret)
2511 goto out_release;
2512
2513 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2514 &folio->page, true, wp_copy);
2515 if (ret)
2516 goto out_delete_from_cache;
2517
2518 spin_lock_irq(&info->lock);
2519 info->alloced++;
2520 inode->i_blocks += BLOCKS_PER_PAGE;
2521 shmem_recalc_inode(inode);
2522 spin_unlock_irq(&info->lock);
2523
2524 folio_unlock(folio);
2525 return 0;
2526 out_delete_from_cache:
2527 filemap_remove_folio(folio);
2528 out_release:
2529 folio_unlock(folio);
2530 folio_put(folio);
2531 out_unacct_blocks:
2532 shmem_inode_unacct_blocks(inode, 1);
2533 return ret;
2534 }
2535 #endif /* CONFIG_USERFAULTFD */
2536
2537 #ifdef CONFIG_TMPFS
2538 static const struct inode_operations shmem_symlink_inode_operations;
2539 static const struct inode_operations shmem_short_symlink_operations;
2540
2541 static int
2542 shmem_write_begin(struct file *file, struct address_space *mapping,
2543 loff_t pos, unsigned len,
2544 struct page **pagep, void **fsdata)
2545 {
2546 struct inode *inode = mapping->host;
2547 struct shmem_inode_info *info = SHMEM_I(inode);
2548 pgoff_t index = pos >> PAGE_SHIFT;
2549 struct folio *folio;
2550 int ret = 0;
2551
2552 /* i_rwsem is held by caller */
2553 if (unlikely(info->seals & (F_SEAL_GROW |
2554 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2555 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2556 return -EPERM;
2557 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2558 return -EPERM;
2559 }
2560
2561 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2562
2563 if (ret)
2564 return ret;
2565
2566 *pagep = folio_file_page(folio, index);
2567 if (PageHWPoison(*pagep)) {
2568 folio_unlock(folio);
2569 folio_put(folio);
2570 *pagep = NULL;
2571 return -EIO;
2572 }
2573
2574 return 0;
2575 }
2576
2577 static int
2578 shmem_write_end(struct file *file, struct address_space *mapping,
2579 loff_t pos, unsigned len, unsigned copied,
2580 struct page *page, void *fsdata)
2581 {
2582 struct folio *folio = page_folio(page);
2583 struct inode *inode = mapping->host;
2584
2585 if (pos + copied > inode->i_size)
2586 i_size_write(inode, pos + copied);
2587
2588 if (!folio_test_uptodate(folio)) {
2589 if (copied < folio_size(folio)) {
2590 size_t from = offset_in_folio(folio, pos);
2591 folio_zero_segments(folio, 0, from,
2592 from + copied, folio_size(folio));
2593 }
2594 folio_mark_uptodate(folio);
2595 }
2596 folio_mark_dirty(folio);
2597 folio_unlock(folio);
2598 folio_put(folio);
2599
2600 return copied;
2601 }
2602
2603 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2604 {
2605 struct file *file = iocb->ki_filp;
2606 struct inode *inode = file_inode(file);
2607 struct address_space *mapping = inode->i_mapping;
2608 pgoff_t index;
2609 unsigned long offset;
2610 int error = 0;
2611 ssize_t retval = 0;
2612 loff_t *ppos = &iocb->ki_pos;
2613
2614 index = *ppos >> PAGE_SHIFT;
2615 offset = *ppos & ~PAGE_MASK;
2616
2617 for (;;) {
2618 struct folio *folio = NULL;
2619 struct page *page = NULL;
2620 pgoff_t end_index;
2621 unsigned long nr, ret;
2622 loff_t i_size = i_size_read(inode);
2623
2624 end_index = i_size >> PAGE_SHIFT;
2625 if (index > end_index)
2626 break;
2627 if (index == end_index) {
2628 nr = i_size & ~PAGE_MASK;
2629 if (nr <= offset)
2630 break;
2631 }
2632
2633 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2634 if (error) {
2635 if (error == -EINVAL)
2636 error = 0;
2637 break;
2638 }
2639 if (folio) {
2640 folio_unlock(folio);
2641
2642 page = folio_file_page(folio, index);
2643 if (PageHWPoison(page)) {
2644 folio_put(folio);
2645 error = -EIO;
2646 break;
2647 }
2648 }
2649
2650 /*
2651 * We must evaluate after, since reads (unlike writes)
2652 * are called without i_rwsem protection against truncate
2653 */
2654 nr = PAGE_SIZE;
2655 i_size = i_size_read(inode);
2656 end_index = i_size >> PAGE_SHIFT;
2657 if (index == end_index) {
2658 nr = i_size & ~PAGE_MASK;
2659 if (nr <= offset) {
2660 if (folio)
2661 folio_put(folio);
2662 break;
2663 }
2664 }
2665 nr -= offset;
2666
2667 if (folio) {
2668 /*
2669 * If users can be writing to this page using arbitrary
2670 * virtual addresses, take care about potential aliasing
2671 * before reading the page on the kernel side.
2672 */
2673 if (mapping_writably_mapped(mapping))
2674 flush_dcache_page(page);
2675 /*
2676 * Mark the page accessed if we read the beginning.
2677 */
2678 if (!offset)
2679 folio_mark_accessed(folio);
2680 /*
2681 * Ok, we have the page, and it's up-to-date, so
2682 * now we can copy it to user space...
2683 */
2684 ret = copy_page_to_iter(page, offset, nr, to);
2685 folio_put(folio);
2686
2687 } else if (user_backed_iter(to)) {
2688 /*
2689 * Copy to user tends to be so well optimized, but
2690 * clear_user() not so much, that it is noticeably
2691 * faster to copy the zero page instead of clearing.
2692 */
2693 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2694 } else {
2695 /*
2696 * But submitting the same page twice in a row to
2697 * splice() - or others? - can result in confusion:
2698 * so don't attempt that optimization on pipes etc.
