]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/slab.c
Merge branch 'stable/for-linus-5.2' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 /*
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
368 */
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373
374 static inline struct kmem_cache *virt_to_cache(const void *obj)
375 {
376 struct page *page = virt_to_head_page(obj);
377 return page->slab_cache;
378 }
379
380 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
381 unsigned int idx)
382 {
383 return page->s_mem + cache->size * idx;
384 }
385
386 #define BOOT_CPUCACHE_ENTRIES 1
387 /* internal cache of cache description objs */
388 static struct kmem_cache kmem_cache_boot = {
389 .batchcount = 1,
390 .limit = BOOT_CPUCACHE_ENTRIES,
391 .shared = 1,
392 .size = sizeof(struct kmem_cache),
393 .name = "kmem_cache",
394 };
395
396 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
397
398 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
399 {
400 return this_cpu_ptr(cachep->cpu_cache);
401 }
402
403 /*
404 * Calculate the number of objects and left-over bytes for a given buffer size.
405 */
406 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
407 slab_flags_t flags, size_t *left_over)
408 {
409 unsigned int num;
410 size_t slab_size = PAGE_SIZE << gfporder;
411
412 /*
413 * The slab management structure can be either off the slab or
414 * on it. For the latter case, the memory allocated for a
415 * slab is used for:
416 *
417 * - @buffer_size bytes for each object
418 * - One freelist_idx_t for each object
419 *
420 * We don't need to consider alignment of freelist because
421 * freelist will be at the end of slab page. The objects will be
422 * at the correct alignment.
423 *
424 * If the slab management structure is off the slab, then the
425 * alignment will already be calculated into the size. Because
426 * the slabs are all pages aligned, the objects will be at the
427 * correct alignment when allocated.
428 */
429 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
430 num = slab_size / buffer_size;
431 *left_over = slab_size % buffer_size;
432 } else {
433 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
434 *left_over = slab_size %
435 (buffer_size + sizeof(freelist_idx_t));
436 }
437
438 return num;
439 }
440
441 #if DEBUG
442 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
443
444 static void __slab_error(const char *function, struct kmem_cache *cachep,
445 char *msg)
446 {
447 pr_err("slab error in %s(): cache `%s': %s\n",
448 function, cachep->name, msg);
449 dump_stack();
450 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
451 }
452 #endif
453
454 /*
455 * By default on NUMA we use alien caches to stage the freeing of
456 * objects allocated from other nodes. This causes massive memory
457 * inefficiencies when using fake NUMA setup to split memory into a
458 * large number of small nodes, so it can be disabled on the command
459 * line
460 */
461
462 static int use_alien_caches __read_mostly = 1;
463 static int __init noaliencache_setup(char *s)
464 {
465 use_alien_caches = 0;
466 return 1;
467 }
468 __setup("noaliencache", noaliencache_setup);
469
470 static int __init slab_max_order_setup(char *str)
471 {
472 get_option(&str, &slab_max_order);
473 slab_max_order = slab_max_order < 0 ? 0 :
474 min(slab_max_order, MAX_ORDER - 1);
475 slab_max_order_set = true;
476
477 return 1;
478 }
479 __setup("slab_max_order=", slab_max_order_setup);
480
481 #ifdef CONFIG_NUMA
482 /*
483 * Special reaping functions for NUMA systems called from cache_reap().
484 * These take care of doing round robin flushing of alien caches (containing
485 * objects freed on different nodes from which they were allocated) and the
486 * flushing of remote pcps by calling drain_node_pages.
487 */
488 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
489
490 static void init_reap_node(int cpu)
491 {
492 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
493 node_online_map);
494 }
495
496 static void next_reap_node(void)
497 {
498 int node = __this_cpu_read(slab_reap_node);
499
500 node = next_node_in(node, node_online_map);
501 __this_cpu_write(slab_reap_node, node);
502 }
503
504 #else
505 #define init_reap_node(cpu) do { } while (0)
506 #define next_reap_node(void) do { } while (0)
507 #endif
508
509 /*
510 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
511 * via the workqueue/eventd.
512 * Add the CPU number into the expiration time to minimize the possibility of
513 * the CPUs getting into lockstep and contending for the global cache chain
514 * lock.
515 */
516 static void start_cpu_timer(int cpu)
517 {
518 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
519
520 if (reap_work->work.func == NULL) {
521 init_reap_node(cpu);
522 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
523 schedule_delayed_work_on(cpu, reap_work,
524 __round_jiffies_relative(HZ, cpu));
525 }
526 }
527
528 static void init_arraycache(struct array_cache *ac, int limit, int batch)
529 {
530 if (ac) {
531 ac->avail = 0;
532 ac->limit = limit;
533 ac->batchcount = batch;
534 ac->touched = 0;
535 }
536 }
537
538 static struct array_cache *alloc_arraycache(int node, int entries,
539 int batchcount, gfp_t gfp)
540 {
541 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
542 struct array_cache *ac = NULL;
543
544 ac = kmalloc_node(memsize, gfp, node);
545 /*
546 * The array_cache structures contain pointers to free object.
547 * However, when such objects are allocated or transferred to another
548 * cache the pointers are not cleared and they could be counted as
549 * valid references during a kmemleak scan. Therefore, kmemleak must
550 * not scan such objects.
551 */
552 kmemleak_no_scan(ac);
553 init_arraycache(ac, entries, batchcount);
554 return ac;
555 }
556
557 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
558 struct page *page, void *objp)
559 {
560 struct kmem_cache_node *n;
561 int page_node;
562 LIST_HEAD(list);
563
564 page_node = page_to_nid(page);
565 n = get_node(cachep, page_node);
566
567 spin_lock(&n->list_lock);
568 free_block(cachep, &objp, 1, page_node, &list);
569 spin_unlock(&n->list_lock);
570
571 slabs_destroy(cachep, &list);
572 }
573
574 /*
575 * Transfer objects in one arraycache to another.
576 * Locking must be handled by the caller.
577 *
578 * Return the number of entries transferred.
579 */
580 static int transfer_objects(struct array_cache *to,
581 struct array_cache *from, unsigned int max)
582 {
583 /* Figure out how many entries to transfer */
584 int nr = min3(from->avail, max, to->limit - to->avail);
585
586 if (!nr)
587 return 0;
588
589 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
590 sizeof(void *) *nr);
591
592 from->avail -= nr;
593 to->avail += nr;
594 return nr;
595 }
596
597 #ifndef CONFIG_NUMA
598
599 #define drain_alien_cache(cachep, alien) do { } while (0)
600 #define reap_alien(cachep, n) do { } while (0)
601
602 static inline struct alien_cache **alloc_alien_cache(int node,
603 int limit, gfp_t gfp)
604 {
605 return NULL;
606 }
607
608 static inline void free_alien_cache(struct alien_cache **ac_ptr)
609 {
610 }
611
612 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
613 {
614 return 0;
615 }
616
617 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
618 gfp_t flags)
619 {
620 return NULL;
621 }
622
623 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
624 gfp_t flags, int nodeid)
625 {
626 return NULL;
627 }
628
629 static inline gfp_t gfp_exact_node(gfp_t flags)
630 {
631 return flags & ~__GFP_NOFAIL;
632 }
633
634 #else /* CONFIG_NUMA */
635
636 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
637 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
638
639 static struct alien_cache *__alloc_alien_cache(int node, int entries,
640 int batch, gfp_t gfp)
641 {
642 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
643 struct alien_cache *alc = NULL;
644
645 alc = kmalloc_node(memsize, gfp, node);
646 if (alc) {
647 kmemleak_no_scan(alc);
648 init_arraycache(&alc->ac, entries, batch);
649 spin_lock_init(&alc->lock);
650 }
651 return alc;
652 }
653
654 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
655 {
656 struct alien_cache **alc_ptr;
657 int i;
658
659 if (limit > 1)
660 limit = 12;
661 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
662 if (!alc_ptr)
663 return NULL;
664
665 for_each_node(i) {
666 if (i == node || !node_online(i))
667 continue;
668 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
669 if (!alc_ptr[i]) {
670 for (i--; i >= 0; i--)
671 kfree(alc_ptr[i]);
672 kfree(alc_ptr);
673 return NULL;
674 }
675 }
676 return alc_ptr;
677 }
678
679 static void free_alien_cache(struct alien_cache **alc_ptr)
680 {
681 int i;
682
683 if (!alc_ptr)
684 return;
685 for_each_node(i)
686 kfree(alc_ptr[i]);
687 kfree(alc_ptr);
688 }
689
690 static void __drain_alien_cache(struct kmem_cache *cachep,
691 struct array_cache *ac, int node,
692 struct list_head *list)
693 {
694 struct kmem_cache_node *n = get_node(cachep, node);
695
696 if (ac->avail) {
697 spin_lock(&n->list_lock);
698 /*
699 * Stuff objects into the remote nodes shared array first.
700 * That way we could avoid the overhead of putting the objects
701 * into the free lists and getting them back later.
702 */
703 if (n->shared)
704 transfer_objects(n->shared, ac, ac->limit);
705
706 free_block(cachep, ac->entry, ac->avail, node, list);
707 ac->avail = 0;
708 spin_unlock(&n->list_lock);
709 }
710 }
711
712 /*
713 * Called from cache_reap() to regularly drain alien caches round robin.
714 */
715 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
716 {
717 int node = __this_cpu_read(slab_reap_node);
718
719 if (n->alien) {
720 struct alien_cache *alc = n->alien[node];
721 struct array_cache *ac;
722
723 if (alc) {
724 ac = &alc->ac;
725 if (ac->avail && spin_trylock_irq(&alc->lock)) {
726 LIST_HEAD(list);
727
728 __drain_alien_cache(cachep, ac, node, &list);
729 spin_unlock_irq(&alc->lock);
730 slabs_destroy(cachep, &list);
731 }
732 }
733 }
734 }
735
736 static void drain_alien_cache(struct kmem_cache *cachep,
737 struct alien_cache **alien)
738 {
739 int i = 0;
740 struct alien_cache *alc;
741 struct array_cache *ac;
742 unsigned long flags;
743
744 for_each_online_node(i) {
745 alc = alien[i];
746 if (alc) {
747 LIST_HEAD(list);
748
749 ac = &alc->ac;
750 spin_lock_irqsave(&alc->lock, flags);
751 __drain_alien_cache(cachep, ac, i, &list);
752 spin_unlock_irqrestore(&alc->lock, flags);
753 slabs_destroy(cachep, &list);
754 }
755 }
756 }
757
758 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
759 int node, int page_node)
760 {
761 struct kmem_cache_node *n;
762 struct alien_cache *alien = NULL;
763 struct array_cache *ac;
764 LIST_HEAD(list);
765
766 n = get_node(cachep, node);
767 STATS_INC_NODEFREES(cachep);
768 if (n->alien && n->alien[page_node]) {
769 alien = n->alien[page_node];
770 ac = &alien->ac;
771 spin_lock(&alien->lock);
772 if (unlikely(ac->avail == ac->limit)) {
773 STATS_INC_ACOVERFLOW(cachep);
774 __drain_alien_cache(cachep, ac, page_node, &list);
775 }
776 ac->entry[ac->avail++] = objp;
777 spin_unlock(&alien->lock);
778 slabs_destroy(cachep, &list);
779 } else {
780 n = get_node(cachep, page_node);
781 spin_lock(&n->list_lock);
782 free_block(cachep, &objp, 1, page_node, &list);
783 spin_unlock(&n->list_lock);
784 slabs_destroy(cachep, &list);
785 }
786 return 1;
787 }
788
789 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
790 {
791 int page_node = page_to_nid(virt_to_page(objp));
792 int node = numa_mem_id();
793 /*
794 * Make sure we are not freeing a object from another node to the array
795 * cache on this cpu.
796 */
797 if (likely(node == page_node))
798 return 0;
799
800 return __cache_free_alien(cachep, objp, node, page_node);
801 }
802
803 /*
804 * Construct gfp mask to allocate from a specific node but do not reclaim or
805 * warn about failures.
806 */
807 static inline gfp_t gfp_exact_node(gfp_t flags)
808 {
809 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
810 }
811 #endif
812
813 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
814 {
815 struct kmem_cache_node *n;
816
817 /*
818 * Set up the kmem_cache_node for cpu before we can
819 * begin anything. Make sure some other cpu on this
820 * node has not already allocated this
821 */
822 n = get_node(cachep, node);
823 if (n) {
824 spin_lock_irq(&n->list_lock);
825 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
826 cachep->num;
827 spin_unlock_irq(&n->list_lock);
828
829 return 0;
830 }
831
832 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
833 if (!n)
834 return -ENOMEM;
835
836 kmem_cache_node_init(n);
837 n->next_reap = jiffies + REAPTIMEOUT_NODE +
838 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
839
840 n->free_limit =
841 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
842
843 /*
844 * The kmem_cache_nodes don't come and go as CPUs
845 * come and go. slab_mutex is sufficient
846 * protection here.
