]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/shmem.c
mm/khugepaged: fix crashes due to misaccounted holes
[people/arne_f/kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
130 {
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 return sb->s_fs_info;
138 }
139
140 /*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160 {
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169 }
170
171 /*
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264 }
265
266 /**
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
288 }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
295
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
298
299 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
300 inode->i_mapping->nrpages += pages;
301
302 spin_lock_irqsave(&info->lock, flags);
303 info->alloced += pages;
304 inode->i_blocks += pages * BLOCKS_PER_PAGE;
305 shmem_recalc_inode(inode);
306 spin_unlock_irqrestore(&info->lock, flags);
307
308 return true;
309 }
310
311 void shmem_uncharge(struct inode *inode, long pages)
312 {
313 struct shmem_inode_info *info = SHMEM_I(inode);
314 unsigned long flags;
315
316 /* nrpages adjustment done by __delete_from_page_cache() or caller */
317
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
323
324 shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332 {
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
336
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL, NULL);
346 return 0;
347 }
348
349 /*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358 {
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
385
386 /*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
502
503 page = find_get_page(inode->i_mapping,
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page)) {
510 put_page(page);
511 goto drop;
512 }
513
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
533
534 split++;
535 drop:
536 list_del_init(&info->shrinklist);
537 removed++;
538 leave:
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552 {
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563 {
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574 return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581 static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
583 pgoff_t index, void *expected)
584 {
585 int error, nr = hpage_nr_pages(page);
586
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591 VM_BUG_ON(expected && PageTransHuge(page));
592
593 page_ref_add(page, nr);
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
619 error = radix_tree_insert(&mapping->page_tree, index, page);
620 } else {
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
623 }
624
625 if (!error) {
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
635 page_ref_sub(page, nr);
636 }
637 return error;
638 }
639
640 /*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645 struct address_space *mapping = page->mapping;
646 int error;
647
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
656 spin_unlock_irq(&mapping->tree_lock);
657 put_page(page);
658 BUG_ON(error);
659 }
660
661 /*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664 static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666 {
667 void *old;
668
669 spin_lock_irq(&mapping->tree_lock);
670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671 spin_unlock_irq(&mapping->tree_lock);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
676 }
677
678 /*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
687 {
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
691 unsigned long swapped = 0;
692
693 rcu_read_lock();
694
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
710 slot = radix_tree_iter_resume(slot, &iter);
711 cond_resched_rcu();
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718 }
719
720 /*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
763 pagevec_init(&pvec, 0);
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
777 pagevec_remove_exceptionals(&pvec);
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
782 }
783
784 /*
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787 */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
790 {
791 struct address_space *mapping = inode->i_mapping;
792 struct shmem_inode_info *info = SHMEM_I(inode);
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797 struct pagevec pvec;
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
800 pgoff_t index;
801 int i;
802
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
805
806 pagevec_init(&pvec, 0);
807 index = start;
808 while (index < end) {
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
812 if (!pvec.nr)
813 break;
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
817 index = indices[i];
818 if (index >= end)
819 break;
820
821 if (radix_tree_exceptional_entry(page)) {
822 if (unfalloc)
823 continue;
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
826 continue;
827 }
828
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831 if (!trylock_page(page))
832 continue;
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
853 if (!unfalloc || !PageUptodate(page)) {
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
856 VM_BUG_ON_PAGE(PageWriteback(page), page);
857 truncate_inode_page(mapping, page);
858 }
859 }
860 unlock_page(page);
861 }
862 pagevec_remove_exceptionals(&pvec);
863 pagevec_release(&pvec);
864 cond_resched();
865 index++;
866 }
867
868 if (partial_start) {
869 struct page *page = NULL;
870 shmem_getpage(inode, start - 1, &page, SGP_READ);
871 if (page) {
872 unsigned int top = PAGE_SIZE;
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
885 shmem_getpage(inode, end, &page, SGP_READ);
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (start >= end)
894 return;
895
896 index = start;
897 while (index < end) {
898 cond_resched();
899
900 pvec.nr = find_get_entries(mapping, index,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902 pvec.pages, indices);
903 if (!pvec.nr) {
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
906 break;
907 /* But if truncating, restart to make sure all gone */
908 index = start;
909 continue;
910 }
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
914 index = indices[i];
915 if (index >= end)
916 break;
917
918 if (radix_tree_exceptional_entry(page)) {
919 if (unfalloc)
920 continue;
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
927 continue;
928 }
929
930 lock_page(page);
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
958 if (!unfalloc || !PageUptodate(page)) {
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
961 VM_BUG_ON_PAGE(PageWriteback(page), page);
962 truncate_inode_page(mapping, page);
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
968 }
969 }
970 unlock_page(page);
971 }
972 pagevec_remove_exceptionals(&pvec);
973 pagevec_release(&pvec);
974 index++;
975 }
976
977 spin_lock_irq(&info->lock);
978 info->swapped -= nr_swaps_freed;
979 shmem_recalc_inode(inode);
980 spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985 shmem_undo_range(inode, lstart, lend, false);
986 inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
992 {
993 struct inode *inode = path->dentry->d_inode;
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997 spin_lock_irq(&info->lock);
998 shmem_recalc_inode(inode);
999 spin_unlock_irq(&info->lock);
1000 }
1001 generic_fillattr(inode, stat);
1002 return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1011
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1015
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1019
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
1063 }
1064 }
1065
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1089 if (!list_empty(&info->swaplist)) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1093 }
1094 }
1095
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 shmem_free_inode(inode->i_sb);
1099 clear_inode(inode);
1100 }
1101
1102 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1103 {
1104 struct radix_tree_iter iter;
1105 void **slot;
1106 unsigned long found = -1;
1107 unsigned int checked = 0;
1108
1109 rcu_read_lock();
1110 radix_tree_for_each_slot(slot, root, &iter, 0) {
1111 if (*slot == item) {
1112 found = iter.index;
1113 break;
1114 }
1115 checked++;
1116 if ((checked % 4096) != 0)
1117 continue;
1118 slot = radix_tree_iter_resume(slot, &iter);
1119 cond_resched_rcu();
1120 }
1121
1122 rcu_read_unlock();
1123 return found;
1124 }
1125
1126 /*
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1128 */
1129 static int shmem_unuse_inode(struct shmem_inode_info *info,
1130 swp_entry_t swap, struct page **pagep)
1131 {
1132 struct address_space *mapping = info->vfs_inode.i_mapping;
1133 void *radswap;
1134 pgoff_t index;
1135 gfp_t gfp;
1136 int error = 0;
1137
1138 radswap = swp_to_radix_entry(swap);
1139 index = find_swap_entry(&mapping->page_tree, radswap);
1140 if (index == -1)
1141 return -EAGAIN; /* tell shmem_unuse we found nothing */
1142
1143 /*
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1148 */
1149 if (shmem_swaplist.next != &info->swaplist)
1150 list_move_tail(&shmem_swaplist, &info->swaplist);
1151
1152 gfp = mapping_gfp_mask(mapping);
1153 if (shmem_should_replace_page(*pagep, gfp)) {
1154 mutex_unlock(&shmem_swaplist_mutex);
1155 error = shmem_replace_page(pagep, gfp, info, index);
1156 mutex_lock(&shmem_swaplist_mutex);
1157 /*
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1165 *
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1174 */
1175 if (!page_swapcount(*pagep))
1176 error = -ENOENT;
1177 }
1178
1179 /*
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1183 */
1184 if (!error)
1185 error = shmem_add_to_page_cache(*pagep, mapping, index,
1186 radswap);
1187 if (error != -ENOMEM) {
1188 /*
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1191 */
1192 delete_from_swap_cache(*pagep);
1193 set_page_dirty(*pagep);
1194 if (!error) {
1195 spin_lock_irq(&info->lock);
1196 info->swapped--;
1197 spin_unlock_irq(&info->lock);
1198 swap_free(swap);
1199 }
1200 }
1201 return error;
1202 }
1203
1204 /*
1205 * Search through swapped inodes to find and replace swap by page.
1206 */
1207 int shmem_unuse(swp_entry_t swap, struct page *page)
1208 {
1209 struct list_head *this, *next;
1210 struct shmem_inode_info *info;
1211 struct mem_cgroup *memcg;
1212 int error = 0;
1213
1214 /*
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1217 */
1218 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1219 goto out;
1220
1221 /*
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1225 */
1226 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1227 false);
1228 if (error)
1229 goto out;
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1231 error = -EAGAIN;
1232
1233 mutex_lock(&shmem_swaplist_mutex);
1234 list_for_each_safe(this, next, &shmem_swaplist) {
1235 info = list_entry(this, struct shmem_inode_info, swaplist);
1236 if (info->swapped)
1237 error = shmem_unuse_inode(info, swap, &page);
1238 else
1239 list_del_init(&info->swaplist);
1240 cond_resched();
1241 if (error != -EAGAIN)
1242 break;
1243 /* found nothing in this: move on to search the next */
1244 }
1245 mutex_unlock(&shmem_swaplist_mutex);
1246
1247 if (error) {
1248 if (error != -ENOMEM)
1249 error = 0;
1250 mem_cgroup_cancel_charge(page, memcg, false);
1251 } else
1252 mem_cgroup_commit_charge(page, memcg, true, false);
1253 out:
1254 unlock_page(page);
1255 put_page(page);
1256 return error;
1257 }
1258
1259 /*
1260 * Move the page from the page cache to the swap cache.
1261 */
1262 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1263 {
1264 struct shmem_inode_info *info;
1265 struct address_space *mapping;
1266 struct inode *inode;
1267 swp_entry_t swap;
1268 pgoff_t index;
1269
1270 VM_BUG_ON_PAGE(PageCompound(page), page);
1271 BUG_ON(!PageLocked(page));
1272 mapping = page->mapping;
1273 index = page->index;
1274 inode = mapping->host;
1275 info = SHMEM_I(inode);
1276 if (info->flags & VM_LOCKED)
1277 goto redirty;
1278 if (!total_swap_pages)
1279 goto redirty;
1280
1281 /*
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1286 * threads or sync.
1287 */
1288 if (!wbc->for_reclaim) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 goto redirty;
1291 }
1292
1293 /*
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1297 *
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1303 */
1304 if (!PageUptodate(page)) {
1305 if (inode->i_private) {
1306 struct shmem_falloc *shmem_falloc;
1307 spin_lock(&inode->i_lock);
1308 shmem_falloc = inode->i_private;
1309 if (shmem_falloc &&
1310 !shmem_falloc->waitq &&
1311 index >= shmem_falloc->start &&
1312 index < shmem_falloc->next)
1313 shmem_falloc->nr_unswapped++;
1314 else
1315 shmem_falloc = NULL;
1316 spin_unlock(&inode->i_lock);
1317 if (shmem_falloc)
1318 goto redirty;
1319 }
1320 clear_highpage(page);
1321 flush_dcache_page(page);
1322 SetPageUptodate(page);
1323 }
1324
1325 swap = get_swap_page(page);
1326 if (!swap.val)
1327 goto redirty;
1328
1329 if (mem_cgroup_try_charge_swap(page, swap))
1330 goto free_swap;
1331
1332 /*
1333 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1334 * if it's not already there. Do it now before the page is
1335 * moved to swap cache, when its pagelock no longer protects
1336 * the inode from eviction. But don't unlock the mutex until
1337 * we've incremented swapped, because shmem_unuse_inode() will
1338 * prune a !swapped inode from the swaplist under this mutex.
