]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/shmem.c
mm/shmem: do not wait for lock_page() in shmem_unused_huge_shrink()
[people/arne_f/kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
127
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
130 {
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
133 }
134
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 return sb->s_fs_info;
138 }
139
140 /*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
150 }
151
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
156 }
157
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160 {
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169 }
170
171 /*
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
177 static inline int shmem_acct_block(unsigned long flags, long pages)
178 {
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
184 }
185
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 {
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
190 }
191
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193 {
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212 }
213
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222 }
223
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
232
233 bool vma_is_shmem(struct vm_area_struct *vma)
234 {
235 return vma->vm_ops == &shmem_vm_ops;
236 }
237
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
240
241 static int shmem_reserve_inode(struct super_block *sb)
242 {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254 }
255
256 static void shmem_free_inode(struct super_block *sb)
257 {
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264 }
265
266 /**
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278 static void shmem_recalc_inode(struct inode *inode)
279 {
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
288 }
289 }
290
291 bool shmem_charge(struct inode *inode, long pages)
292 {
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
295
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
298
299 spin_lock_irqsave(&info->lock, flags);
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
303 spin_unlock_irqrestore(&info->lock, flags);
304 inode->i_mapping->nrpages += pages;
305
306 return true;
307 }
308
309 void shmem_uncharge(struct inode *inode, long pages)
310 {
311 struct shmem_inode_info *info = SHMEM_I(inode);
312 unsigned long flags;
313
314 spin_lock_irqsave(&info->lock, flags);
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
318 spin_unlock_irqrestore(&info->lock, flags);
319
320 shmem_inode_unacct_blocks(inode, pages);
321 }
322
323 /*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328 {
329 struct radix_tree_node *node;
330 void **pslot;
331 void *item;
332
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 if (!item)
337 return -ENOENT;
338 if (item != expected)
339 return -ENOENT;
340 __radix_tree_replace(&mapping->page_tree, node, pslot,
341 replacement, NULL, NULL);
342 return 0;
343 }
344
345 /*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354 {
355 void *item;
356
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->page_tree, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361 }
362
363 /*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
381
382 /*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
394
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
397
398 int shmem_huge __read_mostly;
399
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
402 {
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416 }
417
418 static const char *shmem_format_huge(int huge)
419 {
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437 }
438 #endif
439
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442 {
443 LIST_HEAD(list), *pos, *next;
444 LIST_HEAD(to_remove);
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 list_move(&info->shrinklist, &to_remove);
472 removed++;
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477 next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
498
499 page = find_get_page(inode->i_mapping,
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page)) {
506 put_page(page);
507 goto drop;
508 }
509
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
529
530 split++;
531 drop:
532 list_del_init(&info->shrinklist);
533 removed++;
534 leave:
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544 }
545
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548 {
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555 }
556
557 static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559 {
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562 }
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
564
565 #define shmem_huge SHMEM_HUGE_DENY
566
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569 {
570 return 0;
571 }
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
573
574 /*
575 * Like add_to_page_cache_locked, but error if expected item has gone.
576 */
577 static int shmem_add_to_page_cache(struct page *page,
578 struct address_space *mapping,
579 pgoff_t index, void *expected)
580 {
581 int error, nr = hpage_nr_pages(page);
582
583 VM_BUG_ON_PAGE(PageTail(page), page);
584 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
585 VM_BUG_ON_PAGE(!PageLocked(page), page);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
587 VM_BUG_ON(expected && PageTransHuge(page));
588
589 page_ref_add(page, nr);
590 page->mapping = mapping;
591 page->index = index;
592
593 spin_lock_irq(&mapping->tree_lock);
594 if (PageTransHuge(page)) {
595 void __rcu **results;
596 pgoff_t idx;
597 int i;
598
599 error = 0;
600 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
601 &results, &idx, index, 1) &&
602 idx < index + HPAGE_PMD_NR) {
603 error = -EEXIST;
604 }
605
606 if (!error) {
607 for (i = 0; i < HPAGE_PMD_NR; i++) {
608 error = radix_tree_insert(&mapping->page_tree,
609 index + i, page + i);
610 VM_BUG_ON(error);
611 }
612 count_vm_event(THP_FILE_ALLOC);
613 }
614 } else if (!expected) {
615 error = radix_tree_insert(&mapping->page_tree, index, page);
616 } else {
617 error = shmem_radix_tree_replace(mapping, index, expected,
618 page);
619 }
620
621 if (!error) {
622 mapping->nrpages += nr;
623 if (PageTransHuge(page))
624 __inc_node_page_state(page, NR_SHMEM_THPS);
625 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
626 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
627 spin_unlock_irq(&mapping->tree_lock);
628 } else {
629 page->mapping = NULL;
630 spin_unlock_irq(&mapping->tree_lock);
631 page_ref_sub(page, nr);
632 }
633 return error;
634 }
635
636 /*
637 * Like delete_from_page_cache, but substitutes swap for page.
638 */
639 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
640 {
641 struct address_space *mapping = page->mapping;
642 int error;
643
644 VM_BUG_ON_PAGE(PageCompound(page), page);
645
646 spin_lock_irq(&mapping->tree_lock);
647 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
648 page->mapping = NULL;
649 mapping->nrpages--;
650 __dec_node_page_state(page, NR_FILE_PAGES);
651 __dec_node_page_state(page, NR_SHMEM);
652 spin_unlock_irq(&mapping->tree_lock);
653 put_page(page);
654 BUG_ON(error);
655 }
656
657 /*
658 * Remove swap entry from radix tree, free the swap and its page cache.
659 */
660 static int shmem_free_swap(struct address_space *mapping,
661 pgoff_t index, void *radswap)
662 {
663 void *old;
664
665 spin_lock_irq(&mapping->tree_lock);
666 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
667 spin_unlock_irq(&mapping->tree_lock);
668 if (old != radswap)
669 return -ENOENT;
670 free_swap_and_cache(radix_to_swp_entry(radswap));
671 return 0;
672 }
673
674 /*
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
677 *
678 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
680 */
681 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
682 pgoff_t start, pgoff_t end)
683 {
684 struct radix_tree_iter iter;
685 void **slot;
686 struct page *page;
687 unsigned long swapped = 0;
688
689 rcu_read_lock();
690
691 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
692 if (iter.index >= end)
693 break;
694
695 page = radix_tree_deref_slot(slot);
696
697 if (radix_tree_deref_retry(page)) {
698 slot = radix_tree_iter_retry(&iter);
699 continue;
700 }
701
702 if (radix_tree_exceptional_entry(page))
703 swapped++;
704
705 if (need_resched()) {
706 slot = radix_tree_iter_resume(slot, &iter);
707 cond_resched_rcu();
708 }
709 }
710
711 rcu_read_unlock();
712
713 return swapped << PAGE_SHIFT;
714 }
715
716 /*
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
719 *
720 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
722 */
723 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
724 {
725 struct inode *inode = file_inode(vma->vm_file);
726 struct shmem_inode_info *info = SHMEM_I(inode);
727 struct address_space *mapping = inode->i_mapping;
728 unsigned long swapped;
729
730 /* Be careful as we don't hold info->lock */
731 swapped = READ_ONCE(info->swapped);
732
733 /*
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
736 * already track.
737 */
738 if (!swapped)
739 return 0;
740
741 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
742 return swapped << PAGE_SHIFT;
743
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping,
746 linear_page_index(vma, vma->vm_start),
747 linear_page_index(vma, vma->vm_end));
748 }
749
750 /*
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
752 */
753 void shmem_unlock_mapping(struct address_space *mapping)
754 {
755 struct pagevec pvec;
756 pgoff_t indices[PAGEVEC_SIZE];
757 pgoff_t index = 0;
758
759 pagevec_init(&pvec, 0);
760 /*
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
762 */
763 while (!mapping_unevictable(mapping)) {
764 /*
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
767 */
768 pvec.nr = find_get_entries(mapping, index,
769 PAGEVEC_SIZE, pvec.pages, indices);
770 if (!pvec.nr)
771 break;
772 index = indices[pvec.nr - 1] + 1;
773 pagevec_remove_exceptionals(&pvec);
774 check_move_unevictable_pages(pvec.pages, pvec.nr);
775 pagevec_release(&pvec);
776 cond_resched();
777 }
778 }
779
780 /*
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
783 */
784 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
785 bool unfalloc)
786 {
787 struct address_space *mapping = inode->i_mapping;
788 struct shmem_inode_info *info = SHMEM_I(inode);
789 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
790 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
791 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
792 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
793 struct pagevec pvec;
794 pgoff_t indices[PAGEVEC_SIZE];
795 long nr_swaps_freed = 0;
796 pgoff_t index;
797 int i;
798
799 if (lend == -1)
800 end = -1; /* unsigned, so actually very big */
801
802 pagevec_init(&pvec, 0);
803 index = start;
804 while (index < end) {
805 pvec.nr = find_get_entries(mapping, index,
806 min(end - index, (pgoff_t)PAGEVEC_SIZE),
807 pvec.pages, indices);
808 if (!pvec.nr)
809 break;
810 for (i = 0; i < pagevec_count(&pvec); i++) {
811 struct page *page = pvec.pages[i];
812
813 index = indices[i];
814 if (index >= end)
815 break;
816
817 if (radix_tree_exceptional_entry(page)) {
818 if (unfalloc)
819 continue;
820 nr_swaps_freed += !shmem_free_swap(mapping,
821 index, page);
822 continue;
823 }
824
825 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
826
827 if (!trylock_page(page))
828 continue;
829
830 if (PageTransTail(page)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 } else if (PageTransHuge(page)) {
836 if (index == round_down(end, HPAGE_PMD_NR)) {
837 /*
838 * Range ends in the middle of THP:
839 * zero out the page
840 */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 }
845 index += HPAGE_PMD_NR - 1;
846 i += HPAGE_PMD_NR - 1;
847 }
848
849 if (!unfalloc || !PageUptodate(page)) {
850 VM_BUG_ON_PAGE(PageTail(page), page);
851 if (page_mapping(page) == mapping) {
852 VM_BUG_ON_PAGE(PageWriteback(page), page);
853 truncate_inode_page(mapping, page);
854 }
855 }
856 unlock_page(page);
857 }
858 pagevec_remove_exceptionals(&pvec);
859 pagevec_release(&pvec);
860 cond_resched();
861 index++;
862 }
863
864 if (partial_start) {
865 struct page *page = NULL;
866 shmem_getpage(inode, start - 1, &page, SGP_READ);
867 if (page) {
868 unsigned int top = PAGE_SIZE;
869 if (start > end) {
870 top = partial_end;
871 partial_end = 0;
872 }
873 zero_user_segment(page, partial_start, top);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
877 }
878 }
879 if (partial_end) {
880 struct page *page = NULL;
881 shmem_getpage(inode, end, &page, SGP_READ);
882 if (page) {
883 zero_user_segment(page, 0, partial_end);
884 set_page_dirty(page);
885 unlock_page(page);
886 put_page(page);
887 }
888 }
889 if (start >= end)
890 return;
891
892 index = start;
893 while (index < end) {
894 cond_resched();
895
896 pvec.nr = find_get_entries(mapping, index,
897 min(end - index, (pgoff_t)PAGEVEC_SIZE),
898 pvec.pages, indices);
899 if (!pvec.nr) {
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index == start || end != -1)
902 break;
903 /* But if truncating, restart to make sure all gone */
904 index = start;
905 continue;
906 }
907 for (i = 0; i < pagevec_count(&pvec); i++) {
908 struct page *page = pvec.pages[i];
909
910 index = indices[i];
911 if (index >= end)
912 break;
913
914 if (radix_tree_exceptional_entry(page)) {
915 if (unfalloc)
916 continue;
917 if (shmem_free_swap(mapping, index, page)) {
918 /* Swap was replaced by page: retry */
919 index--;
920 break;
921 }
922 nr_swaps_freed++;
923 continue;
924 }
925
926 lock_page(page);
927
928 if (PageTransTail(page)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page);
931 unlock_page(page);
932 /*
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
936 */
937 if (index != round_down(end, HPAGE_PMD_NR))
938 start++;
939 continue;
940 } else if (PageTransHuge(page)) {
941 if (index == round_down(end, HPAGE_PMD_NR)) {
942 /*
943 * Range ends in the middle of THP:
944 * zero out the page
945 */
946 clear_highpage(page);
947 unlock_page(page);
948 continue;
949 }
950 index += HPAGE_PMD_NR - 1;
951 i += HPAGE_PMD_NR - 1;
952 }
953
954 if (!unfalloc || !PageUptodate(page)) {
955 VM_BUG_ON_PAGE(PageTail(page), page);
956 if (page_mapping(page) == mapping) {
957 VM_BUG_ON_PAGE(PageWriteback(page), page);
958 truncate_inode_page(mapping, page);
959 } else {
960 /* Page was replaced by swap: retry */
961 unlock_page(page);
962 index--;
963 break;
964 }
965 }
966 unlock_page(page);
967 }
968 pagevec_remove_exceptionals(&pvec);
969 pagevec_release(&pvec);
970 index++;
971 }
972
973 spin_lock_irq(&info->lock);
974 info->swapped -= nr_swaps_freed;
975 shmem_recalc_inode(inode);
976 spin_unlock_irq(&info->lock);
977 }
978
979 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
980 {
981 shmem_undo_range(inode, lstart, lend, false);
982 inode->i_ctime = inode->i_mtime = current_time(inode);
983 }
984 EXPORT_SYMBOL_GPL(shmem_truncate_range);
985
986 static int shmem_getattr(const struct path *path, struct kstat *stat,
987 u32 request_mask, unsigned int query_flags)
988 {
989 struct inode *inode = path->dentry->d_inode;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991
992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
993 spin_lock_irq(&info->lock);
994 shmem_recalc_inode(inode);
995 spin_unlock_irq(&info->lock);
996 }
997 generic_fillattr(inode, stat);
998 return 0;
999 }
1000
1001 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002 {
1003 struct inode *inode = d_inode(dentry);
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1006 int error;
1007
1008 error = setattr_prepare(dentry, attr);
1009 if (error)
1010 return error;
1011
1012 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1013 loff_t oldsize = inode->i_size;
1014 loff_t newsize = attr->ia_size;
1015
1016 /* protected by i_mutex */
1017 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1018 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1019 return -EPERM;
1020
1021 if (newsize != oldsize) {
1022 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1023 oldsize, newsize);
1024 if (error)
1025 return error;
1026 i_size_write(inode, newsize);
1027 inode->i_ctime = inode->i_mtime = current_time(inode);
1028 }
1029 if (newsize <= oldsize) {
1030 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1031 if (oldsize > holebegin)
1032 unmap_mapping_range(inode->i_mapping,
1033 holebegin, 0, 1);
1034 if (info->alloced)
1035 shmem_truncate_range(inode,
1036 newsize, (loff_t)-1);
1037 /* unmap again to remove racily COWed private pages */
1038 if (oldsize > holebegin)
1039 unmap_mapping_range(inode->i_mapping,
1040 holebegin, 0, 1);
1041
1042 /*
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1045 */
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1047 spin_lock(&sbinfo->shrinklist_lock);
1048 /*
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1051 */
1052 if (list_empty_careful(&info->shrinklist)) {
1053 list_add_tail(&info->shrinklist,
1054 &sbinfo->shrinklist);
1055 sbinfo->shrinklist_len++;
1056 }
1057 spin_unlock(&sbinfo->shrinklist_lock);
1058 }
1059 }
1060 }
1061
1062 setattr_copy(inode, attr);
1063 if (attr->ia_valid & ATTR_MODE)
1064 error = posix_acl_chmod(inode, inode->i_mode);
1065 return error;
1066 }
1067
1068 static void shmem_evict_inode(struct inode *inode)
1069 {
1070 struct shmem_inode_info *info = SHMEM_I(inode);
1071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072
1073 if (inode->i_mapping->a_ops == &shmem_aops) {
1074 shmem_unacct_size(info->flags, inode->i_size);
1075 inode->i_size = 0;
1076 shmem_truncate_range(inode, 0, (loff_t)-1);
1077 if (!list_empty(&info->shrinklist)) {
1078 spin_lock(&sbinfo->shrinklist_lock);
1079 if (!list_empty(&info->shrinklist)) {
1080 list_del_init(&info->shrinklist);
1081 sbinfo->shrinklist_len--;
1082 }
1083 spin_unlock(&sbinfo->shrinklist_lock);
1084 }
1085 if (!list_empty(&info->swaplist)) {
1086 mutex_lock(&shmem_swaplist_mutex);
1087 list_del_init(&info->swaplist);
1088 mutex_unlock(&shmem_swaplist_mutex);
1089 }
1090 }
1091
1092 simple_xattrs_free(&info->xattrs);
1093 WARN_ON(inode->i_blocks);
1094 shmem_free_inode(inode->i_sb);
1095 clear_inode(inode);
1096 }
1097
1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099 {
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120 }
1121
1122 /*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
1125 static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 swp_entry_t swap, struct page **pagep)
1127 {
1128 struct address_space *mapping = info->vfs_inode.i_mapping;
1129 void *radswap;
1130 pgoff_t index;
1131 gfp_t gfp;
1132 int error = 0;
1133
1134 radswap = swp_to_radix_entry(swap);
1135 index = find_swap_entry(&mapping->page_tree, radswap);
1136 if (index == -1)
1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
1138
1139 /*
1140 * Move _head_ to start search for next from here.
