]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/slab.c
net/mlx5: Avoid reloading already removed devices
[thirdparty/kernel/stable.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 if (ac) {
567 ac->avail = 0;
568 ac->limit = limit;
569 ac->batchcount = batch;
570 ac->touched = 0;
571 }
572 }
573
574 static struct array_cache *alloc_arraycache(int node, int entries,
575 int batchcount, gfp_t gfp)
576 {
577 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
578 struct array_cache *ac = NULL;
579
580 ac = kmalloc_node(memsize, gfp, node);
581 /*
582 * The array_cache structures contain pointers to free object.
583 * However, when such objects are allocated or transferred to another
584 * cache the pointers are not cleared and they could be counted as
585 * valid references during a kmemleak scan. Therefore, kmemleak must
586 * not scan such objects.
587 */
588 kmemleak_no_scan(ac);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 if (alc) {
683 kmemleak_no_scan(alc);
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 }
687 return alc;
688 }
689
690 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691 {
692 struct alien_cache **alc_ptr;
693 size_t memsize = sizeof(void *) * nr_node_ids;
694 int i;
695
696 if (limit > 1)
697 limit = 12;
698 alc_ptr = kzalloc_node(memsize, gfp, node);
699 if (!alc_ptr)
700 return NULL;
701
702 for_each_node(i) {
703 if (i == node || !node_online(i))
704 continue;
705 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
706 if (!alc_ptr[i]) {
707 for (i--; i >= 0; i--)
708 kfree(alc_ptr[i]);
709 kfree(alc_ptr);
710 return NULL;
711 }
712 }
713 return alc_ptr;
714 }
715
716 static void free_alien_cache(struct alien_cache **alc_ptr)
717 {
718 int i;
719
720 if (!alc_ptr)
721 return;
722 for_each_node(i)
723 kfree(alc_ptr[i]);
724 kfree(alc_ptr);
725 }
726
727 static void __drain_alien_cache(struct kmem_cache *cachep,
728 struct array_cache *ac, int node,
729 struct list_head *list)
730 {
731 struct kmem_cache_node *n = get_node(cachep, node);
732
733 if (ac->avail) {
734 spin_lock(&n->list_lock);
735 /*
736 * Stuff objects into the remote nodes shared array first.
737 * That way we could avoid the overhead of putting the objects
738 * into the free lists and getting them back later.
739 */
740 if (n->shared)
741 transfer_objects(n->shared, ac, ac->limit);
742
743 free_block(cachep, ac->entry, ac->avail, node, list);
744 ac->avail = 0;
745 spin_unlock(&n->list_lock);
746 }
747 }
748
749 /*
750 * Called from cache_reap() to regularly drain alien caches round robin.
751 */
752 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753 {
754 int node = __this_cpu_read(slab_reap_node);
755
756 if (n->alien) {
757 struct alien_cache *alc = n->alien[node];
758 struct array_cache *ac;
759
760 if (alc) {
761 ac = &alc->ac;
762 if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 LIST_HEAD(list);
764
765 __drain_alien_cache(cachep, ac, node, &list);
766 spin_unlock_irq(&alc->lock);
767 slabs_destroy(cachep, &list);
768 }
769 }
770 }
771 }
772
773 static void drain_alien_cache(struct kmem_cache *cachep,
774 struct alien_cache **alien)
775 {
776 int i = 0;
777 struct alien_cache *alc;
778 struct array_cache *ac;
779 unsigned long flags;
780
781 for_each_online_node(i) {
782 alc = alien[i];
783 if (alc) {
784 LIST_HEAD(list);
785
786 ac = &alc->ac;
787 spin_lock_irqsave(&alc->lock, flags);
788 __drain_alien_cache(cachep, ac, i, &list);
789 spin_unlock_irqrestore(&alc->lock, flags);
790 slabs_destroy(cachep, &list);
791 }
792 }
793 }
794
795 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
796 int node, int page_node)
797 {
798 struct kmem_cache_node *n;
799 struct alien_cache *alien = NULL;
800 struct array_cache *ac;
801 LIST_HEAD(list);
802
803 n = get_node(cachep, node);
804 STATS_INC_NODEFREES(cachep);
805 if (n->alien && n->alien[page_node]) {
806 alien = n->alien[page_node];
807 ac = &alien->ac;
808 spin_lock(&alien->lock);
809 if (unlikely(ac->avail == ac->limit)) {
810 STATS_INC_ACOVERFLOW(cachep);
811 __drain_alien_cache(cachep, ac, page_node, &list);
812 }
813 ac->entry[ac->avail++] = objp;
814 spin_unlock(&alien->lock);
815 slabs_destroy(cachep, &list);
816 } else {
817 n = get_node(cachep, page_node);
818 spin_lock(&n->list_lock);
819 free_block(cachep, &objp, 1, page_node, &list);
820 spin_unlock(&n->list_lock);
821 slabs_destroy(cachep, &list);
822 }
823 return 1;
824 }
825
826 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
827 {
828 int page_node = page_to_nid(virt_to_page(objp));
829 int node = numa_mem_id();
830 /*
831 * Make sure we are not freeing a object from another node to the array
832 * cache on this cpu.
833 */
834 if (likely(node == page_node))
835 return 0;
836
837 return __cache_free_alien(cachep, objp, node, page_node);
838 }
839
840 /*
841 * Construct gfp mask to allocate from a specific node but do not reclaim or
842 * warn about failures.
843 */
844 static inline gfp_t gfp_exact_node(gfp_t flags)
845 {
846 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
847 }
848 #endif
849
850 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
851 {
852 struct kmem_cache_node *n;
853
854 /*
855 * Set up the kmem_cache_node for cpu before we can
856 * begin anything. Make sure some other cpu on this
857 * node has not already allocated this
858 */
859 n = get_node(cachep, node);
860 if (n) {
861 spin_lock_irq(&n->list_lock);
862 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
863 cachep->num;
864 spin_unlock_irq(&n->list_lock);
865
866 return 0;
867 }
868
869 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
870 if (!n)
871 return -ENOMEM;
872
873 kmem_cache_node_init(n);
874 n->next_reap = jiffies + REAPTIMEOUT_NODE +
875 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
876
877 n->free_limit =
878 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879
880 /*
881 * The kmem_cache_nodes don't come and go as CPUs
882 * come and go. slab_mutex is sufficient
883 * protection here.
884 */
885 cachep->node[node] = n;
886
887 return 0;
888 }
889
890 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891 /*
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
896 * already in use.
897 *
898 * Must hold slab_mutex.
899 */
900 static int init_cache_node_node(int node)
901 {
902 int ret;
903 struct kmem_cache *cachep;
904
905 list_for_each_entry(cachep, &slab_caches, list) {
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
909 }
910
911 return 0;
912 }
913 #endif
914
915 static int setup_kmem_cache_node(struct kmem_cache *cachep,
916 int node, gfp_t gfp, bool force_change)
917 {
918 int ret = -ENOMEM;
919 struct kmem_cache_node *n;
920 struct array_cache *old_shared = NULL;
921 struct array_cache *new_shared = NULL;
922 struct alien_cache **new_alien = NULL;
923 LIST_HEAD(list);
924
925 if (use_alien_caches) {
926 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
927 if (!new_alien)
928 goto fail;
929 }
930
931 if (cachep->shared) {
932 new_shared = alloc_arraycache(node,
933 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
934 if (!new_shared)
935 goto fail;
936 }
937
938 ret = init_cache_node(cachep, node, gfp);
939 if (ret)
940 goto fail;
941
942 n = get_node(cachep, node);
943 spin_lock_irq(&n->list_lock);
944 if (n->shared && force_change) {
945 free_block(cachep, n->shared->entry,
946 n->shared->avail, node, &list);
947 n->shared->avail = 0;
948 }
949
950 if (!n->shared || force_change) {
951 old_shared = n->shared;
952 n->shared = new_shared;
953 new_shared = NULL;
954 }
955
956 if (!n->alien) {
957 n->alien = new_alien;
958 new_alien = NULL;
959 }
960
961 spin_unlock_irq(&n->list_lock);
962 slabs_destroy(cachep, &list);
963
964 /*
965 * To protect lockless access to n->shared during irq disabled context.
966 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 * guaranteed to be valid until irq is re-enabled, because it will be
968 * freed after synchronize_sched().
969 */
970 if (old_shared && force_change)
971 synchronize_sched();
972
973 fail:
974 kfree(old_shared);
975 kfree(new_shared);
976 free_alien_cache(new_alien);
977
978 return ret;
979 }
980
981 #ifdef CONFIG_SMP
982
983 static void cpuup_canceled(long cpu)
984 {
985 struct kmem_cache *cachep;
986 struct kmem_cache_node *n = NULL;
987 int node = cpu_to_mem(cpu);
988 const struct cpumask *mask = cpumask_of_node(node);
989
990 list_for_each_entry(cachep, &slab_caches, list) {
991 struct array_cache *nc;
992 struct array_cache *shared;
993 struct alien_cache **alien;
994 LIST_HEAD(list);
995
996 n = get_node(cachep, node);
997 if (!n)
998 continue;
999
1000 spin_lock_irq(&n->list_lock);
1001
1002 /* Free limit for this kmem_cache_node */
1003 n->free_limit -= cachep->batchcount;
1004
1005 /* cpu is dead; no one can alloc from it. */
1006 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1007 if (nc) {
1008 free_block(cachep, nc->entry, nc->avail, node, &list);
1009 nc->avail = 0;
1010 }
1011
1012 if (!cpumask_empty(mask)) {
1013 spin_unlock_irq(&n->list_lock);
1014 goto free_slab;
1015 }
1016
1017 shared = n->shared;
1018 if (shared) {
1019 free_block(cachep, shared->entry,
1020 shared->avail, node, &list);
1021 n->shared = NULL;
1022 }
1023
1024 alien = n->alien;
1025 n->alien = NULL;
1026
1027 spin_unlock_irq(&n->list_lock);
1028
1029 kfree(shared);
1030 if (alien) {
1031 drain_alien_cache(cachep, alien);
1032 free_alien_cache(alien);
1033 }
1034
1035 free_slab:
1036 slabs_destroy(cachep, &list);
1037 }
1038 /*
1039 * In the previous loop, all the objects were freed to
1040 * the respective cache's slabs, now we can go ahead and
1041 * shrink each nodelist to its limit.
1042 */
1043 list_for_each_entry(cachep, &slab_caches, list) {
1044 n = get_node(cachep, node);
1045 if (!n)
1046 continue;
1047 drain_freelist(cachep, n, INT_MAX);
1048 }
1049 }
1050
1051 static int cpuup_prepare(long cpu)
1052 {
1053 struct kmem_cache *cachep;
1054 int node = cpu_to_mem(cpu);
1055 int err;
1056
1057 /*
1058 * We need to do this right in the beginning since
1059 * alloc_arraycache's are going to use this list.
1060 * kmalloc_node allows us to add the slab to the right
1061 * kmem_cache_node and not this cpu's kmem_cache_node
1062 */
1063 err = init_cache_node_node(node);
1064 if (err < 0)
1065 goto bad;
1066
1067 /*
1068 * Now we can go ahead with allocating the shared arrays and
1069 * array caches
1070 */
1071 list_for_each_entry(cachep, &slab_caches, list) {
1072 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1073 if (err)
1074 goto bad;
1075 }
1076
1077 return 0;
1078 bad:
1079 cpuup_canceled(cpu);
1080 return -ENOMEM;
1081 }
1082
1083 int slab_prepare_cpu(unsigned int cpu)
1084 {
1085 int err;
1086
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 return err;
1091 }
1092
1093 /*
1094 * This is called for a failed online attempt and for a successful
1095 * offline.
1096 *
1097 * Even if all the cpus of a node are down, we don't free the
1098 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099 * a kmalloc allocation from another cpu for memory from the node of
1100 * the cpu going down. The list3 structure is usually allocated from
1101 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1102 */
1103 int slab_dead_cpu(unsigned int cpu)
1104 {
1105 mutex_lock(&slab_mutex);
1106 cpuup_canceled(cpu);
1107 mutex_unlock(&slab_mutex);
1108 return 0;
1109 }
1110 #endif
1111
1112 static int slab_online_cpu(unsigned int cpu)
1113 {
1114 start_cpu_timer(cpu);
1115 return 0;
1116 }
1117
1118 static int slab_offline_cpu(unsigned int cpu)
1119 {
1120 /*
1121 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 * that if cache_reap() is invoked it cannot do anything
1123 * expensive but will only modify reap_work and reschedule the
1124 * timer.
1125 */
1126 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1127 /* Now the cache_reaper is guaranteed to be not running. */
1128 per_cpu(slab_reap_work, cpu).work.func = NULL;
1129 return 0;
1130 }
1131
1132 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1133 /*
1134 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135 * Returns -EBUSY if all objects cannot be drained so that the node is not
1136 * removed.
1137 *
1138 * Must hold slab_mutex.