847 */
848 cachep->node[node] = n;
849
850 return 0;
851 }
852
853 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
854 /*
855 * Allocates and initializes node for a node on each slab cache, used for
856 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
857 * will be allocated off-node since memory is not yet online for the new node.
858 * When hotplugging memory or a cpu, existing node are not replaced if
859 * already in use.
860 *
861 * Must hold slab_mutex.
862 */
863 static int init_cache_node_node(int node)
864 {
865 int ret;
866 struct kmem_cache *cachep;
867
868 list_for_each_entry(cachep, &slab_caches, list) {
869 ret = init_cache_node(cachep, node, GFP_KERNEL);
870 if (ret)
871 return ret;
872 }
873
874 return 0;
875 }
876 #endif
877
878 static int setup_kmem_cache_node(struct kmem_cache *cachep,
879 int node, gfp_t gfp, bool force_change)
880 {
881 int ret = -ENOMEM;
882 struct kmem_cache_node *n;
883 struct array_cache *old_shared = NULL;
884 struct array_cache *new_shared = NULL;
885 struct alien_cache **new_alien = NULL;
886 LIST_HEAD(list);
887
888 if (use_alien_caches) {
889 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
890 if (!new_alien)
891 goto fail;
892 }
893
894 if (cachep->shared) {
895 new_shared = alloc_arraycache(node,
896 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
897 if (!new_shared)
898 goto fail;
899 }
900
901 ret = init_cache_node(cachep, node, gfp);
902 if (ret)
903 goto fail;
904
905 n = get_node(cachep, node);
906 spin_lock_irq(&n->list_lock);
907 if (n->shared && force_change) {
908 free_block(cachep, n->shared->entry,
909 n->shared->avail, node, &list);
910 n->shared->avail = 0;
911 }
912
913 if (!n->shared || force_change) {
914 old_shared = n->shared;
915 n->shared = new_shared;
916 new_shared = NULL;
917 }
918
919 if (!n->alien) {
920 n->alien = new_alien;
921 new_alien = NULL;
922 }
923
924 spin_unlock_irq(&n->list_lock);
925 slabs_destroy(cachep, &list);
926
927 /*
928 * To protect lockless access to n->shared during irq disabled context.
929 * If n->shared isn't NULL in irq disabled context, accessing to it is
930 * guaranteed to be valid until irq is re-enabled, because it will be
931 * freed after synchronize_rcu().
932 */
933 if (old_shared && force_change)
934 synchronize_rcu();
935
936 fail:
937 kfree(old_shared);
938 kfree(new_shared);
939 free_alien_cache(new_alien);
940
941 return ret;
942 }
943
944 #ifdef CONFIG_SMP
945
946 static void cpuup_canceled(long cpu)
947 {
948 struct kmem_cache *cachep;
949 struct kmem_cache_node *n = NULL;
950 int node = cpu_to_mem(cpu);
951 const struct cpumask *mask = cpumask_of_node(node);
952
953 list_for_each_entry(cachep, &slab_caches, list) {
954 struct array_cache *nc;
955 struct array_cache *shared;
956 struct alien_cache **alien;
957 LIST_HEAD(list);
958
959 n = get_node(cachep, node);
960 if (!n)
961 continue;
962
963 spin_lock_irq(&n->list_lock);
964
965 /* Free limit for this kmem_cache_node */
966 n->free_limit -= cachep->batchcount;
967
968 /* cpu is dead; no one can alloc from it. */
969 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
970 free_block(cachep, nc->entry, nc->avail, node, &list);
971 nc->avail = 0;
972
973 if (!cpumask_empty(mask)) {
974 spin_unlock_irq(&n->list_lock);
975 goto free_slab;
976 }
977
978 shared = n->shared;
979 if (shared) {
980 free_block(cachep, shared->entry,
981 shared->avail, node, &list);
982 n->shared = NULL;
983 }
984
985 alien = n->alien;
986 n->alien = NULL;
987
988 spin_unlock_irq(&n->list_lock);
989
990 kfree(shared);
991 if (alien) {
992 drain_alien_cache(cachep, alien);
993 free_alien_cache(alien);
994 }
995
996 free_slab:
997 slabs_destroy(cachep, &list);
998 }
999 /*
1000 * In the previous loop, all the objects were freed to
1001 * the respective cache's slabs, now we can go ahead and
1002 * shrink each nodelist to its limit.
1003 */
1004 list_for_each_entry(cachep, &slab_caches, list) {
1005 n = get_node(cachep, node);
1006 if (!n)
1007 continue;
1008 drain_freelist(cachep, n, INT_MAX);
1009 }
1010 }
1011
1012 static int cpuup_prepare(long cpu)
1013 {
1014 struct kmem_cache *cachep;
1015 int node = cpu_to_mem(cpu);
1016 int err;
1017
1018 /*
1019 * We need to do this right in the beginning since
1020 * alloc_arraycache's are going to use this list.
1021 * kmalloc_node allows us to add the slab to the right
1022 * kmem_cache_node and not this cpu's kmem_cache_node
1023 */
1024 err = init_cache_node_node(node);
1025 if (err < 0)
1026 goto bad;
1027
1028 /*
1029 * Now we can go ahead with allocating the shared arrays and
1030 * array caches
1031 */
1032 list_for_each_entry(cachep, &slab_caches, list) {
1033 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1034 if (err)
1035 goto bad;
1036 }
1037
1038 return 0;
1039 bad:
1040 cpuup_canceled(cpu);
1041 return -ENOMEM;
1042 }
1043
1044 int slab_prepare_cpu(unsigned int cpu)
1045 {
1046 int err;
1047
1048 mutex_lock(&slab_mutex);
1049 err = cpuup_prepare(cpu);
1050 mutex_unlock(&slab_mutex);
1051 return err;
1052 }
1053
1054 /*
1055 * This is called for a failed online attempt and for a successful
1056 * offline.
1057 *
1058 * Even if all the cpus of a node are down, we don't free the
1059 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1060 * a kmalloc allocation from another cpu for memory from the node of
1061 * the cpu going down. The list3 structure is usually allocated from
1062 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1063 */
1064 int slab_dead_cpu(unsigned int cpu)
1065 {
1066 mutex_lock(&slab_mutex);
1067 cpuup_canceled(cpu);
1068 mutex_unlock(&slab_mutex);
1069 return 0;
1070 }
1071 #endif
1072
1073 static int slab_online_cpu(unsigned int cpu)
1074 {
1075 start_cpu_timer(cpu);
1076 return 0;
1077 }
1078
1079 static int slab_offline_cpu(unsigned int cpu)
1080 {
1081 /*
1082 * Shutdown cache reaper. Note that the slab_mutex is held so
1083 * that if cache_reap() is invoked it cannot do anything
1084 * expensive but will only modify reap_work and reschedule the
1085 * timer.
1086 */
1087 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1088 /* Now the cache_reaper is guaranteed to be not running. */
1089 per_cpu(slab_reap_work, cpu).work.func = NULL;
1090 return 0;
1091 }
1092
1093 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1094 /*
1095 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1096 * Returns -EBUSY if all objects cannot be drained so that the node is not
1097 * removed.
1098 *
1099 * Must hold slab_mutex.
1100 */
1101 static int __meminit drain_cache_node_node(int node)
1102 {
1103 struct kmem_cache *cachep;
1104 int ret = 0;
1105
1106 list_for_each_entry(cachep, &slab_caches, list) {
1107 struct kmem_cache_node *n;
1108
1109 n = get_node(cachep, node);
1110 if (!n)
1111 continue;
1112
1113 drain_freelist(cachep, n, INT_MAX);
1114
1115 if (!list_empty(&n->slabs_full) ||
1116 !list_empty(&n->slabs_partial)) {
1117 ret = -EBUSY;
1118 break;
1119 }
1120 }
1121 return ret;
1122 }
1123
1124 static int __meminit slab_memory_callback(struct notifier_block *self,
1125 unsigned long action, void *arg)
1126 {
1127 struct memory_notify *mnb = arg;
1128 int ret = 0;
1129 int nid;
1130
1131 nid = mnb->status_change_nid;
1132 if (nid < 0)
1133 goto out;
1134
1135 switch (action) {
1136 case MEM_GOING_ONLINE:
1137 mutex_lock(&slab_mutex);
1138 ret = init_cache_node_node(nid);
1139 mutex_unlock(&slab_mutex);
1140 break;
1141 case MEM_GOING_OFFLINE:
1142 mutex_lock(&slab_mutex);
1143 ret = drain_cache_node_node(nid);
1144 mutex_unlock(&slab_mutex);
1145 break;
1146 case MEM_ONLINE:
1147 case MEM_OFFLINE:
1148 case MEM_CANCEL_ONLINE:
1149 case MEM_CANCEL_OFFLINE:
1150 break;
1151 }
1152 out:
1153 return notifier_from_errno(ret);
1154 }
1155 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1156
1157 /*
1158 * swap the static kmem_cache_node with kmalloced memory
1159 */
1160 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1161 int nodeid)
1162 {
1163 struct kmem_cache_node *ptr;
1164
1165 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1166 BUG_ON(!ptr);
1167
1168 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1169 /*
1170 * Do not assume that spinlocks can be initialized via memcpy:
1171 */
1172 spin_lock_init(&ptr->list_lock);
1173
1174 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1175 cachep->node[nodeid] = ptr;
1176 }
1177
1178 /*
1179 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1180 * size of kmem_cache_node.
1181 */
1182 static void __init set_up_node(struct kmem_cache *cachep, int index)
1183 {
1184 int node;
1185
1186 for_each_online_node(node) {
1187 cachep->node[node] = &init_kmem_cache_node[index + node];
1188 cachep->node[node]->next_reap = jiffies +
1189 REAPTIMEOUT_NODE +
1190 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1191 }
1192 }
1193
1194 /*
1195 * Initialisation. Called after the page allocator have been initialised and
1196 * before smp_init().
1197 */
1198 void __init kmem_cache_init(void)
1199 {
1200 int i;
1201
1202 kmem_cache = &kmem_cache_boot;
1203
1204 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1205 use_alien_caches = 0;
1206
1207 for (i = 0; i < NUM_INIT_LISTS; i++)
1208 kmem_cache_node_init(&init_kmem_cache_node[i]);
1209
1210 /*
1211 * Fragmentation resistance on low memory - only use bigger
1212 * page orders on machines with more than 32MB of memory if
1213 * not overridden on the command line.
1214 */
1215 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1216 slab_max_order = SLAB_MAX_ORDER_HI;
1217
1218 /* Bootstrap is tricky, because several objects are allocated
1219 * from caches that do not exist yet:
1220 * 1) initialize the kmem_cache cache: it contains the struct
1221 * kmem_cache structures of all caches, except kmem_cache itself:
1222 * kmem_cache is statically allocated.
1223 * Initially an __init data area is used for the head array and the
1224 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1225 * array at the end of the bootstrap.
1226 * 2) Create the first kmalloc cache.
1227 * The struct kmem_cache for the new cache is allocated normally.
1228 * An __init data area is used for the head array.
1229 * 3) Create the remaining kmalloc caches, with minimally sized
1230 * head arrays.
1231 * 4) Replace the __init data head arrays for kmem_cache and the first
1232 * kmalloc cache with kmalloc allocated arrays.
1233 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1234 * the other cache's with kmalloc allocated memory.
1235 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1236 */
1237
1238 /* 1) create the kmem_cache */
1239
1240 /*
1241 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1242 */
1243 create_boot_cache(kmem_cache, "kmem_cache",
1244 offsetof(struct kmem_cache, node) +
1245 nr_node_ids * sizeof(struct kmem_cache_node *),
1246 SLAB_HWCACHE_ALIGN, 0, 0);
1247 list_add(&kmem_cache->list, &slab_caches);
1248 memcg_link_cache(kmem_cache);
1249 slab_state = PARTIAL;
1250
1251 /*
1252 * Initialize the caches that provide memory for the kmem_cache_node
1253 * structures first. Without this, further allocations will bug.
1254 */
1255 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1256 kmalloc_info[INDEX_NODE].name,
1257 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1258 0, kmalloc_size(INDEX_NODE));
1259 slab_state = PARTIAL_NODE;
1260 setup_kmalloc_cache_index_table();
1261
1262 slab_early_init = 0;
1263
1264 /* 5) Replace the bootstrap kmem_cache_node */
1265 {
1266 int nid;
1267
1268 for_each_online_node(nid) {
1269 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1270
1271 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1272 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1273 }
1274 }
1275
1276 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1277 }
1278
1279 void __init kmem_cache_init_late(void)
1280 {
1281 struct kmem_cache *cachep;
1282
1283 /* 6) resize the head arrays to their final sizes */
1284 mutex_lock(&slab_mutex);
1285 list_for_each_entry(cachep, &slab_caches, list)
1286 if (enable_cpucache(cachep, GFP_NOWAIT))
1287 BUG();
1288 mutex_unlock(&slab_mutex);
1289
1290 /* Done! */
1291 slab_state = FULL;
1292
1293 #ifdef CONFIG_NUMA
1294 /*
1295 * Register a memory hotplug callback that initializes and frees
1296 * node.