1141 * But be careful: shmem_evict_inode checks list_empty without taking
1142 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 * would appear empty, if it were the only one on shmem_swaplist.
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
1175 /*
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 */
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 radswap);
1183 if (error != -ENOMEM) {
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
1190 if (!error) {
1191 spin_lock_irq(&info->lock);
1192 info->swapped--;
1193 spin_unlock_irq(&info->lock);
1194 swap_free(swap);
1195 }
1196 }
1197 return error;
1198 }
1199
1200 /*
1201 * Search through swapped inodes to find and replace swap by page.
1202 */
1203 int shmem_unuse(swp_entry_t swap, struct page *page)
1204 {
1205 struct list_head *this, *next;
1206 struct shmem_inode_info *info;
1207 struct mem_cgroup *memcg;
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
1212 * caller locked it: caller will come back later with the right page.
1213 */
1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 goto out;
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
1221 */
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
1224 if (error)
1225 goto out;
1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 error = -EAGAIN;
1228
1229 mutex_lock(&shmem_swaplist_mutex);
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
1232 if (info->swapped)
1233 error = shmem_unuse_inode(info, swap, &page);
1234 else
1235 list_del_init(&info->swaplist);
1236 cond_resched();
1237 if (error != -EAGAIN)
1238 break;
1239 /* found nothing in this: move on to search the next */
1240 }
1241 mutex_unlock(&shmem_swaplist_mutex);
1242
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
1246 mem_cgroup_cancel_charge(page, memcg, false);
1247 } else
1248 mem_cgroup_commit_charge(page, memcg, true, false);
1249 out:
1250 unlock_page(page);
1251 put_page(page);
1252 return error;
1253 }
1254
1255 /*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259 {
1260 struct shmem_inode_info *info;
1261 struct address_space *mapping;
1262 struct inode *inode;
1263 swp_entry_t swap;
1264 pgoff_t index;
1265
1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1267 BUG_ON(!PageLocked(page));
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
1274 if (!total_swap_pages)
1275 goto redirty;
1276
1277 /*
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
1283 */
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 */
1300 if (!PageUptodate(page)) {
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
1306 !shmem_falloc->waitq &&
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
1321 swap = get_swap_page(page);
1322 if (!swap.val)
1323 goto redirty;
1324
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
1332 * the inode from eviction. But don't unlock the mutex until
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
1335 */
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 spin_lock_irq(&info->lock);
1342 shmem_recalc_inode(inode);
1343 info->swapped++;
1344 spin_unlock_irq(&info->lock);
1345
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349 mutex_unlock(&shmem_swaplist_mutex);
1350 BUG_ON(page_mapped(page));
1351 swap_writepage(page, wbc);
1352 return 0;
1353 }
1354
1355 mutex_unlock(&shmem_swaplist_mutex);
1356 free_swap:
1357 put_swap_page(page, swap);
1358 redirty:
1359 set_page_dirty(page);
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1364 }
1365
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 char buffer[64];
1370
1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 return; /* show nothing */
1373
1374 mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412 }
1413
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415 {
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418 }
1419
1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 struct vm_area_struct pvma;
1424 struct page *page;
1425
1426 shmem_pseudo_vma_init(&pvma, info, index);
1427 page = swapin_readahead(swap, gfp, &pvma, 0);
1428 shmem_pseudo_vma_destroy(&pvma);
1429
1430 return page;
1431 }
1432
1433 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 struct vm_area_struct pvma;
1437 struct inode *inode = &info->vfs_inode;
1438 struct address_space *mapping = inode->i_mapping;
1439 pgoff_t idx, hindex;
1440 void __rcu **results;
1441 struct page *page;
1442
1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1444 return NULL;
1445
1446 hindex = round_down(index, HPAGE_PMD_NR);
1447 rcu_read_lock();
1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 rcu_read_unlock();
1451 return NULL;
1452 }
1453 rcu_read_unlock();
1454
1455 shmem_pseudo_vma_init(&pvma, info, hindex);
1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 shmem_pseudo_vma_destroy(&pvma);
1459 if (page)
1460 prep_transhuge_page(page);
1461 return page;
1462 }
1463
1464 static struct page *shmem_alloc_page(gfp_t gfp,
1465 struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 struct vm_area_struct pvma;
1468 struct page *page;
1469
1470 shmem_pseudo_vma_init(&pvma, info, index);
1471 page = alloc_page_vma(gfp, &pvma, 0);
1472 shmem_pseudo_vma_destroy(&pvma);
1473
1474 return page;
1475 }
1476
1477 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1478 struct inode *inode,
1479 pgoff_t index, bool huge)
1480 {
1481 struct shmem_inode_info *info = SHMEM_I(inode);
1482 struct page *page;
1483 int nr;
1484 int err = -ENOSPC;
1485
1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1487 huge = false;
1488 nr = huge ? HPAGE_PMD_NR : 1;
1489
1490 if (!shmem_inode_acct_block(inode, nr))
1491 goto failed;
1492
1493 if (huge)
1494 page = shmem_alloc_hugepage(gfp, info, index);
1495 else
1496 page = shmem_alloc_page(gfp, info, index);
1497 if (page) {
1498 __SetPageLocked(page);
1499 __SetPageSwapBacked(page);
1500 return page;
1501 }
1502
1503 err = -ENOMEM;
1504 shmem_inode_unacct_blocks(inode, nr);
1505 failed:
1506 return ERR_PTR(err);
1507 }
1508
1509 /*
1510 * When a page is moved from swapcache to shmem filecache (either by the
1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513 * ignorance of the mapping it belongs to. If that mapping has special
1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515 * we may need to copy to a suitable page before moving to filecache.
1516 *
1517 * In a future release, this may well be extended to respect cpuset and
1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519 * but for now it is a simple matter of zone.
1520 */
1521 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522 {
1523 return page_zonenum(page) > gfp_zone(gfp);
1524 }
1525
1526 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 struct shmem_inode_info *info, pgoff_t index)
1528 {
1529 struct page *oldpage, *newpage;
1530 struct address_space *swap_mapping;
1531 pgoff_t swap_index;
1532 int error;
1533
1534 oldpage = *pagep;
1535 swap_index = page_private(oldpage);
1536 swap_mapping = page_mapping(oldpage);
1537
1538 /*
1539 * We have arrived here because our zones are constrained, so don't
1540 * limit chance of success by further cpuset and node constraints.
1541 */
1542 gfp &= ~GFP_CONSTRAINT_MASK;
1543 newpage = shmem_alloc_page(gfp, info, index);
1544 if (!newpage)
1545 return -ENOMEM;
1546
1547 get_page(newpage);
1548 copy_highpage(newpage, oldpage);
1549 flush_dcache_page(newpage);
1550
1551 __SetPageLocked(newpage);
1552 __SetPageSwapBacked(newpage);
1553 SetPageUptodate(newpage);
1554 set_page_private(newpage, swap_index);
1555 SetPageSwapCache(newpage);
1556
1557 /*
1558 * Our caller will very soon move newpage out of swapcache, but it's
1559 * a nice clean interface for us to replace oldpage by newpage there.
1560 */
1561 spin_lock_irq(&swap_mapping->tree_lock);
1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 newpage);
1564 if (!error) {
1565 __inc_node_page_state(newpage, NR_FILE_PAGES);
1566 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1567 }
1568 spin_unlock_irq(&swap_mapping->tree_lock);
1569
1570 if (unlikely(error)) {
1571 /*
1572 * Is this possible? I think not, now that our callers check
1573 * both PageSwapCache and page_private after getting page lock;
1574 * but be defensive. Reverse old to newpage for clear and free.
1575 */
1576 oldpage = newpage;
1577 } else {
1578 mem_cgroup_migrate(oldpage, newpage);
1579 lru_cache_add_anon(newpage);
1580 *pagep = newpage;
1581 }
1582
1583 ClearPageSwapCache(oldpage);
1584 set_page_private(oldpage, 0);
1585
1586 unlock_page(oldpage);
1587 put_page(oldpage);
1588 put_page(oldpage);
1589 return error;
1590 }
1591
1592 /*
1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1594 *
1595 * If we allocate a new one we do not mark it dirty. That's up to the
1596 * vm. If we swap it in we mark it dirty since we also free the swap
1597 * entry since a page cannot live in both the swap and page cache.
1598 *
1599 * fault_mm and fault_type are only supplied by shmem_fault:
1600 * otherwise they are NULL.
1601 */
1602 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1605 {
1606 struct address_space *mapping = inode->i_mapping;
1607 struct shmem_inode_info *info = SHMEM_I(inode);
1608 struct shmem_sb_info *sbinfo;
1609 struct mm_struct *charge_mm;
1610 struct mem_cgroup *memcg;
1611 struct page *page;
1612 swp_entry_t swap;
1613 enum sgp_type sgp_huge = sgp;
1614 pgoff_t hindex = index;
1615 int error;
1616 int once = 0;
1617 int alloced = 0;
1618
1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1620 return -EFBIG;
1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 sgp = SGP_CACHE;
1623 repeat:
1624 swap.val = 0;
1625 page = find_lock_entry(mapping, index);
1626 if (radix_tree_exceptional_entry(page)) {
1627 swap = radix_to_swp_entry(page);
1628 page = NULL;
1629 }
1630
1631 if (sgp <= SGP_CACHE &&
1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1633 error = -EINVAL;
1634 goto unlock;
1635 }
1636
1637 if (page && sgp == SGP_WRITE)
1638 mark_page_accessed(page);
1639
1640 /* fallocated page? */
1641 if (page && !PageUptodate(page)) {
1642 if (sgp != SGP_READ)
1643 goto clear;
1644 unlock_page(page);
1645 put_page(page);
1646 page = NULL;
1647 }
1648 if (page || (sgp == SGP_READ && !swap.val)) {
1649 *pagep = page;
1650 return 0;
1651 }
1652
1653 /*
1654 * Fast cache lookup did not find it:
1655 * bring it back from swap or allocate.