1339 */
1340 mutex_lock(&shmem_swaplist_mutex);
1341 if (list_empty(&info->swaplist))
1342 list_add_tail(&info->swaplist, &shmem_swaplist);
1343
1344 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1345 spin_lock_irq(&info->lock);
1346 shmem_recalc_inode(inode);
1347 info->swapped++;
1348 spin_unlock_irq(&info->lock);
1349
1350 swap_shmem_alloc(swap);
1351 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1352
1353 mutex_unlock(&shmem_swaplist_mutex);
1354 BUG_ON(page_mapped(page));
1355 swap_writepage(page, wbc);
1356 return 0;
1357 }
1358
1359 mutex_unlock(&shmem_swaplist_mutex);
1360 free_swap:
1361 put_swap_page(page, swap);
1362 redirty:
1363 set_page_dirty(page);
1364 if (wbc->for_reclaim)
1365 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1366 unlock_page(page);
1367 return 0;
1368 }
1369
1370 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1371 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1372 {
1373 char buffer[64];
1374
1375 if (!mpol || mpol->mode == MPOL_DEFAULT)
1376 return; /* show nothing */
1377
1378 mpol_to_str(buffer, sizeof(buffer), mpol);
1379
1380 seq_printf(seq, ",mpol=%s", buffer);
1381 }
1382
1383 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1384 {
1385 struct mempolicy *mpol = NULL;
1386 if (sbinfo->mpol) {
1387 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1388 mpol = sbinfo->mpol;
1389 mpol_get(mpol);
1390 spin_unlock(&sbinfo->stat_lock);
1391 }
1392 return mpol;
1393 }
1394 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1395 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1396 {
1397 }
1398 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1399 {
1400 return NULL;
1401 }
1402 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1403 #ifndef CONFIG_NUMA
1404 #define vm_policy vm_private_data
1405 #endif
1406
1407 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1408 struct shmem_inode_info *info, pgoff_t index)
1409 {
1410 /* Create a pseudo vma that just contains the policy */
1411 vma->vm_start = 0;
1412 /* Bias interleave by inode number to distribute better across nodes */
1413 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1414 vma->vm_ops = NULL;
1415 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1416 }
1417
1418 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1419 {
1420 /* Drop reference taken by mpol_shared_policy_lookup() */
1421 mpol_cond_put(vma->vm_policy);
1422 }
1423
1424 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1425 struct shmem_inode_info *info, pgoff_t index)
1426 {
1427 struct vm_area_struct pvma;
1428 struct page *page;
1429
1430 shmem_pseudo_vma_init(&pvma, info, index);
1431 page = swapin_readahead(swap, gfp, &pvma, 0);
1432 shmem_pseudo_vma_destroy(&pvma);
1433
1434 return page;
1435 }
1436
1437 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1439 {
1440 struct vm_area_struct pvma;
1441 struct inode *inode = &info->vfs_inode;
1442 struct address_space *mapping = inode->i_mapping;
1443 pgoff_t idx, hindex;
1444 void __rcu **results;
1445 struct page *page;
1446
1447 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1448 return NULL;
1449
1450 hindex = round_down(index, HPAGE_PMD_NR);
1451 rcu_read_lock();
1452 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1453 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1454 rcu_read_unlock();
1455 return NULL;
1456 }
1457 rcu_read_unlock();
1458
1459 shmem_pseudo_vma_init(&pvma, info, hindex);
1460 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1461 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1462 shmem_pseudo_vma_destroy(&pvma);
1463 if (page)
1464 prep_transhuge_page(page);
1465 return page;
1466 }
1467
1468 static struct page *shmem_alloc_page(gfp_t gfp,
1469 struct shmem_inode_info *info, pgoff_t index)
1470 {
1471 struct vm_area_struct pvma;
1472 struct page *page;
1473
1474 shmem_pseudo_vma_init(&pvma, info, index);
1475 page = alloc_page_vma(gfp, &pvma, 0);
1476 shmem_pseudo_vma_destroy(&pvma);
1477
1478 return page;
1479 }
1480
1481 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1482 struct inode *inode,
1483 pgoff_t index, bool huge)
1484 {
1485 struct shmem_inode_info *info = SHMEM_I(inode);
1486 struct page *page;
1487 int nr;
1488 int err = -ENOSPC;
1489
1490 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1491 huge = false;
1492 nr = huge ? HPAGE_PMD_NR : 1;
1493
1494 if (!shmem_inode_acct_block(inode, nr))
1495 goto failed;
1496
1497 if (huge)
1498 page = shmem_alloc_hugepage(gfp, info, index);
1499 else
1500 page = shmem_alloc_page(gfp, info, index);
1501 if (page) {
1502 __SetPageLocked(page);
1503 __SetPageSwapBacked(page);
1504 return page;
1505 }
1506
1507 err = -ENOMEM;
1508 shmem_inode_unacct_blocks(inode, nr);
1509 failed:
1510 return ERR_PTR(err);
1511 }
1512
1513 /*
1514 * When a page is moved from swapcache to shmem filecache (either by the
1515 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1516 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1517 * ignorance of the mapping it belongs to. If that mapping has special
1518 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1519 * we may need to copy to a suitable page before moving to filecache.
1520 *
1521 * In a future release, this may well be extended to respect cpuset and
1522 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1523 * but for now it is a simple matter of zone.
1524 */
1525 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1526 {
1527 return page_zonenum(page) > gfp_zone(gfp);
1528 }
1529
1530 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1531 struct shmem_inode_info *info, pgoff_t index)
1532 {
1533 struct page *oldpage, *newpage;
1534 struct address_space *swap_mapping;
1535 pgoff_t swap_index;
1536 int error;
1537
1538 oldpage = *pagep;
1539 swap_index = page_private(oldpage);
1540 swap_mapping = page_mapping(oldpage);
1541
1542 /*
1543 * We have arrived here because our zones are constrained, so don't
1544 * limit chance of success by further cpuset and node constraints.
1545 */
1546 gfp &= ~GFP_CONSTRAINT_MASK;
1547 newpage = shmem_alloc_page(gfp, info, index);
1548 if (!newpage)
1549 return -ENOMEM;
1550
1551 get_page(newpage);
1552 copy_highpage(newpage, oldpage);
1553 flush_dcache_page(newpage);
1554
1555 __SetPageLocked(newpage);
1556 __SetPageSwapBacked(newpage);
1557 SetPageUptodate(newpage);
1558 set_page_private(newpage, swap_index);
1559 SetPageSwapCache(newpage);
1560
1561 /*
1562 * Our caller will very soon move newpage out of swapcache, but it's
1563 * a nice clean interface for us to replace oldpage by newpage there.
1564 */
1565 spin_lock_irq(&swap_mapping->tree_lock);
1566 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1567 newpage);
1568 if (!error) {
1569 __inc_node_page_state(newpage, NR_FILE_PAGES);
1570 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1571 }
1572 spin_unlock_irq(&swap_mapping->tree_lock);
1573
1574 if (unlikely(error)) {
1575 /*
1576 * Is this possible? I think not, now that our callers check
1577 * both PageSwapCache and page_private after getting page lock;
1578 * but be defensive. Reverse old to newpage for clear and free.
1579 */
1580 oldpage = newpage;
1581 } else {
1582 mem_cgroup_migrate(oldpage, newpage);
1583 lru_cache_add_anon(newpage);
1584 *pagep = newpage;
1585 }
1586
1587 ClearPageSwapCache(oldpage);
1588 set_page_private(oldpage, 0);
1589
1590 unlock_page(oldpage);
1591 put_page(oldpage);
1592 put_page(oldpage);
1593 return error;
1594 }
1595
1596 /*
1597 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1598 *
1599 * If we allocate a new one we do not mark it dirty. That's up to the
1600 * vm. If we swap it in we mark it dirty since we also free the swap
1601 * entry since a page cannot live in both the swap and page cache.
1602 *
1603 * fault_mm and fault_type are only supplied by shmem_fault:
1604 * otherwise they are NULL.
1605 */
1606 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1607 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1608 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1609 {
1610 struct address_space *mapping = inode->i_mapping;
1611 struct shmem_inode_info *info = SHMEM_I(inode);
1612 struct shmem_sb_info *sbinfo;
1613 struct mm_struct *charge_mm;
1614 struct mem_cgroup *memcg;
1615 struct page *page;
1616 swp_entry_t swap;
1617 enum sgp_type sgp_huge = sgp;
1618 pgoff_t hindex = index;
1619 int error;
1620 int once = 0;
1621 int alloced = 0;
1622
1623 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1624 return -EFBIG;
1625 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1626 sgp = SGP_CACHE;
1627 repeat:
1628 swap.val = 0;
1629 page = find_lock_entry(mapping, index);
1630 if (radix_tree_exceptional_entry(page)) {
1631 swap = radix_to_swp_entry(page);
1632 page = NULL;
1633 }
1634
1635 if (sgp <= SGP_CACHE &&
1636 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1637 error = -EINVAL;
1638 goto unlock;
1639 }
1640
1641 if (page && sgp == SGP_WRITE)
1642 mark_page_accessed(page);
1643
1644 /* fallocated page? */
1645 if (page && !PageUptodate(page)) {
1646 if (sgp != SGP_READ)
1647 goto clear;
1648 unlock_page(page);
1649 put_page(page);
1650 page = NULL;
1651 }
1652 if (page || (sgp == SGP_READ && !swap.val)) {
1653 *pagep = page;
1654 return 0;
1655 }
1656
1657 /*
1658 * Fast cache lookup did not find it:
1659 * bring it back from swap or allocate.
1660 */
1661 sbinfo = SHMEM_SB(inode->i_sb);
1662 charge_mm = vma ? vma->vm_mm : current->mm;
1663
1664 if (swap.val) {
1665 /* Look it up and read it in.. */
1666 page = lookup_swap_cache(swap, NULL, 0);
1667 if (!page) {
1668 /* Or update major stats only when swapin succeeds?? */
1669 if (fault_type) {
1670 *fault_type |= VM_FAULT_MAJOR;
1671 count_vm_event(PGMAJFAULT);
1672 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1673 }
1674 /* Here we actually start the io */
1675 page = shmem_swapin(swap, gfp, info, index);
1676 if (!page) {
1677 error = -ENOMEM;
1678 goto failed;
1679 }
1680 }
1681
1682 /* We have to do this with page locked to prevent races */
1683 lock_page(page);
1684 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1685 !shmem_confirm_swap(mapping, index, swap)) {
1686 error = -EEXIST; /* try again */
1687 goto unlock;
1688 }
1689 if (!PageUptodate(page)) {
1690 error = -EIO;
1691 goto failed;
1692 }
1693 wait_on_page_writeback(page);
1694
1695 if (shmem_should_replace_page(page, gfp)) {
1696 error = shmem_replace_page(&page, gfp, info, index);
1697 if (error)
1698 goto failed;
1699 }
1700
1701 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1702 false);
1703 if (!error) {
1704 error = shmem_add_to_page_cache(page, mapping, index,
1705 swp_to_radix_entry(swap));
1706 /*
1707 * We already confirmed swap under page lock, and make
1708 * no memory allocation here, so usually no possibility
1709 * of error; but free_swap_and_cache() only trylocks a
1710 * page, so it is just possible that the entry has been
1711 * truncated or holepunched since swap was confirmed.
1712 * shmem_undo_range() will have done some of the
1713 * unaccounting, now delete_from_swap_cache() will do
1714 * the rest.
1715 * Reset swap.val? No, leave it so "failed" goes back to
1716 * "repeat": reading a hole and writing should succeed.
1717 */
1718 if (error) {
1719 mem_cgroup_cancel_charge(page, memcg, false);
1720 delete_from_swap_cache(page);
1721 }
1722 }
1723 if (error)
1724 goto failed;
1725
1726 mem_cgroup_commit_charge(page, memcg, true, false);
1727
1728 spin_lock_irq(&info->lock);
1729 info->swapped--;
1730 shmem_recalc_inode(inode);
1731 spin_unlock_irq(&info->lock);
1732
1733 if (sgp == SGP_WRITE)
1734 mark_page_accessed(page);
1735
1736 delete_from_swap_cache(page);
1737 set_page_dirty(page);
1738 swap_free(swap);
1739
1740 } else {
1741 if (vma && userfaultfd_missing(vma)) {
1742 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1743 return 0;
1744 }
1745
1746 /* shmem_symlink() */
1747 if (mapping->a_ops != &shmem_aops)
1748 goto alloc_nohuge;
1749 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1750 goto alloc_nohuge;
1751 if (shmem_huge == SHMEM_HUGE_FORCE)
1752 goto alloc_huge;
1753 switch (sbinfo->huge) {
1754 loff_t i_size;
1755 pgoff_t off;
1756 case SHMEM_HUGE_NEVER:
1757 goto alloc_nohuge;
1758 case SHMEM_HUGE_WITHIN_SIZE:
1759 off = round_up(index, HPAGE_PMD_NR);
1760 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1761 if (i_size >= HPAGE_PMD_SIZE &&
1762 i_size >> PAGE_SHIFT >= off)
1763 goto alloc_huge;
1764 /* fallthrough */
1765 case SHMEM_HUGE_ADVISE:
1766 if (sgp_huge == SGP_HUGE)
1767 goto alloc_huge;
1768 /* TODO: implement fadvise() hints */
1769 goto alloc_nohuge;
1770 }
1771
1772 alloc_huge:
1773 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1774 if (IS_ERR(page)) {
1775 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1776 index, false);
1777 }
1778 if (IS_ERR(page)) {
1779 int retry = 5;
1780 error = PTR_ERR(page);
1781 page = NULL;
1782 if (error != -ENOSPC)
1783 goto failed;
1784 /*
1785 * Try to reclaim some spece by splitting a huge page
1786 * beyond i_size on the filesystem.
1787 */
1788 while (retry--) {
1789 int ret;
1790 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1791 if (ret == SHRINK_STOP)
1792 break;
1793 if (ret)
1794 goto alloc_nohuge;
1795 }
1796 goto failed;
1797 }
1798
1799 if (PageTransHuge(page))
1800 hindex = round_down(index, HPAGE_PMD_NR);
1801 else
1802 hindex = index;
1803
1804 if (sgp == SGP_WRITE)
1805 __SetPageReferenced(page);
1806
1807 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1808 PageTransHuge(page));
1809 if (error)
1810 goto unacct;
1811 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1812 compound_order(page));
1813 if (!error) {
1814 error = shmem_add_to_page_cache(page, mapping, hindex,
1815 NULL);
1816 radix_tree_preload_end();
1817 }
1818 if (error) {
1819 mem_cgroup_cancel_charge(page, memcg,
1820 PageTransHuge(page));
1821 goto unacct;
1822 }
1823 mem_cgroup_commit_charge(page, memcg, false,
1824 PageTransHuge(page));
1825 lru_cache_add_anon(page);
1826
1827 spin_lock_irq(&info->lock);
1828 info->alloced += 1 << compound_order(page);
1829 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1830 shmem_recalc_inode(inode);
1831 spin_unlock_irq(&info->lock);
1832 alloced = true;
1833
1834 if (PageTransHuge(page) &&
1835 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1836 hindex + HPAGE_PMD_NR - 1) {
1837 /*
1838 * Part of the huge page is beyond i_size: subject
1839 * to shrink under memory pressure.