2699 */
2700 ret = iov_iter_zero(nr, to);
2701 }
2702
2703 retval += ret;
2704 offset += ret;
2705 index += offset >> PAGE_SHIFT;
2706 offset &= ~PAGE_MASK;
2707
2708 if (!iov_iter_count(to))
2709 break;
2710 if (ret < nr) {
2711 error = -EFAULT;
2712 break;
2713 }
2714 cond_resched();
2715 }
2716
2717 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2718 file_accessed(file);
2719 return retval ? retval : error;
2720 }
2721
2722 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2723 {
2724 struct address_space *mapping = file->f_mapping;
2725 struct inode *inode = mapping->host;
2726
2727 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728 return generic_file_llseek_size(file, offset, whence,
2729 MAX_LFS_FILESIZE, i_size_read(inode));
2730 if (offset < 0)
2731 return -ENXIO;
2732
2733 inode_lock(inode);
2734 /* We're holding i_rwsem so we can access i_size directly */
2735 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2736 if (offset >= 0)
2737 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2738 inode_unlock(inode);
2739 return offset;
2740 }
2741
2742 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2743 loff_t len)
2744 {
2745 struct inode *inode = file_inode(file);
2746 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2747 struct shmem_inode_info *info = SHMEM_I(inode);
2748 struct shmem_falloc shmem_falloc;
2749 pgoff_t start, index, end, undo_fallocend;
2750 int error;
2751
2752 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2753 return -EOPNOTSUPP;
2754
2755 inode_lock(inode);
2756
2757 if (mode & FALLOC_FL_PUNCH_HOLE) {
2758 struct address_space *mapping = file->f_mapping;
2759 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2760 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2761 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2762
2763 /* protected by i_rwsem */
2764 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2765 error = -EPERM;
2766 goto out;
2767 }
2768
2769 shmem_falloc.waitq = &shmem_falloc_waitq;
2770 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2771 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2772 spin_lock(&inode->i_lock);
2773 inode->i_private = &shmem_falloc;
2774 spin_unlock(&inode->i_lock);
2775
2776 if ((u64)unmap_end > (u64)unmap_start)
2777 unmap_mapping_range(mapping, unmap_start,
2778 1 + unmap_end - unmap_start, 0);
2779 shmem_truncate_range(inode, offset, offset + len - 1);
2780 /* No need to unmap again: hole-punching leaves COWed pages */
2781
2782 spin_lock(&inode->i_lock);
2783 inode->i_private = NULL;
2784 wake_up_all(&shmem_falloc_waitq);
2785 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2786 spin_unlock(&inode->i_lock);
2787 error = 0;
2788 goto out;
2789 }
2790
2791 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2792 error = inode_newsize_ok(inode, offset + len);
2793 if (error)
2794 goto out;
2795
2796 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2797 error = -EPERM;
2798 goto out;
2799 }
2800
2801 start = offset >> PAGE_SHIFT;
2802 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2803 /* Try to avoid a swapstorm if len is impossible to satisfy */
2804 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2805 error = -ENOSPC;
2806 goto out;
2807 }
2808
2809 shmem_falloc.waitq = NULL;
2810 shmem_falloc.start = start;
2811 shmem_falloc.next = start;
2812 shmem_falloc.nr_falloced = 0;
2813 shmem_falloc.nr_unswapped = 0;
2814 spin_lock(&inode->i_lock);
2815 inode->i_private = &shmem_falloc;
2816 spin_unlock(&inode->i_lock);
2817
2818 /*
2819 * info->fallocend is only relevant when huge pages might be
2820 * involved: to prevent split_huge_page() freeing fallocated
2821 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2822 */
2823 undo_fallocend = info->fallocend;
2824 if (info->fallocend < end)
2825 info->fallocend = end;
2826
2827 for (index = start; index < end; ) {
2828 struct folio *folio;
2829
2830 /*
2831 * Good, the fallocate(2) manpage permits EINTR: we may have
2832 * been interrupted because we are using up too much memory.
2833 */
2834 if (signal_pending(current))
2835 error = -EINTR;
2836 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2837 error = -ENOMEM;
2838 else
2839 error = shmem_get_folio(inode, index, &folio,
2840 SGP_FALLOC);
2841 if (error) {
2842 info->fallocend = undo_fallocend;
2843 /* Remove the !uptodate folios we added */
2844 if (index > start) {
2845 shmem_undo_range(inode,
2846 (loff_t)start << PAGE_SHIFT,
2847 ((loff_t)index << PAGE_SHIFT) - 1, true);
2848 }
2849 goto undone;
2850 }
2851
2852 /*
2853 * Here is a more important optimization than it appears:
2854 * a second SGP_FALLOC on the same large folio will clear it,
2855 * making it uptodate and un-undoable if we fail later.
2856 */
2857 index = folio_next_index(folio);
2858 /* Beware 32-bit wraparound */
2859 if (!index)
2860 index--;
2861
2862 /*
2863 * Inform shmem_writepage() how far we have reached.
2864 * No need for lock or barrier: we have the page lock.
2865 */
2866 if (!folio_test_uptodate(folio))
2867 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2868 shmem_falloc.next = index;
2869
2870 /*
2871 * If !uptodate, leave it that way so that freeable folios
2872 * can be recognized if we need to rollback on error later.
2873 * But mark it dirty so that memory pressure will swap rather
2874 * than free the folios we are allocating (and SGP_CACHE folios
2875 * might still be clean: we now need to mark those dirty too).
2876 */
2877 folio_mark_dirty(folio);
2878 folio_unlock(folio);
2879 folio_put(folio);
2880 cond_resched();
2881 }
2882
2883 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2884 i_size_write(inode, offset + len);
2885 undone:
2886 spin_lock(&inode->i_lock);
2887 inode->i_private = NULL;
2888 spin_unlock(&inode->i_lock);
2889 out:
2890 if (!error)
2891 file_modified(file);
2892 inode_unlock(inode);
2893 return error;
2894 }
2895
2896 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2897 {
2898 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2899
2900 buf->f_type = TMPFS_MAGIC;
2901 buf->f_bsize = PAGE_SIZE;
2902 buf->f_namelen = NAME_MAX;
2903 if (sbinfo->max_blocks) {
2904 buf->f_blocks = sbinfo->max_blocks;
2905 buf->f_bavail =
2906 buf->f_bfree = sbinfo->max_blocks -
2907 percpu_counter_sum(&sbinfo->used_blocks);
2908 }
2909 if (sbinfo->max_inodes) {
2910 buf->f_files = sbinfo->max_inodes;
2911 buf->f_ffree = sbinfo->free_inodes;
2912 }
2913 /* else leave those fields 0 like simple_statfs */
2914
2915 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2916
2917 return 0;
2918 }
2919
2920 /*
2921 * File creation. Allocate an inode, and we're done..
2922 */
2923 static int
2924 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
2925 struct dentry *dentry, umode_t mode, dev_t dev)
2926 {
2927 struct inode *inode;
2928 int error = -ENOSPC;
2929
2930 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
2931 if (inode) {
2932 error = simple_acl_create(dir, inode);
2933 if (error)
2934 goto out_iput;
2935 error = security_inode_init_security(inode, dir,
2936 &dentry->d_name,
2937 shmem_initxattrs, NULL);
2938 if (error && error != -EOPNOTSUPP)
2939 goto out_iput;
2940
2941 error = 0;
2942 dir->i_size += BOGO_DIRENT_SIZE;
2943 dir->i_ctime = dir->i_mtime = current_time(dir);
2944 inode_inc_iversion(dir);
2945 d_instantiate(dentry, inode);
2946 dget(dentry); /* Extra count - pin the dentry in core */
2947 }
2948 return error;
2949 out_iput:
2950 iput(inode);
2951 return error;
2952 }
2953
2954 static int
2955 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
2956 struct file *file, umode_t mode)
2957 {
2958 struct inode *inode;
2959 int error = -ENOSPC;
2960
2961 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
2962 if (inode) {
2963 error = security_inode_init_security(inode, dir,
2964 NULL,
2965 shmem_initxattrs, NULL);
2966 if (error && error != -EOPNOTSUPP)
2967 goto out_iput;
2968 error = simple_acl_create(dir, inode);
2969 if (error)
2970 goto out_iput;
2971 d_tmpfile(file, inode);
2972 }
2973 return finish_open_simple(file, error);
2974 out_iput:
2975 iput(inode);
2976 return error;
2977 }
2978
2979 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2980 struct dentry *dentry, umode_t mode)
2981 {
2982 int error;
2983
2984 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
2985 if (error)
2986 return error;
2987 inc_nlink(dir);
2988 return 0;
2989 }
2990
2991 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
2992 struct dentry *dentry, umode_t mode, bool excl)
2993 {
2994 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
2995 }
2996
2997 /*
2998 * Link a file..
