]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/shmem.c
Merge tag 'for-5.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/kernel/stable.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
49 */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_rwsem making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
98 */
99 struct shmem_falloc {
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
105 };
106
107 struct shmem_options {
108 unsigned long long blocks;
109 unsigned long long inodes;
110 struct mempolicy *mpol;
111 kuid_t uid;
112 kgid_t gid;
113 umode_t mode;
114 bool full_inums;
115 int huge;
116 int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 return totalram_pages() / 2;
127 }
128
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 unsigned long nr_pages = totalram_pages();
132
133 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 struct page **pagep, enum sgp_type sgp,
139 gfp_t gfp, struct vm_area_struct *vma,
140 vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 struct page **pagep, enum sgp_type sgp,
143 gfp_t gfp, struct vm_area_struct *vma,
144 struct vm_fault *vmf, vm_fault_t *fault_type);
145
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp)
148 {
149 return shmem_getpage_gfp(inode, index, pagep, sgp,
150 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214
215 if (shmem_acct_block(info->flags, pages))
216 return false;
217
218 if (sbinfo->max_blocks) {
219 if (percpu_counter_compare(&sbinfo->used_blocks,
220 sbinfo->max_blocks - pages) > 0)
221 goto unacct;
222 percpu_counter_add(&sbinfo->used_blocks, pages);
223 }
224
225 return true;
226
227 unacct:
228 shmem_unacct_blocks(info->flags, pages);
229 return false;
230 }
231
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 struct shmem_inode_info *info = SHMEM_I(inode);
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236
237 if (sbinfo->max_blocks)
238 percpu_counter_sub(&sbinfo->used_blocks, pages);
239 shmem_unacct_blocks(info->flags, pages);
240 }
241
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 return vma->vm_ops == &shmem_vm_ops;
254 }
255
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258
259 /*
260 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261 * produces a novel ino for the newly allocated inode.
262 *
263 * It may also be called when making a hard link to permit the space needed by
264 * each dentry. However, in that case, no new inode number is needed since that
265 * internally draws from another pool of inode numbers (currently global
266 * get_next_ino()). This case is indicated by passing NULL as inop.
267 */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 ino_t ino;
273
274 if (!(sb->s_flags & SB_KERNMOUNT)) {
275 raw_spin_lock(&sbinfo->stat_lock);
276 if (sbinfo->max_inodes) {
277 if (!sbinfo->free_inodes) {
278 raw_spin_unlock(&sbinfo->stat_lock);
279 return -ENOSPC;
280 }
281 sbinfo->free_inodes--;
282 }
283 if (inop) {
284 ino = sbinfo->next_ino++;
285 if (unlikely(is_zero_ino(ino)))
286 ino = sbinfo->next_ino++;
287 if (unlikely(!sbinfo->full_inums &&
288 ino > UINT_MAX)) {
289 /*
290 * Emulate get_next_ino uint wraparound for
291 * compatibility
292 */
293 if (IS_ENABLED(CONFIG_64BIT))
294 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 __func__, MINOR(sb->s_dev));
296 sbinfo->next_ino = 1;
297 ino = sbinfo->next_ino++;
298 }
299 *inop = ino;
300 }
301 raw_spin_unlock(&sbinfo->stat_lock);
302 } else if (inop) {
303 /*
304 * __shmem_file_setup, one of our callers, is lock-free: it
305 * doesn't hold stat_lock in shmem_reserve_inode since
306 * max_inodes is always 0, and is called from potentially
307 * unknown contexts. As such, use a per-cpu batched allocator
308 * which doesn't require the per-sb stat_lock unless we are at
309 * the batch boundary.
310 *
311 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 * shmem mounts are not exposed to userspace, so we don't need
313 * to worry about things like glibc compatibility.
314 */
315 ino_t *next_ino;
316
317 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 ino = *next_ino;
319 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 raw_spin_lock(&sbinfo->stat_lock);
321 ino = sbinfo->next_ino;
322 sbinfo->next_ino += SHMEM_INO_BATCH;
323 raw_spin_unlock(&sbinfo->stat_lock);
324 if (unlikely(is_zero_ino(ino)))
325 ino++;
326 }
327 *inop = ino;
328 *next_ino = ++ino;
329 put_cpu();
330 }
331
332 return 0;
333 }
334
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 if (sbinfo->max_inodes) {
339 raw_spin_lock(&sbinfo->stat_lock);
340 sbinfo->free_inodes++;
341 raw_spin_unlock(&sbinfo->stat_lock);
342 }
343 }
344
345 /**
346 * shmem_recalc_inode - recalculate the block usage of an inode
347 * @inode: inode to recalc
348 *
349 * We have to calculate the free blocks since the mm can drop
350 * undirtied hole pages behind our back.
351 *
352 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
353 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354 *
355 * It has to be called with the spinlock held.
356 */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 struct shmem_inode_info *info = SHMEM_I(inode);
360 long freed;
361
362 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 if (freed > 0) {
364 info->alloced -= freed;
365 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 shmem_inode_unacct_blocks(inode, freed);
367 }
368 }
369
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 struct shmem_inode_info *info = SHMEM_I(inode);
373 unsigned long flags;
374
375 if (!shmem_inode_acct_block(inode, pages))
376 return false;
377
378 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 inode->i_mapping->nrpages += pages;
380
381 spin_lock_irqsave(&info->lock, flags);
382 info->alloced += pages;
383 inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 shmem_recalc_inode(inode);
385 spin_unlock_irqrestore(&info->lock, flags);
386
387 return true;
388 }
389
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 struct shmem_inode_info *info = SHMEM_I(inode);
393 unsigned long flags;
394
395 /* nrpages adjustment done by __delete_from_page_cache() or caller */
396
397 spin_lock_irqsave(&info->lock, flags);
398 info->alloced -= pages;
399 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 shmem_recalc_inode(inode);
401 spin_unlock_irqrestore(&info->lock, flags);
402
403 shmem_inode_unacct_blocks(inode, pages);
404 }
405
406 /*
407 * Replace item expected in xarray by a new item, while holding xa_lock.
408 */
409 static int shmem_replace_entry(struct address_space *mapping,
410 pgoff_t index, void *expected, void *replacement)
411 {
412 XA_STATE(xas, &mapping->i_pages, index);
413 void *item;
414
415 VM_BUG_ON(!expected);
416 VM_BUG_ON(!replacement);
417 item = xas_load(&xas);
418 if (item != expected)
419 return -ENOENT;
420 xas_store(&xas, replacement);
421 return 0;
422 }
423
424 /*
425 * Sometimes, before we decide whether to proceed or to fail, we must check
426 * that an entry was not already brought back from swap by a racing thread.
427 *
428 * Checking page is not enough: by the time a SwapCache page is locked, it
429 * might be reused, and again be SwapCache, using the same swap as before.
430 */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 pgoff_t index, swp_entry_t swap)
433 {
434 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436
437 /*
438 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439 *
440 * SHMEM_HUGE_NEVER:
441 * disables huge pages for the mount;
442 * SHMEM_HUGE_ALWAYS:
443 * enables huge pages for the mount;
444 * SHMEM_HUGE_WITHIN_SIZE:
445 * only allocate huge pages if the page will be fully within i_size,
446 * also respect fadvise()/madvise() hints;
447 * SHMEM_HUGE_ADVISE:
448 * only allocate huge pages if requested with fadvise()/madvise();
449 */
450
451 #define SHMEM_HUGE_NEVER 0
452 #define SHMEM_HUGE_ALWAYS 1
453 #define SHMEM_HUGE_WITHIN_SIZE 2
454 #define SHMEM_HUGE_ADVISE 3
455
456 /*
457 * Special values.
458 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459 *
460 * SHMEM_HUGE_DENY:
461 * disables huge on shm_mnt and all mounts, for emergency use;
462 * SHMEM_HUGE_FORCE:
463 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464 *
465 */
466 #define SHMEM_HUGE_DENY (-1)
467 #define SHMEM_HUGE_FORCE (-2)
468
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 struct inode *inode, pgoff_t index)
476 {
477 loff_t i_size;
478
479 if (!S_ISREG(inode->i_mode))
480 return false;
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
483 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 return false;
486 if (shmem_huge == SHMEM_HUGE_FORCE)
487 return true;
488
489 switch (SHMEM_SB(inode->i_sb)->huge) {
490 case SHMEM_HUGE_ALWAYS:
491 return true;
492 case SHMEM_HUGE_WITHIN_SIZE:
493 index = round_up(index + 1, HPAGE_PMD_NR);
494 i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 if (i_size >> PAGE_SHIFT >= index)
496 return true;
497 fallthrough;
498 case SHMEM_HUGE_ADVISE:
499 if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 return true;
501 fallthrough;
502 default:
503 return false;
504 }
505 }
506
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 if (!strcmp(str, "never"))
511 return SHMEM_HUGE_NEVER;
512 if (!strcmp(str, "always"))
513 return SHMEM_HUGE_ALWAYS;
514 if (!strcmp(str, "within_size"))
515 return SHMEM_HUGE_WITHIN_SIZE;
516 if (!strcmp(str, "advise"))
517 return SHMEM_HUGE_ADVISE;
518 if (!strcmp(str, "deny"))
519 return SHMEM_HUGE_DENY;
520 if (!strcmp(str, "force"))
521 return SHMEM_HUGE_FORCE;
522 return -EINVAL;
523 }
524 #endif
525
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 switch (huge) {
530 case SHMEM_HUGE_NEVER:
531 return "never";
532 case SHMEM_HUGE_ALWAYS:
533 return "always";
534 case SHMEM_HUGE_WITHIN_SIZE:
535 return "within_size";
536 case SHMEM_HUGE_ADVISE:
537 return "advise";
538 case SHMEM_HUGE_DENY:
539 return "deny";
540 case SHMEM_HUGE_FORCE:
541 return "force";
542 default:
543 VM_BUG_ON(1);
544 return "bad_val";
545 }
546 }
547 #endif
548
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 LIST_HEAD(list), *pos, *next;
553 LIST_HEAD(to_remove);
554 struct inode *inode;
555 struct shmem_inode_info *info;
556 struct page *page;
557 unsigned long batch = sc ? sc->nr_to_scan : 128;
558 int split = 0;
559
560 if (list_empty(&sbinfo->shrinklist))
561 return SHRINK_STOP;
562
563 spin_lock(&sbinfo->shrinklist_lock);
564 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566
567 /* pin the inode */
568 inode = igrab(&info->vfs_inode);
569
570 /* inode is about to be evicted */
571 if (!inode) {
572 list_del_init(&info->shrinklist);
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
580 goto next;
581 }
582
583 list_move(&info->shrinklist, &list);
584 next:
585 sbinfo->shrinklist_len--;
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
604 if (nr_to_split && split >= nr_to_split)
605 goto move_back;
606
607 page = find_get_page(inode->i_mapping,
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
612 /* No huge page at the end of the file: nothing to split */
613 if (!PageTransHuge(page)) {
614 put_page(page);
615 goto drop;
616 }
617
618 /*
619 * Move the inode on the list back to shrinklist if we failed
620 * to lock the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto move_back;
628 }
629
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
634 /* If split failed move the inode on the list back to shrinklist */
635 if (ret)
636 goto move_back;
637
638 split++;
639 drop:
640 list_del_init(&info->shrinklist);
641 goto put;
642 move_back:
643 /*
644 * Make sure the inode is either on the global list or deleted
645 * from any local list before iput() since it could be deleted
646 * in another thread once we put the inode (then the local list
647 * is corrupted).
648 */
649 spin_lock(&sbinfo->shrinklist_lock);
650 list_move(&info->shrinklist, &sbinfo->shrinklist);
651 sbinfo->shrinklist_len++;
652 spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654 iput(inode);
655 }
656
657 return split;
658 }
659
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 struct shrink_control *sc)
662 {
663 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664
665 if (!READ_ONCE(sbinfo->shrinklist_len))
666 return SHRINK_STOP;
667
668 return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670
671 static long shmem_unused_huge_count(struct super_block *sb,
672 struct shrink_control *sc)
673 {
674 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678
679 #define shmem_huge SHMEM_HUGE_DENY
680
681 bool shmem_is_huge(struct vm_area_struct *vma,
682 struct inode *inode, pgoff_t index)
683 {
684 return false;
685 }
686
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 struct shrink_control *sc, unsigned long nr_to_split)
689 {
690 return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693
694 /*
695 * Like add_to_page_cache_locked, but error if expected item has gone.
696 */
697 static int shmem_add_to_page_cache(struct page *page,
698 struct address_space *mapping,
699 pgoff_t index, void *expected, gfp_t gfp,
700 struct mm_struct *charge_mm)
701 {
702 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703 unsigned long nr = compound_nr(page);
704 int error;
705
706 VM_BUG_ON_PAGE(PageTail(page), page);
707 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
708 VM_BUG_ON_PAGE(!PageLocked(page), page);
709 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
710 VM_BUG_ON(expected && PageTransHuge(page));
711
712 page_ref_add(page, nr);
713 page->mapping = mapping;
714 page->index = index;
715
716 if (!PageSwapCache(page)) {
717 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
718 if (error) {
719 if (PageTransHuge(page)) {
720 count_vm_event(THP_FILE_FALLBACK);
721 count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 }
723 goto error;
724 }
725 }
726 cgroup_throttle_swaprate(page, gfp);
727
728 do {
729 xas_lock_irq(&xas);
730 if (expected != xas_find_conflict(&xas)) {
731 xas_set_err(&xas, -EEXIST);
732 goto unlock;
733 }
734 if (expected && xas_find_conflict(&xas)) {
735 xas_set_err(&xas, -EEXIST);
736 goto unlock;
737 }
738 xas_store(&xas, page);
739 if (xas_error(&xas))
740 goto unlock;
741 if (PageTransHuge(page)) {
742 count_vm_event(THP_FILE_ALLOC);
743 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
744 }
745 mapping->nrpages += nr;
746 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747 __mod_lruvec_page_state(page, NR_SHMEM, nr);
748 unlock:
749 xas_unlock_irq(&xas);
750 } while (xas_nomem(&xas, gfp));
751
752 if (xas_error(&xas)) {
753 error = xas_error(&xas);
754 goto error;
755 }
756
757 return 0;
758 error:
759 page->mapping = NULL;
760 page_ref_sub(page, nr);
761 return error;
762 }
763
764 /*
765 * Like delete_from_page_cache, but substitutes swap for page.
766 */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 struct address_space *mapping = page->mapping;
770 int error;
771
772 VM_BUG_ON_PAGE(PageCompound(page), page);
773
774 xa_lock_irq(&mapping->i_pages);
775 error = shmem_replace_entry(mapping, page->index, page, radswap);
776 page->mapping = NULL;
777 mapping->nrpages--;
778 __dec_lruvec_page_state(page, NR_FILE_PAGES);
779 __dec_lruvec_page_state(page, NR_SHMEM);
780 xa_unlock_irq(&mapping->i_pages);
781 put_page(page);
782 BUG_ON(error);
783 }
784
785 /*
786 * Remove swap entry from page cache, free the swap and its page cache.
