]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/slab.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/kfence.h>
104 #include <linux/cpu.h>
105 #include <linux/sysctl.h>
106 #include <linux/module.h>
107 #include <linux/rcupdate.h>
108 #include <linux/string.h>
109 #include <linux/uaccess.h>
110 #include <linux/nodemask.h>
111 #include <linux/kmemleak.h>
112 #include <linux/mempolicy.h>
113 #include <linux/mutex.h>
114 #include <linux/fault-inject.h>
115 #include <linux/rtmutex.h>
116 #include <linux/reciprocal_div.h>
117 #include <linux/debugobjects.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
121
122 #include <net/sock.h>
123
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
127
128 #include <trace/events/kmem.h>
129
130 #include "internal.h"
131
132 #include "slab.h"
133
134 /*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
153
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
161
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
170
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173 /*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195 };
196
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200 };
201
202 /*
203 * Need this for bootstrapping a per node allocator.
204 */
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
209
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
217
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct slab *slab,
222 void **list);
223 static int slab_early_init = 1;
224
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 {
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240 }
241
242 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260 #define BATCHREFILL_LIMIT 16
261 /*
262 * Optimization question: fewer reaps means less probability for unnecessary
263 * cpucache drain/refill cycles.
264 *
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
267 */
268 #define REAPTIMEOUT_AC (2*HZ)
269 #define REAPTIMEOUT_NODE (4*HZ)
270
271 #if STATS
272 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275 #define STATS_INC_GROWN(x) ((x)->grown++)
276 #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
277 #define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282 #define STATS_INC_ERR(x) ((x)->errors++)
283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286 #define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #else
296 #define STATS_INC_ACTIVE(x) do { } while (0)
297 #define STATS_DEC_ACTIVE(x) do { } while (0)
298 #define STATS_INC_ALLOCED(x) do { } while (0)
299 #define STATS_INC_GROWN(x) do { } while (0)
300 #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
301 #define STATS_SET_HIGH(x) do { } while (0)
302 #define STATS_INC_ERR(x) do { } while (0)
303 #define STATS_INC_NODEALLOCS(x) do { } while (0)
304 #define STATS_INC_NODEFREES(x) do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
306 #define STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x) do { } while (0)
308 #define STATS_INC_ALLOCMISS(x) do { } while (0)
309 #define STATS_INC_FREEHIT(x) do { } while (0)
310 #define STATS_INC_FREEMISS(x) do { } while (0)
311 #endif
312
313 #if DEBUG
314
315 /*
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
327 */
328 static int obj_offset(struct kmem_cache *cachep)
329 {
330 return cachep->obj_offset;
331 }
332
333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 {
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long *) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338 }
339
340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 {
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349 }
350
351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 {
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355 }
356
357 #else
358
359 #define obj_offset(x) 0
360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364 #endif
365
366 /*
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
369 */
370 #define SLAB_MAX_ORDER_HI 1
371 #define SLAB_MAX_ORDER_LO 0
372 static int slab_max_order = SLAB_MAX_ORDER_LO;
373 static bool slab_max_order_set __initdata;
374
375 static inline void *index_to_obj(struct kmem_cache *cache,
376 const struct slab *slab, unsigned int idx)
377 {
378 return slab->s_mem + cache->size * idx;
379 }
380
381 #define BOOT_CPUCACHE_ENTRIES 1
382 /* internal cache of cache description objs */
383 static struct kmem_cache kmem_cache_boot = {
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
387 .size = sizeof(struct kmem_cache),
388 .name = "kmem_cache",
389 };
390
391 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392
393 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394 {
395 return this_cpu_ptr(cachep->cpu_cache);
396 }
397
398 /*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
401 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
402 slab_flags_t flags, size_t *left_over)
403 {
404 unsigned int num;
405 size_t slab_size = PAGE_SIZE << gfporder;
406
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
412 * - @buffer_size bytes for each object
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
425 num = slab_size / buffer_size;
426 *left_over = slab_size % buffer_size;
427 } else {
428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
431 }
432
433 return num;
434 }
435
436 #if DEBUG
437 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438
439 static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
441 {
442 pr_err("slab error in %s(): cache `%s': %s\n",
443 function, cachep->name, msg);
444 dump_stack();
445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446 }
447 #endif
448
449 /*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457 static int use_alien_caches __read_mostly = 1;
458 static int __init noaliencache_setup(char *s)
459 {
460 use_alien_caches = 0;
461 return 1;
462 }
463 __setup("noaliencache", noaliencache_setup);
464
465 static int __init slab_max_order_setup(char *str)
466 {
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473 }
474 __setup("slab_max_order=", slab_max_order_setup);
475
476 #ifdef CONFIG_NUMA
477 /*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
483 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484
485 static void init_reap_node(int cpu)
486 {
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
489 }
490
491 static void next_reap_node(void)
492 {
493 int node = __this_cpu_read(slab_reap_node);
494
495 node = next_node_in(node, node_online_map);
496 __this_cpu_write(slab_reap_node, node);
497 }
498
499 #else
500 #define init_reap_node(cpu) do { } while (0)
501 #define next_reap_node(void) do { } while (0)
502 #endif
503
504 /*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
511 static void start_cpu_timer(int cpu)
512 {
513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514
515 if (reap_work->work.func == NULL) {
516 init_reap_node(cpu);
517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
520 }
521 }
522
523 static void init_arraycache(struct array_cache *ac, int limit, int batch)
524 {
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
530 }
531 }
532
533 static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535 {
536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
548 init_arraycache(ac, entries, batchcount);
549 return ac;
550 }
551
552 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 struct slab *slab, void *objp)
554 {
555 struct kmem_cache_node *n;
556 int slab_node;
557 LIST_HEAD(list);
558
559 slab_node = slab_nid(slab);
560 n = get_node(cachep, slab_node);
561
562 spin_lock(&n->list_lock);
563 free_block(cachep, &objp, 1, slab_node, &list);
564 spin_unlock(&n->list_lock);
565
566 slabs_destroy(cachep, &list);
567 }
568
569 /*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
575 static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577 {
578 /* Figure out how many entries to transfer */
579 int nr = min3(from->avail, max, to->limit - to->avail);
580
581 if (!nr)
582 return 0;
583
584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
589 return nr;
590 }
591
592 /* &alien->lock must be held by alien callers. */
593 static __always_inline void __free_one(struct array_cache *ac, void *objp)
594 {
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600 }
601
602 #ifndef CONFIG_NUMA
603
604 #define drain_alien_cache(cachep, alien) do { } while (0)
605 #define reap_alien(cachep, n) do { } while (0)
606
607 static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
609 {
610 return NULL;
611 }
612
613 static inline void free_alien_cache(struct alien_cache **ac_ptr)
614 {
615 }
616
617 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618 {
619 return 0;
620 }
621
622 static inline gfp_t gfp_exact_node(gfp_t flags)
623 {
624 return flags & ~__GFP_NOFAIL;
625 }
626
627 #else /* CONFIG_NUMA */
628
629 static struct alien_cache *__alloc_alien_cache(int node, int entries,
630 int batch, gfp_t gfp)
631 {
632 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
633 struct alien_cache *alc = NULL;
634
635 alc = kmalloc_node(memsize, gfp, node);
636 if (alc) {
637 kmemleak_no_scan(alc);
638 init_arraycache(&alc->ac, entries, batch);
639 spin_lock_init(&alc->lock);
640 }
641 return alc;
642 }
643
644 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
645 {
646 struct alien_cache **alc_ptr;
647 int i;
648
649 if (limit > 1)
650 limit = 12;
651 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
652 if (!alc_ptr)
653 return NULL;
654
655 for_each_node(i) {
656 if (i == node || !node_online(i))
657 continue;
658 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
659 if (!alc_ptr[i]) {
660 for (i--; i >= 0; i--)
661 kfree(alc_ptr[i]);
662 kfree(alc_ptr);
663 return NULL;
664 }
665 }
666 return alc_ptr;
667 }
668
669 static void free_alien_cache(struct alien_cache **alc_ptr)
670 {
671 int i;
672
673 if (!alc_ptr)
674 return;
675 for_each_node(i)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 }
679
680 static void __drain_alien_cache(struct kmem_cache *cachep,
681 struct array_cache *ac, int node,
682 struct list_head *list)
683 {
684 struct kmem_cache_node *n = get_node(cachep, node);
685
686 if (ac->avail) {
687 spin_lock(&n->list_lock);
688 /*
689 * Stuff objects into the remote nodes shared array first.
690 * That way we could avoid the overhead of putting the objects
691 * into the free lists and getting them back later.
692 */
693 if (n->shared)
694 transfer_objects(n->shared, ac, ac->limit);
695
696 free_block(cachep, ac->entry, ac->avail, node, list);
697 ac->avail = 0;
698 spin_unlock(&n->list_lock);
699 }
700 }
701
702 /*
703 * Called from cache_reap() to regularly drain alien caches round robin.
704 */
705 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
706 {
707 int node = __this_cpu_read(slab_reap_node);
708
709 if (n->alien) {
710 struct alien_cache *alc = n->alien[node];
711 struct array_cache *ac;
712
713 if (alc) {
714 ac = &alc->ac;
715 if (ac->avail && spin_trylock_irq(&alc->lock)) {
716 LIST_HEAD(list);
717
718 __drain_alien_cache(cachep, ac, node, &list);
719 spin_unlock_irq(&alc->lock);
720 slabs_destroy(cachep, &list);
721 }
722 }
723 }
724 }
725
726 static void drain_alien_cache(struct kmem_cache *cachep,
727 struct alien_cache **alien)
728 {
729 int i = 0;
730 struct alien_cache *alc;
731 struct array_cache *ac;
732 unsigned long flags;
733
734 for_each_online_node(i) {
735 alc = alien[i];
736 if (alc) {
737 LIST_HEAD(list);
738
739 ac = &alc->ac;
740 spin_lock_irqsave(&alc->lock, flags);
741 __drain_alien_cache(cachep, ac, i, &list);
742 spin_unlock_irqrestore(&alc->lock, flags);
743 slabs_destroy(cachep, &list);
744 }
745 }
746 }
747
748 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
749 int node, int slab_node)
750 {
751 struct kmem_cache_node *n;
752 struct alien_cache *alien = NULL;
753 struct array_cache *ac;
754 LIST_HEAD(list);
755
756 n = get_node(cachep, node);
757 STATS_INC_NODEFREES(cachep);
758 if (n->alien && n->alien[slab_node]) {
759 alien = n->alien[slab_node];
760 ac = &alien->ac;
761 spin_lock(&alien->lock);
762 if (unlikely(ac->avail == ac->limit)) {
763 STATS_INC_ACOVERFLOW(cachep);
764 __drain_alien_cache(cachep, ac, slab_node, &list);
765 }
766 __free_one(ac, objp);
767 spin_unlock(&alien->lock);
768 slabs_destroy(cachep, &list);
769 } else {
770 n = get_node(cachep, slab_node);
771 spin_lock(&n->list_lock);
772 free_block(cachep, &objp, 1, slab_node, &list);
773 spin_unlock(&n->list_lock);
774 slabs_destroy(cachep, &list);
775 }
776 return 1;
777 }
778
779 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
780 {
781 int slab_node = slab_nid(virt_to_slab(objp));
782 int node = numa_mem_id();
783 /*
784 * Make sure we are not freeing an object from another node to the array
785 * cache on this cpu.
786 */
787 if (likely(node == slab_node))
788 return 0;
789
790 return __cache_free_alien(cachep, objp, node, slab_node);
791 }
792
793 /*
794 * Construct gfp mask to allocate from a specific node but do not reclaim or
795 * warn about failures.
796 */
797 static inline gfp_t gfp_exact_node(gfp_t flags)
798 {
799 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
800 }
801 #endif
802
803 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
804 {
805 struct kmem_cache_node *n;
806
807 /*
808 * Set up the kmem_cache_node for cpu before we can
809 * begin anything. Make sure some other cpu on this
810 * node has not already allocated this
811 */
812 n = get_node(cachep, node);
813 if (n) {
814 spin_lock_irq(&n->list_lock);
815 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
816 cachep->num;
817 spin_unlock_irq(&n->list_lock);
818
819 return 0;
820 }
821
822 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
823 if (!n)
824 return -ENOMEM;
825
826 kmem_cache_node_init(n);
827 n->next_reap = jiffies + REAPTIMEOUT_NODE +
828 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
829
830 n->free_limit =
831 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
832
833 /*
834 * The kmem_cache_nodes don't come and go as CPUs
835 * come and go. slab_mutex provides sufficient
836 * protection here.
837 */
838 cachep->node[node] = n;
839
840 return 0;
841 }
842
843 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
844 /*
845 * Allocates and initializes node for a node on each slab cache, used for
846 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
847 * will be allocated off-node since memory is not yet online for the new node.
848 * When hotplugging memory or a cpu, existing nodes are not replaced if
849 * already in use.
850 *
851 * Must hold slab_mutex.