2999 */
3000 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3001 {
3002 struct inode *inode = d_inode(old_dentry);
3003 int ret = 0;
3004
3005 /*
3006 * No ordinary (disk based) filesystem counts links as inodes;
3007 * but each new link needs a new dentry, pinning lowmem, and
3008 * tmpfs dentries cannot be pruned until they are unlinked.
3009 * But if an O_TMPFILE file is linked into the tmpfs, the
3010 * first link must skip that, to get the accounting right.
3011 */
3012 if (inode->i_nlink) {
3013 ret = shmem_reserve_inode(inode->i_sb, NULL);
3014 if (ret)
3015 goto out;
3016 }
3017
3018 dir->i_size += BOGO_DIRENT_SIZE;
3019 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3020 inode_inc_iversion(dir);
3021 inc_nlink(inode);
3022 ihold(inode); /* New dentry reference */
3023 dget(dentry); /* Extra pinning count for the created dentry */
3024 d_instantiate(dentry, inode);
3025 out:
3026 return ret;
3027 }
3028
3029 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3030 {
3031 struct inode *inode = d_inode(dentry);
3032
3033 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3034 shmem_free_inode(inode->i_sb);
3035
3036 dir->i_size -= BOGO_DIRENT_SIZE;
3037 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3038 inode_inc_iversion(dir);
3039 drop_nlink(inode);
3040 dput(dentry); /* Undo the count from "create" - this does all the work */
3041 return 0;
3042 }
3043
3044 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3045 {
3046 if (!simple_empty(dentry))
3047 return -ENOTEMPTY;
3048
3049 drop_nlink(d_inode(dentry));
3050 drop_nlink(dir);
3051 return shmem_unlink(dir, dentry);
3052 }
3053
3054 static int shmem_whiteout(struct mnt_idmap *idmap,
3055 struct inode *old_dir, struct dentry *old_dentry)
3056 {
3057 struct dentry *whiteout;
3058 int error;
3059
3060 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3061 if (!whiteout)
3062 return -ENOMEM;
3063
3064 error = shmem_mknod(idmap, old_dir, whiteout,
3065 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3066 dput(whiteout);
3067 if (error)
3068 return error;
3069
3070 /*
3071 * Cheat and hash the whiteout while the old dentry is still in
3072 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3073 *
3074 * d_lookup() will consistently find one of them at this point,
3075 * not sure which one, but that isn't even important.
3076 */
3077 d_rehash(whiteout);
3078 return 0;
3079 }
3080
3081 /*
3082 * The VFS layer already does all the dentry stuff for rename,
3083 * we just have to decrement the usage count for the target if
3084 * it exists so that the VFS layer correctly free's it when it
3085 * gets overwritten.
3086 */
3087 static int shmem_rename2(struct mnt_idmap *idmap,
3088 struct inode *old_dir, struct dentry *old_dentry,
3089 struct inode *new_dir, struct dentry *new_dentry,
3090 unsigned int flags)
3091 {
3092 struct inode *inode = d_inode(old_dentry);
3093 int they_are_dirs = S_ISDIR(inode->i_mode);
3094
3095 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3096 return -EINVAL;
3097
3098 if (flags & RENAME_EXCHANGE)
3099 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3100
3101 if (!simple_empty(new_dentry))
3102 return -ENOTEMPTY;
3103
3104 if (flags & RENAME_WHITEOUT) {
3105 int error;
3106
3107 error = shmem_whiteout(idmap, old_dir, old_dentry);
3108 if (error)
3109 return error;
3110 }
3111
3112 if (d_really_is_positive(new_dentry)) {
3113 (void) shmem_unlink(new_dir, new_dentry);
3114 if (they_are_dirs) {
3115 drop_nlink(d_inode(new_dentry));
3116 drop_nlink(old_dir);
3117 }
3118 } else if (they_are_dirs) {
3119 drop_nlink(old_dir);
3120 inc_nlink(new_dir);
3121 }
3122
3123 old_dir->i_size -= BOGO_DIRENT_SIZE;
3124 new_dir->i_size += BOGO_DIRENT_SIZE;
3125 old_dir->i_ctime = old_dir->i_mtime =
3126 new_dir->i_ctime = new_dir->i_mtime =
3127 inode->i_ctime = current_time(old_dir);
3128 inode_inc_iversion(old_dir);
3129 inode_inc_iversion(new_dir);
3130 return 0;
3131 }
3132
3133 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3134 struct dentry *dentry, const char *symname)
3135 {
3136 int error;
3137 int len;
3138 struct inode *inode;
3139 struct folio *folio;
3140
3141 len = strlen(symname) + 1;
3142 if (len > PAGE_SIZE)
3143 return -ENAMETOOLONG;
3144
3145 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3146 VM_NORESERVE);
3147 if (!inode)
3148 return -ENOSPC;
3149
3150 error = security_inode_init_security(inode, dir, &dentry->d_name,
3151 shmem_initxattrs, NULL);
3152 if (error && error != -EOPNOTSUPP) {
3153 iput(inode);
3154 return error;
3155 }
3156
3157 inode->i_size = len-1;
3158 if (len <= SHORT_SYMLINK_LEN) {
3159 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3160 if (!inode->i_link) {
3161 iput(inode);
3162 return -ENOMEM;
3163 }
3164 inode->i_op = &shmem_short_symlink_operations;
3165 } else {
3166 inode_nohighmem(inode);
3167 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3168 if (error) {
3169 iput(inode);
3170 return error;
3171 }
3172 inode->i_mapping->a_ops = &shmem_aops;
3173 inode->i_op = &shmem_symlink_inode_operations;
3174 memcpy(folio_address(folio), symname, len);
3175 folio_mark_uptodate(folio);
3176 folio_mark_dirty(folio);
3177 folio_unlock(folio);
3178 folio_put(folio);
3179 }
3180 dir->i_size += BOGO_DIRENT_SIZE;
3181 dir->i_ctime = dir->i_mtime = current_time(dir);
3182 inode_inc_iversion(dir);
3183 d_instantiate(dentry, inode);
3184 dget(dentry);
3185 return 0;
3186 }
3187
3188 static void shmem_put_link(void *arg)
3189 {
3190 folio_mark_accessed(arg);
3191 folio_put(arg);
3192 }
3193
3194 static const char *shmem_get_link(struct dentry *dentry,
3195 struct inode *inode,
3196 struct delayed_call *done)
3197 {
3198 struct folio *folio = NULL;
3199 int error;
3200
3201 if (!dentry) {
3202 folio = filemap_get_folio(inode->i_mapping, 0);
3203 if (!folio)
3204 return ERR_PTR(-ECHILD);
3205 if (PageHWPoison(folio_page(folio, 0)) ||
3206 !folio_test_uptodate(folio)) {
3207 folio_put(folio);
3208 return ERR_PTR(-ECHILD);
3209 }
3210 } else {
3211 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3212 if (error)
3213 return ERR_PTR(error);
3214 if (!folio)
3215 return ERR_PTR(-ECHILD);
3216 if (PageHWPoison(folio_page(folio, 0))) {
3217 folio_unlock(folio);
3218 folio_put(folio);
3219 return ERR_PTR(-ECHILD);
3220 }
3221 folio_unlock(folio);
3222 }
3223 set_delayed_call(done, shmem_put_link, folio);
3224 return folio_address(folio);
3225 }
3226
3227 #ifdef CONFIG_TMPFS_XATTR
3228
3229 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3230 {
3231 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3232
3233 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3234
3235 return 0;
3236 }
3237
3238 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3239 struct dentry *dentry, struct fileattr *fa)
3240 {
3241 struct inode *inode = d_inode(dentry);
3242 struct shmem_inode_info *info = SHMEM_I(inode);
3243
3244 if (fileattr_has_fsx(fa))
3245 return -EOPNOTSUPP;
3246 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3247 return -EOPNOTSUPP;
3248
3249 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3250 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3251
3252 shmem_set_inode_flags(inode, info->fsflags);
3253 inode->i_ctime = current_time(inode);
3254 inode_inc_iversion(inode);
3255 return 0;
3256 }
3257
3258 /*
3259 * Superblocks without xattr inode operations may get some security.* xattr
3260 * support from the LSM "for free". As soon as we have any other xattrs
3261 * like ACLs, we also need to implement the security.* handlers at
3262 * filesystem level, though.