1840 */
1841 spin_lock(&sbinfo->shrinklist_lock);
1842 /*
1843 * _careful to defend against unlocked access to
1844 * ->shrink_list in shmem_unused_huge_shrink()
1845 */
1846 if (list_empty_careful(&info->shrinklist)) {
1847 list_add_tail(&info->shrinklist,
1848 &sbinfo->shrinklist);
1849 sbinfo->shrinklist_len++;
1850 }
1851 spin_unlock(&sbinfo->shrinklist_lock);
1852 }
1853
1854 /*
1855 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1856 */
1857 if (sgp == SGP_FALLOC)
1858 sgp = SGP_WRITE;
1859 clear:
1860 /*
1861 * Let SGP_WRITE caller clear ends if write does not fill page;
1862 * but SGP_FALLOC on a page fallocated earlier must initialize
1863 * it now, lest undo on failure cancel our earlier guarantee.
1864 */
1865 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1866 struct page *head = compound_head(page);
1867 int i;
1868
1869 for (i = 0; i < (1 << compound_order(head)); i++) {
1870 clear_highpage(head + i);
1871 flush_dcache_page(head + i);
1872 }
1873 SetPageUptodate(head);
1874 }
1875 }
1876
1877 /* Perhaps the file has been truncated since we checked */
1878 if (sgp <= SGP_CACHE &&
1879 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1880 if (alloced) {
1881 ClearPageDirty(page);
1882 delete_from_page_cache(page);
1883 spin_lock_irq(&info->lock);
1884 shmem_recalc_inode(inode);
1885 spin_unlock_irq(&info->lock);
1886 }
1887 error = -EINVAL;
1888 goto unlock;
1889 }
1890 *pagep = page + index - hindex;
1891 return 0;
1892
1893 /*
1894 * Error recovery.
1895 */
1896 unacct:
1897 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1898
1899 if (PageTransHuge(page)) {
1900 unlock_page(page);
1901 put_page(page);
1902 goto alloc_nohuge;
1903 }
1904 failed:
1905 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1906 error = -EEXIST;
1907 unlock:
1908 if (page) {
1909 unlock_page(page);
1910 put_page(page);
1911 }
1912 if (error == -ENOSPC && !once++) {
1913 spin_lock_irq(&info->lock);
1914 shmem_recalc_inode(inode);
1915 spin_unlock_irq(&info->lock);
1916 goto repeat;
1917 }
1918 if (error == -EEXIST) /* from above or from radix_tree_insert */
1919 goto repeat;
1920 return error;
1921 }
1922
1923 /*
1924 * This is like autoremove_wake_function, but it removes the wait queue
1925 * entry unconditionally - even if something else had already woken the
1926 * target.
1927 */
1928 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1929 {
1930 int ret = default_wake_function(wait, mode, sync, key);
1931 list_del_init(&wait->entry);
1932 return ret;
1933 }
1934
1935 static int shmem_fault(struct vm_fault *vmf)
1936 {
1937 struct vm_area_struct *vma = vmf->vma;
1938 struct inode *inode = file_inode(vma->vm_file);
1939 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1940 enum sgp_type sgp;
1941 int error;
1942 int ret = VM_FAULT_LOCKED;
1943
1944 /*
1945 * Trinity finds that probing a hole which tmpfs is punching can
1946 * prevent the hole-punch from ever completing: which in turn
1947 * locks writers out with its hold on i_mutex. So refrain from
1948 * faulting pages into the hole while it's being punched. Although
1949 * shmem_undo_range() does remove the additions, it may be unable to
1950 * keep up, as each new page needs its own unmap_mapping_range() call,
1951 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1952 *
1953 * It does not matter if we sometimes reach this check just before the
1954 * hole-punch begins, so that one fault then races with the punch:
1955 * we just need to make racing faults a rare case.
1956 *
1957 * The implementation below would be much simpler if we just used a
1958 * standard mutex or completion: but we cannot take i_mutex in fault,
1959 * and bloating every shmem inode for this unlikely case would be sad.
1960 */
1961 if (unlikely(inode->i_private)) {
1962 struct shmem_falloc *shmem_falloc;
1963
1964 spin_lock(&inode->i_lock);
1965 shmem_falloc = inode->i_private;
1966 if (shmem_falloc &&
1967 shmem_falloc->waitq &&
1968 vmf->pgoff >= shmem_falloc->start &&
1969 vmf->pgoff < shmem_falloc->next) {
1970 wait_queue_head_t *shmem_falloc_waitq;
1971 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1972
1973 ret = VM_FAULT_NOPAGE;
1974 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1975 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1976 /* It's polite to up mmap_sem if we can */
1977 up_read(&vma->vm_mm->mmap_sem);
1978 ret = VM_FAULT_RETRY;
1979 }
1980
1981 shmem_falloc_waitq = shmem_falloc->waitq;
1982 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1983 TASK_UNINTERRUPTIBLE);
1984 spin_unlock(&inode->i_lock);
1985 schedule();
1986
1987 /*
1988 * shmem_falloc_waitq points into the shmem_fallocate()
1989 * stack of the hole-punching task: shmem_falloc_waitq
1990 * is usually invalid by the time we reach here, but
1991 * finish_wait() does not dereference it in that case;
1992 * though i_lock needed lest racing with wake_up_all().
1993 */
1994 spin_lock(&inode->i_lock);
1995 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1996 spin_unlock(&inode->i_lock);
1997 return ret;
1998 }
1999 spin_unlock(&inode->i_lock);
2000 }
2001
2002 sgp = SGP_CACHE;
2003
2004 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2005 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2006 sgp = SGP_NOHUGE;
2007 else if (vma->vm_flags & VM_HUGEPAGE)
2008 sgp = SGP_HUGE;
2009
2010 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2011 gfp, vma, vmf, &ret);
2012 if (error)
2013 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2014 return ret;
2015 }
2016
2017 unsigned long shmem_get_unmapped_area(struct file *file,
2018 unsigned long uaddr, unsigned long len,
2019 unsigned long pgoff, unsigned long flags)
2020 {
2021 unsigned long (*get_area)(struct file *,
2022 unsigned long, unsigned long, unsigned long, unsigned long);
2023 unsigned long addr;
2024 unsigned long offset;
2025 unsigned long inflated_len;
2026 unsigned long inflated_addr;
2027 unsigned long inflated_offset;
2028
2029 if (len > TASK_SIZE)
2030 return -ENOMEM;
2031
2032 get_area = current->mm->get_unmapped_area;
2033 addr = get_area(file, uaddr, len, pgoff, flags);
2034
2035 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2036 return addr;
2037 if (IS_ERR_VALUE(addr))
2038 return addr;
2039 if (addr & ~PAGE_MASK)
2040 return addr;
2041 if (addr > TASK_SIZE - len)
2042 return addr;
2043
2044 if (shmem_huge == SHMEM_HUGE_DENY)
2045 return addr;
2046 if (len < HPAGE_PMD_SIZE)
2047 return addr;
2048 if (flags & MAP_FIXED)
2049 return addr;
2050 /*
2051 * Our priority is to support MAP_SHARED mapped hugely;
2052 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2053 * But if caller specified an address hint, respect that as before.
2054 */
2055 if (uaddr)
2056 return addr;
2057
2058 if (shmem_huge != SHMEM_HUGE_FORCE) {
2059 struct super_block *sb;
2060
2061 if (file) {
2062 VM_BUG_ON(file->f_op != &shmem_file_operations);
2063 sb = file_inode(file)->i_sb;
2064 } else {
2065 /*
2066 * Called directly from mm/mmap.c, or drivers/char/mem.c
2067 * for "/dev/zero", to create a shared anonymous object.
2068 */
2069 if (IS_ERR(shm_mnt))
2070 return addr;
2071 sb = shm_mnt->mnt_sb;
2072 }
2073 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2074 return addr;
2075 }
2076
2077 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2078 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2079 return addr;
2080 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2081 return addr;
2082
2083 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2084 if (inflated_len > TASK_SIZE)
2085 return addr;
2086 if (inflated_len < len)
2087 return addr;
2088
2089 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2090 if (IS_ERR_VALUE(inflated_addr))
2091 return addr;
2092 if (inflated_addr & ~PAGE_MASK)
2093 return addr;
2094
2095 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2096 inflated_addr += offset - inflated_offset;
2097 if (inflated_offset > offset)
2098 inflated_addr += HPAGE_PMD_SIZE;
2099
2100 if (inflated_addr > TASK_SIZE - len)
2101 return addr;
2102 return inflated_addr;
2103 }
2104
2105 #ifdef CONFIG_NUMA
2106 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2107 {
2108 struct inode *inode = file_inode(vma->vm_file);
2109 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2110 }
2111
2112 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2113 unsigned long addr)
2114 {
2115 struct inode *inode = file_inode(vma->vm_file);
2116 pgoff_t index;
2117
2118 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2119 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2120 }
2121 #endif
2122
2123 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2124 {
2125 struct inode *inode = file_inode(file);
2126 struct shmem_inode_info *info = SHMEM_I(inode);
2127 int retval = -ENOMEM;
2128
2129 spin_lock_irq(&info->lock);
2130 if (lock && !(info->flags & VM_LOCKED)) {
2131 if (!user_shm_lock(inode->i_size, user))
2132 goto out_nomem;
2133 info->flags |= VM_LOCKED;
2134 mapping_set_unevictable(file->f_mapping);
2135 }
2136 if (!lock && (info->flags & VM_LOCKED) && user) {
2137 user_shm_unlock(inode->i_size, user);
2138 info->flags &= ~VM_LOCKED;
2139 mapping_clear_unevictable(file->f_mapping);
2140 }
2141 retval = 0;
2142
2143 out_nomem:
2144 spin_unlock_irq(&info->lock);
2145 return retval;
2146 }
2147
2148 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2149 {
2150 file_accessed(file);
2151 vma->vm_ops = &shmem_vm_ops;
2152 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2153 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2154 (vma->vm_end & HPAGE_PMD_MASK)) {
2155 khugepaged_enter(vma, vma->vm_flags);
2156 }
2157 return 0;
2158 }
2159
2160 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2161 umode_t mode, dev_t dev, unsigned long flags)
2162 {
2163 struct inode *inode;
2164 struct shmem_inode_info *info;
2165 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2166
2167 if (shmem_reserve_inode(sb))
2168 return NULL;
2169
2170 inode = new_inode(sb);
2171 if (inode) {
2172 inode->i_ino = get_next_ino();
2173 inode_init_owner(inode, dir, mode);
2174 inode->i_blocks = 0;
2175 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2176 inode->i_generation = get_seconds();
2177 info = SHMEM_I(inode);
2178 memset(info, 0, (char *)inode - (char *)info);
2179 spin_lock_init(&info->lock);
2180 info->seals = F_SEAL_SEAL;
2181 info->flags = flags & VM_NORESERVE;
2182 INIT_LIST_HEAD(&info->shrinklist);
2183 INIT_LIST_HEAD(&info->swaplist);
2184 simple_xattrs_init(&info->xattrs);
2185 cache_no_acl(inode);
2186
2187 switch (mode & S_IFMT) {
2188 default:
2189 inode->i_op = &shmem_special_inode_operations;
2190 init_special_inode(inode, mode, dev);
2191 break;
2192 case S_IFREG:
2193 inode->i_mapping->a_ops = &shmem_aops;
2194 inode->i_op = &shmem_inode_operations;
2195 inode->i_fop = &shmem_file_operations;
2196 mpol_shared_policy_init(&info->policy,
2197 shmem_get_sbmpol(sbinfo));
2198 break;
2199 case S_IFDIR:
2200 inc_nlink(inode);
2201 /* Some things misbehave if size == 0 on a directory */
2202 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2203 inode->i_op = &shmem_dir_inode_operations;
2204 inode->i_fop = &simple_dir_operations;
2205 break;
2206 case S_IFLNK:
2207 /*
2208 * Must not load anything in the rbtree,
2209 * mpol_free_shared_policy will not be called.