787 */
788 static int shmem_free_swap(struct address_space *mapping,
789 pgoff_t index, void *radswap)
790 {
791 void *old;
792
793 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 if (old != radswap)
795 return -ENOENT;
796 free_swap_and_cache(radix_to_swp_entry(radswap));
797 return 0;
798 }
799
800 /*
801 * Determine (in bytes) how many of the shmem object's pages mapped by the
802 * given offsets are swapped out.
803 *
804 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805 * as long as the inode doesn't go away and racy results are not a problem.
806 */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 pgoff_t start, pgoff_t end)
809 {
810 XA_STATE(xas, &mapping->i_pages, start);
811 struct page *page;
812 unsigned long swapped = 0;
813
814 rcu_read_lock();
815 xas_for_each(&xas, page, end - 1) {
816 if (xas_retry(&xas, page))
817 continue;
818 if (xa_is_value(page))
819 swapped++;
820
821 if (need_resched()) {
822 xas_pause(&xas);
823 cond_resched_rcu();
824 }
825 }
826
827 rcu_read_unlock();
828
829 return swapped << PAGE_SHIFT;
830 }
831
832 /*
833 * Determine (in bytes) how many of the shmem object's pages mapped by the
834 * given vma is swapped out.
835 *
836 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837 * as long as the inode doesn't go away and racy results are not a problem.
838 */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 struct inode *inode = file_inode(vma->vm_file);
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 struct address_space *mapping = inode->i_mapping;
844 unsigned long swapped;
845
846 /* Be careful as we don't hold info->lock */
847 swapped = READ_ONCE(info->swapped);
848
849 /*
850 * The easier cases are when the shmem object has nothing in swap, or
851 * the vma maps it whole. Then we can simply use the stats that we
852 * already track.
853 */
854 if (!swapped)
855 return 0;
856
857 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 return swapped << PAGE_SHIFT;
859
860 /* Here comes the more involved part */
861 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 vma->vm_pgoff + vma_pages(vma));
863 }
864
865 /*
866 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867 */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 struct pagevec pvec;
871 pgoff_t index = 0;
872
873 pagevec_init(&pvec);
874 /*
875 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 */
877 while (!mapping_unevictable(mapping)) {
878 if (!pagevec_lookup(&pvec, mapping, &index))
879 break;
880 check_move_unevictable_pages(&pvec);
881 pagevec_release(&pvec);
882 cond_resched();
883 }
884 }
885
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 struct folio *folio;
889 struct page *page;
890
891 /*
892 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 * beyond i_size, and reports fallocated pages as holes.
894 */
895 folio = __filemap_get_folio(inode->i_mapping, index,
896 FGP_ENTRY | FGP_LOCK, 0);
897 if (!xa_is_value(folio))
898 return folio;
899 /*
900 * But read a page back from swap if any of it is within i_size
901 * (although in some cases this is just a waste of time).
902 */
903 page = NULL;
904 shmem_getpage(inode, index, &page, SGP_READ);
905 return page ? page_folio(page) : NULL;
906 }
907
908 /*
909 * Remove range of pages and swap entries from page cache, and free them.
910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911 */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 bool unfalloc)
914 {
915 struct address_space *mapping = inode->i_mapping;
916 struct shmem_inode_info *info = SHMEM_I(inode);
917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 struct folio_batch fbatch;
920 pgoff_t indices[PAGEVEC_SIZE];
921 struct folio *folio;
922 bool same_folio;
923 long nr_swaps_freed = 0;
924 pgoff_t index;
925 int i;
926
927 if (lend == -1)
928 end = -1; /* unsigned, so actually very big */
929
930 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 info->fallocend = start;
932
933 folio_batch_init(&fbatch);
934 index = start;
935 while (index < end && find_lock_entries(mapping, index, end - 1,
936 &fbatch, indices)) {
937 for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 folio = fbatch.folios[i];
939
940 index = indices[i];
941
942 if (xa_is_value(folio)) {
943 if (unfalloc)
944 continue;
945 nr_swaps_freed += !shmem_free_swap(mapping,
946 index, folio);
947 continue;
948 }
949 index += folio_nr_pages(folio) - 1;
950
951 if (!unfalloc || !folio_test_uptodate(folio))
952 truncate_inode_folio(mapping, folio);
953 folio_unlock(folio);
954 }
955 folio_batch_remove_exceptionals(&fbatch);
956 folio_batch_release(&fbatch);
957 cond_resched();
958 index++;
959 }
960
961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 if (folio) {
964 same_folio = lend < folio_pos(folio) + folio_size(folio);
965 folio_mark_dirty(folio);
966 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 start = folio->index + folio_nr_pages(folio);
968 if (same_folio)
969 end = folio->index;
970 }
971 folio_unlock(folio);
972 folio_put(folio);
973 folio = NULL;
974 }
975
976 if (!same_folio)
977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 if (folio) {
979 folio_mark_dirty(folio);
980 if (!truncate_inode_partial_folio(folio, lstart, lend))
981 end = folio->index;
982 folio_unlock(folio);
983 folio_put(folio);
984 }
985
986 index = start;
987 while (index < end) {
988 cond_resched();
989
990 if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 indices)) {
992 /* If all gone or hole-punch or unfalloc, we're done */
993 if (index == start || end != -1)
994 break;
995 /* But if truncating, restart to make sure all gone */
996 index = start;
997 continue;
998 }
999 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 folio = fbatch.folios[i];
1001
1002 index = indices[i];
1003 if (xa_is_value(folio)) {
1004 if (unfalloc)
1005 continue;
1006 if (shmem_free_swap(mapping, index, folio)) {
1007 /* Swap was replaced by page: retry */
1008 index--;
1009 break;
1010 }
1011 nr_swaps_freed++;
1012 continue;
1013 }
1014
1015 folio_lock(folio);
1016
1017 if (!unfalloc || !folio_test_uptodate(folio)) {
1018 if (folio_mapping(folio) != mapping) {
1019 /* Page was replaced by swap: retry */
1020 folio_unlock(folio);
1021 index--;
1022 break;
1023 }
1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 folio);
1026 truncate_inode_folio(mapping, folio);
1027 }
1028 index = folio->index + folio_nr_pages(folio) - 1;
1029 folio_unlock(folio);
1030 }
1031 folio_batch_remove_exceptionals(&fbatch);
1032 folio_batch_release(&fbatch);
1033 index++;
1034 }
1035
1036 spin_lock_irq(&info->lock);
1037 info->swapped -= nr_swaps_freed;
1038 shmem_recalc_inode(inode);
1039 spin_unlock_irq(&info->lock);
1040 }
1041
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 shmem_undo_range(inode, lstart, lend, false);
1045 inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 const struct path *path, struct kstat *stat,
1051 u32 request_mask, unsigned int query_flags)
1052 {
1053 struct inode *inode = path->dentry->d_inode;
1054 struct shmem_inode_info *info = SHMEM_I(inode);
1055
1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 spin_lock_irq(&info->lock);
1058 shmem_recalc_inode(inode);
1059 spin_unlock_irq(&info->lock);
1060 }
1061 generic_fillattr(&init_user_ns, inode, stat);
1062
1063 if (shmem_is_huge(NULL, inode, 0))
1064 stat->blksize = HPAGE_PMD_SIZE;
1065
1066 if (request_mask & STATX_BTIME) {
1067 stat->result_mask |= STATX_BTIME;
1068 stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 struct dentry *dentry, struct iattr *attr)
1077 {
1078 struct inode *inode = d_inode(dentry);
1079 struct shmem_inode_info *info = SHMEM_I(inode);
1080 int error;
1081
1082 error = setattr_prepare(&init_user_ns, dentry, attr);
1083 if (error)
1084 return error;
1085
1086 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 loff_t oldsize = inode->i_size;
1088 loff_t newsize = attr->ia_size;
1089
1090 /* protected by i_rwsem */
1091 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 return -EPERM;
1094
1095 if (newsize != oldsize) {
1096 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 oldsize, newsize);
1098 if (error)
1099 return error;
1100 i_size_write(inode, newsize);
1101 inode->i_ctime = inode->i_mtime = current_time(inode);
1102 }
1103 if (newsize <= oldsize) {
1104 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 if (oldsize > holebegin)
1106 unmap_mapping_range(inode->i_mapping,
1107 holebegin, 0, 1);
1108 if (info->alloced)
1109 shmem_truncate_range(inode,
1110 newsize, (loff_t)-1);
1111 /* unmap again to remove racily COWed private pages */
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
1115 }
1116 }
1117
1118 setattr_copy(&init_user_ns, inode, attr);
1119 if (attr->ia_valid & ATTR_MODE)
1120 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 return error;
1122 }
1123
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 struct shmem_inode_info *info = SHMEM_I(inode);
1127 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129 if (shmem_mapping(inode->i_mapping)) {
1130 shmem_unacct_size(info->flags, inode->i_size);
1131 inode->i_size = 0;
1132 mapping_set_exiting(inode->i_mapping);
1133 shmem_truncate_range(inode, 0, (loff_t)-1);
1134 if (!list_empty(&info->shrinklist)) {
1135 spin_lock(&sbinfo->shrinklist_lock);
1136 if (!list_empty(&info->shrinklist)) {
1137 list_del_init(&info->shrinklist);
1138 sbinfo->shrinklist_len--;
1139 }
1140 spin_unlock(&sbinfo->shrinklist_lock);
1141 }
1142 while (!list_empty(&info->swaplist)) {
1143 /* Wait while shmem_unuse() is scanning this inode... */
1144 wait_var_event(&info->stop_eviction,
1145 !atomic_read(&info->stop_eviction));
1146 mutex_lock(&shmem_swaplist_mutex);
1147 /* ...but beware of the race if we peeked too early */
1148 if (!atomic_read(&info->stop_eviction))
1149 list_del_init(&info->swaplist);
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 }
1152 }
1153
1154 simple_xattrs_free(&info->xattrs);
1155 WARN_ON(inode->i_blocks);
1156 shmem_free_inode(inode->i_sb);
1157 clear_inode(inode);
1158 }
1159
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 pgoff_t start, unsigned int nr_entries,
1162 struct page **entries, pgoff_t *indices,
1163 unsigned int type)
1164 {
1165 XA_STATE(xas, &mapping->i_pages, start);
1166 struct page *page;
1167 swp_entry_t entry;
1168 unsigned int ret = 0;
1169
1170 if (!nr_entries)
1171 return 0;
1172
1173 rcu_read_lock();
1174 xas_for_each(&xas, page, ULONG_MAX) {
1175 if (xas_retry(&xas, page))
1176 continue;
1177
1178 if (!xa_is_value(page))
1179 continue;
1180
1181 entry = radix_to_swp_entry(page);
1182 if (swp_type(entry) != type)
1183 continue;
1184
1185 indices[ret] = xas.xa_index;
1186 entries[ret] = page;
1187
1188 if (need_resched()) {
1189 xas_pause(&xas);
1190 cond_resched_rcu();
1191 }
1192 if (++ret == nr_entries)
1193 break;
1194 }
1195 rcu_read_unlock();
1196
1197 return ret;
1198 }
1199
1200 /*
1201 * Move the swapped pages for an inode to page cache. Returns the count
1202 * of pages swapped in, or the error in case of failure.
1203 */
1204 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1205 pgoff_t *indices)
1206 {
1207 int i = 0;
1208 int ret = 0;
1209 int error = 0;
1210 struct address_space *mapping = inode->i_mapping;
1211
1212 for (i = 0; i < pvec.nr; i++) {
1213 struct page *page = pvec.pages[i];
1214
1215 if (!xa_is_value(page))
1216 continue;
1217 error = shmem_swapin_page(inode, indices[i],
1218 &page, SGP_CACHE,
1219 mapping_gfp_mask(mapping),
1220 NULL, NULL);
1221 if (error == 0) {
1222 unlock_page(page);
1223 put_page(page);
1224 ret++;
1225 }
1226 if (error == -ENOMEM)
1227 break;
1228 error = 0;
1229 }
1230 return error ? error : ret;
1231 }
1232
1233 /*
1234 * If swap found in inode, free it and move page from swapcache to filecache.
1235 */
1236 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1237 {
1238 struct address_space *mapping = inode->i_mapping;
1239 pgoff_t start = 0;
1240 struct pagevec pvec;
1241 pgoff_t indices[PAGEVEC_SIZE];
1242 int ret = 0;
1243
1244 pagevec_init(&pvec);
1245 do {
1246 unsigned int nr_entries = PAGEVEC_SIZE;
1247
1248 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1249 pvec.pages, indices, type);
1250 if (pvec.nr == 0) {
1251 ret = 0;
1252 break;
1253 }
1254
1255 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1256 if (ret < 0)
1257 break;
1258
1259 start = indices[pvec.nr - 1];
1260 } while (true);
1261
1262 return ret;
1263 }
1264
1265 /*
1266 * Read all the shared memory data that resides in the swap
1267 * device 'type' back into memory, so the swap device can be
1268 * unused.
1269 */
1270 int shmem_unuse(unsigned int type)
1271 {
1272 struct shmem_inode_info *info, *next;
1273 int error = 0;
1274
1275 if (list_empty(&shmem_swaplist))
1276 return 0;
1277
1278 mutex_lock(&shmem_swaplist_mutex);
1279 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1280 if (!info->swapped) {
1281 list_del_init(&info->swaplist);
1282 continue;
1283 }
1284 /*
1285 * Drop the swaplist mutex while searching the inode for swap;
1286 * but before doing so, make sure shmem_evict_inode() will not
1287 * remove placeholder inode from swaplist, nor let it be freed
1288 * (igrab() would protect from unlink, but not from unmount).
1289 */
1290 atomic_inc(&info->stop_eviction);
1291 mutex_unlock(&shmem_swaplist_mutex);
1292
1293 error = shmem_unuse_inode(&info->vfs_inode, type);
1294 cond_resched();
1295
1296 mutex_lock(&shmem_swaplist_mutex);
1297 next = list_next_entry(info, swaplist);
1298 if (!info->swapped)
1299 list_del_init(&info->swaplist);
1300 if (atomic_dec_and_test(&info->stop_eviction))
1301 wake_up_var(&info->stop_eviction);
1302 if (error)
1303 break;
1304 }
1305 mutex_unlock(&shmem_swaplist_mutex);
1306
1307 return error;
1308 }
1309
1310 /*
1311 * Move the page from the page cache to the swap cache.
