]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/slab_common.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / slab_common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28
29 #include "internal.h"
30 #include "slab.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
34
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
45 /*
46 * Set of flags that will prevent slab merging
47 */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 SLAB_FAILSLAB | kasan_never_merge())
51
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54
55 /*
56 * Merge control. If this is set then no merging of slab caches will occur.
57 */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59
60 static int __init setup_slab_nomerge(char *str)
61 {
62 slab_nomerge = true;
63 return 1;
64 }
65
66 static int __init setup_slab_merge(char *str)
67 {
68 slab_nomerge = false;
69 return 1;
70 }
71
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79
80 /*
81 * Determine the size of a slab object
82 */
83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
95 }
96
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
98 return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 return 0;
104 }
105 #endif
106
107 /*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
111 static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
113 {
114 /*
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
117 *
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
120 */
121 if (flags & SLAB_HWCACHE_ALIGN) {
122 unsigned int ralign;
123
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
130 align = max(align, arch_slab_minalign());
131
132 return ALIGN(align, sizeof(void *));
133 }
134
135 /*
136 * Find a mergeable slab cache
137 */
138 int slab_unmergeable(struct kmem_cache *s)
139 {
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 return 1;
142
143 if (s->ctor)
144 return 1;
145
146 if (s->usersize)
147 return 1;
148
149 /*
150 * We may have set a slab to be unmergeable during bootstrap.
151 */
152 if (s->refcount < 0)
153 return 1;
154
155 return 0;
156 }
157
158 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
159 slab_flags_t flags, const char *name, void (*ctor)(void *))
160 {
161 struct kmem_cache *s;
162
163 if (slab_nomerge)
164 return NULL;
165
166 if (ctor)
167 return NULL;
168
169 size = ALIGN(size, sizeof(void *));
170 align = calculate_alignment(flags, align, size);
171 size = ALIGN(size, align);
172 flags = kmem_cache_flags(size, flags, name);
173
174 if (flags & SLAB_NEVER_MERGE)
175 return NULL;
176
177 list_for_each_entry_reverse(s, &slab_caches, list) {
178 if (slab_unmergeable(s))
179 continue;
180
181 if (size > s->size)
182 continue;
183
184 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
185 continue;
186 /*
187 * Check if alignment is compatible.
188 * Courtesy of Adrian Drzewiecki
189 */
190 if ((s->size & ~(align - 1)) != s->size)
191 continue;
192
193 if (s->size - size >= sizeof(void *))
194 continue;
195
196 if (IS_ENABLED(CONFIG_SLAB) && align &&
197 (align > s->align || s->align % align))
198 continue;
199
200 return s;
201 }
202 return NULL;
203 }
204
205 static struct kmem_cache *create_cache(const char *name,
206 unsigned int object_size, unsigned int align,
207 slab_flags_t flags, unsigned int useroffset,
208 unsigned int usersize, void (*ctor)(void *),
209 struct kmem_cache *root_cache)
210 {
211 struct kmem_cache *s;
212 int err;
213
214 if (WARN_ON(useroffset + usersize > object_size))
215 useroffset = usersize = 0;
216
217 err = -ENOMEM;
218 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
219 if (!s)
220 goto out;
221
222 s->name = name;
223 s->size = s->object_size = object_size;
224 s->align = align;
225 s->ctor = ctor;
226 s->useroffset = useroffset;
227 s->usersize = usersize;
228
229 err = __kmem_cache_create(s, flags);
230 if (err)
231 goto out_free_cache;
232
233 s->refcount = 1;
234 list_add(&s->list, &slab_caches);
235 out:
236 if (err)
237 return ERR_PTR(err);
238 return s;
239
240 out_free_cache:
241 kmem_cache_free(kmem_cache, s);
242 goto out;
243 }
244
245 /**
246 * kmem_cache_create_usercopy - Create a cache with a region suitable
247 * for copying to userspace
248 * @name: A string which is used in /proc/slabinfo to identify this cache.
249 * @size: The size of objects to be created in this cache.
250 * @align: The required alignment for the objects.
251 * @flags: SLAB flags
252 * @useroffset: Usercopy region offset
253 * @usersize: Usercopy region size
254 * @ctor: A constructor for the objects.
255 *
256 * Cannot be called within a interrupt, but can be interrupted.
257 * The @ctor is run when new pages are allocated by the cache.