2210 */
2211 mpol_shared_policy_init(&info->policy, NULL);
2212 break;
2213 }
2214
2215 lockdep_annotate_inode_mutex_key(inode);
2216 } else
2217 shmem_free_inode(sb);
2218 return inode;
2219 }
2220
2221 bool shmem_mapping(struct address_space *mapping)
2222 {
2223 return mapping->a_ops == &shmem_aops;
2224 }
2225
2226 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2227 pmd_t *dst_pmd,
2228 struct vm_area_struct *dst_vma,
2229 unsigned long dst_addr,
2230 unsigned long src_addr,
2231 bool zeropage,
2232 struct page **pagep)
2233 {
2234 struct inode *inode = file_inode(dst_vma->vm_file);
2235 struct shmem_inode_info *info = SHMEM_I(inode);
2236 struct address_space *mapping = inode->i_mapping;
2237 gfp_t gfp = mapping_gfp_mask(mapping);
2238 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2239 struct mem_cgroup *memcg;
2240 spinlock_t *ptl;
2241 void *page_kaddr;
2242 struct page *page;
2243 pte_t _dst_pte, *dst_pte;
2244 int ret;
2245
2246 ret = -ENOMEM;
2247 if (!shmem_inode_acct_block(inode, 1))
2248 goto out;
2249
2250 if (!*pagep) {
2251 page = shmem_alloc_page(gfp, info, pgoff);
2252 if (!page)
2253 goto out_unacct_blocks;
2254
2255 if (!zeropage) { /* mcopy_atomic */
2256 page_kaddr = kmap_atomic(page);
2257 ret = copy_from_user(page_kaddr,
2258 (const void __user *)src_addr,
2259 PAGE_SIZE);
2260 kunmap_atomic(page_kaddr);
2261
2262 /* fallback to copy_from_user outside mmap_sem */
2263 if (unlikely(ret)) {
2264 *pagep = page;
2265 shmem_inode_unacct_blocks(inode, 1);
2266 /* don't free the page */
2267 return -EFAULT;
2268 }
2269 } else { /* mfill_zeropage_atomic */
2270 clear_highpage(page);
2271 }
2272 } else {
2273 page = *pagep;
2274 *pagep = NULL;
2275 }
2276
2277 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2278 __SetPageLocked(page);
2279 __SetPageSwapBacked(page);
2280 __SetPageUptodate(page);
2281
2282 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2283 if (ret)
2284 goto out_release;
2285
2286 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2287 if (!ret) {
2288 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2289 radix_tree_preload_end();
2290 }
2291 if (ret)
2292 goto out_release_uncharge;
2293
2294 mem_cgroup_commit_charge(page, memcg, false, false);
2295
2296 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2297 if (dst_vma->vm_flags & VM_WRITE)
2298 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2299
2300 ret = -EEXIST;
2301 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2302 if (!pte_none(*dst_pte))
2303 goto out_release_uncharge_unlock;
2304
2305 lru_cache_add_anon(page);
2306
2307 spin_lock(&info->lock);
2308 info->alloced++;
2309 inode->i_blocks += BLOCKS_PER_PAGE;
2310 shmem_recalc_inode(inode);
2311 spin_unlock(&info->lock);
2312
2313 inc_mm_counter(dst_mm, mm_counter_file(page));
2314 page_add_file_rmap(page, false);
2315 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2316
2317 /* No need to invalidate - it was non-present before */
2318 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2319 unlock_page(page);
2320 pte_unmap_unlock(dst_pte, ptl);
2321 ret = 0;
2322 out:
2323 return ret;
2324 out_release_uncharge_unlock:
2325 pte_unmap_unlock(dst_pte, ptl);
2326 out_release_uncharge:
2327 mem_cgroup_cancel_charge(page, memcg, false);
2328 out_release:
2329 unlock_page(page);
2330 put_page(page);
2331 out_unacct_blocks:
2332 shmem_inode_unacct_blocks(inode, 1);
2333 goto out;
2334 }
2335
2336 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2337 pmd_t *dst_pmd,
2338 struct vm_area_struct *dst_vma,
2339 unsigned long dst_addr,
2340 unsigned long src_addr,
2341 struct page **pagep)
2342 {
2343 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2344 dst_addr, src_addr, false, pagep);
2345 }
2346
2347 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2348 pmd_t *dst_pmd,
2349 struct vm_area_struct *dst_vma,
2350 unsigned long dst_addr)
2351 {
2352 struct page *page = NULL;
2353
2354 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2355 dst_addr, 0, true, &page);
2356 }
2357
2358 #ifdef CONFIG_TMPFS
2359 static const struct inode_operations shmem_symlink_inode_operations;
2360 static const struct inode_operations shmem_short_symlink_operations;
2361
2362 #ifdef CONFIG_TMPFS_XATTR
2363 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2364 #else
2365 #define shmem_initxattrs NULL
2366 #endif
2367
2368 static int
2369 shmem_write_begin(struct file *file, struct address_space *mapping,
2370 loff_t pos, unsigned len, unsigned flags,
2371 struct page **pagep, void **fsdata)
2372 {
2373 struct inode *inode = mapping->host;
2374 struct shmem_inode_info *info = SHMEM_I(inode);
2375 pgoff_t index = pos >> PAGE_SHIFT;
2376
2377 /* i_mutex is held by caller */
2378 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2379 if (info->seals & F_SEAL_WRITE)
2380 return -EPERM;
2381 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2382 return -EPERM;
2383 }
2384
2385 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2386 }
2387
2388 static int
2389 shmem_write_end(struct file *file, struct address_space *mapping,
2390 loff_t pos, unsigned len, unsigned copied,
2391 struct page *page, void *fsdata)
2392 {
2393 struct inode *inode = mapping->host;
2394
2395 if (pos + copied > inode->i_size)
2396 i_size_write(inode, pos + copied);
2397
2398 if (!PageUptodate(page)) {
2399 struct page *head = compound_head(page);
2400 if (PageTransCompound(page)) {
2401 int i;
2402
2403 for (i = 0; i < HPAGE_PMD_NR; i++) {
2404 if (head + i == page)
2405 continue;
2406 clear_highpage(head + i);
2407 flush_dcache_page(head + i);
2408 }
2409 }
2410 if (copied < PAGE_SIZE) {
2411 unsigned from = pos & (PAGE_SIZE - 1);
2412 zero_user_segments(page, 0, from,
2413 from + copied, PAGE_SIZE);
2414 }
2415 SetPageUptodate(head);
2416 }
2417 set_page_dirty(page);
2418 unlock_page(page);
2419 put_page(page);
2420
2421 return copied;
2422 }
2423
2424 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2425 {
2426 struct file *file = iocb->ki_filp;
2427 struct inode *inode = file_inode(file);
2428 struct address_space *mapping = inode->i_mapping;
2429 pgoff_t index;
2430 unsigned long offset;
2431 enum sgp_type sgp = SGP_READ;
2432 int error = 0;
2433 ssize_t retval = 0;
2434 loff_t *ppos = &iocb->ki_pos;
2435
2436 /*
2437 * Might this read be for a stacking filesystem? Then when reading
2438 * holes of a sparse file, we actually need to allocate those pages,
2439 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2440 */
2441 if (!iter_is_iovec(to))
2442 sgp = SGP_CACHE;
2443
2444 index = *ppos >> PAGE_SHIFT;
2445 offset = *ppos & ~PAGE_MASK;
2446
2447 for (;;) {
2448 struct page *page = NULL;
2449 pgoff_t end_index;
2450 unsigned long nr, ret;
2451 loff_t i_size = i_size_read(inode);
2452
2453 end_index = i_size >> PAGE_SHIFT;
2454 if (index > end_index)
2455 break;
2456 if (index == end_index) {
2457 nr = i_size & ~PAGE_MASK;
2458 if (nr <= offset)
2459 break;
2460 }
2461
2462 error = shmem_getpage(inode, index, &page, sgp);
2463 if (error) {
2464 if (error == -EINVAL)
2465 error = 0;
2466 break;
2467 }
2468 if (page) {
2469 if (sgp == SGP_CACHE)
2470 set_page_dirty(page);
2471 unlock_page(page);
2472 }
2473
2474 /*
2475 * We must evaluate after, since reads (unlike writes)
2476 * are called without i_mutex protection against truncate
2477 */
2478 nr = PAGE_SIZE;
2479 i_size = i_size_read(inode);
2480 end_index = i_size >> PAGE_SHIFT;
2481 if (index == end_index) {
2482 nr = i_size & ~PAGE_MASK;
2483 if (nr <= offset) {
2484 if (page)
2485 put_page(page);
2486 break;
2487 }
2488 }
2489 nr -= offset;
2490
2491 if (page) {
2492 /*
2493 * If users can be writing to this page using arbitrary
2494 * virtual addresses, take care about potential aliasing
2495 * before reading the page on the kernel side.
2496 */
2497 if (mapping_writably_mapped(mapping))
2498 flush_dcache_page(page);
2499 /*
2500 * Mark the page accessed if we read the beginning.
2501 */
2502 if (!offset)
2503 mark_page_accessed(page);
2504 } else {
2505 page = ZERO_PAGE(0);
2506 get_page(page);
2507 }
2508
2509 /*
2510 * Ok, we have the page, and it's up-to-date, so
2511 * now we can copy it to user space...
2512 */
2513 ret = copy_page_to_iter(page, offset, nr, to);
2514 retval += ret;
2515 offset += ret;
2516 index += offset >> PAGE_SHIFT;
2517 offset &= ~PAGE_MASK;
2518
2519 put_page(page);
2520 if (!iov_iter_count(to))
2521 break;
2522 if (ret < nr) {
2523 error = -EFAULT;
2524 break;
2525 }
2526 cond_resched();
2527 }
2528
2529 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2530 file_accessed(file);
2531 return retval ? retval : error;
2532 }
2533
2534 /*
2535 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2536 */
2537 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2538 pgoff_t index, pgoff_t end, int whence)
2539 {
2540 struct page *page;
2541 struct pagevec pvec;
2542 pgoff_t indices[PAGEVEC_SIZE];
2543 bool done = false;
2544 int i;
2545
2546 pagevec_init(&pvec, 0);
2547 pvec.nr = 1; /* start small: we may be there already */
2548 while (!done) {
2549 pvec.nr = find_get_entries(mapping, index,
2550 pvec.nr, pvec.pages, indices);
2551 if (!pvec.nr) {
2552 if (whence == SEEK_DATA)
2553 index = end;
2554 break;
2555 }
2556 for (i = 0; i < pvec.nr; i++, index++) {
2557 if (index < indices[i]) {
2558 if (whence == SEEK_HOLE) {
2559 done = true;
2560 break;
2561 }
2562 index = indices[i];
2563 }
2564 page = pvec.pages[i];
2565 if (page && !radix_tree_exceptional_entry(page)) {
2566 if (!PageUptodate(page))
2567 page = NULL;
2568 }
2569 if (index >= end ||
2570 (page && whence == SEEK_DATA) ||
2571 (!page && whence == SEEK_HOLE)) {
2572 done = true;
2573 break;
2574 }
2575 }
2576 pagevec_remove_exceptionals(&pvec);
2577 pagevec_release(&pvec);
2578 pvec.nr = PAGEVEC_SIZE;
2579 cond_resched();
2580 }
2581 return index;
2582 }
2583
2584 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2585 {
2586 struct address_space *mapping = file->f_mapping;
2587 struct inode *inode = mapping->host;
2588 pgoff_t start, end;
2589 loff_t new_offset;
2590
2591 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2592 return generic_file_llseek_size(file, offset, whence,
2593 MAX_LFS_FILESIZE, i_size_read(inode));
2594 inode_lock(inode);
2595 /* We're holding i_mutex so we can access i_size directly */
2596
2597 if (offset < 0 || offset >= inode->i_size)
2598 offset = -ENXIO;
2599 else {
2600 start = offset >> PAGE_SHIFT;
2601 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2602 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2603 new_offset <<= PAGE_SHIFT;
2604 if (new_offset > offset) {
2605 if (new_offset < inode->i_size)
2606 offset = new_offset;
2607 else if (whence == SEEK_DATA)
2608 offset = -ENXIO;
2609 else
2610 offset = inode->i_size;
2611 }
2612 }
2613
2614 if (offset >= 0)
2615 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2616 inode_unlock(inode);
2617 return offset;
2618 }
2619
2620 /*
2621 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2622 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2623 */
2624 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2625 #define LAST_SCAN 4 /* about 150ms max */
2626
2627 static void shmem_tag_pins(struct address_space *mapping)
2628 {
2629 struct radix_tree_iter iter;
2630 void **slot;
2631 pgoff_t start;
2632 struct page *page;
2633
2634 lru_add_drain();
2635 start = 0;
2636 rcu_read_lock();
2637
2638 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2639 page = radix_tree_deref_slot(slot);
2640 if (!page || radix_tree_exception(page)) {
2641 if (radix_tree_deref_retry(page)) {
2642 slot = radix_tree_iter_retry(&iter);
2643 continue;
2644 }
2645 } else if (page_count(page) - page_mapcount(page) > 1) {
2646 spin_lock_irq(&mapping->tree_lock);
2647 radix_tree_tag_set(&mapping->page_tree, iter.index,
2648 SHMEM_TAG_PINNED);
2649 spin_unlock_irq(&mapping->tree_lock);
2650 }
2651
2652 if (need_resched()) {
2653 slot = radix_tree_iter_resume(slot, &iter);
2654 cond_resched_rcu();
2655 }
2656 }
2657 rcu_read_unlock();
2658 }
2659
2660 /*
2661 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2662 * via get_user_pages(), drivers might have some pending I/O without any active
2663 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2664 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2665 * them to be dropped.