1312 */
1313 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1314 {
1315 struct shmem_inode_info *info;
1316 struct address_space *mapping;
1317 struct inode *inode;
1318 swp_entry_t swap;
1319 pgoff_t index;
1320
1321 /*
1322 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1323 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1324 * and its shmem_writeback() needs them to be split when swapping.
1325 */
1326 if (PageTransCompound(page)) {
1327 /* Ensure the subpages are still dirty */
1328 SetPageDirty(page);
1329 if (split_huge_page(page) < 0)
1330 goto redirty;
1331 ClearPageDirty(page);
1332 }
1333
1334 BUG_ON(!PageLocked(page));
1335 mapping = page->mapping;
1336 index = page->index;
1337 inode = mapping->host;
1338 info = SHMEM_I(inode);
1339 if (info->flags & VM_LOCKED)
1340 goto redirty;
1341 if (!total_swap_pages)
1342 goto redirty;
1343
1344 /*
1345 * Our capabilities prevent regular writeback or sync from ever calling
1346 * shmem_writepage; but a stacking filesystem might use ->writepage of
1347 * its underlying filesystem, in which case tmpfs should write out to
1348 * swap only in response to memory pressure, and not for the writeback
1349 * threads or sync.
1350 */
1351 if (!wbc->for_reclaim) {
1352 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1353 goto redirty;
1354 }
1355
1356 /*
1357 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358 * value into swapfile.c, the only way we can correctly account for a
1359 * fallocated page arriving here is now to initialize it and write it.
1360 *
1361 * That's okay for a page already fallocated earlier, but if we have
1362 * not yet completed the fallocation, then (a) we want to keep track
1363 * of this page in case we have to undo it, and (b) it may not be a
1364 * good idea to continue anyway, once we're pushing into swap. So
1365 * reactivate the page, and let shmem_fallocate() quit when too many.
1366 */
1367 if (!PageUptodate(page)) {
1368 if (inode->i_private) {
1369 struct shmem_falloc *shmem_falloc;
1370 spin_lock(&inode->i_lock);
1371 shmem_falloc = inode->i_private;
1372 if (shmem_falloc &&
1373 !shmem_falloc->waitq &&
1374 index >= shmem_falloc->start &&
1375 index < shmem_falloc->next)
1376 shmem_falloc->nr_unswapped++;
1377 else
1378 shmem_falloc = NULL;
1379 spin_unlock(&inode->i_lock);
1380 if (shmem_falloc)
1381 goto redirty;
1382 }
1383 clear_highpage(page);
1384 flush_dcache_page(page);
1385 SetPageUptodate(page);
1386 }
1387
1388 swap = get_swap_page(page);
1389 if (!swap.val)
1390 goto redirty;
1391
1392 /*
1393 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1394 * if it's not already there. Do it now before the page is
1395 * moved to swap cache, when its pagelock no longer protects
1396 * the inode from eviction. But don't unlock the mutex until
1397 * we've incremented swapped, because shmem_unuse_inode() will
1398 * prune a !swapped inode from the swaplist under this mutex.
1399 */
1400 mutex_lock(&shmem_swaplist_mutex);
1401 if (list_empty(&info->swaplist))
1402 list_add(&info->swaplist, &shmem_swaplist);
1403
1404 if (add_to_swap_cache(page, swap,
1405 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406 NULL) == 0) {
1407 spin_lock_irq(&info->lock);
1408 shmem_recalc_inode(inode);
1409 info->swapped++;
1410 spin_unlock_irq(&info->lock);
1411
1412 swap_shmem_alloc(swap);
1413 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1414
1415 mutex_unlock(&shmem_swaplist_mutex);
1416 BUG_ON(page_mapped(page));
1417 swap_writepage(page, wbc);
1418 return 0;
1419 }
1420
1421 mutex_unlock(&shmem_swaplist_mutex);
1422 put_swap_page(page, swap);
1423 redirty:
1424 set_page_dirty(page);
1425 if (wbc->for_reclaim)
1426 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1427 unlock_page(page);
1428 return 0;
1429 }
1430
1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1433 {
1434 char buffer[64];
1435
1436 if (!mpol || mpol->mode == MPOL_DEFAULT)
1437 return; /* show nothing */
1438
1439 mpol_to_str(buffer, sizeof(buffer), mpol);
1440
1441 seq_printf(seq, ",mpol=%s", buffer);
1442 }
1443
1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445 {
1446 struct mempolicy *mpol = NULL;
1447 if (sbinfo->mpol) {
1448 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1449 mpol = sbinfo->mpol;
1450 mpol_get(mpol);
1451 raw_spin_unlock(&sbinfo->stat_lock);
1452 }
1453 return mpol;
1454 }
1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 }
1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460 {
1461 return NULL;
1462 }
1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464 #ifndef CONFIG_NUMA
1465 #define vm_policy vm_private_data
1466 #endif
1467
1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469 struct shmem_inode_info *info, pgoff_t index)
1470 {
1471 /* Create a pseudo vma that just contains the policy */
1472 vma_init(vma, NULL);
1473 /* Bias interleave by inode number to distribute better across nodes */
1474 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1475 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476 }
1477
1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479 {
1480 /* Drop reference taken by mpol_shared_policy_lookup() */
1481 mpol_cond_put(vma->vm_policy);
1482 }
1483
1484 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485 struct shmem_inode_info *info, pgoff_t index)
1486 {
1487 struct vm_area_struct pvma;
1488 struct page *page;
1489 struct vm_fault vmf = {
1490 .vma = &pvma,
1491 };
1492
1493 shmem_pseudo_vma_init(&pvma, info, index);
1494 page = swap_cluster_readahead(swap, gfp, &vmf);
1495 shmem_pseudo_vma_destroy(&pvma);
1496
1497 return page;
1498 }
1499
1500 /*
1501 * Make sure huge_gfp is always more limited than limit_gfp.
1502 * Some of the flags set permissions, while others set limitations.
1503 */
1504 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1505 {
1506 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1507 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1508 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1509 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1510
1511 /* Allow allocations only from the originally specified zones. */
1512 result |= zoneflags;
1513
1514 /*
1515 * Minimize the result gfp by taking the union with the deny flags,
1516 * and the intersection of the allow flags.
1517 */
1518 result |= (limit_gfp & denyflags);
1519 result |= (huge_gfp & limit_gfp) & allowflags;
1520
1521 return result;
1522 }
1523
1524 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1525 struct shmem_inode_info *info, pgoff_t index)
1526 {
1527 struct vm_area_struct pvma;
1528 struct address_space *mapping = info->vfs_inode.i_mapping;
1529 pgoff_t hindex;
1530 struct page *page;
1531
1532 hindex = round_down(index, HPAGE_PMD_NR);
1533 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1534 XA_PRESENT))
1535 return NULL;
1536
1537 shmem_pseudo_vma_init(&pvma, info, hindex);
1538 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1539 shmem_pseudo_vma_destroy(&pvma);
1540 if (page)
1541 prep_transhuge_page(page);
1542 else
1543 count_vm_event(THP_FILE_FALLBACK);
1544 return page;
1545 }
1546
1547 static struct page *shmem_alloc_page(gfp_t gfp,
1548 struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 struct vm_area_struct pvma;
1551 struct page *page;
1552
1553 shmem_pseudo_vma_init(&pvma, info, index);
1554 page = alloc_page_vma(gfp, &pvma, 0);
1555 shmem_pseudo_vma_destroy(&pvma);
1556
1557 return page;
1558 }
1559
1560 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1561 struct inode *inode,
1562 pgoff_t index, bool huge)
1563 {
1564 struct shmem_inode_info *info = SHMEM_I(inode);
1565 struct page *page;
1566 int nr;
1567 int err = -ENOSPC;
1568
1569 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1570 huge = false;
1571 nr = huge ? HPAGE_PMD_NR : 1;
1572
1573 if (!shmem_inode_acct_block(inode, nr))
1574 goto failed;
1575
1576 if (huge)
1577 page = shmem_alloc_hugepage(gfp, info, index);
1578 else
1579 page = shmem_alloc_page(gfp, info, index);
1580 if (page) {
1581 __SetPageLocked(page);
1582 __SetPageSwapBacked(page);
1583 return page;
1584 }
1585
1586 err = -ENOMEM;
1587 shmem_inode_unacct_blocks(inode, nr);
1588 failed:
1589 return ERR_PTR(err);
1590 }
1591
1592 /*
1593 * When a page is moved from swapcache to shmem filecache (either by the
1594 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1595 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1596 * ignorance of the mapping it belongs to. If that mapping has special
1597 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1598 * we may need to copy to a suitable page before moving to filecache.
1599 *
1600 * In a future release, this may well be extended to respect cpuset and
1601 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1602 * but for now it is a simple matter of zone.
1603 */
1604 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1605 {
1606 return page_zonenum(page) > gfp_zone(gfp);
1607 }
1608
1609 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1610 struct shmem_inode_info *info, pgoff_t index)
1611 {
1612 struct page *oldpage, *newpage;
1613 struct folio *old, *new;
1614 struct address_space *swap_mapping;
1615 swp_entry_t entry;
1616 pgoff_t swap_index;
1617 int error;
1618
1619 oldpage = *pagep;
1620 entry.val = page_private(oldpage);
1621 swap_index = swp_offset(entry);
1622 swap_mapping = page_mapping(oldpage);
1623
1624 /*
1625 * We have arrived here because our zones are constrained, so don't
1626 * limit chance of success by further cpuset and node constraints.
1627 */
1628 gfp &= ~GFP_CONSTRAINT_MASK;
1629 newpage = shmem_alloc_page(gfp, info, index);
1630 if (!newpage)
1631 return -ENOMEM;
1632
1633 get_page(newpage);
1634 copy_highpage(newpage, oldpage);
1635 flush_dcache_page(newpage);
1636
1637 __SetPageLocked(newpage);
1638 __SetPageSwapBacked(newpage);
1639 SetPageUptodate(newpage);
1640 set_page_private(newpage, entry.val);
1641 SetPageSwapCache(newpage);
1642
1643 /*
1644 * Our caller will very soon move newpage out of swapcache, but it's
1645 * a nice clean interface for us to replace oldpage by newpage there.
1646 */
1647 xa_lock_irq(&swap_mapping->i_pages);
1648 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1649 if (!error) {
1650 old = page_folio(oldpage);
1651 new = page_folio(newpage);
1652 mem_cgroup_migrate(old, new);
1653 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1654 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1655 }
1656 xa_unlock_irq(&swap_mapping->i_pages);
1657
1658 if (unlikely(error)) {
1659 /*
1660 * Is this possible? I think not, now that our callers check
1661 * both PageSwapCache and page_private after getting page lock;
1662 * but be defensive. Reverse old to newpage for clear and free.
1663 */
1664 oldpage = newpage;
1665 } else {
1666 lru_cache_add(newpage);
1667 *pagep = newpage;
1668 }
1669
1670 ClearPageSwapCache(oldpage);
1671 set_page_private(oldpage, 0);
1672
1673 unlock_page(oldpage);
1674 put_page(oldpage);
1675 put_page(oldpage);
1676 return error;
1677 }
1678
1679 /*
1680 * Swap in the page pointed to by *pagep.
1681 * Caller has to make sure that *pagep contains a valid swapped page.
1682 * Returns 0 and the page in pagep if success. On failure, returns the
1683 * error code and NULL in *pagep.
1684 */
1685 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1686 struct page **pagep, enum sgp_type sgp,
1687 gfp_t gfp, struct vm_area_struct *vma,
1688 vm_fault_t *fault_type)
1689 {
1690 struct address_space *mapping = inode->i_mapping;
1691 struct shmem_inode_info *info = SHMEM_I(inode);
1692 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1693 struct page *page;
1694 swp_entry_t swap;
1695 int error;
1696
1697 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1698 swap = radix_to_swp_entry(*pagep);
1699 *pagep = NULL;
1700
1701 /* Look it up and read it in.. */
1702 page = lookup_swap_cache(swap, NULL, 0);
1703 if (!page) {
1704 /* Or update major stats only when swapin succeeds?? */
1705 if (fault_type) {
1706 *fault_type |= VM_FAULT_MAJOR;
1707 count_vm_event(PGMAJFAULT);
1708 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1709 }
1710 /* Here we actually start the io */
1711 page = shmem_swapin(swap, gfp, info, index);
1712 if (!page) {
1713 error = -ENOMEM;
1714 goto failed;
1715 }
1716 }
1717
1718 /* We have to do this with page locked to prevent races */
1719 lock_page(page);
1720 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1721 !shmem_confirm_swap(mapping, index, swap)) {
1722 error = -EEXIST;
1723 goto unlock;
1724 }
1725 if (!PageUptodate(page)) {
1726 error = -EIO;
1727 goto failed;
1728 }
1729 wait_on_page_writeback(page);
1730
1731 /*
1732 * Some architectures may have to restore extra metadata to the
1733 * physical page after reading from swap.
1734 */
1735 arch_swap_restore(swap, page);
1736
1737 if (shmem_should_replace_page(page, gfp)) {
1738 error = shmem_replace_page(&page, gfp, info, index);
1739 if (error)
1740 goto failed;
1741 }
1742
1743 error = shmem_add_to_page_cache(page, mapping, index,
1744 swp_to_radix_entry(swap), gfp,
1745 charge_mm);
1746 if (error)
1747 goto failed;
1748
1749 spin_lock_irq(&info->lock);
1750 info->swapped--;
1751 shmem_recalc_inode(inode);
1752 spin_unlock_irq(&info->lock);
1753
1754 if (sgp == SGP_WRITE)
1755 mark_page_accessed(page);
1756
1757 delete_from_swap_cache(page);
1758 set_page_dirty(page);
1759 swap_free(swap);
1760
1761 *pagep = page;
1762 return 0;
1763 failed:
1764 if (!shmem_confirm_swap(mapping, index, swap))
1765 error = -EEXIST;
1766 unlock:
1767 if (page) {
1768 unlock_page(page);
1769 put_page(page);
1770 }
1771
1772 return error;
1773 }
1774
1775 /*
1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777 *
1778 * If we allocate a new one we do not mark it dirty. That's up to the
1779 * vm. If we swap it in we mark it dirty since we also free the swap
1780 * entry since a page cannot live in both the swap and page cache.
1781 *
1782 * vma, vmf, and fault_type are only supplied by shmem_fault:
1783 * otherwise they are NULL.