852 */
853 static int init_cache_node_node(int node)
854 {
855 int ret;
856 struct kmem_cache *cachep;
857
858 list_for_each_entry(cachep, &slab_caches, list) {
859 ret = init_cache_node(cachep, node, GFP_KERNEL);
860 if (ret)
861 return ret;
862 }
863
864 return 0;
865 }
866 #endif
867
868 static int setup_kmem_cache_node(struct kmem_cache *cachep,
869 int node, gfp_t gfp, bool force_change)
870 {
871 int ret = -ENOMEM;
872 struct kmem_cache_node *n;
873 struct array_cache *old_shared = NULL;
874 struct array_cache *new_shared = NULL;
875 struct alien_cache **new_alien = NULL;
876 LIST_HEAD(list);
877
878 if (use_alien_caches) {
879 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
880 if (!new_alien)
881 goto fail;
882 }
883
884 if (cachep->shared) {
885 new_shared = alloc_arraycache(node,
886 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
887 if (!new_shared)
888 goto fail;
889 }
890
891 ret = init_cache_node(cachep, node, gfp);
892 if (ret)
893 goto fail;
894
895 n = get_node(cachep, node);
896 spin_lock_irq(&n->list_lock);
897 if (n->shared && force_change) {
898 free_block(cachep, n->shared->entry,
899 n->shared->avail, node, &list);
900 n->shared->avail = 0;
901 }
902
903 if (!n->shared || force_change) {
904 old_shared = n->shared;
905 n->shared = new_shared;
906 new_shared = NULL;
907 }
908
909 if (!n->alien) {
910 n->alien = new_alien;
911 new_alien = NULL;
912 }
913
914 spin_unlock_irq(&n->list_lock);
915 slabs_destroy(cachep, &list);
916
917 /*
918 * To protect lockless access to n->shared during irq disabled context.
919 * If n->shared isn't NULL in irq disabled context, accessing to it is
920 * guaranteed to be valid until irq is re-enabled, because it will be
921 * freed after synchronize_rcu().
922 */
923 if (old_shared && force_change)
924 synchronize_rcu();
925
926 fail:
927 kfree(old_shared);
928 kfree(new_shared);
929 free_alien_cache(new_alien);
930
931 return ret;
932 }
933
934 #ifdef CONFIG_SMP
935
936 static void cpuup_canceled(long cpu)
937 {
938 struct kmem_cache *cachep;
939 struct kmem_cache_node *n = NULL;
940 int node = cpu_to_mem(cpu);
941 const struct cpumask *mask = cpumask_of_node(node);
942
943 list_for_each_entry(cachep, &slab_caches, list) {
944 struct array_cache *nc;
945 struct array_cache *shared;
946 struct alien_cache **alien;
947 LIST_HEAD(list);
948
949 n = get_node(cachep, node);
950 if (!n)
951 continue;
952
953 spin_lock_irq(&n->list_lock);
954
955 /* Free limit for this kmem_cache_node */
956 n->free_limit -= cachep->batchcount;
957
958 /* cpu is dead; no one can alloc from it. */
959 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
960 free_block(cachep, nc->entry, nc->avail, node, &list);
961 nc->avail = 0;
962
963 if (!cpumask_empty(mask)) {
964 spin_unlock_irq(&n->list_lock);
965 goto free_slab;
966 }
967
968 shared = n->shared;
969 if (shared) {
970 free_block(cachep, shared->entry,
971 shared->avail, node, &list);
972 n->shared = NULL;
973 }
974
975 alien = n->alien;
976 n->alien = NULL;
977
978 spin_unlock_irq(&n->list_lock);
979
980 kfree(shared);
981 if (alien) {
982 drain_alien_cache(cachep, alien);
983 free_alien_cache(alien);
984 }
985
986 free_slab:
987 slabs_destroy(cachep, &list);
988 }
989 /*
990 * In the previous loop, all the objects were freed to
991 * the respective cache's slabs, now we can go ahead and
992 * shrink each nodelist to its limit.
993 */
994 list_for_each_entry(cachep, &slab_caches, list) {
995 n = get_node(cachep, node);
996 if (!n)
997 continue;
998 drain_freelist(cachep, n, INT_MAX);
999 }
1000 }
1001
1002 static int cpuup_prepare(long cpu)
1003 {
1004 struct kmem_cache *cachep;
1005 int node = cpu_to_mem(cpu);
1006 int err;
1007
1008 /*
1009 * We need to do this right in the beginning since
1010 * alloc_arraycache's are going to use this list.
1011 * kmalloc_node allows us to add the slab to the right
1012 * kmem_cache_node and not this cpu's kmem_cache_node
1013 */
1014 err = init_cache_node_node(node);
1015 if (err < 0)
1016 goto bad;
1017
1018 /*
1019 * Now we can go ahead with allocating the shared arrays and
1020 * array caches
1021 */
1022 list_for_each_entry(cachep, &slab_caches, list) {
1023 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1024 if (err)
1025 goto bad;
1026 }
1027
1028 return 0;
1029 bad:
1030 cpuup_canceled(cpu);
1031 return -ENOMEM;
1032 }
1033
1034 int slab_prepare_cpu(unsigned int cpu)
1035 {
1036 int err;
1037
1038 mutex_lock(&slab_mutex);
1039 err = cpuup_prepare(cpu);
1040 mutex_unlock(&slab_mutex);
1041 return err;
1042 }
1043
1044 /*
1045 * This is called for a failed online attempt and for a successful
1046 * offline.
1047 *
1048 * Even if all the cpus of a node are down, we don't free the
1049 * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
1050 * a kmalloc allocation from another cpu for memory from the node of
1051 * the cpu going down. The kmem_cache_node structure is usually allocated from
1052 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1053 */
1054 int slab_dead_cpu(unsigned int cpu)
1055 {
1056 mutex_lock(&slab_mutex);
1057 cpuup_canceled(cpu);
1058 mutex_unlock(&slab_mutex);
1059 return 0;
1060 }
1061 #endif
1062
1063 static int slab_online_cpu(unsigned int cpu)
1064 {
1065 start_cpu_timer(cpu);
1066 return 0;
1067 }
1068
1069 static int slab_offline_cpu(unsigned int cpu)
1070 {
1071 /*
1072 * Shutdown cache reaper. Note that the slab_mutex is held so
1073 * that if cache_reap() is invoked it cannot do anything
1074 * expensive but will only modify reap_work and reschedule the
1075 * timer.
1076 */
1077 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1078 /* Now the cache_reaper is guaranteed to be not running. */
1079 per_cpu(slab_reap_work, cpu).work.func = NULL;
1080 return 0;
1081 }
1082
1083 #if defined(CONFIG_NUMA)
1084 /*
1085 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1086 * Returns -EBUSY if all objects cannot be drained so that the node is not
1087 * removed.
1088 *
1089 * Must hold slab_mutex.
1090 */
1091 static int __meminit drain_cache_node_node(int node)
1092 {
1093 struct kmem_cache *cachep;
1094 int ret = 0;
1095
1096 list_for_each_entry(cachep, &slab_caches, list) {
1097 struct kmem_cache_node *n;
1098
1099 n = get_node(cachep, node);
1100 if (!n)
1101 continue;
1102
1103 drain_freelist(cachep, n, INT_MAX);
1104
1105 if (!list_empty(&n->slabs_full) ||
1106 !list_empty(&n->slabs_partial)) {
1107 ret = -EBUSY;
1108 break;
1109 }
1110 }
1111 return ret;
1112 }
1113
1114 static int __meminit slab_memory_callback(struct notifier_block *self,
1115 unsigned long action, void *arg)
1116 {
1117 struct memory_notify *mnb = arg;
1118 int ret = 0;
1119 int nid;
1120
1121 nid = mnb->status_change_nid;
1122 if (nid < 0)
1123 goto out;
1124
1125 switch (action) {
1126 case MEM_GOING_ONLINE:
1127 mutex_lock(&slab_mutex);
1128 ret = init_cache_node_node(nid);
1129 mutex_unlock(&slab_mutex);
1130 break;
1131 case MEM_GOING_OFFLINE:
1132 mutex_lock(&slab_mutex);
1133 ret = drain_cache_node_node(nid);
1134 mutex_unlock(&slab_mutex);
1135 break;
1136 case MEM_ONLINE:
1137 case MEM_OFFLINE:
1138 case MEM_CANCEL_ONLINE:
1139 case MEM_CANCEL_OFFLINE:
1140 break;
1141 }
1142 out:
1143 return notifier_from_errno(ret);
1144 }
1145 #endif /* CONFIG_NUMA */
1146
1147 /*
1148 * swap the static kmem_cache_node with kmalloced memory
1149 */
1150 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1151 int nodeid)
1152 {
1153 struct kmem_cache_node *ptr;
1154
1155 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1156 BUG_ON(!ptr);
1157
1158 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1159 /*
1160 * Do not assume that spinlocks can be initialized via memcpy:
1161 */
1162 spin_lock_init(&ptr->list_lock);
1163
1164 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1165 cachep->node[nodeid] = ptr;
1166 }
1167
1168 /*
1169 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1170 * size of kmem_cache_node.
1171 */
1172 static void __init set_up_node(struct kmem_cache *cachep, int index)
1173 {
1174 int node;
1175
1176 for_each_online_node(node) {
1177 cachep->node[node] = &init_kmem_cache_node[index + node];
1178 cachep->node[node]->next_reap = jiffies +
1179 REAPTIMEOUT_NODE +
1180 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1181 }
1182 }
1183
1184 /*
1185 * Initialisation. Called after the page allocator have been initialised and
1186 * before smp_init().
1187 */
1188 void __init kmem_cache_init(void)
1189 {
1190 int i;
1191
1192 kmem_cache = &kmem_cache_boot;
1193
1194 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1195 use_alien_caches = 0;
1196
1197 for (i = 0; i < NUM_INIT_LISTS; i++)
1198 kmem_cache_node_init(&init_kmem_cache_node[i]);
1199
1200 /*
1201 * Fragmentation resistance on low memory - only use bigger
1202 * page orders on machines with more than 32MB of memory if
1203 * not overridden on the command line.
1204 */
1205 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1206 slab_max_order = SLAB_MAX_ORDER_HI;
1207
1208 /* Bootstrap is tricky, because several objects are allocated
1209 * from caches that do not exist yet:
1210 * 1) initialize the kmem_cache cache: it contains the struct
1211 * kmem_cache structures of all caches, except kmem_cache itself:
1212 * kmem_cache is statically allocated.
1213 * Initially an __init data area is used for the head array and the
1214 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1215 * array at the end of the bootstrap.
1216 * 2) Create the first kmalloc cache.
1217 * The struct kmem_cache for the new cache is allocated normally.
1218 * An __init data area is used for the head array.
1219 * 3) Create the remaining kmalloc caches, with minimally sized
1220 * head arrays.
1221 * 4) Replace the __init data head arrays for kmem_cache and the first
1222 * kmalloc cache with kmalloc allocated arrays.
1223 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1224 * the other cache's with kmalloc allocated memory.
1225 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1226 */
1227
1228 /* 1) create the kmem_cache */
1229
1230 /*
1231 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1232 */
1233 create_boot_cache(kmem_cache, "kmem_cache",
1234 offsetof(struct kmem_cache, node) +
1235 nr_node_ids * sizeof(struct kmem_cache_node *),
1236 SLAB_HWCACHE_ALIGN, 0, 0);
1237 list_add(&kmem_cache->list, &slab_caches);
1238 slab_state = PARTIAL;
1239
1240 /*
1241 * Initialize the caches that provide memory for the kmem_cache_node
1242 * structures first. Without this, further allocations will bug.
1243 */
1244 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1245 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1246 kmalloc_info[INDEX_NODE].size,
1247 ARCH_KMALLOC_FLAGS, 0,
1248 kmalloc_info[INDEX_NODE].size);
1249 slab_state = PARTIAL_NODE;
1250 setup_kmalloc_cache_index_table();
1251
1252 slab_early_init = 0;
1253
1254 /* 5) Replace the bootstrap kmem_cache_node */
1255 {
1256 int nid;
1257
1258 for_each_online_node(nid) {
1259 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1260
1261 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1262 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1263 }
1264 }
1265
1266 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1267 }
1268
1269 void __init kmem_cache_init_late(void)
1270 {
1271 struct kmem_cache *cachep;
1272
1273 /* 6) resize the head arrays to their final sizes */
1274 mutex_lock(&slab_mutex);
1275 list_for_each_entry(cachep, &slab_caches, list)
1276 if (enable_cpucache(cachep, GFP_NOWAIT))
1277 BUG();
1278 mutex_unlock(&slab_mutex);
1279
1280 /* Done! */
1281 slab_state = FULL;
1282
1283 #ifdef CONFIG_NUMA
1284 /*
1285 * Register a memory hotplug callback that initializes and frees
1286 * node.
1287 */
1288 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1289 #endif
1290
1291 /*
1292 * The reap timers are started later, with a module init call: That part
1293 * of the kernel is not yet operational.
1294 */
1295 }
1296
1297 static int __init cpucache_init(void)
1298 {
1299 int ret;
1300
1301 /*
1302 * Register the timers that return unneeded pages to the page allocator
1303 */
1304 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1305 slab_online_cpu, slab_offline_cpu);
1306 WARN_ON(ret < 0);
1307
1308 return 0;
1309 }
1310 __initcall(cpucache_init);
1311
1312 static noinline void
1313 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1314 {
1315 #if DEBUG
1316 struct kmem_cache_node *n;
1317 unsigned long flags;
1318 int node;
1319 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1320 DEFAULT_RATELIMIT_BURST);
1321
1322 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1323 return;
1324
1325 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1326 nodeid, gfpflags, &gfpflags);
1327 pr_warn(" cache: %s, object size: %d, order: %d\n",
1328 cachep->name, cachep->size, cachep->gfporder);
1329
1330 for_each_kmem_cache_node(cachep, node, n) {
1331 unsigned long total_slabs, free_slabs, free_objs;
1332
1333 spin_lock_irqsave(&n->list_lock, flags);
1334 total_slabs = n->total_slabs;
1335 free_slabs = n->free_slabs;
1336 free_objs = n->free_objects;
1337 spin_unlock_irqrestore(&n->list_lock, flags);
1338
1339 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1340 node, total_slabs - free_slabs, total_slabs,
1341 (total_slabs * cachep->num) - free_objs,
1342 total_slabs * cachep->num);
1343 }
1344 #endif
1345 }
1346
1347 /*
1348 * Interface to system's page allocator. No need to hold the
1349 * kmem_cache_node ->list_lock.