2666 * The caller must guarantee that no new user will acquire writable references
2667 * to those pages to avoid races.
2668 */
2669 static int shmem_wait_for_pins(struct address_space *mapping)
2670 {
2671 struct radix_tree_iter iter;
2672 void **slot;
2673 pgoff_t start;
2674 struct page *page;
2675 int error, scan;
2676
2677 shmem_tag_pins(mapping);
2678
2679 error = 0;
2680 for (scan = 0; scan <= LAST_SCAN; scan++) {
2681 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2682 break;
2683
2684 if (!scan)
2685 lru_add_drain_all();
2686 else if (schedule_timeout_killable((HZ << scan) / 200))
2687 scan = LAST_SCAN;
2688
2689 start = 0;
2690 rcu_read_lock();
2691 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2692 start, SHMEM_TAG_PINNED) {
2693
2694 page = radix_tree_deref_slot(slot);
2695 if (radix_tree_exception(page)) {
2696 if (radix_tree_deref_retry(page)) {
2697 slot = radix_tree_iter_retry(&iter);
2698 continue;
2699 }
2700
2701 page = NULL;
2702 }
2703
2704 if (page &&
2705 page_count(page) - page_mapcount(page) != 1) {
2706 if (scan < LAST_SCAN)
2707 goto continue_resched;
2708
2709 /*
2710 * On the last scan, we clean up all those tags
2711 * we inserted; but make a note that we still
2712 * found pages pinned.
2713 */
2714 error = -EBUSY;
2715 }
2716
2717 spin_lock_irq(&mapping->tree_lock);
2718 radix_tree_tag_clear(&mapping->page_tree,
2719 iter.index, SHMEM_TAG_PINNED);
2720 spin_unlock_irq(&mapping->tree_lock);
2721 continue_resched:
2722 if (need_resched()) {
2723 slot = radix_tree_iter_resume(slot, &iter);
2724 cond_resched_rcu();
2725 }
2726 }
2727 rcu_read_unlock();
2728 }
2729
2730 return error;
2731 }
2732
2733 #define F_ALL_SEALS (F_SEAL_SEAL | \
2734 F_SEAL_SHRINK | \
2735 F_SEAL_GROW | \
2736 F_SEAL_WRITE)
2737
2738 int shmem_add_seals(struct file *file, unsigned int seals)
2739 {
2740 struct inode *inode = file_inode(file);
2741 struct shmem_inode_info *info = SHMEM_I(inode);
2742 int error;
2743
2744 /*
2745 * SEALING
2746 * Sealing allows multiple parties to share a shmem-file but restrict
2747 * access to a specific subset of file operations. Seals can only be
2748 * added, but never removed. This way, mutually untrusted parties can
2749 * share common memory regions with a well-defined policy. A malicious
2750 * peer can thus never perform unwanted operations on a shared object.
2751 *
2752 * Seals are only supported on special shmem-files and always affect
2753 * the whole underlying inode. Once a seal is set, it may prevent some
2754 * kinds of access to the file. Currently, the following seals are
2755 * defined:
2756 * SEAL_SEAL: Prevent further seals from being set on this file
2757 * SEAL_SHRINK: Prevent the file from shrinking
2758 * SEAL_GROW: Prevent the file from growing
2759 * SEAL_WRITE: Prevent write access to the file
2760 *
2761 * As we don't require any trust relationship between two parties, we
2762 * must prevent seals from being removed. Therefore, sealing a file
2763 * only adds a given set of seals to the file, it never touches
2764 * existing seals. Furthermore, the "setting seals"-operation can be
2765 * sealed itself, which basically prevents any further seal from being
2766 * added.
2767 *
2768 * Semantics of sealing are only defined on volatile files. Only
2769 * anonymous shmem files support sealing. More importantly, seals are
2770 * never written to disk. Therefore, there's no plan to support it on
2771 * other file types.
2772 */
2773
2774 if (file->f_op != &shmem_file_operations)
2775 return -EINVAL;
2776 if (!(file->f_mode & FMODE_WRITE))
2777 return -EPERM;
2778 if (seals & ~(unsigned int)F_ALL_SEALS)
2779 return -EINVAL;
2780
2781 inode_lock(inode);
2782
2783 if (info->seals & F_SEAL_SEAL) {
2784 error = -EPERM;
2785 goto unlock;
2786 }
2787
2788 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2789 error = mapping_deny_writable(file->f_mapping);
2790 if (error)
2791 goto unlock;
2792
2793 error = shmem_wait_for_pins(file->f_mapping);
2794 if (error) {
2795 mapping_allow_writable(file->f_mapping);
2796 goto unlock;
2797 }
2798 }
2799
2800 info->seals |= seals;
2801 error = 0;
2802
2803 unlock:
2804 inode_unlock(inode);
2805 return error;
2806 }
2807 EXPORT_SYMBOL_GPL(shmem_add_seals);
2808
2809 int shmem_get_seals(struct file *file)
2810 {
2811 if (file->f_op != &shmem_file_operations)
2812 return -EINVAL;
2813
2814 return SHMEM_I(file_inode(file))->seals;
2815 }
2816 EXPORT_SYMBOL_GPL(shmem_get_seals);
2817
2818 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2819 {
2820 long error;
2821
2822 switch (cmd) {
2823 case F_ADD_SEALS:
2824 /* disallow upper 32bit */
2825 if (arg > UINT_MAX)
2826 return -EINVAL;
2827
2828 error = shmem_add_seals(file, arg);
2829 break;
2830 case F_GET_SEALS:
2831 error = shmem_get_seals(file);
2832 break;
2833 default:
2834 error = -EINVAL;
2835 break;
2836 }
2837
2838 return error;
2839 }
2840
2841 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2842 loff_t len)
2843 {
2844 struct inode *inode = file_inode(file);
2845 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2846 struct shmem_inode_info *info = SHMEM_I(inode);
2847 struct shmem_falloc shmem_falloc;
2848 pgoff_t start, index, end;
2849 int error;
2850
2851 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2852 return -EOPNOTSUPP;
2853
2854 inode_lock(inode);
2855
2856 if (mode & FALLOC_FL_PUNCH_HOLE) {
2857 struct address_space *mapping = file->f_mapping;
2858 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2859 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2860 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2861
2862 /* protected by i_mutex */
2863 if (info->seals & F_SEAL_WRITE) {
2864 error = -EPERM;
2865 goto out;
2866 }
2867
2868 shmem_falloc.waitq = &shmem_falloc_waitq;
2869 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2870 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2871 spin_lock(&inode->i_lock);
2872 inode->i_private = &shmem_falloc;
2873 spin_unlock(&inode->i_lock);
2874
2875 if ((u64)unmap_end > (u64)unmap_start)
2876 unmap_mapping_range(mapping, unmap_start,
2877 1 + unmap_end - unmap_start, 0);
2878 shmem_truncate_range(inode, offset, offset + len - 1);
2879 /* No need to unmap again: hole-punching leaves COWed pages */
2880
2881 spin_lock(&inode->i_lock);
2882 inode->i_private = NULL;
2883 wake_up_all(&shmem_falloc_waitq);
2884 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2885 spin_unlock(&inode->i_lock);
2886 error = 0;
2887 goto out;
2888 }
2889
2890 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2891 error = inode_newsize_ok(inode, offset + len);
2892 if (error)
2893 goto out;
2894
2895 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2896 error = -EPERM;
2897 goto out;
2898 }
2899
2900 start = offset >> PAGE_SHIFT;
2901 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2902 /* Try to avoid a swapstorm if len is impossible to satisfy */
2903 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2904 error = -ENOSPC;
2905 goto out;
2906 }
2907
2908 shmem_falloc.waitq = NULL;
2909 shmem_falloc.start = start;
2910 shmem_falloc.next = start;
2911 shmem_falloc.nr_falloced = 0;
2912 shmem_falloc.nr_unswapped = 0;
2913 spin_lock(&inode->i_lock);
2914 inode->i_private = &shmem_falloc;
2915 spin_unlock(&inode->i_lock);
2916
2917 for (index = start; index < end; index++) {
2918 struct page *page;
2919
2920 /*
2921 * Good, the fallocate(2) manpage permits EINTR: we may have
2922 * been interrupted because we are using up too much memory.
2923 */
2924 if (signal_pending(current))
2925 error = -EINTR;
2926 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2927 error = -ENOMEM;
2928 else
2929 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2930 if (error) {
2931 /* Remove the !PageUptodate pages we added */
2932 if (index > start) {
2933 shmem_undo_range(inode,
2934 (loff_t)start << PAGE_SHIFT,
2935 ((loff_t)index << PAGE_SHIFT) - 1, true);
2936 }
2937 goto undone;
2938 }
2939
2940 /*
2941 * Inform shmem_writepage() how far we have reached.
2942 * No need for lock or barrier: we have the page lock.
2943 */
2944 shmem_falloc.next++;
2945 if (!PageUptodate(page))
2946 shmem_falloc.nr_falloced++;
2947
2948 /*
2949 * If !PageUptodate, leave it that way so that freeable pages
2950 * can be recognized if we need to rollback on error later.
2951 * But set_page_dirty so that memory pressure will swap rather
2952 * than free the pages we are allocating (and SGP_CACHE pages
2953 * might still be clean: we now need to mark those dirty too).
2954 */
2955 set_page_dirty(page);
2956 unlock_page(page);
2957 put_page(page);
2958 cond_resched();
2959 }
2960
2961 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2962 i_size_write(inode, offset + len);
2963 inode->i_ctime = current_time(inode);
2964 undone:
2965 spin_lock(&inode->i_lock);
2966 inode->i_private = NULL;
2967 spin_unlock(&inode->i_lock);
2968 out:
2969 inode_unlock(inode);
2970 return error;
2971 }
2972
2973 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2974 {
2975 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2976
2977 buf->f_type = TMPFS_MAGIC;
2978 buf->f_bsize = PAGE_SIZE;
2979 buf->f_namelen = NAME_MAX;
2980 if (sbinfo->max_blocks) {
2981 buf->f_blocks = sbinfo->max_blocks;
2982 buf->f_bavail =
2983 buf->f_bfree = sbinfo->max_blocks -
2984 percpu_counter_sum(&sbinfo->used_blocks);
2985 }
2986 if (sbinfo->max_inodes) {
2987 buf->f_files = sbinfo->max_inodes;
2988 buf->f_ffree = sbinfo->free_inodes;
2989 }
2990 /* else leave those fields 0 like simple_statfs */
2991 return 0;
2992 }
2993
2994 /*
2995 * File creation. Allocate an inode, and we're done..
2996 */
2997 static int
2998 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2999 {
3000 struct inode *inode;
3001 int error = -ENOSPC;
3002
3003 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3004 if (inode) {
3005 error = simple_acl_create(dir, inode);
3006 if (error)
3007 goto out_iput;
3008 error = security_inode_init_security(inode, dir,
3009 &dentry->d_name,
3010 shmem_initxattrs, NULL);
3011 if (error && error != -EOPNOTSUPP)
3012 goto out_iput;
3013
3014 error = 0;
3015 dir->i_size += BOGO_DIRENT_SIZE;
3016 dir->i_ctime = dir->i_mtime = current_time(dir);
3017 d_instantiate(dentry, inode);
3018 dget(dentry); /* Extra count - pin the dentry in core */
3019 }
3020 return error;
3021 out_iput:
3022 iput(inode);
3023 return error;
3024 }
3025
3026 static int
3027 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3028 {
3029 struct inode *inode;
3030 int error = -ENOSPC;
3031
3032 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3033 if (inode) {
3034 error = security_inode_init_security(inode, dir,
3035 NULL,
3036 shmem_initxattrs, NULL);
3037 if (error && error != -EOPNOTSUPP)
3038 goto out_iput;
3039 error = simple_acl_create(dir, inode);
3040 if (error)
3041 goto out_iput;
3042 d_tmpfile(dentry, inode);
3043 }
3044 return error;
3045 out_iput:
3046 iput(inode);
3047 return error;
3048 }
3049
3050 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3051 {
3052 int error;
3053
3054 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3055 return error;
3056 inc_nlink(dir);
3057 return 0;
3058 }
3059
3060 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3061 bool excl)
3062 {
3063 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3064 }
3065
3066 /*
3067 * Link a file..
3068 */
3069 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3070 {
3071 struct inode *inode = d_inode(old_dentry);
3072 int ret;
3073
3074 /*
3075 * No ordinary (disk based) filesystem counts links as inodes;
3076 * but each new link needs a new dentry, pinning lowmem, and
3077 * tmpfs dentries cannot be pruned until they are unlinked.