1784 */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787 struct vm_area_struct *vma, struct vm_fault *vmf,
1788 vm_fault_t *fault_type)
1789 {
1790 struct address_space *mapping = inode->i_mapping;
1791 struct shmem_inode_info *info = SHMEM_I(inode);
1792 struct shmem_sb_info *sbinfo;
1793 struct mm_struct *charge_mm;
1794 struct page *page;
1795 pgoff_t hindex = index;
1796 gfp_t huge_gfp;
1797 int error;
1798 int once = 0;
1799 int alloced = 0;
1800
1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802 return -EFBIG;
1803 repeat:
1804 if (sgp <= SGP_CACHE &&
1805 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806 return -EINVAL;
1807 }
1808
1809 sbinfo = SHMEM_SB(inode->i_sb);
1810 charge_mm = vma ? vma->vm_mm : NULL;
1811
1812 page = pagecache_get_page(mapping, index,
1813 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1814
1815 if (page && vma && userfaultfd_minor(vma)) {
1816 if (!xa_is_value(page)) {
1817 unlock_page(page);
1818 put_page(page);
1819 }
1820 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1821 return 0;
1822 }
1823
1824 if (xa_is_value(page)) {
1825 error = shmem_swapin_page(inode, index, &page,
1826 sgp, gfp, vma, fault_type);
1827 if (error == -EEXIST)
1828 goto repeat;
1829
1830 *pagep = page;
1831 return error;
1832 }
1833
1834 if (page) {
1835 hindex = page->index;
1836 if (sgp == SGP_WRITE)
1837 mark_page_accessed(page);
1838 if (PageUptodate(page))
1839 goto out;
1840 /* fallocated page */
1841 if (sgp != SGP_READ)
1842 goto clear;
1843 unlock_page(page);
1844 put_page(page);
1845 }
1846
1847 /*
1848 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1849 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1850 */
1851 *pagep = NULL;
1852 if (sgp == SGP_READ)
1853 return 0;
1854 if (sgp == SGP_NOALLOC)
1855 return -ENOENT;
1856
1857 /*
1858 * Fast cache lookup and swap lookup did not find it: allocate.
1859 */
1860
1861 if (vma && userfaultfd_missing(vma)) {
1862 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1863 return 0;
1864 }
1865
1866 if (!shmem_is_huge(vma, inode, index))
1867 goto alloc_nohuge;
1868
1869 huge_gfp = vma_thp_gfp_mask(vma);
1870 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1871 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1872 if (IS_ERR(page)) {
1873 alloc_nohuge:
1874 page = shmem_alloc_and_acct_page(gfp, inode,
1875 index, false);
1876 }
1877 if (IS_ERR(page)) {
1878 int retry = 5;
1879
1880 error = PTR_ERR(page);
1881 page = NULL;
1882 if (error != -ENOSPC)
1883 goto unlock;
1884 /*
1885 * Try to reclaim some space by splitting a huge page
1886 * beyond i_size on the filesystem.
1887 */
1888 while (retry--) {
1889 int ret;
1890
1891 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1892 if (ret == SHRINK_STOP)
1893 break;
1894 if (ret)
1895 goto alloc_nohuge;
1896 }
1897 goto unlock;
1898 }
1899
1900 if (PageTransHuge(page))
1901 hindex = round_down(index, HPAGE_PMD_NR);
1902 else
1903 hindex = index;
1904
1905 if (sgp == SGP_WRITE)
1906 __SetPageReferenced(page);
1907
1908 error = shmem_add_to_page_cache(page, mapping, hindex,
1909 NULL, gfp & GFP_RECLAIM_MASK,
1910 charge_mm);
1911 if (error)
1912 goto unacct;
1913 lru_cache_add(page);
1914
1915 spin_lock_irq(&info->lock);
1916 info->alloced += compound_nr(page);
1917 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1918 shmem_recalc_inode(inode);
1919 spin_unlock_irq(&info->lock);
1920 alloced = true;
1921
1922 if (PageTransHuge(page) &&
1923 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1924 hindex + HPAGE_PMD_NR - 1) {
1925 /*
1926 * Part of the huge page is beyond i_size: subject
1927 * to shrink under memory pressure.
1928 */
1929 spin_lock(&sbinfo->shrinklist_lock);
1930 /*
1931 * _careful to defend against unlocked access to
1932 * ->shrink_list in shmem_unused_huge_shrink()
1933 */
1934 if (list_empty_careful(&info->shrinklist)) {
1935 list_add_tail(&info->shrinklist,
1936 &sbinfo->shrinklist);
1937 sbinfo->shrinklist_len++;
1938 }
1939 spin_unlock(&sbinfo->shrinklist_lock);
1940 }
1941
1942 /*
1943 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1944 */
1945 if (sgp == SGP_FALLOC)
1946 sgp = SGP_WRITE;
1947 clear:
1948 /*
1949 * Let SGP_WRITE caller clear ends if write does not fill page;
1950 * but SGP_FALLOC on a page fallocated earlier must initialize
1951 * it now, lest undo on failure cancel our earlier guarantee.
1952 */
1953 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1954 int i;
1955
1956 for (i = 0; i < compound_nr(page); i++) {
1957 clear_highpage(page + i);
1958 flush_dcache_page(page + i);
1959 }
1960 SetPageUptodate(page);
1961 }
1962
1963 /* Perhaps the file has been truncated since we checked */
1964 if (sgp <= SGP_CACHE &&
1965 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1966 if (alloced) {
1967 ClearPageDirty(page);
1968 delete_from_page_cache(page);
1969 spin_lock_irq(&info->lock);
1970 shmem_recalc_inode(inode);
1971 spin_unlock_irq(&info->lock);
1972 }
1973 error = -EINVAL;
1974 goto unlock;
1975 }
1976 out:
1977 *pagep = page + index - hindex;
1978 return 0;
1979
1980 /*
1981 * Error recovery.
1982 */
1983 unacct:
1984 shmem_inode_unacct_blocks(inode, compound_nr(page));
1985
1986 if (PageTransHuge(page)) {
1987 unlock_page(page);
1988 put_page(page);
1989 goto alloc_nohuge;
1990 }
1991 unlock:
1992 if (page) {
1993 unlock_page(page);
1994 put_page(page);
1995 }
1996 if (error == -ENOSPC && !once++) {
1997 spin_lock_irq(&info->lock);
1998 shmem_recalc_inode(inode);
1999 spin_unlock_irq(&info->lock);
2000 goto repeat;
2001 }
2002 if (error == -EEXIST)
2003 goto repeat;
2004 return error;
2005 }
2006
2007 /*
2008 * This is like autoremove_wake_function, but it removes the wait queue
2009 * entry unconditionally - even if something else had already woken the
2010 * target.
2011 */
2012 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2013 {
2014 int ret = default_wake_function(wait, mode, sync, key);
2015 list_del_init(&wait->entry);
2016 return ret;
2017 }
2018
2019 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2020 {
2021 struct vm_area_struct *vma = vmf->vma;
2022 struct inode *inode = file_inode(vma->vm_file);
2023 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2024 int err;
2025 vm_fault_t ret = VM_FAULT_LOCKED;
2026
2027 /*
2028 * Trinity finds that probing a hole which tmpfs is punching can
2029 * prevent the hole-punch from ever completing: which in turn
2030 * locks writers out with its hold on i_rwsem. So refrain from
2031 * faulting pages into the hole while it's being punched. Although
2032 * shmem_undo_range() does remove the additions, it may be unable to
2033 * keep up, as each new page needs its own unmap_mapping_range() call,
2034 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2035 *
2036 * It does not matter if we sometimes reach this check just before the
2037 * hole-punch begins, so that one fault then races with the punch:
2038 * we just need to make racing faults a rare case.
2039 *
2040 * The implementation below would be much simpler if we just used a
2041 * standard mutex or completion: but we cannot take i_rwsem in fault,
2042 * and bloating every shmem inode for this unlikely case would be sad.
2043 */
2044 if (unlikely(inode->i_private)) {
2045 struct shmem_falloc *shmem_falloc;
2046
2047 spin_lock(&inode->i_lock);
2048 shmem_falloc = inode->i_private;
2049 if (shmem_falloc &&
2050 shmem_falloc->waitq &&
2051 vmf->pgoff >= shmem_falloc->start &&
2052 vmf->pgoff < shmem_falloc->next) {
2053 struct file *fpin;
2054 wait_queue_head_t *shmem_falloc_waitq;
2055 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2056
2057 ret = VM_FAULT_NOPAGE;
2058 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2059 if (fpin)
2060 ret = VM_FAULT_RETRY;
2061
2062 shmem_falloc_waitq = shmem_falloc->waitq;
2063 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2064 TASK_UNINTERRUPTIBLE);
2065 spin_unlock(&inode->i_lock);
2066 schedule();
2067
2068 /*
2069 * shmem_falloc_waitq points into the shmem_fallocate()
2070 * stack of the hole-punching task: shmem_falloc_waitq
2071 * is usually invalid by the time we reach here, but
2072 * finish_wait() does not dereference it in that case;
2073 * though i_lock needed lest racing with wake_up_all().
2074 */
2075 spin_lock(&inode->i_lock);
2076 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2077 spin_unlock(&inode->i_lock);
2078
2079 if (fpin)
2080 fput(fpin);
2081 return ret;
2082 }
2083 spin_unlock(&inode->i_lock);
2084 }
2085
2086 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2087 gfp, vma, vmf, &ret);
2088 if (err)
2089 return vmf_error(err);
2090 return ret;
2091 }
2092
2093 unsigned long shmem_get_unmapped_area(struct file *file,
2094 unsigned long uaddr, unsigned long len,
2095 unsigned long pgoff, unsigned long flags)
2096 {
2097 unsigned long (*get_area)(struct file *,
2098 unsigned long, unsigned long, unsigned long, unsigned long);
2099 unsigned long addr;
2100 unsigned long offset;
2101 unsigned long inflated_len;
2102 unsigned long inflated_addr;
2103 unsigned long inflated_offset;
2104
2105 if (len > TASK_SIZE)
2106 return -ENOMEM;
2107
2108 get_area = current->mm->get_unmapped_area;
2109 addr = get_area(file, uaddr, len, pgoff, flags);
2110
2111 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2112 return addr;
2113 if (IS_ERR_VALUE(addr))
2114 return addr;
2115 if (addr & ~PAGE_MASK)
2116 return addr;
2117 if (addr > TASK_SIZE - len)
2118 return addr;
2119
2120 if (shmem_huge == SHMEM_HUGE_DENY)
2121 return addr;
2122 if (len < HPAGE_PMD_SIZE)
2123 return addr;
2124 if (flags & MAP_FIXED)
2125 return addr;
2126 /*
2127 * Our priority is to support MAP_SHARED mapped hugely;
2128 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2129 * But if caller specified an address hint and we allocated area there
2130 * successfully, respect that as before.
2131 */
2132 if (uaddr == addr)
2133 return addr;
2134
2135 if (shmem_huge != SHMEM_HUGE_FORCE) {
2136 struct super_block *sb;
2137
2138 if (file) {
2139 VM_BUG_ON(file->f_op != &shmem_file_operations);
2140 sb = file_inode(file)->i_sb;
2141 } else {
2142 /*
2143 * Called directly from mm/mmap.c, or drivers/char/mem.c
2144 * for "/dev/zero", to create a shared anonymous object.
2145 */
2146 if (IS_ERR(shm_mnt))
2147 return addr;
2148 sb = shm_mnt->mnt_sb;
2149 }
2150 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2151 return addr;
2152 }
2153
2154 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2155 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2156 return addr;
2157 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2158 return addr;
2159
2160 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2161 if (inflated_len > TASK_SIZE)
2162 return addr;
2163 if (inflated_len < len)
2164 return addr;
2165
2166 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2167 if (IS_ERR_VALUE(inflated_addr))
2168 return addr;
2169 if (inflated_addr & ~PAGE_MASK)
2170 return addr;
2171
2172 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2173 inflated_addr += offset - inflated_offset;
2174 if (inflated_offset > offset)
2175 inflated_addr += HPAGE_PMD_SIZE;
2176
2177 if (inflated_addr > TASK_SIZE - len)
2178 return addr;
2179 return inflated_addr;
2180 }
2181
2182 #ifdef CONFIG_NUMA
2183 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2184 {
2185 struct inode *inode = file_inode(vma->vm_file);
2186 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2187 }
2188
2189 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2190 unsigned long addr)
2191 {
2192 struct inode *inode = file_inode(vma->vm_file);
2193 pgoff_t index;
2194
2195 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2196 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2197 }
2198 #endif
2199
2200 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2201 {
2202 struct inode *inode = file_inode(file);
2203 struct shmem_inode_info *info = SHMEM_I(inode);
2204 int retval = -ENOMEM;
2205
2206 /*
2207 * What serializes the accesses to info->flags?
2208 * ipc_lock_object() when called from shmctl_do_lock(),
2209 * no serialization needed when called from shm_destroy().
2210 */
2211 if (lock && !(info->flags & VM_LOCKED)) {
2212 if (!user_shm_lock(inode->i_size, ucounts))
2213 goto out_nomem;
2214 info->flags |= VM_LOCKED;
2215 mapping_set_unevictable(file->f_mapping);
2216 }
2217 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2218 user_shm_unlock(inode->i_size, ucounts);
2219 info->flags &= ~VM_LOCKED;
2220 mapping_clear_unevictable(file->f_mapping);
2221 }
2222 retval = 0;
2223
2224 out_nomem:
2225 return retval;
2226 }
2227
2228 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2229 {
2230 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2231 int ret;
2232
2233 ret = seal_check_future_write(info->seals, vma);
2234 if (ret)
2235 return ret;
2236
2237 /* arm64 - allow memory tagging on RAM-based files */
2238 vma->vm_flags |= VM_MTE_ALLOWED;
2239
2240 file_accessed(file);
2241 vma->vm_ops = &shmem_vm_ops;
2242 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2243 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2244 (vma->vm_end & HPAGE_PMD_MASK)) {
2245 khugepaged_enter(vma, vma->vm_flags);
2246 }
2247 return 0;
2248 }
2249
2250 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2251 umode_t mode, dev_t dev, unsigned long flags)
2252 {
2253 struct inode *inode;
2254 struct shmem_inode_info *info;
2255 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2256 ino_t ino;
2257
2258 if (shmem_reserve_inode(sb, &ino))
2259 return NULL;
2260
2261 inode = new_inode(sb);
2262 if (inode) {
2263 inode->i_ino = ino;
2264 inode_init_owner(&init_user_ns, inode, dir, mode);
2265 inode->i_blocks = 0;
2266 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2267 inode->i_generation = prandom_u32();
2268 info = SHMEM_I(inode);
2269 memset(info, 0, (char *)inode - (char *)info);
2270 spin_lock_init(&info->lock);
2271 atomic_set(&info->stop_eviction, 0);
2272 info->seals = F_SEAL_SEAL;
2273 info->flags = flags & VM_NORESERVE;
2274 info->i_crtime = inode->i_mtime;
2275 INIT_LIST_HEAD(&info->shrinklist);
2276 INIT_LIST_HEAD(&info->swaplist);
2277 simple_xattrs_init(&info->xattrs);
2278 cache_no_acl(inode);
2279 mapping_set_large_folios(inode->i_mapping);
2280
2281 switch (mode & S_IFMT) {
2282 default:
2283 inode->i_op = &shmem_special_inode_operations;
2284 init_special_inode(inode, mode, dev);
2285 break;
2286 case S_IFREG:
2287 inode->i_mapping->a_ops = &shmem_aops;
2288 inode->i_op = &shmem_inode_operations;
2289 inode->i_fop = &shmem_file_operations;
2290 mpol_shared_policy_init(&info->policy,
2291 shmem_get_sbmpol(sbinfo));
2292 break;
2293 case S_IFDIR:
2294 inc_nlink(inode);
2295 /* Some things misbehave if size == 0 on a directory */
2296 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2297 inode->i_op = &shmem_dir_inode_operations;
2298 inode->i_fop = &simple_dir_operations;
2299 break;
2300 case S_IFLNK:
2301 /*
2302 * Must not load anything in the rbtree,
2303 * mpol_free_shared_policy will not be called.