1350 *
1351 * If we requested dmaable memory, we will get it. Even if we
1352 * did not request dmaable memory, we might get it, but that
1353 * would be relatively rare and ignorable.
1354 */
1355 static struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1356 int nodeid)
1357 {
1358 struct folio *folio;
1359 struct slab *slab;
1360
1361 flags |= cachep->allocflags;
1362
1363 folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
1364 if (!folio) {
1365 slab_out_of_memory(cachep, flags, nodeid);
1366 return NULL;
1367 }
1368
1369 slab = folio_slab(folio);
1370
1371 account_slab(slab, cachep->gfporder, cachep, flags);
1372 __folio_set_slab(folio);
1373 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1374 if (sk_memalloc_socks() && page_is_pfmemalloc(folio_page(folio, 0)))
1375 slab_set_pfmemalloc(slab);
1376
1377 return slab;
1378 }
1379
1380 /*
1381 * Interface to system's page release.
1382 */
1383 static void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
1384 {
1385 int order = cachep->gfporder;
1386 struct folio *folio = slab_folio(slab);
1387
1388 BUG_ON(!folio_test_slab(folio));
1389 __slab_clear_pfmemalloc(slab);
1390 __folio_clear_slab(folio);
1391 page_mapcount_reset(folio_page(folio, 0));
1392 folio->mapping = NULL;
1393
1394 if (current->reclaim_state)
1395 current->reclaim_state->reclaimed_slab += 1 << order;
1396 unaccount_slab(slab, order, cachep);
1397 __free_pages(folio_page(folio, 0), order);
1398 }
1399
1400 static void kmem_rcu_free(struct rcu_head *head)
1401 {
1402 struct kmem_cache *cachep;
1403 struct slab *slab;
1404
1405 slab = container_of(head, struct slab, rcu_head);
1406 cachep = slab->slab_cache;
1407
1408 kmem_freepages(cachep, slab);
1409 }
1410
1411 #if DEBUG
1412 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1413 {
1414 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1415 (cachep->size % PAGE_SIZE) == 0)
1416 return true;
1417
1418 return false;
1419 }
1420
1421 #ifdef CONFIG_DEBUG_PAGEALLOC
1422 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1423 {
1424 if (!is_debug_pagealloc_cache(cachep))
1425 return;
1426
1427 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1428 }
1429
1430 #else
1431 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1432 int map) {}
1433
1434 #endif
1435
1436 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1437 {
1438 int size = cachep->object_size;
1439 addr = &((char *)addr)[obj_offset(cachep)];
1440
1441 memset(addr, val, size);
1442 *(unsigned char *)(addr + size - 1) = POISON_END;
1443 }
1444
1445 static void dump_line(char *data, int offset, int limit)
1446 {
1447 int i;
1448 unsigned char error = 0;
1449 int bad_count = 0;
1450
1451 pr_err("%03x: ", offset);
1452 for (i = 0; i < limit; i++) {
1453 if (data[offset + i] != POISON_FREE) {
1454 error = data[offset + i];
1455 bad_count++;
1456 }
1457 }
1458 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1459 &data[offset], limit, 1);
1460
1461 if (bad_count == 1) {
1462 error ^= POISON_FREE;
1463 if (!(error & (error - 1))) {
1464 pr_err("Single bit error detected. Probably bad RAM.\n");
1465 #ifdef CONFIG_X86
1466 pr_err("Run memtest86+ or a similar memory test tool.\n");
1467 #else
1468 pr_err("Run a memory test tool.\n");
1469 #endif
1470 }
1471 }
1472 }
1473 #endif
1474
1475 #if DEBUG
1476
1477 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1478 {
1479 int i, size;
1480 char *realobj;
1481
1482 if (cachep->flags & SLAB_RED_ZONE) {
1483 pr_err("Redzone: 0x%llx/0x%llx\n",
1484 *dbg_redzone1(cachep, objp),
1485 *dbg_redzone2(cachep, objp));
1486 }
1487
1488 if (cachep->flags & SLAB_STORE_USER)
1489 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1490 realobj = (char *)objp + obj_offset(cachep);
1491 size = cachep->object_size;
1492 for (i = 0; i < size && lines; i += 16, lines--) {
1493 int limit;
1494 limit = 16;
1495 if (i + limit > size)
1496 limit = size - i;
1497 dump_line(realobj, i, limit);
1498 }
1499 }
1500
1501 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1502 {
1503 char *realobj;
1504 int size, i;
1505 int lines = 0;
1506
1507 if (is_debug_pagealloc_cache(cachep))
1508 return;
1509
1510 realobj = (char *)objp + obj_offset(cachep);
1511 size = cachep->object_size;
1512
1513 for (i = 0; i < size; i++) {
1514 char exp = POISON_FREE;
1515 if (i == size - 1)
1516 exp = POISON_END;
1517 if (realobj[i] != exp) {
1518 int limit;
1519 /* Mismatch ! */
1520 /* Print header */
1521 if (lines == 0) {
1522 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1523 print_tainted(), cachep->name,
1524 realobj, size);
1525 print_objinfo(cachep, objp, 0);
1526 }
1527 /* Hexdump the affected line */
1528 i = (i / 16) * 16;
1529 limit = 16;
1530 if (i + limit > size)
1531 limit = size - i;
1532 dump_line(realobj, i, limit);
1533 i += 16;
1534 lines++;
1535 /* Limit to 5 lines */
1536 if (lines > 5)
1537 break;
1538 }
1539 }
1540 if (lines != 0) {
1541 /* Print some data about the neighboring objects, if they
1542 * exist:
1543 */
1544 struct slab *slab = virt_to_slab(objp);
1545 unsigned int objnr;
1546
1547 objnr = obj_to_index(cachep, slab, objp);
1548 if (objnr) {
1549 objp = index_to_obj(cachep, slab, objnr - 1);
1550 realobj = (char *)objp + obj_offset(cachep);
1551 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1552 print_objinfo(cachep, objp, 2);
1553 }
1554 if (objnr + 1 < cachep->num) {
1555 objp = index_to_obj(cachep, slab, objnr + 1);
1556 realobj = (char *)objp + obj_offset(cachep);
1557 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1558 print_objinfo(cachep, objp, 2);
1559 }
1560 }
1561 }
1562 #endif
1563
1564 #if DEBUG
1565 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1566 struct slab *slab)
1567 {
1568 int i;
1569
1570 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1571 poison_obj(cachep, slab->freelist - obj_offset(cachep),
1572 POISON_FREE);
1573 }
1574
1575 for (i = 0; i < cachep->num; i++) {
1576 void *objp = index_to_obj(cachep, slab, i);
1577
1578 if (cachep->flags & SLAB_POISON) {
1579 check_poison_obj(cachep, objp);
1580 slab_kernel_map(cachep, objp, 1);
1581 }
1582 if (cachep->flags & SLAB_RED_ZONE) {
1583 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1584 slab_error(cachep, "start of a freed object was overwritten");
1585 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1586 slab_error(cachep, "end of a freed object was overwritten");
1587 }
1588 }
1589 }
1590 #else
1591 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1592 struct slab *slab)
1593 {
1594 }
1595 #endif
1596
1597 /**
1598 * slab_destroy - destroy and release all objects in a slab
1599 * @cachep: cache pointer being destroyed
1600 * @slab: slab being destroyed
1601 *
1602 * Destroy all the objs in a slab, and release the mem back to the system.
1603 * Before calling the slab must have been unlinked from the cache. The
1604 * kmem_cache_node ->list_lock is not held/needed.
1605 */
1606 static void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
1607 {
1608 void *freelist;
1609
1610 freelist = slab->freelist;
1611 slab_destroy_debugcheck(cachep, slab);
1612 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1613 call_rcu(&slab->rcu_head, kmem_rcu_free);
1614 else
1615 kmem_freepages(cachep, slab);
1616
1617 /*
1618 * From now on, we don't use freelist
1619 * although actual page can be freed in rcu context
1620 */
1621 if (OFF_SLAB(cachep))
1622 kfree(freelist);
1623 }
1624
1625 /*
1626 * Update the size of the caches before calling slabs_destroy as it may
1627 * recursively call kfree.
1628 */
1629 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1630 {
1631 struct slab *slab, *n;
1632
1633 list_for_each_entry_safe(slab, n, list, slab_list) {
1634 list_del(&slab->slab_list);
1635 slab_destroy(cachep, slab);
1636 }
1637 }
1638
1639 /**
1640 * calculate_slab_order - calculate size (page order) of slabs
1641 * @cachep: pointer to the cache that is being created
1642 * @size: size of objects to be created in this cache.
1643 * @flags: slab allocation flags
1644 *
1645 * Also calculates the number of objects per slab.
1646 *
1647 * This could be made much more intelligent. For now, try to avoid using
1648 * high order pages for slabs. When the gfp() functions are more friendly
1649 * towards high-order requests, this should be changed.
1650 *
1651 * Return: number of left-over bytes in a slab
1652 */
1653 static size_t calculate_slab_order(struct kmem_cache *cachep,
1654 size_t size, slab_flags_t flags)
1655 {
1656 size_t left_over = 0;
1657 int gfporder;
1658
1659 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1660 unsigned int num;
1661 size_t remainder;
1662
1663 num = cache_estimate(gfporder, size, flags, &remainder);
1664 if (!num)
1665 continue;
1666
1667 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1668 if (num > SLAB_OBJ_MAX_NUM)
1669 break;
1670
1671 if (flags & CFLGS_OFF_SLAB) {
1672 struct kmem_cache *freelist_cache;
1673 size_t freelist_size;
1674 size_t freelist_cache_size;
1675
1676 freelist_size = num * sizeof(freelist_idx_t);
1677 if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
1678 freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
1679 } else {
1680 freelist_cache = kmalloc_slab(freelist_size, 0u);
1681 if (!freelist_cache)
1682 continue;
1683 freelist_cache_size = freelist_cache->size;
1684
1685 /*
1686 * Needed to avoid possible looping condition
1687 * in cache_grow_begin()
1688 */
1689 if (OFF_SLAB(freelist_cache))
1690 continue;
1691 }
1692
1693 /* check if off slab has enough benefit */
1694 if (freelist_cache_size > cachep->size / 2)
1695 continue;
1696 }
1697
1698 /* Found something acceptable - save it away */
1699 cachep->num = num;
1700 cachep->gfporder = gfporder;
1701 left_over = remainder;
1702
1703 /*
1704 * A VFS-reclaimable slab tends to have most allocations
1705 * as GFP_NOFS and we really don't want to have to be allocating
1706 * higher-order pages when we are unable to shrink dcache.
1707 */
1708 if (flags & SLAB_RECLAIM_ACCOUNT)
1709 break;
1710
1711 /*
1712 * Large number of objects is good, but very large slabs are
1713 * currently bad for the gfp()s.
1714 */
1715 if (gfporder >= slab_max_order)
1716 break;
1717
1718 /*
1719 * Acceptable internal fragmentation?
1720 */
1721 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1722 break;
1723 }
1724 return left_over;
1725 }
1726
1727 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1728 struct kmem_cache *cachep, int entries, int batchcount)
1729 {
1730 int cpu;
1731 size_t size;
1732 struct array_cache __percpu *cpu_cache;
1733
1734 size = sizeof(void *) * entries + sizeof(struct array_cache);
1735 cpu_cache = __alloc_percpu(size, sizeof(void *));
1736
1737 if (!cpu_cache)
1738 return NULL;
1739
1740 for_each_possible_cpu(cpu) {
1741 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1742 entries, batchcount);
1743 }
1744
1745 return cpu_cache;
1746 }
1747
1748 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1749 {
1750 if (slab_state >= FULL)
1751 return enable_cpucache(cachep, gfp);
1752
1753 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1754 if (!cachep->cpu_cache)
1755 return 1;
1756
1757 if (slab_state == DOWN) {
1758 /* Creation of first cache (kmem_cache). */
1759 set_up_node(kmem_cache, CACHE_CACHE);
1760 } else if (slab_state == PARTIAL) {
1761 /* For kmem_cache_node */
1762 set_up_node(cachep, SIZE_NODE);
1763 } else {
1764 int node;
1765
1766 for_each_online_node(node) {
1767 cachep->node[node] = kmalloc_node(
1768 sizeof(struct kmem_cache_node), gfp, node);
1769 BUG_ON(!cachep->node[node]);
1770 kmem_cache_node_init(cachep->node[node]);
1771 }
1772 }
1773
1774 cachep->node[numa_mem_id()]->next_reap =
1775 jiffies + REAPTIMEOUT_NODE +
1776 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1777
1778 cpu_cache_get(cachep)->avail = 0;
1779 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1780 cpu_cache_get(cachep)->batchcount = 1;
1781 cpu_cache_get(cachep)->touched = 0;
1782 cachep->batchcount = 1;
1783 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1784 return 0;
1785 }
1786
1787 slab_flags_t kmem_cache_flags(unsigned int object_size,
1788 slab_flags_t flags, const char *name)
1789 {
1790 return flags;
1791 }
1792
1793 struct kmem_cache *
1794 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1795 slab_flags_t flags, void (*ctor)(void *))
1796 {
1797 struct kmem_cache *cachep;
1798
1799 cachep = find_mergeable(size, align, flags, name, ctor);
1800 if (cachep) {
1801 cachep->refcount++;
1802
1803 /*
1804 * Adjust the object sizes so that we clear
1805 * the complete object on kzalloc.