1297 */
1298 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1299 #endif
1300
1301 /*
1302 * The reap timers are started later, with a module init call: That part
1303 * of the kernel is not yet operational.
1304 */
1305 }
1306
1307 static int __init cpucache_init(void)
1308 {
1309 int ret;
1310
1311 /*
1312 * Register the timers that return unneeded pages to the page allocator
1313 */
1314 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1315 slab_online_cpu, slab_offline_cpu);
1316 WARN_ON(ret < 0);
1317
1318 return 0;
1319 }
1320 __initcall(cpucache_init);
1321
1322 static noinline void
1323 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1324 {
1325 #if DEBUG
1326 struct kmem_cache_node *n;
1327 unsigned long flags;
1328 int node;
1329 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1330 DEFAULT_RATELIMIT_BURST);
1331
1332 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1333 return;
1334
1335 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1336 nodeid, gfpflags, &gfpflags);
1337 pr_warn(" cache: %s, object size: %d, order: %d\n",
1338 cachep->name, cachep->size, cachep->gfporder);
1339
1340 for_each_kmem_cache_node(cachep, node, n) {
1341 unsigned long total_slabs, free_slabs, free_objs;
1342
1343 spin_lock_irqsave(&n->list_lock, flags);
1344 total_slabs = n->total_slabs;
1345 free_slabs = n->free_slabs;
1346 free_objs = n->free_objects;
1347 spin_unlock_irqrestore(&n->list_lock, flags);
1348
1349 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1350 node, total_slabs - free_slabs, total_slabs,
1351 (total_slabs * cachep->num) - free_objs,
1352 total_slabs * cachep->num);
1353 }
1354 #endif
1355 }
1356
1357 /*
1358 * Interface to system's page allocator. No need to hold the
1359 * kmem_cache_node ->list_lock.
1360 *
1361 * If we requested dmaable memory, we will get it. Even if we
1362 * did not request dmaable memory, we might get it, but that
1363 * would be relatively rare and ignorable.
1364 */
1365 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1366 int nodeid)
1367 {
1368 struct page *page;
1369 int nr_pages;
1370
1371 flags |= cachep->allocflags;
1372
1373 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1374 if (!page) {
1375 slab_out_of_memory(cachep, flags, nodeid);
1376 return NULL;
1377 }
1378
1379 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1380 __free_pages(page, cachep->gfporder);
1381 return NULL;
1382 }
1383
1384 nr_pages = (1 << cachep->gfporder);
1385 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1386 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1387 else
1388 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1389
1390 __SetPageSlab(page);
1391 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1392 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1393 SetPageSlabPfmemalloc(page);
1394
1395 return page;
1396 }
1397
1398 /*
1399 * Interface to system's page release.
1400 */
1401 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1402 {
1403 int order = cachep->gfporder;
1404 unsigned long nr_freed = (1 << order);
1405
1406 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1407 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1408 else
1409 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1410
1411 BUG_ON(!PageSlab(page));
1412 __ClearPageSlabPfmemalloc(page);
1413 __ClearPageSlab(page);
1414 page_mapcount_reset(page);
1415 page->mapping = NULL;
1416
1417 if (current->reclaim_state)
1418 current->reclaim_state->reclaimed_slab += nr_freed;
1419 memcg_uncharge_slab(page, order, cachep);
1420 __free_pages(page, order);
1421 }
1422
1423 static void kmem_rcu_free(struct rcu_head *head)
1424 {
1425 struct kmem_cache *cachep;
1426 struct page *page;
1427
1428 page = container_of(head, struct page, rcu_head);
1429 cachep = page->slab_cache;
1430
1431 kmem_freepages(cachep, page);
1432 }
1433
1434 #if DEBUG
1435 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1436 {
1437 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1438 (cachep->size % PAGE_SIZE) == 0)
1439 return true;
1440
1441 return false;
1442 }
1443
1444 #ifdef CONFIG_DEBUG_PAGEALLOC
1445 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1446 {
1447 if (!is_debug_pagealloc_cache(cachep))
1448 return;
1449
1450 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1451 }
1452
1453 #else
1454 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1455 int map) {}
1456
1457 #endif
1458
1459 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1460 {
1461 int size = cachep->object_size;
1462 addr = &((char *)addr)[obj_offset(cachep)];
1463
1464 memset(addr, val, size);
1465 *(unsigned char *)(addr + size - 1) = POISON_END;
1466 }
1467
1468 static void dump_line(char *data, int offset, int limit)
1469 {
1470 int i;
1471 unsigned char error = 0;
1472 int bad_count = 0;
1473
1474 pr_err("%03x: ", offset);
1475 for (i = 0; i < limit; i++) {
1476 if (data[offset + i] != POISON_FREE) {
1477 error = data[offset + i];
1478 bad_count++;
1479 }
1480 }
1481 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1482 &data[offset], limit, 1);
1483
1484 if (bad_count == 1) {
1485 error ^= POISON_FREE;
1486 if (!(error & (error - 1))) {
1487 pr_err("Single bit error detected. Probably bad RAM.\n");
1488 #ifdef CONFIG_X86
1489 pr_err("Run memtest86+ or a similar memory test tool.\n");
1490 #else
1491 pr_err("Run a memory test tool.\n");
1492 #endif
1493 }
1494 }
1495 }
1496 #endif
1497
1498 #if DEBUG
1499
1500 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1501 {
1502 int i, size;
1503 char *realobj;
1504
1505 if (cachep->flags & SLAB_RED_ZONE) {
1506 pr_err("Redzone: 0x%llx/0x%llx\n",
1507 *dbg_redzone1(cachep, objp),
1508 *dbg_redzone2(cachep, objp));
1509 }
1510
1511 if (cachep->flags & SLAB_STORE_USER)
1512 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1513 realobj = (char *)objp + obj_offset(cachep);
1514 size = cachep->object_size;
1515 for (i = 0; i < size && lines; i += 16, lines--) {
1516 int limit;
1517 limit = 16;
1518 if (i + limit > size)
1519 limit = size - i;
1520 dump_line(realobj, i, limit);
1521 }
1522 }
1523
1524 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1525 {
1526 char *realobj;
1527 int size, i;
1528 int lines = 0;
1529
1530 if (is_debug_pagealloc_cache(cachep))
1531 return;
1532
1533 realobj = (char *)objp + obj_offset(cachep);
1534 size = cachep->object_size;
1535
1536 for (i = 0; i < size; i++) {
1537 char exp = POISON_FREE;
1538 if (i == size - 1)
1539 exp = POISON_END;
1540 if (realobj[i] != exp) {
1541 int limit;
1542 /* Mismatch ! */
1543 /* Print header */
1544 if (lines == 0) {
1545 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1546 print_tainted(), cachep->name,
1547 realobj, size);
1548 print_objinfo(cachep, objp, 0);
1549 }
1550 /* Hexdump the affected line */
1551 i = (i / 16) * 16;
1552 limit = 16;
1553 if (i + limit > size)
1554 limit = size - i;
1555 dump_line(realobj, i, limit);
1556 i += 16;
1557 lines++;
1558 /* Limit to 5 lines */
1559 if (lines > 5)
1560 break;
1561 }
1562 }
1563 if (lines != 0) {
1564 /* Print some data about the neighboring objects, if they
1565 * exist:
1566 */
1567 struct page *page = virt_to_head_page(objp);
1568 unsigned int objnr;
1569
1570 objnr = obj_to_index(cachep, page, objp);
1571 if (objnr) {
1572 objp = index_to_obj(cachep, page, objnr - 1);
1573 realobj = (char *)objp + obj_offset(cachep);
1574 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1575 print_objinfo(cachep, objp, 2);
1576 }
1577 if (objnr + 1 < cachep->num) {
1578 objp = index_to_obj(cachep, page, objnr + 1);
1579 realobj = (char *)objp + obj_offset(cachep);
1580 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1581 print_objinfo(cachep, objp, 2);
1582 }
1583 }
1584 }
1585 #endif
1586
1587 #if DEBUG
1588 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1589 struct page *page)
1590 {
1591 int i;
1592
1593 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1594 poison_obj(cachep, page->freelist - obj_offset(cachep),
1595 POISON_FREE);
1596 }
1597
1598 for (i = 0; i < cachep->num; i++) {
1599 void *objp = index_to_obj(cachep, page, i);
1600
1601 if (cachep->flags & SLAB_POISON) {
1602 check_poison_obj(cachep, objp);
1603 slab_kernel_map(cachep, objp, 1);
1604 }
1605 if (cachep->flags & SLAB_RED_ZONE) {
1606 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1607 slab_error(cachep, "start of a freed object was overwritten");
1608 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1609 slab_error(cachep, "end of a freed object was overwritten");
1610 }
1611 }
1612 }
1613 #else
1614 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1615 struct page *page)
1616 {
1617 }
1618 #endif
1619
1620 /**
1621 * slab_destroy - destroy and release all objects in a slab
1622 * @cachep: cache pointer being destroyed
1623 * @page: page pointer being destroyed
1624 *
1625 * Destroy all the objs in a slab page, and release the mem back to the system.
1626 * Before calling the slab page must have been unlinked from the cache. The
1627 * kmem_cache_node ->list_lock is not held/needed.
1628 */
1629 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1630 {
1631 void *freelist;
1632
1633 freelist = page->freelist;
1634 slab_destroy_debugcheck(cachep, page);
1635 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1636 call_rcu(&page->rcu_head, kmem_rcu_free);
1637 else
1638 kmem_freepages(cachep, page);
1639
1640 /*
1641 * From now on, we don't use freelist
1642 * although actual page can be freed in rcu context
1643 */
1644 if (OFF_SLAB(cachep))
1645 kmem_cache_free(cachep->freelist_cache, freelist);
1646 }
1647
1648 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1649 {
1650 struct page *page, *n;
1651
1652 list_for_each_entry_safe(page, n, list, slab_list) {
1653 list_del(&page->slab_list);
1654 slab_destroy(cachep, page);
1655 }
1656 }
1657
1658 /**
1659 * calculate_slab_order - calculate size (page order) of slabs
1660 * @cachep: pointer to the cache that is being created
1661 * @size: size of objects to be created in this cache.
1662 * @flags: slab allocation flags
1663 *
1664 * Also calculates the number of objects per slab.
1665 *
1666 * This could be made much more intelligent. For now, try to avoid using
1667 * high order pages for slabs. When the gfp() functions are more friendly
1668 * towards high-order requests, this should be changed.
1669 *
1670 * Return: number of left-over bytes in a slab
1671 */
1672 static size_t calculate_slab_order(struct kmem_cache *cachep,
1673 size_t size, slab_flags_t flags)
1674 {
1675 size_t left_over = 0;
1676 int gfporder;
1677
1678 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1679 unsigned int num;
1680 size_t remainder;
1681
1682 num = cache_estimate(gfporder, size, flags, &remainder);
1683 if (!num)
1684 continue;
1685
1686 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1687 if (num > SLAB_OBJ_MAX_NUM)
1688 break;
1689
1690 if (flags & CFLGS_OFF_SLAB) {
1691 struct kmem_cache *freelist_cache;
1692 size_t freelist_size;
1693
1694 freelist_size = num * sizeof(freelist_idx_t);
1695 freelist_cache = kmalloc_slab(freelist_size, 0u);
1696 if (!freelist_cache)
1697 continue;
1698
1699 /*
1700 * Needed to avoid possible looping condition
1701 * in cache_grow_begin()
1702 */
1703 if (OFF_SLAB(freelist_cache))
1704 continue;
1705
1706 /* check if off slab has enough benefit */
1707 if (freelist_cache->size > cachep->size / 2)
1708 continue;
1709 }
1710
1711 /* Found something acceptable - save it away */
1712 cachep->num = num;
1713 cachep->gfporder = gfporder;
1714 left_over = remainder;
1715
1716 /*
1717 * A VFS-reclaimable slab tends to have most allocations
1718 * as GFP_NOFS and we really don't want to have to be allocating
1719 * higher-order pages when we are unable to shrink dcache.
1720 */
1721 if (flags & SLAB_RECLAIM_ACCOUNT)
1722 break;
1723
1724 /*
1725 * Large number of objects is good, but very large slabs are
1726 * currently bad for the gfp()s.
1727 */
1728 if (gfporder >= slab_max_order)
1729 break;
1730
1731 /*
1732 * Acceptable internal fragmentation?