2304 */
2305 mpol_shared_policy_init(&info->policy, NULL);
2306 break;
2307 }
2308
2309 lockdep_annotate_inode_mutex_key(inode);
2310 } else
2311 shmem_free_inode(sb);
2312 return inode;
2313 }
2314
2315 #ifdef CONFIG_USERFAULTFD
2316 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2317 pmd_t *dst_pmd,
2318 struct vm_area_struct *dst_vma,
2319 unsigned long dst_addr,
2320 unsigned long src_addr,
2321 bool zeropage,
2322 struct page **pagep)
2323 {
2324 struct inode *inode = file_inode(dst_vma->vm_file);
2325 struct shmem_inode_info *info = SHMEM_I(inode);
2326 struct address_space *mapping = inode->i_mapping;
2327 gfp_t gfp = mapping_gfp_mask(mapping);
2328 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2329 void *page_kaddr;
2330 struct page *page;
2331 int ret;
2332 pgoff_t max_off;
2333
2334 if (!shmem_inode_acct_block(inode, 1)) {
2335 /*
2336 * We may have got a page, returned -ENOENT triggering a retry,
2337 * and now we find ourselves with -ENOMEM. Release the page, to
2338 * avoid a BUG_ON in our caller.
2339 */
2340 if (unlikely(*pagep)) {
2341 put_page(*pagep);
2342 *pagep = NULL;
2343 }
2344 return -ENOMEM;
2345 }
2346
2347 if (!*pagep) {
2348 ret = -ENOMEM;
2349 page = shmem_alloc_page(gfp, info, pgoff);
2350 if (!page)
2351 goto out_unacct_blocks;
2352
2353 if (!zeropage) { /* COPY */
2354 page_kaddr = kmap_atomic(page);
2355 ret = copy_from_user(page_kaddr,
2356 (const void __user *)src_addr,
2357 PAGE_SIZE);
2358 kunmap_atomic(page_kaddr);
2359
2360 /* fallback to copy_from_user outside mmap_lock */
2361 if (unlikely(ret)) {
2362 *pagep = page;
2363 ret = -ENOENT;
2364 /* don't free the page */
2365 goto out_unacct_blocks;
2366 }
2367
2368 flush_dcache_page(page);
2369 } else { /* ZEROPAGE */
2370 clear_user_highpage(page, dst_addr);
2371 }
2372 } else {
2373 page = *pagep;
2374 *pagep = NULL;
2375 }
2376
2377 VM_BUG_ON(PageLocked(page));
2378 VM_BUG_ON(PageSwapBacked(page));
2379 __SetPageLocked(page);
2380 __SetPageSwapBacked(page);
2381 __SetPageUptodate(page);
2382
2383 ret = -EFAULT;
2384 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2385 if (unlikely(pgoff >= max_off))
2386 goto out_release;
2387
2388 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2389 gfp & GFP_RECLAIM_MASK, dst_mm);
2390 if (ret)
2391 goto out_release;
2392
2393 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2394 page, true, false);
2395 if (ret)
2396 goto out_delete_from_cache;
2397
2398 spin_lock_irq(&info->lock);
2399 info->alloced++;
2400 inode->i_blocks += BLOCKS_PER_PAGE;
2401 shmem_recalc_inode(inode);
2402 spin_unlock_irq(&info->lock);
2403
2404 unlock_page(page);
2405 return 0;
2406 out_delete_from_cache:
2407 delete_from_page_cache(page);
2408 out_release:
2409 unlock_page(page);
2410 put_page(page);
2411 out_unacct_blocks:
2412 shmem_inode_unacct_blocks(inode, 1);
2413 return ret;
2414 }
2415 #endif /* CONFIG_USERFAULTFD */
2416
2417 #ifdef CONFIG_TMPFS
2418 static const struct inode_operations shmem_symlink_inode_operations;
2419 static const struct inode_operations shmem_short_symlink_operations;
2420
2421 #ifdef CONFIG_TMPFS_XATTR
2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423 #else
2424 #define shmem_initxattrs NULL
2425 #endif
2426
2427 static int
2428 shmem_write_begin(struct file *file, struct address_space *mapping,
2429 loff_t pos, unsigned len, unsigned flags,
2430 struct page **pagep, void **fsdata)
2431 {
2432 struct inode *inode = mapping->host;
2433 struct shmem_inode_info *info = SHMEM_I(inode);
2434 pgoff_t index = pos >> PAGE_SHIFT;
2435 int ret = 0;
2436
2437 /* i_rwsem is held by caller */
2438 if (unlikely(info->seals & (F_SEAL_GROW |
2439 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2440 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2441 return -EPERM;
2442 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2443 return -EPERM;
2444 }
2445
2446 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2447
2448 if (ret)
2449 return ret;
2450
2451 if (PageHWPoison(*pagep)) {
2452 unlock_page(*pagep);
2453 put_page(*pagep);
2454 *pagep = NULL;
2455 return -EIO;
2456 }
2457
2458 return 0;
2459 }
2460
2461 static int
2462 shmem_write_end(struct file *file, struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
2465 {
2466 struct inode *inode = mapping->host;
2467
2468 if (pos + copied > inode->i_size)
2469 i_size_write(inode, pos + copied);
2470
2471 if (!PageUptodate(page)) {
2472 struct page *head = compound_head(page);
2473 if (PageTransCompound(page)) {
2474 int i;
2475
2476 for (i = 0; i < HPAGE_PMD_NR; i++) {
2477 if (head + i == page)
2478 continue;
2479 clear_highpage(head + i);
2480 flush_dcache_page(head + i);
2481 }
2482 }
2483 if (copied < PAGE_SIZE) {
2484 unsigned from = pos & (PAGE_SIZE - 1);
2485 zero_user_segments(page, 0, from,
2486 from + copied, PAGE_SIZE);
2487 }
2488 SetPageUptodate(head);
2489 }
2490 set_page_dirty(page);
2491 unlock_page(page);
2492 put_page(page);
2493
2494 return copied;
2495 }
2496
2497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2498 {
2499 struct file *file = iocb->ki_filp;
2500 struct inode *inode = file_inode(file);
2501 struct address_space *mapping = inode->i_mapping;
2502 pgoff_t index;
2503 unsigned long offset;
2504 int error = 0;
2505 ssize_t retval = 0;
2506 loff_t *ppos = &iocb->ki_pos;
2507
2508 index = *ppos >> PAGE_SHIFT;
2509 offset = *ppos & ~PAGE_MASK;
2510
2511 for (;;) {
2512 struct page *page = NULL;
2513 pgoff_t end_index;
2514 unsigned long nr, ret;
2515 loff_t i_size = i_size_read(inode);
2516 bool got_page;
2517
2518 end_index = i_size >> PAGE_SHIFT;
2519 if (index > end_index)
2520 break;
2521 if (index == end_index) {
2522 nr = i_size & ~PAGE_MASK;
2523 if (nr <= offset)
2524 break;
2525 }
2526
2527 error = shmem_getpage(inode, index, &page, SGP_READ);
2528 if (error) {
2529 if (error == -EINVAL)
2530 error = 0;
2531 break;
2532 }
2533 if (page) {
2534 unlock_page(page);
2535
2536 if (PageHWPoison(page)) {
2537 put_page(page);
2538 error = -EIO;
2539 break;
2540 }
2541 }
2542
2543 /*
2544 * We must evaluate after, since reads (unlike writes)
2545 * are called without i_rwsem protection against truncate
2546 */
2547 nr = PAGE_SIZE;
2548 i_size = i_size_read(inode);
2549 end_index = i_size >> PAGE_SHIFT;
2550 if (index == end_index) {
2551 nr = i_size & ~PAGE_MASK;
2552 if (nr <= offset) {
2553 if (page)
2554 put_page(page);
2555 break;
2556 }
2557 }
2558 nr -= offset;
2559
2560 if (page) {
2561 /*
2562 * If users can be writing to this page using arbitrary
2563 * virtual addresses, take care about potential aliasing
2564 * before reading the page on the kernel side.
2565 */
2566 if (mapping_writably_mapped(mapping))
2567 flush_dcache_page(page);
2568 /*
2569 * Mark the page accessed if we read the beginning.
2570 */
2571 if (!offset)
2572 mark_page_accessed(page);
2573 got_page = true;
2574 } else {
2575 page = ZERO_PAGE(0);
2576 got_page = false;
2577 }
2578
2579 /*
2580 * Ok, we have the page, and it's up-to-date, so
2581 * now we can copy it to user space...
2582 */
2583 ret = copy_page_to_iter(page, offset, nr, to);
2584 retval += ret;
2585 offset += ret;
2586 index += offset >> PAGE_SHIFT;
2587 offset &= ~PAGE_MASK;
2588
2589 if (got_page)
2590 put_page(page);
2591 if (!iov_iter_count(to))
2592 break;
2593 if (ret < nr) {
2594 error = -EFAULT;
2595 break;
2596 }
2597 cond_resched();
2598 }
2599
2600 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2601 file_accessed(file);
2602 return retval ? retval : error;
2603 }
2604
2605 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2606 {
2607 struct address_space *mapping = file->f_mapping;
2608 struct inode *inode = mapping->host;
2609
2610 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2611 return generic_file_llseek_size(file, offset, whence,
2612 MAX_LFS_FILESIZE, i_size_read(inode));
2613 if (offset < 0)
2614 return -ENXIO;
2615
2616 inode_lock(inode);
2617 /* We're holding i_rwsem so we can access i_size directly */
2618 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2619 if (offset >= 0)
2620 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2621 inode_unlock(inode);
2622 return offset;
2623 }
2624
2625 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2626 loff_t len)
2627 {
2628 struct inode *inode = file_inode(file);
2629 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2630 struct shmem_inode_info *info = SHMEM_I(inode);
2631 struct shmem_falloc shmem_falloc;
2632 pgoff_t start, index, end, undo_fallocend;
2633 int error;
2634
2635 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2636 return -EOPNOTSUPP;
2637
2638 inode_lock(inode);
2639
2640 if (mode & FALLOC_FL_PUNCH_HOLE) {
2641 struct address_space *mapping = file->f_mapping;
2642 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2643 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2645
2646 /* protected by i_rwsem */
2647 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2648 error = -EPERM;
2649 goto out;
2650 }
2651
2652 shmem_falloc.waitq = &shmem_falloc_waitq;
2653 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2654 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2655 spin_lock(&inode->i_lock);
2656 inode->i_private = &shmem_falloc;
2657 spin_unlock(&inode->i_lock);
2658
2659 if ((u64)unmap_end > (u64)unmap_start)
2660 unmap_mapping_range(mapping, unmap_start,
2661 1 + unmap_end - unmap_start, 0);
2662 shmem_truncate_range(inode, offset, offset + len - 1);
2663 /* No need to unmap again: hole-punching leaves COWed pages */
2664
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = NULL;
2667 wake_up_all(&shmem_falloc_waitq);
2668 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2669 spin_unlock(&inode->i_lock);
2670 error = 0;
2671 goto out;
2672 }
2673
2674 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2675 error = inode_newsize_ok(inode, offset + len);
2676 if (error)
2677 goto out;
2678
2679 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2680 error = -EPERM;
2681 goto out;
2682 }
2683
2684 start = offset >> PAGE_SHIFT;
2685 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2686 /* Try to avoid a swapstorm if len is impossible to satisfy */
2687 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2688 error = -ENOSPC;
2689 goto out;
2690 }
2691
2692 shmem_falloc.waitq = NULL;
2693 shmem_falloc.start = start;
2694 shmem_falloc.next = start;
2695 shmem_falloc.nr_falloced = 0;
2696 shmem_falloc.nr_unswapped = 0;
2697 spin_lock(&inode->i_lock);
2698 inode->i_private = &shmem_falloc;
2699 spin_unlock(&inode->i_lock);
2700
2701 /*
2702 * info->fallocend is only relevant when huge pages might be
2703 * involved: to prevent split_huge_page() freeing fallocated
2704 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2705 */
2706 undo_fallocend = info->fallocend;
2707 if (info->fallocend < end)
2708 info->fallocend = end;
2709
2710 for (index = start; index < end; ) {
2711 struct page *page;
2712
2713 /*
2714 * Good, the fallocate(2) manpage permits EINTR: we may have
2715 * been interrupted because we are using up too much memory.
2716 */
2717 if (signal_pending(current))
2718 error = -EINTR;
2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2720 error = -ENOMEM;
2721 else
2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2723 if (error) {
2724 info->fallocend = undo_fallocend;
2725 /* Remove the !PageUptodate pages we added */
2726 if (index > start) {
2727 shmem_undo_range(inode,
2728 (loff_t)start << PAGE_SHIFT,
2729 ((loff_t)index << PAGE_SHIFT) - 1, true);
2730 }
2731 goto undone;
2732 }
2733
2734 index++;
2735 /*
2736 * Here is a more important optimization than it appears:
2737 * a second SGP_FALLOC on the same huge page will clear it,
2738 * making it PageUptodate and un-undoable if we fail later.
2739 */
2740 if (PageTransCompound(page)) {
2741 index = round_up(index, HPAGE_PMD_NR);
2742 /* Beware 32-bit wraparound */
2743 if (!index)
2744 index--;
2745 }
2746
2747 /*
2748 * Inform shmem_writepage() how far we have reached.
2749 * No need for lock or barrier: we have the page lock.
2750 */
2751 if (!PageUptodate(page))
2752 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2753 shmem_falloc.next = index;
2754
2755 /*
2756 * If !PageUptodate, leave it that way so that freeable pages
2757 * can be recognized if we need to rollback on error later.
2758 * But set_page_dirty so that memory pressure will swap rather
2759 * than free the pages we are allocating (and SGP_CACHE pages
2760 * might still be clean: we now need to mark those dirty too).