1139 */
1140 static int __meminit drain_cache_node_node(int node)
1141 {
1142 struct kmem_cache *cachep;
1143 int ret = 0;
1144
1145 list_for_each_entry(cachep, &slab_caches, list) {
1146 struct kmem_cache_node *n;
1147
1148 n = get_node(cachep, node);
1149 if (!n)
1150 continue;
1151
1152 drain_freelist(cachep, n, INT_MAX);
1153
1154 if (!list_empty(&n->slabs_full) ||
1155 !list_empty(&n->slabs_partial)) {
1156 ret = -EBUSY;
1157 break;
1158 }
1159 }
1160 return ret;
1161 }
1162
1163 static int __meminit slab_memory_callback(struct notifier_block *self,
1164 unsigned long action, void *arg)
1165 {
1166 struct memory_notify *mnb = arg;
1167 int ret = 0;
1168 int nid;
1169
1170 nid = mnb->status_change_nid;
1171 if (nid < 0)
1172 goto out;
1173
1174 switch (action) {
1175 case MEM_GOING_ONLINE:
1176 mutex_lock(&slab_mutex);
1177 ret = init_cache_node_node(nid);
1178 mutex_unlock(&slab_mutex);
1179 break;
1180 case MEM_GOING_OFFLINE:
1181 mutex_lock(&slab_mutex);
1182 ret = drain_cache_node_node(nid);
1183 mutex_unlock(&slab_mutex);
1184 break;
1185 case MEM_ONLINE:
1186 case MEM_OFFLINE:
1187 case MEM_CANCEL_ONLINE:
1188 case MEM_CANCEL_OFFLINE:
1189 break;
1190 }
1191 out:
1192 return notifier_from_errno(ret);
1193 }
1194 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195
1196 /*
1197 * swap the static kmem_cache_node with kmalloced memory
1198 */
1199 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200 int nodeid)
1201 {
1202 struct kmem_cache_node *ptr;
1203
1204 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 BUG_ON(!ptr);
1206
1207 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 /*
1209 * Do not assume that spinlocks can be initialized via memcpy:
1210 */
1211 spin_lock_init(&ptr->list_lock);
1212
1213 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214 cachep->node[nodeid] = ptr;
1215 }
1216
1217 /*
1218 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219 * size of kmem_cache_node.
1220 */
1221 static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 {
1223 int node;
1224
1225 for_each_online_node(node) {
1226 cachep->node[node] = &init_kmem_cache_node[index + node];
1227 cachep->node[node]->next_reap = jiffies +
1228 REAPTIMEOUT_NODE +
1229 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 }
1231 }
1232
1233 /*
1234 * Initialisation. Called after the page allocator have been initialised and
1235 * before smp_init().
1236 */
1237 void __init kmem_cache_init(void)
1238 {
1239 int i;
1240
1241 kmem_cache = &kmem_cache_boot;
1242
1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 use_alien_caches = 0;
1245
1246 for (i = 0; i < NUM_INIT_LISTS; i++)
1247 kmem_cache_node_init(&init_kmem_cache_node[i]);
1248
1249 /*
1250 * Fragmentation resistance on low memory - only use bigger
1251 * page orders on machines with more than 32MB of memory if
1252 * not overridden on the command line.
1253 */
1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255 slab_max_order = SLAB_MAX_ORDER_HI;
1256
1257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
1259 * 1) initialize the kmem_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except kmem_cache itself:
1261 * kmem_cache is statically allocated.
1262 * Initially an __init data area is used for the head array and the
1263 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1264 * array at the end of the bootstrap.
1265 * 2) Create the first kmalloc cache.
1266 * The struct kmem_cache for the new cache is allocated normally.
1267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
1270 * 4) Replace the __init data head arrays for kmem_cache and the first
1271 * kmalloc cache with kmalloc allocated arrays.
1272 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1275 */
1276
1277 /* 1) create the kmem_cache */
1278
1279 /*
1280 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1281 */
1282 create_boot_cache(kmem_cache, "kmem_cache",
1283 offsetof(struct kmem_cache, node) +
1284 nr_node_ids * sizeof(struct kmem_cache_node *),
1285 SLAB_HWCACHE_ALIGN, 0, 0);
1286 list_add(&kmem_cache->list, &slab_caches);
1287 memcg_link_cache(kmem_cache);
1288 slab_state = PARTIAL;
1289
1290 /*
1291 * Initialize the caches that provide memory for the kmem_cache_node
1292 * structures first. Without this, further allocations will bug.
1293 */
1294 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1295 kmalloc_info[INDEX_NODE].name,
1296 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1297 0, kmalloc_size(INDEX_NODE));
1298 slab_state = PARTIAL_NODE;
1299 setup_kmalloc_cache_index_table();
1300
1301 slab_early_init = 0;
1302
1303 /* 5) Replace the bootstrap kmem_cache_node */
1304 {
1305 int nid;
1306
1307 for_each_online_node(nid) {
1308 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1309
1310 init_list(kmalloc_caches[INDEX_NODE],
1311 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1312 }
1313 }
1314
1315 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1316 }
1317
1318 void __init kmem_cache_init_late(void)
1319 {
1320 struct kmem_cache *cachep;
1321
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329 /* Done! */
1330 slab_state = FULL;
1331
1332 #ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
1335 * node.
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1339
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1343 */
1344 }
1345
1346 static int __init cpucache_init(void)
1347 {
1348 int ret;
1349
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1352 */
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1356
1357 return 0;
1358 }
1359 __initcall(cpucache_init);
1360
1361 static noinline void
1362 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1363 {
1364 #if DEBUG
1365 struct kmem_cache_node *n;
1366 unsigned long flags;
1367 int node;
1368 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1369 DEFAULT_RATELIMIT_BURST);
1370
1371 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1372 return;
1373
1374 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1375 nodeid, gfpflags, &gfpflags);
1376 pr_warn(" cache: %s, object size: %d, order: %d\n",
1377 cachep->name, cachep->size, cachep->gfporder);
1378
1379 for_each_kmem_cache_node(cachep, node, n) {
1380 unsigned long total_slabs, free_slabs, free_objs;
1381
1382 spin_lock_irqsave(&n->list_lock, flags);
1383 total_slabs = n->total_slabs;
1384 free_slabs = n->free_slabs;
1385 free_objs = n->free_objects;
1386 spin_unlock_irqrestore(&n->list_lock, flags);
1387
1388 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1389 node, total_slabs - free_slabs, total_slabs,
1390 (total_slabs * cachep->num) - free_objs,
1391 total_slabs * cachep->num);
1392 }
1393 #endif
1394 }
1395
1396 /*
1397 * Interface to system's page allocator. No need to hold the
1398 * kmem_cache_node ->list_lock.
1399 *
1400 * If we requested dmaable memory, we will get it. Even if we
1401 * did not request dmaable memory, we might get it, but that
1402 * would be relatively rare and ignorable.
1403 */
1404 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1405 int nodeid)
1406 {
1407 struct page *page;
1408 int nr_pages;
1409
1410 flags |= cachep->allocflags;
1411
1412 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1413 if (!page) {
1414 slab_out_of_memory(cachep, flags, nodeid);
1415 return NULL;
1416 }
1417
1418 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1419 __free_pages(page, cachep->gfporder);
1420 return NULL;
1421 }
1422
1423 nr_pages = (1 << cachep->gfporder);
1424 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1425 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1426 else
1427 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1428
1429 __SetPageSlab(page);
1430 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1431 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1432 SetPageSlabPfmemalloc(page);
1433
1434 return page;
1435 }
1436
1437 /*
1438 * Interface to system's page release.
1439 */
1440 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1441 {
1442 int order = cachep->gfporder;
1443 unsigned long nr_freed = (1 << order);
1444
1445 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1446 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1447 else
1448 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1449
1450 BUG_ON(!PageSlab(page));
1451 __ClearPageSlabPfmemalloc(page);
1452 __ClearPageSlab(page);
1453 page_mapcount_reset(page);
1454 page->mapping = NULL;
1455
1456 if (current->reclaim_state)
1457 current->reclaim_state->reclaimed_slab += nr_freed;
1458 memcg_uncharge_slab(page, order, cachep);
1459 __free_pages(page, order);
1460 }
1461
1462 static void kmem_rcu_free(struct rcu_head *head)
1463 {
1464 struct kmem_cache *cachep;
1465 struct page *page;
1466
1467 page = container_of(head, struct page, rcu_head);
1468 cachep = page->slab_cache;
1469
1470 kmem_freepages(cachep, page);
1471 }
1472
1473 #if DEBUG
1474 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1475 {
1476 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1477 (cachep->size % PAGE_SIZE) == 0)
1478 return true;
1479
1480 return false;
1481 }
1482
1483 #ifdef CONFIG_DEBUG_PAGEALLOC
1484 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1485 unsigned long caller)
1486 {
1487 int size = cachep->object_size;
1488
1489 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1490
1491 if (size < 5 * sizeof(unsigned long))
1492 return;
1493
1494 *addr++ = 0x12345678;
1495 *addr++ = caller;
1496 *addr++ = smp_processor_id();
1497 size -= 3 * sizeof(unsigned long);
1498 {
1499 unsigned long *sptr = &caller;
1500 unsigned long svalue;
1501
1502 while (!kstack_end(sptr)) {
1503 svalue = *sptr++;
1504 if (kernel_text_address(svalue)) {
1505 *addr++ = svalue;
1506 size -= sizeof(unsigned long);
1507 if (size <= sizeof(unsigned long))
1508 break;
1509 }
1510 }
1511
1512 }
1513 *addr++ = 0x87654321;
1514 }
1515
1516 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1517 int map, unsigned long caller)
1518 {
1519 if (!is_debug_pagealloc_cache(cachep))
1520 return;
1521
1522 if (caller)
1523 store_stackinfo(cachep, objp, caller);
1524
1525 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1526 }
1527
1528 #else
1529 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1530 int map, unsigned long caller) {}
1531
1532 #endif
1533
1534 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1535 {
1536 int size = cachep->object_size;
1537 addr = &((char *)addr)[obj_offset(cachep)];
1538
1539 memset(addr, val, size);
1540 *(unsigned char *)(addr + size - 1) = POISON_END;
1541 }
1542
1543 static void dump_line(char *data, int offset, int limit)
1544 {
1545 int i;
1546 unsigned char error = 0;
1547 int bad_count = 0;
1548
1549 pr_err("%03x: ", offset);
1550 for (i = 0; i < limit; i++) {
1551 if (data[offset + i] != POISON_FREE) {
1552 error = data[offset + i];
1553 bad_count++;
1554 }
1555 }
1556 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1557 &data[offset], limit, 1);
1558
1559 if (bad_count == 1) {
1560 error ^= POISON_FREE;
1561 if (!(error & (error - 1))) {
1562 pr_err("Single bit error detected. Probably bad RAM.\n");
1563 #ifdef CONFIG_X86
1564 pr_err("Run memtest86+ or a similar memory test tool.\n");
1565 #else
1566 pr_err("Run a memory test tool.\n");
1567 #endif
1568 }
1569 }
1570 }
1571 #endif
1572
1573 #if DEBUG
1574
1575 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1576 {
1577 int i, size;
1578 char *realobj;
1579
1580 if (cachep->flags & SLAB_RED_ZONE) {
1581 pr_err("Redzone: 0x%llx/0x%llx\n",
1582 *dbg_redzone1(cachep, objp),
1583 *dbg_redzone2(cachep, objp));
1584 }
1585
1586 if (cachep->flags & SLAB_STORE_USER)
1587 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1588 realobj = (char *)objp + obj_offset(cachep);
1589 size = cachep->object_size;
1590 for (i = 0; i < size && lines; i += 16, lines--) {
1591 int limit;
1592 limit = 16;
1593 if (i + limit > size)
1594 limit = size - i;
1595 dump_line(realobj, i, limit);
1596 }
1597 }
1598
1599 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1600 {
1601 char *realobj;
1602 int size, i;
1603 int lines = 0;
1604
1605 if (is_debug_pagealloc_cache(cachep))
1606 return;
1607
1608 realobj = (char *)objp + obj_offset(cachep);
1609 size = cachep->object_size;
1610
1611 for (i = 0; i < size; i++) {
1612 char exp = POISON_FREE;
1613 if (i == size - 1)
1614 exp = POISON_END;
1615 if (realobj[i] != exp) {
1616 int limit;
1617 /* Mismatch ! */
1618 /* Print header */
1619 if (lines == 0) {
1620 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1621 print_tainted(), cachep->name,
1622 realobj, size);
1623 print_objinfo(cachep, objp, 0);
1624 }
1625 /* Hexdump the affected line */
1626 i = (i / 16) * 16;
1627 limit = 16;
1628 if (i + limit > size)
1629 limit = size - i;
1630 dump_line(realobj, i, limit);
1631 i += 16;
1632 lines++;
1633 /* Limit to 5 lines */
1634 if (lines > 5)
1635 break;
1636 }
1637 }
1638 if (lines != 0) {
1639 /* Print some data about the neighboring objects, if they
1640 * exist:
1641 */
1642 struct page *page = virt_to_head_page(objp);
1643 unsigned int objnr;
1644
1645 objnr = obj_to_index(cachep, page, objp);
1646 if (objnr) {
1647 objp = index_to_obj(cachep, page, objnr - 1);
1648 realobj = (char *)objp + obj_offset(cachep);
1649 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1650 print_objinfo(cachep, objp, 2);
1651 }
1652 if (objnr + 1 < cachep->num) {
1653 objp = index_to_obj(cachep, page, objnr + 1);
1654 realobj = (char *)objp + obj_offset(cachep);
1655 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1656 print_objinfo(cachep, objp, 2);
1657 }
1658 }
1659 }
1660 #endif
1661
1662 #if DEBUG
1663 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1664 struct page *page)
1665 {
1666 int i;
1667
1668 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1669 poison_obj(cachep, page->freelist - obj_offset(cachep),
1670 POISON_FREE);
1671 }
1672
1673 for (i = 0; i < cachep->num; i++) {
1674 void *objp = index_to_obj(cachep, page, i);
1675
1676 if (cachep->flags & SLAB_POISON) {
1677 check_poison_obj(cachep, objp);
1678 slab_kernel_map(cachep, objp, 1, 0);
1679 }
1680 if (cachep->flags & SLAB_RED_ZONE) {
1681 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1682 slab_error(cachep, "start of a freed object was overwritten");
1683 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1684 slab_error(cachep, "end of a freed object was overwritten");
1685 }
1686 }
1687 }
1688 #else
1689 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1690 struct page *page)
1691 {
1692 }
1693 #endif
1694
1695 /**
1696 * slab_destroy - destroy and release all objects in a slab
1697 * @cachep: cache pointer being destroyed
1698 * @page: page pointer being destroyed
1699 *
1700 * Destroy all the objs in a slab page, and release the mem back to the system.