1733 */
1734 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1735 break;
1736 }
1737 return left_over;
1738 }
1739
1740 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1741 struct kmem_cache *cachep, int entries, int batchcount)
1742 {
1743 int cpu;
1744 size_t size;
1745 struct array_cache __percpu *cpu_cache;
1746
1747 size = sizeof(void *) * entries + sizeof(struct array_cache);
1748 cpu_cache = __alloc_percpu(size, sizeof(void *));
1749
1750 if (!cpu_cache)
1751 return NULL;
1752
1753 for_each_possible_cpu(cpu) {
1754 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1755 entries, batchcount);
1756 }
1757
1758 return cpu_cache;
1759 }
1760
1761 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1762 {
1763 if (slab_state >= FULL)
1764 return enable_cpucache(cachep, gfp);
1765
1766 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1767 if (!cachep->cpu_cache)
1768 return 1;
1769
1770 if (slab_state == DOWN) {
1771 /* Creation of first cache (kmem_cache). */
1772 set_up_node(kmem_cache, CACHE_CACHE);
1773 } else if (slab_state == PARTIAL) {
1774 /* For kmem_cache_node */
1775 set_up_node(cachep, SIZE_NODE);
1776 } else {
1777 int node;
1778
1779 for_each_online_node(node) {
1780 cachep->node[node] = kmalloc_node(
1781 sizeof(struct kmem_cache_node), gfp, node);
1782 BUG_ON(!cachep->node[node]);
1783 kmem_cache_node_init(cachep->node[node]);
1784 }
1785 }
1786
1787 cachep->node[numa_mem_id()]->next_reap =
1788 jiffies + REAPTIMEOUT_NODE +
1789 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1790
1791 cpu_cache_get(cachep)->avail = 0;
1792 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1793 cpu_cache_get(cachep)->batchcount = 1;
1794 cpu_cache_get(cachep)->touched = 0;
1795 cachep->batchcount = 1;
1796 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1797 return 0;
1798 }
1799
1800 slab_flags_t kmem_cache_flags(unsigned int object_size,
1801 slab_flags_t flags, const char *name,
1802 void (*ctor)(void *))
1803 {
1804 return flags;
1805 }
1806
1807 struct kmem_cache *
1808 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1809 slab_flags_t flags, void (*ctor)(void *))
1810 {
1811 struct kmem_cache *cachep;
1812
1813 cachep = find_mergeable(size, align, flags, name, ctor);
1814 if (cachep) {
1815 cachep->refcount++;
1816
1817 /*
1818 * Adjust the object sizes so that we clear
1819 * the complete object on kzalloc.
1820 */
1821 cachep->object_size = max_t(int, cachep->object_size, size);
1822 }
1823 return cachep;
1824 }
1825
1826 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1827 size_t size, slab_flags_t flags)
1828 {
1829 size_t left;
1830
1831 cachep->num = 0;
1832
1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847 }
1848
1849 static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 size_t size, slab_flags_t flags)
1851 {
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
1859 */
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881 }
1882
1883 static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 size_t size, slab_flags_t flags)
1885 {
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897 }
1898
1899 /**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923 {
1924 size_t ralign = BYTES_PER_WORD;
1925 gfp_t gfp;
1926 int err;
1927 unsigned int size = cachep->size;
1928
1929 #if DEBUG
1930 #if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 flags |= SLAB_POISON;
1942 #endif
1943 #endif
1944
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
1950 size = ALIGN(size, BYTES_PER_WORD);
1951
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
1956 size = ALIGN(size, REDZONE_ALIGN);
1957 }
1958
1959 /* 3) caller mandated alignment */
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1962 }
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966 /*
1967 * 4) Store it.
1968 */
1969 cachep->align = ralign;
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1974
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1980 #if DEBUG
1981
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1986 if (flags & SLAB_RED_ZONE) {
1987 /* add space for red zone words */
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1990 }
1991 if (flags & SLAB_STORE_USER) {
1992 /* user store requires one word storage behind the end of
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1995 */
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
2000 }
2001 #endif
2002
2003 kasan_cache_create(cachep, &size, &flags);
2004
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013 #if DEBUG
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
2021 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
2033 }
2034 #endif
2035
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
2041 if (set_off_slab_cache(cachep, size, flags)) {
2042 flags |= CFLGS_OFF_SLAB;
2043 goto done;
2044 }
2045
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
2048
2049 return -E2BIG;
2050
2051 done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 cachep->flags = flags;
2054 cachep->allocflags = __GFP_COMP;
2055 if (flags & SLAB_CACHE_DMA)
2056 cachep->allocflags |= GFP_DMA;
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
2061 cachep->size = size;
2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064 #if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074 #endif
2075
2076 if (OFF_SLAB(cachep)) {
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
2079 }
2080
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
2083 __kmem_cache_release(cachep);
2084 return err;
2085 }
2086
2087 return 0;
2088 }
2089
2090 #if DEBUG
2091 static void check_irq_off(void)
2092 {
2093 BUG_ON(!irqs_disabled());
2094 }
2095
2096 static void check_irq_on(void)
2097 {
2098 BUG_ON(irqs_disabled());
2099 }
2100
2101 static void check_mutex_acquired(void)
2102 {
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104 }
2105
2106 static void check_spinlock_acquired(struct kmem_cache *cachep)
2107 {
2108 #ifdef CONFIG_SMP
2109 check_irq_off();
2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111 #endif
2112 }
2113
2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 {
2116 #ifdef CONFIG_SMP
2117 check_irq_off();
2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 #endif
2120 }
2121
2122 #else
2123 #define check_irq_off() do { } while(0)
2124 #define check_irq_on() do { } while(0)
2125 #define check_mutex_acquired() do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2128 #endif
2129
2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132 {
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145 }
2146
2147 static void do_drain(void *arg)
2148 {
2149 struct kmem_cache *cachep = arg;
2150 struct array_cache *ac;
2151 int node = numa_mem_id();
2152 struct kmem_cache_node *n;
2153 LIST_HEAD(list);
2154
2155 check_irq_off();
2156 ac = cpu_cache_get(cachep);
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
2159 free_block(cachep, ac->entry, ac->avail, node, &list);
2160 spin_unlock(&n->list_lock);
2161 slabs_destroy(cachep, &list);
2162 ac->avail = 0;
2163 }
2164
2165 static void drain_cpu_caches(struct kmem_cache *cachep)
2166 {
2167 struct kmem_cache_node *n;
2168 int node;
2169 LIST_HEAD(list);
2170
2171 on_each_cpu(do_drain, cachep, 1);
2172 check_irq_on();
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
2175 drain_alien_cache(cachep, n->alien);
2176
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
2184 }
2185
2186 /*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192 static int drain_freelist(struct kmem_cache *cache,
2193 struct kmem_cache_node *n, int tofree)
2194 {
2195 struct list_head *p;
2196 int nr_freed;
2197 struct page *page;
2198
2199 nr_freed = 0;
2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
2206 goto out;
2207 }
2208
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
2211 n->free_slabs--;
2212 n->total_slabs--;
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
2219 slab_destroy(cache, page);
2220 nr_freed++;
2221 }
2222 out:
2223 return nr_freed;
2224 }
2225
2226 bool __kmem_cache_empty(struct kmem_cache *s)
2227 {
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236 }
2237
2238 int __kmem_cache_shrink(struct kmem_cache *cachep)
2239 {
2240 int ret = 0;
2241 int node;
2242 struct kmem_cache_node *n;
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
2247 for_each_kmem_cache_node(cachep, node, n) {
2248 drain_freelist(cachep, n, INT_MAX);
2249
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
2252 }
2253 return (ret ? 1 : 0);
2254 }
2255
2256 #ifdef CONFIG_MEMCG
2257 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2258 {
2259 __kmem_cache_shrink(cachep);
2260 }
2261 #endif
2262
2263 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2264 {
2265 return __kmem_cache_shrink(cachep);
2266 }
2267
2268 void __kmem_cache_release(struct kmem_cache *cachep)
2269 {
2270 int i;
2271 struct kmem_cache_node *n;
2272
2273 cache_random_seq_destroy(cachep);
2274
2275 free_percpu(cachep->cpu_cache);
2276
2277 /* NUMA: free the node structures */
2278 for_each_kmem_cache_node(cachep, i, n) {
2279 kfree(n->shared);
2280 free_alien_cache(n->alien);
2281 kfree(n);
2282 cachep->node[i] = NULL;
2283 }
2284 }
2285
2286 /*
2287 * Get the memory for a slab management obj.
2288 *
2289 * For a slab cache when the slab descriptor is off-slab, the
2290 * slab descriptor can't come from the same cache which is being created,
2291 * Because if it is the case, that means we defer the creation of
2292 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2293 * And we eventually call down to __kmem_cache_create(), which
2294 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2295 * This is a "chicken-and-egg" problem.
2296 *
2297 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2298 * which are all initialized during kmem_cache_init().
2299 */
2300 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2301 struct page *page, int colour_off,
2302 gfp_t local_flags, int nodeid)
2303 {
2304 void *freelist;
2305 void *addr = page_address(page);
2306
2307 page->s_mem = addr + colour_off;
2308 page->active = 0;
2309
2310 if (OBJFREELIST_SLAB(cachep))
2311 freelist = NULL;
2312 else if (OFF_SLAB(cachep)) {
2313 /* Slab management obj is off-slab. */
2314 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2315 local_flags, nodeid);
2316 if (!freelist)
2317 return NULL;
2318 } else {
2319 /* We will use last bytes at the slab for freelist */
2320 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2321 cachep->freelist_size;
2322 }
2323
2324 return freelist;
2325 }
2326
2327 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2328 {
2329 return ((freelist_idx_t *)page->freelist)[idx];
2330 }
2331
2332 static inline void set_free_obj(struct page *page,
2333 unsigned int idx, freelist_idx_t val)
2334 {
2335 ((freelist_idx_t *)(page->freelist))[idx] = val;
2336 }
2337
2338 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2339 {
2340 #if DEBUG
2341 int i;
2342
2343 for (i = 0; i < cachep->num; i++) {
2344 void *objp = index_to_obj(cachep, page, i);
2345
2346 if (cachep->flags & SLAB_STORE_USER)
2347 *dbg_userword(cachep, objp) = NULL;
2348
2349 if (cachep->flags & SLAB_RED_ZONE) {
2350 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2352 }
2353 /*
2354 * Constructors are not allowed to allocate memory from the same
2355 * cache which they are a constructor for. Otherwise, deadlock.
2356 * They must also be threaded.
2357 */
2358 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2359 kasan_unpoison_object_data(cachep,
2360 objp + obj_offset(cachep));
2361 cachep->ctor(objp + obj_offset(cachep));
2362 kasan_poison_object_data(
2363 cachep, objp + obj_offset(cachep));
2364 }
2365
2366 if (cachep->flags & SLAB_RED_ZONE) {
2367 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2368 slab_error(cachep, "constructor overwrote the end of an object");
2369 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2370 slab_error(cachep, "constructor overwrote the start of an object");
2371 }
2372 /* need to poison the objs? */
2373 if (cachep->flags & SLAB_POISON) {
2374 poison_obj(cachep, objp, POISON_FREE);
2375 slab_kernel_map(cachep, objp, 0);
2376 }
2377 }
2378 #endif
2379 }
2380
2381 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2382 /* Hold information during a freelist initialization */
2383 union freelist_init_state {
2384 struct {
2385 unsigned int pos;
2386 unsigned int *list;
2387 unsigned int count;
2388 };
2389 struct rnd_state rnd_state;
2390 };
2391
2392 /*
2393 * Initialize the state based on the randomization methode available.
2394 * return true if the pre-computed list is available, false otherwize.
2395 */
2396 static bool freelist_state_initialize(union freelist_init_state *state,
2397 struct kmem_cache *cachep,
2398 unsigned int count)
2399 {
2400 bool ret;
2401 unsigned int rand;
2402
2403 /* Use best entropy available to define a random shift */
2404 rand = get_random_int();
2405
2406 /* Use a random state if the pre-computed list is not available */
2407 if (!cachep->random_seq) {
2408 prandom_seed_state(&state->rnd_state, rand);
2409 ret = false;
2410 } else {
2411 state->list = cachep->random_seq;
2412 state->count = count;
2413 state->pos = rand % count;
2414 ret = true;
2415 }
2416 return ret;
2417 }
2418
2419 /* Get the next entry on the list and randomize it using a random shift */
2420 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2421 {
2422 if (state->pos >= state->count)
2423 state->pos = 0;
2424 return state->list[state->pos++];
2425 }
2426
2427 /* Swap two freelist entries */
2428 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2429 {
2430 swap(((freelist_idx_t *)page->freelist)[a],
2431 ((freelist_idx_t *)page->freelist)[b]);
2432 }
2433
2434 /*
2435 * Shuffle the freelist initialization state based on pre-computed lists.
2436 * return true if the list was successfully shuffled, false otherwise.
2437 */
2438 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2439 {
2440 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2441 union freelist_init_state state;
2442 bool precomputed;
2443
2444 if (count < 2)
2445 return false;
2446
2447 precomputed = freelist_state_initialize(&state, cachep, count);
2448
2449 /* Take a random entry as the objfreelist */
2450 if (OBJFREELIST_SLAB(cachep)) {
2451 if (!precomputed)
2452 objfreelist = count - 1;
2453 else
2454 objfreelist = next_random_slot(&state);
2455 page->freelist = index_to_obj(cachep, page, objfreelist) +
2456 obj_offset(cachep);
2457 count--;
2458 }
2459
2460 /*
2461 * On early boot, generate the list dynamically.
2462 * Later use a pre-computed list for speed.