2761 */
2762 set_page_dirty(page);
2763 unlock_page(page);
2764 put_page(page);
2765 cond_resched();
2766 }
2767
2768 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2769 i_size_write(inode, offset + len);
2770 inode->i_ctime = current_time(inode);
2771 undone:
2772 spin_lock(&inode->i_lock);
2773 inode->i_private = NULL;
2774 spin_unlock(&inode->i_lock);
2775 out:
2776 inode_unlock(inode);
2777 return error;
2778 }
2779
2780 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2781 {
2782 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2783
2784 buf->f_type = TMPFS_MAGIC;
2785 buf->f_bsize = PAGE_SIZE;
2786 buf->f_namelen = NAME_MAX;
2787 if (sbinfo->max_blocks) {
2788 buf->f_blocks = sbinfo->max_blocks;
2789 buf->f_bavail =
2790 buf->f_bfree = sbinfo->max_blocks -
2791 percpu_counter_sum(&sbinfo->used_blocks);
2792 }
2793 if (sbinfo->max_inodes) {
2794 buf->f_files = sbinfo->max_inodes;
2795 buf->f_ffree = sbinfo->free_inodes;
2796 }
2797 /* else leave those fields 0 like simple_statfs */
2798
2799 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * File creation. Allocate an inode, and we're done..
2806 */
2807 static int
2808 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2809 struct dentry *dentry, umode_t mode, dev_t dev)
2810 {
2811 struct inode *inode;
2812 int error = -ENOSPC;
2813
2814 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2815 if (inode) {
2816 error = simple_acl_create(dir, inode);
2817 if (error)
2818 goto out_iput;
2819 error = security_inode_init_security(inode, dir,
2820 &dentry->d_name,
2821 shmem_initxattrs, NULL);
2822 if (error && error != -EOPNOTSUPP)
2823 goto out_iput;
2824
2825 error = 0;
2826 dir->i_size += BOGO_DIRENT_SIZE;
2827 dir->i_ctime = dir->i_mtime = current_time(dir);
2828 d_instantiate(dentry, inode);
2829 dget(dentry); /* Extra count - pin the dentry in core */
2830 }
2831 return error;
2832 out_iput:
2833 iput(inode);
2834 return error;
2835 }
2836
2837 static int
2838 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2839 struct dentry *dentry, umode_t mode)
2840 {
2841 struct inode *inode;
2842 int error = -ENOSPC;
2843
2844 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2845 if (inode) {
2846 error = security_inode_init_security(inode, dir,
2847 NULL,
2848 shmem_initxattrs, NULL);
2849 if (error && error != -EOPNOTSUPP)
2850 goto out_iput;
2851 error = simple_acl_create(dir, inode);
2852 if (error)
2853 goto out_iput;
2854 d_tmpfile(dentry, inode);
2855 }
2856 return error;
2857 out_iput:
2858 iput(inode);
2859 return error;
2860 }
2861
2862 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2863 struct dentry *dentry, umode_t mode)
2864 {
2865 int error;
2866
2867 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2868 mode | S_IFDIR, 0)))
2869 return error;
2870 inc_nlink(dir);
2871 return 0;
2872 }
2873
2874 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2875 struct dentry *dentry, umode_t mode, bool excl)
2876 {
2877 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2878 }
2879
2880 /*
2881 * Link a file..
2882 */
2883 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2884 {
2885 struct inode *inode = d_inode(old_dentry);
2886 int ret = 0;
2887
2888 /*
2889 * No ordinary (disk based) filesystem counts links as inodes;
2890 * but each new link needs a new dentry, pinning lowmem, and
2891 * tmpfs dentries cannot be pruned until they are unlinked.
2892 * But if an O_TMPFILE file is linked into the tmpfs, the
2893 * first link must skip that, to get the accounting right.
2894 */
2895 if (inode->i_nlink) {
2896 ret = shmem_reserve_inode(inode->i_sb, NULL);
2897 if (ret)
2898 goto out;
2899 }
2900
2901 dir->i_size += BOGO_DIRENT_SIZE;
2902 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2903 inc_nlink(inode);
2904 ihold(inode); /* New dentry reference */
2905 dget(dentry); /* Extra pinning count for the created dentry */
2906 d_instantiate(dentry, inode);
2907 out:
2908 return ret;
2909 }
2910
2911 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2912 {
2913 struct inode *inode = d_inode(dentry);
2914
2915 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2916 shmem_free_inode(inode->i_sb);
2917
2918 dir->i_size -= BOGO_DIRENT_SIZE;
2919 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2920 drop_nlink(inode);
2921 dput(dentry); /* Undo the count from "create" - this does all the work */
2922 return 0;
2923 }
2924
2925 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2926 {
2927 if (!simple_empty(dentry))
2928 return -ENOTEMPTY;
2929
2930 drop_nlink(d_inode(dentry));
2931 drop_nlink(dir);
2932 return shmem_unlink(dir, dentry);
2933 }
2934
2935 static int shmem_whiteout(struct user_namespace *mnt_userns,
2936 struct inode *old_dir, struct dentry *old_dentry)
2937 {
2938 struct dentry *whiteout;
2939 int error;
2940
2941 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942 if (!whiteout)
2943 return -ENOMEM;
2944
2945 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2946 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947 dput(whiteout);
2948 if (error)
2949 return error;
2950
2951 /*
2952 * Cheat and hash the whiteout while the old dentry is still in
2953 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954 *
2955 * d_lookup() will consistently find one of them at this point,
2956 * not sure which one, but that isn't even important.
2957 */
2958 d_rehash(whiteout);
2959 return 0;
2960 }
2961
2962 /*
2963 * The VFS layer already does all the dentry stuff for rename,
2964 * we just have to decrement the usage count for the target if
2965 * it exists so that the VFS layer correctly free's it when it
2966 * gets overwritten.
2967 */
2968 static int shmem_rename2(struct user_namespace *mnt_userns,
2969 struct inode *old_dir, struct dentry *old_dentry,
2970 struct inode *new_dir, struct dentry *new_dentry,
2971 unsigned int flags)
2972 {
2973 struct inode *inode = d_inode(old_dentry);
2974 int they_are_dirs = S_ISDIR(inode->i_mode);
2975
2976 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2977 return -EINVAL;
2978
2979 if (flags & RENAME_EXCHANGE)
2980 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2981
2982 if (!simple_empty(new_dentry))
2983 return -ENOTEMPTY;
2984
2985 if (flags & RENAME_WHITEOUT) {
2986 int error;
2987
2988 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2989 if (error)
2990 return error;
2991 }
2992
2993 if (d_really_is_positive(new_dentry)) {
2994 (void) shmem_unlink(new_dir, new_dentry);
2995 if (they_are_dirs) {
2996 drop_nlink(d_inode(new_dentry));
2997 drop_nlink(old_dir);
2998 }
2999 } else if (they_are_dirs) {
3000 drop_nlink(old_dir);
3001 inc_nlink(new_dir);
3002 }
3003
3004 old_dir->i_size -= BOGO_DIRENT_SIZE;
3005 new_dir->i_size += BOGO_DIRENT_SIZE;
3006 old_dir->i_ctime = old_dir->i_mtime =
3007 new_dir->i_ctime = new_dir->i_mtime =
3008 inode->i_ctime = current_time(old_dir);
3009 return 0;
3010 }
3011
3012 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3013 struct dentry *dentry, const char *symname)
3014 {
3015 int error;
3016 int len;
3017 struct inode *inode;
3018 struct page *page;
3019
3020 len = strlen(symname) + 1;
3021 if (len > PAGE_SIZE)
3022 return -ENAMETOOLONG;
3023
3024 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3025 VM_NORESERVE);
3026 if (!inode)
3027 return -ENOSPC;
3028
3029 error = security_inode_init_security(inode, dir, &dentry->d_name,
3030 shmem_initxattrs, NULL);
3031 if (error && error != -EOPNOTSUPP) {
3032 iput(inode);
3033 return error;
3034 }
3035
3036 inode->i_size = len-1;
3037 if (len <= SHORT_SYMLINK_LEN) {
3038 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3039 if (!inode->i_link) {
3040 iput(inode);
3041 return -ENOMEM;
3042 }
3043 inode->i_op = &shmem_short_symlink_operations;
3044 } else {
3045 inode_nohighmem(inode);
3046 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3047 if (error) {
3048 iput(inode);
3049 return error;
3050 }
3051 inode->i_mapping->a_ops = &shmem_aops;
3052 inode->i_op = &shmem_symlink_inode_operations;
3053 memcpy(page_address(page), symname, len);
3054 SetPageUptodate(page);
3055 set_page_dirty(page);
3056 unlock_page(page);
3057 put_page(page);
3058 }
3059 dir->i_size += BOGO_DIRENT_SIZE;
3060 dir->i_ctime = dir->i_mtime = current_time(dir);
3061 d_instantiate(dentry, inode);
3062 dget(dentry);
3063 return 0;
3064 }
3065
3066 static void shmem_put_link(void *arg)
3067 {
3068 mark_page_accessed(arg);
3069 put_page(arg);
3070 }
3071
3072 static const char *shmem_get_link(struct dentry *dentry,
3073 struct inode *inode,
3074 struct delayed_call *done)
3075 {
3076 struct page *page = NULL;
3077 int error;
3078 if (!dentry) {
3079 page = find_get_page(inode->i_mapping, 0);
3080 if (!page)
3081 return ERR_PTR(-ECHILD);
3082 if (PageHWPoison(page) ||
3083 !PageUptodate(page)) {
3084 put_page(page);
3085 return ERR_PTR(-ECHILD);
3086 }
3087 } else {
3088 error = shmem_getpage(inode, 0, &page, SGP_READ);
3089 if (error)
3090 return ERR_PTR(error);
3091 if (!page)
3092 return ERR_PTR(-ECHILD);
3093 if (PageHWPoison(page)) {
3094 unlock_page(page);
3095 put_page(page);
3096 return ERR_PTR(-ECHILD);
3097 }
3098 unlock_page(page);
3099 }
3100 set_delayed_call(done, shmem_put_link, page);
3101 return page_address(page);
3102 }
3103
3104 #ifdef CONFIG_TMPFS_XATTR
3105 /*
3106 * Superblocks without xattr inode operations may get some security.* xattr
3107 * support from the LSM "for free". As soon as we have any other xattrs
3108 * like ACLs, we also need to implement the security.* handlers at
3109 * filesystem level, though.
3110 */
3111
3112 /*
3113 * Callback for security_inode_init_security() for acquiring xattrs.
3114 */
3115 static int shmem_initxattrs(struct inode *inode,
3116 const struct xattr *xattr_array,
3117 void *fs_info)
3118 {
3119 struct shmem_inode_info *info = SHMEM_I(inode);
3120 const struct xattr *xattr;
3121 struct simple_xattr *new_xattr;
3122 size_t len;
3123
3124 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3125 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3126 if (!new_xattr)
3127 return -ENOMEM;
3128
3129 len = strlen(xattr->name) + 1;
3130 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3131 GFP_KERNEL);
3132 if (!new_xattr->name) {
3133 kvfree(new_xattr);
3134 return -ENOMEM;
3135 }
3136
3137 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3138 XATTR_SECURITY_PREFIX_LEN);
3139 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3140 xattr->name, len);
3141
3142 simple_xattr_list_add(&info->xattrs, new_xattr);
3143 }
3144
3145 return 0;
3146 }
3147
3148 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3149 struct dentry *unused, struct inode *inode,
3150 const char *name, void *buffer, size_t size)
3151 {
3152 struct shmem_inode_info *info = SHMEM_I(inode);
3153
3154 name = xattr_full_name(handler, name);
3155 return simple_xattr_get(&info->xattrs, name, buffer, size);
3156 }
3157
3158 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3159 struct user_namespace *mnt_userns,
3160 struct dentry *unused, struct inode *inode,
3161 const char *name, const void *value,
3162 size_t size, int flags)
3163 {
3164 struct shmem_inode_info *info = SHMEM_I(inode);
3165
3166 name = xattr_full_name(handler, name);
3167 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3168 }
3169
3170 static const struct xattr_handler shmem_security_xattr_handler = {
3171 .prefix = XATTR_SECURITY_PREFIX,
3172 .get = shmem_xattr_handler_get,
3173 .set = shmem_xattr_handler_set,
3174 };
3175
3176 static const struct xattr_handler shmem_trusted_xattr_handler = {
3177 .prefix = XATTR_TRUSTED_PREFIX,
3178 .get = shmem_xattr_handler_get,
3179 .set = shmem_xattr_handler_set,
3180 };
3181
3182 static const struct xattr_handler *shmem_xattr_handlers[] = {
3183 #ifdef CONFIG_TMPFS_POSIX_ACL
3184 &posix_acl_access_xattr_handler,
3185 &posix_acl_default_xattr_handler,
3186 #endif
3187 &shmem_security_xattr_handler,
3188 &shmem_trusted_xattr_handler,
3189 NULL
3190 };
3191
3192 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3193 {