1806 */
1807 cachep->object_size = max_t(int, cachep->object_size, size);
1808 }
1809 return cachep;
1810 }
1811
1812 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1813 size_t size, slab_flags_t flags)
1814 {
1815 size_t left;
1816
1817 cachep->num = 0;
1818
1819 /*
1820 * If slab auto-initialization on free is enabled, store the freelist
1821 * off-slab, so that its contents don't end up in one of the allocated
1822 * objects.
1823 */
1824 if (unlikely(slab_want_init_on_free(cachep)))
1825 return false;
1826
1827 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1828 return false;
1829
1830 left = calculate_slab_order(cachep, size,
1831 flags | CFLGS_OBJFREELIST_SLAB);
1832 if (!cachep->num)
1833 return false;
1834
1835 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1836 return false;
1837
1838 cachep->colour = left / cachep->colour_off;
1839
1840 return true;
1841 }
1842
1843 static bool set_off_slab_cache(struct kmem_cache *cachep,
1844 size_t size, slab_flags_t flags)
1845 {
1846 size_t left;
1847
1848 cachep->num = 0;
1849
1850 /*
1851 * Always use on-slab management when SLAB_NOLEAKTRACE
1852 * to avoid recursive calls into kmemleak.
1853 */
1854 if (flags & SLAB_NOLEAKTRACE)
1855 return false;
1856
1857 /*
1858 * Size is large, assume best to place the slab management obj
1859 * off-slab (should allow better packing of objs).
1860 */
1861 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1862 if (!cachep->num)
1863 return false;
1864
1865 /*
1866 * If the slab has been placed off-slab, and we have enough space then
1867 * move it on-slab. This is at the expense of any extra colouring.
1868 */
1869 if (left >= cachep->num * sizeof(freelist_idx_t))
1870 return false;
1871
1872 cachep->colour = left / cachep->colour_off;
1873
1874 return true;
1875 }
1876
1877 static bool set_on_slab_cache(struct kmem_cache *cachep,
1878 size_t size, slab_flags_t flags)
1879 {
1880 size_t left;
1881
1882 cachep->num = 0;
1883
1884 left = calculate_slab_order(cachep, size, flags);
1885 if (!cachep->num)
1886 return false;
1887
1888 cachep->colour = left / cachep->colour_off;
1889
1890 return true;
1891 }
1892
1893 /**
1894 * __kmem_cache_create - Create a cache.
1895 * @cachep: cache management descriptor
1896 * @flags: SLAB flags
1897 *
1898 * Returns a ptr to the cache on success, NULL on failure.
1899 * Cannot be called within an int, but can be interrupted.
1900 * The @ctor is run when new pages are allocated by the cache.
1901 *
1902 * The flags are
1903 *
1904 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1905 * to catch references to uninitialised memory.
1906 *
1907 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1908 * for buffer overruns.
1909 *
1910 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1911 * cacheline. This can be beneficial if you're counting cycles as closely
1912 * as davem.
1913 *
1914 * Return: a pointer to the created cache or %NULL in case of error
1915 */
1916 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1917 {
1918 size_t ralign = BYTES_PER_WORD;
1919 gfp_t gfp;
1920 int err;
1921 unsigned int size = cachep->size;
1922
1923 #if DEBUG
1924 #if FORCED_DEBUG
1925 /*
1926 * Enable redzoning and last user accounting, except for caches with
1927 * large objects, if the increased size would increase the object size
1928 * above the next power of two: caches with object sizes just above a
1929 * power of two have a significant amount of internal fragmentation.
1930 */
1931 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1932 2 * sizeof(unsigned long long)))
1933 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1934 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1935 flags |= SLAB_POISON;
1936 #endif
1937 #endif
1938
1939 /*
1940 * Check that size is in terms of words. This is needed to avoid
1941 * unaligned accesses for some archs when redzoning is used, and makes
1942 * sure any on-slab bufctl's are also correctly aligned.
1943 */
1944 size = ALIGN(size, BYTES_PER_WORD);
1945
1946 if (flags & SLAB_RED_ZONE) {
1947 ralign = REDZONE_ALIGN;
1948 /* If redzoning, ensure that the second redzone is suitably
1949 * aligned, by adjusting the object size accordingly. */
1950 size = ALIGN(size, REDZONE_ALIGN);
1951 }
1952
1953 /* 3) caller mandated alignment */
1954 if (ralign < cachep->align) {
1955 ralign = cachep->align;
1956 }
1957 /* disable debug if necessary */
1958 if (ralign > __alignof__(unsigned long long))
1959 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1960 /*
1961 * 4) Store it.
1962 */
1963 cachep->align = ralign;
1964 cachep->colour_off = cache_line_size();
1965 /* Offset must be a multiple of the alignment. */
1966 if (cachep->colour_off < cachep->align)
1967 cachep->colour_off = cachep->align;
1968
1969 if (slab_is_available())
1970 gfp = GFP_KERNEL;
1971 else
1972 gfp = GFP_NOWAIT;
1973
1974 #if DEBUG
1975
1976 /*
1977 * Both debugging options require word-alignment which is calculated
1978 * into align above.
1979 */
1980 if (flags & SLAB_RED_ZONE) {
1981 /* add space for red zone words */
1982 cachep->obj_offset += sizeof(unsigned long long);
1983 size += 2 * sizeof(unsigned long long);
1984 }
1985 if (flags & SLAB_STORE_USER) {
1986 /* user store requires one word storage behind the end of
1987 * the real object. But if the second red zone needs to be
1988 * aligned to 64 bits, we must allow that much space.
1989 */
1990 if (flags & SLAB_RED_ZONE)
1991 size += REDZONE_ALIGN;
1992 else
1993 size += BYTES_PER_WORD;
1994 }
1995 #endif
1996
1997 kasan_cache_create(cachep, &size, &flags);
1998
1999 size = ALIGN(size, cachep->align);
2000 /*
2001 * We should restrict the number of objects in a slab to implement
2002 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2003 */
2004 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2005 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2006
2007 #if DEBUG
2008 /*
2009 * To activate debug pagealloc, off-slab management is necessary
2010 * requirement. In early phase of initialization, small sized slab
2011 * doesn't get initialized so it would not be possible. So, we need
2012 * to check size >= 256. It guarantees that all necessary small
2013 * sized slab is initialized in current slab initialization sequence.
2014 */
2015 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2016 size >= 256 && cachep->object_size > cache_line_size()) {
2017 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2018 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2019
2020 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2021 flags |= CFLGS_OFF_SLAB;
2022 cachep->obj_offset += tmp_size - size;
2023 size = tmp_size;
2024 goto done;
2025 }
2026 }
2027 }
2028 #endif
2029
2030 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2031 flags |= CFLGS_OBJFREELIST_SLAB;
2032 goto done;
2033 }
2034
2035 if (set_off_slab_cache(cachep, size, flags)) {
2036 flags |= CFLGS_OFF_SLAB;
2037 goto done;
2038 }
2039
2040 if (set_on_slab_cache(cachep, size, flags))
2041 goto done;
2042
2043 return -E2BIG;
2044
2045 done:
2046 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2047 cachep->flags = flags;
2048 cachep->allocflags = __GFP_COMP;
2049 if (flags & SLAB_CACHE_DMA)
2050 cachep->allocflags |= GFP_DMA;
2051 if (flags & SLAB_CACHE_DMA32)
2052 cachep->allocflags |= GFP_DMA32;
2053 if (flags & SLAB_RECLAIM_ACCOUNT)
2054 cachep->allocflags |= __GFP_RECLAIMABLE;
2055 cachep->size = size;
2056 cachep->reciprocal_buffer_size = reciprocal_value(size);
2057
2058 #if DEBUG
2059 /*
2060 * If we're going to use the generic kernel_map_pages()
2061 * poisoning, then it's going to smash the contents of
2062 * the redzone and userword anyhow, so switch them off.
2063 */
2064 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2065 (cachep->flags & SLAB_POISON) &&
2066 is_debug_pagealloc_cache(cachep))
2067 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2068 #endif
2069
2070 err = setup_cpu_cache(cachep, gfp);
2071 if (err) {
2072 __kmem_cache_release(cachep);
2073 return err;
2074 }
2075
2076 return 0;
2077 }
2078
2079 #if DEBUG
2080 static void check_irq_off(void)
2081 {
2082 BUG_ON(!irqs_disabled());
2083 }
2084
2085 static void check_irq_on(void)
2086 {
2087 BUG_ON(irqs_disabled());
2088 }
2089
2090 static void check_mutex_acquired(void)
2091 {
2092 BUG_ON(!mutex_is_locked(&slab_mutex));
2093 }
2094
2095 static void check_spinlock_acquired(struct kmem_cache *cachep)
2096 {
2097 #ifdef CONFIG_SMP
2098 check_irq_off();
2099 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2100 #endif
2101 }
2102
2103 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2104 {
2105 #ifdef CONFIG_SMP
2106 check_irq_off();
2107 assert_spin_locked(&get_node(cachep, node)->list_lock);
2108 #endif
2109 }
2110
2111 #else
2112 #define check_irq_off() do { } while(0)
2113 #define check_irq_on() do { } while(0)
2114 #define check_mutex_acquired() do { } while(0)
2115 #define check_spinlock_acquired(x) do { } while(0)
2116 #define check_spinlock_acquired_node(x, y) do { } while(0)
2117 #endif
2118
2119 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2120 int node, bool free_all, struct list_head *list)
2121 {
2122 int tofree;
2123
2124 if (!ac || !ac->avail)
2125 return;
2126
2127 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2128 if (tofree > ac->avail)
2129 tofree = (ac->avail + 1) / 2;
2130
2131 free_block(cachep, ac->entry, tofree, node, list);
2132 ac->avail -= tofree;
2133 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2134 }
2135
2136 static void do_drain(void *arg)
2137 {
2138 struct kmem_cache *cachep = arg;
2139 struct array_cache *ac;
2140 int node = numa_mem_id();
2141 struct kmem_cache_node *n;
2142 LIST_HEAD(list);
2143
2144 check_irq_off();
2145 ac = cpu_cache_get(cachep);
2146 n = get_node(cachep, node);
2147 spin_lock(&n->list_lock);
2148 free_block(cachep, ac->entry, ac->avail, node, &list);
2149 spin_unlock(&n->list_lock);
2150 ac->avail = 0;
2151 slabs_destroy(cachep, &list);
2152 }
2153
2154 static void drain_cpu_caches(struct kmem_cache *cachep)
2155 {
2156 struct kmem_cache_node *n;
2157 int node;
2158 LIST_HEAD(list);
2159
2160 on_each_cpu(do_drain, cachep, 1);
2161 check_irq_on();
2162 for_each_kmem_cache_node(cachep, node, n)
2163 if (n->alien)
2164 drain_alien_cache(cachep, n->alien);
2165
2166 for_each_kmem_cache_node(cachep, node, n) {
2167 spin_lock_irq(&n->list_lock);
2168 drain_array_locked(cachep, n->shared, node, true, &list);
2169 spin_unlock_irq(&n->list_lock);
2170
2171 slabs_destroy(cachep, &list);
2172 }
2173 }
2174
2175 /*
2176 * Remove slabs from the list of free slabs.
2177 * Specify the number of slabs to drain in tofree.
2178 *
2179 * Returns the actual number of slabs released.
2180 */
2181 static int drain_freelist(struct kmem_cache *cache,
2182 struct kmem_cache_node *n, int tofree)
2183 {
2184 struct list_head *p;
2185 int nr_freed;
2186 struct slab *slab;
2187
2188 nr_freed = 0;
2189 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2190
2191 spin_lock_irq(&n->list_lock);
2192 p = n->slabs_free.prev;
2193 if (p == &n->slabs_free) {
2194 spin_unlock_irq(&n->list_lock);
2195 goto out;
2196 }
2197
2198 slab = list_entry(p, struct slab, slab_list);
2199 list_del(&slab->slab_list);
2200 n->free_slabs--;
2201 n->total_slabs--;
2202 /*
2203 * Safe to drop the lock. The slab is no longer linked
2204 * to the cache.
2205 */
2206 n->free_objects -= cache->num;
2207 spin_unlock_irq(&n->list_lock);
2208 slab_destroy(cache, slab);
2209 nr_freed++;
2210 }
2211 out:
2212 return nr_freed;
2213 }
2214
2215 bool __kmem_cache_empty(struct kmem_cache *s)
2216 {
2217 int node;
2218 struct kmem_cache_node *n;
2219
2220 for_each_kmem_cache_node(s, node, n)
2221 if (!list_empty(&n->slabs_full) ||
2222 !list_empty(&n->slabs_partial))
2223 return false;
2224 return true;
2225 }
2226
2227 int __kmem_cache_shrink(struct kmem_cache *cachep)
2228 {
2229 int ret = 0;
2230 int node;
2231 struct kmem_cache_node *n;
2232
2233 drain_cpu_caches(cachep);
2234
2235 check_irq_on();
2236 for_each_kmem_cache_node(cachep, node, n) {
2237 drain_freelist(cachep, n, INT_MAX);
2238
2239 ret += !list_empty(&n->slabs_full) ||
2240 !list_empty(&n->slabs_partial);
2241 }
2242 return (ret ? 1 : 0);
2243 }
2244
2245 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2246 {
2247 return __kmem_cache_shrink(cachep);
2248 }
2249
2250 void __kmem_cache_release(struct kmem_cache *cachep)
2251 {
2252 int i;
2253 struct kmem_cache_node *n;
2254
2255 cache_random_seq_destroy(cachep);
2256
2257 free_percpu(cachep->cpu_cache);
2258
2259 /* NUMA: free the node structures */
2260 for_each_kmem_cache_node(cachep, i, n) {
2261 kfree(n->shared);
2262 free_alien_cache(n->alien);
2263 kfree(n);
2264 cachep->node[i] = NULL;
2265 }
2266 }
2267
2268 /*
2269 * Get the memory for a slab management obj.