2463 */
2464 if (!precomputed) {
2465 for (i = 0; i < count; i++)
2466 set_free_obj(page, i, i);
2467
2468 /* Fisher-Yates shuffle */
2469 for (i = count - 1; i > 0; i--) {
2470 rand = prandom_u32_state(&state.rnd_state);
2471 rand %= (i + 1);
2472 swap_free_obj(page, i, rand);
2473 }
2474 } else {
2475 for (i = 0; i < count; i++)
2476 set_free_obj(page, i, next_random_slot(&state));
2477 }
2478
2479 if (OBJFREELIST_SLAB(cachep))
2480 set_free_obj(page, cachep->num - 1, objfreelist);
2481
2482 return true;
2483 }
2484 #else
2485 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2486 struct page *page)
2487 {
2488 return false;
2489 }
2490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2491
2492 static void cache_init_objs(struct kmem_cache *cachep,
2493 struct page *page)
2494 {
2495 int i;
2496 void *objp;
2497 bool shuffled;
2498
2499 cache_init_objs_debug(cachep, page);
2500
2501 /* Try to randomize the freelist if enabled */
2502 shuffled = shuffle_freelist(cachep, page);
2503
2504 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2505 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2506 obj_offset(cachep);
2507 }
2508
2509 for (i = 0; i < cachep->num; i++) {
2510 objp = index_to_obj(cachep, page, i);
2511 objp = kasan_init_slab_obj(cachep, objp);
2512
2513 /* constructor could break poison info */
2514 if (DEBUG == 0 && cachep->ctor) {
2515 kasan_unpoison_object_data(cachep, objp);
2516 cachep->ctor(objp);
2517 kasan_poison_object_data(cachep, objp);
2518 }
2519
2520 if (!shuffled)
2521 set_free_obj(page, i, i);
2522 }
2523 }
2524
2525 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2526 {
2527 void *objp;
2528
2529 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2530 page->active++;
2531
2532 return objp;
2533 }
2534
2535 static void slab_put_obj(struct kmem_cache *cachep,
2536 struct page *page, void *objp)
2537 {
2538 unsigned int objnr = obj_to_index(cachep, page, objp);
2539 #if DEBUG
2540 unsigned int i;
2541
2542 /* Verify double free bug */
2543 for (i = page->active; i < cachep->num; i++) {
2544 if (get_free_obj(page, i) == objnr) {
2545 pr_err("slab: double free detected in cache '%s', objp %px\n",
2546 cachep->name, objp);
2547 BUG();
2548 }
2549 }
2550 #endif
2551 page->active--;
2552 if (!page->freelist)
2553 page->freelist = objp + obj_offset(cachep);
2554
2555 set_free_obj(page, page->active, objnr);
2556 }
2557
2558 /*
2559 * Map pages beginning at addr to the given cache and slab. This is required
2560 * for the slab allocator to be able to lookup the cache and slab of a
2561 * virtual address for kfree, ksize, and slab debugging.
2562 */
2563 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2564 void *freelist)
2565 {
2566 page->slab_cache = cache;
2567 page->freelist = freelist;
2568 }
2569
2570 /*
2571 * Grow (by 1) the number of slabs within a cache. This is called by
2572 * kmem_cache_alloc() when there are no active objs left in a cache.
2573 */
2574 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2575 gfp_t flags, int nodeid)
2576 {
2577 void *freelist;
2578 size_t offset;
2579 gfp_t local_flags;
2580 int page_node;
2581 struct kmem_cache_node *n;
2582 struct page *page;
2583
2584 /*
2585 * Be lazy and only check for valid flags here, keeping it out of the
2586 * critical path in kmem_cache_alloc().
2587 */
2588 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2589 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2590 flags &= ~GFP_SLAB_BUG_MASK;
2591 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2592 invalid_mask, &invalid_mask, flags, &flags);
2593 dump_stack();
2594 }
2595 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2596 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2597
2598 check_irq_off();
2599 if (gfpflags_allow_blocking(local_flags))
2600 local_irq_enable();
2601
2602 /*
2603 * Get mem for the objs. Attempt to allocate a physical page from
2604 * 'nodeid'.
2605 */
2606 page = kmem_getpages(cachep, local_flags, nodeid);
2607 if (!page)
2608 goto failed;
2609
2610 page_node = page_to_nid(page);
2611 n = get_node(cachep, page_node);
2612
2613 /* Get colour for the slab, and cal the next value. */
2614 n->colour_next++;
2615 if (n->colour_next >= cachep->colour)
2616 n->colour_next = 0;
2617
2618 offset = n->colour_next;
2619 if (offset >= cachep->colour)
2620 offset = 0;
2621
2622 offset *= cachep->colour_off;
2623
2624 /*
2625 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2626 * page_address() in the latter returns a non-tagged pointer,
2627 * as it should be for slab pages.
2628 */
2629 kasan_poison_slab(page);
2630
2631 /* Get slab management. */
2632 freelist = alloc_slabmgmt(cachep, page, offset,
2633 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2634 if (OFF_SLAB(cachep) && !freelist)
2635 goto opps1;
2636
2637 slab_map_pages(cachep, page, freelist);
2638
2639 cache_init_objs(cachep, page);
2640
2641 if (gfpflags_allow_blocking(local_flags))
2642 local_irq_disable();
2643
2644 return page;
2645
2646 opps1:
2647 kmem_freepages(cachep, page);
2648 failed:
2649 if (gfpflags_allow_blocking(local_flags))
2650 local_irq_disable();
2651 return NULL;
2652 }
2653
2654 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2655 {
2656 struct kmem_cache_node *n;
2657 void *list = NULL;
2658
2659 check_irq_off();
2660
2661 if (!page)
2662 return;
2663
2664 INIT_LIST_HEAD(&page->slab_list);
2665 n = get_node(cachep, page_to_nid(page));
2666
2667 spin_lock(&n->list_lock);
2668 n->total_slabs++;
2669 if (!page->active) {
2670 list_add_tail(&page->slab_list, &n->slabs_free);
2671 n->free_slabs++;
2672 } else
2673 fixup_slab_list(cachep, n, page, &list);
2674
2675 STATS_INC_GROWN(cachep);
2676 n->free_objects += cachep->num - page->active;
2677 spin_unlock(&n->list_lock);
2678
2679 fixup_objfreelist_debug(cachep, &list);
2680 }
2681
2682 #if DEBUG
2683
2684 /*
2685 * Perform extra freeing checks:
2686 * - detect bad pointers.
2687 * - POISON/RED_ZONE checking
2688 */
2689 static void kfree_debugcheck(const void *objp)
2690 {
2691 if (!virt_addr_valid(objp)) {
2692 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2693 (unsigned long)objp);
2694 BUG();
2695 }
2696 }
2697
2698 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2699 {
2700 unsigned long long redzone1, redzone2;
2701
2702 redzone1 = *dbg_redzone1(cache, obj);
2703 redzone2 = *dbg_redzone2(cache, obj);
2704
2705 /*
2706 * Redzone is ok.
2707 */
2708 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2709 return;
2710
2711 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2712 slab_error(cache, "double free detected");
2713 else
2714 slab_error(cache, "memory outside object was overwritten");
2715
2716 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2717 obj, redzone1, redzone2);
2718 }
2719
2720 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2721 unsigned long caller)
2722 {
2723 unsigned int objnr;
2724 struct page *page;
2725
2726 BUG_ON(virt_to_cache(objp) != cachep);
2727
2728 objp -= obj_offset(cachep);
2729 kfree_debugcheck(objp);
2730 page = virt_to_head_page(objp);
2731
2732 if (cachep->flags & SLAB_RED_ZONE) {
2733 verify_redzone_free(cachep, objp);
2734 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2735 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2736 }
2737 if (cachep->flags & SLAB_STORE_USER)
2738 *dbg_userword(cachep, objp) = (void *)caller;
2739
2740 objnr = obj_to_index(cachep, page, objp);
2741
2742 BUG_ON(objnr >= cachep->num);
2743 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2744
2745 if (cachep->flags & SLAB_POISON) {
2746 poison_obj(cachep, objp, POISON_FREE);
2747 slab_kernel_map(cachep, objp, 0);
2748 }
2749 return objp;
2750 }
2751
2752 #else
2753 #define kfree_debugcheck(x) do { } while(0)
2754 #define cache_free_debugcheck(x,objp,z) (objp)
2755 #endif
2756
2757 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2758 void **list)
2759 {
2760 #if DEBUG
2761 void *next = *list;
2762 void *objp;
2763
2764 while (next) {
2765 objp = next - obj_offset(cachep);
2766 next = *(void **)next;
2767 poison_obj(cachep, objp, POISON_FREE);
2768 }
2769 #endif
2770 }
2771
2772 static inline void fixup_slab_list(struct kmem_cache *cachep,
2773 struct kmem_cache_node *n, struct page *page,
2774 void **list)
2775 {
2776 /* move slabp to correct slabp list: */
2777 list_del(&page->slab_list);
2778 if (page->active == cachep->num) {
2779 list_add(&page->slab_list, &n->slabs_full);
2780 if (OBJFREELIST_SLAB(cachep)) {
2781 #if DEBUG
2782 /* Poisoning will be done without holding the lock */
2783 if (cachep->flags & SLAB_POISON) {
2784 void **objp = page->freelist;
2785
2786 *objp = *list;
2787 *list = objp;
2788 }
2789 #endif
2790 page->freelist = NULL;
2791 }
2792 } else
2793 list_add(&page->slab_list, &n->slabs_partial);
2794 }
2795
2796 /* Try to find non-pfmemalloc slab if needed */
2797 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2798 struct page *page, bool pfmemalloc)
2799 {
2800 if (!page)
2801 return NULL;
2802
2803 if (pfmemalloc)
2804 return page;
2805
2806 if (!PageSlabPfmemalloc(page))
2807 return page;
2808
2809 /* No need to keep pfmemalloc slab if we have enough free objects */
2810 if (n->free_objects > n->free_limit) {
2811 ClearPageSlabPfmemalloc(page);
2812 return page;
2813 }
2814
2815 /* Move pfmemalloc slab to the end of list to speed up next search */
2816 list_del(&page->slab_list);
2817 if (!page->active) {
2818 list_add_tail(&page->slab_list, &n->slabs_free);
2819 n->free_slabs++;
2820 } else
2821 list_add_tail(&page->slab_list, &n->slabs_partial);
2822
2823 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2824 if (!PageSlabPfmemalloc(page))
2825 return page;
2826 }
2827
2828 n->free_touched = 1;
2829 list_for_each_entry(page, &n->slabs_free, slab_list) {
2830 if (!PageSlabPfmemalloc(page)) {
2831 n->free_slabs--;
2832 return page;
2833 }
2834 }
2835
2836 return NULL;
2837 }
2838
2839 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2840 {
2841 struct page *page;
2842
2843 assert_spin_locked(&n->list_lock);
2844 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2845 slab_list);
2846 if (!page) {
2847 n->free_touched = 1;
2848 page = list_first_entry_or_null(&n->slabs_free, struct page,
2849 slab_list);
2850 if (page)
2851 n->free_slabs--;
2852 }
2853
2854 if (sk_memalloc_socks())
2855 page = get_valid_first_slab(n, page, pfmemalloc);
2856
2857 return page;
2858 }
2859
2860 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2861 struct kmem_cache_node *n, gfp_t flags)
2862 {
2863 struct page *page;
2864 void *obj;
2865 void *list = NULL;
2866
2867 if (!gfp_pfmemalloc_allowed(flags))
2868 return NULL;
2869
2870 spin_lock(&n->list_lock);
2871 page = get_first_slab(n, true);
2872 if (!page) {
2873 spin_unlock(&n->list_lock);
2874 return NULL;
2875 }
2876
2877 obj = slab_get_obj(cachep, page);
2878 n->free_objects--;
2879
2880 fixup_slab_list(cachep, n, page, &list);
2881
2882 spin_unlock(&n->list_lock);
2883 fixup_objfreelist_debug(cachep, &list);
2884
2885 return obj;
2886 }
2887
2888 /*
2889 * Slab list should be fixed up by fixup_slab_list() for existing slab
2890 * or cache_grow_end() for new slab
2891 */
2892 static __always_inline int alloc_block(struct kmem_cache *cachep,
2893 struct array_cache *ac, struct page *page, int batchcount)
2894 {
2895 /*
2896 * There must be at least one object available for
2897 * allocation.
2898 */
2899 BUG_ON(page->active >= cachep->num);
2900
2901 while (page->active < cachep->num && batchcount--) {
2902 STATS_INC_ALLOCED(cachep);
2903 STATS_INC_ACTIVE(cachep);
2904 STATS_SET_HIGH(cachep);
2905
2906 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2907 }
2908
2909 return batchcount;
2910 }
2911
2912 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2913 {
2914 int batchcount;
2915 struct kmem_cache_node *n;
2916 struct array_cache *ac, *shared;
2917 int node;
2918 void *list = NULL;
2919 struct page *page;
2920
2921 check_irq_off();
2922 node = numa_mem_id();
2923
2924 ac = cpu_cache_get(cachep);
2925 batchcount = ac->batchcount;
2926 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2927 /*
2928 * If there was little recent activity on this cache, then
2929 * perform only a partial refill. Otherwise we could generate
2930 * refill bouncing.