258 *
259 * The flags are
260 *
261 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
262 * to catch references to uninitialised memory.
263 *
264 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
265 * for buffer overruns.
266 *
267 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
268 * cacheline. This can be beneficial if you're counting cycles as closely
269 * as davem.
270 *
271 * Return: a pointer to the cache on success, NULL on failure.
272 */
273 struct kmem_cache *
274 kmem_cache_create_usercopy(const char *name,
275 unsigned int size, unsigned int align,
276 slab_flags_t flags,
277 unsigned int useroffset, unsigned int usersize,
278 void (*ctor)(void *))
279 {
280 struct kmem_cache *s = NULL;
281 const char *cache_name;
282 int err;
283
284 #ifdef CONFIG_SLUB_DEBUG
285 /*
286 * If no slub_debug was enabled globally, the static key is not yet
287 * enabled by setup_slub_debug(). Enable it if the cache is being
288 * created with any of the debugging flags passed explicitly.
289 * It's also possible that this is the first cache created with
290 * SLAB_STORE_USER and we should init stack_depot for it.
291 */
292 if (flags & SLAB_DEBUG_FLAGS)
293 static_branch_enable(&slub_debug_enabled);
294 if (flags & SLAB_STORE_USER)
295 stack_depot_init();
296 #endif
297
298 mutex_lock(&slab_mutex);
299
300 err = kmem_cache_sanity_check(name, size);
301 if (err) {
302 goto out_unlock;
303 }
304
305 /* Refuse requests with allocator specific flags */
306 if (flags & ~SLAB_FLAGS_PERMITTED) {
307 err = -EINVAL;
308 goto out_unlock;
309 }
310
311 /*
312 * Some allocators will constraint the set of valid flags to a subset
313 * of all flags. We expect them to define CACHE_CREATE_MASK in this
314 * case, and we'll just provide them with a sanitized version of the
315 * passed flags.
316 */
317 flags &= CACHE_CREATE_MASK;
318
319 /* Fail closed on bad usersize of useroffset values. */
320 if (WARN_ON(!usersize && useroffset) ||
321 WARN_ON(size < usersize || size - usersize < useroffset))
322 usersize = useroffset = 0;
323
324 if (!usersize)
325 s = __kmem_cache_alias(name, size, align, flags, ctor);
326 if (s)
327 goto out_unlock;
328
329 cache_name = kstrdup_const(name, GFP_KERNEL);
330 if (!cache_name) {
331 err = -ENOMEM;
332 goto out_unlock;
333 }
334
335 s = create_cache(cache_name, size,
336 calculate_alignment(flags, align, size),
337 flags, useroffset, usersize, ctor, NULL);
338 if (IS_ERR(s)) {
339 err = PTR_ERR(s);
340 kfree_const(cache_name);
341 }
342
343 out_unlock:
344 mutex_unlock(&slab_mutex);
345
346 if (err) {
347 if (flags & SLAB_PANIC)
348 panic("%s: Failed to create slab '%s'. Error %d\n",
349 __func__, name, err);
350 else {
351 pr_warn("%s(%s) failed with error %d\n",
352 __func__, name, err);
353 dump_stack();
354 }
355 return NULL;
356 }
357 return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360
361 /**
362 * kmem_cache_create - Create a cache.
363 * @name: A string which is used in /proc/slabinfo to identify this cache.
364 * @size: The size of objects to be created in this cache.
365 * @align: The required alignment for the objects.
366 * @flags: SLAB flags
367 * @ctor: A constructor for the objects.
368 *
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
371 *
372 * The flags are
373 *
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
376 *
377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378 * for buffer overruns.
379 *
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
382 * as davem.
383 *
384 * Return: a pointer to the cache on success, NULL on failure.
385 */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 slab_flags_t flags, void (*ctor)(void *))
389 {
390 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394
395 #ifdef SLAB_SUPPORTS_SYSFS
396 /*
397 * For a given kmem_cache, kmem_cache_destroy() should only be called
398 * once or there will be a use-after-free problem. The actual deletion
399 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400 * protection. So they are now done without holding those locks.
401 *
402 * Note that there will be a slight delay in the deletion of sysfs files
403 * if kmem_cache_release() is called indrectly from a work function.