2270 *
2271 * For a slab cache when the slab descriptor is off-slab, the
2272 * slab descriptor can't come from the same cache which is being created,
2273 * Because if it is the case, that means we defer the creation of
2274 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2275 * And we eventually call down to __kmem_cache_create(), which
2276 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2277 * This is a "chicken-and-egg" problem.
2278 *
2279 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2280 * which are all initialized during kmem_cache_init().
2281 */
2282 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2283 struct slab *slab, int colour_off,
2284 gfp_t local_flags, int nodeid)
2285 {
2286 void *freelist;
2287 void *addr = slab_address(slab);
2288
2289 slab->s_mem = addr + colour_off;
2290 slab->active = 0;
2291
2292 if (OBJFREELIST_SLAB(cachep))
2293 freelist = NULL;
2294 else if (OFF_SLAB(cachep)) {
2295 /* Slab management obj is off-slab. */
2296 freelist = kmalloc_node(cachep->freelist_size,
2297 local_flags, nodeid);
2298 } else {
2299 /* We will use last bytes at the slab for freelist */
2300 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2301 cachep->freelist_size;
2302 }
2303
2304 return freelist;
2305 }
2306
2307 static inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
2308 {
2309 return ((freelist_idx_t *) slab->freelist)[idx];
2310 }
2311
2312 static inline void set_free_obj(struct slab *slab,
2313 unsigned int idx, freelist_idx_t val)
2314 {
2315 ((freelist_idx_t *)(slab->freelist))[idx] = val;
2316 }
2317
2318 static void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
2319 {
2320 #if DEBUG
2321 int i;
2322
2323 for (i = 0; i < cachep->num; i++) {
2324 void *objp = index_to_obj(cachep, slab, i);
2325
2326 if (cachep->flags & SLAB_STORE_USER)
2327 *dbg_userword(cachep, objp) = NULL;
2328
2329 if (cachep->flags & SLAB_RED_ZONE) {
2330 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2331 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2332 }
2333 /*
2334 * Constructors are not allowed to allocate memory from the same
2335 * cache which they are a constructor for. Otherwise, deadlock.
2336 * They must also be threaded.
2337 */
2338 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2339 kasan_unpoison_object_data(cachep,
2340 objp + obj_offset(cachep));
2341 cachep->ctor(objp + obj_offset(cachep));
2342 kasan_poison_object_data(
2343 cachep, objp + obj_offset(cachep));
2344 }
2345
2346 if (cachep->flags & SLAB_RED_ZONE) {
2347 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2348 slab_error(cachep, "constructor overwrote the end of an object");
2349 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2350 slab_error(cachep, "constructor overwrote the start of an object");
2351 }
2352 /* need to poison the objs? */
2353 if (cachep->flags & SLAB_POISON) {
2354 poison_obj(cachep, objp, POISON_FREE);
2355 slab_kernel_map(cachep, objp, 0);
2356 }
2357 }
2358 #endif
2359 }
2360
2361 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2362 /* Hold information during a freelist initialization */
2363 union freelist_init_state {
2364 struct {
2365 unsigned int pos;
2366 unsigned int *list;
2367 unsigned int count;
2368 };
2369 struct rnd_state rnd_state;
2370 };
2371
2372 /*
2373 * Initialize the state based on the randomization method available.
2374 * return true if the pre-computed list is available, false otherwise.
2375 */
2376 static bool freelist_state_initialize(union freelist_init_state *state,
2377 struct kmem_cache *cachep,
2378 unsigned int count)
2379 {
2380 bool ret;
2381 unsigned int rand;
2382
2383 /* Use best entropy available to define a random shift */
2384 rand = get_random_u32();
2385
2386 /* Use a random state if the pre-computed list is not available */
2387 if (!cachep->random_seq) {
2388 prandom_seed_state(&state->rnd_state, rand);
2389 ret = false;
2390 } else {
2391 state->list = cachep->random_seq;
2392 state->count = count;
2393 state->pos = rand % count;
2394 ret = true;
2395 }
2396 return ret;
2397 }
2398
2399 /* Get the next entry on the list and randomize it using a random shift */
2400 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2401 {
2402 if (state->pos >= state->count)
2403 state->pos = 0;
2404 return state->list[state->pos++];
2405 }
2406
2407 /* Swap two freelist entries */
2408 static void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
2409 {
2410 swap(((freelist_idx_t *) slab->freelist)[a],
2411 ((freelist_idx_t *) slab->freelist)[b]);
2412 }
2413
2414 /*
2415 * Shuffle the freelist initialization state based on pre-computed lists.
2416 * return true if the list was successfully shuffled, false otherwise.
2417 */
2418 static bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
2419 {
2420 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2421 union freelist_init_state state;
2422 bool precomputed;
2423
2424 if (count < 2)
2425 return false;
2426
2427 precomputed = freelist_state_initialize(&state, cachep, count);
2428
2429 /* Take a random entry as the objfreelist */
2430 if (OBJFREELIST_SLAB(cachep)) {
2431 if (!precomputed)
2432 objfreelist = count - 1;
2433 else
2434 objfreelist = next_random_slot(&state);
2435 slab->freelist = index_to_obj(cachep, slab, objfreelist) +
2436 obj_offset(cachep);
2437 count--;
2438 }
2439
2440 /*
2441 * On early boot, generate the list dynamically.
2442 * Later use a pre-computed list for speed.
2443 */
2444 if (!precomputed) {
2445 for (i = 0; i < count; i++)
2446 set_free_obj(slab, i, i);
2447
2448 /* Fisher-Yates shuffle */
2449 for (i = count - 1; i > 0; i--) {
2450 rand = prandom_u32_state(&state.rnd_state);
2451 rand %= (i + 1);
2452 swap_free_obj(slab, i, rand);
2453 }
2454 } else {
2455 for (i = 0; i < count; i++)
2456 set_free_obj(slab, i, next_random_slot(&state));
2457 }
2458
2459 if (OBJFREELIST_SLAB(cachep))
2460 set_free_obj(slab, cachep->num - 1, objfreelist);
2461
2462 return true;
2463 }
2464 #else
2465 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2466 struct slab *slab)
2467 {
2468 return false;
2469 }
2470 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2471
2472 static void cache_init_objs(struct kmem_cache *cachep,
2473 struct slab *slab)
2474 {
2475 int i;
2476 void *objp;
2477 bool shuffled;
2478
2479 cache_init_objs_debug(cachep, slab);
2480
2481 /* Try to randomize the freelist if enabled */
2482 shuffled = shuffle_freelist(cachep, slab);
2483
2484 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2485 slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
2486 obj_offset(cachep);
2487 }
2488
2489 for (i = 0; i < cachep->num; i++) {
2490 objp = index_to_obj(cachep, slab, i);
2491 objp = kasan_init_slab_obj(cachep, objp);
2492
2493 /* constructor could break poison info */
2494 if (DEBUG == 0 && cachep->ctor) {
2495 kasan_unpoison_object_data(cachep, objp);
2496 cachep->ctor(objp);
2497 kasan_poison_object_data(cachep, objp);
2498 }
2499
2500 if (!shuffled)
2501 set_free_obj(slab, i, i);
2502 }
2503 }
2504
2505 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
2506 {
2507 void *objp;
2508
2509 objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
2510 slab->active++;
2511
2512 return objp;
2513 }
2514
2515 static void slab_put_obj(struct kmem_cache *cachep,
2516 struct slab *slab, void *objp)
2517 {
2518 unsigned int objnr = obj_to_index(cachep, slab, objp);
2519 #if DEBUG
2520 unsigned int i;
2521
2522 /* Verify double free bug */
2523 for (i = slab->active; i < cachep->num; i++) {
2524 if (get_free_obj(slab, i) == objnr) {
2525 pr_err("slab: double free detected in cache '%s', objp %px\n",
2526 cachep->name, objp);
2527 BUG();
2528 }
2529 }
2530 #endif
2531 slab->active--;
2532 if (!slab->freelist)
2533 slab->freelist = objp + obj_offset(cachep);
2534
2535 set_free_obj(slab, slab->active, objnr);
2536 }
2537
2538 /*
2539 * Grow (by 1) the number of slabs within a cache. This is called by
2540 * kmem_cache_alloc() when there are no active objs left in a cache.
2541 */
2542 static struct slab *cache_grow_begin(struct kmem_cache *cachep,
2543 gfp_t flags, int nodeid)
2544 {
2545 void *freelist;
2546 size_t offset;
2547 gfp_t local_flags;
2548 int slab_node;
2549 struct kmem_cache_node *n;
2550 struct slab *slab;
2551
2552 /*
2553 * Be lazy and only check for valid flags here, keeping it out of the
2554 * critical path in kmem_cache_alloc().
2555 */
2556 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2557 flags = kmalloc_fix_flags(flags);
2558
2559 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2560 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2561
2562 check_irq_off();
2563 if (gfpflags_allow_blocking(local_flags))
2564 local_irq_enable();
2565
2566 /*
2567 * Get mem for the objs. Attempt to allocate a physical page from
2568 * 'nodeid'.
2569 */
2570 slab = kmem_getpages(cachep, local_flags, nodeid);
2571 if (!slab)
2572 goto failed;
2573
2574 slab_node = slab_nid(slab);
2575 n = get_node(cachep, slab_node);
2576
2577 /* Get colour for the slab, and cal the next value. */
2578 n->colour_next++;
2579 if (n->colour_next >= cachep->colour)
2580 n->colour_next = 0;
2581
2582 offset = n->colour_next;
2583 if (offset >= cachep->colour)
2584 offset = 0;
2585
2586 offset *= cachep->colour_off;
2587
2588 /*
2589 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2590 * page_address() in the latter returns a non-tagged pointer,
2591 * as it should be for slab pages.
2592 */
2593 kasan_poison_slab(slab);
2594
2595 /* Get slab management. */
2596 freelist = alloc_slabmgmt(cachep, slab, offset,
2597 local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
2598 if (OFF_SLAB(cachep) && !freelist)
2599 goto opps1;
2600
2601 slab->slab_cache = cachep;
2602 slab->freelist = freelist;
2603
2604 cache_init_objs(cachep, slab);
2605
2606 if (gfpflags_allow_blocking(local_flags))
2607 local_irq_disable();
2608
2609 return slab;
2610
2611 opps1:
2612 kmem_freepages(cachep, slab);
2613 failed:
2614 if (gfpflags_allow_blocking(local_flags))
2615 local_irq_disable();
2616 return NULL;
2617 }
2618
2619 static void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
2620 {
2621 struct kmem_cache_node *n;
2622 void *list = NULL;
2623
2624 check_irq_off();
2625
2626 if (!slab)
2627 return;
2628
2629 INIT_LIST_HEAD(&slab->slab_list);
2630 n = get_node(cachep, slab_nid(slab));
2631
2632 spin_lock(&n->list_lock);
2633 n->total_slabs++;
2634 if (!slab->active) {
2635 list_add_tail(&slab->slab_list, &n->slabs_free);
2636 n->free_slabs++;
2637 } else
2638 fixup_slab_list(cachep, n, slab, &list);
2639
2640 STATS_INC_GROWN(cachep);
2641 n->free_objects += cachep->num - slab->active;
2642 spin_unlock(&n->list_lock);
2643
2644 fixup_objfreelist_debug(cachep, &list);
2645 }
2646
2647 #if DEBUG
2648
2649 /*
2650 * Perform extra freeing checks:
2651 * - detect bad pointers.
2652 * - POISON/RED_ZONE checking
2653 */
2654 static void kfree_debugcheck(const void *objp)
2655 {
2656 if (!virt_addr_valid(objp)) {
2657 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2658 (unsigned long)objp);
2659 BUG();
2660 }
2661 }
2662
2663 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2664 {
2665 unsigned long long redzone1, redzone2;
2666
2667 redzone1 = *dbg_redzone1(cache, obj);
2668 redzone2 = *dbg_redzone2(cache, obj);
2669
2670 /*
2671 * Redzone is ok.