2931 */
2932 batchcount = BATCHREFILL_LIMIT;
2933 }
2934 n = get_node(cachep, node);
2935
2936 BUG_ON(ac->avail > 0 || !n);
2937 shared = READ_ONCE(n->shared);
2938 if (!n->free_objects && (!shared || !shared->avail))
2939 goto direct_grow;
2940
2941 spin_lock(&n->list_lock);
2942 shared = READ_ONCE(n->shared);
2943
2944 /* See if we can refill from the shared array */
2945 if (shared && transfer_objects(ac, shared, batchcount)) {
2946 shared->touched = 1;
2947 goto alloc_done;
2948 }
2949
2950 while (batchcount > 0) {
2951 /* Get slab alloc is to come from. */
2952 page = get_first_slab(n, false);
2953 if (!page)
2954 goto must_grow;
2955
2956 check_spinlock_acquired(cachep);
2957
2958 batchcount = alloc_block(cachep, ac, page, batchcount);
2959 fixup_slab_list(cachep, n, page, &list);
2960 }
2961
2962 must_grow:
2963 n->free_objects -= ac->avail;
2964 alloc_done:
2965 spin_unlock(&n->list_lock);
2966 fixup_objfreelist_debug(cachep, &list);
2967
2968 direct_grow:
2969 if (unlikely(!ac->avail)) {
2970 /* Check if we can use obj in pfmemalloc slab */
2971 if (sk_memalloc_socks()) {
2972 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2973
2974 if (obj)
2975 return obj;
2976 }
2977
2978 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2979
2980 /*
2981 * cache_grow_begin() can reenable interrupts,
2982 * then ac could change.
2983 */
2984 ac = cpu_cache_get(cachep);
2985 if (!ac->avail && page)
2986 alloc_block(cachep, ac, page, batchcount);
2987 cache_grow_end(cachep, page);
2988
2989 if (!ac->avail)
2990 return NULL;
2991 }
2992 ac->touched = 1;
2993
2994 return ac->entry[--ac->avail];
2995 }
2996
2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2998 gfp_t flags)
2999 {
3000 might_sleep_if(gfpflags_allow_blocking(flags));
3001 }
3002
3003 #if DEBUG
3004 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3005 gfp_t flags, void *objp, unsigned long caller)
3006 {
3007 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3008 if (!objp)
3009 return objp;
3010 if (cachep->flags & SLAB_POISON) {
3011 check_poison_obj(cachep, objp);
3012 slab_kernel_map(cachep, objp, 1);
3013 poison_obj(cachep, objp, POISON_INUSE);
3014 }
3015 if (cachep->flags & SLAB_STORE_USER)
3016 *dbg_userword(cachep, objp) = (void *)caller;
3017
3018 if (cachep->flags & SLAB_RED_ZONE) {
3019 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3020 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3021 slab_error(cachep, "double free, or memory outside object was overwritten");
3022 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3023 objp, *dbg_redzone1(cachep, objp),
3024 *dbg_redzone2(cachep, objp));
3025 }
3026 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3027 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3028 }
3029
3030 objp += obj_offset(cachep);
3031 if (cachep->ctor && cachep->flags & SLAB_POISON)
3032 cachep->ctor(objp);
3033 if (ARCH_SLAB_MINALIGN &&
3034 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3035 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3036 objp, (int)ARCH_SLAB_MINALIGN);
3037 }
3038 return objp;
3039 }
3040 #else
3041 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3042 #endif
3043
3044 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3045 {
3046 void *objp;
3047 struct array_cache *ac;
3048
3049 check_irq_off();
3050
3051 ac = cpu_cache_get(cachep);
3052 if (likely(ac->avail)) {
3053 ac->touched = 1;
3054 objp = ac->entry[--ac->avail];
3055
3056 STATS_INC_ALLOCHIT(cachep);
3057 goto out;
3058 }
3059
3060 STATS_INC_ALLOCMISS(cachep);
3061 objp = cache_alloc_refill(cachep, flags);
3062 /*
3063 * the 'ac' may be updated by cache_alloc_refill(),
3064 * and kmemleak_erase() requires its correct value.
3065 */
3066 ac = cpu_cache_get(cachep);
3067
3068 out:
3069 /*
3070 * To avoid a false negative, if an object that is in one of the
3071 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3072 * treat the array pointers as a reference to the object.
3073 */
3074 if (objp)
3075 kmemleak_erase(&ac->entry[ac->avail]);
3076 return objp;
3077 }
3078
3079 #ifdef CONFIG_NUMA
3080 /*
3081 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3082 *
3083 * If we are in_interrupt, then process context, including cpusets and
3084 * mempolicy, may not apply and should not be used for allocation policy.
3085 */
3086 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3087 {
3088 int nid_alloc, nid_here;
3089
3090 if (in_interrupt() || (flags & __GFP_THISNODE))
3091 return NULL;
3092 nid_alloc = nid_here = numa_mem_id();
3093 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3094 nid_alloc = cpuset_slab_spread_node();
3095 else if (current->mempolicy)
3096 nid_alloc = mempolicy_slab_node();
3097 if (nid_alloc != nid_here)
3098 return ____cache_alloc_node(cachep, flags, nid_alloc);
3099 return NULL;
3100 }
3101
3102 /*
3103 * Fallback function if there was no memory available and no objects on a
3104 * certain node and fall back is permitted. First we scan all the
3105 * available node for available objects. If that fails then we
3106 * perform an allocation without specifying a node. This allows the page
3107 * allocator to do its reclaim / fallback magic. We then insert the
3108 * slab into the proper nodelist and then allocate from it.
3109 */
3110 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3111 {
3112 struct zonelist *zonelist;
3113 struct zoneref *z;
3114 struct zone *zone;
3115 enum zone_type high_zoneidx = gfp_zone(flags);
3116 void *obj = NULL;
3117 struct page *page;
3118 int nid;
3119 unsigned int cpuset_mems_cookie;
3120
3121 if (flags & __GFP_THISNODE)
3122 return NULL;
3123
3124 retry_cpuset:
3125 cpuset_mems_cookie = read_mems_allowed_begin();
3126 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3127
3128 retry:
3129 /*
3130 * Look through allowed nodes for objects available
3131 * from existing per node queues.
3132 */
3133 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3134 nid = zone_to_nid(zone);
3135
3136 if (cpuset_zone_allowed(zone, flags) &&
3137 get_node(cache, nid) &&
3138 get_node(cache, nid)->free_objects) {
3139 obj = ____cache_alloc_node(cache,
3140 gfp_exact_node(flags), nid);
3141 if (obj)
3142 break;
3143 }
3144 }
3145
3146 if (!obj) {
3147 /*
3148 * This allocation will be performed within the constraints
3149 * of the current cpuset / memory policy requirements.
3150 * We may trigger various forms of reclaim on the allowed
3151 * set and go into memory reserves if necessary.
3152 */
3153 page = cache_grow_begin(cache, flags, numa_mem_id());
3154 cache_grow_end(cache, page);
3155 if (page) {
3156 nid = page_to_nid(page);
3157 obj = ____cache_alloc_node(cache,
3158 gfp_exact_node(flags), nid);
3159
3160 /*
3161 * Another processor may allocate the objects in
3162 * the slab since we are not holding any locks.
3163 */
3164 if (!obj)
3165 goto retry;
3166 }
3167 }
3168
3169 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3170 goto retry_cpuset;
3171 return obj;
3172 }
3173
3174 /*
3175 * A interface to enable slab creation on nodeid
3176 */
3177 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3178 int nodeid)
3179 {
3180 struct page *page;
3181 struct kmem_cache_node *n;
3182 void *obj = NULL;
3183 void *list = NULL;
3184
3185 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3186 n = get_node(cachep, nodeid);
3187 BUG_ON(!n);
3188
3189 check_irq_off();
3190 spin_lock(&n->list_lock);
3191 page = get_first_slab(n, false);
3192 if (!page)
3193 goto must_grow;
3194
3195 check_spinlock_acquired_node(cachep, nodeid);
3196
3197 STATS_INC_NODEALLOCS(cachep);
3198 STATS_INC_ACTIVE(cachep);
3199 STATS_SET_HIGH(cachep);
3200
3201 BUG_ON(page->active == cachep->num);
3202
3203 obj = slab_get_obj(cachep, page);
3204 n->free_objects--;
3205
3206 fixup_slab_list(cachep, n, page, &list);
3207
3208 spin_unlock(&n->list_lock);
3209 fixup_objfreelist_debug(cachep, &list);
3210 return obj;
3211
3212 must_grow:
3213 spin_unlock(&n->list_lock);
3214 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3215 if (page) {
3216 /* This slab isn't counted yet so don't update free_objects */
3217 obj = slab_get_obj(cachep, page);
3218 }
3219 cache_grow_end(cachep, page);
3220
3221 return obj ? obj : fallback_alloc(cachep, flags);
3222 }
3223
3224 static __always_inline void *
3225 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3226 unsigned long caller)
3227 {
3228 unsigned long save_flags;
3229 void *ptr;
3230 int slab_node = numa_mem_id();
3231
3232 flags &= gfp_allowed_mask;
3233 cachep = slab_pre_alloc_hook(cachep, flags);
3234 if (unlikely(!cachep))
3235 return NULL;
3236
3237 cache_alloc_debugcheck_before(cachep, flags);
3238 local_irq_save(save_flags);
3239
3240 if (nodeid == NUMA_NO_NODE)
3241 nodeid = slab_node;
3242
3243 if (unlikely(!get_node(cachep, nodeid))) {
3244 /* Node not bootstrapped yet */
3245 ptr = fallback_alloc(cachep, flags);
3246 goto out;
3247 }
3248
3249 if (nodeid == slab_node) {
3250 /*
3251 * Use the locally cached objects if possible.
3252 * However ____cache_alloc does not allow fallback
3253 * to other nodes. It may fail while we still have
3254 * objects on other nodes available.
3255 */
3256 ptr = ____cache_alloc(cachep, flags);
3257 if (ptr)
3258 goto out;
3259 }
3260 /* ___cache_alloc_node can fall back to other nodes */
3261 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3262 out:
3263 local_irq_restore(save_flags);
3264 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3265
3266 if (unlikely(flags & __GFP_ZERO) && ptr)
3267 memset(ptr, 0, cachep->object_size);
3268
3269 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3270 return ptr;
3271 }
3272
3273 static __always_inline void *
3274 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3275 {
3276 void *objp;
3277
3278 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3279 objp = alternate_node_alloc(cache, flags);
3280 if (objp)
3281 goto out;
3282 }
3283 objp = ____cache_alloc(cache, flags);
3284
3285 /*
3286 * We may just have run out of memory on the local node.
3287 * ____cache_alloc_node() knows how to locate memory on other nodes
3288 */
3289 if (!objp)
3290 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3291
3292 out:
3293 return objp;
3294 }
3295 #else
3296
3297 static __always_inline void *
3298 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3299 {
3300 return ____cache_alloc(cachep, flags);
3301 }
3302
3303 #endif /* CONFIG_NUMA */
3304
3305 static __always_inline void *
3306 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3307 {
3308 unsigned long save_flags;
3309 void *objp;
3310
3311 flags &= gfp_allowed_mask;
3312 cachep = slab_pre_alloc_hook(cachep, flags);
3313 if (unlikely(!cachep))
3314 return NULL;
3315
3316 cache_alloc_debugcheck_before(cachep, flags);
3317 local_irq_save(save_flags);
3318 objp = __do_cache_alloc(cachep, flags);
3319 local_irq_restore(save_flags);
3320 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3321 prefetchw(objp);
3322
3323 if (unlikely(flags & __GFP_ZERO) && objp)
3324 memset(objp, 0, cachep->object_size);
3325
3326 slab_post_alloc_hook(cachep, flags, 1, &objp);
3327 return objp;
3328 }
3329
3330 /*
3331 * Caller needs to acquire correct kmem_cache_node's list_lock
3332 * @list: List of detached free slabs should be freed by caller
3333 */
3334 static void free_block(struct kmem_cache *cachep, void **objpp,
3335 int nr_objects, int node, struct list_head *list)
3336 {
3337 int i;
3338 struct kmem_cache_node *n = get_node(cachep, node);
3339 struct page *page;
3340
3341 n->free_objects += nr_objects;
3342
3343 for (i = 0; i < nr_objects; i++) {
3344 void *objp;
3345 struct page *page;
3346
3347 objp = objpp[i];
3348
3349 page = virt_to_head_page(objp);
3350 list_del(&page->slab_list);
3351 check_spinlock_acquired_node(cachep, node);
3352 slab_put_obj(cachep, page, objp);
3353 STATS_DEC_ACTIVE(cachep);
3354
3355 /* fixup slab chains */
3356 if (page->active == 0) {
3357 list_add(&page->slab_list, &n->slabs_free);
3358 n->free_slabs++;
3359 } else {
3360 /* Unconditionally move a slab to the end of the
3361 * partial list on free - maximum time for the
3362 * other objects to be freed, too.