3263 */
3264
3265 /*
3266 * Callback for security_inode_init_security() for acquiring xattrs.
3267 */
3268 static int shmem_initxattrs(struct inode *inode,
3269 const struct xattr *xattr_array,
3270 void *fs_info)
3271 {
3272 struct shmem_inode_info *info = SHMEM_I(inode);
3273 const struct xattr *xattr;
3274 struct simple_xattr *new_xattr;
3275 size_t len;
3276
3277 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3278 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3279 if (!new_xattr)
3280 return -ENOMEM;
3281
3282 len = strlen(xattr->name) + 1;
3283 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3284 GFP_KERNEL);
3285 if (!new_xattr->name) {
3286 kvfree(new_xattr);
3287 return -ENOMEM;
3288 }
3289
3290 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3291 XATTR_SECURITY_PREFIX_LEN);
3292 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3293 xattr->name, len);
3294
3295 simple_xattr_add(&info->xattrs, new_xattr);
3296 }
3297
3298 return 0;
3299 }
3300
3301 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3302 struct dentry *unused, struct inode *inode,
3303 const char *name, void *buffer, size_t size)
3304 {
3305 struct shmem_inode_info *info = SHMEM_I(inode);
3306
3307 name = xattr_full_name(handler, name);
3308 return simple_xattr_get(&info->xattrs, name, buffer, size);
3309 }
3310
3311 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3312 struct mnt_idmap *idmap,
3313 struct dentry *unused, struct inode *inode,
3314 const char *name, const void *value,
3315 size_t size, int flags)
3316 {
3317 struct shmem_inode_info *info = SHMEM_I(inode);
3318 int err;
3319
3320 name = xattr_full_name(handler, name);
3321 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3322 if (!err) {
3323 inode->i_ctime = current_time(inode);
3324 inode_inc_iversion(inode);
3325 }
3326 return err;
3327 }
3328
3329 static const struct xattr_handler shmem_security_xattr_handler = {
3330 .prefix = XATTR_SECURITY_PREFIX,
3331 .get = shmem_xattr_handler_get,
3332 .set = shmem_xattr_handler_set,
3333 };
3334
3335 static const struct xattr_handler shmem_trusted_xattr_handler = {
3336 .prefix = XATTR_TRUSTED_PREFIX,
3337 .get = shmem_xattr_handler_get,
3338 .set = shmem_xattr_handler_set,
3339 };
3340
3341 static const struct xattr_handler *shmem_xattr_handlers[] = {
3342 #ifdef CONFIG_TMPFS_POSIX_ACL
3343 &posix_acl_access_xattr_handler,
3344 &posix_acl_default_xattr_handler,
3345 #endif
3346 &shmem_security_xattr_handler,
3347 &shmem_trusted_xattr_handler,
3348 NULL
3349 };
3350
3351 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3352 {
3353 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3354 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3355 }
3356 #endif /* CONFIG_TMPFS_XATTR */
3357
3358 static const struct inode_operations shmem_short_symlink_operations = {
3359 .getattr = shmem_getattr,
3360 .get_link = simple_get_link,
3361 #ifdef CONFIG_TMPFS_XATTR
3362 .listxattr = shmem_listxattr,
3363 #endif
3364 };
3365
3366 static const struct inode_operations shmem_symlink_inode_operations = {
3367 .getattr = shmem_getattr,
3368 .get_link = shmem_get_link,
3369 #ifdef CONFIG_TMPFS_XATTR
3370 .listxattr = shmem_listxattr,
3371 #endif
3372 };
3373
3374 static struct dentry *shmem_get_parent(struct dentry *child)
3375 {
3376 return ERR_PTR(-ESTALE);
3377 }
3378
3379 static int shmem_match(struct inode *ino, void *vfh)
3380 {
3381 __u32 *fh = vfh;
3382 __u64 inum = fh[2];
3383 inum = (inum << 32) | fh[1];
3384 return ino->i_ino == inum && fh[0] == ino->i_generation;
3385 }
3386
3387 /* Find any alias of inode, but prefer a hashed alias */
3388 static struct dentry *shmem_find_alias(struct inode *inode)
3389 {
3390 struct dentry *alias = d_find_alias(inode);
3391
3392 return alias ?: d_find_any_alias(inode);
3393 }
3394
3395
3396 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3397 struct fid *fid, int fh_len, int fh_type)
3398 {
3399 struct inode *inode;
3400 struct dentry *dentry = NULL;
3401 u64 inum;
3402
3403 if (fh_len < 3)
3404 return NULL;
3405
3406 inum = fid->raw[2];
3407 inum = (inum << 32) | fid->raw[1];
3408
3409 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3410 shmem_match, fid->raw);
3411 if (inode) {
3412 dentry = shmem_find_alias(inode);
3413 iput(inode);
3414 }
3415
3416 return dentry;
3417 }
3418
3419 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3420 struct inode *parent)
3421 {
3422 if (*len < 3) {
3423 *len = 3;
3424 return FILEID_INVALID;
3425 }
3426
3427 if (inode_unhashed(inode)) {
3428 /* Unfortunately insert_inode_hash is not idempotent,
3429 * so as we hash inodes here rather than at creation
3430 * time, we need a lock to ensure we only try
3431 * to do it once
3432 */
3433 static DEFINE_SPINLOCK(lock);
3434 spin_lock(&lock);
3435 if (inode_unhashed(inode))
3436 __insert_inode_hash(inode,
3437 inode->i_ino + inode->i_generation);
3438 spin_unlock(&lock);
3439 }
3440
3441 fh[0] = inode->i_generation;
3442 fh[1] = inode->i_ino;
3443 fh[2] = ((__u64)inode->i_ino) >> 32;
3444
3445 *len = 3;
3446 return 1;
3447 }
3448
3449 static const struct export_operations shmem_export_ops = {
3450 .get_parent = shmem_get_parent,
3451 .encode_fh = shmem_encode_fh,
3452 .fh_to_dentry = shmem_fh_to_dentry,
3453 };
3454
3455 enum shmem_param {
3456 Opt_gid,
3457 Opt_huge,
3458 Opt_mode,
3459 Opt_mpol,
3460 Opt_nr_blocks,
3461 Opt_nr_inodes,
3462 Opt_size,
3463 Opt_uid,
3464 Opt_inode32,
3465 Opt_inode64,
3466 };
3467
3468 static const struct constant_table shmem_param_enums_huge[] = {
3469 {"never", SHMEM_HUGE_NEVER },
3470 {"always", SHMEM_HUGE_ALWAYS },
3471 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3472 {"advise", SHMEM_HUGE_ADVISE },
3473 {}
3474 };
3475