404 */
405 static void kmem_cache_release(struct kmem_cache *s)
406 {
407 sysfs_slab_unlink(s);
408 sysfs_slab_release(s);
409 }
410 #else
411 static void kmem_cache_release(struct kmem_cache *s)
412 {
413 slab_kmem_cache_release(s);
414 }
415 #endif
416
417 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
418 {
419 LIST_HEAD(to_destroy);
420 struct kmem_cache *s, *s2;
421
422 /*
423 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
424 * @slab_caches_to_rcu_destroy list. The slab pages are freed
425 * through RCU and the associated kmem_cache are dereferenced
426 * while freeing the pages, so the kmem_caches should be freed only
427 * after the pending RCU operations are finished. As rcu_barrier()
428 * is a pretty slow operation, we batch all pending destructions
429 * asynchronously.
430 */
431 mutex_lock(&slab_mutex);
432 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
433 mutex_unlock(&slab_mutex);
434
435 if (list_empty(&to_destroy))
436 return;
437
438 rcu_barrier();
439
440 list_for_each_entry_safe(s, s2, &to_destroy, list) {
441 debugfs_slab_release(s);
442 kfence_shutdown_cache(s);
443 kmem_cache_release(s);
444 }
445 }
446
447 static int shutdown_cache(struct kmem_cache *s)
448 {
449 /* free asan quarantined objects */
450 kasan_cache_shutdown(s);
451
452 if (__kmem_cache_shutdown(s) != 0)
453 return -EBUSY;
454
455 list_del(&s->list);
456
457 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
459 schedule_work(&slab_caches_to_rcu_destroy_work);
460 } else {
461 kfence_shutdown_cache(s);
462 debugfs_slab_release(s);
463 }
464
465 return 0;
466 }
467
468 void slab_kmem_cache_release(struct kmem_cache *s)
469 {
470 __kmem_cache_release(s);
471 kfree_const(s->name);
472 kmem_cache_free(kmem_cache, s);
473 }
474
475 void kmem_cache_destroy(struct kmem_cache *s)
476 {
477 int refcnt;
478 bool rcu_set;
479
480 if (unlikely(!s) || !kasan_check_byte(s))
481 return;
482
483 cpus_read_lock();
484 mutex_lock(&slab_mutex);
485
486 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
487
488 refcnt = --s->refcount;
489 if (refcnt)
490 goto out_unlock;
491
492 WARN(shutdown_cache(s),
493 "%s %s: Slab cache still has objects when called from %pS",
494 __func__, s->name, (void *)_RET_IP_);
495 out_unlock:
496 mutex_unlock(&slab_mutex);
497 cpus_read_unlock();
498 if (!refcnt && !rcu_set)
499 kmem_cache_release(s);
500 }
501 EXPORT_SYMBOL(kmem_cache_destroy);
502
503 /**
504 * kmem_cache_shrink - Shrink a cache.
505 * @cachep: The cache to shrink.
506 *
507 * Releases as many slabs as possible for a cache.
508 * To help debugging, a zero exit status indicates all slabs were released.
509 *
510 * Return: %0 if all slabs were released, non-zero otherwise
511 */
512 int kmem_cache_shrink(struct kmem_cache *cachep)
513 {
514 kasan_cache_shrink(cachep);
515
516 return __kmem_cache_shrink(cachep);
517 }
518 EXPORT_SYMBOL(kmem_cache_shrink);
519
520 bool slab_is_available(void)
521 {
522 return slab_state >= UP;
523 }
524
525 #ifdef CONFIG_PRINTK
526 /**
527 * kmem_valid_obj - does the pointer reference a valid slab object?
528 * @object: pointer to query.
529 *
530 * Return: %true if the pointer is to a not-yet-freed object from
531 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
532 * is to an already-freed object, and %false otherwise.
533 */
534 bool kmem_valid_obj(void *object)
535 {
536 struct folio *folio;
537
538 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
539 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
540 return false;
541 folio = virt_to_folio(object);
542 return folio_test_slab(folio);
543 }
544 EXPORT_SYMBOL_GPL(kmem_valid_obj);
545
546 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
547 {
548 if (__kfence_obj_info(kpp, object, slab))
549 return;
550 __kmem_obj_info(kpp, object, slab);
551 }
552
553 /**
554 * kmem_dump_obj - Print available slab provenance information
555 * @object: slab object for which to find provenance information.