1701 * Before calling the slab page must have been unlinked from the cache. The
1702 * kmem_cache_node ->list_lock is not held/needed.
1703 */
1704 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1705 {
1706 void *freelist;
1707
1708 freelist = page->freelist;
1709 slab_destroy_debugcheck(cachep, page);
1710 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1711 call_rcu(&page->rcu_head, kmem_rcu_free);
1712 else
1713 kmem_freepages(cachep, page);
1714
1715 /*
1716 * From now on, we don't use freelist
1717 * although actual page can be freed in rcu context
1718 */
1719 if (OFF_SLAB(cachep))
1720 kmem_cache_free(cachep->freelist_cache, freelist);
1721 }
1722
1723 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1724 {
1725 struct page *page, *n;
1726
1727 list_for_each_entry_safe(page, n, list, lru) {
1728 list_del(&page->lru);
1729 slab_destroy(cachep, page);
1730 }
1731 }
1732
1733 /**
1734 * calculate_slab_order - calculate size (page order) of slabs
1735 * @cachep: pointer to the cache that is being created
1736 * @size: size of objects to be created in this cache.
1737 * @flags: slab allocation flags
1738 *
1739 * Also calculates the number of objects per slab.
1740 *
1741 * This could be made much more intelligent. For now, try to avoid using
1742 * high order pages for slabs. When the gfp() functions are more friendly
1743 * towards high-order requests, this should be changed.
1744 */
1745 static size_t calculate_slab_order(struct kmem_cache *cachep,
1746 size_t size, slab_flags_t flags)
1747 {
1748 size_t left_over = 0;
1749 int gfporder;
1750
1751 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1752 unsigned int num;
1753 size_t remainder;
1754
1755 num = cache_estimate(gfporder, size, flags, &remainder);
1756 if (!num)
1757 continue;
1758
1759 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1760 if (num > SLAB_OBJ_MAX_NUM)
1761 break;
1762
1763 if (flags & CFLGS_OFF_SLAB) {
1764 struct kmem_cache *freelist_cache;
1765 size_t freelist_size;
1766
1767 freelist_size = num * sizeof(freelist_idx_t);
1768 freelist_cache = kmalloc_slab(freelist_size, 0u);
1769 if (!freelist_cache)
1770 continue;
1771
1772 /*
1773 * Needed to avoid possible looping condition
1774 * in cache_grow_begin()
1775 */
1776 if (OFF_SLAB(freelist_cache))
1777 continue;
1778
1779 /* check if off slab has enough benefit */
1780 if (freelist_cache->size > cachep->size / 2)
1781 continue;
1782 }
1783
1784 /* Found something acceptable - save it away */
1785 cachep->num = num;
1786 cachep->gfporder = gfporder;
1787 left_over = remainder;
1788
1789 /*
1790 * A VFS-reclaimable slab tends to have most allocations
1791 * as GFP_NOFS and we really don't want to have to be allocating
1792 * higher-order pages when we are unable to shrink dcache.
1793 */
1794 if (flags & SLAB_RECLAIM_ACCOUNT)
1795 break;
1796
1797 /*
1798 * Large number of objects is good, but very large slabs are
1799 * currently bad for the gfp()s.
1800 */
1801 if (gfporder >= slab_max_order)
1802 break;
1803
1804 /*
1805 * Acceptable internal fragmentation?
1806 */
1807 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1808 break;
1809 }
1810 return left_over;
1811 }
1812
1813 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1814 struct kmem_cache *cachep, int entries, int batchcount)
1815 {
1816 int cpu;
1817 size_t size;
1818 struct array_cache __percpu *cpu_cache;
1819
1820 size = sizeof(void *) * entries + sizeof(struct array_cache);
1821 cpu_cache = __alloc_percpu(size, sizeof(void *));
1822
1823 if (!cpu_cache)
1824 return NULL;
1825
1826 for_each_possible_cpu(cpu) {
1827 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1828 entries, batchcount);
1829 }
1830
1831 return cpu_cache;
1832 }
1833
1834 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1835 {
1836 if (slab_state >= FULL)
1837 return enable_cpucache(cachep, gfp);
1838
1839 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1840 if (!cachep->cpu_cache)
1841 return 1;
1842
1843 if (slab_state == DOWN) {
1844 /* Creation of first cache (kmem_cache). */
1845 set_up_node(kmem_cache, CACHE_CACHE);
1846 } else if (slab_state == PARTIAL) {
1847 /* For kmem_cache_node */
1848 set_up_node(cachep, SIZE_NODE);
1849 } else {
1850 int node;
1851
1852 for_each_online_node(node) {
1853 cachep->node[node] = kmalloc_node(
1854 sizeof(struct kmem_cache_node), gfp, node);
1855 BUG_ON(!cachep->node[node]);
1856 kmem_cache_node_init(cachep->node[node]);
1857 }
1858 }
1859
1860 cachep->node[numa_mem_id()]->next_reap =
1861 jiffies + REAPTIMEOUT_NODE +
1862 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1863
1864 cpu_cache_get(cachep)->avail = 0;
1865 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1866 cpu_cache_get(cachep)->batchcount = 1;
1867 cpu_cache_get(cachep)->touched = 0;
1868 cachep->batchcount = 1;
1869 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1870 return 0;
1871 }
1872
1873 slab_flags_t kmem_cache_flags(unsigned int object_size,
1874 slab_flags_t flags, const char *name,
1875 void (*ctor)(void *))
1876 {
1877 return flags;
1878 }
1879
1880 struct kmem_cache *
1881 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1882 slab_flags_t flags, void (*ctor)(void *))
1883 {
1884 struct kmem_cache *cachep;
1885
1886 cachep = find_mergeable(size, align, flags, name, ctor);
1887 if (cachep) {
1888 cachep->refcount++;
1889
1890 /*
1891 * Adjust the object sizes so that we clear
1892 * the complete object on kzalloc.
1893 */
1894 cachep->object_size = max_t(int, cachep->object_size, size);
1895 }
1896 return cachep;
1897 }
1898
1899 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1900 size_t size, slab_flags_t flags)
1901 {
1902 size_t left;
1903
1904 cachep->num = 0;
1905
1906 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1907 return false;
1908
1909 left = calculate_slab_order(cachep, size,
1910 flags | CFLGS_OBJFREELIST_SLAB);
1911 if (!cachep->num)
1912 return false;
1913
1914 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1915 return false;
1916
1917 cachep->colour = left / cachep->colour_off;
1918
1919 return true;
1920 }
1921
1922 static bool set_off_slab_cache(struct kmem_cache *cachep,
1923 size_t size, slab_flags_t flags)
1924 {
1925 size_t left;
1926
1927 cachep->num = 0;
1928
1929 /*
1930 * Always use on-slab management when SLAB_NOLEAKTRACE
1931 * to avoid recursive calls into kmemleak.
1932 */
1933 if (flags & SLAB_NOLEAKTRACE)
1934 return false;
1935
1936 /*
1937 * Size is large, assume best to place the slab management obj
1938 * off-slab (should allow better packing of objs).
1939 */
1940 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1941 if (!cachep->num)
1942 return false;
1943
1944 /*
1945 * If the slab has been placed off-slab, and we have enough space then
1946 * move it on-slab. This is at the expense of any extra colouring.
1947 */
1948 if (left >= cachep->num * sizeof(freelist_idx_t))
1949 return false;
1950
1951 cachep->colour = left / cachep->colour_off;
1952
1953 return true;
1954 }
1955
1956 static bool set_on_slab_cache(struct kmem_cache *cachep,
1957 size_t size, slab_flags_t flags)
1958 {
1959 size_t left;
1960
1961 cachep->num = 0;
1962
1963 left = calculate_slab_order(cachep, size, flags);
1964 if (!cachep->num)
1965 return false;
1966
1967 cachep->colour = left / cachep->colour_off;
1968
1969 return true;
1970 }
1971
1972 /**
1973 * __kmem_cache_create - Create a cache.
1974 * @cachep: cache management descriptor
1975 * @flags: SLAB flags
1976 *
1977 * Returns a ptr to the cache on success, NULL on failure.
1978 * Cannot be called within a int, but can be interrupted.
1979 * The @ctor is run when new pages are allocated by the cache.
1980 *
1981 * The flags are
1982 *
1983 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1984 * to catch references to uninitialised memory.
1985 *
1986 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1987 * for buffer overruns.
1988 *
1989 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1990 * cacheline. This can be beneficial if you're counting cycles as closely
1991 * as davem.
1992 */
1993 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1994 {
1995 size_t ralign = BYTES_PER_WORD;
1996 gfp_t gfp;
1997 int err;
1998 unsigned int size = cachep->size;
1999
2000 #if DEBUG
2001 #if FORCED_DEBUG
2002 /*
2003 * Enable redzoning and last user accounting, except for caches with
2004 * large objects, if the increased size would increase the object size
2005 * above the next power of two: caches with object sizes just above a
2006 * power of two have a significant amount of internal fragmentation.
2007 */
2008 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2009 2 * sizeof(unsigned long long)))
2010 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2011 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2012 flags |= SLAB_POISON;
2013 #endif
2014 #endif
2015
2016 /*
2017 * Check that size is in terms of words. This is needed to avoid
2018 * unaligned accesses for some archs when redzoning is used, and makes
2019 * sure any on-slab bufctl's are also correctly aligned.
2020 */
2021 size = ALIGN(size, BYTES_PER_WORD);
2022
2023 if (flags & SLAB_RED_ZONE) {
2024 ralign = REDZONE_ALIGN;
2025 /* If redzoning, ensure that the second redzone is suitably
2026 * aligned, by adjusting the object size accordingly. */
2027 size = ALIGN(size, REDZONE_ALIGN);
2028 }
2029
2030 /* 3) caller mandated alignment */
2031 if (ralign < cachep->align) {
2032 ralign = cachep->align;
2033 }
2034 /* disable debug if necessary */
2035 if (ralign > __alignof__(unsigned long long))
2036 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2037 /*
2038 * 4) Store it.
2039 */
2040 cachep->align = ralign;
2041 cachep->colour_off = cache_line_size();
2042 /* Offset must be a multiple of the alignment. */
2043 if (cachep->colour_off < cachep->align)
2044 cachep->colour_off = cachep->align;
2045
2046 if (slab_is_available())
2047 gfp = GFP_KERNEL;
2048 else
2049 gfp = GFP_NOWAIT;
2050
2051 #if DEBUG
2052
2053 /*
2054 * Both debugging options require word-alignment which is calculated
2055 * into align above.
2056 */
2057 if (flags & SLAB_RED_ZONE) {
2058 /* add space for red zone words */
2059 cachep->obj_offset += sizeof(unsigned long long);
2060 size += 2 * sizeof(unsigned long long);
2061 }
2062 if (flags & SLAB_STORE_USER) {
2063 /* user store requires one word storage behind the end of
2064 * the real object. But if the second red zone needs to be
2065 * aligned to 64 bits, we must allow that much space.
2066 */
2067 if (flags & SLAB_RED_ZONE)
2068 size += REDZONE_ALIGN;
2069 else
2070 size += BYTES_PER_WORD;
2071 }
2072 #endif
2073
2074 kasan_cache_create(cachep, &size, &flags);
2075
2076 size = ALIGN(size, cachep->align);
2077 /*
2078 * We should restrict the number of objects in a slab to implement
2079 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2080 */
2081 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2082 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2083
2084 #if DEBUG
2085 /*
2086 * To activate debug pagealloc, off-slab management is necessary
2087 * requirement. In early phase of initialization, small sized slab
2088 * doesn't get initialized so it would not be possible. So, we need
2089 * to check size >= 256. It guarantees that all necessary small
2090 * sized slab is initialized in current slab initialization sequence.
2091 */
2092 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2093 size >= 256 && cachep->object_size > cache_line_size()) {
2094 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2095 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2096
2097 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2098 flags |= CFLGS_OFF_SLAB;
2099 cachep->obj_offset += tmp_size - size;
2100 size = tmp_size;
2101 goto done;
2102 }
2103 }
2104 }
2105 #endif
2106
2107 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2108 flags |= CFLGS_OBJFREELIST_SLAB;
2109 goto done;
2110 }
2111
2112 if (set_off_slab_cache(cachep, size, flags)) {
2113 flags |= CFLGS_OFF_SLAB;
2114 goto done;
2115 }
2116
2117 if (set_on_slab_cache(cachep, size, flags))
2118 goto done;
2119
2120 return -E2BIG;
2121
2122 done:
2123 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2124 cachep->flags = flags;
2125 cachep->allocflags = __GFP_COMP;
2126 if (flags & SLAB_CACHE_DMA)
2127 cachep->allocflags |= GFP_DMA;
2128 if (flags & SLAB_CACHE_DMA32)
2129 cachep->allocflags |= GFP_DMA32;
2130 if (flags & SLAB_RECLAIM_ACCOUNT)
2131 cachep->allocflags |= __GFP_RECLAIMABLE;
2132 cachep->size = size;
2133 cachep->reciprocal_buffer_size = reciprocal_value(size);
2134
2135 #if DEBUG
2136 /*
2137 * If we're going to use the generic kernel_map_pages()
2138 * poisoning, then it's going to smash the contents of
2139 * the redzone and userword anyhow, so switch them off.