1656 */
1657 sbinfo = SHMEM_SB(inode->i_sb);
1658 charge_mm = vma ? vma->vm_mm : current->mm;
1659
1660 if (swap.val) {
1661 /* Look it up and read it in.. */
1662 page = lookup_swap_cache(swap, NULL, 0);
1663 if (!page) {
1664 /* Or update major stats only when swapin succeeds?? */
1665 if (fault_type) {
1666 *fault_type |= VM_FAULT_MAJOR;
1667 count_vm_event(PGMAJFAULT);
1668 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1669 }
1670 /* Here we actually start the io */
1671 page = shmem_swapin(swap, gfp, info, index);
1672 if (!page) {
1673 error = -ENOMEM;
1674 goto failed;
1675 }
1676 }
1677
1678 /* We have to do this with page locked to prevent races */
1679 lock_page(page);
1680 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1681 !shmem_confirm_swap(mapping, index, swap)) {
1682 error = -EEXIST; /* try again */
1683 goto unlock;
1684 }
1685 if (!PageUptodate(page)) {
1686 error = -EIO;
1687 goto failed;
1688 }
1689 wait_on_page_writeback(page);
1690
1691 if (shmem_should_replace_page(page, gfp)) {
1692 error = shmem_replace_page(&page, gfp, info, index);
1693 if (error)
1694 goto failed;
1695 }
1696
1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1698 false);
1699 if (!error) {
1700 error = shmem_add_to_page_cache(page, mapping, index,
1701 swp_to_radix_entry(swap));
1702 /*
1703 * We already confirmed swap under page lock, and make
1704 * no memory allocation here, so usually no possibility
1705 * of error; but free_swap_and_cache() only trylocks a
1706 * page, so it is just possible that the entry has been
1707 * truncated or holepunched since swap was confirmed.
1708 * shmem_undo_range() will have done some of the
1709 * unaccounting, now delete_from_swap_cache() will do
1710 * the rest.
1711 * Reset swap.val? No, leave it so "failed" goes back to
1712 * "repeat": reading a hole and writing should succeed.
1713 */
1714 if (error) {
1715 mem_cgroup_cancel_charge(page, memcg, false);
1716 delete_from_swap_cache(page);
1717 }
1718 }
1719 if (error)
1720 goto failed;
1721
1722 mem_cgroup_commit_charge(page, memcg, true, false);
1723
1724 spin_lock_irq(&info->lock);
1725 info->swapped--;
1726 shmem_recalc_inode(inode);
1727 spin_unlock_irq(&info->lock);
1728
1729 if (sgp == SGP_WRITE)
1730 mark_page_accessed(page);
1731
1732 delete_from_swap_cache(page);
1733 set_page_dirty(page);
1734 swap_free(swap);
1735
1736 } else {
1737 if (vma && userfaultfd_missing(vma)) {
1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 return 0;
1740 }
1741
1742 /* shmem_symlink() */
1743 if (mapping->a_ops != &shmem_aops)
1744 goto alloc_nohuge;
1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_FORCE)
1748 goto alloc_huge;
1749 switch (sbinfo->huge) {
1750 loff_t i_size;
1751 pgoff_t off;
1752 case SHMEM_HUGE_NEVER:
1753 goto alloc_nohuge;
1754 case SHMEM_HUGE_WITHIN_SIZE:
1755 off = round_up(index, HPAGE_PMD_NR);
1756 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 if (i_size >= HPAGE_PMD_SIZE &&
1758 i_size >> PAGE_SHIFT >= off)
1759 goto alloc_huge;
1760 /* fallthrough */
1761 case SHMEM_HUGE_ADVISE:
1762 if (sgp_huge == SGP_HUGE)
1763 goto alloc_huge;
1764 /* TODO: implement fadvise() hints */
1765 goto alloc_nohuge;
1766 }
1767
1768 alloc_huge:
1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1770 if (IS_ERR(page)) {
1771 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1772 index, false);
1773 }
1774 if (IS_ERR(page)) {
1775 int retry = 5;
1776 error = PTR_ERR(page);
1777 page = NULL;
1778 if (error != -ENOSPC)
1779 goto failed;
1780 /*
1781 * Try to reclaim some spece by splitting a huge page
1782 * beyond i_size on the filesystem.
1783 */
1784 while (retry--) {
1785 int ret;
1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 if (ret == SHRINK_STOP)
1788 break;
1789 if (ret)
1790 goto alloc_nohuge;
1791 }
1792 goto failed;
1793 }
1794
1795 if (PageTransHuge(page))
1796 hindex = round_down(index, HPAGE_PMD_NR);
1797 else
1798 hindex = index;
1799
1800 if (sgp == SGP_WRITE)
1801 __SetPageReferenced(page);
1802
1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1804 PageTransHuge(page));
1805 if (error)
1806 goto unacct;
1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 compound_order(page));
1809 if (!error) {
1810 error = shmem_add_to_page_cache(page, mapping, hindex,
1811 NULL);
1812 radix_tree_preload_end();
1813 }
1814 if (error) {
1815 mem_cgroup_cancel_charge(page, memcg,
1816 PageTransHuge(page));
1817 goto unacct;
1818 }
1819 mem_cgroup_commit_charge(page, memcg, false,
1820 PageTransHuge(page));
1821 lru_cache_add_anon(page);
1822
1823 spin_lock_irq(&info->lock);
1824 info->alloced += 1 << compound_order(page);
1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1826 shmem_recalc_inode(inode);
1827 spin_unlock_irq(&info->lock);
1828 alloced = true;
1829
1830 if (PageTransHuge(page) &&
1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 hindex + HPAGE_PMD_NR - 1) {
1833 /*
1834 * Part of the huge page is beyond i_size: subject
1835 * to shrink under memory pressure.
1836 */
1837 spin_lock(&sbinfo->shrinklist_lock);
1838 /*
1839 * _careful to defend against unlocked access to
1840 * ->shrink_list in shmem_unused_huge_shrink()
1841 */
1842 if (list_empty_careful(&info->shrinklist)) {
1843 list_add_tail(&info->shrinklist,
1844 &sbinfo->shrinklist);
1845 sbinfo->shrinklist_len++;
1846 }
1847 spin_unlock(&sbinfo->shrinklist_lock);
1848 }
1849
1850 /*
1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 */
1853 if (sgp == SGP_FALLOC)
1854 sgp = SGP_WRITE;
1855 clear:
1856 /*
1857 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 * it now, lest undo on failure cancel our earlier guarantee.
1860 */
1861 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 struct page *head = compound_head(page);
1863 int i;
1864
1865 for (i = 0; i < (1 << compound_order(head)); i++) {
1866 clear_highpage(head + i);
1867 flush_dcache_page(head + i);
1868 }
1869 SetPageUptodate(head);
1870 }
1871 }
1872
1873 /* Perhaps the file has been truncated since we checked */
1874 if (sgp <= SGP_CACHE &&
1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 if (alloced) {
1877 ClearPageDirty(page);
1878 delete_from_page_cache(page);
1879 spin_lock_irq(&info->lock);
1880 shmem_recalc_inode(inode);
1881 spin_unlock_irq(&info->lock);
1882 }
1883 error = -EINVAL;
1884 goto unlock;
1885 }
1886 *pagep = page + index - hindex;
1887 return 0;
1888
1889 /*
1890 * Error recovery.
1891 */
1892 unacct:
1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1894
1895 if (PageTransHuge(page)) {
1896 unlock_page(page);
1897 put_page(page);
1898 goto alloc_nohuge;
1899 }
1900 failed:
1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1902 error = -EEXIST;
1903 unlock:
1904 if (page) {
1905 unlock_page(page);
1906 put_page(page);
1907 }
1908 if (error == -ENOSPC && !once++) {
1909 spin_lock_irq(&info->lock);
1910 shmem_recalc_inode(inode);
1911 spin_unlock_irq(&info->lock);
1912 goto repeat;
1913 }
1914 if (error == -EEXIST) /* from above or from radix_tree_insert */
1915 goto repeat;
1916 return error;
1917 }
1918
1919 /*
1920 * This is like autoremove_wake_function, but it removes the wait queue
1921 * entry unconditionally - even if something else had already woken the
1922 * target.
1923 */
1924 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1925 {
1926 int ret = default_wake_function(wait, mode, sync, key);
1927 list_del_init(&wait->entry);
1928 return ret;
1929 }
1930
1931 static int shmem_fault(struct vm_fault *vmf)
1932 {
1933 struct vm_area_struct *vma = vmf->vma;
1934 struct inode *inode = file_inode(vma->vm_file);
1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1936 enum sgp_type sgp;
1937 int error;
1938 int ret = VM_FAULT_LOCKED;
1939
1940 /*
1941 * Trinity finds that probing a hole which tmpfs is punching can
1942 * prevent the hole-punch from ever completing: which in turn
1943 * locks writers out with its hold on i_mutex. So refrain from
1944 * faulting pages into the hole while it's being punched. Although
1945 * shmem_undo_range() does remove the additions, it may be unable to
1946 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 *
1949 * It does not matter if we sometimes reach this check just before the
1950 * hole-punch begins, so that one fault then races with the punch:
1951 * we just need to make racing faults a rare case.
1952 *
1953 * The implementation below would be much simpler if we just used a
1954 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 * and bloating every shmem inode for this unlikely case would be sad.
1956 */
1957 if (unlikely(inode->i_private)) {
1958 struct shmem_falloc *shmem_falloc;
1959
1960 spin_lock(&inode->i_lock);
1961 shmem_falloc = inode->i_private;
1962 if (shmem_falloc &&
1963 shmem_falloc->waitq &&
1964 vmf->pgoff >= shmem_falloc->start &&
1965 vmf->pgoff < shmem_falloc->next) {
1966 wait_queue_head_t *shmem_falloc_waitq;
1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1968
1969 ret = VM_FAULT_NOPAGE;
1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1972 /* It's polite to up mmap_sem if we can */
1973 up_read(&vma->vm_mm->mmap_sem);
1974 ret = VM_FAULT_RETRY;
1975 }
1976
1977 shmem_falloc_waitq = shmem_falloc->waitq;
1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 TASK_UNINTERRUPTIBLE);
1980 spin_unlock(&inode->i_lock);
1981 schedule();
1982
1983 /*
1984 * shmem_falloc_waitq points into the shmem_fallocate()
1985 * stack of the hole-punching task: shmem_falloc_waitq
1986 * is usually invalid by the time we reach here, but
1987 * finish_wait() does not dereference it in that case;
1988 * though i_lock needed lest racing with wake_up_all().
1989 */
1990 spin_lock(&inode->i_lock);
1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 spin_unlock(&inode->i_lock);
1993 return ret;
1994 }
1995 spin_unlock(&inode->i_lock);
1996 }
1997
1998 sgp = SGP_CACHE;
1999
2000 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2002 sgp = SGP_NOHUGE;
2003 else if (vma->vm_flags & VM_HUGEPAGE)
2004 sgp = SGP_HUGE;
2005
2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2007 gfp, vma, vmf, &ret);
2008 if (error)
2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2010 return ret;
2011 }
2012
2013 unsigned long shmem_get_unmapped_area(struct file *file,
2014 unsigned long uaddr, unsigned long len,
2015 unsigned long pgoff, unsigned long flags)
2016 {
2017 unsigned long (*get_area)(struct file *,
2018 unsigned long, unsigned long, unsigned long, unsigned long);
2019 unsigned long addr;
2020 unsigned long offset;
2021 unsigned long inflated_len;
2022 unsigned long inflated_addr;
2023 unsigned long inflated_offset;
2024
2025 if (len > TASK_SIZE)
2026 return -ENOMEM;
2027
2028 get_area = current->mm->get_unmapped_area;
2029 addr = get_area(file, uaddr, len, pgoff, flags);
2030
2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2032 return addr;
2033 if (IS_ERR_VALUE(addr))
2034 return addr;
2035 if (addr & ~PAGE_MASK)
2036 return addr;
2037 if (addr > TASK_SIZE - len)
2038 return addr;
2039
2040 if (shmem_huge == SHMEM_HUGE_DENY)
2041 return addr;
2042 if (len < HPAGE_PMD_SIZE)
2043 return addr;
2044 if (flags & MAP_FIXED)
2045 return addr;
2046 /*
2047 * Our priority is to support MAP_SHARED mapped hugely;
2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 * But if caller specified an address hint, respect that as before.
2050 */
2051 if (uaddr)
2052 return addr;
2053
2054 if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 struct super_block *sb;
2056
2057 if (file) {
2058 VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 sb = file_inode(file)->i_sb;
2060 } else {
2061 /*
2062 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 * for "/dev/zero", to create a shared anonymous object.