556 *
557 * This function uses pr_cont(), so that the caller is expected to have
558 * printed out whatever preamble is appropriate. The provenance information
559 * depends on the type of object and on how much debugging is enabled.
560 * For a slab-cache object, the fact that it is a slab object is printed,
561 * and, if available, the slab name, return address, and stack trace from
562 * the allocation and last free path of that object.
563 *
564 * This function will splat if passed a pointer to a non-slab object.
565 * If you are not sure what type of object you have, you should instead
566 * use mem_dump_obj().
567 */
568 void kmem_dump_obj(void *object)
569 {
570 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
571 int i;
572 struct slab *slab;
573 unsigned long ptroffset;
574 struct kmem_obj_info kp = { };
575
576 if (WARN_ON_ONCE(!virt_addr_valid(object)))
577 return;
578 slab = virt_to_slab(object);
579 if (WARN_ON_ONCE(!slab)) {
580 pr_cont(" non-slab memory.\n");
581 return;
582 }
583 kmem_obj_info(&kp, object, slab);
584 if (kp.kp_slab_cache)
585 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
586 else
587 pr_cont(" slab%s", cp);
588 if (is_kfence_address(object))
589 pr_cont(" (kfence)");
590 if (kp.kp_objp)
591 pr_cont(" start %px", kp.kp_objp);
592 if (kp.kp_data_offset)
593 pr_cont(" data offset %lu", kp.kp_data_offset);
594 if (kp.kp_objp) {
595 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
596 pr_cont(" pointer offset %lu", ptroffset);
597 }
598 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
599 pr_cont(" size %u", kp.kp_slab_cache->usersize);
600 if (kp.kp_ret)
601 pr_cont(" allocated at %pS\n", kp.kp_ret);
602 else
603 pr_cont("\n");
604 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
605 if (!kp.kp_stack[i])
606 break;
607 pr_info(" %pS\n", kp.kp_stack[i]);
608 }
609
610 if (kp.kp_free_stack[0])
611 pr_cont(" Free path:\n");
612
613 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
614 if (!kp.kp_free_stack[i])
615 break;
616 pr_info(" %pS\n", kp.kp_free_stack[i]);
617 }
618
619 }
620 EXPORT_SYMBOL_GPL(kmem_dump_obj);
621 #endif
622
623 #ifndef CONFIG_SLOB
624 /* Create a cache during boot when no slab services are available yet */
625 void __init create_boot_cache(struct kmem_cache *s, const char *name,
626 unsigned int size, slab_flags_t flags,
627 unsigned int useroffset, unsigned int usersize)
628 {
629 int err;
630 unsigned int align = ARCH_KMALLOC_MINALIGN;
631
632 s->name = name;
633 s->size = s->object_size = size;
634
635 /*
636 * For power of two sizes, guarantee natural alignment for kmalloc
637 * caches, regardless of SL*B debugging options.
638 */
639 if (is_power_of_2(size))
640 align = max(align, size);
641 s->align = calculate_alignment(flags, align, size);
642
643 s->useroffset = useroffset;
644 s->usersize = usersize;
645
646 err = __kmem_cache_create(s, flags);
647
648 if (err)
649 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
650 name, size, err);
651
652 s->refcount = -1; /* Exempt from merging for now */
653 }
654
655 struct kmem_cache *__init create_kmalloc_cache(const char *name,
656 unsigned int size, slab_flags_t flags,
657 unsigned int useroffset, unsigned int usersize)
658 {
659 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
660
661 if (!s)
662 panic("Out of memory when creating slab %s\n", name);
663
664 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
665 usersize);
666 kasan_cache_create_kmalloc(s);
667 list_add(&s->list, &slab_caches);
668 s->refcount = 1;
669 return s;
670 }
671
672 struct kmem_cache *
673 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
674 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
675 EXPORT_SYMBOL(kmalloc_caches);
676
677 /*
678 * Conversion table for small slabs sizes / 8 to the index in the
679 * kmalloc array. This is necessary for slabs < 192 since we have non power
680 * of two cache sizes there. The size of larger slabs can be determined using
681 * fls.