2672 */
2673 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2674 return;
2675
2676 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2677 slab_error(cache, "double free detected");
2678 else
2679 slab_error(cache, "memory outside object was overwritten");
2680
2681 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2682 obj, redzone1, redzone2);
2683 }
2684
2685 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2686 unsigned long caller)
2687 {
2688 unsigned int objnr;
2689 struct slab *slab;
2690
2691 BUG_ON(virt_to_cache(objp) != cachep);
2692
2693 objp -= obj_offset(cachep);
2694 kfree_debugcheck(objp);
2695 slab = virt_to_slab(objp);
2696
2697 if (cachep->flags & SLAB_RED_ZONE) {
2698 verify_redzone_free(cachep, objp);
2699 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2700 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2701 }
2702 if (cachep->flags & SLAB_STORE_USER)
2703 *dbg_userword(cachep, objp) = (void *)caller;
2704
2705 objnr = obj_to_index(cachep, slab, objp);
2706
2707 BUG_ON(objnr >= cachep->num);
2708 BUG_ON(objp != index_to_obj(cachep, slab, objnr));
2709
2710 if (cachep->flags & SLAB_POISON) {
2711 poison_obj(cachep, objp, POISON_FREE);
2712 slab_kernel_map(cachep, objp, 0);
2713 }
2714 return objp;
2715 }
2716
2717 #else
2718 #define kfree_debugcheck(x) do { } while(0)
2719 #define cache_free_debugcheck(x, objp, z) (objp)
2720 #endif
2721
2722 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2723 void **list)
2724 {
2725 #if DEBUG
2726 void *next = *list;
2727 void *objp;
2728
2729 while (next) {
2730 objp = next - obj_offset(cachep);
2731 next = *(void **)next;
2732 poison_obj(cachep, objp, POISON_FREE);
2733 }
2734 #endif
2735 }
2736
2737 static inline void fixup_slab_list(struct kmem_cache *cachep,
2738 struct kmem_cache_node *n, struct slab *slab,
2739 void **list)
2740 {
2741 /* move slabp to correct slabp list: */
2742 list_del(&slab->slab_list);
2743 if (slab->active == cachep->num) {
2744 list_add(&slab->slab_list, &n->slabs_full);
2745 if (OBJFREELIST_SLAB(cachep)) {
2746 #if DEBUG
2747 /* Poisoning will be done without holding the lock */
2748 if (cachep->flags & SLAB_POISON) {
2749 void **objp = slab->freelist;
2750
2751 *objp = *list;
2752 *list = objp;
2753 }
2754 #endif
2755 slab->freelist = NULL;
2756 }
2757 } else
2758 list_add(&slab->slab_list, &n->slabs_partial);
2759 }
2760
2761 /* Try to find non-pfmemalloc slab if needed */
2762 static noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
2763 struct slab *slab, bool pfmemalloc)
2764 {
2765 if (!slab)
2766 return NULL;
2767
2768 if (pfmemalloc)
2769 return slab;
2770
2771 if (!slab_test_pfmemalloc(slab))
2772 return slab;
2773
2774 /* No need to keep pfmemalloc slab if we have enough free objects */
2775 if (n->free_objects > n->free_limit) {
2776 slab_clear_pfmemalloc(slab);
2777 return slab;
2778 }
2779
2780 /* Move pfmemalloc slab to the end of list to speed up next search */
2781 list_del(&slab->slab_list);
2782 if (!slab->active) {
2783 list_add_tail(&slab->slab_list, &n->slabs_free);
2784 n->free_slabs++;
2785 } else
2786 list_add_tail(&slab->slab_list, &n->slabs_partial);
2787
2788 list_for_each_entry(slab, &n->slabs_partial, slab_list) {
2789 if (!slab_test_pfmemalloc(slab))
2790 return slab;
2791 }
2792
2793 n->free_touched = 1;
2794 list_for_each_entry(slab, &n->slabs_free, slab_list) {
2795 if (!slab_test_pfmemalloc(slab)) {
2796 n->free_slabs--;
2797 return slab;
2798 }
2799 }
2800
2801 return NULL;
2802 }
2803
2804 static struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2805 {
2806 struct slab *slab;
2807
2808 assert_spin_locked(&n->list_lock);
2809 slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
2810 slab_list);
2811 if (!slab) {
2812 n->free_touched = 1;
2813 slab = list_first_entry_or_null(&n->slabs_free, struct slab,
2814 slab_list);
2815 if (slab)
2816 n->free_slabs--;
2817 }
2818
2819 if (sk_memalloc_socks())
2820 slab = get_valid_first_slab(n, slab, pfmemalloc);
2821
2822 return slab;
2823 }
2824
2825 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2826 struct kmem_cache_node *n, gfp_t flags)
2827 {
2828 struct slab *slab;
2829 void *obj;
2830 void *list = NULL;
2831
2832 if (!gfp_pfmemalloc_allowed(flags))
2833 return NULL;
2834
2835 spin_lock(&n->list_lock);
2836 slab = get_first_slab(n, true);
2837 if (!slab) {
2838 spin_unlock(&n->list_lock);
2839 return NULL;
2840 }
2841
2842 obj = slab_get_obj(cachep, slab);
2843 n->free_objects--;
2844
2845 fixup_slab_list(cachep, n, slab, &list);
2846
2847 spin_unlock(&n->list_lock);
2848 fixup_objfreelist_debug(cachep, &list);
2849
2850 return obj;
2851 }
2852
2853 /*
2854 * Slab list should be fixed up by fixup_slab_list() for existing slab
2855 * or cache_grow_end() for new slab
2856 */
2857 static __always_inline int alloc_block(struct kmem_cache *cachep,
2858 struct array_cache *ac, struct slab *slab, int batchcount)
2859 {
2860 /*
2861 * There must be at least one object available for
2862 * allocation.
2863 */
2864 BUG_ON(slab->active >= cachep->num);
2865
2866 while (slab->active < cachep->num && batchcount--) {
2867 STATS_INC_ALLOCED(cachep);
2868 STATS_INC_ACTIVE(cachep);
2869 STATS_SET_HIGH(cachep);
2870
2871 ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
2872 }
2873
2874 return batchcount;
2875 }
2876
2877 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2878 {
2879 int batchcount;
2880 struct kmem_cache_node *n;
2881 struct array_cache *ac, *shared;
2882 int node;
2883 void *list = NULL;
2884 struct slab *slab;
2885
2886 check_irq_off();
2887 node = numa_mem_id();
2888
2889 ac = cpu_cache_get(cachep);
2890 batchcount = ac->batchcount;
2891 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2892 /*
2893 * If there was little recent activity on this cache, then
2894 * perform only a partial refill. Otherwise we could generate
2895 * refill bouncing.
2896 */
2897 batchcount = BATCHREFILL_LIMIT;
2898 }
2899 n = get_node(cachep, node);
2900
2901 BUG_ON(ac->avail > 0 || !n);
2902 shared = READ_ONCE(n->shared);
2903 if (!n->free_objects && (!shared || !shared->avail))
2904 goto direct_grow;
2905
2906 spin_lock(&n->list_lock);
2907 shared = READ_ONCE(n->shared);
2908
2909 /* See if we can refill from the shared array */
2910 if (shared && transfer_objects(ac, shared, batchcount)) {
2911 shared->touched = 1;
2912 goto alloc_done;
2913 }
2914
2915 while (batchcount > 0) {
2916 /* Get slab alloc is to come from. */
2917 slab = get_first_slab(n, false);
2918 if (!slab)
2919 goto must_grow;
2920
2921 check_spinlock_acquired(cachep);
2922
2923 batchcount = alloc_block(cachep, ac, slab, batchcount);
2924 fixup_slab_list(cachep, n, slab, &list);
2925 }
2926
2927 must_grow:
2928 n->free_objects -= ac->avail;
2929 alloc_done:
2930 spin_unlock(&n->list_lock);
2931 fixup_objfreelist_debug(cachep, &list);
2932
2933 direct_grow:
2934 if (unlikely(!ac->avail)) {
2935 /* Check if we can use obj in pfmemalloc slab */
2936 if (sk_memalloc_socks()) {
2937 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2938
2939 if (obj)
2940 return obj;
2941 }
2942
2943 slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2944
2945 /*
2946 * cache_grow_begin() can reenable interrupts,
2947 * then ac could change.
2948 */
2949 ac = cpu_cache_get(cachep);
2950 if (!ac->avail && slab)
2951 alloc_block(cachep, ac, slab, batchcount);
2952 cache_grow_end(cachep, slab);
2953
2954 if (!ac->avail)
2955 return NULL;
2956 }
2957 ac->touched = 1;
2958
2959 return ac->entry[--ac->avail];
2960 }
2961
2962 #if DEBUG
2963 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2964 gfp_t flags, void *objp, unsigned long caller)
2965 {
2966 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2967 if (!objp || is_kfence_address(objp))
2968 return objp;
2969 if (cachep->flags & SLAB_POISON) {
2970 check_poison_obj(cachep, objp);
2971 slab_kernel_map(cachep, objp, 1);
2972 poison_obj(cachep, objp, POISON_INUSE);
2973 }
2974 if (cachep->flags & SLAB_STORE_USER)
2975 *dbg_userword(cachep, objp) = (void *)caller;
2976
2977 if (cachep->flags & SLAB_RED_ZONE) {
2978 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2979 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2980 slab_error(cachep, "double free, or memory outside object was overwritten");
2981 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2982 objp, *dbg_redzone1(cachep, objp),
2983 *dbg_redzone2(cachep, objp));
2984 }
2985 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2986 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2987 }
2988
2989 objp += obj_offset(cachep);
2990 if (cachep->ctor && cachep->flags & SLAB_POISON)
2991 cachep->ctor(objp);
2992 if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
2993 pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
2994 arch_slab_minalign());
2995 }
2996 return objp;
2997 }
2998 #else
2999 #define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3000 #endif
3001
3002 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3003 {
3004 void *objp;
3005 struct array_cache *ac;
3006
3007 check_irq_off();
3008
3009 ac = cpu_cache_get(cachep);
3010 if (likely(ac->avail)) {
3011 ac->touched = 1;
3012 objp = ac->entry[--ac->avail];
3013
3014 STATS_INC_ALLOCHIT(cachep);
3015 goto out;
3016 }
3017
3018 STATS_INC_ALLOCMISS(cachep);
3019 objp = cache_alloc_refill(cachep, flags);
3020 /*
3021 * the 'ac' may be updated by cache_alloc_refill(),
3022 * and kmemleak_erase() requires its correct value.
3023 */
3024 ac = cpu_cache_get(cachep);
3025
3026 out:
3027 /*
3028 * To avoid a false negative, if an object that is in one of the
3029 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3030 * treat the array pointers as a reference to the object.
3031 */
3032 if (objp)
3033 kmemleak_erase(&ac->entry[ac->avail]);
3034 return objp;
3035 }
3036
3037 #ifdef CONFIG_NUMA
3038 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
3039
3040 /*
3041 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3042 *
3043 * If we are in_interrupt, then process context, including cpusets and
3044 * mempolicy, may not apply and should not be used for allocation policy.
3045 */
3046 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3047 {
3048 int nid_alloc, nid_here;
3049
3050 if (in_interrupt() || (flags & __GFP_THISNODE))
3051 return NULL;
3052 nid_alloc = nid_here = numa_mem_id();
3053 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3054 nid_alloc = cpuset_slab_spread_node();
3055 else if (current->mempolicy)
3056 nid_alloc = mempolicy_slab_node();
3057 if (nid_alloc != nid_here)
3058 return ____cache_alloc_node(cachep, flags, nid_alloc);
3059 return NULL;
3060 }
3061
3062 /*
3063 * Fallback function if there was no memory available and no objects on a
3064 * certain node and fall back is permitted. First we scan all the
3065 * available node for available objects. If that fails then we
3066 * perform an allocation without specifying a node. This allows the page
3067 * allocator to do its reclaim / fallback magic. We then insert the
3068 * slab into the proper nodelist and then allocate from it.
3069 */
3070 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3071 {
3072 struct zonelist *zonelist;
3073 struct zoneref *z;
3074 struct zone *zone;
3075 enum zone_type highest_zoneidx = gfp_zone(flags);
3076 void *obj = NULL;
3077 struct slab *slab;
3078 int nid;
3079 unsigned int cpuset_mems_cookie;
3080
3081 if (flags & __GFP_THISNODE)
3082 return NULL;
3083
3084 retry_cpuset:
3085 cpuset_mems_cookie = read_mems_allowed_begin();
3086 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3087
3088 retry:
3089 /*
3090 * Look through allowed nodes for objects available
3091 * from existing per node queues.
3092 */
3093 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3094 nid = zone_to_nid(zone);
3095
3096 if (cpuset_zone_allowed(zone, flags) &&
3097 get_node(cache, nid) &&
3098 get_node(cache, nid)->free_objects) {
3099 obj = ____cache_alloc_node(cache,
3100 gfp_exact_node(flags), nid);
3101 if (obj)
3102 break;
3103 }
3104 }
3105
3106 if (!obj) {
3107 /*
3108 * This allocation will be performed within the constraints
3109 * of the current cpuset / memory policy requirements.
3110 * We may trigger various forms of reclaim on the allowed
3111 * set and go into memory reserves if necessary.
3112 */
3113 slab = cache_grow_begin(cache, flags, numa_mem_id());
3114 cache_grow_end(cache, slab);
3115 if (slab) {
3116 nid = slab_nid(slab);
3117 obj = ____cache_alloc_node(cache,
3118 gfp_exact_node(flags), nid);
3119
3120 /*
3121 * Another processor may allocate the objects in
3122 * the slab since we are not holding any locks.