3363 */
3364 list_add_tail(&page->slab_list, &n->slabs_partial);
3365 }
3366 }
3367
3368 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3369 n->free_objects -= cachep->num;
3370
3371 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3372 list_move(&page->slab_list, list);
3373 n->free_slabs--;
3374 n->total_slabs--;
3375 }
3376 }
3377
3378 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3379 {
3380 int batchcount;
3381 struct kmem_cache_node *n;
3382 int node = numa_mem_id();
3383 LIST_HEAD(list);
3384
3385 batchcount = ac->batchcount;
3386
3387 check_irq_off();
3388 n = get_node(cachep, node);
3389 spin_lock(&n->list_lock);
3390 if (n->shared) {
3391 struct array_cache *shared_array = n->shared;
3392 int max = shared_array->limit - shared_array->avail;
3393 if (max) {
3394 if (batchcount > max)
3395 batchcount = max;
3396 memcpy(&(shared_array->entry[shared_array->avail]),
3397 ac->entry, sizeof(void *) * batchcount);
3398 shared_array->avail += batchcount;
3399 goto free_done;
3400 }
3401 }
3402
3403 free_block(cachep, ac->entry, batchcount, node, &list);
3404 free_done:
3405 #if STATS
3406 {
3407 int i = 0;
3408 struct page *page;
3409
3410 list_for_each_entry(page, &n->slabs_free, slab_list) {
3411 BUG_ON(page->active);
3412
3413 i++;
3414 }
3415 STATS_SET_FREEABLE(cachep, i);
3416 }
3417 #endif
3418 spin_unlock(&n->list_lock);
3419 slabs_destroy(cachep, &list);
3420 ac->avail -= batchcount;
3421 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3422 }
3423
3424 /*
3425 * Release an obj back to its cache. If the obj has a constructed state, it must
3426 * be in this state _before_ it is released. Called with disabled ints.
3427 */
3428 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3429 unsigned long caller)
3430 {
3431 /* Put the object into the quarantine, don't touch it for now. */
3432 if (kasan_slab_free(cachep, objp, _RET_IP_))
3433 return;
3434
3435 ___cache_free(cachep, objp, caller);
3436 }
3437
3438 void ___cache_free(struct kmem_cache *cachep, void *objp,
3439 unsigned long caller)
3440 {
3441 struct array_cache *ac = cpu_cache_get(cachep);
3442
3443 check_irq_off();
3444 kmemleak_free_recursive(objp, cachep->flags);
3445 objp = cache_free_debugcheck(cachep, objp, caller);
3446
3447 /*
3448 * Skip calling cache_free_alien() when the platform is not numa.
3449 * This will avoid cache misses that happen while accessing slabp (which
3450 * is per page memory reference) to get nodeid. Instead use a global
3451 * variable to skip the call, which is mostly likely to be present in
3452 * the cache.
3453 */
3454 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3455 return;
3456
3457 if (ac->avail < ac->limit) {
3458 STATS_INC_FREEHIT(cachep);
3459 } else {
3460 STATS_INC_FREEMISS(cachep);
3461 cache_flusharray(cachep, ac);
3462 }
3463
3464 if (sk_memalloc_socks()) {
3465 struct page *page = virt_to_head_page(objp);
3466
3467 if (unlikely(PageSlabPfmemalloc(page))) {
3468 cache_free_pfmemalloc(cachep, page, objp);
3469 return;
3470 }
3471 }
3472
3473 ac->entry[ac->avail++] = objp;
3474 }
3475
3476 /**
3477 * kmem_cache_alloc - Allocate an object
3478 * @cachep: The cache to allocate from.
3479 * @flags: See kmalloc().
3480 *
3481 * Allocate an object from this cache. The flags are only relevant
3482 * if the cache has no available objects.
3483 *
3484 * Return: pointer to the new object or %NULL in case of error
3485 */
3486 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3487 {
3488 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3489
3490 trace_kmem_cache_alloc(_RET_IP_, ret,
3491 cachep->object_size, cachep->size, flags);
3492
3493 return ret;
3494 }
3495 EXPORT_SYMBOL(kmem_cache_alloc);
3496
3497 static __always_inline void
3498 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3499 size_t size, void **p, unsigned long caller)
3500 {
3501 size_t i;
3502
3503 for (i = 0; i < size; i++)
3504 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3505 }
3506
3507 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3508 void **p)
3509 {
3510 size_t i;
3511
3512 s = slab_pre_alloc_hook(s, flags);
3513 if (!s)
3514 return 0;
3515
3516 cache_alloc_debugcheck_before(s, flags);
3517
3518 local_irq_disable();
3519 for (i = 0; i < size; i++) {
3520 void *objp = __do_cache_alloc(s, flags);
3521
3522 if (unlikely(!objp))
3523 goto error;
3524 p[i] = objp;
3525 }
3526 local_irq_enable();
3527
3528 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529
3530 /* Clear memory outside IRQ disabled section */
3531 if (unlikely(flags & __GFP_ZERO))
3532 for (i = 0; i < size; i++)
3533 memset(p[i], 0, s->object_size);
3534
3535 slab_post_alloc_hook(s, flags, size, p);
3536 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3537 return size;
3538 error:
3539 local_irq_enable();
3540 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3541 slab_post_alloc_hook(s, flags, i, p);
3542 __kmem_cache_free_bulk(s, i, p);
3543 return 0;
3544 }
3545 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546
3547 #ifdef CONFIG_TRACING
3548 void *
3549 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3550 {
3551 void *ret;
3552
3553 ret = slab_alloc(cachep, flags, _RET_IP_);
3554
3555 ret = kasan_kmalloc(cachep, ret, size, flags);
3556 trace_kmalloc(_RET_IP_, ret,
3557 size, cachep->size, flags);
3558 return ret;
3559 }
3560 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3561 #endif
3562
3563 #ifdef CONFIG_NUMA
3564 /**
3565 * kmem_cache_alloc_node - Allocate an object on the specified node
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 * @nodeid: node number of the target node.
3569 *
3570 * Identical to kmem_cache_alloc but it will allocate memory on the given
3571 * node, which can improve the performance for cpu bound structures.
3572 *
3573 * Fallback to other node is possible if __GFP_THISNODE is not set.
3574 *
3575 * Return: pointer to the new object or %NULL in case of error
3576 */
3577 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578 {
3579 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3580
3581 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3582 cachep->object_size, cachep->size,
3583 flags, nodeid);
3584
3585 return ret;
3586 }
3587 EXPORT_SYMBOL(kmem_cache_alloc_node);
3588
3589 #ifdef CONFIG_TRACING
3590 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3591 gfp_t flags,
3592 int nodeid,
3593 size_t size)
3594 {
3595 void *ret;
3596
3597 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3598
3599 ret = kasan_kmalloc(cachep, ret, size, flags);
3600 trace_kmalloc_node(_RET_IP_, ret,
3601 size, cachep->size,
3602 flags, nodeid);
3603 return ret;
3604 }
3605 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3606 #endif
3607
3608 static __always_inline void *
3609 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3610 {
3611 struct kmem_cache *cachep;
3612 void *ret;
3613
3614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3615 return NULL;
3616 cachep = kmalloc_slab(size, flags);
3617 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3618 return cachep;
3619 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3620 ret = kasan_kmalloc(cachep, ret, size, flags);
3621
3622 return ret;
3623 }
3624
3625 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626 {
3627 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3628 }
3629 EXPORT_SYMBOL(__kmalloc_node);
3630
3631 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3632 int node, unsigned long caller)
3633 {
3634 return __do_kmalloc_node(size, flags, node, caller);
3635 }
3636 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3637 #endif /* CONFIG_NUMA */
3638
3639 /**
3640 * __do_kmalloc - allocate memory
3641 * @size: how many bytes of memory are required.
3642 * @flags: the type of memory to allocate (see kmalloc).
3643 * @caller: function caller for debug tracking of the caller
3644 *
3645 * Return: pointer to the allocated memory or %NULL in case of error
3646 */
3647 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3648 unsigned long caller)
3649 {
3650 struct kmem_cache *cachep;
3651 void *ret;
3652
3653 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3654 return NULL;
3655 cachep = kmalloc_slab(size, flags);
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 return cachep;
3658 ret = slab_alloc(cachep, flags, caller);
3659
3660 ret = kasan_kmalloc(cachep, ret, size, flags);
3661 trace_kmalloc(caller, ret,
3662 size, cachep->size, flags);
3663
3664 return ret;
3665 }
3666
3667 void *__kmalloc(size_t size, gfp_t flags)
3668 {
3669 return __do_kmalloc(size, flags, _RET_IP_);
3670 }
3671 EXPORT_SYMBOL(__kmalloc);
3672
3673 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3674 {
3675 return __do_kmalloc(size, flags, caller);
3676 }
3677 EXPORT_SYMBOL(__kmalloc_track_caller);
3678
3679 /**
3680 * kmem_cache_free - Deallocate an object
3681 * @cachep: The cache the allocation was from.
3682 * @objp: The previously allocated object.
3683 *
3684 * Free an object which was previously allocated from this
3685 * cache.
3686 */
3687 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3688 {
3689 unsigned long flags;
3690 cachep = cache_from_obj(cachep, objp);
3691 if (!cachep)
3692 return;
3693
3694 local_irq_save(flags);
3695 debug_check_no_locks_freed(objp, cachep->object_size);
3696 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3697 debug_check_no_obj_freed(objp, cachep->object_size);
3698 __cache_free(cachep, objp, _RET_IP_);
3699 local_irq_restore(flags);
3700
3701 trace_kmem_cache_free(_RET_IP_, objp);
3702 }
3703 EXPORT_SYMBOL(kmem_cache_free);
3704
3705 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706 {
3707 struct kmem_cache *s;
3708 size_t i;
3709
3710 local_irq_disable();
3711 for (i = 0; i < size; i++) {
3712 void *objp = p[i];
3713
3714 if (!orig_s) /* called via kfree_bulk */
3715 s = virt_to_cache(objp);
3716 else
3717 s = cache_from_obj(orig_s, objp);
3718
3719 debug_check_no_locks_freed(objp, s->object_size);
3720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3721 debug_check_no_obj_freed(objp, s->object_size);
3722
3723 __cache_free(s, objp, _RET_IP_);
3724 }
3725 local_irq_enable();
3726
3727 /* FIXME: add tracing */
3728 }
3729 EXPORT_SYMBOL(kmem_cache_free_bulk);
3730
3731 /**
3732 * kfree - free previously allocated memory
3733 * @objp: pointer returned by kmalloc.
3734 *
3735 * If @objp is NULL, no operation is performed.
3736 *
3737 * Don't free memory not originally allocated by kmalloc()
3738 * or you will run into trouble.
3739 */
3740 void kfree(const void *objp)
3741 {
3742 struct kmem_cache *c;
3743 unsigned long flags;
3744
3745 trace_kfree(_RET_IP_, objp);
3746
3747 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3748 return;
3749 local_irq_save(flags);
3750 kfree_debugcheck(objp);
3751 c = virt_to_cache(objp);
3752 debug_check_no_locks_freed(objp, c->object_size);
3753
3754 debug_check_no_obj_freed(objp, c->object_size);
3755 __cache_free(c, (void *)objp, _RET_IP_);
3756 local_irq_restore(flags);
3757 }
3758 EXPORT_SYMBOL(kfree);
3759
3760 /*
3761 * This initializes kmem_cache_node or resizes various caches for all nodes.
3762 */
3763 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3764 {
3765 int ret;
3766 int node;
3767 struct kmem_cache_node *n;
3768
3769 for_each_online_node(node) {
3770 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3771 if (ret)
3772 goto fail;
3773
3774 }
3775
3776 return 0;
3777
3778 fail:
3779 if (!cachep->list.next) {
3780 /* Cache is not active yet. Roll back what we did */
3781 node--;
3782 while (node >= 0) {
3783 n = get_node(cachep, node);
3784 if (n) {
3785 kfree(n->shared);
3786 free_alien_cache(n->alien);
3787 kfree(n);
3788 cachep->node[node] = NULL;
3789 }
3790 node--;
3791 }
3792 }
3793 return -ENOMEM;
3794 }
3795
3796 /* Always called with the slab_mutex held */
3797 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3798 int batchcount, int shared, gfp_t gfp)
3799 {
3800 struct array_cache __percpu *cpu_cache, *prev;
3801 int cpu;
3802
3803 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3804 if (!cpu_cache)
3805 return -ENOMEM;
3806
3807 prev = cachep->cpu_cache;
3808 cachep->cpu_cache = cpu_cache;
3809 /*
3810 * Without a previous cpu_cache there's no need to synchronize remote
3811 * cpus, so skip the IPIs.