2140 */
2141 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2142 (cachep->flags & SLAB_POISON) &&
2143 is_debug_pagealloc_cache(cachep))
2144 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2145 #endif
2146
2147 if (OFF_SLAB(cachep)) {
2148 cachep->freelist_cache =
2149 kmalloc_slab(cachep->freelist_size, 0u);
2150 }
2151
2152 err = setup_cpu_cache(cachep, gfp);
2153 if (err) {
2154 __kmem_cache_release(cachep);
2155 return err;
2156 }
2157
2158 return 0;
2159 }
2160
2161 #if DEBUG
2162 static void check_irq_off(void)
2163 {
2164 BUG_ON(!irqs_disabled());
2165 }
2166
2167 static void check_irq_on(void)
2168 {
2169 BUG_ON(irqs_disabled());
2170 }
2171
2172 static void check_mutex_acquired(void)
2173 {
2174 BUG_ON(!mutex_is_locked(&slab_mutex));
2175 }
2176
2177 static void check_spinlock_acquired(struct kmem_cache *cachep)
2178 {
2179 #ifdef CONFIG_SMP
2180 check_irq_off();
2181 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2182 #endif
2183 }
2184
2185 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2186 {
2187 #ifdef CONFIG_SMP
2188 check_irq_off();
2189 assert_spin_locked(&get_node(cachep, node)->list_lock);
2190 #endif
2191 }
2192
2193 #else
2194 #define check_irq_off() do { } while(0)
2195 #define check_irq_on() do { } while(0)
2196 #define check_mutex_acquired() do { } while(0)
2197 #define check_spinlock_acquired(x) do { } while(0)
2198 #define check_spinlock_acquired_node(x, y) do { } while(0)
2199 #endif
2200
2201 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2202 int node, bool free_all, struct list_head *list)
2203 {
2204 int tofree;
2205
2206 if (!ac || !ac->avail)
2207 return;
2208
2209 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2210 if (tofree > ac->avail)
2211 tofree = (ac->avail + 1) / 2;
2212
2213 free_block(cachep, ac->entry, tofree, node, list);
2214 ac->avail -= tofree;
2215 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2216 }
2217
2218 static void do_drain(void *arg)
2219 {
2220 struct kmem_cache *cachep = arg;
2221 struct array_cache *ac;
2222 int node = numa_mem_id();
2223 struct kmem_cache_node *n;
2224 LIST_HEAD(list);
2225
2226 check_irq_off();
2227 ac = cpu_cache_get(cachep);
2228 n = get_node(cachep, node);
2229 spin_lock(&n->list_lock);
2230 free_block(cachep, ac->entry, ac->avail, node, &list);
2231 spin_unlock(&n->list_lock);
2232 slabs_destroy(cachep, &list);
2233 ac->avail = 0;
2234 }
2235
2236 static void drain_cpu_caches(struct kmem_cache *cachep)
2237 {
2238 struct kmem_cache_node *n;
2239 int node;
2240 LIST_HEAD(list);
2241
2242 on_each_cpu(do_drain, cachep, 1);
2243 check_irq_on();
2244 for_each_kmem_cache_node(cachep, node, n)
2245 if (n->alien)
2246 drain_alien_cache(cachep, n->alien);
2247
2248 for_each_kmem_cache_node(cachep, node, n) {
2249 spin_lock_irq(&n->list_lock);
2250 drain_array_locked(cachep, n->shared, node, true, &list);
2251 spin_unlock_irq(&n->list_lock);
2252
2253 slabs_destroy(cachep, &list);
2254 }
2255 }
2256
2257 /*
2258 * Remove slabs from the list of free slabs.
2259 * Specify the number of slabs to drain in tofree.
2260 *
2261 * Returns the actual number of slabs released.
2262 */
2263 static int drain_freelist(struct kmem_cache *cache,
2264 struct kmem_cache_node *n, int tofree)
2265 {
2266 struct list_head *p;
2267 int nr_freed;
2268 struct page *page;
2269
2270 nr_freed = 0;
2271 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2272
2273 spin_lock_irq(&n->list_lock);
2274 p = n->slabs_free.prev;
2275 if (p == &n->slabs_free) {
2276 spin_unlock_irq(&n->list_lock);
2277 goto out;
2278 }
2279
2280 page = list_entry(p, struct page, lru);
2281 list_del(&page->lru);
2282 n->free_slabs--;
2283 n->total_slabs--;
2284 /*
2285 * Safe to drop the lock. The slab is no longer linked
2286 * to the cache.
2287 */
2288 n->free_objects -= cache->num;
2289 spin_unlock_irq(&n->list_lock);
2290 slab_destroy(cache, page);
2291 nr_freed++;
2292 }
2293 out:
2294 return nr_freed;
2295 }
2296
2297 bool __kmem_cache_empty(struct kmem_cache *s)
2298 {
2299 int node;
2300 struct kmem_cache_node *n;
2301
2302 for_each_kmem_cache_node(s, node, n)
2303 if (!list_empty(&n->slabs_full) ||
2304 !list_empty(&n->slabs_partial))
2305 return false;
2306 return true;
2307 }
2308
2309 int __kmem_cache_shrink(struct kmem_cache *cachep)
2310 {
2311 int ret = 0;
2312 int node;
2313 struct kmem_cache_node *n;
2314
2315 drain_cpu_caches(cachep);
2316
2317 check_irq_on();
2318 for_each_kmem_cache_node(cachep, node, n) {
2319 drain_freelist(cachep, n, INT_MAX);
2320
2321 ret += !list_empty(&n->slabs_full) ||
2322 !list_empty(&n->slabs_partial);
2323 }
2324 return (ret ? 1 : 0);
2325 }
2326
2327 #ifdef CONFIG_MEMCG
2328 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2329 {
2330 __kmem_cache_shrink(cachep);
2331 }
2332 #endif
2333
2334 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2335 {
2336 return __kmem_cache_shrink(cachep);
2337 }
2338
2339 void __kmem_cache_release(struct kmem_cache *cachep)
2340 {
2341 int i;
2342 struct kmem_cache_node *n;
2343
2344 cache_random_seq_destroy(cachep);
2345
2346 free_percpu(cachep->cpu_cache);
2347
2348 /* NUMA: free the node structures */
2349 for_each_kmem_cache_node(cachep, i, n) {
2350 kfree(n->shared);
2351 free_alien_cache(n->alien);
2352 kfree(n);
2353 cachep->node[i] = NULL;
2354 }
2355 }
2356
2357 /*
2358 * Get the memory for a slab management obj.
2359 *
2360 * For a slab cache when the slab descriptor is off-slab, the
2361 * slab descriptor can't come from the same cache which is being created,
2362 * Because if it is the case, that means we defer the creation of
2363 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2364 * And we eventually call down to __kmem_cache_create(), which
2365 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2366 * This is a "chicken-and-egg" problem.
2367 *
2368 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2369 * which are all initialized during kmem_cache_init().
2370 */
2371 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2372 struct page *page, int colour_off,
2373 gfp_t local_flags, int nodeid)
2374 {
2375 void *freelist;
2376 void *addr = page_address(page);
2377
2378 page->s_mem = addr + colour_off;
2379 page->active = 0;
2380
2381 if (OBJFREELIST_SLAB(cachep))
2382 freelist = NULL;
2383 else if (OFF_SLAB(cachep)) {
2384 /* Slab management obj is off-slab. */
2385 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2386 local_flags, nodeid);
2387 if (!freelist)
2388 return NULL;
2389 } else {
2390 /* We will use last bytes at the slab for freelist */
2391 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2392 cachep->freelist_size;
2393 }
2394
2395 return freelist;
2396 }
2397
2398 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2399 {
2400 return ((freelist_idx_t *)page->freelist)[idx];
2401 }
2402
2403 static inline void set_free_obj(struct page *page,
2404 unsigned int idx, freelist_idx_t val)
2405 {
2406 ((freelist_idx_t *)(page->freelist))[idx] = val;
2407 }
2408
2409 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2410 {
2411 #if DEBUG
2412 int i;
2413
2414 for (i = 0; i < cachep->num; i++) {
2415 void *objp = index_to_obj(cachep, page, i);
2416
2417 if (cachep->flags & SLAB_STORE_USER)
2418 *dbg_userword(cachep, objp) = NULL;
2419
2420 if (cachep->flags & SLAB_RED_ZONE) {
2421 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2422 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2423 }
2424 /*
2425 * Constructors are not allowed to allocate memory from the same
2426 * cache which they are a constructor for. Otherwise, deadlock.
2427 * They must also be threaded.
2428 */
2429 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2430 kasan_unpoison_object_data(cachep,
2431 objp + obj_offset(cachep));
2432 cachep->ctor(objp + obj_offset(cachep));
2433 kasan_poison_object_data(
2434 cachep, objp + obj_offset(cachep));
2435 }
2436
2437 if (cachep->flags & SLAB_RED_ZONE) {
2438 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2439 slab_error(cachep, "constructor overwrote the end of an object");
2440 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2441 slab_error(cachep, "constructor overwrote the start of an object");
2442 }
2443 /* need to poison the objs? */
2444 if (cachep->flags & SLAB_POISON) {
2445 poison_obj(cachep, objp, POISON_FREE);
2446 slab_kernel_map(cachep, objp, 0, 0);
2447 }
2448 }
2449 #endif
2450 }
2451
2452 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2453 /* Hold information during a freelist initialization */
2454 union freelist_init_state {
2455 struct {
2456 unsigned int pos;
2457 unsigned int *list;
2458 unsigned int count;
2459 };
2460 struct rnd_state rnd_state;
2461 };
2462
2463 /*
2464 * Initialize the state based on the randomization methode available.
2465 * return true if the pre-computed list is available, false otherwize.
2466 */
2467 static bool freelist_state_initialize(union freelist_init_state *state,
2468 struct kmem_cache *cachep,
2469 unsigned int count)
2470 {
2471 bool ret;
2472 unsigned int rand;
2473
2474 /* Use best entropy available to define a random shift */
2475 rand = get_random_int();
2476
2477 /* Use a random state if the pre-computed list is not available */
2478 if (!cachep->random_seq) {
2479 prandom_seed_state(&state->rnd_state, rand);
2480 ret = false;
2481 } else {
2482 state->list = cachep->random_seq;
2483 state->count = count;
2484 state->pos = rand % count;
2485 ret = true;
2486 }
2487 return ret;
2488 }
2489
2490 /* Get the next entry on the list and randomize it using a random shift */
2491 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2492 {
2493 if (state->pos >= state->count)
2494 state->pos = 0;
2495 return state->list[state->pos++];
2496 }
2497
2498 /* Swap two freelist entries */
2499 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2500 {
2501 swap(((freelist_idx_t *)page->freelist)[a],
2502 ((freelist_idx_t *)page->freelist)[b]);
2503 }
2504
2505 /*
2506 * Shuffle the freelist initialization state based on pre-computed lists.
2507 * return true if the list was successfully shuffled, false otherwise.
2508 */
2509 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2510 {
2511 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2512 union freelist_init_state state;
2513 bool precomputed;
2514
2515 if (count < 2)
2516 return false;
2517
2518 precomputed = freelist_state_initialize(&state, cachep, count);
2519
2520 /* Take a random entry as the objfreelist */
2521 if (OBJFREELIST_SLAB(cachep)) {
2522 if (!precomputed)
2523 objfreelist = count - 1;
2524 else
2525 objfreelist = next_random_slot(&state);
2526 page->freelist = index_to_obj(cachep, page, objfreelist) +
2527 obj_offset(cachep);
2528 count--;
2529 }
2530
2531 /*
2532 * On early boot, generate the list dynamically.
2533 * Later use a pre-computed list for speed.
2534 */
2535 if (!precomputed) {
2536 for (i = 0; i < count; i++)
2537 set_free_obj(page, i, i);
2538
2539 /* Fisher-Yates shuffle */
2540 for (i = count - 1; i > 0; i--) {
2541 rand = prandom_u32_state(&state.rnd_state);
2542 rand %= (i + 1);
2543 swap_free_obj(page, i, rand);
2544 }
2545 } else {
2546 for (i = 0; i < count; i++)
2547 set_free_obj(page, i, next_random_slot(&state));
2548 }
2549
2550 if (OBJFREELIST_SLAB(cachep))
2551 set_free_obj(page, cachep->num - 1, objfreelist);
2552
2553 return true;
2554 }
2555 #else
2556 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2557 struct page *page)
2558 {
2559 return false;
2560 }
2561 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2562
2563 static void cache_init_objs(struct kmem_cache *cachep,
2564 struct page *page)
2565 {
2566 int i;
2567 void *objp;
2568 bool shuffled;
2569
2570 cache_init_objs_debug(cachep, page);
2571
2572 /* Try to randomize the freelist if enabled */
2573 shuffled = shuffle_freelist(cachep, page);
2574
2575 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2576 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2577 obj_offset(cachep);
2578 }
2579
2580 for (i = 0; i < cachep->num; i++) {
2581 objp = index_to_obj(cachep, page, i);
2582 kasan_init_slab_obj(cachep, objp);
2583
2584 /* constructor could break poison info */
2585 if (DEBUG == 0 && cachep->ctor) {
2586 kasan_unpoison_object_data(cachep, objp);
2587 cachep->ctor(objp);
2588 kasan_poison_object_data(cachep, objp);
2589 }
2590
2591 if (!shuffled)
2592 set_free_obj(page, i, i);
2593 }
2594 }
2595
2596 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2597 {
2598 void *objp;
2599
2600 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2601 page->active++;
2602
2603 #if DEBUG
2604 if (cachep->flags & SLAB_STORE_USER)
2605 set_store_user_dirty(cachep);
2606 #endif
2607
2608 return objp;
2609 }
2610
2611 static void slab_put_obj(struct kmem_cache *cachep,
2612 struct page *page, void *objp)
2613 {
2614 unsigned int objnr = obj_to_index(cachep, page, objp);
2615 #if DEBUG
2616 unsigned int i;
2617
2618 /* Verify double free bug */
2619 for (i = page->active; i < cachep->num; i++) {
2620 if (get_free_obj(page, i) == objnr) {
2621 pr_err("slab: double free detected in cache '%s', objp %px\n",
2622 cachep->name, objp);
2623 BUG();
2624 }
2625 }
2626 #endif
2627 page->active--;
2628 if (!page->freelist)
2629 page->freelist = objp + obj_offset(cachep);
2630
2631 set_free_obj(page, page->active, objnr);
2632 }
2633
2634 /*
2635 * Map pages beginning at addr to the given cache and slab. This is required
2636 * for the slab allocator to be able to lookup the cache and slab of a
2637 * virtual address for kfree, ksize, and slab debugging.