2064 */
2065 if (IS_ERR(shm_mnt))
2066 return addr;
2067 sb = shm_mnt->mnt_sb;
2068 }
2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2070 return addr;
2071 }
2072
2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 return addr;
2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 return addr;
2078
2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 if (inflated_len > TASK_SIZE)
2081 return addr;
2082 if (inflated_len < len)
2083 return addr;
2084
2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 if (IS_ERR_VALUE(inflated_addr))
2087 return addr;
2088 if (inflated_addr & ~PAGE_MASK)
2089 return addr;
2090
2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 inflated_addr += offset - inflated_offset;
2093 if (inflated_offset > offset)
2094 inflated_addr += HPAGE_PMD_SIZE;
2095
2096 if (inflated_addr > TASK_SIZE - len)
2097 return addr;
2098 return inflated_addr;
2099 }
2100
2101 #ifdef CONFIG_NUMA
2102 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2103 {
2104 struct inode *inode = file_inode(vma->vm_file);
2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2106 }
2107
2108 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 unsigned long addr)
2110 {
2111 struct inode *inode = file_inode(vma->vm_file);
2112 pgoff_t index;
2113
2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2116 }
2117 #endif
2118
2119 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120 {
2121 struct inode *inode = file_inode(file);
2122 struct shmem_inode_info *info = SHMEM_I(inode);
2123 int retval = -ENOMEM;
2124
2125 spin_lock_irq(&info->lock);
2126 if (lock && !(info->flags & VM_LOCKED)) {
2127 if (!user_shm_lock(inode->i_size, user))
2128 goto out_nomem;
2129 info->flags |= VM_LOCKED;
2130 mapping_set_unevictable(file->f_mapping);
2131 }
2132 if (!lock && (info->flags & VM_LOCKED) && user) {
2133 user_shm_unlock(inode->i_size, user);
2134 info->flags &= ~VM_LOCKED;
2135 mapping_clear_unevictable(file->f_mapping);
2136 }
2137 retval = 0;
2138
2139 out_nomem:
2140 spin_unlock_irq(&info->lock);
2141 return retval;
2142 }
2143
2144 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2145 {
2146 file_accessed(file);
2147 vma->vm_ops = &shmem_vm_ops;
2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 (vma->vm_end & HPAGE_PMD_MASK)) {
2151 khugepaged_enter(vma, vma->vm_flags);
2152 }
2153 return 0;
2154 }
2155
2156 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2157 umode_t mode, dev_t dev, unsigned long flags)
2158 {
2159 struct inode *inode;
2160 struct shmem_inode_info *info;
2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2162
2163 if (shmem_reserve_inode(sb))
2164 return NULL;
2165
2166 inode = new_inode(sb);
2167 if (inode) {
2168 inode->i_ino = get_next_ino();
2169 inode_init_owner(inode, dir, mode);
2170 inode->i_blocks = 0;
2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2172 inode->i_generation = get_seconds();
2173 info = SHMEM_I(inode);
2174 memset(info, 0, (char *)inode - (char *)info);
2175 spin_lock_init(&info->lock);
2176 info->seals = F_SEAL_SEAL;
2177 info->flags = flags & VM_NORESERVE;
2178 INIT_LIST_HEAD(&info->shrinklist);
2179 INIT_LIST_HEAD(&info->swaplist);
2180 simple_xattrs_init(&info->xattrs);
2181 cache_no_acl(inode);
2182
2183 switch (mode & S_IFMT) {
2184 default:
2185 inode->i_op = &shmem_special_inode_operations;
2186 init_special_inode(inode, mode, dev);
2187 break;
2188 case S_IFREG:
2189 inode->i_mapping->a_ops = &shmem_aops;
2190 inode->i_op = &shmem_inode_operations;
2191 inode->i_fop = &shmem_file_operations;
2192 mpol_shared_policy_init(&info->policy,
2193 shmem_get_sbmpol(sbinfo));
2194 break;
2195 case S_IFDIR:
2196 inc_nlink(inode);
2197 /* Some things misbehave if size == 0 on a directory */
2198 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 inode->i_op = &shmem_dir_inode_operations;
2200 inode->i_fop = &simple_dir_operations;
2201 break;
2202 case S_IFLNK:
2203 /*
2204 * Must not load anything in the rbtree,
2205 * mpol_free_shared_policy will not be called.
2206 */
2207 mpol_shared_policy_init(&info->policy, NULL);
2208 break;
2209 }
2210 } else
2211 shmem_free_inode(sb);
2212 return inode;
2213 }
2214
2215 bool shmem_mapping(struct address_space *mapping)
2216 {
2217 return mapping->a_ops == &shmem_aops;
2218 }
2219
2220 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2221 pmd_t *dst_pmd,
2222 struct vm_area_struct *dst_vma,
2223 unsigned long dst_addr,
2224 unsigned long src_addr,
2225 bool zeropage,
2226 struct page **pagep)
2227 {
2228 struct inode *inode = file_inode(dst_vma->vm_file);
2229 struct shmem_inode_info *info = SHMEM_I(inode);
2230 struct address_space *mapping = inode->i_mapping;
2231 gfp_t gfp = mapping_gfp_mask(mapping);
2232 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2233 struct mem_cgroup *memcg;
2234 spinlock_t *ptl;
2235 void *page_kaddr;
2236 struct page *page;
2237 pte_t _dst_pte, *dst_pte;
2238 int ret;
2239
2240 ret = -ENOMEM;
2241 if (!shmem_inode_acct_block(inode, 1))
2242 goto out;
2243
2244 if (!*pagep) {
2245 page = shmem_alloc_page(gfp, info, pgoff);
2246 if (!page)
2247 goto out_unacct_blocks;
2248
2249 if (!zeropage) { /* mcopy_atomic */
2250 page_kaddr = kmap_atomic(page);
2251 ret = copy_from_user(page_kaddr,
2252 (const void __user *)src_addr,
2253 PAGE_SIZE);
2254 kunmap_atomic(page_kaddr);
2255
2256 /* fallback to copy_from_user outside mmap_sem */
2257 if (unlikely(ret)) {
2258 *pagep = page;
2259 shmem_inode_unacct_blocks(inode, 1);
2260 /* don't free the page */
2261 return -EFAULT;
2262 }
2263 } else { /* mfill_zeropage_atomic */
2264 clear_highpage(page);
2265 }
2266 } else {
2267 page = *pagep;
2268 *pagep = NULL;
2269 }
2270
2271 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2272 __SetPageLocked(page);
2273 __SetPageSwapBacked(page);
2274 __SetPageUptodate(page);
2275
2276 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2277 if (ret)
2278 goto out_release;
2279
2280 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2281 if (!ret) {
2282 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2283 radix_tree_preload_end();
2284 }
2285 if (ret)
2286 goto out_release_uncharge;
2287
2288 mem_cgroup_commit_charge(page, memcg, false, false);
2289
2290 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2291 if (dst_vma->vm_flags & VM_WRITE)
2292 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2293
2294 ret = -EEXIST;
2295 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2296 if (!pte_none(*dst_pte))
2297 goto out_release_uncharge_unlock;
2298
2299 lru_cache_add_anon(page);
2300
2301 spin_lock(&info->lock);
2302 info->alloced++;
2303 inode->i_blocks += BLOCKS_PER_PAGE;
2304 shmem_recalc_inode(inode);
2305 spin_unlock(&info->lock);
2306
2307 inc_mm_counter(dst_mm, mm_counter_file(page));
2308 page_add_file_rmap(page, false);
2309 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2310
2311 /* No need to invalidate - it was non-present before */
2312 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2313 unlock_page(page);
2314 pte_unmap_unlock(dst_pte, ptl);
2315 ret = 0;
2316 out:
2317 return ret;
2318 out_release_uncharge_unlock:
2319 pte_unmap_unlock(dst_pte, ptl);
2320 out_release_uncharge:
2321 mem_cgroup_cancel_charge(page, memcg, false);
2322 out_release:
2323 unlock_page(page);
2324 put_page(page);
2325 out_unacct_blocks:
2326 shmem_inode_unacct_blocks(inode, 1);
2327 goto out;
2328 }
2329
2330 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2331 pmd_t *dst_pmd,
2332 struct vm_area_struct *dst_vma,
2333 unsigned long dst_addr,
2334 unsigned long src_addr,
2335 struct page **pagep)
2336 {
2337 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2338 dst_addr, src_addr, false, pagep);
2339 }
2340
2341 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2342 pmd_t *dst_pmd,
2343 struct vm_area_struct *dst_vma,
2344 unsigned long dst_addr)
2345 {
2346 struct page *page = NULL;
2347
2348 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2349 dst_addr, 0, true, &page);
2350 }
2351
2352 #ifdef CONFIG_TMPFS
2353 static const struct inode_operations shmem_symlink_inode_operations;
2354 static const struct inode_operations shmem_short_symlink_operations;
2355
2356 #ifdef CONFIG_TMPFS_XATTR
2357 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2358 #else
2359 #define shmem_initxattrs NULL
2360 #endif
2361
2362 static int
2363 shmem_write_begin(struct file *file, struct address_space *mapping,
2364 loff_t pos, unsigned len, unsigned flags,
2365 struct page **pagep, void **fsdata)
2366 {
2367 struct inode *inode = mapping->host;
2368 struct shmem_inode_info *info = SHMEM_I(inode);
2369 pgoff_t index = pos >> PAGE_SHIFT;
2370
2371 /* i_mutex is held by caller */
2372 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2373 if (info->seals & F_SEAL_WRITE)
2374 return -EPERM;
2375 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2376 return -EPERM;
2377 }
2378
2379 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2380 }
2381
2382 static int
2383 shmem_write_end(struct file *file, struct address_space *mapping,
2384 loff_t pos, unsigned len, unsigned copied,
2385 struct page *page, void *fsdata)
2386 {
2387 struct inode *inode = mapping->host;
2388
2389 if (pos + copied > inode->i_size)
2390 i_size_write(inode, pos + copied);
2391
2392 if (!PageUptodate(page)) {
2393 struct page *head = compound_head(page);
2394 if (PageTransCompound(page)) {
2395 int i;
2396
2397 for (i = 0; i < HPAGE_PMD_NR; i++) {
2398 if (head + i == page)
2399 continue;
2400 clear_highpage(head + i);
2401 flush_dcache_page(head + i);
2402 }
2403 }
2404 if (copied < PAGE_SIZE) {
2405 unsigned from = pos & (PAGE_SIZE - 1);
2406 zero_user_segments(page, 0, from,
2407 from + copied, PAGE_SIZE);
2408 }
2409 SetPageUptodate(head);
2410 }
2411 set_page_dirty(page);
2412 unlock_page(page);
2413 put_page(page);
2414
2415 return copied;
2416 }
2417
2418 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2419 {
2420 struct file *file = iocb->ki_filp;
2421 struct inode *inode = file_inode(file);
2422 struct address_space *mapping = inode->i_mapping;
2423 pgoff_t index;
2424 unsigned long offset;
2425 enum sgp_type sgp = SGP_READ;
2426 int error = 0;
2427 ssize_t retval = 0;
2428 loff_t *ppos = &iocb->ki_pos;
2429
2430 /*
2431 * Might this read be for a stacking filesystem? Then when reading
2432 * holes of a sparse file, we actually need to allocate those pages,
2433 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2434 */
2435 if (!iter_is_iovec(to))
2436 sgp = SGP_CACHE;
2437
2438 index = *ppos >> PAGE_SHIFT;
2439 offset = *ppos & ~PAGE_MASK;
2440
2441 for (;;) {
2442 struct page *page = NULL;
2443 pgoff_t end_index;
2444 unsigned long nr, ret;
2445 loff_t i_size = i_size_read(inode);
2446
2447 end_index = i_size >> PAGE_SHIFT;
2448 if (index > end_index)
2449 break;
2450 if (index == end_index) {
2451 nr = i_size & ~PAGE_MASK;
2452 if (nr <= offset)
2453 break;
2454 }
2455
2456 error = shmem_getpage(inode, index, &page, sgp);
2457 if (error) {
2458 if (error == -EINVAL)
2459 error = 0;
2460 break;
2461 }
2462 if (page) {
2463 if (sgp == SGP_CACHE)
2464 set_page_dirty(page);
2465 unlock_page(page);
2466 }
2467
2468 /*
2469 * We must evaluate after, since reads (unlike writes)
2470 * are called without i_mutex protection against truncate
2471 */
2472 nr = PAGE_SIZE;
2473 i_size = i_size_read(inode);
2474 end_index = i_size >> PAGE_SHIFT;
2475 if (index == end_index) {
2476 nr = i_size & ~PAGE_MASK;
2477 if (nr <= offset) {
2478 if (page)
2479 put_page(page);
2480 break;
2481 }
2482 }
2483 nr -= offset;
2484
2485 if (page) {
2486 /*
2487 * If users can be writing to this page using arbitrary
2488 * virtual addresses, take care about potential aliasing
2489 * before reading the page on the kernel side.
2490 */
2491 if (mapping_writably_mapped(mapping))
2492 flush_dcache_page(page);
2493 /*
2494 * Mark the page accessed if we read the beginning.
2495 */
2496 if (!offset)
2497 mark_page_accessed(page);
2498 } else {
2499 page = ZERO_PAGE(0);
2500 get_page(page);
2501 }
2502
2503 /*
2504 * Ok, we have the page, and it's up-to-date, so
2505 * now we can copy it to user space...