3194 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3195 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3196 }
3197 #endif /* CONFIG_TMPFS_XATTR */
3198
3199 static const struct inode_operations shmem_short_symlink_operations = {
3200 .getattr = shmem_getattr,
3201 .get_link = simple_get_link,
3202 #ifdef CONFIG_TMPFS_XATTR
3203 .listxattr = shmem_listxattr,
3204 #endif
3205 };
3206
3207 static const struct inode_operations shmem_symlink_inode_operations = {
3208 .getattr = shmem_getattr,
3209 .get_link = shmem_get_link,
3210 #ifdef CONFIG_TMPFS_XATTR
3211 .listxattr = shmem_listxattr,
3212 #endif
3213 };
3214
3215 static struct dentry *shmem_get_parent(struct dentry *child)
3216 {
3217 return ERR_PTR(-ESTALE);
3218 }
3219
3220 static int shmem_match(struct inode *ino, void *vfh)
3221 {
3222 __u32 *fh = vfh;
3223 __u64 inum = fh[2];
3224 inum = (inum << 32) | fh[1];
3225 return ino->i_ino == inum && fh[0] == ino->i_generation;
3226 }
3227
3228 /* Find any alias of inode, but prefer a hashed alias */
3229 static struct dentry *shmem_find_alias(struct inode *inode)
3230 {
3231 struct dentry *alias = d_find_alias(inode);
3232
3233 return alias ?: d_find_any_alias(inode);
3234 }
3235
3236
3237 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3238 struct fid *fid, int fh_len, int fh_type)
3239 {
3240 struct inode *inode;
3241 struct dentry *dentry = NULL;
3242 u64 inum;
3243
3244 if (fh_len < 3)
3245 return NULL;
3246
3247 inum = fid->raw[2];
3248 inum = (inum << 32) | fid->raw[1];
3249
3250 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3251 shmem_match, fid->raw);
3252 if (inode) {
3253 dentry = shmem_find_alias(inode);
3254 iput(inode);
3255 }
3256
3257 return dentry;
3258 }
3259
3260 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3261 struct inode *parent)
3262 {
3263 if (*len < 3) {
3264 *len = 3;
3265 return FILEID_INVALID;
3266 }
3267
3268 if (inode_unhashed(inode)) {
3269 /* Unfortunately insert_inode_hash is not idempotent,
3270 * so as we hash inodes here rather than at creation
3271 * time, we need a lock to ensure we only try
3272 * to do it once
3273 */
3274 static DEFINE_SPINLOCK(lock);
3275 spin_lock(&lock);
3276 if (inode_unhashed(inode))
3277 __insert_inode_hash(inode,
3278 inode->i_ino + inode->i_generation);
3279 spin_unlock(&lock);
3280 }
3281
3282 fh[0] = inode->i_generation;
3283 fh[1] = inode->i_ino;
3284 fh[2] = ((__u64)inode->i_ino) >> 32;
3285
3286 *len = 3;
3287 return 1;
3288 }
3289
3290 static const struct export_operations shmem_export_ops = {
3291 .get_parent = shmem_get_parent,
3292 .encode_fh = shmem_encode_fh,
3293 .fh_to_dentry = shmem_fh_to_dentry,
3294 };
3295
3296 enum shmem_param {
3297 Opt_gid,
3298 Opt_huge,
3299 Opt_mode,
3300 Opt_mpol,
3301 Opt_nr_blocks,
3302 Opt_nr_inodes,
3303 Opt_size,
3304 Opt_uid,
3305 Opt_inode32,
3306 Opt_inode64,
3307 };
3308
3309 static const struct constant_table shmem_param_enums_huge[] = {
3310 {"never", SHMEM_HUGE_NEVER },
3311 {"always", SHMEM_HUGE_ALWAYS },
3312 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3313 {"advise", SHMEM_HUGE_ADVISE },
3314 {}
3315 };
3316
3317 const struct fs_parameter_spec shmem_fs_parameters[] = {
3318 fsparam_u32 ("gid", Opt_gid),
3319 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3320 fsparam_u32oct("mode", Opt_mode),
3321 fsparam_string("mpol", Opt_mpol),
3322 fsparam_string("nr_blocks", Opt_nr_blocks),
3323 fsparam_string("nr_inodes", Opt_nr_inodes),
3324 fsparam_string("size", Opt_size),
3325 fsparam_u32 ("uid", Opt_uid),
3326 fsparam_flag ("inode32", Opt_inode32),
3327 fsparam_flag ("inode64", Opt_inode64),
3328 {}
3329 };
3330
3331 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3332 {
3333 struct shmem_options *ctx = fc->fs_private;
3334 struct fs_parse_result result;
3335 unsigned long long size;
3336 char *rest;
3337 int opt;
3338
3339 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3340 if (opt < 0)
3341 return opt;
3342
3343 switch (opt) {
3344 case Opt_size:
3345 size = memparse(param->string, &rest);
3346 if (*rest == '%') {
3347 size <<= PAGE_SHIFT;
3348 size *= totalram_pages();
3349 do_div(size, 100);
3350 rest++;
3351 }
3352 if (*rest)
3353 goto bad_value;
3354 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3355 ctx->seen |= SHMEM_SEEN_BLOCKS;
3356 break;
3357 case Opt_nr_blocks:
3358 ctx->blocks = memparse(param->string, &rest);
3359 if (*rest)
3360 goto bad_value;
3361 ctx->seen |= SHMEM_SEEN_BLOCKS;
3362 break;
3363 case Opt_nr_inodes:
3364 ctx->inodes = memparse(param->string, &rest);
3365 if (*rest)
3366 goto bad_value;
3367 ctx->seen |= SHMEM_SEEN_INODES;
3368 break;
3369 case Opt_mode:
3370 ctx->mode = result.uint_32 & 07777;
3371 break;
3372 case Opt_uid:
3373 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3374 if (!uid_valid(ctx->uid))
3375 goto bad_value;
3376 break;
3377 case Opt_gid:
3378 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3379 if (!gid_valid(ctx->gid))
3380 goto bad_value;
3381 break;
3382 case Opt_huge:
3383 ctx->huge = result.uint_32;
3384 if (ctx->huge != SHMEM_HUGE_NEVER &&
3385 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3386 has_transparent_hugepage()))
3387 goto unsupported_parameter;
3388 ctx->seen |= SHMEM_SEEN_HUGE;
3389 break;
3390 case Opt_mpol:
3391 if (IS_ENABLED(CONFIG_NUMA)) {
3392 mpol_put(ctx->mpol);
3393 ctx->mpol = NULL;
3394 if (mpol_parse_str(param->string, &ctx->mpol))
3395 goto bad_value;
3396 break;
3397 }
3398 goto unsupported_parameter;
3399 case Opt_inode32:
3400 ctx->full_inums = false;
3401 ctx->seen |= SHMEM_SEEN_INUMS;
3402 break;
3403 case Opt_inode64:
3404 if (sizeof(ino_t) < 8) {
3405 return invalfc(fc,
3406 "Cannot use inode64 with <64bit inums in kernel\n");
3407 }
3408 ctx->full_inums = true;
3409 ctx->seen |= SHMEM_SEEN_INUMS;
3410 break;
3411 }
3412 return 0;
3413
3414 unsupported_parameter:
3415 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3416 bad_value:
3417 return invalfc(fc, "Bad value for '%s'", param->key);
3418 }
3419
3420 static int shmem_parse_options(struct fs_context *fc, void *data)
3421 {
3422 char *options = data;
3423
3424 if (options) {
3425 int err = security_sb_eat_lsm_opts(options, &fc->security);
3426 if (err)
3427 return err;
3428 }
3429
3430 while (options != NULL) {
3431 char *this_char = options;
3432 for (;;) {
3433 /*
3434 * NUL-terminate this option: unfortunately,
3435 * mount options form a comma-separated list,
3436 * but mpol's nodelist may also contain commas.
3437 */
3438 options = strchr(options, ',');
3439 if (options == NULL)
3440 break;
3441 options++;
3442 if (!isdigit(*options)) {
3443 options[-1] = '\0';
3444 break;
3445 }
3446 }
3447 if (*this_char) {
3448 char *value = strchr(this_char, '=');
3449 size_t len = 0;
3450 int err;
3451
3452 if (value) {
3453 *value++ = '\0';
3454 len = strlen(value);
3455 }
3456 err = vfs_parse_fs_string(fc, this_char, value, len);
3457 if (err < 0)
3458 return err;
3459 }
3460 }
3461 return 0;
3462 }
3463
3464 /*
3465 * Reconfigure a shmem filesystem.
3466 *
3467 * Note that we disallow change from limited->unlimited blocks/inodes while any
3468 * are in use; but we must separately disallow unlimited->limited, because in
3469 * that case we have no record of how much is already in use.
3470 */
3471 static int shmem_reconfigure(struct fs_context *fc)
3472 {
3473 struct shmem_options *ctx = fc->fs_private;
3474 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3475 unsigned long inodes;
3476 struct mempolicy *mpol = NULL;
3477 const char *err;
3478
3479 raw_spin_lock(&sbinfo->stat_lock);
3480 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3481 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3482 if (!sbinfo->max_blocks) {
3483 err = "Cannot retroactively limit size";
3484 goto out;
3485 }
3486 if (percpu_counter_compare(&sbinfo->used_blocks,
3487 ctx->blocks) > 0) {
3488 err = "Too small a size for current use";
3489 goto out;
3490 }
3491 }
3492 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3493 if (!sbinfo->max_inodes) {
3494 err = "Cannot retroactively limit inodes";
3495 goto out;
3496 }
3497 if (ctx->inodes < inodes) {
3498 err = "Too few inodes for current use";
3499 goto out;
3500 }
3501 }
3502
3503 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3504 sbinfo->next_ino > UINT_MAX) {
3505 err = "Current inum too high to switch to 32-bit inums";
3506 goto out;
3507 }
3508
3509 if (ctx->seen & SHMEM_SEEN_HUGE)
3510 sbinfo->huge = ctx->huge;
3511 if (ctx->seen & SHMEM_SEEN_INUMS)
3512 sbinfo->full_inums = ctx->full_inums;
3513 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3514 sbinfo->max_blocks = ctx->blocks;
3515 if (ctx->seen & SHMEM_SEEN_INODES) {
3516 sbinfo->max_inodes = ctx->inodes;
3517 sbinfo->free_inodes = ctx->inodes - inodes;
3518 }
3519
3520 /*
3521 * Preserve previous mempolicy unless mpol remount option was specified.
3522 */
3523 if (ctx->mpol) {
3524 mpol = sbinfo->mpol;
3525 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3526 ctx->mpol = NULL;
3527 }
3528 raw_spin_unlock(&sbinfo->stat_lock);
3529 mpol_put(mpol);
3530 return 0;
3531 out:
3532 raw_spin_unlock(&sbinfo->stat_lock);
3533 return invalfc(fc, "%s", err);
3534 }
3535
3536 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3537 {
3538 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3539
3540 if (sbinfo->max_blocks != shmem_default_max_blocks())
3541 seq_printf(seq, ",size=%luk",
3542 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3543 if (sbinfo->max_inodes != shmem_default_max_inodes())
3544 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3545 if (sbinfo->mode != (0777 | S_ISVTX))
3546 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3547 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3548 seq_printf(seq, ",uid=%u",
3549 from_kuid_munged(&init_user_ns, sbinfo->uid));
3550 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3551 seq_printf(seq, ",gid=%u",
3552 from_kgid_munged(&init_user_ns, sbinfo->gid));
3553
3554 /*
3555 * Showing inode{64,32} might be useful even if it's the system default,
3556 * since then people don't have to resort to checking both here and
3557 * /proc/config.gz to confirm 64-bit inums were successfully applied
3558 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3559 *
3560 * We hide it when inode64 isn't the default and we are using 32-bit
3561 * inodes, since that probably just means the feature isn't even under
3562 * consideration.
3563 *
3564 * As such:
3565 *
3566 * +-----------------+-----------------+
3567 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3568 * +------------------+-----------------+-----------------+
3569 * | full_inums=true | show | show |
3570 * | full_inums=false | show | hide |
3571 * +------------------+-----------------+-----------------+
3572 *
3573 */
3574 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3575 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3577 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3578 if (sbinfo->huge)
3579 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3580 #endif
3581 shmem_show_mpol(seq, sbinfo->mpol);
3582 return 0;
3583 }
3584
3585 #endif /* CONFIG_TMPFS */
3586
3587 static void shmem_put_super(struct super_block *sb)
3588 {
3589 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3590
3591 free_percpu(sbinfo->ino_batch);
3592 percpu_counter_destroy(&sbinfo->used_blocks);
3593 mpol_put(sbinfo->mpol);
3594 kfree(sbinfo);
3595 sb->s_fs_info = NULL;
3596 }
3597
3598 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3599 {
3600 struct shmem_options *ctx = fc->fs_private;
3601 struct inode *inode;
3602 struct shmem_sb_info *sbinfo;
3603
3604 /* Round up to L1_CACHE_BYTES to resist false sharing */
3605 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3606 L1_CACHE_BYTES), GFP_KERNEL);
3607 if (!sbinfo)
3608 return -ENOMEM;
3609
3610 sb->s_fs_info = sbinfo;
3611
3612 #ifdef CONFIG_TMPFS
3613 /*
3614 * Per default we only allow half of the physical ram per
3615 * tmpfs instance, limiting inodes to one per page of lowmem;
3616 * but the internal instance is left unlimited.