3078 */
3079 ret = shmem_reserve_inode(inode->i_sb);
3080 if (ret)
3081 goto out;
3082
3083 dir->i_size += BOGO_DIRENT_SIZE;
3084 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3085 inc_nlink(inode);
3086 ihold(inode); /* New dentry reference */
3087 dget(dentry); /* Extra pinning count for the created dentry */
3088 d_instantiate(dentry, inode);
3089 out:
3090 return ret;
3091 }
3092
3093 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3094 {
3095 struct inode *inode = d_inode(dentry);
3096
3097 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3098 shmem_free_inode(inode->i_sb);
3099
3100 dir->i_size -= BOGO_DIRENT_SIZE;
3101 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3102 drop_nlink(inode);
3103 dput(dentry); /* Undo the count from "create" - this does all the work */
3104 return 0;
3105 }
3106
3107 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3108 {
3109 if (!simple_empty(dentry))
3110 return -ENOTEMPTY;
3111
3112 drop_nlink(d_inode(dentry));
3113 drop_nlink(dir);
3114 return shmem_unlink(dir, dentry);
3115 }
3116
3117 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3118 {
3119 bool old_is_dir = d_is_dir(old_dentry);
3120 bool new_is_dir = d_is_dir(new_dentry);
3121
3122 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3123 if (old_is_dir) {
3124 drop_nlink(old_dir);
3125 inc_nlink(new_dir);
3126 } else {
3127 drop_nlink(new_dir);
3128 inc_nlink(old_dir);
3129 }
3130 }
3131 old_dir->i_ctime = old_dir->i_mtime =
3132 new_dir->i_ctime = new_dir->i_mtime =
3133 d_inode(old_dentry)->i_ctime =
3134 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3135
3136 return 0;
3137 }
3138
3139 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3140 {
3141 struct dentry *whiteout;
3142 int error;
3143
3144 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3145 if (!whiteout)
3146 return -ENOMEM;
3147
3148 error = shmem_mknod(old_dir, whiteout,
3149 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3150 dput(whiteout);
3151 if (error)
3152 return error;
3153
3154 /*
3155 * Cheat and hash the whiteout while the old dentry is still in
3156 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3157 *
3158 * d_lookup() will consistently find one of them at this point,
3159 * not sure which one, but that isn't even important.
3160 */
3161 d_rehash(whiteout);
3162 return 0;
3163 }
3164
3165 /*
3166 * The VFS layer already does all the dentry stuff for rename,
3167 * we just have to decrement the usage count for the target if
3168 * it exists so that the VFS layer correctly free's it when it
3169 * gets overwritten.
3170 */
3171 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3172 {
3173 struct inode *inode = d_inode(old_dentry);
3174 int they_are_dirs = S_ISDIR(inode->i_mode);
3175
3176 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3177 return -EINVAL;
3178
3179 if (flags & RENAME_EXCHANGE)
3180 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3181
3182 if (!simple_empty(new_dentry))
3183 return -ENOTEMPTY;
3184
3185 if (flags & RENAME_WHITEOUT) {
3186 int error;
3187
3188 error = shmem_whiteout(old_dir, old_dentry);
3189 if (error)
3190 return error;
3191 }
3192
3193 if (d_really_is_positive(new_dentry)) {
3194 (void) shmem_unlink(new_dir, new_dentry);
3195 if (they_are_dirs) {
3196 drop_nlink(d_inode(new_dentry));
3197 drop_nlink(old_dir);
3198 }
3199 } else if (they_are_dirs) {
3200 drop_nlink(old_dir);
3201 inc_nlink(new_dir);
3202 }
3203
3204 old_dir->i_size -= BOGO_DIRENT_SIZE;
3205 new_dir->i_size += BOGO_DIRENT_SIZE;
3206 old_dir->i_ctime = old_dir->i_mtime =
3207 new_dir->i_ctime = new_dir->i_mtime =
3208 inode->i_ctime = current_time(old_dir);
3209 return 0;
3210 }
3211
3212 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3213 {
3214 int error;
3215 int len;
3216 struct inode *inode;
3217 struct page *page;
3218 struct shmem_inode_info *info;
3219
3220 len = strlen(symname) + 1;
3221 if (len > PAGE_SIZE)
3222 return -ENAMETOOLONG;
3223
3224 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3225 if (!inode)
3226 return -ENOSPC;
3227
3228 error = security_inode_init_security(inode, dir, &dentry->d_name,
3229 shmem_initxattrs, NULL);
3230 if (error) {
3231 if (error != -EOPNOTSUPP) {
3232 iput(inode);
3233 return error;
3234 }
3235 error = 0;
3236 }
3237
3238 info = SHMEM_I(inode);
3239 inode->i_size = len-1;
3240 if (len <= SHORT_SYMLINK_LEN) {
3241 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3242 if (!inode->i_link) {
3243 iput(inode);
3244 return -ENOMEM;
3245 }
3246 inode->i_op = &shmem_short_symlink_operations;
3247 } else {
3248 inode_nohighmem(inode);
3249 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3250 if (error) {
3251 iput(inode);
3252 return error;
3253 }
3254 inode->i_mapping->a_ops = &shmem_aops;
3255 inode->i_op = &shmem_symlink_inode_operations;
3256 memcpy(page_address(page), symname, len);
3257 SetPageUptodate(page);
3258 set_page_dirty(page);
3259 unlock_page(page);
3260 put_page(page);
3261 }
3262 dir->i_size += BOGO_DIRENT_SIZE;
3263 dir->i_ctime = dir->i_mtime = current_time(dir);
3264 d_instantiate(dentry, inode);
3265 dget(dentry);
3266 return 0;
3267 }
3268
3269 static void shmem_put_link(void *arg)
3270 {
3271 mark_page_accessed(arg);
3272 put_page(arg);
3273 }
3274
3275 static const char *shmem_get_link(struct dentry *dentry,
3276 struct inode *inode,
3277 struct delayed_call *done)
3278 {
3279 struct page *page = NULL;
3280 int error;
3281 if (!dentry) {
3282 page = find_get_page(inode->i_mapping, 0);
3283 if (!page)
3284 return ERR_PTR(-ECHILD);
3285 if (!PageUptodate(page)) {
3286 put_page(page);
3287 return ERR_PTR(-ECHILD);
3288 }
3289 } else {
3290 error = shmem_getpage(inode, 0, &page, SGP_READ);
3291 if (error)
3292 return ERR_PTR(error);
3293 unlock_page(page);
3294 }
3295 set_delayed_call(done, shmem_put_link, page);
3296 return page_address(page);
3297 }
3298
3299 #ifdef CONFIG_TMPFS_XATTR
3300 /*
3301 * Superblocks without xattr inode operations may get some security.* xattr
3302 * support from the LSM "for free". As soon as we have any other xattrs
3303 * like ACLs, we also need to implement the security.* handlers at
3304 * filesystem level, though.
3305 */
3306
3307 /*
3308 * Callback for security_inode_init_security() for acquiring xattrs.
3309 */
3310 static int shmem_initxattrs(struct inode *inode,
3311 const struct xattr *xattr_array,
3312 void *fs_info)
3313 {
3314 struct shmem_inode_info *info = SHMEM_I(inode);
3315 const struct xattr *xattr;
3316 struct simple_xattr *new_xattr;
3317 size_t len;
3318
3319 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3320 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3321 if (!new_xattr)
3322 return -ENOMEM;
3323
3324 len = strlen(xattr->name) + 1;
3325 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3326 GFP_KERNEL);
3327 if (!new_xattr->name) {
3328 kfree(new_xattr);
3329 return -ENOMEM;
3330 }
3331
3332 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3333 XATTR_SECURITY_PREFIX_LEN);
3334 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3335 xattr->name, len);
3336
3337 simple_xattr_list_add(&info->xattrs, new_xattr);
3338 }
3339
3340 return 0;
3341 }
3342
3343 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3344 struct dentry *unused, struct inode *inode,
3345 const char *name, void *buffer, size_t size)
3346 {
3347 struct shmem_inode_info *info = SHMEM_I(inode);
3348
3349 name = xattr_full_name(handler, name);
3350 return simple_xattr_get(&info->xattrs, name, buffer, size);
3351 }
3352
3353 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3354 struct dentry *unused, struct inode *inode,
3355 const char *name, const void *value,
3356 size_t size, int flags)
3357 {
3358 struct shmem_inode_info *info = SHMEM_I(inode);
3359
3360 name = xattr_full_name(handler, name);
3361 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3362 }
3363
3364 static const struct xattr_handler shmem_security_xattr_handler = {
3365 .prefix = XATTR_SECURITY_PREFIX,
3366 .get = shmem_xattr_handler_get,
3367 .set = shmem_xattr_handler_set,
3368 };
3369
3370 static const struct xattr_handler shmem_trusted_xattr_handler = {
3371 .prefix = XATTR_TRUSTED_PREFIX,
3372 .get = shmem_xattr_handler_get,
3373 .set = shmem_xattr_handler_set,
3374 };
3375
3376 static const struct xattr_handler *shmem_xattr_handlers[] = {
3377 #ifdef CONFIG_TMPFS_POSIX_ACL
3378 &posix_acl_access_xattr_handler,
3379 &posix_acl_default_xattr_handler,
3380 #endif
3381 &shmem_security_xattr_handler,
3382 &shmem_trusted_xattr_handler,
3383 NULL
3384 };
3385
3386 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3387 {
3388 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3389 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3390 }
3391 #endif /* CONFIG_TMPFS_XATTR */
3392
3393 static const struct inode_operations shmem_short_symlink_operations = {
3394 .get_link = simple_get_link,
3395 #ifdef CONFIG_TMPFS_XATTR
3396 .listxattr = shmem_listxattr,
3397 #endif
3398 };
3399
3400 static const struct inode_operations shmem_symlink_inode_operations = {
3401 .get_link = shmem_get_link,
3402 #ifdef CONFIG_TMPFS_XATTR
3403 .listxattr = shmem_listxattr,
3404 #endif
3405 };
3406
3407 static struct dentry *shmem_get_parent(struct dentry *child)
3408 {
3409 return ERR_PTR(-ESTALE);
3410 }
3411
3412 static int shmem_match(struct inode *ino, void *vfh)
3413 {
3414 __u32 *fh = vfh;
3415 __u64 inum = fh[2];
3416 inum = (inum << 32) | fh[1];
3417 return ino->i_ino == inum && fh[0] == ino->i_generation;
3418 }
3419
3420 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3421 struct fid *fid, int fh_len, int fh_type)
3422 {
3423 struct inode *inode;
3424 struct dentry *dentry = NULL;
3425 u64 inum;
3426
3427 if (fh_len < 3)
3428 return NULL;
3429
3430 inum = fid->raw[2];
3431 inum = (inum << 32) | fid->raw[1];
3432
3433 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3434 shmem_match, fid->raw);
3435 if (inode) {
3436 dentry = d_find_alias(inode);
3437 iput(inode);
3438 }
3439
3440 return dentry;
3441 }
3442
3443 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3444 struct inode *parent)
3445 {
3446 if (*len < 3) {
3447 *len = 3;
3448 return FILEID_INVALID;
3449 }
3450
3451 if (inode_unhashed(inode)) {
3452 /* Unfortunately insert_inode_hash is not idempotent,
3453 * so as we hash inodes here rather than at creation
3454 * time, we need a lock to ensure we only try
3455 * to do it once
3456 */
3457 static DEFINE_SPINLOCK(lock);
3458 spin_lock(&lock);
3459 if (inode_unhashed(inode))
3460 __insert_inode_hash(inode,
3461 inode->i_ino + inode->i_generation);
3462 spin_unlock(&lock);
3463 }
3464
3465 fh[0] = inode->i_generation;
3466 fh[1] = inode->i_ino;
3467 fh[2] = ((__u64)inode->i_ino) >> 32;
3468
3469 *len = 3;
3470 return 1;
3471 }
3472
3473 static const struct export_operations shmem_export_ops = {
3474 .get_parent = shmem_get_parent,
3475 .encode_fh = shmem_encode_fh,
3476 .fh_to_dentry = shmem_fh_to_dentry,
3477 };
3478
3479 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3480 bool remount)
3481 {
3482 char *this_char, *value, *rest;
3483 struct mempolicy *mpol = NULL;
3484 uid_t uid;
3485 gid_t gid;
3486
3487 while (options != NULL) {
3488 this_char = options;
3489 for (;;) {
3490 /*
3491 * NUL-terminate this option: unfortunately,
3492 * mount options form a comma-separated list,
3493 * but mpol's nodelist may also contain commas.