2638 */
2639 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2640 void *freelist)
2641 {
2642 page->slab_cache = cache;
2643 page->freelist = freelist;
2644 }
2645
2646 /*
2647 * Grow (by 1) the number of slabs within a cache. This is called by
2648 * kmem_cache_alloc() when there are no active objs left in a cache.
2649 */
2650 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2651 gfp_t flags, int nodeid)
2652 {
2653 void *freelist;
2654 size_t offset;
2655 gfp_t local_flags;
2656 int page_node;
2657 struct kmem_cache_node *n;
2658 struct page *page;
2659
2660 /*
2661 * Be lazy and only check for valid flags here, keeping it out of the
2662 * critical path in kmem_cache_alloc().
2663 */
2664 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2665 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2666 flags &= ~GFP_SLAB_BUG_MASK;
2667 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2668 invalid_mask, &invalid_mask, flags, &flags);
2669 dump_stack();
2670 }
2671 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673
2674 check_irq_off();
2675 if (gfpflags_allow_blocking(local_flags))
2676 local_irq_enable();
2677
2678 /*
2679 * Get mem for the objs. Attempt to allocate a physical page from
2680 * 'nodeid'.
2681 */
2682 page = kmem_getpages(cachep, local_flags, nodeid);
2683 if (!page)
2684 goto failed;
2685
2686 page_node = page_to_nid(page);
2687 n = get_node(cachep, page_node);
2688
2689 /* Get colour for the slab, and cal the next value. */
2690 n->colour_next++;
2691 if (n->colour_next >= cachep->colour)
2692 n->colour_next = 0;
2693
2694 offset = n->colour_next;
2695 if (offset >= cachep->colour)
2696 offset = 0;
2697
2698 offset *= cachep->colour_off;
2699
2700 /* Get slab management. */
2701 freelist = alloc_slabmgmt(cachep, page, offset,
2702 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703 if (OFF_SLAB(cachep) && !freelist)
2704 goto opps1;
2705
2706 slab_map_pages(cachep, page, freelist);
2707
2708 kasan_poison_slab(page);
2709 cache_init_objs(cachep, page);
2710
2711 if (gfpflags_allow_blocking(local_flags))
2712 local_irq_disable();
2713
2714 return page;
2715
2716 opps1:
2717 kmem_freepages(cachep, page);
2718 failed:
2719 if (gfpflags_allow_blocking(local_flags))
2720 local_irq_disable();
2721 return NULL;
2722 }
2723
2724 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725 {
2726 struct kmem_cache_node *n;
2727 void *list = NULL;
2728
2729 check_irq_off();
2730
2731 if (!page)
2732 return;
2733
2734 INIT_LIST_HEAD(&page->lru);
2735 n = get_node(cachep, page_to_nid(page));
2736
2737 spin_lock(&n->list_lock);
2738 n->total_slabs++;
2739 if (!page->active) {
2740 list_add_tail(&page->lru, &(n->slabs_free));
2741 n->free_slabs++;
2742 } else
2743 fixup_slab_list(cachep, n, page, &list);
2744
2745 STATS_INC_GROWN(cachep);
2746 n->free_objects += cachep->num - page->active;
2747 spin_unlock(&n->list_lock);
2748
2749 fixup_objfreelist_debug(cachep, &list);
2750 }
2751
2752 #if DEBUG
2753
2754 /*
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2758 */
2759 static void kfree_debugcheck(const void *objp)
2760 {
2761 if (!virt_addr_valid(objp)) {
2762 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763 (unsigned long)objp);
2764 BUG();
2765 }
2766 }
2767
2768 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769 {
2770 unsigned long long redzone1, redzone2;
2771
2772 redzone1 = *dbg_redzone1(cache, obj);
2773 redzone2 = *dbg_redzone2(cache, obj);
2774
2775 /*
2776 * Redzone is ok.
2777 */
2778 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779 return;
2780
2781 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782 slab_error(cache, "double free detected");
2783 else
2784 slab_error(cache, "memory outside object was overwritten");
2785
2786 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787 obj, redzone1, redzone2);
2788 }
2789
2790 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791 unsigned long caller)
2792 {
2793 unsigned int objnr;
2794 struct page *page;
2795
2796 BUG_ON(virt_to_cache(objp) != cachep);
2797
2798 objp -= obj_offset(cachep);
2799 kfree_debugcheck(objp);
2800 page = virt_to_head_page(objp);
2801
2802 if (cachep->flags & SLAB_RED_ZONE) {
2803 verify_redzone_free(cachep, objp);
2804 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806 }
2807 if (cachep->flags & SLAB_STORE_USER) {
2808 set_store_user_dirty(cachep);
2809 *dbg_userword(cachep, objp) = (void *)caller;
2810 }
2811
2812 objnr = obj_to_index(cachep, page, objp);
2813
2814 BUG_ON(objnr >= cachep->num);
2815 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816
2817 if (cachep->flags & SLAB_POISON) {
2818 poison_obj(cachep, objp, POISON_FREE);
2819 slab_kernel_map(cachep, objp, 0, caller);
2820 }
2821 return objp;
2822 }
2823
2824 #else
2825 #define kfree_debugcheck(x) do { } while(0)
2826 #define cache_free_debugcheck(x,objp,z) (objp)
2827 #endif
2828
2829 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830 void **list)
2831 {
2832 #if DEBUG
2833 void *next = *list;
2834 void *objp;
2835
2836 while (next) {
2837 objp = next - obj_offset(cachep);
2838 next = *(void **)next;
2839 poison_obj(cachep, objp, POISON_FREE);
2840 }
2841 #endif
2842 }
2843
2844 static inline void fixup_slab_list(struct kmem_cache *cachep,
2845 struct kmem_cache_node *n, struct page *page,
2846 void **list)
2847 {
2848 /* move slabp to correct slabp list: */
2849 list_del(&page->lru);
2850 if (page->active == cachep->num) {
2851 list_add(&page->lru, &n->slabs_full);
2852 if (OBJFREELIST_SLAB(cachep)) {
2853 #if DEBUG
2854 /* Poisoning will be done without holding the lock */
2855 if (cachep->flags & SLAB_POISON) {
2856 void **objp = page->freelist;
2857
2858 *objp = *list;
2859 *list = objp;
2860 }
2861 #endif
2862 page->freelist = NULL;
2863 }
2864 } else
2865 list_add(&page->lru, &n->slabs_partial);
2866 }
2867
2868 /* Try to find non-pfmemalloc slab if needed */
2869 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870 struct page *page, bool pfmemalloc)
2871 {
2872 if (!page)
2873 return NULL;
2874
2875 if (pfmemalloc)
2876 return page;
2877
2878 if (!PageSlabPfmemalloc(page))
2879 return page;
2880
2881 /* No need to keep pfmemalloc slab if we have enough free objects */
2882 if (n->free_objects > n->free_limit) {
2883 ClearPageSlabPfmemalloc(page);
2884 return page;
2885 }
2886
2887 /* Move pfmemalloc slab to the end of list to speed up next search */
2888 list_del(&page->lru);
2889 if (!page->active) {
2890 list_add_tail(&page->lru, &n->slabs_free);
2891 n->free_slabs++;
2892 } else
2893 list_add_tail(&page->lru, &n->slabs_partial);
2894
2895 list_for_each_entry(page, &n->slabs_partial, lru) {
2896 if (!PageSlabPfmemalloc(page))
2897 return page;
2898 }
2899
2900 n->free_touched = 1;
2901 list_for_each_entry(page, &n->slabs_free, lru) {
2902 if (!PageSlabPfmemalloc(page)) {
2903 n->free_slabs--;
2904 return page;
2905 }
2906 }
2907
2908 return NULL;
2909 }
2910
2911 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912 {
2913 struct page *page;
2914
2915 assert_spin_locked(&n->list_lock);
2916 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917 if (!page) {
2918 n->free_touched = 1;
2919 page = list_first_entry_or_null(&n->slabs_free, struct page,
2920 lru);
2921 if (page)
2922 n->free_slabs--;
2923 }
2924
2925 if (sk_memalloc_socks())
2926 page = get_valid_first_slab(n, page, pfmemalloc);
2927
2928 return page;
2929 }
2930
2931 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932 struct kmem_cache_node *n, gfp_t flags)
2933 {
2934 struct page *page;
2935 void *obj;
2936 void *list = NULL;
2937
2938 if (!gfp_pfmemalloc_allowed(flags))
2939 return NULL;
2940
2941 spin_lock(&n->list_lock);
2942 page = get_first_slab(n, true);
2943 if (!page) {
2944 spin_unlock(&n->list_lock);
2945 return NULL;
2946 }
2947
2948 obj = slab_get_obj(cachep, page);
2949 n->free_objects--;
2950
2951 fixup_slab_list(cachep, n, page, &list);
2952
2953 spin_unlock(&n->list_lock);
2954 fixup_objfreelist_debug(cachep, &list);
2955
2956 return obj;
2957 }
2958
2959 /*
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2962 */
2963 static __always_inline int alloc_block(struct kmem_cache *cachep,
2964 struct array_cache *ac, struct page *page, int batchcount)
2965 {
2966 /*
2967 * There must be at least one object available for
2968 * allocation.
2969 */
2970 BUG_ON(page->active >= cachep->num);
2971
2972 while (page->active < cachep->num && batchcount--) {
2973 STATS_INC_ALLOCED(cachep);
2974 STATS_INC_ACTIVE(cachep);
2975 STATS_SET_HIGH(cachep);
2976
2977 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978 }
2979
2980 return batchcount;
2981 }
2982
2983 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984 {
2985 int batchcount;
2986 struct kmem_cache_node *n;
2987 struct array_cache *ac, *shared;
2988 int node;
2989 void *list = NULL;
2990 struct page *page;
2991
2992 check_irq_off();
2993 node = numa_mem_id();
2994
2995 ac = cpu_cache_get(cachep);
2996 batchcount = ac->batchcount;
2997 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998 /*
2999 * If there was little recent activity on this cache, then
3000 * perform only a partial refill. Otherwise we could generate
3001 * refill bouncing.
3002 */
3003 batchcount = BATCHREFILL_LIMIT;
3004 }
3005 n = get_node(cachep, node);
3006
3007 BUG_ON(ac->avail > 0 || !n);
3008 shared = READ_ONCE(n->shared);
3009 if (!n->free_objects && (!shared || !shared->avail))
3010 goto direct_grow;
3011
3012 spin_lock(&n->list_lock);
3013 shared = READ_ONCE(n->shared);
3014
3015 /* See if we can refill from the shared array */
3016 if (shared && transfer_objects(ac, shared, batchcount)) {
3017 shared->touched = 1;
3018 goto alloc_done;
3019 }
3020
3021 while (batchcount > 0) {
3022 /* Get slab alloc is to come from. */
3023 page = get_first_slab(n, false);
3024 if (!page)
3025 goto must_grow;
3026
3027 check_spinlock_acquired(cachep);
3028
3029 batchcount = alloc_block(cachep, ac, page, batchcount);
3030 fixup_slab_list(cachep, n, page, &list);
3031 }
3032
3033 must_grow:
3034 n->free_objects -= ac->avail;
3035 alloc_done:
3036 spin_unlock(&n->list_lock);
3037 fixup_objfreelist_debug(cachep, &list);
3038
3039 direct_grow:
3040 if (unlikely(!ac->avail)) {
3041 /* Check if we can use obj in pfmemalloc slab */
3042 if (sk_memalloc_socks()) {
3043 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044
3045 if (obj)
3046 return obj;
3047 }
3048
3049 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050
3051 /*
3052 * cache_grow_begin() can reenable interrupts,
3053 * then ac could change.