3476 const struct fs_parameter_spec shmem_fs_parameters[] = {
3477 fsparam_u32 ("gid", Opt_gid),
3478 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3479 fsparam_u32oct("mode", Opt_mode),
3480 fsparam_string("mpol", Opt_mpol),
3481 fsparam_string("nr_blocks", Opt_nr_blocks),
3482 fsparam_string("nr_inodes", Opt_nr_inodes),
3483 fsparam_string("size", Opt_size),
3484 fsparam_u32 ("uid", Opt_uid),
3485 fsparam_flag ("inode32", Opt_inode32),
3486 fsparam_flag ("inode64", Opt_inode64),
3487 {}
3488 };
3489
3490 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3491 {
3492 struct shmem_options *ctx = fc->fs_private;
3493 struct fs_parse_result result;
3494 unsigned long long size;
3495 char *rest;
3496 int opt;
3497
3498 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3499 if (opt < 0)
3500 return opt;
3501
3502 switch (opt) {
3503 case Opt_size:
3504 size = memparse(param->string, &rest);
3505 if (*rest == '%') {
3506 size <<= PAGE_SHIFT;
3507 size *= totalram_pages();
3508 do_div(size, 100);
3509 rest++;
3510 }
3511 if (*rest)
3512 goto bad_value;
3513 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3514 ctx->seen |= SHMEM_SEEN_BLOCKS;
3515 break;
3516 case Opt_nr_blocks:
3517 ctx->blocks = memparse(param->string, &rest);
3518 if (*rest || ctx->blocks > S64_MAX)
3519 goto bad_value;
3520 ctx->seen |= SHMEM_SEEN_BLOCKS;
3521 break;
3522 case Opt_nr_inodes:
3523 ctx->inodes = memparse(param->string, &rest);
3524 if (*rest)
3525 goto bad_value;
3526 ctx->seen |= SHMEM_SEEN_INODES;
3527 break;
3528 case Opt_mode:
3529 ctx->mode = result.uint_32 & 07777;
3530 break;
3531 case Opt_uid:
3532 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3533 if (!uid_valid(ctx->uid))
3534 goto bad_value;
3535 break;
3536 case Opt_gid:
3537 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3538 if (!gid_valid(ctx->gid))
3539 goto bad_value;
3540 break;
3541 case Opt_huge:
3542 ctx->huge = result.uint_32;
3543 if (ctx->huge != SHMEM_HUGE_NEVER &&
3544 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3545 has_transparent_hugepage()))
3546 goto unsupported_parameter;
3547 ctx->seen |= SHMEM_SEEN_HUGE;
3548 break;
3549 case Opt_mpol:
3550 if (IS_ENABLED(CONFIG_NUMA)) {
3551 mpol_put(ctx->mpol);
3552 ctx->mpol = NULL;
3553 if (mpol_parse_str(param->string, &ctx->mpol))
3554 goto bad_value;
3555 break;
3556 }
3557 goto unsupported_parameter;
3558 case Opt_inode32:
3559 ctx->full_inums = false;
3560 ctx->seen |= SHMEM_SEEN_INUMS;
3561 break;
3562 case Opt_inode64:
3563 if (sizeof(ino_t) < 8) {
3564 return invalfc(fc,
3565 "Cannot use inode64 with <64bit inums in kernel\n");
3566 }
3567 ctx->full_inums = true;
3568 ctx->seen |= SHMEM_SEEN_INUMS;
3569 break;
3570 }
3571 return 0;
3572
3573 unsupported_parameter:
3574 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3575 bad_value:
3576 return invalfc(fc, "Bad value for '%s'", param->key);
3577 }
3578
3579 static int shmem_parse_options(struct fs_context *fc, void *data)
3580 {
3581 char *options = data;
3582
3583 if (options) {
3584 int err = security_sb_eat_lsm_opts(options, &fc->security);
3585 if (err)
3586 return err;
3587 }
3588
3589 while (options != NULL) {
3590 char *this_char = options;
3591 for (;;) {
3592 /*
3593 * NUL-terminate this option: unfortunately,
3594 * mount options form a comma-separated list,
3595 * but mpol's nodelist may also contain commas.
3596 */
3597 options = strchr(options, ',');
3598 if (options == NULL)
3599 break;
3600 options++;
3601 if (!isdigit(*options)) {
3602 options[-1] = '\0';
3603 break;
3604 }
3605 }
3606 if (*this_char) {
3607 char *value = strchr(this_char, '=');
3608 size_t len = 0;
3609 int err;
3610
3611 if (value) {
3612 *value++ = '\0';
3613 len = strlen(value);
3614 }
3615 err = vfs_parse_fs_string(fc, this_char, value, len);
3616 if (err < 0)
3617 return err;
3618 }
3619 }
3620 return 0;
3621 }
3622
3623 /*
3624 * Reconfigure a shmem filesystem.
3625 *
3626 * Note that we disallow change from limited->unlimited blocks/inodes while any
3627 * are in use; but we must separately disallow unlimited->limited, because in
3628 * that case we have no record of how much is already in use.
3629 */
3630 static int shmem_reconfigure(struct fs_context *fc)
3631 {
3632 struct shmem_options *ctx = fc->fs_private;
3633 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3634 unsigned long inodes;
3635 struct mempolicy *mpol = NULL;
3636 const char *err;
3637
3638 raw_spin_lock(&sbinfo->stat_lock);
3639 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3640
3641 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3642 if (!sbinfo->max_blocks) {
3643 err = "Cannot retroactively limit size";
3644 goto out;
3645 }
3646 if (percpu_counter_compare(&sbinfo->used_blocks,
3647 ctx->blocks) > 0) {
3648 err = "Too small a size for current use";
3649 goto out;
3650 }
3651 }
3652 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3653 if (!sbinfo->max_inodes) {
3654 err = "Cannot retroactively limit inodes";
3655 goto out;
3656 }
3657 if (ctx->inodes < inodes) {
3658 err = "Too few inodes for current use";
3659 goto out;
3660 }
3661 }
3662
3663 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3664 sbinfo->next_ino > UINT_MAX) {
3665 err = "Current inum too high to switch to 32-bit inums";
3666 goto out;
3667 }
3668
3669 if (ctx->seen & SHMEM_SEEN_HUGE)
3670 sbinfo->huge = ctx->huge;
3671 if (ctx->seen & SHMEM_SEEN_INUMS)
3672 sbinfo->full_inums = ctx->full_inums;
3673 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3674 sbinfo->max_blocks = ctx->blocks;
3675 if (ctx->seen & SHMEM_SEEN_INODES) {
3676 sbinfo->max_inodes = ctx->inodes;
3677 sbinfo->free_inodes = ctx->inodes - inodes;
3678 }
3679
3680 /*
3681 * Preserve previous mempolicy unless mpol remount option was specified.