3812 */
3813 if (prev)
3814 kick_all_cpus_sync();
3815
3816 check_irq_on();
3817 cachep->batchcount = batchcount;
3818 cachep->limit = limit;
3819 cachep->shared = shared;
3820
3821 if (!prev)
3822 goto setup_node;
3823
3824 for_each_online_cpu(cpu) {
3825 LIST_HEAD(list);
3826 int node;
3827 struct kmem_cache_node *n;
3828 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3829
3830 node = cpu_to_mem(cpu);
3831 n = get_node(cachep, node);
3832 spin_lock_irq(&n->list_lock);
3833 free_block(cachep, ac->entry, ac->avail, node, &list);
3834 spin_unlock_irq(&n->list_lock);
3835 slabs_destroy(cachep, &list);
3836 }
3837 free_percpu(prev);
3838
3839 setup_node:
3840 return setup_kmem_cache_nodes(cachep, gfp);
3841 }
3842
3843 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3844 int batchcount, int shared, gfp_t gfp)
3845 {
3846 int ret;
3847 struct kmem_cache *c;
3848
3849 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3850
3851 if (slab_state < FULL)
3852 return ret;
3853
3854 if ((ret < 0) || !is_root_cache(cachep))
3855 return ret;
3856
3857 lockdep_assert_held(&slab_mutex);
3858 for_each_memcg_cache(c, cachep) {
3859 /* return value determined by the root cache only */
3860 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3861 }
3862
3863 return ret;
3864 }
3865
3866 /* Called with slab_mutex held always */
3867 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3868 {
3869 int err;
3870 int limit = 0;
3871 int shared = 0;
3872 int batchcount = 0;
3873
3874 err = cache_random_seq_create(cachep, cachep->num, gfp);
3875 if (err)
3876 goto end;
3877
3878 if (!is_root_cache(cachep)) {
3879 struct kmem_cache *root = memcg_root_cache(cachep);
3880 limit = root->limit;
3881 shared = root->shared;
3882 batchcount = root->batchcount;
3883 }
3884
3885 if (limit && shared && batchcount)
3886 goto skip_setup;
3887 /*
3888 * The head array serves three purposes:
3889 * - create a LIFO ordering, i.e. return objects that are cache-warm
3890 * - reduce the number of spinlock operations.
3891 * - reduce the number of linked list operations on the slab and
3892 * bufctl chains: array operations are cheaper.
3893 * The numbers are guessed, we should auto-tune as described by
3894 * Bonwick.
3895 */
3896 if (cachep->size > 131072)
3897 limit = 1;
3898 else if (cachep->size > PAGE_SIZE)
3899 limit = 8;
3900 else if (cachep->size > 1024)
3901 limit = 24;
3902 else if (cachep->size > 256)
3903 limit = 54;
3904 else
3905 limit = 120;
3906
3907 /*
3908 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3909 * allocation behaviour: Most allocs on one cpu, most free operations
3910 * on another cpu. For these cases, an efficient object passing between
3911 * cpus is necessary. This is provided by a shared array. The array
3912 * replaces Bonwick's magazine layer.
3913 * On uniprocessor, it's functionally equivalent (but less efficient)
3914 * to a larger limit. Thus disabled by default.
3915 */
3916 shared = 0;
3917 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3918 shared = 8;
3919
3920 #if DEBUG
3921 /*
3922 * With debugging enabled, large batchcount lead to excessively long
3923 * periods with disabled local interrupts. Limit the batchcount
3924 */
3925 if (limit > 32)
3926 limit = 32;
3927 #endif
3928 batchcount = (limit + 1) / 2;
3929 skip_setup:
3930 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3931 end:
3932 if (err)
3933 pr_err("enable_cpucache failed for %s, error %d\n",
3934 cachep->name, -err);
3935 return err;
3936 }
3937
3938 /*
3939 * Drain an array if it contains any elements taking the node lock only if
3940 * necessary. Note that the node listlock also protects the array_cache
3941 * if drain_array() is used on the shared array.
3942 */
3943 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3944 struct array_cache *ac, int node)
3945 {
3946 LIST_HEAD(list);
3947
3948 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949 check_mutex_acquired();
3950
3951 if (!ac || !ac->avail)
3952 return;
3953
3954 if (ac->touched) {
3955 ac->touched = 0;
3956 return;
3957 }
3958
3959 spin_lock_irq(&n->list_lock);
3960 drain_array_locked(cachep, ac, node, false, &list);
3961 spin_unlock_irq(&n->list_lock);
3962
3963 slabs_destroy(cachep, &list);
3964 }
3965
3966 /**
3967 * cache_reap - Reclaim memory from caches.
3968 * @w: work descriptor
3969 *
3970 * Called from workqueue/eventd every few seconds.
3971 * Purpose:
3972 * - clear the per-cpu caches for this CPU.
3973 * - return freeable pages to the main free memory pool.
3974 *
3975 * If we cannot acquire the cache chain mutex then just give up - we'll try
3976 * again on the next iteration.
3977 */
3978 static void cache_reap(struct work_struct *w)
3979 {
3980 struct kmem_cache *searchp;
3981 struct kmem_cache_node *n;
3982 int node = numa_mem_id();
3983 struct delayed_work *work = to_delayed_work(w);
3984
3985 if (!mutex_trylock(&slab_mutex))
3986 /* Give up. Setup the next iteration. */
3987 goto out;
3988
3989 list_for_each_entry(searchp, &slab_caches, list) {
3990 check_irq_on();
3991
3992 /*
3993 * We only take the node lock if absolutely necessary and we
3994 * have established with reasonable certainty that
3995 * we can do some work if the lock was obtained.
3996 */
3997 n = get_node(searchp, node);
3998
3999 reap_alien(searchp, n);
4000
4001 drain_array(searchp, n, cpu_cache_get(searchp), node);
4002
4003 /*
4004 * These are racy checks but it does not matter
4005 * if we skip one check or scan twice.
4006 */
4007 if (time_after(n->next_reap, jiffies))
4008 goto next;
4009
4010 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4011
4012 drain_array(searchp, n, n->shared, node);
4013
4014 if (n->free_touched)
4015 n->free_touched = 0;
4016 else {
4017 int freed;
4018
4019 freed = drain_freelist(searchp, n, (n->free_limit +
4020 5 * searchp->num - 1) / (5 * searchp->num));
4021 STATS_ADD_REAPED(searchp, freed);
4022 }
4023 next:
4024 cond_resched();
4025 }
4026 check_irq_on();
4027 mutex_unlock(&slab_mutex);
4028 next_reap_node();
4029 out:
4030 /* Set up the next iteration */
4031 schedule_delayed_work_on(smp_processor_id(), work,
4032 round_jiffies_relative(REAPTIMEOUT_AC));
4033 }
4034
4035 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4036 {
4037 unsigned long active_objs, num_objs, active_slabs;
4038 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4039 unsigned long free_slabs = 0;
4040 int node;
4041 struct kmem_cache_node *n;
4042
4043 for_each_kmem_cache_node(cachep, node, n) {
4044 check_irq_on();
4045 spin_lock_irq(&n->list_lock);
4046
4047 total_slabs += n->total_slabs;
4048 free_slabs += n->free_slabs;
4049 free_objs += n->free_objects;
4050
4051 if (n->shared)
4052 shared_avail += n->shared->avail;
4053
4054 spin_unlock_irq(&n->list_lock);
4055 }
4056 num_objs = total_slabs * cachep->num;
4057 active_slabs = total_slabs - free_slabs;
4058 active_objs = num_objs - free_objs;
4059
4060 sinfo->active_objs = active_objs;
4061 sinfo->num_objs = num_objs;
4062 sinfo->active_slabs = active_slabs;
4063 sinfo->num_slabs = total_slabs;
4064 sinfo->shared_avail = shared_avail;
4065 sinfo->limit = cachep->limit;
4066 sinfo->batchcount = cachep->batchcount;
4067 sinfo->shared = cachep->shared;
4068 sinfo->objects_per_slab = cachep->num;
4069 sinfo->cache_order = cachep->gfporder;
4070 }
4071
4072 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4073 {
4074 #if STATS
4075 { /* node stats */
4076 unsigned long high = cachep->high_mark;
4077 unsigned long allocs = cachep->num_allocations;
4078 unsigned long grown = cachep->grown;
4079 unsigned long reaped = cachep->reaped;
4080 unsigned long errors = cachep->errors;
4081 unsigned long max_freeable = cachep->max_freeable;
4082 unsigned long node_allocs = cachep->node_allocs;
4083 unsigned long node_frees = cachep->node_frees;
4084 unsigned long overflows = cachep->node_overflow;
4085
4086 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4087 allocs, high, grown,
4088 reaped, errors, max_freeable, node_allocs,
4089 node_frees, overflows);
4090 }
4091 /* cpu stats */
4092 {
4093 unsigned long allochit = atomic_read(&cachep->allochit);
4094 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4095 unsigned long freehit = atomic_read(&cachep->freehit);
4096 unsigned long freemiss = atomic_read(&cachep->freemiss);
4097
4098 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4099 allochit, allocmiss, freehit, freemiss);
4100 }
4101 #endif
4102 }
4103
4104 #define MAX_SLABINFO_WRITE 128
4105 /**
4106 * slabinfo_write - Tuning for the slab allocator
4107 * @file: unused
4108 * @buffer: user buffer
4109 * @count: data length
4110 * @ppos: unused
4111 *
4112 * Return: %0 on success, negative error code otherwise.
4113 */
4114 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4115 size_t count, loff_t *ppos)
4116 {
4117 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4118 int limit, batchcount, shared, res;
4119 struct kmem_cache *cachep;
4120
4121 if (count > MAX_SLABINFO_WRITE)
4122 return -EINVAL;
4123 if (copy_from_user(&kbuf, buffer, count))
4124 return -EFAULT;
4125 kbuf[MAX_SLABINFO_WRITE] = '\0';
4126
4127 tmp = strchr(kbuf, ' ');
4128 if (!tmp)
4129 return -EINVAL;
4130 *tmp = '\0';
4131 tmp++;
4132 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4133 return -EINVAL;
4134
4135 /* Find the cache in the chain of caches. */
4136 mutex_lock(&slab_mutex);
4137 res = -EINVAL;
4138 list_for_each_entry(cachep, &slab_caches, list) {
4139 if (!strcmp(cachep->name, kbuf)) {
4140 if (limit < 1 || batchcount < 1 ||
4141 batchcount > limit || shared < 0) {
4142 res = 0;
4143 } else {
4144 res = do_tune_cpucache(cachep, limit,
4145 batchcount, shared,
4146 GFP_KERNEL);
4147 }
4148 break;
4149 }
4150 }
4151 mutex_unlock(&slab_mutex);
4152 if (res >= 0)
4153 res = count;
4154 return res;
4155 }
4156
4157 #ifdef CONFIG_HARDENED_USERCOPY
4158 /*
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
4162 *
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4165 */
4166 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167 bool to_user)
4168 {
4169 struct kmem_cache *cachep;
4170 unsigned int objnr;
4171 unsigned long offset;
4172
4173 ptr = kasan_reset_tag(ptr);
4174
4175 /* Find and validate object. */
4176 cachep = page->slab_cache;
4177 objnr = obj_to_index(cachep, page, (void *)ptr);
4178 BUG_ON(objnr >= cachep->num);
4179
4180 /* Find offset within object. */
4181 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4182
4183 /* Allow address range falling entirely within usercopy region. */
4184 if (offset >= cachep->useroffset &&
4185 offset - cachep->useroffset <= cachep->usersize &&
4186 n <= cachep->useroffset - offset + cachep->usersize)
4187 return;
4188
4189 /*
4190 * If the copy is still within the allocated object, produce
4191 * a warning instead of rejecting the copy. This is intended
4192 * to be a temporary method to find any missing usercopy
4193 * whitelists.
4194 */
4195 if (usercopy_fallback &&
4196 offset <= cachep->object_size &&
4197 n <= cachep->object_size - offset) {
4198 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4199 return;
4200 }
4201
4202 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4203 }
4204 #endif /* CONFIG_HARDENED_USERCOPY */
4205
4206 /**
4207 * ksize - get the actual amount of memory allocated for a given object
4208 * @objp: Pointer to the object
4209 *
4210 * kmalloc may internally round up allocations and return more memory
4211 * than requested. ksize() can be used to determine the actual amount of
4212 * memory allocated. The caller may use this additional memory, even though
4213 * a smaller amount of memory was initially specified with the kmalloc call.
4214 * The caller must guarantee that objp points to a valid object previously
4215 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216 * must not be freed during the duration of the call.
4217 *
4218 * Return: size of the actual memory used by @objp in bytes
4219 */
4220 size_t ksize(const void *objp)
4221 {
4222 size_t size;
4223
4224 BUG_ON(!objp);
4225 if (unlikely(objp == ZERO_SIZE_PTR))
4226 return 0;
4227
4228 size = virt_to_cache(objp)->object_size;
4229 /* We assume that ksize callers could use the whole allocated area,
4230 * so we need to unpoison this area.
4231 */
4232 kasan_unpoison_shadow(objp, size);
4233
4234 return size;
4235 }
4236 EXPORT_SYMBOL(ksize);