3054 */
3055 ac = cpu_cache_get(cachep);
3056 if (!ac->avail && page)
3057 alloc_block(cachep, ac, page, batchcount);
3058 cache_grow_end(cachep, page);
3059
3060 if (!ac->avail)
3061 return NULL;
3062 }
3063 ac->touched = 1;
3064
3065 return ac->entry[--ac->avail];
3066 }
3067
3068 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069 gfp_t flags)
3070 {
3071 might_sleep_if(gfpflags_allow_blocking(flags));
3072 }
3073
3074 #if DEBUG
3075 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076 gfp_t flags, void *objp, unsigned long caller)
3077 {
3078 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3079 if (!objp)
3080 return objp;
3081 if (cachep->flags & SLAB_POISON) {
3082 check_poison_obj(cachep, objp);
3083 slab_kernel_map(cachep, objp, 1, 0);
3084 poison_obj(cachep, objp, POISON_INUSE);
3085 }
3086 if (cachep->flags & SLAB_STORE_USER)
3087 *dbg_userword(cachep, objp) = (void *)caller;
3088
3089 if (cachep->flags & SLAB_RED_ZONE) {
3090 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3092 slab_error(cachep, "double free, or memory outside object was overwritten");
3093 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
3096 }
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 }
3100
3101 objp += obj_offset(cachep);
3102 if (cachep->ctor && cachep->flags & SLAB_POISON)
3103 cachep->ctor(objp);
3104 if (ARCH_SLAB_MINALIGN &&
3105 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3107 objp, (int)ARCH_SLAB_MINALIGN);
3108 }
3109 return objp;
3110 }
3111 #else
3112 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113 #endif
3114
3115 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3116 {
3117 void *objp;
3118 struct array_cache *ac;
3119
3120 check_irq_off();
3121
3122 ac = cpu_cache_get(cachep);
3123 if (likely(ac->avail)) {
3124 ac->touched = 1;
3125 objp = ac->entry[--ac->avail];
3126
3127 STATS_INC_ALLOCHIT(cachep);
3128 goto out;
3129 }
3130
3131 STATS_INC_ALLOCMISS(cachep);
3132 objp = cache_alloc_refill(cachep, flags);
3133 /*
3134 * the 'ac' may be updated by cache_alloc_refill(),
3135 * and kmemleak_erase() requires its correct value.
3136 */
3137 ac = cpu_cache_get(cachep);
3138
3139 out:
3140 /*
3141 * To avoid a false negative, if an object that is in one of the
3142 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3143 * treat the array pointers as a reference to the object.
3144 */
3145 if (objp)
3146 kmemleak_erase(&ac->entry[ac->avail]);
3147 return objp;
3148 }
3149
3150 #ifdef CONFIG_NUMA
3151 /*
3152 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 *
3154 * If we are in_interrupt, then process context, including cpusets and
3155 * mempolicy, may not apply and should not be used for allocation policy.
3156 */
3157 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3158 {
3159 int nid_alloc, nid_here;
3160
3161 if (in_interrupt() || (flags & __GFP_THISNODE))
3162 return NULL;
3163 nid_alloc = nid_here = numa_mem_id();
3164 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165 nid_alloc = cpuset_slab_spread_node();
3166 else if (current->mempolicy)
3167 nid_alloc = mempolicy_slab_node();
3168 if (nid_alloc != nid_here)
3169 return ____cache_alloc_node(cachep, flags, nid_alloc);
3170 return NULL;
3171 }
3172
3173 /*
3174 * Fallback function if there was no memory available and no objects on a
3175 * certain node and fall back is permitted. First we scan all the
3176 * available node for available objects. If that fails then we
3177 * perform an allocation without specifying a node. This allows the page
3178 * allocator to do its reclaim / fallback magic. We then insert the
3179 * slab into the proper nodelist and then allocate from it.
3180 */
3181 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182 {
3183 struct zonelist *zonelist;
3184 struct zoneref *z;
3185 struct zone *zone;
3186 enum zone_type high_zoneidx = gfp_zone(flags);
3187 void *obj = NULL;
3188 struct page *page;
3189 int nid;
3190 unsigned int cpuset_mems_cookie;
3191
3192 if (flags & __GFP_THISNODE)
3193 return NULL;
3194
3195 retry_cpuset:
3196 cpuset_mems_cookie = read_mems_allowed_begin();
3197 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198
3199 retry:
3200 /*
3201 * Look through allowed nodes for objects available
3202 * from existing per node queues.
3203 */
3204 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3205 nid = zone_to_nid(zone);
3206
3207 if (cpuset_zone_allowed(zone, flags) &&
3208 get_node(cache, nid) &&
3209 get_node(cache, nid)->free_objects) {
3210 obj = ____cache_alloc_node(cache,
3211 gfp_exact_node(flags), nid);
3212 if (obj)
3213 break;
3214 }
3215 }
3216
3217 if (!obj) {
3218 /*
3219 * This allocation will be performed within the constraints
3220 * of the current cpuset / memory policy requirements.
3221 * We may trigger various forms of reclaim on the allowed
3222 * set and go into memory reserves if necessary.
3223 */
3224 page = cache_grow_begin(cache, flags, numa_mem_id());
3225 cache_grow_end(cache, page);
3226 if (page) {
3227 nid = page_to_nid(page);
3228 obj = ____cache_alloc_node(cache,
3229 gfp_exact_node(flags), nid);
3230
3231 /*
3232 * Another processor may allocate the objects in
3233 * the slab since we are not holding any locks.
3234 */
3235 if (!obj)
3236 goto retry;
3237 }
3238 }
3239
3240 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241 goto retry_cpuset;
3242 return obj;
3243 }
3244
3245 /*
3246 * A interface to enable slab creation on nodeid
3247 */
3248 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3249 int nodeid)
3250 {
3251 struct page *page;
3252 struct kmem_cache_node *n;
3253 void *obj = NULL;
3254 void *list = NULL;
3255
3256 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257 n = get_node(cachep, nodeid);
3258 BUG_ON(!n);
3259
3260 check_irq_off();
3261 spin_lock(&n->list_lock);
3262 page = get_first_slab(n, false);
3263 if (!page)
3264 goto must_grow;
3265
3266 check_spinlock_acquired_node(cachep, nodeid);
3267
3268 STATS_INC_NODEALLOCS(cachep);
3269 STATS_INC_ACTIVE(cachep);
3270 STATS_SET_HIGH(cachep);
3271
3272 BUG_ON(page->active == cachep->num);
3273
3274 obj = slab_get_obj(cachep, page);
3275 n->free_objects--;
3276
3277 fixup_slab_list(cachep, n, page, &list);
3278
3279 spin_unlock(&n->list_lock);
3280 fixup_objfreelist_debug(cachep, &list);
3281 return obj;
3282
3283 must_grow:
3284 spin_unlock(&n->list_lock);
3285 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286 if (page) {
3287 /* This slab isn't counted yet so don't update free_objects */
3288 obj = slab_get_obj(cachep, page);
3289 }
3290 cache_grow_end(cachep, page);
3291
3292 return obj ? obj : fallback_alloc(cachep, flags);
3293 }
3294
3295 static __always_inline void *
3296 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297 unsigned long caller)
3298 {
3299 unsigned long save_flags;
3300 void *ptr;
3301 int slab_node = numa_mem_id();
3302
3303 flags &= gfp_allowed_mask;
3304 cachep = slab_pre_alloc_hook(cachep, flags);
3305 if (unlikely(!cachep))
3306 return NULL;
3307
3308 cache_alloc_debugcheck_before(cachep, flags);
3309 local_irq_save(save_flags);
3310
3311 if (nodeid == NUMA_NO_NODE)
3312 nodeid = slab_node;
3313
3314 if (unlikely(!get_node(cachep, nodeid))) {
3315 /* Node not bootstrapped yet */
3316 ptr = fallback_alloc(cachep, flags);
3317 goto out;
3318 }
3319
3320 if (nodeid == slab_node) {
3321 /*
3322 * Use the locally cached objects if possible.
3323 * However ____cache_alloc does not allow fallback
3324 * to other nodes. It may fail while we still have
3325 * objects on other nodes available.
3326 */
3327 ptr = ____cache_alloc(cachep, flags);
3328 if (ptr)
3329 goto out;
3330 }
3331 /* ___cache_alloc_node can fall back to other nodes */
3332 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333 out:
3334 local_irq_restore(save_flags);
3335 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336
3337 if (unlikely(flags & __GFP_ZERO) && ptr)
3338 memset(ptr, 0, cachep->object_size);
3339
3340 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341 return ptr;
3342 }
3343
3344 static __always_inline void *
3345 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3346 {
3347 void *objp;
3348
3349 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350 objp = alternate_node_alloc(cache, flags);
3351 if (objp)
3352 goto out;
3353 }
3354 objp = ____cache_alloc(cache, flags);
3355
3356 /*
3357 * We may just have run out of memory on the local node.
3358 * ____cache_alloc_node() knows how to locate memory on other nodes
3359 */
3360 if (!objp)
3361 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362
3363 out:
3364 return objp;
3365 }
3366 #else
3367
3368 static __always_inline void *
3369 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3370 {
3371 return ____cache_alloc(cachep, flags);
3372 }
3373
3374 #endif /* CONFIG_NUMA */
3375
3376 static __always_inline void *
3377 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378 {
3379 unsigned long save_flags;
3380 void *objp;
3381
3382 flags &= gfp_allowed_mask;
3383 cachep = slab_pre_alloc_hook(cachep, flags);
3384 if (unlikely(!cachep))
3385 return NULL;
3386
3387 cache_alloc_debugcheck_before(cachep, flags);
3388 local_irq_save(save_flags);
3389 objp = __do_cache_alloc(cachep, flags);
3390 local_irq_restore(save_flags);
3391 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3392 prefetchw(objp);
3393
3394 if (unlikely(flags & __GFP_ZERO) && objp)
3395 memset(objp, 0, cachep->object_size);
3396
3397 slab_post_alloc_hook(cachep, flags, 1, &objp);
3398 return objp;
3399 }
3400
3401 /*
3402 * Caller needs to acquire correct kmem_cache_node's list_lock
3403 * @list: List of detached free slabs should be freed by caller
3404 */
3405 static void free_block(struct kmem_cache *cachep, void **objpp,
3406 int nr_objects, int node, struct list_head *list)
3407 {
3408 int i;
3409 struct kmem_cache_node *n = get_node(cachep, node);
3410 struct page *page;
3411
3412 n->free_objects += nr_objects;
3413
3414 for (i = 0; i < nr_objects; i++) {
3415 void *objp;
3416 struct page *page;
3417
3418 objp = objpp[i];
3419
3420 page = virt_to_head_page(objp);
3421 list_del(&page->lru);
3422 check_spinlock_acquired_node(cachep, node);
3423 slab_put_obj(cachep, page, objp);
3424 STATS_DEC_ACTIVE(cachep);
3425
3426 /* fixup slab chains */
3427 if (page->active == 0) {
3428 list_add(&page->lru, &n->slabs_free);
3429 n->free_slabs++;
3430 } else {
3431 /* Unconditionally move a slab to the end of the
3432 * partial list on free - maximum time for the
3433 * other objects to be freed, too.
3434 */
3435 list_add_tail(&page->lru, &n->slabs_partial);
3436 }
3437 }
3438
3439 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3440 n->free_objects -= cachep->num;
3441
3442 page = list_last_entry(&n->slabs_free, struct page, lru);
3443 list_move(&page->lru, list);
3444 n->free_slabs--;
3445 n->total_slabs--;
3446 }
3447 }
3448
3449 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3450 {
3451 int batchcount;
3452 struct kmem_cache_node *n;
3453 int node = numa_mem_id();
3454 LIST_HEAD(list);
3455
3456 batchcount = ac->batchcount;
3457
3458 check_irq_off();
3459 n = get_node(cachep, node);
3460 spin_lock(&n->list_lock);
3461 if (n->shared) {
3462 struct array_cache *shared_array = n->shared;
3463 int max = shared_array->limit - shared_array->avail;
3464 if (max) {
3465 if (batchcount > max)
3466 batchcount = max;
3467 memcpy(&(shared_array->entry[shared_array->avail]),
3468 ac->entry, sizeof(void *) * batchcount);
3469 shared_array->avail += batchcount;
3470 goto free_done;
3471 }
3472 }
3473
3474 free_block(cachep, ac->entry, batchcount, node, &list);
3475 free_done:
3476 #if STATS
3477 {
3478 int i = 0;
3479 struct page *page;
3480
3481 list_for_each_entry(page, &n->slabs_free, lru) {
3482 BUG_ON(page->active);
3483
3484 i++;
3485 }
3486 STATS_SET_FREEABLE(cachep, i);
3487 }
3488 #endif
3489 spin_unlock(&n->list_lock);
3490 slabs_destroy(cachep, &list);
3491 ac->avail -= batchcount;
3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3493 }
3494
3495 /*
3496 * Release an obj back to its cache. If the obj has a constructed state, it must
3497 * be in this state _before_ it is released. Called with disabled ints.
3498 */
3499 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500 unsigned long caller)
3501 {
3502 /* Put the object into the quarantine, don't touch it for now. */
3503 if (kasan_slab_free(cachep, objp, _RET_IP_))
3504 return;
3505
3506 ___cache_free(cachep, objp, caller);
3507 }
3508
3509 void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 unsigned long caller)
3511 {
3512 struct array_cache *ac = cpu_cache_get(cachep);
3513
3514 check_irq_off();
3515 kmemleak_free_recursive(objp, cachep->flags);
3516 objp = cache_free_debugcheck(cachep, objp, caller);
3517
3518 /*
3519 * Skip calling cache_free_alien() when the platform is not numa.
3520 * This will avoid cache misses that happen while accessing slabp (which
3521 * is per page memory reference) to get nodeid. Instead use a global
3522 * variable to skip the call, which is mostly likely to be present in
3523 * the cache.
3524 */
3525 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3526 return;
3527
3528 if (ac->avail < ac->limit) {
3529 STATS_INC_FREEHIT(cachep);
3530 } else {
3531 STATS_INC_FREEMISS(cachep);
3532 cache_flusharray(cachep, ac);
3533 }
3534
3535 if (sk_memalloc_socks()) {
3536 struct page *page = virt_to_head_page(objp);
3537
3538 if (unlikely(PageSlabPfmemalloc(page))) {
3539 cache_free_pfmemalloc(cachep, page, objp);
3540 return;
3541 }
3542 }
3543
3544 ac->entry[ac->avail++] = objp;
3545 }
3546
3547 /**
3548 * kmem_cache_alloc - Allocate an object
3549 * @cachep: The cache to allocate from.
3550 * @flags: See kmalloc().