682 */
683 static u8 size_index[24] __ro_after_init = {
684 3, /* 8 */
685 4, /* 16 */
686 5, /* 24 */
687 5, /* 32 */
688 6, /* 40 */
689 6, /* 48 */
690 6, /* 56 */
691 6, /* 64 */
692 1, /* 72 */
693 1, /* 80 */
694 1, /* 88 */
695 1, /* 96 */
696 7, /* 104 */
697 7, /* 112 */
698 7, /* 120 */
699 7, /* 128 */
700 2, /* 136 */
701 2, /* 144 */
702 2, /* 152 */
703 2, /* 160 */
704 2, /* 168 */
705 2, /* 176 */
706 2, /* 184 */
707 2 /* 192 */
708 };
709
710 static inline unsigned int size_index_elem(unsigned int bytes)
711 {
712 return (bytes - 1) / 8;
713 }
714
715 /*
716 * Find the kmem_cache structure that serves a given size of
717 * allocation
718 */
719 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
720 {
721 unsigned int index;
722
723 if (size <= 192) {
724 if (!size)
725 return ZERO_SIZE_PTR;
726
727 index = size_index[size_index_elem(size)];
728 } else {
729 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
730 return NULL;
731 index = fls(size - 1);
732 }
733
734 return kmalloc_caches[kmalloc_type(flags)][index];
735 }
736
737 size_t kmalloc_size_roundup(size_t size)
738 {
739 struct kmem_cache *c;
740
741 /* Short-circuit the 0 size case. */
742 if (unlikely(size == 0))
743 return 0;
744 /* Short-circuit saturated "too-large" case. */
745 if (unlikely(size == SIZE_MAX))
746 return SIZE_MAX;
747 /* Above the smaller buckets, size is a multiple of page size. */
748 if (size > KMALLOC_MAX_CACHE_SIZE)
749 return PAGE_SIZE << get_order(size);
750
751 /* The flags don't matter since size_index is common to all. */
752 c = kmalloc_slab(size, GFP_KERNEL);
753 return c ? c->object_size : 0;
754 }
755 EXPORT_SYMBOL(kmalloc_size_roundup);
756
757 #ifdef CONFIG_ZONE_DMA
758 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
759 #else
760 #define KMALLOC_DMA_NAME(sz)
761 #endif
762
763 #ifdef CONFIG_MEMCG_KMEM
764 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
765 #else
766 #define KMALLOC_CGROUP_NAME(sz)
767 #endif
768
769 #define INIT_KMALLOC_INFO(__size, __short_size) \
770 { \
771 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
772 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
773 KMALLOC_CGROUP_NAME(__short_size) \
774 KMALLOC_DMA_NAME(__short_size) \
775 .size = __size, \
776 }
777
778 /*
779 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
780 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
781 * kmalloc-2M.
782 */
783 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
784 INIT_KMALLOC_INFO(0, 0),
785 INIT_KMALLOC_INFO(96, 96),
786 INIT_KMALLOC_INFO(192, 192),
787 INIT_KMALLOC_INFO(8, 8),
788 INIT_KMALLOC_INFO(16, 16),
789 INIT_KMALLOC_INFO(32, 32),
790 INIT_KMALLOC_INFO(64, 64),
791 INIT_KMALLOC_INFO(128, 128),
792 INIT_KMALLOC_INFO(256, 256),
793 INIT_KMALLOC_INFO(512, 512),
794 INIT_KMALLOC_INFO(1024, 1k),
795 INIT_KMALLOC_INFO(2048, 2k),
796 INIT_KMALLOC_INFO(4096, 4k),
797 INIT_KMALLOC_INFO(8192, 8k),
798 INIT_KMALLOC_INFO(16384, 16k),
799 INIT_KMALLOC_INFO(32768, 32k),
800 INIT_KMALLOC_INFO(65536, 64k),
801 INIT_KMALLOC_INFO(131072, 128k),
802 INIT_KMALLOC_INFO(262144, 256k),
803 INIT_KMALLOC_INFO(524288, 512k),
804 INIT_KMALLOC_INFO(1048576, 1M),
805 INIT_KMALLOC_INFO(2097152, 2M)
806 };
807
808 /*
809 * Patch up the size_index table if we have strange large alignment
810 * requirements for the kmalloc array. This is only the case for
811 * MIPS it seems. The standard arches will not generate any code here.
812 *
813 * Largest permitted alignment is 256 bytes due to the way we
814 * handle the index determination for the smaller caches.