3123 */
3124 if (!obj)
3125 goto retry;
3126 }
3127 }
3128
3129 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3130 goto retry_cpuset;
3131 return obj;
3132 }
3133
3134 /*
3135 * An interface to enable slab creation on nodeid
3136 */
3137 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3138 int nodeid)
3139 {
3140 struct slab *slab;
3141 struct kmem_cache_node *n;
3142 void *obj = NULL;
3143 void *list = NULL;
3144
3145 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3146 n = get_node(cachep, nodeid);
3147 BUG_ON(!n);
3148
3149 check_irq_off();
3150 spin_lock(&n->list_lock);
3151 slab = get_first_slab(n, false);
3152 if (!slab)
3153 goto must_grow;
3154
3155 check_spinlock_acquired_node(cachep, nodeid);
3156
3157 STATS_INC_NODEALLOCS(cachep);
3158 STATS_INC_ACTIVE(cachep);
3159 STATS_SET_HIGH(cachep);
3160
3161 BUG_ON(slab->active == cachep->num);
3162
3163 obj = slab_get_obj(cachep, slab);
3164 n->free_objects--;
3165
3166 fixup_slab_list(cachep, n, slab, &list);
3167
3168 spin_unlock(&n->list_lock);
3169 fixup_objfreelist_debug(cachep, &list);
3170 return obj;
3171
3172 must_grow:
3173 spin_unlock(&n->list_lock);
3174 slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3175 if (slab) {
3176 /* This slab isn't counted yet so don't update free_objects */
3177 obj = slab_get_obj(cachep, slab);
3178 }
3179 cache_grow_end(cachep, slab);
3180
3181 return obj ? obj : fallback_alloc(cachep, flags);
3182 }
3183
3184 static __always_inline void *
3185 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3186 {
3187 void *objp = NULL;
3188 int slab_node = numa_mem_id();
3189
3190 if (nodeid == NUMA_NO_NODE) {
3191 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3192 objp = alternate_node_alloc(cachep, flags);
3193 if (objp)
3194 goto out;
3195 }
3196 /*
3197 * Use the locally cached objects if possible.
3198 * However ____cache_alloc does not allow fallback
3199 * to other nodes. It may fail while we still have
3200 * objects on other nodes available.
3201 */
3202 objp = ____cache_alloc(cachep, flags);
3203 nodeid = slab_node;
3204 } else if (nodeid == slab_node) {
3205 objp = ____cache_alloc(cachep, flags);
3206 } else if (!get_node(cachep, nodeid)) {
3207 /* Node not bootstrapped yet */
3208 objp = fallback_alloc(cachep, flags);
3209 goto out;
3210 }
3211
3212 /*
3213 * We may just have run out of memory on the local node.
3214 * ____cache_alloc_node() knows how to locate memory on other nodes
3215 */
3216 if (!objp)
3217 objp = ____cache_alloc_node(cachep, flags, nodeid);
3218 out:
3219 return objp;
3220 }
3221 #else
3222
3223 static __always_inline void *
3224 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
3225 {
3226 return ____cache_alloc(cachep, flags);
3227 }
3228
3229 #endif /* CONFIG_NUMA */
3230
3231 static __always_inline void *
3232 slab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3233 int nodeid, size_t orig_size, unsigned long caller)
3234 {
3235 unsigned long save_flags;
3236 void *objp;
3237 struct obj_cgroup *objcg = NULL;
3238 bool init = false;
3239
3240 flags &= gfp_allowed_mask;
3241 cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
3242 if (unlikely(!cachep))
3243 return NULL;
3244
3245 objp = kfence_alloc(cachep, orig_size, flags);
3246 if (unlikely(objp))
3247 goto out;
3248
3249 local_irq_save(save_flags);
3250 objp = __do_cache_alloc(cachep, flags, nodeid);
3251 local_irq_restore(save_flags);
3252 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3253 prefetchw(objp);
3254 init = slab_want_init_on_alloc(flags, cachep);
3255
3256 out:
3257 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3258 return objp;
3259 }
3260
3261 static __always_inline void *
3262 slab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
3263 size_t orig_size, unsigned long caller)
3264 {
3265 return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
3266 caller);
3267 }
3268
3269 /*
3270 * Caller needs to acquire correct kmem_cache_node's list_lock
3271 * @list: List of detached free slabs should be freed by caller
3272 */
3273 static void free_block(struct kmem_cache *cachep, void **objpp,
3274 int nr_objects, int node, struct list_head *list)
3275 {
3276 int i;
3277 struct kmem_cache_node *n = get_node(cachep, node);
3278 struct slab *slab;
3279
3280 n->free_objects += nr_objects;
3281
3282 for (i = 0; i < nr_objects; i++) {
3283 void *objp;
3284 struct slab *slab;
3285
3286 objp = objpp[i];
3287
3288 slab = virt_to_slab(objp);
3289 list_del(&slab->slab_list);
3290 check_spinlock_acquired_node(cachep, node);
3291 slab_put_obj(cachep, slab, objp);
3292 STATS_DEC_ACTIVE(cachep);
3293
3294 /* fixup slab chains */
3295 if (slab->active == 0) {
3296 list_add(&slab->slab_list, &n->slabs_free);
3297 n->free_slabs++;
3298 } else {
3299 /* Unconditionally move a slab to the end of the
3300 * partial list on free - maximum time for the
3301 * other objects to be freed, too.
3302 */
3303 list_add_tail(&slab->slab_list, &n->slabs_partial);
3304 }
3305 }
3306
3307 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3308 n->free_objects -= cachep->num;
3309
3310 slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
3311 list_move(&slab->slab_list, list);
3312 n->free_slabs--;
3313 n->total_slabs--;
3314 }
3315 }
3316
3317 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3318 {
3319 int batchcount;
3320 struct kmem_cache_node *n;
3321 int node = numa_mem_id();
3322 LIST_HEAD(list);
3323
3324 batchcount = ac->batchcount;
3325
3326 check_irq_off();
3327 n = get_node(cachep, node);
3328 spin_lock(&n->list_lock);
3329 if (n->shared) {
3330 struct array_cache *shared_array = n->shared;
3331 int max = shared_array->limit - shared_array->avail;
3332 if (max) {
3333 if (batchcount > max)
3334 batchcount = max;
3335 memcpy(&(shared_array->entry[shared_array->avail]),
3336 ac->entry, sizeof(void *) * batchcount);
3337 shared_array->avail += batchcount;
3338 goto free_done;
3339 }
3340 }
3341
3342 free_block(cachep, ac->entry, batchcount, node, &list);
3343 free_done:
3344 #if STATS
3345 {
3346 int i = 0;
3347 struct slab *slab;
3348
3349 list_for_each_entry(slab, &n->slabs_free, slab_list) {
3350 BUG_ON(slab->active);
3351
3352 i++;
3353 }
3354 STATS_SET_FREEABLE(cachep, i);
3355 }
3356 #endif
3357 spin_unlock(&n->list_lock);
3358 ac->avail -= batchcount;
3359 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3360 slabs_destroy(cachep, &list);
3361 }
3362
3363 /*
3364 * Release an obj back to its cache. If the obj has a constructed state, it must
3365 * be in this state _before_ it is released. Called with disabled ints.
3366 */
3367 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3368 unsigned long caller)
3369 {
3370 bool init;
3371
3372 memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
3373
3374 if (is_kfence_address(objp)) {
3375 kmemleak_free_recursive(objp, cachep->flags);
3376 __kfence_free(objp);
3377 return;
3378 }
3379
3380 /*
3381 * As memory initialization might be integrated into KASAN,
3382 * kasan_slab_free and initialization memset must be
3383 * kept together to avoid discrepancies in behavior.
3384 */
3385 init = slab_want_init_on_free(cachep);
3386 if (init && !kasan_has_integrated_init())
3387 memset(objp, 0, cachep->object_size);
3388 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3389 if (kasan_slab_free(cachep, objp, init))
3390 return;
3391
3392 /* Use KCSAN to help debug racy use-after-free. */
3393 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3394 __kcsan_check_access(objp, cachep->object_size,
3395 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3396
3397 ___cache_free(cachep, objp, caller);
3398 }
3399
3400 void ___cache_free(struct kmem_cache *cachep, void *objp,
3401 unsigned long caller)
3402 {
3403 struct array_cache *ac = cpu_cache_get(cachep);
3404
3405 check_irq_off();
3406 kmemleak_free_recursive(objp, cachep->flags);
3407 objp = cache_free_debugcheck(cachep, objp, caller);
3408
3409 /*
3410 * Skip calling cache_free_alien() when the platform is not numa.
3411 * This will avoid cache misses that happen while accessing slabp (which
3412 * is per page memory reference) to get nodeid. Instead use a global
3413 * variable to skip the call, which is mostly likely to be present in
3414 * the cache.
3415 */
3416 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3417 return;
3418
3419 if (ac->avail < ac->limit) {
3420 STATS_INC_FREEHIT(cachep);
3421 } else {
3422 STATS_INC_FREEMISS(cachep);
3423 cache_flusharray(cachep, ac);
3424 }
3425
3426 if (sk_memalloc_socks()) {
3427 struct slab *slab = virt_to_slab(objp);
3428
3429 if (unlikely(slab_test_pfmemalloc(slab))) {
3430 cache_free_pfmemalloc(cachep, slab, objp);
3431 return;
3432 }
3433 }
3434
3435 __free_one(ac, objp);
3436 }
3437
3438 static __always_inline
3439 void *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3440 gfp_t flags)
3441 {
3442 void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
3443
3444 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
3445
3446 return ret;
3447 }
3448
3449 /**
3450 * kmem_cache_alloc - Allocate an object
3451 * @cachep: The cache to allocate from.
3452 * @flags: See kmalloc().
3453 *
3454 * Allocate an object from this cache. The flags are only relevant
3455 * if the cache has no available objects.
3456 *
3457 * Return: pointer to the new object or %NULL in case of error
3458 */
3459 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3460 {
3461 return __kmem_cache_alloc_lru(cachep, NULL, flags);
3462 }
3463 EXPORT_SYMBOL(kmem_cache_alloc);
3464
3465 void *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
3466 gfp_t flags)
3467 {
3468 return __kmem_cache_alloc_lru(cachep, lru, flags);
3469 }
3470 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3471
3472 static __always_inline void
3473 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3474 size_t size, void **p, unsigned long caller)
3475 {
3476 size_t i;
3477
3478 for (i = 0; i < size; i++)
3479 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3480 }
3481
3482 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3483 void **p)
3484 {
3485 size_t i;
3486 struct obj_cgroup *objcg = NULL;
3487
3488 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3489 if (!s)
3490 return 0;
3491
3492 local_irq_disable();
3493 for (i = 0; i < size; i++) {
3494 void *objp = kfence_alloc(s, s->object_size, flags) ?:
3495 __do_cache_alloc(s, flags, NUMA_NO_NODE);
3496
3497 if (unlikely(!objp))
3498 goto error;
3499 p[i] = objp;
3500 }
3501 local_irq_enable();
3502
3503 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3504
3505 /*
3506 * memcg and kmem_cache debug support and memory initialization.
3507 * Done outside of the IRQ disabled section.
3508 */
3509 slab_post_alloc_hook(s, objcg, flags, size, p,
3510 slab_want_init_on_alloc(flags, s));
3511 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3512 return size;
3513 error:
3514 local_irq_enable();
3515 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3516 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3517 kmem_cache_free_bulk(s, i, p);
3518 return 0;
3519 }
3520 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3521
3522 /**
3523 * kmem_cache_alloc_node - Allocate an object on the specified node
3524 * @cachep: The cache to allocate from.
3525 * @flags: See kmalloc().
3526 * @nodeid: node number of the target node.
3527 *
3528 * Identical to kmem_cache_alloc but it will allocate memory on the given
3529 * node, which can improve the performance for cpu bound structures.
3530 *
3531 * Fallback to other node is possible if __GFP_THISNODE is not set.
3532 *
3533 * Return: pointer to the new object or %NULL in case of error
3534 */
3535 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3536 {
3537 void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
3538
3539 trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
3540
3541 return ret;
3542 }
3543 EXPORT_SYMBOL(kmem_cache_alloc_node);
3544
3545 void *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3546 int nodeid, size_t orig_size,
3547 unsigned long caller)
3548 {
3549 return slab_alloc_node(cachep, NULL, flags, nodeid,
3550 orig_size, caller);
3551 }
3552
3553 #ifdef CONFIG_PRINTK
3554 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
3555 {
3556 struct kmem_cache *cachep;
3557 unsigned int objnr;
3558 void *objp;
3559
3560 kpp->kp_ptr = object;
3561 kpp->kp_slab = slab;
3562 cachep = slab->slab_cache;
3563 kpp->kp_slab_cache = cachep;
3564 objp = object - obj_offset(cachep);
3565 kpp->kp_data_offset = obj_offset(cachep);
3566 slab = virt_to_slab(objp);
3567 objnr = obj_to_index(cachep, slab, objp);
3568 objp = index_to_obj(cachep, slab, objnr);
3569 kpp->kp_objp = objp;
3570 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3571 kpp->kp_ret = *dbg_userword(cachep, objp);
3572 }
3573 #endif
3574
3575 static __always_inline
3576 void __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
3577 unsigned long caller)
3578 {
3579 unsigned long flags;
3580
3581 local_irq_save(flags);
3582 debug_check_no_locks_freed(objp, cachep->object_size);
3583 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3584 debug_check_no_obj_freed(objp, cachep->object_size);
3585 __cache_free(cachep, objp, caller);
3586 local_irq_restore(flags);
3587 }
3588
3589 void __kmem_cache_free(struct kmem_cache *cachep, void *objp,
3590 unsigned long caller)
3591 {
3592 __do_kmem_cache_free(cachep, objp, caller);
3593 }
3594
3595 /**
3596 * kmem_cache_free - Deallocate an object
3597 * @cachep: The cache the allocation was from.
3598 * @objp: The previously allocated object.
3599 *
3600 * Free an object which was previously allocated from this
3601 * cache.