3551 *
3552 * Allocate an object from this cache. The flags are only relevant
3553 * if the cache has no available objects.
3554 */
3555 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3556 {
3557 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3558
3559 kasan_slab_alloc(cachep, ret, flags);
3560 trace_kmem_cache_alloc(_RET_IP_, ret,
3561 cachep->object_size, cachep->size, flags);
3562
3563 return ret;
3564 }
3565 EXPORT_SYMBOL(kmem_cache_alloc);
3566
3567 static __always_inline void
3568 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3569 size_t size, void **p, unsigned long caller)
3570 {
3571 size_t i;
3572
3573 for (i = 0; i < size; i++)
3574 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3575 }
3576
3577 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3578 void **p)
3579 {
3580 size_t i;
3581
3582 s = slab_pre_alloc_hook(s, flags);
3583 if (!s)
3584 return 0;
3585
3586 cache_alloc_debugcheck_before(s, flags);
3587
3588 local_irq_disable();
3589 for (i = 0; i < size; i++) {
3590 void *objp = __do_cache_alloc(s, flags);
3591
3592 if (unlikely(!objp))
3593 goto error;
3594 p[i] = objp;
3595 }
3596 local_irq_enable();
3597
3598 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3599
3600 /* Clear memory outside IRQ disabled section */
3601 if (unlikely(flags & __GFP_ZERO))
3602 for (i = 0; i < size; i++)
3603 memset(p[i], 0, s->object_size);
3604
3605 slab_post_alloc_hook(s, flags, size, p);
3606 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3607 return size;
3608 error:
3609 local_irq_enable();
3610 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3611 slab_post_alloc_hook(s, flags, i, p);
3612 __kmem_cache_free_bulk(s, i, p);
3613 return 0;
3614 }
3615 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3616
3617 #ifdef CONFIG_TRACING
3618 void *
3619 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3620 {
3621 void *ret;
3622
3623 ret = slab_alloc(cachep, flags, _RET_IP_);
3624
3625 kasan_kmalloc(cachep, ret, size, flags);
3626 trace_kmalloc(_RET_IP_, ret,
3627 size, cachep->size, flags);
3628 return ret;
3629 }
3630 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3631 #endif
3632
3633 #ifdef CONFIG_NUMA
3634 /**
3635 * kmem_cache_alloc_node - Allocate an object on the specified node
3636 * @cachep: The cache to allocate from.
3637 * @flags: See kmalloc().
3638 * @nodeid: node number of the target node.
3639 *
3640 * Identical to kmem_cache_alloc but it will allocate memory on the given
3641 * node, which can improve the performance for cpu bound structures.
3642 *
3643 * Fallback to other node is possible if __GFP_THISNODE is not set.
3644 */
3645 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3646 {
3647 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3648
3649 kasan_slab_alloc(cachep, ret, flags);
3650 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3651 cachep->object_size, cachep->size,
3652 flags, nodeid);
3653
3654 return ret;
3655 }
3656 EXPORT_SYMBOL(kmem_cache_alloc_node);
3657
3658 #ifdef CONFIG_TRACING
3659 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3660 gfp_t flags,
3661 int nodeid,
3662 size_t size)
3663 {
3664 void *ret;
3665
3666 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3667
3668 kasan_kmalloc(cachep, ret, size, flags);
3669 trace_kmalloc_node(_RET_IP_, ret,
3670 size, cachep->size,
3671 flags, nodeid);
3672 return ret;
3673 }
3674 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3675 #endif
3676
3677 static __always_inline void *
3678 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3679 {
3680 struct kmem_cache *cachep;
3681 void *ret;
3682
3683 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3684 return NULL;
3685 cachep = kmalloc_slab(size, flags);
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 return cachep;
3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689 kasan_kmalloc(cachep, ret, size, flags);
3690
3691 return ret;
3692 }
3693
3694 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695 {
3696 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node);
3699
3700 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701 int node, unsigned long caller)
3702 {
3703 return __do_kmalloc_node(size, flags, node, caller);
3704 }
3705 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3706 #endif /* CONFIG_NUMA */
3707
3708 /**
3709 * __do_kmalloc - allocate memory
3710 * @size: how many bytes of memory are required.
3711 * @flags: the type of memory to allocate (see kmalloc).
3712 * @caller: function caller for debug tracking of the caller
3713 */
3714 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715 unsigned long caller)
3716 {
3717 struct kmem_cache *cachep;
3718 void *ret;
3719
3720 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3721 return NULL;
3722 cachep = kmalloc_slab(size, flags);
3723 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3724 return cachep;
3725 ret = slab_alloc(cachep, flags, caller);
3726
3727 kasan_kmalloc(cachep, ret, size, flags);
3728 trace_kmalloc(caller, ret,
3729 size, cachep->size, flags);
3730
3731 return ret;
3732 }
3733
3734 void *__kmalloc(size_t size, gfp_t flags)
3735 {
3736 return __do_kmalloc(size, flags, _RET_IP_);
3737 }
3738 EXPORT_SYMBOL(__kmalloc);
3739
3740 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3741 {
3742 return __do_kmalloc(size, flags, caller);
3743 }
3744 EXPORT_SYMBOL(__kmalloc_track_caller);
3745
3746 /**
3747 * kmem_cache_free - Deallocate an object
3748 * @cachep: The cache the allocation was from.
3749 * @objp: The previously allocated object.
3750 *
3751 * Free an object which was previously allocated from this
3752 * cache.
3753 */
3754 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3755 {
3756 unsigned long flags;
3757 cachep = cache_from_obj(cachep, objp);
3758 if (!cachep)
3759 return;
3760
3761 local_irq_save(flags);
3762 debug_check_no_locks_freed(objp, cachep->object_size);
3763 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3764 debug_check_no_obj_freed(objp, cachep->object_size);
3765 __cache_free(cachep, objp, _RET_IP_);
3766 local_irq_restore(flags);
3767
3768 trace_kmem_cache_free(_RET_IP_, objp);
3769 }
3770 EXPORT_SYMBOL(kmem_cache_free);
3771
3772 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3773 {
3774 struct kmem_cache *s;
3775 size_t i;
3776
3777 local_irq_disable();
3778 for (i = 0; i < size; i++) {
3779 void *objp = p[i];
3780
3781 if (!orig_s) /* called via kfree_bulk */
3782 s = virt_to_cache(objp);
3783 else
3784 s = cache_from_obj(orig_s, objp);
3785
3786 debug_check_no_locks_freed(objp, s->object_size);
3787 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3788 debug_check_no_obj_freed(objp, s->object_size);
3789
3790 __cache_free(s, objp, _RET_IP_);
3791 }
3792 local_irq_enable();
3793
3794 /* FIXME: add tracing */
3795 }
3796 EXPORT_SYMBOL(kmem_cache_free_bulk);
3797
3798 /**
3799 * kfree - free previously allocated memory
3800 * @objp: pointer returned by kmalloc.
3801 *
3802 * If @objp is NULL, no operation is performed.
3803 *
3804 * Don't free memory not originally allocated by kmalloc()
3805 * or you will run into trouble.
3806 */
3807 void kfree(const void *objp)
3808 {
3809 struct kmem_cache *c;
3810 unsigned long flags;
3811
3812 trace_kfree(_RET_IP_, objp);
3813
3814 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3815 return;
3816 local_irq_save(flags);
3817 kfree_debugcheck(objp);
3818 c = virt_to_cache(objp);
3819 debug_check_no_locks_freed(objp, c->object_size);
3820
3821 debug_check_no_obj_freed(objp, c->object_size);
3822 __cache_free(c, (void *)objp, _RET_IP_);
3823 local_irq_restore(flags);
3824 }
3825 EXPORT_SYMBOL(kfree);
3826
3827 /*
3828 * This initializes kmem_cache_node or resizes various caches for all nodes.
3829 */
3830 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3831 {
3832 int ret;
3833 int node;
3834 struct kmem_cache_node *n;
3835
3836 for_each_online_node(node) {
3837 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3838 if (ret)
3839 goto fail;
3840
3841 }
3842
3843 return 0;
3844
3845 fail:
3846 if (!cachep->list.next) {
3847 /* Cache is not active yet. Roll back what we did */
3848 node--;
3849 while (node >= 0) {
3850 n = get_node(cachep, node);
3851 if (n) {
3852 kfree(n->shared);
3853 free_alien_cache(n->alien);
3854 kfree(n);
3855 cachep->node[node] = NULL;
3856 }
3857 node--;
3858 }
3859 }
3860 return -ENOMEM;
3861 }
3862
3863 /* Always called with the slab_mutex held */
3864 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3865 int batchcount, int shared, gfp_t gfp)
3866 {
3867 struct array_cache __percpu *cpu_cache, *prev;
3868 int cpu;
3869
3870 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3871 if (!cpu_cache)
3872 return -ENOMEM;
3873
3874 prev = cachep->cpu_cache;
3875 cachep->cpu_cache = cpu_cache;
3876 /*
3877 * Without a previous cpu_cache there's no need to synchronize remote
3878 * cpus, so skip the IPIs.
3879 */
3880 if (prev)
3881 kick_all_cpus_sync();
3882
3883 check_irq_on();
3884 cachep->batchcount = batchcount;
3885 cachep->limit = limit;
3886 cachep->shared = shared;
3887
3888 if (!prev)
3889 goto setup_node;
3890
3891 for_each_online_cpu(cpu) {
3892 LIST_HEAD(list);
3893 int node;
3894 struct kmem_cache_node *n;
3895 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3896
3897 node = cpu_to_mem(cpu);
3898 n = get_node(cachep, node);
3899 spin_lock_irq(&n->list_lock);
3900 free_block(cachep, ac->entry, ac->avail, node, &list);
3901 spin_unlock_irq(&n->list_lock);
3902 slabs_destroy(cachep, &list);
3903 }
3904 free_percpu(prev);
3905
3906 setup_node:
3907 return setup_kmem_cache_nodes(cachep, gfp);
3908 }
3909
3910 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3911 int batchcount, int shared, gfp_t gfp)
3912 {
3913 int ret;
3914 struct kmem_cache *c;
3915
3916 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3917
3918 if (slab_state < FULL)
3919 return ret;
3920
3921 if ((ret < 0) || !is_root_cache(cachep))
3922 return ret;
3923
3924 lockdep_assert_held(&slab_mutex);
3925 for_each_memcg_cache(c, cachep) {
3926 /* return value determined by the root cache only */
3927 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3928 }
3929
3930 return ret;
3931 }
3932
3933 /* Called with slab_mutex held always */
3934 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3935 {
3936 int err;
3937 int limit = 0;
3938 int shared = 0;
3939 int batchcount = 0;
3940
3941 err = cache_random_seq_create(cachep, cachep->num, gfp);
3942 if (err)
3943 goto end;
3944
3945 if (!is_root_cache(cachep)) {
3946 struct kmem_cache *root = memcg_root_cache(cachep);
3947 limit = root->limit;
3948 shared = root->shared;
3949 batchcount = root->batchcount;
3950 }
3951
3952 if (limit && shared && batchcount)
3953 goto skip_setup;
3954 /*
3955 * The head array serves three purposes:
3956 * - create a LIFO ordering, i.e. return objects that are cache-warm
3957 * - reduce the number of spinlock operations.
3958 * - reduce the number of linked list operations on the slab and
3959 * bufctl chains: array operations are cheaper.
3960 * The numbers are guessed, we should auto-tune as described by
3961 * Bonwick.
3962 */
3963 if (cachep->size > 131072)
3964 limit = 1;
3965 else if (cachep->size > PAGE_SIZE)
3966 limit = 8;
3967 else if (cachep->size > 1024)
3968 limit = 24;
3969 else if (cachep->size > 256)
3970 limit = 54;
3971 else
3972 limit = 120;
3973
3974 /*
3975 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3976 * allocation behaviour: Most allocs on one cpu, most free operations
3977 * on another cpu. For these cases, an efficient object passing between
3978 * cpus is necessary. This is provided by a shared array. The array
3979 * replaces Bonwick's magazine layer.
3980 * On uniprocessor, it's functionally equivalent (but less efficient)
3981 * to a larger limit. Thus disabled by default.
3982 */
3983 shared = 0;
3984 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3985 shared = 8;
3986
3987 #if DEBUG
3988 /*
3989 * With debugging enabled, large batchcount lead to excessively long
3990 * periods with disabled local interrupts. Limit the batchcount
3991 */
3992 if (limit > 32)
3993 limit = 32;
3994 #endif
3995 batchcount = (limit + 1) / 2;
3996 skip_setup:
3997 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3998 end:
3999 if (err)
4000 pr_err("enable_cpucache failed for %s, error %d\n",
4001 cachep->name, -err);
4002 return err;
4003 }
4004
4005 /*
4006 * Drain an array if it contains any elements taking the node lock only if
4007 * necessary. Note that the node listlock also protects the array_cache
4008 * if drain_array() is used on the shared array.
4009 */
4010 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4011 struct array_cache *ac, int node)
4012 {
4013 LIST_HEAD(list);
4014
4015 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4016 check_mutex_acquired();
4017
4018 if (!ac || !ac->avail)
4019 return;
4020
4021 if (ac->touched) {
4022 ac->touched = 0;
4023 return;
4024 }
4025
4026 spin_lock_irq(&n->list_lock);
4027 drain_array_locked(cachep, ac, node, false, &list);
4028 spin_unlock_irq(&n->list_lock);
4029
4030 slabs_destroy(cachep, &list);
4031 }
4032
4033 /**
4034 * cache_reap - Reclaim memory from caches.
4035 * @w: work descriptor
4036 *
4037 * Called from workqueue/eventd every few seconds.
4038 * Purpose:
4039 * - clear the per-cpu caches for this CPU.