3494 */
3495 options = strchr(options, ',');
3496 if (options == NULL)
3497 break;
3498 options++;
3499 if (!isdigit(*options)) {
3500 options[-1] = '\0';
3501 break;
3502 }
3503 }
3504 if (!*this_char)
3505 continue;
3506 if ((value = strchr(this_char,'=')) != NULL) {
3507 *value++ = 0;
3508 } else {
3509 pr_err("tmpfs: No value for mount option '%s'\n",
3510 this_char);
3511 goto error;
3512 }
3513
3514 if (!strcmp(this_char,"size")) {
3515 unsigned long long size;
3516 size = memparse(value,&rest);
3517 if (*rest == '%') {
3518 size <<= PAGE_SHIFT;
3519 size *= totalram_pages;
3520 do_div(size, 100);
3521 rest++;
3522 }
3523 if (*rest)
3524 goto bad_val;
3525 sbinfo->max_blocks =
3526 DIV_ROUND_UP(size, PAGE_SIZE);
3527 } else if (!strcmp(this_char,"nr_blocks")) {
3528 sbinfo->max_blocks = memparse(value, &rest);
3529 if (*rest)
3530 goto bad_val;
3531 } else if (!strcmp(this_char,"nr_inodes")) {
3532 sbinfo->max_inodes = memparse(value, &rest);
3533 if (*rest)
3534 goto bad_val;
3535 } else if (!strcmp(this_char,"mode")) {
3536 if (remount)
3537 continue;
3538 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3539 if (*rest)
3540 goto bad_val;
3541 } else if (!strcmp(this_char,"uid")) {
3542 if (remount)
3543 continue;
3544 uid = simple_strtoul(value, &rest, 0);
3545 if (*rest)
3546 goto bad_val;
3547 sbinfo->uid = make_kuid(current_user_ns(), uid);
3548 if (!uid_valid(sbinfo->uid))
3549 goto bad_val;
3550 } else if (!strcmp(this_char,"gid")) {
3551 if (remount)
3552 continue;
3553 gid = simple_strtoul(value, &rest, 0);
3554 if (*rest)
3555 goto bad_val;
3556 sbinfo->gid = make_kgid(current_user_ns(), gid);
3557 if (!gid_valid(sbinfo->gid))
3558 goto bad_val;
3559 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3560 } else if (!strcmp(this_char, "huge")) {
3561 int huge;
3562 huge = shmem_parse_huge(value);
3563 if (huge < 0)
3564 goto bad_val;
3565 if (!has_transparent_hugepage() &&
3566 huge != SHMEM_HUGE_NEVER)
3567 goto bad_val;
3568 sbinfo->huge = huge;
3569 #endif
3570 #ifdef CONFIG_NUMA
3571 } else if (!strcmp(this_char,"mpol")) {
3572 mpol_put(mpol);
3573 mpol = NULL;
3574 if (mpol_parse_str(value, &mpol))
3575 goto bad_val;
3576 #endif
3577 } else {
3578 pr_err("tmpfs: Bad mount option %s\n", this_char);
3579 goto error;
3580 }
3581 }
3582 sbinfo->mpol = mpol;
3583 return 0;
3584
3585 bad_val:
3586 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3587 value, this_char);
3588 error:
3589 mpol_put(mpol);
3590 return 1;
3591
3592 }
3593
3594 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3595 {
3596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3597 struct shmem_sb_info config = *sbinfo;
3598 unsigned long inodes;
3599 int error = -EINVAL;
3600
3601 config.mpol = NULL;
3602 if (shmem_parse_options(data, &config, true))
3603 return error;
3604
3605 spin_lock(&sbinfo->stat_lock);
3606 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3607 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3608 goto out;
3609 if (config.max_inodes < inodes)
3610 goto out;
3611 /*
3612 * Those tests disallow limited->unlimited while any are in use;
3613 * but we must separately disallow unlimited->limited, because
3614 * in that case we have no record of how much is already in use.
3615 */
3616 if (config.max_blocks && !sbinfo->max_blocks)
3617 goto out;
3618 if (config.max_inodes && !sbinfo->max_inodes)
3619 goto out;
3620
3621 error = 0;
3622 sbinfo->huge = config.huge;
3623 sbinfo->max_blocks = config.max_blocks;
3624 sbinfo->max_inodes = config.max_inodes;
3625 sbinfo->free_inodes = config.max_inodes - inodes;
3626
3627 /*
3628 * Preserve previous mempolicy unless mpol remount option was specified.
3629 */
3630 if (config.mpol) {
3631 mpol_put(sbinfo->mpol);
3632 sbinfo->mpol = config.mpol; /* transfers initial ref */
3633 }
3634 out:
3635 spin_unlock(&sbinfo->stat_lock);
3636 return error;
3637 }
3638
3639 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3640 {
3641 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3642
3643 if (sbinfo->max_blocks != shmem_default_max_blocks())
3644 seq_printf(seq, ",size=%luk",
3645 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3646 if (sbinfo->max_inodes != shmem_default_max_inodes())
3647 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3648 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3649 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3650 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3651 seq_printf(seq, ",uid=%u",
3652 from_kuid_munged(&init_user_ns, sbinfo->uid));
3653 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3654 seq_printf(seq, ",gid=%u",
3655 from_kgid_munged(&init_user_ns, sbinfo->gid));
3656 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3657 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3658 if (sbinfo->huge)
3659 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3660 #endif
3661 shmem_show_mpol(seq, sbinfo->mpol);
3662 return 0;
3663 }
3664
3665 #define MFD_NAME_PREFIX "memfd:"
3666 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3667 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3668
3669 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3670
3671 SYSCALL_DEFINE2(memfd_create,
3672 const char __user *, uname,
3673 unsigned int, flags)
3674 {
3675 struct shmem_inode_info *info;
3676 struct file *file;
3677 int fd, error;
3678 char *name;
3679 long len;
3680
3681 if (!(flags & MFD_HUGETLB)) {
3682 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3683 return -EINVAL;
3684 } else {
3685 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3686 if (flags & MFD_ALLOW_SEALING)
3687 return -EINVAL;
3688 /* Allow huge page size encoding in flags. */
3689 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3690 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3691 return -EINVAL;
3692 }
3693
3694 /* length includes terminating zero */
3695 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3696 if (len <= 0)
3697 return -EFAULT;
3698 if (len > MFD_NAME_MAX_LEN + 1)
3699 return -EINVAL;
3700
3701 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3702 if (!name)
3703 return -ENOMEM;
3704
3705 strcpy(name, MFD_NAME_PREFIX);
3706 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3707 error = -EFAULT;
3708 goto err_name;
3709 }
3710
3711 /* terminating-zero may have changed after strnlen_user() returned */
3712 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3713 error = -EFAULT;
3714 goto err_name;
3715 }
3716
3717 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3718 if (fd < 0) {
3719 error = fd;
3720 goto err_name;
3721 }
3722
3723 if (flags & MFD_HUGETLB) {
3724 struct user_struct *user = NULL;
3725
3726 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3727 HUGETLB_ANONHUGE_INODE,
3728 (flags >> MFD_HUGE_SHIFT) &
3729 MFD_HUGE_MASK);
3730 } else
3731 file = shmem_file_setup(name, 0, VM_NORESERVE);
3732 if (IS_ERR(file)) {
3733 error = PTR_ERR(file);
3734 goto err_fd;
3735 }
3736 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3737 file->f_flags |= O_RDWR | O_LARGEFILE;
3738
3739 if (flags & MFD_ALLOW_SEALING) {
3740 /*
3741 * flags check at beginning of function ensures
3742 * this is not a hugetlbfs (MFD_HUGETLB) file.
3743 */
3744 info = SHMEM_I(file_inode(file));
3745 info->seals &= ~F_SEAL_SEAL;
3746 }
3747
3748 fd_install(fd, file);
3749 kfree(name);
3750 return fd;
3751
3752 err_fd:
3753 put_unused_fd(fd);
3754 err_name:
3755 kfree(name);
3756 return error;
3757 }
3758
3759 #endif /* CONFIG_TMPFS */
3760
3761 static void shmem_put_super(struct super_block *sb)
3762 {
3763 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3764
3765 percpu_counter_destroy(&sbinfo->used_blocks);
3766 mpol_put(sbinfo->mpol);
3767 kfree(sbinfo);
3768 sb->s_fs_info = NULL;
3769 }
3770
3771 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3772 {
3773 struct inode *inode;
3774 struct shmem_sb_info *sbinfo;
3775 int err = -ENOMEM;
3776
3777 /* Round up to L1_CACHE_BYTES to resist false sharing */
3778 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3779 L1_CACHE_BYTES), GFP_KERNEL);
3780 if (!sbinfo)
3781 return -ENOMEM;
3782
3783 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3784 sbinfo->uid = current_fsuid();
3785 sbinfo->gid = current_fsgid();
3786 sb->s_fs_info = sbinfo;
3787
3788 #ifdef CONFIG_TMPFS
3789 /*
3790 * Per default we only allow half of the physical ram per
3791 * tmpfs instance, limiting inodes to one per page of lowmem;
3792 * but the internal instance is left unlimited.
3793 */
3794 if (!(sb->s_flags & MS_KERNMOUNT)) {
3795 sbinfo->max_blocks = shmem_default_max_blocks();
3796 sbinfo->max_inodes = shmem_default_max_inodes();
3797 if (shmem_parse_options(data, sbinfo, false)) {
3798 err = -EINVAL;
3799 goto failed;
3800 }
3801 } else {
3802 sb->s_flags |= MS_NOUSER;
3803 }
3804 sb->s_export_op = &shmem_export_ops;
3805 sb->s_flags |= MS_NOSEC;
3806 #else
3807 sb->s_flags |= MS_NOUSER;
3808 #endif
3809
3810 spin_lock_init(&sbinfo->stat_lock);
3811 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3812 goto failed;
3813 sbinfo->free_inodes = sbinfo->max_inodes;
3814 spin_lock_init(&sbinfo->shrinklist_lock);
3815 INIT_LIST_HEAD(&sbinfo->shrinklist);
3816
3817 sb->s_maxbytes = MAX_LFS_FILESIZE;
3818 sb->s_blocksize = PAGE_SIZE;
3819 sb->s_blocksize_bits = PAGE_SHIFT;
3820 sb->s_magic = TMPFS_MAGIC;
3821 sb->s_op = &shmem_ops;
3822 sb->s_time_gran = 1;
3823 #ifdef CONFIG_TMPFS_XATTR
3824 sb->s_xattr = shmem_xattr_handlers;
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827 sb->s_flags |= MS_POSIXACL;
3828 #endif
3829 uuid_gen(&sb->s_uuid);
3830
3831 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3832 if (!inode)
3833 goto failed;
3834 inode->i_uid = sbinfo->uid;
3835 inode->i_gid = sbinfo->gid;
3836 sb->s_root = d_make_root(inode);
3837 if (!sb->s_root)
3838 goto failed;
3839 return 0;
3840
3841 failed:
3842 shmem_put_super(sb);
3843 return err;
3844 }
3845
3846 static struct kmem_cache *shmem_inode_cachep;
3847
3848 static struct inode *shmem_alloc_inode(struct super_block *sb)
3849 {
3850 struct shmem_inode_info *info;
3851 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3852 if (!info)
3853 return NULL;
3854 return &info->vfs_inode;
3855 }
3856
3857 static void shmem_destroy_callback(struct rcu_head *head)
3858 {
3859 struct inode *inode = container_of(head, struct inode, i_rcu);
3860 if (S_ISLNK(inode->i_mode))
3861 kfree(inode->i_link);
3862 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3863 }
3864
3865 static void shmem_destroy_inode(struct inode *inode)
3866 {
3867 if (S_ISREG(inode->i_mode))
3868 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3869 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3870 }
3871
3872 static void shmem_init_inode(void *foo)
3873 {
3874 struct shmem_inode_info *info = foo;
3875 inode_init_once(&info->vfs_inode);
3876 }
3877
3878 static int shmem_init_inodecache(void)
3879 {
3880 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3881 sizeof(struct shmem_inode_info),
3882 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3883 return 0;
3884 }
3885
3886 static void shmem_destroy_inodecache(void)
3887 {
3888 kmem_cache_destroy(shmem_inode_cachep);
3889 }
3890
3891 static const struct address_space_operations shmem_aops = {
3892 .writepage = shmem_writepage,
3893 .set_page_dirty = __set_page_dirty_no_writeback,
3894 #ifdef CONFIG_TMPFS
3895 .write_begin = shmem_write_begin,
3896 .write_end = shmem_write_end,
3897 #endif
3898 #ifdef CONFIG_MIGRATION
3899 .migratepage = migrate_page,
3900 #endif
3901 .error_remove_page = generic_error_remove_page,
3902 };
3903
3904 static const struct file_operations shmem_file_operations = {
3905 .mmap = shmem_mmap,
3906 .get_unmapped_area = shmem_get_unmapped_area,
3907 #ifdef CONFIG_TMPFS
3908 .llseek = shmem_file_llseek,
3909 .read_iter = shmem_file_read_iter,
3910 .write_iter = generic_file_write_iter,
3911 .fsync = noop_fsync,
3912 .splice_read = generic_file_splice_read,
3913 .splice_write = iter_file_splice_write,
3914 .fallocate = shmem_fallocate,
3915 #endif
3916 };
3917
3918 static const struct inode_operations shmem_inode_operations = {
3919 .getattr = shmem_getattr,
3920 .setattr = shmem_setattr,
3921 #ifdef CONFIG_TMPFS_XATTR
3922 .listxattr = shmem_listxattr,
3923 .set_acl = simple_set_acl,
3924 #endif
3925 };
3926