2506 */
2507 ret = copy_page_to_iter(page, offset, nr, to);
2508 retval += ret;
2509 offset += ret;
2510 index += offset >> PAGE_SHIFT;
2511 offset &= ~PAGE_MASK;
2512
2513 put_page(page);
2514 if (!iov_iter_count(to))
2515 break;
2516 if (ret < nr) {
2517 error = -EFAULT;
2518 break;
2519 }
2520 cond_resched();
2521 }
2522
2523 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2524 file_accessed(file);
2525 return retval ? retval : error;
2526 }
2527
2528 /*
2529 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2530 */
2531 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2532 pgoff_t index, pgoff_t end, int whence)
2533 {
2534 struct page *page;
2535 struct pagevec pvec;
2536 pgoff_t indices[PAGEVEC_SIZE];
2537 bool done = false;
2538 int i;
2539
2540 pagevec_init(&pvec, 0);
2541 pvec.nr = 1; /* start small: we may be there already */
2542 while (!done) {
2543 pvec.nr = find_get_entries(mapping, index,
2544 pvec.nr, pvec.pages, indices);
2545 if (!pvec.nr) {
2546 if (whence == SEEK_DATA)
2547 index = end;
2548 break;
2549 }
2550 for (i = 0; i < pvec.nr; i++, index++) {
2551 if (index < indices[i]) {
2552 if (whence == SEEK_HOLE) {
2553 done = true;
2554 break;
2555 }
2556 index = indices[i];
2557 }
2558 page = pvec.pages[i];
2559 if (page && !radix_tree_exceptional_entry(page)) {
2560 if (!PageUptodate(page))
2561 page = NULL;
2562 }
2563 if (index >= end ||
2564 (page && whence == SEEK_DATA) ||
2565 (!page && whence == SEEK_HOLE)) {
2566 done = true;
2567 break;
2568 }
2569 }
2570 pagevec_remove_exceptionals(&pvec);
2571 pagevec_release(&pvec);
2572 pvec.nr = PAGEVEC_SIZE;
2573 cond_resched();
2574 }
2575 return index;
2576 }
2577
2578 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2579 {
2580 struct address_space *mapping = file->f_mapping;
2581 struct inode *inode = mapping->host;
2582 pgoff_t start, end;
2583 loff_t new_offset;
2584
2585 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2586 return generic_file_llseek_size(file, offset, whence,
2587 MAX_LFS_FILESIZE, i_size_read(inode));
2588 inode_lock(inode);
2589 /* We're holding i_mutex so we can access i_size directly */
2590
2591 if (offset < 0)
2592 offset = -EINVAL;
2593 else if (offset >= inode->i_size)
2594 offset = -ENXIO;
2595 else {
2596 start = offset >> PAGE_SHIFT;
2597 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2598 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2599 new_offset <<= PAGE_SHIFT;
2600 if (new_offset > offset) {
2601 if (new_offset < inode->i_size)
2602 offset = new_offset;
2603 else if (whence == SEEK_DATA)
2604 offset = -ENXIO;
2605 else
2606 offset = inode->i_size;
2607 }
2608 }
2609
2610 if (offset >= 0)
2611 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2612 inode_unlock(inode);
2613 return offset;
2614 }
2615
2616 /*
2617 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2618 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2619 */
2620 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2621 #define LAST_SCAN 4 /* about 150ms max */
2622
2623 static void shmem_tag_pins(struct address_space *mapping)
2624 {
2625 struct radix_tree_iter iter;
2626 void **slot;
2627 pgoff_t start;
2628 struct page *page;
2629
2630 lru_add_drain();
2631 start = 0;
2632 rcu_read_lock();
2633
2634 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2635 page = radix_tree_deref_slot(slot);
2636 if (!page || radix_tree_exception(page)) {
2637 if (radix_tree_deref_retry(page)) {
2638 slot = radix_tree_iter_retry(&iter);
2639 continue;
2640 }
2641 } else if (page_count(page) - page_mapcount(page) > 1) {
2642 spin_lock_irq(&mapping->tree_lock);
2643 radix_tree_tag_set(&mapping->page_tree, iter.index,
2644 SHMEM_TAG_PINNED);
2645 spin_unlock_irq(&mapping->tree_lock);
2646 }
2647
2648 if (need_resched()) {
2649 slot = radix_tree_iter_resume(slot, &iter);
2650 cond_resched_rcu();
2651 }
2652 }
2653 rcu_read_unlock();
2654 }
2655
2656 /*
2657 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2658 * via get_user_pages(), drivers might have some pending I/O without any active
2659 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2660 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2661 * them to be dropped.
2662 * The caller must guarantee that no new user will acquire writable references
2663 * to those pages to avoid races.
2664 */
2665 static int shmem_wait_for_pins(struct address_space *mapping)
2666 {
2667 struct radix_tree_iter iter;
2668 void **slot;
2669 pgoff_t start;
2670 struct page *page;
2671 int error, scan;
2672
2673 shmem_tag_pins(mapping);
2674
2675 error = 0;
2676 for (scan = 0; scan <= LAST_SCAN; scan++) {
2677 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2678 break;
2679
2680 if (!scan)
2681 lru_add_drain_all();
2682 else if (schedule_timeout_killable((HZ << scan) / 200))
2683 scan = LAST_SCAN;
2684
2685 start = 0;
2686 rcu_read_lock();
2687 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2688 start, SHMEM_TAG_PINNED) {
2689
2690 page = radix_tree_deref_slot(slot);
2691 if (radix_tree_exception(page)) {
2692 if (radix_tree_deref_retry(page)) {
2693 slot = radix_tree_iter_retry(&iter);
2694 continue;
2695 }
2696
2697 page = NULL;
2698 }
2699
2700 if (page &&
2701 page_count(page) - page_mapcount(page) != 1) {
2702 if (scan < LAST_SCAN)
2703 goto continue_resched;
2704
2705 /*
2706 * On the last scan, we clean up all those tags
2707 * we inserted; but make a note that we still
2708 * found pages pinned.
2709 */
2710 error = -EBUSY;
2711 }
2712
2713 spin_lock_irq(&mapping->tree_lock);
2714 radix_tree_tag_clear(&mapping->page_tree,
2715 iter.index, SHMEM_TAG_PINNED);
2716 spin_unlock_irq(&mapping->tree_lock);
2717 continue_resched:
2718 if (need_resched()) {
2719 slot = radix_tree_iter_resume(slot, &iter);
2720 cond_resched_rcu();
2721 }
2722 }
2723 rcu_read_unlock();
2724 }
2725
2726 return error;
2727 }
2728
2729 #define F_ALL_SEALS (F_SEAL_SEAL | \
2730 F_SEAL_SHRINK | \
2731 F_SEAL_GROW | \
2732 F_SEAL_WRITE)
2733
2734 int shmem_add_seals(struct file *file, unsigned int seals)
2735 {
2736 struct inode *inode = file_inode(file);
2737 struct shmem_inode_info *info = SHMEM_I(inode);
2738 int error;
2739
2740 /*
2741 * SEALING
2742 * Sealing allows multiple parties to share a shmem-file but restrict
2743 * access to a specific subset of file operations. Seals can only be
2744 * added, but never removed. This way, mutually untrusted parties can
2745 * share common memory regions with a well-defined policy. A malicious
2746 * peer can thus never perform unwanted operations on a shared object.
2747 *
2748 * Seals are only supported on special shmem-files and always affect
2749 * the whole underlying inode. Once a seal is set, it may prevent some
2750 * kinds of access to the file. Currently, the following seals are
2751 * defined:
2752 * SEAL_SEAL: Prevent further seals from being set on this file
2753 * SEAL_SHRINK: Prevent the file from shrinking
2754 * SEAL_GROW: Prevent the file from growing
2755 * SEAL_WRITE: Prevent write access to the file
2756 *
2757 * As we don't require any trust relationship between two parties, we
2758 * must prevent seals from being removed. Therefore, sealing a file
2759 * only adds a given set of seals to the file, it never touches
2760 * existing seals. Furthermore, the "setting seals"-operation can be
2761 * sealed itself, which basically prevents any further seal from being
2762 * added.
2763 *
2764 * Semantics of sealing are only defined on volatile files. Only
2765 * anonymous shmem files support sealing. More importantly, seals are
2766 * never written to disk. Therefore, there's no plan to support it on
2767 * other file types.
2768 */
2769
2770 if (file->f_op != &shmem_file_operations)
2771 return -EINVAL;
2772 if (!(file->f_mode & FMODE_WRITE))
2773 return -EPERM;
2774 if (seals & ~(unsigned int)F_ALL_SEALS)
2775 return -EINVAL;
2776
2777 inode_lock(inode);
2778
2779 if (info->seals & F_SEAL_SEAL) {
2780 error = -EPERM;
2781 goto unlock;
2782 }
2783
2784 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2785 error = mapping_deny_writable(file->f_mapping);
2786 if (error)
2787 goto unlock;
2788
2789 error = shmem_wait_for_pins(file->f_mapping);
2790 if (error) {
2791 mapping_allow_writable(file->f_mapping);
2792 goto unlock;
2793 }
2794 }
2795
2796 info->seals |= seals;
2797 error = 0;
2798
2799 unlock:
2800 inode_unlock(inode);
2801 return error;
2802 }
2803 EXPORT_SYMBOL_GPL(shmem_add_seals);
2804
2805 int shmem_get_seals(struct file *file)
2806 {
2807 if (file->f_op != &shmem_file_operations)
2808 return -EINVAL;
2809
2810 return SHMEM_I(file_inode(file))->seals;
2811 }
2812 EXPORT_SYMBOL_GPL(shmem_get_seals);
2813
2814 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2815 {
2816 long error;
2817
2818 switch (cmd) {
2819 case F_ADD_SEALS:
2820 /* disallow upper 32bit */
2821 if (arg > UINT_MAX)
2822 return -EINVAL;
2823
2824 error = shmem_add_seals(file, arg);
2825 break;
2826 case F_GET_SEALS:
2827 error = shmem_get_seals(file);
2828 break;
2829 default:
2830 error = -EINVAL;
2831 break;
2832 }
2833
2834 return error;
2835 }
2836
2837 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2838 loff_t len)
2839 {
2840 struct inode *inode = file_inode(file);
2841 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2842 struct shmem_inode_info *info = SHMEM_I(inode);
2843 struct shmem_falloc shmem_falloc;
2844 pgoff_t start, index, end;
2845 int error;
2846
2847 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2848 return -EOPNOTSUPP;
2849
2850 inode_lock(inode);
2851
2852 if (mode & FALLOC_FL_PUNCH_HOLE) {
2853 struct address_space *mapping = file->f_mapping;
2854 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2855 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2856 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2857
2858 /* protected by i_mutex */
2859 if (info->seals & F_SEAL_WRITE) {
2860 error = -EPERM;
2861 goto out;
2862 }
2863
2864 shmem_falloc.waitq = &shmem_falloc_waitq;
2865 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2866 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2867 spin_lock(&inode->i_lock);
2868 inode->i_private = &shmem_falloc;
2869 spin_unlock(&inode->i_lock);
2870
2871 if ((u64)unmap_end > (u64)unmap_start)
2872 unmap_mapping_range(mapping, unmap_start,
2873 1 + unmap_end - unmap_start, 0);
2874 shmem_truncate_range(inode, offset, offset + len - 1);
2875 /* No need to unmap again: hole-punching leaves COWed pages */
2876
2877 spin_lock(&inode->i_lock);
2878 inode->i_private = NULL;
2879 wake_up_all(&shmem_falloc_waitq);
2880 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2881 spin_unlock(&inode->i_lock);
2882 error = 0;
2883 goto out;
2884 }
2885
2886 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2887 error = inode_newsize_ok(inode, offset + len);
2888 if (error)
2889 goto out;
2890
2891 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2892 error = -EPERM;
2893 goto out;
2894 }
2895
2896 start = offset >> PAGE_SHIFT;
2897 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898 /* Try to avoid a swapstorm if len is impossible to satisfy */
2899 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2900 error = -ENOSPC;
2901 goto out;
2902 }
2903
2904 shmem_falloc.waitq = NULL;
2905 shmem_falloc.start = start;
2906 shmem_falloc.next = start;
2907 shmem_falloc.nr_falloced = 0;
2908 shmem_falloc.nr_unswapped = 0;
2909 spin_lock(&inode->i_lock);
2910 inode->i_private = &shmem_falloc;
2911 spin_unlock(&inode->i_lock);
2912
2913 for (index = start; index < end; index++) {
2914 struct page *page;
2915
2916 /*
2917 * Good, the fallocate(2) manpage permits EINTR: we may have
2918 * been interrupted because we are using up too much memory.
2919 */
2920 if (signal_pending(current))
2921 error = -EINTR;
2922 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2923 error = -ENOMEM;
2924 else
2925 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2926 if (error) {
2927 /* Remove the !PageUptodate pages we added */
2928 if (index > start) {
2929 shmem_undo_range(inode,
2930 (loff_t)start << PAGE_SHIFT,
2931 ((loff_t)index << PAGE_SHIFT) - 1, true);
2932 }
2933 goto undone;
2934 }
2935
2936 /*
2937 * Inform shmem_writepage() how far we have reached.
2938 * No need for lock or barrier: we have the page lock.
2939 */
2940 shmem_falloc.next++;
2941 if (!PageUptodate(page))
2942 shmem_falloc.nr_falloced++;
2943
2944 /*
2945 * If !PageUptodate, leave it that way so that freeable pages
2946 * can be recognized if we need to rollback on error later.
2947 * But set_page_dirty so that memory pressure will swap rather
2948 * than free the pages we are allocating (and SGP_CACHE pages
2949 * might still be clean: we now need to mark those dirty too).
2950 */
2951 set_page_dirty(page);
2952 unlock_page(page);
2953 put_page(page);
2954 cond_resched();
2955 }
2956
2957 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2958 i_size_write(inode, offset + len);
2959 inode->i_ctime = current_time(inode);
2960 undone:
2961 spin_lock(&inode->i_lock);
2962 inode->i_private = NULL;
2963 spin_unlock(&inode->i_lock);
2964 out:
2965 inode_unlock(inode);
2966 return error;
2967 }
2968
2969 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2970 {
2971 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2972
2973 buf->f_type = TMPFS_MAGIC;
2974 buf->f_bsize = PAGE_SIZE;
2975 buf->f_namelen = NAME_MAX;
2976 if (sbinfo->max_blocks) {
2977 buf->f_blocks = sbinfo->max_blocks;
2978 buf->f_bavail =
2979 buf->f_bfree = sbinfo->max_blocks -
2980 percpu_counter_sum(&sbinfo->used_blocks);
2981 }
2982 if (sbinfo->max_inodes) {
2983 buf->f_files = sbinfo->max_inodes;
2984 buf->f_ffree = sbinfo->free_inodes;
2985 }
2986 /* else leave those fields 0 like simple_statfs */
2987 return 0;
2988 }
2989
2990 /*
2991 * File creation. Allocate an inode, and we're done..