3682 */
3683 if (ctx->mpol) {
3684 mpol = sbinfo->mpol;
3685 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3686 ctx->mpol = NULL;
3687 }
3688 raw_spin_unlock(&sbinfo->stat_lock);
3689 mpol_put(mpol);
3690 return 0;
3691 out:
3692 raw_spin_unlock(&sbinfo->stat_lock);
3693 return invalfc(fc, "%s", err);
3694 }
3695
3696 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3697 {
3698 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3699
3700 if (sbinfo->max_blocks != shmem_default_max_blocks())
3701 seq_printf(seq, ",size=%luk",
3702 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3703 if (sbinfo->max_inodes != shmem_default_max_inodes())
3704 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3705 if (sbinfo->mode != (0777 | S_ISVTX))
3706 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3707 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3708 seq_printf(seq, ",uid=%u",
3709 from_kuid_munged(&init_user_ns, sbinfo->uid));
3710 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3711 seq_printf(seq, ",gid=%u",
3712 from_kgid_munged(&init_user_ns, sbinfo->gid));
3713
3714 /*
3715 * Showing inode{64,32} might be useful even if it's the system default,
3716 * since then people don't have to resort to checking both here and
3717 * /proc/config.gz to confirm 64-bit inums were successfully applied
3718 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3719 *
3720 * We hide it when inode64 isn't the default and we are using 32-bit
3721 * inodes, since that probably just means the feature isn't even under
3722 * consideration.
3723 *
3724 * As such:
3725 *
3726 * +-----------------+-----------------+
3727 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3728 * +------------------+-----------------+-----------------+
3729 * | full_inums=true | show | show |
3730 * | full_inums=false | show | hide |
3731 * +------------------+-----------------+-----------------+
3732 *
3733 */
3734 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3735 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3737 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3738 if (sbinfo->huge)
3739 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3740 #endif
3741 shmem_show_mpol(seq, sbinfo->mpol);
3742 return 0;
3743 }
3744
3745 #endif /* CONFIG_TMPFS */
3746
3747 static void shmem_put_super(struct super_block *sb)
3748 {
3749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3750
3751 free_percpu(sbinfo->ino_batch);
3752 percpu_counter_destroy(&sbinfo->used_blocks);
3753 mpol_put(sbinfo->mpol);
3754 kfree(sbinfo);
3755 sb->s_fs_info = NULL;
3756 }
3757
3758 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3759 {
3760 struct shmem_options *ctx = fc->fs_private;
3761 struct inode *inode;
3762 struct shmem_sb_info *sbinfo;
3763
3764 /* Round up to L1_CACHE_BYTES to resist false sharing */
3765 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3766 L1_CACHE_BYTES), GFP_KERNEL);
3767 if (!sbinfo)
3768 return -ENOMEM;
3769
3770 sb->s_fs_info = sbinfo;
3771
3772 #ifdef CONFIG_TMPFS
3773 /*
3774 * Per default we only allow half of the physical ram per
3775 * tmpfs instance, limiting inodes to one per page of lowmem;
3776 * but the internal instance is left unlimited.
3777 */
3778 if (!(sb->s_flags & SB_KERNMOUNT)) {
3779 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3780 ctx->blocks = shmem_default_max_blocks();
3781 if (!(ctx->seen & SHMEM_SEEN_INODES))
3782 ctx->inodes = shmem_default_max_inodes();
3783 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3784 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3785 } else {
3786 sb->s_flags |= SB_NOUSER;
3787 }
3788 sb->s_export_op = &shmem_export_ops;
3789 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3790 #else
3791 sb->s_flags |= SB_NOUSER;
3792 #endif
3793 sbinfo->max_blocks = ctx->blocks;
3794 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3795 if (sb->s_flags & SB_KERNMOUNT) {
3796 sbinfo->ino_batch = alloc_percpu(ino_t);
3797 if (!sbinfo->ino_batch)
3798 goto failed;
3799 }
3800 sbinfo->uid = ctx->uid;
3801 sbinfo->gid = ctx->gid;
3802 sbinfo->full_inums = ctx->full_inums;
3803 sbinfo->mode = ctx->mode;
3804 sbinfo->huge = ctx->huge;
3805 sbinfo->mpol = ctx->mpol;
3806 ctx->mpol = NULL;
3807
3808 raw_spin_lock_init(&sbinfo->stat_lock);
3809 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3810 goto failed;
3811 spin_lock_init(&sbinfo->shrinklist_lock);
3812 INIT_LIST_HEAD(&sbinfo->shrinklist);
3813
3814 sb->s_maxbytes = MAX_LFS_FILESIZE;
3815 sb->s_blocksize = PAGE_SIZE;
3816 sb->s_blocksize_bits = PAGE_SHIFT;
3817 sb->s_magic = TMPFS_MAGIC;
3818 sb->s_op = &shmem_ops;
3819 sb->s_time_gran = 1;
3820 #ifdef CONFIG_TMPFS_XATTR
3821 sb->s_xattr = shmem_xattr_handlers;
3822 #endif
3823 #ifdef CONFIG_TMPFS_POSIX_ACL
3824 sb->s_flags |= SB_POSIXACL;
3825 #endif
3826 uuid_gen(&sb->s_uuid);
3827
3828 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
3829 VM_NORESERVE);
3830 if (!inode)
3831 goto failed;
3832 inode->i_uid = sbinfo->uid;
3833 inode->i_gid = sbinfo->gid;
3834 sb->s_root = d_make_root(inode);
3835 if (!sb->s_root)
3836 goto failed;
3837 return 0;
3838
3839 failed:
3840 shmem_put_super(sb);
3841 return -ENOMEM;
3842 }
3843
3844 static int shmem_get_tree(struct fs_context *fc)
3845 {
3846 return get_tree_nodev(fc, shmem_fill_super);
3847 }
3848
3849 static void shmem_free_fc(struct fs_context *fc)
3850 {
3851 struct shmem_options *ctx = fc->fs_private;
3852
3853 if (ctx) {
3854 mpol_put(ctx->mpol);
3855 kfree(ctx);
3856 }
3857 }
3858
3859 static const struct fs_context_operations shmem_fs_context_ops = {
3860 .free = shmem_free_fc,
3861 .get_tree = shmem_get_tree,
3862 #ifdef CONFIG_TMPFS
3863 .parse_monolithic = shmem_parse_options,
3864 .parse_param = shmem_parse_one,
3865 .reconfigure = shmem_reconfigure,
3866 #endif
3867 };
3868
3869 static struct kmem_cache *shmem_inode_cachep;
3870
3871 static struct inode *shmem_alloc_inode(struct super_block *sb)
3872 {
3873 struct shmem_inode_info *info;
3874 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3875 if (!info)
3876 return NULL;
3877 return &info->vfs_inode;
3878 }
3879
3880 static void shmem_free_in_core_inode(struct inode *inode)
3881 {
3882 if (S_ISLNK(inode->i_mode))
3883 kfree(inode->i_link);
3884 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3885 }
3886
3887 static void shmem_destroy_inode(struct inode *inode)
3888 {
3889 if (S_ISREG(inode->i_mode))
3890 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3891 }
3892
3893 static void shmem_init_inode(void *foo)
3894 {
3895 struct shmem_inode_info *info = foo;
3896 inode_init_once(&info->vfs_inode);
3897 }
3898
3899 static void shmem_init_inodecache(void)
3900 {
3901 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3902 sizeof(struct shmem_inode_info),
3903 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3904 }
3905
3906 static void shmem_destroy_inodecache(void)
3907 {
3908 kmem_cache_destroy(shmem_inode_cachep);
3909 }
3910