815 *
816 * Make sure that nothing crazy happens if someone starts tinkering
817 * around with ARCH_KMALLOC_MINALIGN
818 */
819 void __init setup_kmalloc_cache_index_table(void)
820 {
821 unsigned int i;
822
823 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
824 !is_power_of_2(KMALLOC_MIN_SIZE));
825
826 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
827 unsigned int elem = size_index_elem(i);
828
829 if (elem >= ARRAY_SIZE(size_index))
830 break;
831 size_index[elem] = KMALLOC_SHIFT_LOW;
832 }
833
834 if (KMALLOC_MIN_SIZE >= 64) {
835 /*
836 * The 96 byte sized cache is not used if the alignment
837 * is 64 byte.
838 */
839 for (i = 64 + 8; i <= 96; i += 8)
840 size_index[size_index_elem(i)] = 7;
841
842 }
843
844 if (KMALLOC_MIN_SIZE >= 128) {
845 /*
846 * The 192 byte sized cache is not used if the alignment
847 * is 128 byte. Redirect kmalloc to use the 256 byte cache
848 * instead.
849 */
850 for (i = 128 + 8; i <= 192; i += 8)
851 size_index[size_index_elem(i)] = 8;
852 }
853 }
854
855 static void __init
856 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
857 {
858 if (type == KMALLOC_RECLAIM) {
859 flags |= SLAB_RECLAIM_ACCOUNT;
860 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
861 if (mem_cgroup_kmem_disabled()) {
862 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
863 return;
864 }
865 flags |= SLAB_ACCOUNT;
866 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
867 flags |= SLAB_CACHE_DMA;
868 }
869
870 kmalloc_caches[type][idx] = create_kmalloc_cache(
871 kmalloc_info[idx].name[type],
872 kmalloc_info[idx].size, flags, 0,
873 kmalloc_info[idx].size);
874
875 /*
876 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
877 * KMALLOC_NORMAL caches.
878 */
879 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
880 kmalloc_caches[type][idx]->refcount = -1;
881 }
882
883 /*
884 * Create the kmalloc array. Some of the regular kmalloc arrays
885 * may already have been created because they were needed to
886 * enable allocations for slab creation.
887 */
888 void __init create_kmalloc_caches(slab_flags_t flags)
889 {
890 int i;
891 enum kmalloc_cache_type type;
892
893 /*
894 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
895 */
896 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
897 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
898 if (!kmalloc_caches[type][i])
899 new_kmalloc_cache(i, type, flags);
900
901 /*
902 * Caches that are not of the two-to-the-power-of size.
903 * These have to be created immediately after the
904 * earlier power of two caches
905 */
906 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
907 !kmalloc_caches[type][1])
908 new_kmalloc_cache(1, type, flags);
909 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
910 !kmalloc_caches[type][2])
911 new_kmalloc_cache(2, type, flags);
912 }
913 }
914
915 /* Kmalloc array is now usable */
916 slab_state = UP;
917 }
918
919 void free_large_kmalloc(struct folio *folio, void *object)
920 {
921 unsigned int order = folio_order(folio);
922
923 if (WARN_ON_ONCE(order == 0))
924 pr_warn_once("object pointer: 0x%p\n", object);
925
926 kmemleak_free(object);
927 kasan_kfree_large(object);
928 kmsan_kfree_large(object);
929
930 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
931 -(PAGE_SIZE << order));
932 __free_pages(folio_page(folio, 0), order);
933 }
934
935 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
936 static __always_inline
937 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
938 {
939 struct kmem_cache *s;
940 void *ret;
941
942 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
943 ret = __kmalloc_large_node(size, flags, node);
944 trace_kmalloc(caller, ret, size,
945 PAGE_SIZE << get_order(size), flags, node);
946 return ret;
947 }
948
949 s = kmalloc_slab(size, flags);
950
951 if (unlikely(ZERO_OR_NULL_PTR(s)))
952 return s;
953
954 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
955 ret = kasan_kmalloc(s, ret, size, flags);
956 trace_kmalloc(caller, ret, size, s->size, flags, node);
957 return ret;
958 }
959
960 void *__kmalloc_node(size_t size, gfp_t flags, int node)
961 {
962 return __do_kmalloc_node(size, flags, node, _RET_IP_);
963 }
964 EXPORT_SYMBOL(__kmalloc_node);
965
966 void *__kmalloc(size_t size, gfp_t flags)
967 {
968 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
969 }
970 EXPORT_SYMBOL(__kmalloc);
971
972 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
973 int node, unsigned long caller)
974 {
975 return __do_kmalloc_node(size, flags, node, caller);
976 }
977 EXPORT_SYMBOL(__kmalloc_node_track_caller);
978
979 /**
980 * kfree - free previously allocated memory
981 * @object: pointer returned by kmalloc.