2992 */
2993 static int
2994 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2995 {
2996 struct inode *inode;
2997 int error = -ENOSPC;
2998
2999 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3000 if (inode) {
3001 error = simple_acl_create(dir, inode);
3002 if (error)
3003 goto out_iput;
3004 error = security_inode_init_security(inode, dir,
3005 &dentry->d_name,
3006 shmem_initxattrs, NULL);
3007 if (error && error != -EOPNOTSUPP)
3008 goto out_iput;
3009
3010 error = 0;
3011 dir->i_size += BOGO_DIRENT_SIZE;
3012 dir->i_ctime = dir->i_mtime = current_time(dir);
3013 d_instantiate(dentry, inode);
3014 dget(dentry); /* Extra count - pin the dentry in core */
3015 }
3016 return error;
3017 out_iput:
3018 iput(inode);
3019 return error;
3020 }
3021
3022 static int
3023 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3024 {
3025 struct inode *inode;
3026 int error = -ENOSPC;
3027
3028 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3029 if (inode) {
3030 error = security_inode_init_security(inode, dir,
3031 NULL,
3032 shmem_initxattrs, NULL);
3033 if (error && error != -EOPNOTSUPP)
3034 goto out_iput;
3035 error = simple_acl_create(dir, inode);
3036 if (error)
3037 goto out_iput;
3038 d_tmpfile(dentry, inode);
3039 }
3040 return error;
3041 out_iput:
3042 iput(inode);
3043 return error;
3044 }
3045
3046 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3047 {
3048 int error;
3049
3050 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3051 return error;
3052 inc_nlink(dir);
3053 return 0;
3054 }
3055
3056 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3057 bool excl)
3058 {
3059 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3060 }
3061
3062 /*
3063 * Link a file..
3064 */
3065 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3066 {
3067 struct inode *inode = d_inode(old_dentry);
3068 int ret;
3069
3070 /*
3071 * No ordinary (disk based) filesystem counts links as inodes;
3072 * but each new link needs a new dentry, pinning lowmem, and
3073 * tmpfs dentries cannot be pruned until they are unlinked.
3074 */
3075 ret = shmem_reserve_inode(inode->i_sb);
3076 if (ret)
3077 goto out;
3078
3079 dir->i_size += BOGO_DIRENT_SIZE;
3080 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3081 inc_nlink(inode);
3082 ihold(inode); /* New dentry reference */
3083 dget(dentry); /* Extra pinning count for the created dentry */
3084 d_instantiate(dentry, inode);
3085 out:
3086 return ret;
3087 }
3088
3089 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3090 {
3091 struct inode *inode = d_inode(dentry);
3092
3093 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3094 shmem_free_inode(inode->i_sb);
3095
3096 dir->i_size -= BOGO_DIRENT_SIZE;
3097 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3098 drop_nlink(inode);
3099 dput(dentry); /* Undo the count from "create" - this does all the work */
3100 return 0;
3101 }
3102
3103 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3104 {
3105 if (!simple_empty(dentry))
3106 return -ENOTEMPTY;
3107
3108 drop_nlink(d_inode(dentry));
3109 drop_nlink(dir);
3110 return shmem_unlink(dir, dentry);
3111 }
3112
3113 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3114 {
3115 bool old_is_dir = d_is_dir(old_dentry);
3116 bool new_is_dir = d_is_dir(new_dentry);
3117
3118 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3119 if (old_is_dir) {
3120 drop_nlink(old_dir);
3121 inc_nlink(new_dir);
3122 } else {
3123 drop_nlink(new_dir);
3124 inc_nlink(old_dir);
3125 }
3126 }
3127 old_dir->i_ctime = old_dir->i_mtime =
3128 new_dir->i_ctime = new_dir->i_mtime =
3129 d_inode(old_dentry)->i_ctime =
3130 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3131
3132 return 0;
3133 }
3134
3135 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3136 {
3137 struct dentry *whiteout;
3138 int error;
3139
3140 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3141 if (!whiteout)
3142 return -ENOMEM;
3143
3144 error = shmem_mknod(old_dir, whiteout,
3145 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3146 dput(whiteout);
3147 if (error)
3148 return error;
3149
3150 /*
3151 * Cheat and hash the whiteout while the old dentry is still in
3152 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3153 *
3154 * d_lookup() will consistently find one of them at this point,
3155 * not sure which one, but that isn't even important.
3156 */
3157 d_rehash(whiteout);
3158 return 0;
3159 }
3160
3161 /*
3162 * The VFS layer already does all the dentry stuff for rename,
3163 * we just have to decrement the usage count for the target if
3164 * it exists so that the VFS layer correctly free's it when it
3165 * gets overwritten.
3166 */
3167 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3168 {
3169 struct inode *inode = d_inode(old_dentry);
3170 int they_are_dirs = S_ISDIR(inode->i_mode);
3171
3172 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3173 return -EINVAL;
3174
3175 if (flags & RENAME_EXCHANGE)
3176 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3177
3178 if (!simple_empty(new_dentry))
3179 return -ENOTEMPTY;
3180
3181 if (flags & RENAME_WHITEOUT) {
3182 int error;
3183
3184 error = shmem_whiteout(old_dir, old_dentry);
3185 if (error)
3186 return error;
3187 }
3188
3189 if (d_really_is_positive(new_dentry)) {
3190 (void) shmem_unlink(new_dir, new_dentry);
3191 if (they_are_dirs) {
3192 drop_nlink(d_inode(new_dentry));
3193 drop_nlink(old_dir);
3194 }
3195 } else if (they_are_dirs) {
3196 drop_nlink(old_dir);
3197 inc_nlink(new_dir);
3198 }
3199
3200 old_dir->i_size -= BOGO_DIRENT_SIZE;
3201 new_dir->i_size += BOGO_DIRENT_SIZE;
3202 old_dir->i_ctime = old_dir->i_mtime =
3203 new_dir->i_ctime = new_dir->i_mtime =
3204 inode->i_ctime = current_time(old_dir);
3205 return 0;
3206 }
3207
3208 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3209 {
3210 int error;
3211 int len;
3212 struct inode *inode;
3213 struct page *page;
3214 struct shmem_inode_info *info;
3215
3216 len = strlen(symname) + 1;
3217 if (len > PAGE_SIZE)
3218 return -ENAMETOOLONG;
3219
3220 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3221 if (!inode)
3222 return -ENOSPC;
3223
3224 error = security_inode_init_security(inode, dir, &dentry->d_name,
3225 shmem_initxattrs, NULL);
3226 if (error) {
3227 if (error != -EOPNOTSUPP) {
3228 iput(inode);
3229 return error;
3230 }
3231 error = 0;
3232 }
3233
3234 info = SHMEM_I(inode);
3235 inode->i_size = len-1;
3236 if (len <= SHORT_SYMLINK_LEN) {
3237 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3238 if (!inode->i_link) {
3239 iput(inode);
3240 return -ENOMEM;
3241 }
3242 inode->i_op = &shmem_short_symlink_operations;
3243 } else {
3244 inode_nohighmem(inode);
3245 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3246 if (error) {
3247 iput(inode);
3248 return error;
3249 }
3250 inode->i_mapping->a_ops = &shmem_aops;
3251 inode->i_op = &shmem_symlink_inode_operations;
3252 memcpy(page_address(page), symname, len);
3253 SetPageUptodate(page);
3254 set_page_dirty(page);
3255 unlock_page(page);
3256 put_page(page);
3257 }
3258 dir->i_size += BOGO_DIRENT_SIZE;
3259 dir->i_ctime = dir->i_mtime = current_time(dir);
3260 d_instantiate(dentry, inode);
3261 dget(dentry);
3262 return 0;
3263 }
3264
3265 static void shmem_put_link(void *arg)
3266 {
3267 mark_page_accessed(arg);
3268 put_page(arg);
3269 }
3270
3271 static const char *shmem_get_link(struct dentry *dentry,
3272 struct inode *inode,
3273 struct delayed_call *done)
3274 {
3275 struct page *page = NULL;
3276 int error;
3277 if (!dentry) {
3278 page = find_get_page(inode->i_mapping, 0);
3279 if (!page)
3280 return ERR_PTR(-ECHILD);
3281 if (!PageUptodate(page)) {
3282 put_page(page);
3283 return ERR_PTR(-ECHILD);
3284 }
3285 } else {
3286 error = shmem_getpage(inode, 0, &page, SGP_READ);
3287 if (error)
3288 return ERR_PTR(error);
3289 unlock_page(page);
3290 }
3291 set_delayed_call(done, shmem_put_link, page);
3292 return page_address(page);
3293 }
3294
3295 #ifdef CONFIG_TMPFS_XATTR
3296 /*
3297 * Superblocks without xattr inode operations may get some security.* xattr
3298 * support from the LSM "for free". As soon as we have any other xattrs
3299 * like ACLs, we also need to implement the security.* handlers at
3300 * filesystem level, though.
3301 */
3302
3303 /*
3304 * Callback for security_inode_init_security() for acquiring xattrs.
3305 */
3306 static int shmem_initxattrs(struct inode *inode,
3307 const struct xattr *xattr_array,
3308 void *fs_info)
3309 {
3310 struct shmem_inode_info *info = SHMEM_I(inode);
3311 const struct xattr *xattr;
3312 struct simple_xattr *new_xattr;
3313 size_t len;
3314
3315 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3316 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3317 if (!new_xattr)
3318 return -ENOMEM;
3319
3320 len = strlen(xattr->name) + 1;
3321 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3322 GFP_KERNEL);
3323 if (!new_xattr->name) {
3324 kfree(new_xattr);
3325 return -ENOMEM;
3326 }
3327
3328 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3329 XATTR_SECURITY_PREFIX_LEN);
3330 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3331 xattr->name, len);
3332
3333 simple_xattr_list_add(&info->xattrs, new_xattr);
3334 }
3335
3336 return 0;
3337 }
3338
3339 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3340 struct dentry *unused, struct inode *inode,
3341 const char *name, void *buffer, size_t size)
3342 {
3343 struct shmem_inode_info *info = SHMEM_I(inode);
3344
3345 name = xattr_full_name(handler, name);
3346 return simple_xattr_get(&info->xattrs, name, buffer, size);
3347 }
3348
3349 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3350 struct dentry *unused, struct inode *inode,
3351 const char *name, const void *value,
3352 size_t size, int flags)
3353 {
3354 struct shmem_inode_info *info = SHMEM_I(inode);
3355
3356 name = xattr_full_name(handler, name);
3357 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3358 }
3359
3360 static const struct xattr_handler shmem_security_xattr_handler = {
3361 .prefix = XATTR_SECURITY_PREFIX,
3362 .get = shmem_xattr_handler_get,
3363 .set = shmem_xattr_handler_set,
3364 };
3365
3366 static const struct xattr_handler shmem_trusted_xattr_handler = {
3367 .prefix = XATTR_TRUSTED_PREFIX,
3368 .get = shmem_xattr_handler_get,
3369 .set = shmem_xattr_handler_set,
3370 };
3371
3372 static const struct xattr_handler *shmem_xattr_handlers[] = {
3373 #ifdef CONFIG_TMPFS_POSIX_ACL
3374 &posix_acl_access_xattr_handler,
3375 &posix_acl_default_xattr_handler,
3376 #endif
3377 &shmem_security_xattr_handler,
3378 &shmem_trusted_xattr_handler,
3379 NULL
3380 };
3381
3382 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3383 {
3384 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3385 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3386 }
3387 #endif /* CONFIG_TMPFS_XATTR */
3388
3389 static const struct inode_operations shmem_short_symlink_operations = {
3390 .get_link = simple_get_link,
3391 #ifdef CONFIG_TMPFS_XATTR
3392 .listxattr = shmem_listxattr,
3393 #endif
3394 };
3395
3396 static const struct inode_operations shmem_symlink_inode_operations = {
3397 .get_link = shmem_get_link,
3398 #ifdef CONFIG_TMPFS_XATTR
3399 .listxattr = shmem_listxattr,
3400 #endif
3401 };
3402
3403 static struct dentry *shmem_get_parent(struct dentry *child)
3404 {
3405 return ERR_PTR(-ESTALE);
3406 }
3407
3408 static int shmem_match(struct inode *ino, void *vfh)
3409 {
3410 __u32 *fh = vfh;
3411 __u64 inum = fh[2];
3412 inum = (inum << 32) | fh[1];
3413 return ino->i_ino == inum && fh[0] == ino->i_generation;
3414 }
3415
3416 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3417 struct fid *fid, int fh_len, int fh_type)
3418 {
3419 struct inode *inode;
3420 struct dentry *dentry = NULL;
3421 u64 inum;
3422
3423 if (fh_len < 3)
3424 return NULL;
3425
3426 inum = fid->raw[2];
3427 inum = (inum << 32) | fid->raw[1];
3428
3429 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3430 shmem_match, fid->raw);
3431 if (inode) {
3432 dentry = d_find_alias(inode);
3433 iput(inode);
3434 }
3435
3436 return dentry;
3437 }
3438
3439 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3440 struct inode *parent)
3441 {
3442 if (*len < 3) {
3443 *len = 3;
3444 return FILEID_INVALID;
3445 }
3446
3447 if (inode_unhashed(inode)) {
3448 /* Unfortunately insert_inode_hash is not idempotent,
3449 * so as we hash inodes here rather than at creation
3450 * time, we need a lock to ensure we only try
3451 * to do it once
3452 */
3453 static DEFINE_SPINLOCK(lock);
3454 spin_lock(&lock);
3455 if (inode_unhashed(inode))
3456 __insert_inode_hash(inode,
3457 inode->i_ino + inode->i_generation);
3458 spin_unlock(&lock);
3459 }
3460
3461 fh[0] = inode->i_generation;
3462 fh[1] = inode->i_ino;
3463 fh[2] = ((__u64)inode->i_ino) >> 32;
3464
3465 *len = 3;
3466 return 1;
3467 }
3468
3469 static const struct export_operations shmem_export_ops = {
3470 .get_parent = shmem_get_parent,
3471 .encode_fh = shmem_encode_fh,
3472 .fh_to_dentry = shmem_fh_to_dentry,
3473 };
3474
3475 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3476 bool remount)
3477 {
3478 char *this_char, *value, *rest;
3479 struct mempolicy *mpol = NULL;
3480 uid_t uid;
3481 gid_t gid;
3482
3483 while (options != NULL) {
3484 this_char = options;
3485 for (;;) {
3486 /*
3487 * NUL-terminate this option: unfortunately,
3488 * mount options form a comma-separated list,
3489 * but mpol's nodelist may also contain commas.