3911 /* Keep the page in page cache instead of truncating it */
3912 static int shmem_error_remove_page(struct address_space *mapping,
3913 struct page *page)
3914 {
3915 return 0;
3916 }
3917
3918 const struct address_space_operations shmem_aops = {
3919 .writepage = shmem_writepage,
3920 .dirty_folio = noop_dirty_folio,
3921 #ifdef CONFIG_TMPFS
3922 .write_begin = shmem_write_begin,
3923 .write_end = shmem_write_end,
3924 #endif
3925 #ifdef CONFIG_MIGRATION
3926 .migrate_folio = migrate_folio,
3927 #endif
3928 .error_remove_page = shmem_error_remove_page,
3929 };
3930 EXPORT_SYMBOL(shmem_aops);
3931
3932 static const struct file_operations shmem_file_operations = {
3933 .mmap = shmem_mmap,
3934 .open = generic_file_open,
3935 .get_unmapped_area = shmem_get_unmapped_area,
3936 #ifdef CONFIG_TMPFS
3937 .llseek = shmem_file_llseek,
3938 .read_iter = shmem_file_read_iter,
3939 .write_iter = generic_file_write_iter,
3940 .fsync = noop_fsync,
3941 .splice_read = generic_file_splice_read,
3942 .splice_write = iter_file_splice_write,
3943 .fallocate = shmem_fallocate,
3944 #endif
3945 };
3946
3947 static const struct inode_operations shmem_inode_operations = {
3948 .getattr = shmem_getattr,
3949 .setattr = shmem_setattr,
3950 #ifdef CONFIG_TMPFS_XATTR
3951 .listxattr = shmem_listxattr,
3952 .set_acl = simple_set_acl,
3953 .fileattr_get = shmem_fileattr_get,
3954 .fileattr_set = shmem_fileattr_set,
3955 #endif
3956 };
3957
3958 static const struct inode_operations shmem_dir_inode_operations = {
3959 #ifdef CONFIG_TMPFS
3960 .getattr = shmem_getattr,
3961 .create = shmem_create,
3962 .lookup = simple_lookup,
3963 .link = shmem_link,
3964 .unlink = shmem_unlink,
3965 .symlink = shmem_symlink,
3966 .mkdir = shmem_mkdir,
3967 .rmdir = shmem_rmdir,
3968 .mknod = shmem_mknod,
3969 .rename = shmem_rename2,
3970 .tmpfile = shmem_tmpfile,
3971 #endif
3972 #ifdef CONFIG_TMPFS_XATTR
3973 .listxattr = shmem_listxattr,
3974 .fileattr_get = shmem_fileattr_get,
3975 .fileattr_set = shmem_fileattr_set,
3976 #endif
3977 #ifdef CONFIG_TMPFS_POSIX_ACL
3978 .setattr = shmem_setattr,
3979 .set_acl = simple_set_acl,
3980 #endif
3981 };
3982
3983 static const struct inode_operations shmem_special_inode_operations = {
3984 .getattr = shmem_getattr,
3985 #ifdef CONFIG_TMPFS_XATTR
3986 .listxattr = shmem_listxattr,
3987 #endif
3988 #ifdef CONFIG_TMPFS_POSIX_ACL
3989 .setattr = shmem_setattr,
3990 .set_acl = simple_set_acl,
3991 #endif
3992 };
3993
3994 static const struct super_operations shmem_ops = {
3995 .alloc_inode = shmem_alloc_inode,
3996 .free_inode = shmem_free_in_core_inode,
3997 .destroy_inode = shmem_destroy_inode,
3998 #ifdef CONFIG_TMPFS
3999 .statfs = shmem_statfs,
4000 .show_options = shmem_show_options,
4001 #endif
4002 .evict_inode = shmem_evict_inode,
4003 .drop_inode = generic_delete_inode,
4004 .put_super = shmem_put_super,
4005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4006 .nr_cached_objects = shmem_unused_huge_count,
4007 .free_cached_objects = shmem_unused_huge_scan,
4008 #endif
4009 };
4010
4011 static const struct vm_operations_struct shmem_vm_ops = {
4012 .fault = shmem_fault,
4013 .map_pages = filemap_map_pages,
4014 #ifdef CONFIG_NUMA
4015 .set_policy = shmem_set_policy,
4016 .get_policy = shmem_get_policy,
4017 #endif
4018 };
4019
4020 static const struct vm_operations_struct shmem_anon_vm_ops = {
4021 .fault = shmem_fault,
4022 .map_pages = filemap_map_pages,
4023 #ifdef CONFIG_NUMA
4024 .set_policy = shmem_set_policy,
4025 .get_policy = shmem_get_policy,
4026 #endif
4027 };
4028
4029 int shmem_init_fs_context(struct fs_context *fc)
4030 {
4031 struct shmem_options *ctx;
4032
4033 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4034 if (!ctx)
4035 return -ENOMEM;
4036
4037 ctx->mode = 0777 | S_ISVTX;
4038 ctx->uid = current_fsuid();
4039 ctx->gid = current_fsgid();
4040
4041 fc->fs_private = ctx;
4042 fc->ops = &shmem_fs_context_ops;
4043 return 0;
4044 }
4045
4046 static struct file_system_type shmem_fs_type = {
4047 .owner = THIS_MODULE,
4048 .name = "tmpfs",
4049 .init_fs_context = shmem_init_fs_context,
4050 #ifdef CONFIG_TMPFS
4051 .parameters = shmem_fs_parameters,
4052 #endif
4053 .kill_sb = kill_litter_super,
4054 #ifdef CONFIG_SHMEM
4055 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4056 #else
4057 .fs_flags = FS_USERNS_MOUNT,
4058 #endif
4059 };
4060
4061 void __init shmem_init(void)
4062 {
4063 int error;
4064
4065 shmem_init_inodecache();
4066
4067 error = register_filesystem(&shmem_fs_type);
4068 if (error) {
4069 pr_err("Could not register tmpfs\n");
4070 goto out2;
4071 }
4072
4073 shm_mnt = kern_mount(&shmem_fs_type);
4074 if (IS_ERR(shm_mnt)) {
4075 error = PTR_ERR(shm_mnt);
4076 pr_err("Could not kern_mount tmpfs\n");
4077 goto out1;
4078 }
4079
4080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4081 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4082 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4083 else
4084 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4085 #endif
4086 return;
4087
4088 out1:
4089 unregister_filesystem(&shmem_fs_type);
4090 out2:
4091 shmem_destroy_inodecache();
4092 shm_mnt = ERR_PTR(error);
4093 }
4094
4095 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4096 static ssize_t shmem_enabled_show(struct kobject *kobj,
4097 struct kobj_attribute *attr, char *buf)
4098 {
4099 static const int values[] = {
4100 SHMEM_HUGE_ALWAYS,
4101 SHMEM_HUGE_WITHIN_SIZE,
4102 SHMEM_HUGE_ADVISE,
4103 SHMEM_HUGE_NEVER,
4104 SHMEM_HUGE_DENY,
4105 SHMEM_HUGE_FORCE,
4106 };
4107 int len = 0;
4108 int i;
4109
4110 for (i = 0; i < ARRAY_SIZE(values); i++) {
4111 len += sysfs_emit_at(buf, len,
4112 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4113 i ? " " : "",
4114 shmem_format_huge(values[i]));
4115 }
4116
4117 len += sysfs_emit_at(buf, len, "\n");
4118
4119 return len;
4120 }
4121
4122 static ssize_t shmem_enabled_store(struct kobject *kobj,
4123 struct kobj_attribute *attr, const char *buf, size_t count)
4124 {
4125 char tmp[16];
4126 int huge;
4127
4128 if (count + 1 > sizeof(tmp))
4129 return -EINVAL;
4130 memcpy(tmp, buf, count);
4131 tmp[count] = '\0';
4132 if (count && tmp[count - 1] == '\n')
4133 tmp[count - 1] = '\0';
4134
4135 huge = shmem_parse_huge(tmp);
4136 if (huge == -EINVAL)
4137 return -EINVAL;
4138 if (!has_transparent_hugepage() &&
4139 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4140 return -EINVAL;
4141
4142 shmem_huge = huge;
4143 if (shmem_huge > SHMEM_HUGE_DENY)
4144 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4145 return count;
4146 }
4147
4148 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4150
4151 #else /* !CONFIG_SHMEM */
4152
4153 /*
4154 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4155 *
4156 * This is intended for small system where the benefits of the full
4157 * shmem code (swap-backed and resource-limited) are outweighed by
4158 * their complexity. On systems without swap this code should be
4159 * effectively equivalent, but much lighter weight.