4040 * - return freeable pages to the main free memory pool.
4041 *
4042 * If we cannot acquire the cache chain mutex then just give up - we'll try
4043 * again on the next iteration.
4044 */
4045 static void cache_reap(struct work_struct *w)
4046 {
4047 struct kmem_cache *searchp;
4048 struct kmem_cache_node *n;
4049 int node = numa_mem_id();
4050 struct delayed_work *work = to_delayed_work(w);
4051
4052 if (!mutex_trylock(&slab_mutex))
4053 /* Give up. Setup the next iteration. */
4054 goto out;
4055
4056 list_for_each_entry(searchp, &slab_caches, list) {
4057 check_irq_on();
4058
4059 /*
4060 * We only take the node lock if absolutely necessary and we
4061 * have established with reasonable certainty that
4062 * we can do some work if the lock was obtained.
4063 */
4064 n = get_node(searchp, node);
4065
4066 reap_alien(searchp, n);
4067
4068 drain_array(searchp, n, cpu_cache_get(searchp), node);
4069
4070 /*
4071 * These are racy checks but it does not matter
4072 * if we skip one check or scan twice.
4073 */
4074 if (time_after(n->next_reap, jiffies))
4075 goto next;
4076
4077 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4078
4079 drain_array(searchp, n, n->shared, node);
4080
4081 if (n->free_touched)
4082 n->free_touched = 0;
4083 else {
4084 int freed;
4085
4086 freed = drain_freelist(searchp, n, (n->free_limit +
4087 5 * searchp->num - 1) / (5 * searchp->num));
4088 STATS_ADD_REAPED(searchp, freed);
4089 }
4090 next:
4091 cond_resched();
4092 }
4093 check_irq_on();
4094 mutex_unlock(&slab_mutex);
4095 next_reap_node();
4096 out:
4097 /* Set up the next iteration */
4098 schedule_delayed_work_on(smp_processor_id(), work,
4099 round_jiffies_relative(REAPTIMEOUT_AC));
4100 }
4101
4102 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4103 {
4104 unsigned long active_objs, num_objs, active_slabs;
4105 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4106 unsigned long free_slabs = 0;
4107 int node;
4108 struct kmem_cache_node *n;
4109
4110 for_each_kmem_cache_node(cachep, node, n) {
4111 check_irq_on();
4112 spin_lock_irq(&n->list_lock);
4113
4114 total_slabs += n->total_slabs;
4115 free_slabs += n->free_slabs;
4116 free_objs += n->free_objects;
4117
4118 if (n->shared)
4119 shared_avail += n->shared->avail;
4120
4121 spin_unlock_irq(&n->list_lock);
4122 }
4123 num_objs = total_slabs * cachep->num;
4124 active_slabs = total_slabs - free_slabs;
4125 active_objs = num_objs - free_objs;
4126
4127 sinfo->active_objs = active_objs;
4128 sinfo->num_objs = num_objs;
4129 sinfo->active_slabs = active_slabs;
4130 sinfo->num_slabs = total_slabs;
4131 sinfo->shared_avail = shared_avail;
4132 sinfo->limit = cachep->limit;
4133 sinfo->batchcount = cachep->batchcount;
4134 sinfo->shared = cachep->shared;
4135 sinfo->objects_per_slab = cachep->num;
4136 sinfo->cache_order = cachep->gfporder;
4137 }
4138
4139 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4140 {
4141 #if STATS
4142 { /* node stats */
4143 unsigned long high = cachep->high_mark;
4144 unsigned long allocs = cachep->num_allocations;
4145 unsigned long grown = cachep->grown;
4146 unsigned long reaped = cachep->reaped;
4147 unsigned long errors = cachep->errors;
4148 unsigned long max_freeable = cachep->max_freeable;
4149 unsigned long node_allocs = cachep->node_allocs;
4150 unsigned long node_frees = cachep->node_frees;
4151 unsigned long overflows = cachep->node_overflow;
4152
4153 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4154 allocs, high, grown,
4155 reaped, errors, max_freeable, node_allocs,
4156 node_frees, overflows);
4157 }
4158 /* cpu stats */
4159 {
4160 unsigned long allochit = atomic_read(&cachep->allochit);
4161 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4162 unsigned long freehit = atomic_read(&cachep->freehit);
4163 unsigned long freemiss = atomic_read(&cachep->freemiss);
4164
4165 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4166 allochit, allocmiss, freehit, freemiss);
4167 }
4168 #endif
4169 }
4170
4171 #define MAX_SLABINFO_WRITE 128
4172 /**
4173 * slabinfo_write - Tuning for the slab allocator
4174 * @file: unused
4175 * @buffer: user buffer
4176 * @count: data length
4177 * @ppos: unused
4178 */
4179 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4180 size_t count, loff_t *ppos)
4181 {
4182 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4183 int limit, batchcount, shared, res;
4184 struct kmem_cache *cachep;
4185
4186 if (count > MAX_SLABINFO_WRITE)
4187 return -EINVAL;
4188 if (copy_from_user(&kbuf, buffer, count))
4189 return -EFAULT;
4190 kbuf[MAX_SLABINFO_WRITE] = '\0';
4191
4192 tmp = strchr(kbuf, ' ');
4193 if (!tmp)
4194 return -EINVAL;
4195 *tmp = '\0';
4196 tmp++;
4197 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4198 return -EINVAL;
4199
4200 /* Find the cache in the chain of caches. */
4201 mutex_lock(&slab_mutex);
4202 res = -EINVAL;
4203 list_for_each_entry(cachep, &slab_caches, list) {
4204 if (!strcmp(cachep->name, kbuf)) {
4205 if (limit < 1 || batchcount < 1 ||
4206 batchcount > limit || shared < 0) {
4207 res = 0;
4208 } else {
4209 res = do_tune_cpucache(cachep, limit,
4210 batchcount, shared,
4211 GFP_KERNEL);
4212 }
4213 break;
4214 }
4215 }
4216 mutex_unlock(&slab_mutex);
4217 if (res >= 0)
4218 res = count;
4219 return res;
4220 }
4221
4222 #ifdef CONFIG_DEBUG_SLAB_LEAK
4223
4224 static inline int add_caller(unsigned long *n, unsigned long v)
4225 {
4226 unsigned long *p;
4227 int l;
4228 if (!v)
4229 return 1;
4230 l = n[1];
4231 p = n + 2;
4232 while (l) {
4233 int i = l/2;
4234 unsigned long *q = p + 2 * i;
4235 if (*q == v) {
4236 q[1]++;
4237 return 1;
4238 }
4239 if (*q > v) {
4240 l = i;
4241 } else {
4242 p = q + 2;
4243 l -= i + 1;
4244 }
4245 }
4246 if (++n[1] == n[0])
4247 return 0;
4248 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4249 p[0] = v;
4250 p[1] = 1;
4251 return 1;
4252 }
4253
4254 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4255 struct page *page)
4256 {
4257 void *p;
4258 int i, j;
4259 unsigned long v;
4260
4261 if (n[0] == n[1])
4262 return;
4263 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4264 bool active = true;
4265
4266 for (j = page->active; j < c->num; j++) {
4267 if (get_free_obj(page, j) == i) {
4268 active = false;
4269 break;
4270 }
4271 }
4272
4273 if (!active)
4274 continue;
4275
4276 /*
4277 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4278 * mapping is established when actual object allocation and
4279 * we could mistakenly access the unmapped object in the cpu
4280 * cache.
4281 */
4282 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4283 continue;
4284
4285 if (!add_caller(n, v))
4286 return;
4287 }
4288 }
4289
4290 static void show_symbol(struct seq_file *m, unsigned long address)
4291 {
4292 #ifdef CONFIG_KALLSYMS
4293 unsigned long offset, size;
4294 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4295
4296 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4297 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4298 if (modname[0])
4299 seq_printf(m, " [%s]", modname);
4300 return;
4301 }
4302 #endif
4303 seq_printf(m, "%px", (void *)address);
4304 }
4305
4306 static int leaks_show(struct seq_file *m, void *p)
4307 {
4308 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
4309 root_caches_node);
4310 struct page *page;
4311 struct kmem_cache_node *n;
4312 const char *name;
4313 unsigned long *x = m->private;
4314 int node;
4315 int i;
4316
4317 if (!(cachep->flags & SLAB_STORE_USER))
4318 return 0;
4319 if (!(cachep->flags & SLAB_RED_ZONE))
4320 return 0;
4321
4322 /*
4323 * Set store_user_clean and start to grab stored user information
4324 * for all objects on this cache. If some alloc/free requests comes
4325 * during the processing, information would be wrong so restart
4326 * whole processing.
4327 */
4328 do {
4329 drain_cpu_caches(cachep);
4330 /*
4331 * drain_cpu_caches() could make kmemleak_object and
4332 * debug_objects_cache dirty, so reset afterwards.
4333 */
4334 set_store_user_clean(cachep);
4335
4336 x[1] = 0;
4337
4338 for_each_kmem_cache_node(cachep, node, n) {
4339
4340 check_irq_on();
4341 spin_lock_irq(&n->list_lock);
4342
4343 list_for_each_entry(page, &n->slabs_full, lru)
4344 handle_slab(x, cachep, page);
4345 list_for_each_entry(page, &n->slabs_partial, lru)
4346 handle_slab(x, cachep, page);
4347 spin_unlock_irq(&n->list_lock);
4348 }
4349 } while (!is_store_user_clean(cachep));
4350
4351 name = cachep->name;
4352 if (x[0] == x[1]) {
4353 /* Increase the buffer size */
4354 mutex_unlock(&slab_mutex);
4355 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4356 GFP_KERNEL);
4357 if (!m->private) {
4358 /* Too bad, we are really out */
4359 m->private = x;
4360 mutex_lock(&slab_mutex);
4361 return -ENOMEM;
4362 }
4363 *(unsigned long *)m->private = x[0] * 2;
4364 kfree(x);
4365 mutex_lock(&slab_mutex);
4366 /* Now make sure this entry will be retried */
4367 m->count = m->size;
4368 return 0;
4369 }
4370 for (i = 0; i < x[1]; i++) {
4371 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4372 show_symbol(m, x[2*i+2]);
4373 seq_putc(m, '\n');
4374 }
4375
4376 return 0;
4377 }
4378
4379 static const struct seq_operations slabstats_op = {
4380 .start = slab_start,
4381 .next = slab_next,
4382 .stop = slab_stop,
4383 .show = leaks_show,
4384 };
4385
4386 static int slabstats_open(struct inode *inode, struct file *file)
4387 {
4388 unsigned long *n;
4389
4390 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4391 if (!n)
4392 return -ENOMEM;
4393
4394 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4395
4396 return 0;
4397 }
4398
4399 static const struct file_operations proc_slabstats_operations = {
4400 .open = slabstats_open,
4401 .read = seq_read,
4402 .llseek = seq_lseek,
4403 .release = seq_release_private,
4404 };
4405 #endif
4406
4407 static int __init slab_proc_init(void)
4408 {
4409 #ifdef CONFIG_DEBUG_SLAB_LEAK
4410 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4411 #endif
4412 return 0;
4413 }
4414 module_init(slab_proc_init);
4415
4416 #ifdef CONFIG_HARDENED_USERCOPY
4417 /*
4418 * Rejects incorrectly sized objects and objects that are to be copied
4419 * to/from userspace but do not fall entirely within the containing slab
4420 * cache's usercopy region.
4421 *
4422 * Returns NULL if check passes, otherwise const char * to name of cache
4423 * to indicate an error.
4424 */
4425 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4426 bool to_user)
4427 {
4428 struct kmem_cache *cachep;
4429 unsigned int objnr;
4430 unsigned long offset;
4431
4432 /* Find and validate object. */
4433 cachep = page->slab_cache;
4434 objnr = obj_to_index(cachep, page, (void *)ptr);
4435 BUG_ON(objnr >= cachep->num);
4436
4437 /* Find offset within object. */
4438 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4439
4440 /* Allow address range falling entirely within usercopy region. */
4441 if (offset >= cachep->useroffset &&
4442 offset - cachep->useroffset <= cachep->usersize &&
4443 n <= cachep->useroffset - offset + cachep->usersize)
4444 return;
4445
4446 /*
4447 * If the copy is still within the allocated object, produce
4448 * a warning instead of rejecting the copy. This is intended
4449 * to be a temporary method to find any missing usercopy
4450 * whitelists.
4451 */
4452 if (usercopy_fallback &&
4453 offset <= cachep->object_size &&
4454 n <= cachep->object_size - offset) {
4455 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4456 return;
4457 }
4458
4459 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4460 }
4461 #endif /* CONFIG_HARDENED_USERCOPY */
4462
4463 /**
4464 * ksize - get the actual amount of memory allocated for a given object
4465 * @objp: Pointer to the object
4466 *
4467 * kmalloc may internally round up allocations and return more memory
4468 * than requested. ksize() can be used to determine the actual amount of
4469 * memory allocated. The caller may use this additional memory, even though
4470 * a smaller amount of memory was initially specified with the kmalloc call.
4471 * The caller must guarantee that objp points to a valid object previously
4472 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4473 * must not be freed during the duration of the call.
4474 */
4475 size_t ksize(const void *objp)
4476 {
4477 size_t size;
4478
4479 BUG_ON(!objp);
4480 if (unlikely(objp == ZERO_SIZE_PTR))
4481 return 0;
4482
4483 size = virt_to_cache(objp)->object_size;
4484 /* We assume that ksize callers could use the whole allocated area,
4485 * so we need to unpoison this area.
4486 */
4487 kasan_unpoison_shadow(objp, size);
4488
4489 return size;
4490 }
4491 EXPORT_SYMBOL(ksize);