3490 */
3491 options = strchr(options, ',');
3492 if (options == NULL)
3493 break;
3494 options++;
3495 if (!isdigit(*options)) {
3496 options[-1] = '\0';
3497 break;
3498 }
3499 }
3500 if (!*this_char)
3501 continue;
3502 if ((value = strchr(this_char,'=')) != NULL) {
3503 *value++ = 0;
3504 } else {
3505 pr_err("tmpfs: No value for mount option '%s'\n",
3506 this_char);
3507 goto error;
3508 }
3509
3510 if (!strcmp(this_char,"size")) {
3511 unsigned long long size;
3512 size = memparse(value,&rest);
3513 if (*rest == '%') {
3514 size <<= PAGE_SHIFT;
3515 size *= totalram_pages;
3516 do_div(size, 100);
3517 rest++;
3518 }
3519 if (*rest)
3520 goto bad_val;
3521 sbinfo->max_blocks =
3522 DIV_ROUND_UP(size, PAGE_SIZE);
3523 } else if (!strcmp(this_char,"nr_blocks")) {
3524 sbinfo->max_blocks = memparse(value, &rest);
3525 if (*rest)
3526 goto bad_val;
3527 } else if (!strcmp(this_char,"nr_inodes")) {
3528 sbinfo->max_inodes = memparse(value, &rest);
3529 if (*rest)
3530 goto bad_val;
3531 } else if (!strcmp(this_char,"mode")) {
3532 if (remount)
3533 continue;
3534 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3535 if (*rest)
3536 goto bad_val;
3537 } else if (!strcmp(this_char,"uid")) {
3538 if (remount)
3539 continue;
3540 uid = simple_strtoul(value, &rest, 0);
3541 if (*rest)
3542 goto bad_val;
3543 sbinfo->uid = make_kuid(current_user_ns(), uid);
3544 if (!uid_valid(sbinfo->uid))
3545 goto bad_val;
3546 } else if (!strcmp(this_char,"gid")) {
3547 if (remount)
3548 continue;
3549 gid = simple_strtoul(value, &rest, 0);
3550 if (*rest)
3551 goto bad_val;
3552 sbinfo->gid = make_kgid(current_user_ns(), gid);
3553 if (!gid_valid(sbinfo->gid))
3554 goto bad_val;
3555 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3556 } else if (!strcmp(this_char, "huge")) {
3557 int huge;
3558 huge = shmem_parse_huge(value);
3559 if (huge < 0)
3560 goto bad_val;
3561 if (!has_transparent_hugepage() &&
3562 huge != SHMEM_HUGE_NEVER)
3563 goto bad_val;
3564 sbinfo->huge = huge;
3565 #endif
3566 #ifdef CONFIG_NUMA
3567 } else if (!strcmp(this_char,"mpol")) {
3568 mpol_put(mpol);
3569 mpol = NULL;
3570 if (mpol_parse_str(value, &mpol))
3571 goto bad_val;
3572 #endif
3573 } else {
3574 pr_err("tmpfs: Bad mount option %s\n", this_char);
3575 goto error;
3576 }
3577 }
3578 sbinfo->mpol = mpol;
3579 return 0;
3580
3581 bad_val:
3582 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3583 value, this_char);
3584 error:
3585 mpol_put(mpol);
3586 return 1;
3587
3588 }
3589
3590 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3591 {
3592 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3593 struct shmem_sb_info config = *sbinfo;
3594 unsigned long inodes;
3595 int error = -EINVAL;
3596
3597 config.mpol = NULL;
3598 if (shmem_parse_options(data, &config, true))
3599 return error;
3600
3601 spin_lock(&sbinfo->stat_lock);
3602 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3603 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3604 goto out;
3605 if (config.max_inodes < inodes)
3606 goto out;
3607 /*
3608 * Those tests disallow limited->unlimited while any are in use;
3609 * but we must separately disallow unlimited->limited, because
3610 * in that case we have no record of how much is already in use.
3611 */
3612 if (config.max_blocks && !sbinfo->max_blocks)
3613 goto out;
3614 if (config.max_inodes && !sbinfo->max_inodes)
3615 goto out;
3616
3617 error = 0;
3618 sbinfo->huge = config.huge;
3619 sbinfo->max_blocks = config.max_blocks;
3620 sbinfo->max_inodes = config.max_inodes;
3621 sbinfo->free_inodes = config.max_inodes - inodes;
3622
3623 /*
3624 * Preserve previous mempolicy unless mpol remount option was specified.
3625 */
3626 if (config.mpol) {
3627 mpol_put(sbinfo->mpol);
3628 sbinfo->mpol = config.mpol; /* transfers initial ref */
3629 }
3630 out:
3631 spin_unlock(&sbinfo->stat_lock);
3632 return error;
3633 }
3634
3635 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3636 {
3637 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3638
3639 if (sbinfo->max_blocks != shmem_default_max_blocks())
3640 seq_printf(seq, ",size=%luk",
3641 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3642 if (sbinfo->max_inodes != shmem_default_max_inodes())
3643 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3644 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3645 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3646 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3647 seq_printf(seq, ",uid=%u",
3648 from_kuid_munged(&init_user_ns, sbinfo->uid));
3649 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3650 seq_printf(seq, ",gid=%u",
3651 from_kgid_munged(&init_user_ns, sbinfo->gid));
3652 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3653 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3654 if (sbinfo->huge)
3655 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3656 #endif
3657 shmem_show_mpol(seq, sbinfo->mpol);
3658 return 0;
3659 }
3660
3661 #define MFD_NAME_PREFIX "memfd:"
3662 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3663 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3664
3665 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3666
3667 SYSCALL_DEFINE2(memfd_create,
3668 const char __user *, uname,
3669 unsigned int, flags)
3670 {
3671 struct shmem_inode_info *info;
3672 struct file *file;
3673 int fd, error;
3674 char *name;
3675 long len;
3676
3677 if (!(flags & MFD_HUGETLB)) {
3678 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3679 return -EINVAL;
3680 } else {
3681 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3682 if (flags & MFD_ALLOW_SEALING)
3683 return -EINVAL;
3684 /* Allow huge page size encoding in flags. */
3685 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3686 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3687 return -EINVAL;
3688 }
3689
3690 /* length includes terminating zero */
3691 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3692 if (len <= 0)
3693 return -EFAULT;
3694 if (len > MFD_NAME_MAX_LEN + 1)
3695 return -EINVAL;
3696
3697 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3698 if (!name)
3699 return -ENOMEM;
3700
3701 strcpy(name, MFD_NAME_PREFIX);
3702 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3703 error = -EFAULT;
3704 goto err_name;
3705 }
3706
3707 /* terminating-zero may have changed after strnlen_user() returned */
3708 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3709 error = -EFAULT;
3710 goto err_name;
3711 }
3712
3713 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3714 if (fd < 0) {
3715 error = fd;
3716 goto err_name;
3717 }
3718
3719 if (flags & MFD_HUGETLB) {
3720 struct user_struct *user = NULL;
3721
3722 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3723 HUGETLB_ANONHUGE_INODE,
3724 (flags >> MFD_HUGE_SHIFT) &
3725 MFD_HUGE_MASK);
3726 } else
3727 file = shmem_file_setup(name, 0, VM_NORESERVE);
3728 if (IS_ERR(file)) {
3729 error = PTR_ERR(file);
3730 goto err_fd;
3731 }
3732 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3733 file->f_flags |= O_RDWR | O_LARGEFILE;
3734
3735 if (flags & MFD_ALLOW_SEALING) {
3736 /*
3737 * flags check at beginning of function ensures
3738 * this is not a hugetlbfs (MFD_HUGETLB) file.
3739 */
3740 info = SHMEM_I(file_inode(file));
3741 info->seals &= ~F_SEAL_SEAL;
3742 }
3743
3744 fd_install(fd, file);
3745 kfree(name);
3746 return fd;
3747
3748 err_fd:
3749 put_unused_fd(fd);
3750 err_name:
3751 kfree(name);
3752 return error;
3753 }
3754
3755 #endif /* CONFIG_TMPFS */
3756
3757 static void shmem_put_super(struct super_block *sb)
3758 {
3759 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3760
3761 percpu_counter_destroy(&sbinfo->used_blocks);
3762 mpol_put(sbinfo->mpol);
3763 kfree(sbinfo);
3764 sb->s_fs_info = NULL;
3765 }
3766
3767 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3768 {
3769 struct inode *inode;
3770 struct shmem_sb_info *sbinfo;
3771 int err = -ENOMEM;
3772
3773 /* Round up to L1_CACHE_BYTES to resist false sharing */
3774 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3775 L1_CACHE_BYTES), GFP_KERNEL);
3776 if (!sbinfo)
3777 return -ENOMEM;
3778
3779 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3780 sbinfo->uid = current_fsuid();
3781 sbinfo->gid = current_fsgid();
3782 sb->s_fs_info = sbinfo;
3783
3784 #ifdef CONFIG_TMPFS
3785 /*
3786 * Per default we only allow half of the physical ram per
3787 * tmpfs instance, limiting inodes to one per page of lowmem;
3788 * but the internal instance is left unlimited.