4160 */
4161
4162 static struct file_system_type shmem_fs_type = {
4163 .name = "tmpfs",
4164 .init_fs_context = ramfs_init_fs_context,
4165 .parameters = ramfs_fs_parameters,
4166 .kill_sb = kill_litter_super,
4167 .fs_flags = FS_USERNS_MOUNT,
4168 };
4169
4170 void __init shmem_init(void)
4171 {
4172 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4173
4174 shm_mnt = kern_mount(&shmem_fs_type);
4175 BUG_ON(IS_ERR(shm_mnt));
4176 }
4177
4178 int shmem_unuse(unsigned int type)
4179 {
4180 return 0;
4181 }
4182
4183 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4184 {
4185 return 0;
4186 }
4187
4188 void shmem_unlock_mapping(struct address_space *mapping)
4189 {
4190 }
4191
4192 #ifdef CONFIG_MMU
4193 unsigned long shmem_get_unmapped_area(struct file *file,
4194 unsigned long addr, unsigned long len,
4195 unsigned long pgoff, unsigned long flags)
4196 {
4197 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4198 }
4199 #endif
4200
4201 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4202 {
4203 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4204 }
4205 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4206
4207 #define shmem_vm_ops generic_file_vm_ops
4208 #define shmem_anon_vm_ops generic_file_vm_ops
4209 #define shmem_file_operations ramfs_file_operations
4210 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4211 #define shmem_acct_size(flags, size) 0
4212 #define shmem_unacct_size(flags, size) do {} while (0)
4213
4214 #endif /* CONFIG_SHMEM */
4215
4216 /* common code */
4217
4218 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4219 unsigned long flags, unsigned int i_flags)
4220 {
4221 struct inode *inode;
4222 struct file *res;
4223
4224 if (IS_ERR(mnt))
4225 return ERR_CAST(mnt);
4226
4227 if (size < 0 || size > MAX_LFS_FILESIZE)
4228 return ERR_PTR(-EINVAL);
4229
4230 if (shmem_acct_size(flags, size))
4231 return ERR_PTR(-ENOMEM);
4232
4233 if (is_idmapped_mnt(mnt))
4234 return ERR_PTR(-EINVAL);
4235
4236 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4237 S_IFREG | S_IRWXUGO, 0, flags);
4238 if (unlikely(!inode)) {
4239 shmem_unacct_size(flags, size);
4240 return ERR_PTR(-ENOSPC);
4241 }
4242 inode->i_flags |= i_flags;
4243 inode->i_size = size;
4244 clear_nlink(inode); /* It is unlinked */
4245 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4246 if (!IS_ERR(res))
4247 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4248 &shmem_file_operations);
4249 if (IS_ERR(res))
4250 iput(inode);
4251 return res;
4252 }
4253
4254 /**
4255 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4256 * kernel internal. There will be NO LSM permission checks against the
4257 * underlying inode. So users of this interface must do LSM checks at a
4258 * higher layer. The users are the big_key and shm implementations. LSM
4259 * checks are provided at the key or shm level rather than the inode.
4260 * @name: name for dentry (to be seen in /proc/<pid>/maps
4261 * @size: size to be set for the file
4262 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4263 */
4264 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4265 {
4266 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4267 }
4268
4269 /**
4270 * shmem_file_setup - get an unlinked file living in tmpfs
4271 * @name: name for dentry (to be seen in /proc/<pid>/maps
4272 * @size: size to be set for the file
4273 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4274 */
4275 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4276 {
4277 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4278 }
4279 EXPORT_SYMBOL_GPL(shmem_file_setup);
4280
4281 /**
4282 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4283 * @mnt: the tmpfs mount where the file will be created
4284 * @name: name for dentry (to be seen in /proc/<pid>/maps
4285 * @size: size to be set for the file
4286 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4287 */
4288 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4289 loff_t size, unsigned long flags)
4290 {
4291 return __shmem_file_setup(mnt, name, size, flags, 0);
4292 }
4293 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4294
4295 /**
4296 * shmem_zero_setup - setup a shared anonymous mapping
4297 * @vma: the vma to be mmapped is prepared by do_mmap
4298 */
4299 int shmem_zero_setup(struct vm_area_struct *vma)
4300 {
4301 struct file *file;
4302 loff_t size = vma->vm_end - vma->vm_start;
4303
4304 /*
4305 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4306 * between XFS directory reading and selinux: since this file is only
4307 * accessible to the user through its mapping, use S_PRIVATE flag to
4308 * bypass file security, in the same way as shmem_kernel_file_setup().
4309 */
4310 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4311 if (IS_ERR(file))
4312 return PTR_ERR(file);
4313
4314 if (vma->vm_file)
4315 fput(vma->vm_file);
4316 vma->vm_file = file;
4317 vma->vm_ops = &shmem_anon_vm_ops;
4318
4319 return 0;
4320 }
4321
4322 /**
4323 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4324 * @mapping: the folio's address_space
4325 * @index: the folio index
4326 * @gfp: the page allocator flags to use if allocating
4327 *
4328 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4329 * with any new page allocations done using the specified allocation flags.
4330 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4331 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4332 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4333 *
4334 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4335 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4336 */
4337 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4338 pgoff_t index, gfp_t gfp)
4339 {
4340 #ifdef CONFIG_SHMEM
4341 struct inode *inode = mapping->host;
4342 struct folio *folio;
4343 int error;
4344
4345 BUG_ON(!shmem_mapping(mapping));
4346 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4347 gfp, NULL, NULL, NULL);
4348 if (error)
4349 return ERR_PTR(error);
4350
4351 folio_unlock(folio);
4352 return folio;
4353 #else
4354 /*
4355 * The tiny !SHMEM case uses ramfs without swap
4356 */
4357 return mapping_read_folio_gfp(mapping, index, gfp);
4358 #endif
4359 }
4360 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4361
4362 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4363 pgoff_t index, gfp_t gfp)
4364 {
4365 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4366 struct page *page;
4367
4368 if (IS_ERR(folio))
4369 return &folio->page;
4370
4371 page = folio_file_page(folio, index);
4372 if (PageHWPoison(page)) {
4373 folio_put(folio);
4374 return ERR_PTR(-EIO);
4375 }
4376
4377 return page;
4378 }
4379 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);