3602 */
3603 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3604 {
3605 cachep = cache_from_obj(cachep, objp);
3606 if (!cachep)
3607 return;
3608
3609 trace_kmem_cache_free(_RET_IP_, objp, cachep);
3610 __do_kmem_cache_free(cachep, objp, _RET_IP_);
3611 }
3612 EXPORT_SYMBOL(kmem_cache_free);
3613
3614 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3615 {
3616
3617 local_irq_disable();
3618 for (int i = 0; i < size; i++) {
3619 void *objp = p[i];
3620 struct kmem_cache *s;
3621
3622 if (!orig_s) {
3623 struct folio *folio = virt_to_folio(objp);
3624
3625 /* called via kfree_bulk */
3626 if (!folio_test_slab(folio)) {
3627 local_irq_enable();
3628 free_large_kmalloc(folio, objp);
3629 local_irq_disable();
3630 continue;
3631 }
3632 s = folio_slab(folio)->slab_cache;
3633 } else {
3634 s = cache_from_obj(orig_s, objp);
3635 }
3636
3637 if (!s)
3638 continue;
3639
3640 debug_check_no_locks_freed(objp, s->object_size);
3641 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3642 debug_check_no_obj_freed(objp, s->object_size);
3643
3644 __cache_free(s, objp, _RET_IP_);
3645 }
3646 local_irq_enable();
3647
3648 /* FIXME: add tracing */
3649 }
3650 EXPORT_SYMBOL(kmem_cache_free_bulk);
3651
3652 /*
3653 * This initializes kmem_cache_node or resizes various caches for all nodes.
3654 */
3655 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3656 {
3657 int ret;
3658 int node;
3659 struct kmem_cache_node *n;
3660
3661 for_each_online_node(node) {
3662 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3663 if (ret)
3664 goto fail;
3665
3666 }
3667
3668 return 0;
3669
3670 fail:
3671 if (!cachep->list.next) {
3672 /* Cache is not active yet. Roll back what we did */
3673 node--;
3674 while (node >= 0) {
3675 n = get_node(cachep, node);
3676 if (n) {
3677 kfree(n->shared);
3678 free_alien_cache(n->alien);
3679 kfree(n);
3680 cachep->node[node] = NULL;
3681 }
3682 node--;
3683 }
3684 }
3685 return -ENOMEM;
3686 }
3687
3688 /* Always called with the slab_mutex held */
3689 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3690 int batchcount, int shared, gfp_t gfp)
3691 {
3692 struct array_cache __percpu *cpu_cache, *prev;
3693 int cpu;
3694
3695 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3696 if (!cpu_cache)
3697 return -ENOMEM;
3698
3699 prev = cachep->cpu_cache;
3700 cachep->cpu_cache = cpu_cache;
3701 /*
3702 * Without a previous cpu_cache there's no need to synchronize remote
3703 * cpus, so skip the IPIs.
3704 */
3705 if (prev)
3706 kick_all_cpus_sync();
3707
3708 check_irq_on();
3709 cachep->batchcount = batchcount;
3710 cachep->limit = limit;
3711 cachep->shared = shared;
3712
3713 if (!prev)
3714 goto setup_node;
3715
3716 for_each_online_cpu(cpu) {
3717 LIST_HEAD(list);
3718 int node;
3719 struct kmem_cache_node *n;
3720 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3721
3722 node = cpu_to_mem(cpu);
3723 n = get_node(cachep, node);
3724 spin_lock_irq(&n->list_lock);
3725 free_block(cachep, ac->entry, ac->avail, node, &list);
3726 spin_unlock_irq(&n->list_lock);
3727 slabs_destroy(cachep, &list);
3728 }
3729 free_percpu(prev);
3730
3731 setup_node:
3732 return setup_kmem_cache_nodes(cachep, gfp);
3733 }
3734
3735 /* Called with slab_mutex held always */
3736 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3737 {
3738 int err;
3739 int limit = 0;
3740 int shared = 0;
3741 int batchcount = 0;
3742
3743 err = cache_random_seq_create(cachep, cachep->num, gfp);
3744 if (err)
3745 goto end;
3746
3747 /*
3748 * The head array serves three purposes:
3749 * - create a LIFO ordering, i.e. return objects that are cache-warm
3750 * - reduce the number of spinlock operations.
3751 * - reduce the number of linked list operations on the slab and
3752 * bufctl chains: array operations are cheaper.
3753 * The numbers are guessed, we should auto-tune as described by
3754 * Bonwick.
3755 */
3756 if (cachep->size > 131072)
3757 limit = 1;
3758 else if (cachep->size > PAGE_SIZE)
3759 limit = 8;
3760 else if (cachep->size > 1024)
3761 limit = 24;
3762 else if (cachep->size > 256)
3763 limit = 54;
3764 else
3765 limit = 120;
3766
3767 /*
3768 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3769 * allocation behaviour: Most allocs on one cpu, most free operations
3770 * on another cpu. For these cases, an efficient object passing between
3771 * cpus is necessary. This is provided by a shared array. The array
3772 * replaces Bonwick's magazine layer.
3773 * On uniprocessor, it's functionally equivalent (but less efficient)
3774 * to a larger limit. Thus disabled by default.
3775 */
3776 shared = 0;
3777 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3778 shared = 8;
3779
3780 #if DEBUG
3781 /*
3782 * With debugging enabled, large batchcount lead to excessively long
3783 * periods with disabled local interrupts. Limit the batchcount
3784 */
3785 if (limit > 32)
3786 limit = 32;
3787 #endif
3788 batchcount = (limit + 1) / 2;
3789 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3790 end:
3791 if (err)
3792 pr_err("enable_cpucache failed for %s, error %d\n",
3793 cachep->name, -err);
3794 return err;
3795 }
3796
3797 /*
3798 * Drain an array if it contains any elements taking the node lock only if
3799 * necessary. Note that the node listlock also protects the array_cache
3800 * if drain_array() is used on the shared array.
3801 */
3802 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3803 struct array_cache *ac, int node)
3804 {
3805 LIST_HEAD(list);
3806
3807 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3808 check_mutex_acquired();
3809
3810 if (!ac || !ac->avail)
3811 return;
3812
3813 if (ac->touched) {
3814 ac->touched = 0;
3815 return;
3816 }
3817
3818 spin_lock_irq(&n->list_lock);
3819 drain_array_locked(cachep, ac, node, false, &list);
3820 spin_unlock_irq(&n->list_lock);
3821
3822 slabs_destroy(cachep, &list);
3823 }
3824
3825 /**
3826 * cache_reap - Reclaim memory from caches.
3827 * @w: work descriptor
3828 *
3829 * Called from workqueue/eventd every few seconds.
3830 * Purpose:
3831 * - clear the per-cpu caches for this CPU.
3832 * - return freeable pages to the main free memory pool.
3833 *
3834 * If we cannot acquire the cache chain mutex then just give up - we'll try
3835 * again on the next iteration.
3836 */
3837 static void cache_reap(struct work_struct *w)
3838 {
3839 struct kmem_cache *searchp;
3840 struct kmem_cache_node *n;
3841 int node = numa_mem_id();
3842 struct delayed_work *work = to_delayed_work(w);
3843
3844 if (!mutex_trylock(&slab_mutex))
3845 /* Give up. Setup the next iteration. */
3846 goto out;
3847
3848 list_for_each_entry(searchp, &slab_caches, list) {
3849 check_irq_on();
3850
3851 /*
3852 * We only take the node lock if absolutely necessary and we
3853 * have established with reasonable certainty that
3854 * we can do some work if the lock was obtained.
3855 */
3856 n = get_node(searchp, node);
3857
3858 reap_alien(searchp, n);
3859
3860 drain_array(searchp, n, cpu_cache_get(searchp), node);
3861
3862 /*
3863 * These are racy checks but it does not matter
3864 * if we skip one check or scan twice.
3865 */
3866 if (time_after(n->next_reap, jiffies))
3867 goto next;
3868
3869 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3870
3871 drain_array(searchp, n, n->shared, node);
3872
3873 if (n->free_touched)
3874 n->free_touched = 0;
3875 else {
3876 int freed;
3877
3878 freed = drain_freelist(searchp, n, (n->free_limit +
3879 5 * searchp->num - 1) / (5 * searchp->num));
3880 STATS_ADD_REAPED(searchp, freed);
3881 }
3882 next:
3883 cond_resched();
3884 }
3885 check_irq_on();
3886 mutex_unlock(&slab_mutex);
3887 next_reap_node();
3888 out:
3889 /* Set up the next iteration */
3890 schedule_delayed_work_on(smp_processor_id(), work,
3891 round_jiffies_relative(REAPTIMEOUT_AC));
3892 }
3893
3894 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3895 {
3896 unsigned long active_objs, num_objs, active_slabs;
3897 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
3898 unsigned long free_slabs = 0;
3899 int node;
3900 struct kmem_cache_node *n;
3901
3902 for_each_kmem_cache_node(cachep, node, n) {
3903 check_irq_on();
3904 spin_lock_irq(&n->list_lock);
3905
3906 total_slabs += n->total_slabs;
3907 free_slabs += n->free_slabs;
3908 free_objs += n->free_objects;
3909
3910 if (n->shared)
3911 shared_avail += n->shared->avail;
3912
3913 spin_unlock_irq(&n->list_lock);
3914 }
3915 num_objs = total_slabs * cachep->num;
3916 active_slabs = total_slabs - free_slabs;
3917 active_objs = num_objs - free_objs;
3918
3919 sinfo->active_objs = active_objs;
3920 sinfo->num_objs = num_objs;
3921 sinfo->active_slabs = active_slabs;
3922 sinfo->num_slabs = total_slabs;
3923 sinfo->shared_avail = shared_avail;
3924 sinfo->limit = cachep->limit;
3925 sinfo->batchcount = cachep->batchcount;
3926 sinfo->shared = cachep->shared;
3927 sinfo->objects_per_slab = cachep->num;
3928 sinfo->cache_order = cachep->gfporder;
3929 }
3930
3931 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3932 {
3933 #if STATS
3934 { /* node stats */
3935 unsigned long high = cachep->high_mark;
3936 unsigned long allocs = cachep->num_allocations;
3937 unsigned long grown = cachep->grown;
3938 unsigned long reaped = cachep->reaped;
3939 unsigned long errors = cachep->errors;
3940 unsigned long max_freeable = cachep->max_freeable;
3941 unsigned long node_allocs = cachep->node_allocs;
3942 unsigned long node_frees = cachep->node_frees;
3943 unsigned long overflows = cachep->node_overflow;
3944
3945 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
3946 allocs, high, grown,
3947 reaped, errors, max_freeable, node_allocs,
3948 node_frees, overflows);
3949 }
3950 /* cpu stats */
3951 {
3952 unsigned long allochit = atomic_read(&cachep->allochit);
3953 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3954 unsigned long freehit = atomic_read(&cachep->freehit);
3955 unsigned long freemiss = atomic_read(&cachep->freemiss);
3956
3957 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3958 allochit, allocmiss, freehit, freemiss);
3959 }
3960 #endif
3961 }
3962
3963 #define MAX_SLABINFO_WRITE 128
3964 /**
3965 * slabinfo_write - Tuning for the slab allocator
3966 * @file: unused
3967 * @buffer: user buffer
3968 * @count: data length
3969 * @ppos: unused
3970 *
3971 * Return: %0 on success, negative error code otherwise.
3972 */
3973 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3974 size_t count, loff_t *ppos)
3975 {
3976 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3977 int limit, batchcount, shared, res;
3978 struct kmem_cache *cachep;
3979
3980 if (count > MAX_SLABINFO_WRITE)
3981 return -EINVAL;
3982 if (copy_from_user(&kbuf, buffer, count))
3983 return -EFAULT;
3984 kbuf[MAX_SLABINFO_WRITE] = '\0';
3985
3986 tmp = strchr(kbuf, ' ');
3987 if (!tmp)
3988 return -EINVAL;
3989 *tmp = '\0';
3990 tmp++;
3991 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3992 return -EINVAL;
3993
3994 /* Find the cache in the chain of caches. */
3995 mutex_lock(&slab_mutex);
3996 res = -EINVAL;
3997 list_for_each_entry(cachep, &slab_caches, list) {
3998 if (!strcmp(cachep->name, kbuf)) {
3999 if (limit < 1 || batchcount < 1 ||
4000 batchcount > limit || shared < 0) {
4001 res = 0;
4002 } else {
4003 res = do_tune_cpucache(cachep, limit,
4004 batchcount, shared,
4005 GFP_KERNEL);
4006 }
4007 break;
4008 }
4009 }
4010 mutex_unlock(&slab_mutex);
4011 if (res >= 0)
4012 res = count;
4013 return res;
4014 }
4015
4016 #ifdef CONFIG_HARDENED_USERCOPY
4017 /*
4018 * Rejects incorrectly sized objects and objects that are to be copied
4019 * to/from userspace but do not fall entirely within the containing slab
4020 * cache's usercopy region.
4021 *
4022 * Returns NULL if check passes, otherwise const char * to name of cache
4023 * to indicate an error.
4024 */
4025 void __check_heap_object(const void *ptr, unsigned long n,
4026 const struct slab *slab, bool to_user)
4027 {
4028 struct kmem_cache *cachep;
4029 unsigned int objnr;
4030 unsigned long offset;
4031
4032 ptr = kasan_reset_tag(ptr);
4033
4034 /* Find and validate object. */
4035 cachep = slab->slab_cache;
4036 objnr = obj_to_index(cachep, slab, (void *)ptr);
4037 BUG_ON(objnr >= cachep->num);
4038
4039 /* Find offset within object. */
4040 if (is_kfence_address(ptr))
4041 offset = ptr - kfence_object_start(ptr);
4042 else
4043 offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
4044
4045 /* Allow address range falling entirely within usercopy region. */
4046 if (offset >= cachep->useroffset &&
4047 offset - cachep->useroffset <= cachep->usersize &&
4048 n <= cachep->useroffset - offset + cachep->usersize)
4049 return;
4050
4051 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4052 }
4053 #endif /* CONFIG_HARDENED_USERCOPY */