3789 */
3790 if (!(sb->s_flags & MS_KERNMOUNT)) {
3791 sbinfo->max_blocks = shmem_default_max_blocks();
3792 sbinfo->max_inodes = shmem_default_max_inodes();
3793 if (shmem_parse_options(data, sbinfo, false)) {
3794 err = -EINVAL;
3795 goto failed;
3796 }
3797 } else {
3798 sb->s_flags |= MS_NOUSER;
3799 }
3800 sb->s_export_op = &shmem_export_ops;
3801 sb->s_flags |= MS_NOSEC;
3802 #else
3803 sb->s_flags |= MS_NOUSER;
3804 #endif
3805
3806 spin_lock_init(&sbinfo->stat_lock);
3807 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3808 goto failed;
3809 sbinfo->free_inodes = sbinfo->max_inodes;
3810 spin_lock_init(&sbinfo->shrinklist_lock);
3811 INIT_LIST_HEAD(&sbinfo->shrinklist);
3812
3813 sb->s_maxbytes = MAX_LFS_FILESIZE;
3814 sb->s_blocksize = PAGE_SIZE;
3815 sb->s_blocksize_bits = PAGE_SHIFT;
3816 sb->s_magic = TMPFS_MAGIC;
3817 sb->s_op = &shmem_ops;
3818 sb->s_time_gran = 1;
3819 #ifdef CONFIG_TMPFS_XATTR
3820 sb->s_xattr = shmem_xattr_handlers;
3821 #endif
3822 #ifdef CONFIG_TMPFS_POSIX_ACL
3823 sb->s_flags |= MS_POSIXACL;
3824 #endif
3825 uuid_gen(&sb->s_uuid);
3826
3827 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3828 if (!inode)
3829 goto failed;
3830 inode->i_uid = sbinfo->uid;
3831 inode->i_gid = sbinfo->gid;
3832 sb->s_root = d_make_root(inode);
3833 if (!sb->s_root)
3834 goto failed;
3835 return 0;
3836
3837 failed:
3838 shmem_put_super(sb);
3839 return err;
3840 }
3841
3842 static struct kmem_cache *shmem_inode_cachep;
3843
3844 static struct inode *shmem_alloc_inode(struct super_block *sb)
3845 {
3846 struct shmem_inode_info *info;
3847 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3848 if (!info)
3849 return NULL;
3850 return &info->vfs_inode;
3851 }
3852
3853 static void shmem_destroy_callback(struct rcu_head *head)
3854 {
3855 struct inode *inode = container_of(head, struct inode, i_rcu);
3856 if (S_ISLNK(inode->i_mode))
3857 kfree(inode->i_link);
3858 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3859 }
3860
3861 static void shmem_destroy_inode(struct inode *inode)
3862 {
3863 if (S_ISREG(inode->i_mode))
3864 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3865 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3866 }
3867
3868 static void shmem_init_inode(void *foo)
3869 {
3870 struct shmem_inode_info *info = foo;
3871 inode_init_once(&info->vfs_inode);
3872 }
3873
3874 static int shmem_init_inodecache(void)
3875 {
3876 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3877 sizeof(struct shmem_inode_info),
3878 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3879 return 0;
3880 }
3881
3882 static void shmem_destroy_inodecache(void)
3883 {
3884 kmem_cache_destroy(shmem_inode_cachep);
3885 }
3886
3887 static const struct address_space_operations shmem_aops = {
3888 .writepage = shmem_writepage,
3889 .set_page_dirty = __set_page_dirty_no_writeback,
3890 #ifdef CONFIG_TMPFS
3891 .write_begin = shmem_write_begin,
3892 .write_end = shmem_write_end,
3893 #endif
3894 #ifdef CONFIG_MIGRATION
3895 .migratepage = migrate_page,
3896 #endif
3897 .error_remove_page = generic_error_remove_page,
3898 };
3899
3900 static const struct file_operations shmem_file_operations = {
3901 .mmap = shmem_mmap,
3902 .get_unmapped_area = shmem_get_unmapped_area,
3903 #ifdef CONFIG_TMPFS
3904 .llseek = shmem_file_llseek,
3905 .read_iter = shmem_file_read_iter,
3906 .write_iter = generic_file_write_iter,
3907 .fsync = noop_fsync,
3908 .splice_read = generic_file_splice_read,
3909 .splice_write = iter_file_splice_write,
3910 .fallocate = shmem_fallocate,
3911 #endif
3912 };
3913
3914 static const struct inode_operations shmem_inode_operations = {
3915 .getattr = shmem_getattr,
3916 .setattr = shmem_setattr,
3917 #ifdef CONFIG_TMPFS_XATTR
3918 .listxattr = shmem_listxattr,
3919 .set_acl = simple_set_acl,
3920 #endif
3921 };
3922
3923 static const struct inode_operations shmem_dir_inode_operations = {
3924 #ifdef CONFIG_TMPFS
3925 .create = shmem_create,
3926 .lookup = simple_lookup,
3927 .link = shmem_link,
3928 .unlink = shmem_unlink,
3929 .symlink = shmem_symlink,
3930 .mkdir = shmem_mkdir,
3931 .rmdir = shmem_rmdir,
3932 .mknod = shmem_mknod,
3933 .rename = shmem_rename2,
3934 .tmpfile = shmem_tmpfile,
3935 #endif
3936 #ifdef CONFIG_TMPFS_XATTR
3937 .listxattr = shmem_listxattr,
3938 #endif
3939 #ifdef CONFIG_TMPFS_POSIX_ACL
3940 .setattr = shmem_setattr,
3941 .set_acl = simple_set_acl,
3942 #endif
3943 };
3944
3945 static const struct inode_operations shmem_special_inode_operations = {
3946 #ifdef CONFIG_TMPFS_XATTR
3947 .listxattr = shmem_listxattr,
3948 #endif
3949 #ifdef CONFIG_TMPFS_POSIX_ACL
3950 .setattr = shmem_setattr,
3951 .set_acl = simple_set_acl,
3952 #endif
3953 };
3954
3955 static const struct super_operations shmem_ops = {
3956 .alloc_inode = shmem_alloc_inode,
3957 .destroy_inode = shmem_destroy_inode,
3958 #ifdef CONFIG_TMPFS
3959 .statfs = shmem_statfs,
3960 .remount_fs = shmem_remount_fs,
3961 .show_options = shmem_show_options,
3962 #endif
3963 .evict_inode = shmem_evict_inode,
3964 .drop_inode = generic_delete_inode,
3965 .put_super = shmem_put_super,
3966 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3967 .nr_cached_objects = shmem_unused_huge_count,
3968 .free_cached_objects = shmem_unused_huge_scan,
3969 #endif
3970 };
3971
3972 static const struct vm_operations_struct shmem_vm_ops = {
3973 .fault = shmem_fault,
3974 .map_pages = filemap_map_pages,
3975 #ifdef CONFIG_NUMA
3976 .set_policy = shmem_set_policy,
3977 .get_policy = shmem_get_policy,
3978 #endif
3979 };
3980
3981 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3982 int flags, const char *dev_name, void *data)
3983 {
3984 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3985 }
3986
3987 static struct file_system_type shmem_fs_type = {
3988 .owner = THIS_MODULE,
3989 .name = "tmpfs",
3990 .mount = shmem_mount,
3991 .kill_sb = kill_litter_super,
3992 .fs_flags = FS_USERNS_MOUNT,
3993 };
3994
3995 int __init shmem_init(void)
3996 {
3997 int error;
3998
3999 /* If rootfs called this, don't re-init */
4000 if (shmem_inode_cachep)
4001 return 0;
4002
4003 error = shmem_init_inodecache();
4004 if (error)
4005 goto out3;
4006
4007 error = register_filesystem(&shmem_fs_type);
4008 if (error) {
4009 pr_err("Could not register tmpfs\n");
4010 goto out2;
4011 }
4012
4013 shm_mnt = kern_mount(&shmem_fs_type);
4014 if (IS_ERR(shm_mnt)) {
4015 error = PTR_ERR(shm_mnt);
4016 pr_err("Could not kern_mount tmpfs\n");
4017 goto out1;
4018 }
4019
4020 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4021 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4022 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4023 else
4024 shmem_huge = 0; /* just in case it was patched */
4025 #endif
4026 return 0;
4027
4028 out1:
4029 unregister_filesystem(&shmem_fs_type);
4030 out2:
4031 shmem_destroy_inodecache();
4032 out3:
4033 shm_mnt = ERR_PTR(error);
4034 return error;
4035 }
4036
4037 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4038 static ssize_t shmem_enabled_show(struct kobject *kobj,
4039 struct kobj_attribute *attr, char *buf)
4040 {
4041 int values[] = {
4042 SHMEM_HUGE_ALWAYS,
4043 SHMEM_HUGE_WITHIN_SIZE,
4044 SHMEM_HUGE_ADVISE,
4045 SHMEM_HUGE_NEVER,
4046 SHMEM_HUGE_DENY,
4047 SHMEM_HUGE_FORCE,
4048 };
4049 int i, count;
4050
4051 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4052 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4053
4054 count += sprintf(buf + count, fmt,
4055 shmem_format_huge(values[i]));
4056 }
4057 buf[count - 1] = '\n';
4058 return count;
4059 }
4060
4061 static ssize_t shmem_enabled_store(struct kobject *kobj,
4062 struct kobj_attribute *attr, const char *buf, size_t count)
4063 {
4064 char tmp[16];
4065 int huge;
4066
4067 if (count + 1 > sizeof(tmp))
4068 return -EINVAL;
4069 memcpy(tmp, buf, count);
4070 tmp[count] = '\0';
4071 if (count && tmp[count - 1] == '\n')
4072 tmp[count - 1] = '\0';
4073
4074 huge = shmem_parse_huge(tmp);
4075 if (huge == -EINVAL)
4076 return -EINVAL;
4077 if (!has_transparent_hugepage() &&
4078 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4079 return -EINVAL;
4080
4081 shmem_huge = huge;
4082 if (shmem_huge > SHMEM_HUGE_DENY)
4083 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4084 return count;
4085 }
4086
4087 struct kobj_attribute shmem_enabled_attr =
4088 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4089 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4090
4091 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4092 bool shmem_huge_enabled(struct vm_area_struct *vma)
4093 {
4094 struct inode *inode = file_inode(vma->vm_file);
4095 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4096 loff_t i_size;
4097 pgoff_t off;
4098
4099 if (shmem_huge == SHMEM_HUGE_FORCE)
4100 return true;
4101 if (shmem_huge == SHMEM_HUGE_DENY)
4102 return false;
4103 switch (sbinfo->huge) {
4104 case SHMEM_HUGE_NEVER:
4105 return false;
4106 case SHMEM_HUGE_ALWAYS:
4107 return true;
4108 case SHMEM_HUGE_WITHIN_SIZE:
4109 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4110 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4111 if (i_size >= HPAGE_PMD_SIZE &&
4112 i_size >> PAGE_SHIFT >= off)
4113 return true;
4114 case SHMEM_HUGE_ADVISE:
4115 /* TODO: implement fadvise() hints */
4116 return (vma->vm_flags & VM_HUGEPAGE);
4117 default:
4118 VM_BUG_ON(1);
4119 return false;
4120 }
4121 }
4122 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4123
4124 #else /* !CONFIG_SHMEM */
4125
4126 /*
4127 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4128 *
4129 * This is intended for small system where the benefits of the full
4130 * shmem code (swap-backed and resource-limited) are outweighed by
4131 * their complexity. On systems without swap this code should be
4132 * effectively equivalent, but much lighter weight.
4133 */
4134
4135 static struct file_system_type shmem_fs_type = {
4136 .name = "tmpfs",
4137 .mount = ramfs_mount,
4138 .kill_sb = kill_litter_super,
4139 .fs_flags = FS_USERNS_MOUNT,
4140 };
4141
4142 int __init shmem_init(void)
4143 {
4144 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4145
4146 shm_mnt = kern_mount(&shmem_fs_type);
4147 BUG_ON(IS_ERR(shm_mnt));
4148
4149 return 0;
4150 }
4151
4152 int shmem_unuse(swp_entry_t swap, struct page *page)
4153 {
4154 return 0;
4155 }
4156
4157 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4158 {
4159 return 0;
4160 }
4161
4162 void shmem_unlock_mapping(struct address_space *mapping)
4163 {
4164 }
4165
4166 #ifdef CONFIG_MMU
4167 unsigned long shmem_get_unmapped_area(struct file *file,
4168 unsigned long addr, unsigned long len,
4169 unsigned long pgoff, unsigned long flags)
4170 {
4171 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4172 }
4173 #endif
4174
4175 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4176 {
4177 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4178 }
4179 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4180
4181 #define shmem_vm_ops generic_file_vm_ops
4182 #define shmem_file_operations ramfs_file_operations
4183 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4184 #define shmem_acct_size(flags, size) 0
4185 #define shmem_unacct_size(flags, size) do {} while (0)
4186
4187 #endif /* CONFIG_SHMEM */
4188
4189 /* common code */
4190
4191 static const struct dentry_operations anon_ops = {
4192 .d_dname = simple_dname
4193 };
4194
4195 static struct file *__shmem_file_setup(const char *name, loff_t size,
4196 unsigned long flags, unsigned int i_flags)
4197 {
4198 struct file *res;
4199 struct inode *inode;
4200 struct path path;
4201 struct super_block *sb;
4202 struct qstr this;
4203
4204 if (IS_ERR(shm_mnt))
4205 return ERR_CAST(shm_mnt);
4206
4207 if (size < 0 || size > MAX_LFS_FILESIZE)
4208 return ERR_PTR(-EINVAL);
4209
4210 if (shmem_acct_size(flags, size))
4211 return ERR_PTR(-ENOMEM);
4212
4213 res = ERR_PTR(-ENOMEM);
4214 this.name = name;
4215 this.len = strlen(name);
4216 this.hash = 0; /* will go */
4217 sb = shm_mnt->mnt_sb;
4218 path.mnt = mntget(shm_mnt);
4219 path.dentry = d_alloc_pseudo(sb, &this);
4220 if (!path.dentry)
4221 goto put_memory;
4222 d_set_d_op(path.dentry, &anon_ops);
4223
4224 res = ERR_PTR(-ENOSPC);
4225 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4226 if (!inode)
4227 goto put_memory;
4228
4229 inode->i_flags |= i_flags;
4230 d_instantiate(path.dentry, inode);
4231 inode->i_size = size;
4232 clear_nlink(inode); /* It is unlinked */
4233 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4234 if (IS_ERR(res))
4235 goto put_path;
4236
4237 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4238 &shmem_file_operations);
4239 if (IS_ERR(res))
4240 goto put_path;
4241
4242 return res;
4243
4244 put_memory:
4245 shmem_unacct_size(flags, size);
4246 put_path:
4247 path_put(&path);
4248 return res;
4249 }
4250
4251 /**
4252 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4253 * kernel internal. There will be NO LSM permission checks against the
4254 * underlying inode. So users of this interface must do LSM checks at a
4255 * higher layer. The users are the big_key and shm implementations. LSM
4256 * checks are provided at the key or shm level rather than the inode.
4257 * @name: name for dentry (to be seen in /proc/<pid>/maps
4258 * @size: size to be set for the file
4259 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4260 */
4261 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4262 {
4263 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4264 }
4265
4266 /**
4267 * shmem_file_setup - get an unlinked file living in tmpfs
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4273 {
4274 return __shmem_file_setup(name, size, flags, 0);
4275 }
4276 EXPORT_SYMBOL_GPL(shmem_file_setup);
4277
4278 /**
4279 * shmem_zero_setup - setup a shared anonymous mapping
4280 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4281 */
4282 int shmem_zero_setup(struct vm_area_struct *vma)
4283 {
4284 struct file *file;
4285 loff_t size = vma->vm_end - vma->vm_start;
4286
4287 /*
4288 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4289 * between XFS directory reading and selinux: since this file is only
4290 * accessible to the user through its mapping, use S_PRIVATE flag to
4291 * bypass file security, in the same way as shmem_kernel_file_setup().
4292 */
4293 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4294 if (IS_ERR(file))
4295 return PTR_ERR(file);
4296
4297 if (vma->vm_file)
4298 fput(vma->vm_file);
4299 vma->vm_file = file;
4300 vma->vm_ops = &shmem_vm_ops;
4301
4302 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4303 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4304 (vma->vm_end & HPAGE_PMD_MASK)) {
4305 khugepaged_enter(vma, vma->vm_flags);
4306 }
4307
4308 return 0;
4309 }
4310
4311 /**
4312 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4313 * @mapping: the page's address_space
4314 * @index: the page index
4315 * @gfp: the page allocator flags to use if allocating
4316 *
4317 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4318 * with any new page allocations done using the specified allocation flags.
4319 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4320 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4321 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4322 *
4323 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4324 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4325 */
4326 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4327 pgoff_t index, gfp_t gfp)
4328 {
4329 #ifdef CONFIG_SHMEM
4330 struct inode *inode = mapping->host;
4331 struct page *page;
4332 int error;
4333
4334 BUG_ON(mapping->a_ops != &shmem_aops);
4335 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4336 gfp, NULL, NULL, NULL);
4337 if (error)
4338 page = ERR_PTR(error);
4339 else
4340 unlock_page(page);
4341 return page;
4342 #else
4343 /*
4344 * The tiny !SHMEM case uses ramfs without swap
4345 */
4346 return read_cache_page_gfp(mapping, index, gfp);
4347 #endif
4348 }
4349 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);