3617 */
3618 if (!(sb->s_flags & SB_KERNMOUNT)) {
3619 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3620 ctx->blocks = shmem_default_max_blocks();
3621 if (!(ctx->seen & SHMEM_SEEN_INODES))
3622 ctx->inodes = shmem_default_max_inodes();
3623 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3624 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3625 } else {
3626 sb->s_flags |= SB_NOUSER;
3627 }
3628 sb->s_export_op = &shmem_export_ops;
3629 sb->s_flags |= SB_NOSEC;
3630 #else
3631 sb->s_flags |= SB_NOUSER;
3632 #endif
3633 sbinfo->max_blocks = ctx->blocks;
3634 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3635 if (sb->s_flags & SB_KERNMOUNT) {
3636 sbinfo->ino_batch = alloc_percpu(ino_t);
3637 if (!sbinfo->ino_batch)
3638 goto failed;
3639 }
3640 sbinfo->uid = ctx->uid;
3641 sbinfo->gid = ctx->gid;
3642 sbinfo->full_inums = ctx->full_inums;
3643 sbinfo->mode = ctx->mode;
3644 sbinfo->huge = ctx->huge;
3645 sbinfo->mpol = ctx->mpol;
3646 ctx->mpol = NULL;
3647
3648 raw_spin_lock_init(&sbinfo->stat_lock);
3649 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3650 goto failed;
3651 spin_lock_init(&sbinfo->shrinklist_lock);
3652 INIT_LIST_HEAD(&sbinfo->shrinklist);
3653
3654 sb->s_maxbytes = MAX_LFS_FILESIZE;
3655 sb->s_blocksize = PAGE_SIZE;
3656 sb->s_blocksize_bits = PAGE_SHIFT;
3657 sb->s_magic = TMPFS_MAGIC;
3658 sb->s_op = &shmem_ops;
3659 sb->s_time_gran = 1;
3660 #ifdef CONFIG_TMPFS_XATTR
3661 sb->s_xattr = shmem_xattr_handlers;
3662 #endif
3663 #ifdef CONFIG_TMPFS_POSIX_ACL
3664 sb->s_flags |= SB_POSIXACL;
3665 #endif
3666 uuid_gen(&sb->s_uuid);
3667
3668 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3669 if (!inode)
3670 goto failed;
3671 inode->i_uid = sbinfo->uid;
3672 inode->i_gid = sbinfo->gid;
3673 sb->s_root = d_make_root(inode);
3674 if (!sb->s_root)
3675 goto failed;
3676 return 0;
3677
3678 failed:
3679 shmem_put_super(sb);
3680 return -ENOMEM;
3681 }
3682
3683 static int shmem_get_tree(struct fs_context *fc)
3684 {
3685 return get_tree_nodev(fc, shmem_fill_super);
3686 }
3687
3688 static void shmem_free_fc(struct fs_context *fc)
3689 {
3690 struct shmem_options *ctx = fc->fs_private;
3691
3692 if (ctx) {
3693 mpol_put(ctx->mpol);
3694 kfree(ctx);
3695 }
3696 }
3697
3698 static const struct fs_context_operations shmem_fs_context_ops = {
3699 .free = shmem_free_fc,
3700 .get_tree = shmem_get_tree,
3701 #ifdef CONFIG_TMPFS
3702 .parse_monolithic = shmem_parse_options,
3703 .parse_param = shmem_parse_one,
3704 .reconfigure = shmem_reconfigure,
3705 #endif
3706 };
3707
3708 static struct kmem_cache *shmem_inode_cachep;
3709
3710 static struct inode *shmem_alloc_inode(struct super_block *sb)
3711 {
3712 struct shmem_inode_info *info;
3713 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3714 if (!info)
3715 return NULL;
3716 return &info->vfs_inode;
3717 }
3718
3719 static void shmem_free_in_core_inode(struct inode *inode)
3720 {
3721 if (S_ISLNK(inode->i_mode))
3722 kfree(inode->i_link);
3723 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3724 }
3725
3726 static void shmem_destroy_inode(struct inode *inode)
3727 {
3728 if (S_ISREG(inode->i_mode))
3729 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3730 }
3731
3732 static void shmem_init_inode(void *foo)
3733 {
3734 struct shmem_inode_info *info = foo;
3735 inode_init_once(&info->vfs_inode);
3736 }
3737
3738 static void shmem_init_inodecache(void)
3739 {
3740 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3741 sizeof(struct shmem_inode_info),
3742 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3743 }
3744
3745 static void shmem_destroy_inodecache(void)
3746 {
3747 kmem_cache_destroy(shmem_inode_cachep);
3748 }
3749
3750 /* Keep the page in page cache instead of truncating it */
3751 static int shmem_error_remove_page(struct address_space *mapping,
3752 struct page *page)
3753 {
3754 return 0;
3755 }
3756
3757 const struct address_space_operations shmem_aops = {
3758 .writepage = shmem_writepage,
3759 .dirty_folio = noop_dirty_folio,
3760 #ifdef CONFIG_TMPFS
3761 .write_begin = shmem_write_begin,
3762 .write_end = shmem_write_end,
3763 #endif
3764 #ifdef CONFIG_MIGRATION
3765 .migratepage = migrate_page,
3766 #endif
3767 .error_remove_page = shmem_error_remove_page,
3768 };
3769 EXPORT_SYMBOL(shmem_aops);
3770
3771 static const struct file_operations shmem_file_operations = {
3772 .mmap = shmem_mmap,
3773 .get_unmapped_area = shmem_get_unmapped_area,
3774 #ifdef CONFIG_TMPFS
3775 .llseek = shmem_file_llseek,
3776 .read_iter = shmem_file_read_iter,
3777 .write_iter = generic_file_write_iter,
3778 .fsync = noop_fsync,
3779 .splice_read = generic_file_splice_read,
3780 .splice_write = iter_file_splice_write,
3781 .fallocate = shmem_fallocate,
3782 #endif
3783 };
3784
3785 static const struct inode_operations shmem_inode_operations = {
3786 .getattr = shmem_getattr,
3787 .setattr = shmem_setattr,
3788 #ifdef CONFIG_TMPFS_XATTR
3789 .listxattr = shmem_listxattr,
3790 .set_acl = simple_set_acl,
3791 #endif
3792 };
3793
3794 static const struct inode_operations shmem_dir_inode_operations = {
3795 #ifdef CONFIG_TMPFS
3796 .getattr = shmem_getattr,
3797 .create = shmem_create,
3798 .lookup = simple_lookup,
3799 .link = shmem_link,
3800 .unlink = shmem_unlink,
3801 .symlink = shmem_symlink,
3802 .mkdir = shmem_mkdir,
3803 .rmdir = shmem_rmdir,
3804 .mknod = shmem_mknod,
3805 .rename = shmem_rename2,
3806 .tmpfile = shmem_tmpfile,
3807 #endif
3808 #ifdef CONFIG_TMPFS_XATTR
3809 .listxattr = shmem_listxattr,
3810 #endif
3811 #ifdef CONFIG_TMPFS_POSIX_ACL
3812 .setattr = shmem_setattr,
3813 .set_acl = simple_set_acl,
3814 #endif
3815 };
3816
3817 static const struct inode_operations shmem_special_inode_operations = {
3818 .getattr = shmem_getattr,
3819 #ifdef CONFIG_TMPFS_XATTR
3820 .listxattr = shmem_listxattr,
3821 #endif
3822 #ifdef CONFIG_TMPFS_POSIX_ACL
3823 .setattr = shmem_setattr,
3824 .set_acl = simple_set_acl,
3825 #endif
3826 };
3827
3828 static const struct super_operations shmem_ops = {
3829 .alloc_inode = shmem_alloc_inode,
3830 .free_inode = shmem_free_in_core_inode,
3831 .destroy_inode = shmem_destroy_inode,
3832 #ifdef CONFIG_TMPFS
3833 .statfs = shmem_statfs,
3834 .show_options = shmem_show_options,
3835 #endif
3836 .evict_inode = shmem_evict_inode,
3837 .drop_inode = generic_delete_inode,
3838 .put_super = shmem_put_super,
3839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3840 .nr_cached_objects = shmem_unused_huge_count,
3841 .free_cached_objects = shmem_unused_huge_scan,
3842 #endif
3843 };
3844
3845 static const struct vm_operations_struct shmem_vm_ops = {
3846 .fault = shmem_fault,
3847 .map_pages = filemap_map_pages,
3848 #ifdef CONFIG_NUMA
3849 .set_policy = shmem_set_policy,
3850 .get_policy = shmem_get_policy,
3851 #endif
3852 };
3853
3854 int shmem_init_fs_context(struct fs_context *fc)
3855 {
3856 struct shmem_options *ctx;
3857
3858 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3859 if (!ctx)
3860 return -ENOMEM;
3861
3862 ctx->mode = 0777 | S_ISVTX;
3863 ctx->uid = current_fsuid();
3864 ctx->gid = current_fsgid();
3865
3866 fc->fs_private = ctx;
3867 fc->ops = &shmem_fs_context_ops;
3868 return 0;
3869 }
3870
3871 static struct file_system_type shmem_fs_type = {
3872 .owner = THIS_MODULE,
3873 .name = "tmpfs",
3874 .init_fs_context = shmem_init_fs_context,
3875 #ifdef CONFIG_TMPFS
3876 .parameters = shmem_fs_parameters,
3877 #endif
3878 .kill_sb = kill_litter_super,
3879 .fs_flags = FS_USERNS_MOUNT,
3880 };
3881
3882 int __init shmem_init(void)
3883 {
3884 int error;
3885
3886 shmem_init_inodecache();
3887
3888 error = register_filesystem(&shmem_fs_type);
3889 if (error) {
3890 pr_err("Could not register tmpfs\n");
3891 goto out2;
3892 }
3893
3894 shm_mnt = kern_mount(&shmem_fs_type);
3895 if (IS_ERR(shm_mnt)) {
3896 error = PTR_ERR(shm_mnt);
3897 pr_err("Could not kern_mount tmpfs\n");
3898 goto out1;
3899 }
3900
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3903 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3904 else
3905 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3906 #endif
3907 return 0;
3908
3909 out1:
3910 unregister_filesystem(&shmem_fs_type);
3911 out2:
3912 shmem_destroy_inodecache();
3913 shm_mnt = ERR_PTR(error);
3914 return error;
3915 }
3916
3917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3918 static ssize_t shmem_enabled_show(struct kobject *kobj,
3919 struct kobj_attribute *attr, char *buf)
3920 {
3921 static const int values[] = {
3922 SHMEM_HUGE_ALWAYS,
3923 SHMEM_HUGE_WITHIN_SIZE,
3924 SHMEM_HUGE_ADVISE,
3925 SHMEM_HUGE_NEVER,
3926 SHMEM_HUGE_DENY,
3927 SHMEM_HUGE_FORCE,
3928 };
3929 int len = 0;
3930 int i;
3931
3932 for (i = 0; i < ARRAY_SIZE(values); i++) {
3933 len += sysfs_emit_at(buf, len,
3934 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3935 i ? " " : "",
3936 shmem_format_huge(values[i]));
3937 }
3938
3939 len += sysfs_emit_at(buf, len, "\n");
3940
3941 return len;
3942 }
3943
3944 static ssize_t shmem_enabled_store(struct kobject *kobj,
3945 struct kobj_attribute *attr, const char *buf, size_t count)
3946 {
3947 char tmp[16];
3948 int huge;
3949
3950 if (count + 1 > sizeof(tmp))
3951 return -EINVAL;
3952 memcpy(tmp, buf, count);
3953 tmp[count] = '\0';
3954 if (count && tmp[count - 1] == '\n')
3955 tmp[count - 1] = '\0';
3956
3957 huge = shmem_parse_huge(tmp);
3958 if (huge == -EINVAL)
3959 return -EINVAL;
3960 if (!has_transparent_hugepage() &&
3961 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3962 return -EINVAL;
3963
3964 shmem_huge = huge;
3965 if (shmem_huge > SHMEM_HUGE_DENY)
3966 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3967 return count;
3968 }
3969
3970 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
3971 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3972
3973 #else /* !CONFIG_SHMEM */
3974
3975 /*
3976 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3977 *
3978 * This is intended for small system where the benefits of the full
3979 * shmem code (swap-backed and resource-limited) are outweighed by
3980 * their complexity. On systems without swap this code should be
3981 * effectively equivalent, but much lighter weight.
3982 */
3983
3984 static struct file_system_type shmem_fs_type = {
3985 .name = "tmpfs",
3986 .init_fs_context = ramfs_init_fs_context,
3987 .parameters = ramfs_fs_parameters,
3988 .kill_sb = kill_litter_super,
3989 .fs_flags = FS_USERNS_MOUNT,
3990 };
3991
3992 int __init shmem_init(void)
3993 {
3994 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3995
3996 shm_mnt = kern_mount(&shmem_fs_type);
3997 BUG_ON(IS_ERR(shm_mnt));
3998
3999 return 0;
4000 }
4001
4002 int shmem_unuse(unsigned int type)
4003 {
4004 return 0;
4005 }
4006
4007 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4008 {
4009 return 0;
4010 }
4011
4012 void shmem_unlock_mapping(struct address_space *mapping)
4013 {
4014 }
4015
4016 #ifdef CONFIG_MMU
4017 unsigned long shmem_get_unmapped_area(struct file *file,
4018 unsigned long addr, unsigned long len,
4019 unsigned long pgoff, unsigned long flags)
4020 {
4021 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4022 }
4023 #endif
4024
4025 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4026 {
4027 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4028 }
4029 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4030
4031 #define shmem_vm_ops generic_file_vm_ops
4032 #define shmem_file_operations ramfs_file_operations
4033 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4034 #define shmem_acct_size(flags, size) 0
4035 #define shmem_unacct_size(flags, size) do {} while (0)
4036
4037 #endif /* CONFIG_SHMEM */
4038
4039 /* common code */
4040
4041 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4042 unsigned long flags, unsigned int i_flags)
4043 {
4044 struct inode *inode;
4045 struct file *res;
4046
4047 if (IS_ERR(mnt))
4048 return ERR_CAST(mnt);
4049
4050 if (size < 0 || size > MAX_LFS_FILESIZE)
4051 return ERR_PTR(-EINVAL);
4052
4053 if (shmem_acct_size(flags, size))
4054 return ERR_PTR(-ENOMEM);
4055
4056 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4057 flags);
4058 if (unlikely(!inode)) {
4059 shmem_unacct_size(flags, size);
4060 return ERR_PTR(-ENOSPC);
4061 }
4062 inode->i_flags |= i_flags;
4063 inode->i_size = size;
4064 clear_nlink(inode); /* It is unlinked */
4065 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4066 if (!IS_ERR(res))
4067 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4068 &shmem_file_operations);
4069 if (IS_ERR(res))
4070 iput(inode);
4071 return res;
4072 }
4073
4074 /**
4075 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4076 * kernel internal. There will be NO LSM permission checks against the
4077 * underlying inode. So users of this interface must do LSM checks at a
4078 * higher layer. The users are the big_key and shm implementations. LSM
4079 * checks are provided at the key or shm level rather than the inode.
4080 * @name: name for dentry (to be seen in /proc/<pid>/maps
4081 * @size: size to be set for the file
4082 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4083 */
4084 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4085 {
4086 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4087 }
4088
4089 /**
4090 * shmem_file_setup - get an unlinked file living in tmpfs
4091 * @name: name for dentry (to be seen in /proc/<pid>/maps
4092 * @size: size to be set for the file
4093 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4094 */
4095 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4096 {
4097 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4098 }
4099 EXPORT_SYMBOL_GPL(shmem_file_setup);
4100
4101 /**
4102 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4103 * @mnt: the tmpfs mount where the file will be created
4104 * @name: name for dentry (to be seen in /proc/<pid>/maps
4105 * @size: size to be set for the file
4106 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4107 */
4108 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4109 loff_t size, unsigned long flags)
4110 {
4111 return __shmem_file_setup(mnt, name, size, flags, 0);
4112 }
4113 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4114
4115 /**
4116 * shmem_zero_setup - setup a shared anonymous mapping
4117 * @vma: the vma to be mmapped is prepared by do_mmap
4118 */
4119 int shmem_zero_setup(struct vm_area_struct *vma)
4120 {
4121 struct file *file;
4122 loff_t size = vma->vm_end - vma->vm_start;
4123
4124 /*
4125 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4126 * between XFS directory reading and selinux: since this file is only
4127 * accessible to the user through its mapping, use S_PRIVATE flag to
4128 * bypass file security, in the same way as shmem_kernel_file_setup().
4129 */
4130 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4131 if (IS_ERR(file))
4132 return PTR_ERR(file);
4133
4134 if (vma->vm_file)
4135 fput(vma->vm_file);
4136 vma->vm_file = file;
4137 vma->vm_ops = &shmem_vm_ops;
4138
4139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4140 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4141 (vma->vm_end & HPAGE_PMD_MASK)) {
4142 khugepaged_enter(vma, vma->vm_flags);
4143 }
4144
4145 return 0;
4146 }
4147
4148 /**
4149 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4150 * @mapping: the page's address_space
4151 * @index: the page index
4152 * @gfp: the page allocator flags to use if allocating
4153 *
4154 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4155 * with any new page allocations done using the specified allocation flags.
4156 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4157 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4158 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4159 *
4160 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4161 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4162 */
4163 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4164 pgoff_t index, gfp_t gfp)
4165 {
4166 #ifdef CONFIG_SHMEM
4167 struct inode *inode = mapping->host;
4168 struct page *page;
4169 int error;
4170
4171 BUG_ON(!shmem_mapping(mapping));
4172 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4173 gfp, NULL, NULL, NULL);
4174 if (error)
4175 return ERR_PTR(error);
4176
4177 unlock_page(page);
4178 if (PageHWPoison(page)) {
4179 put_page(page);
4180 return ERR_PTR(-EIO);
4181 }
4182
4183 return page;
4184 #else
4185 /*
4186 * The tiny !SHMEM case uses ramfs without swap
4187 */
4188 return read_cache_page_gfp(mapping, index, gfp);
4189 #endif
4190 }
4191 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);