3927 static const struct inode_operations shmem_dir_inode_operations = {
3928 #ifdef CONFIG_TMPFS
3929 .create = shmem_create,
3930 .lookup = simple_lookup,
3931 .link = shmem_link,
3932 .unlink = shmem_unlink,
3933 .symlink = shmem_symlink,
3934 .mkdir = shmem_mkdir,
3935 .rmdir = shmem_rmdir,
3936 .mknod = shmem_mknod,
3937 .rename = shmem_rename2,
3938 .tmpfile = shmem_tmpfile,
3939 #endif
3940 #ifdef CONFIG_TMPFS_XATTR
3941 .listxattr = shmem_listxattr,
3942 #endif
3943 #ifdef CONFIG_TMPFS_POSIX_ACL
3944 .setattr = shmem_setattr,
3945 .set_acl = simple_set_acl,
3946 #endif
3947 };
3948
3949 static const struct inode_operations shmem_special_inode_operations = {
3950 #ifdef CONFIG_TMPFS_XATTR
3951 .listxattr = shmem_listxattr,
3952 #endif
3953 #ifdef CONFIG_TMPFS_POSIX_ACL
3954 .setattr = shmem_setattr,
3955 .set_acl = simple_set_acl,
3956 #endif
3957 };
3958
3959 static const struct super_operations shmem_ops = {
3960 .alloc_inode = shmem_alloc_inode,
3961 .destroy_inode = shmem_destroy_inode,
3962 #ifdef CONFIG_TMPFS
3963 .statfs = shmem_statfs,
3964 .remount_fs = shmem_remount_fs,
3965 .show_options = shmem_show_options,
3966 #endif
3967 .evict_inode = shmem_evict_inode,
3968 .drop_inode = generic_delete_inode,
3969 .put_super = shmem_put_super,
3970 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3971 .nr_cached_objects = shmem_unused_huge_count,
3972 .free_cached_objects = shmem_unused_huge_scan,
3973 #endif
3974 };
3975
3976 static const struct vm_operations_struct shmem_vm_ops = {
3977 .fault = shmem_fault,
3978 .map_pages = filemap_map_pages,
3979 #ifdef CONFIG_NUMA
3980 .set_policy = shmem_set_policy,
3981 .get_policy = shmem_get_policy,
3982 #endif
3983 };
3984
3985 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3986 int flags, const char *dev_name, void *data)
3987 {
3988 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3989 }
3990
3991 static struct file_system_type shmem_fs_type = {
3992 .owner = THIS_MODULE,
3993 .name = "tmpfs",
3994 .mount = shmem_mount,
3995 .kill_sb = kill_litter_super,
3996 .fs_flags = FS_USERNS_MOUNT,
3997 };
3998
3999 int __init shmem_init(void)
4000 {
4001 int error;
4002
4003 /* If rootfs called this, don't re-init */
4004 if (shmem_inode_cachep)
4005 return 0;
4006
4007 error = shmem_init_inodecache();
4008 if (error)
4009 goto out3;
4010
4011 error = register_filesystem(&shmem_fs_type);
4012 if (error) {
4013 pr_err("Could not register tmpfs\n");
4014 goto out2;
4015 }
4016
4017 shm_mnt = kern_mount(&shmem_fs_type);
4018 if (IS_ERR(shm_mnt)) {
4019 error = PTR_ERR(shm_mnt);
4020 pr_err("Could not kern_mount tmpfs\n");
4021 goto out1;
4022 }
4023
4024 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4025 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4026 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4027 else
4028 shmem_huge = 0; /* just in case it was patched */
4029 #endif
4030 return 0;
4031
4032 out1:
4033 unregister_filesystem(&shmem_fs_type);
4034 out2:
4035 shmem_destroy_inodecache();
4036 out3:
4037 shm_mnt = ERR_PTR(error);
4038 return error;
4039 }
4040
4041 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042 static ssize_t shmem_enabled_show(struct kobject *kobj,
4043 struct kobj_attribute *attr, char *buf)
4044 {
4045 int values[] = {
4046 SHMEM_HUGE_ALWAYS,
4047 SHMEM_HUGE_WITHIN_SIZE,
4048 SHMEM_HUGE_ADVISE,
4049 SHMEM_HUGE_NEVER,
4050 SHMEM_HUGE_DENY,
4051 SHMEM_HUGE_FORCE,
4052 };
4053 int i, count;
4054
4055 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4056 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4057
4058 count += sprintf(buf + count, fmt,
4059 shmem_format_huge(values[i]));
4060 }
4061 buf[count - 1] = '\n';
4062 return count;
4063 }
4064
4065 static ssize_t shmem_enabled_store(struct kobject *kobj,
4066 struct kobj_attribute *attr, const char *buf, size_t count)
4067 {
4068 char tmp[16];
4069 int huge;
4070
4071 if (count + 1 > sizeof(tmp))
4072 return -EINVAL;
4073 memcpy(tmp, buf, count);
4074 tmp[count] = '\0';
4075 if (count && tmp[count - 1] == '\n')
4076 tmp[count - 1] = '\0';
4077
4078 huge = shmem_parse_huge(tmp);
4079 if (huge == -EINVAL)
4080 return -EINVAL;
4081 if (!has_transparent_hugepage() &&
4082 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4083 return -EINVAL;
4084
4085 shmem_huge = huge;
4086 if (shmem_huge > SHMEM_HUGE_DENY)
4087 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4088 return count;
4089 }
4090
4091 struct kobj_attribute shmem_enabled_attr =
4092 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4093 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4094
4095 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096 bool shmem_huge_enabled(struct vm_area_struct *vma)
4097 {
4098 struct inode *inode = file_inode(vma->vm_file);
4099 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4100 loff_t i_size;
4101 pgoff_t off;
4102
4103 if (shmem_huge == SHMEM_HUGE_FORCE)
4104 return true;
4105 if (shmem_huge == SHMEM_HUGE_DENY)
4106 return false;
4107 switch (sbinfo->huge) {
4108 case SHMEM_HUGE_NEVER:
4109 return false;
4110 case SHMEM_HUGE_ALWAYS:
4111 return true;
4112 case SHMEM_HUGE_WITHIN_SIZE:
4113 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4114 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4115 if (i_size >= HPAGE_PMD_SIZE &&
4116 i_size >> PAGE_SHIFT >= off)
4117 return true;
4118 case SHMEM_HUGE_ADVISE:
4119 /* TODO: implement fadvise() hints */
4120 return (vma->vm_flags & VM_HUGEPAGE);
4121 default:
4122 VM_BUG_ON(1);
4123 return false;
4124 }
4125 }
4126 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4127
4128 #else /* !CONFIG_SHMEM */
4129
4130 /*
4131 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4132 *
4133 * This is intended for small system where the benefits of the full
4134 * shmem code (swap-backed and resource-limited) are outweighed by
4135 * their complexity. On systems without swap this code should be
4136 * effectively equivalent, but much lighter weight.
4137 */
4138
4139 static struct file_system_type shmem_fs_type = {
4140 .name = "tmpfs",
4141 .mount = ramfs_mount,
4142 .kill_sb = kill_litter_super,
4143 .fs_flags = FS_USERNS_MOUNT,
4144 };
4145
4146 int __init shmem_init(void)
4147 {
4148 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4149
4150 shm_mnt = kern_mount(&shmem_fs_type);
4151 BUG_ON(IS_ERR(shm_mnt));
4152
4153 return 0;
4154 }
4155
4156 int shmem_unuse(swp_entry_t swap, struct page *page)
4157 {
4158 return 0;
4159 }
4160
4161 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4162 {
4163 return 0;
4164 }
4165
4166 void shmem_unlock_mapping(struct address_space *mapping)
4167 {
4168 }
4169
4170 #ifdef CONFIG_MMU
4171 unsigned long shmem_get_unmapped_area(struct file *file,
4172 unsigned long addr, unsigned long len,
4173 unsigned long pgoff, unsigned long flags)
4174 {
4175 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4176 }
4177 #endif
4178
4179 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4180 {
4181 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4182 }
4183 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4184
4185 #define shmem_vm_ops generic_file_vm_ops
4186 #define shmem_file_operations ramfs_file_operations
4187 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4188 #define shmem_acct_size(flags, size) 0
4189 #define shmem_unacct_size(flags, size) do {} while (0)
4190
4191 #endif /* CONFIG_SHMEM */
4192
4193 /* common code */
4194
4195 static const struct dentry_operations anon_ops = {
4196 .d_dname = simple_dname
4197 };
4198
4199 static struct file *__shmem_file_setup(const char *name, loff_t size,
4200 unsigned long flags, unsigned int i_flags)
4201 {
4202 struct file *res;
4203 struct inode *inode;
4204 struct path path;
4205 struct super_block *sb;
4206 struct qstr this;
4207
4208 if (IS_ERR(shm_mnt))
4209 return ERR_CAST(shm_mnt);
4210
4211 if (size < 0 || size > MAX_LFS_FILESIZE)
4212 return ERR_PTR(-EINVAL);
4213
4214 if (shmem_acct_size(flags, size))
4215 return ERR_PTR(-ENOMEM);
4216
4217 res = ERR_PTR(-ENOMEM);
4218 this.name = name;
4219 this.len = strlen(name);
4220 this.hash = 0; /* will go */
4221 sb = shm_mnt->mnt_sb;
4222 path.mnt = mntget(shm_mnt);
4223 path.dentry = d_alloc_pseudo(sb, &this);
4224 if (!path.dentry)
4225 goto put_memory;
4226 d_set_d_op(path.dentry, &anon_ops);
4227
4228 res = ERR_PTR(-ENOSPC);
4229 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4230 if (!inode)
4231 goto put_memory;
4232
4233 inode->i_flags |= i_flags;
4234 d_instantiate(path.dentry, inode);
4235 inode->i_size = size;
4236 clear_nlink(inode); /* It is unlinked */
4237 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4238 if (IS_ERR(res))
4239 goto put_path;
4240
4241 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4242 &shmem_file_operations);
4243 if (IS_ERR(res))
4244 goto put_path;
4245
4246 return res;
4247
4248 put_memory:
4249 shmem_unacct_size(flags, size);
4250 put_path:
4251 path_put(&path);
4252 return res;
4253 }
4254
4255 /**
4256 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4257 * kernel internal. There will be NO LSM permission checks against the
4258 * underlying inode. So users of this interface must do LSM checks at a
4259 * higher layer. The users are the big_key and shm implementations. LSM
4260 * checks are provided at the key or shm level rather than the inode.
4261 * @name: name for dentry (to be seen in /proc/<pid>/maps
4262 * @size: size to be set for the file
4263 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4264 */
4265 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4266 {
4267 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4268 }
4269
4270 /**
4271 * shmem_file_setup - get an unlinked file living in tmpfs
4272 * @name: name for dentry (to be seen in /proc/<pid>/maps
4273 * @size: size to be set for the file
4274 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4275 */
4276 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4277 {
4278 return __shmem_file_setup(name, size, flags, 0);
4279 }
4280 EXPORT_SYMBOL_GPL(shmem_file_setup);
4281
4282 /**
4283 * shmem_zero_setup - setup a shared anonymous mapping
4284 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4285 */
4286 int shmem_zero_setup(struct vm_area_struct *vma)
4287 {
4288 struct file *file;
4289 loff_t size = vma->vm_end - vma->vm_start;
4290
4291 /*
4292 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4293 * between XFS directory reading and selinux: since this file is only
4294 * accessible to the user through its mapping, use S_PRIVATE flag to
4295 * bypass file security, in the same way as shmem_kernel_file_setup().
4296 */
4297 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4298 if (IS_ERR(file))
4299 return PTR_ERR(file);
4300
4301 if (vma->vm_file)
4302 fput(vma->vm_file);
4303 vma->vm_file = file;
4304 vma->vm_ops = &shmem_vm_ops;
4305
4306 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4307 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4308 (vma->vm_end & HPAGE_PMD_MASK)) {
4309 khugepaged_enter(vma, vma->vm_flags);
4310 }
4311
4312 return 0;
4313 }
4314
4315 /**
4316 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4317 * @mapping: the page's address_space
4318 * @index: the page index
4319 * @gfp: the page allocator flags to use if allocating
4320 *
4321 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4322 * with any new page allocations done using the specified allocation flags.
4323 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4324 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4325 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4326 *
4327 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4328 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4329 */
4330 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4331 pgoff_t index, gfp_t gfp)
4332 {
4333 #ifdef CONFIG_SHMEM
4334 struct inode *inode = mapping->host;
4335 struct page *page;
4336 int error;
4337
4338 BUG_ON(mapping->a_ops != &shmem_aops);
4339 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4340 gfp, NULL, NULL, NULL);
4341 if (error)
4342 page = ERR_PTR(error);
4343 else
4344 unlock_page(page);
4345 return page;
4346 #else
4347 /*
4348 * The tiny !SHMEM case uses ramfs without swap
4349 */
4350 return read_cache_page_gfp(mapping, index, gfp);
4351 #endif
4352 }
4353 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);