982 *
983 * If @object is NULL, no operation is performed.
984 *
985 * Don't free memory not originally allocated by kmalloc()
986 * or you will run into trouble.
987 */
988 void kfree(const void *object)
989 {
990 struct folio *folio;
991 struct slab *slab;
992 struct kmem_cache *s;
993
994 trace_kfree(_RET_IP_, object);
995
996 if (unlikely(ZERO_OR_NULL_PTR(object)))
997 return;
998
999 folio = virt_to_folio(object);
1000 if (unlikely(!folio_test_slab(folio))) {
1001 free_large_kmalloc(folio, (void *)object);
1002 return;
1003 }
1004
1005 slab = folio_slab(folio);
1006 s = slab->slab_cache;
1007 __kmem_cache_free(s, (void *)object, _RET_IP_);
1008 }
1009 EXPORT_SYMBOL(kfree);
1010
1011 /**
1012 * __ksize -- Report full size of underlying allocation
1013 * @object: pointer to the object
1014 *
1015 * This should only be used internally to query the true size of allocations.
1016 * It is not meant to be a way to discover the usable size of an allocation
1017 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1018 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1019 * and/or FORTIFY_SOURCE.
1020 *
1021 * Return: size of the actual memory used by @object in bytes
1022 */
1023 size_t __ksize(const void *object)
1024 {
1025 struct folio *folio;
1026
1027 if (unlikely(object == ZERO_SIZE_PTR))
1028 return 0;
1029
1030 folio = virt_to_folio(object);
1031
1032 if (unlikely(!folio_test_slab(folio))) {
1033 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1034 return 0;
1035 if (WARN_ON(object != folio_address(folio)))
1036 return 0;
1037 return folio_size(folio);
1038 }
1039
1040 return slab_ksize(folio_slab(folio)->slab_cache);
1041 }
1042
1043 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1044 {
1045 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1046 size, _RET_IP_);
1047
1048 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1049
1050 ret = kasan_kmalloc(s, ret, size, gfpflags);
1051 return ret;
1052 }
1053 EXPORT_SYMBOL(kmalloc_trace);
1054
1055 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1056 int node, size_t size)
1057 {
1058 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1059
1060 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1061
1062 ret = kasan_kmalloc(s, ret, size, gfpflags);
1063 return ret;
1064 }
1065 EXPORT_SYMBOL(kmalloc_node_trace);
1066 #endif /* !CONFIG_SLOB */
1067
1068 gfp_t kmalloc_fix_flags(gfp_t flags)
1069 {
1070 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1071
1072 flags &= ~GFP_SLAB_BUG_MASK;
1073 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1074 invalid_mask, &invalid_mask, flags, &flags);
1075 dump_stack();
1076
1077 return flags;
1078 }
1079
1080 /*
1081 * To avoid unnecessary overhead, we pass through large allocation requests
1082 * directly to the page allocator. We use __GFP_COMP, because we will need to
1083 * know the allocation order to free the pages properly in kfree.
1084 */
1085
1086 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1087 {
1088 struct page *page;
1089 void *ptr = NULL;
1090 unsigned int order = get_order(size);
1091
1092 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1093 flags = kmalloc_fix_flags(flags);
1094
1095 flags |= __GFP_COMP;
1096 page = alloc_pages_node(node, flags, order);
1097 if (page) {
1098 ptr = page_address(page);
1099 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1100 PAGE_SIZE << order);
1101 }
1102
1103 ptr = kasan_kmalloc_large(ptr, size, flags);
1104 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1105 kmemleak_alloc(ptr, size, 1, flags);
1106 kmsan_kmalloc_large(ptr, size, flags);
1107
1108 return ptr;
1109 }
1110
1111 void *kmalloc_large(size_t size, gfp_t flags)
1112 {
1113 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1114
1115 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1116 flags, NUMA_NO_NODE);
1117 return ret;
1118 }
1119 EXPORT_SYMBOL(kmalloc_large);
1120
1121 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
1122 {
1123 void *ret = __kmalloc_large_node(size, flags, node);
1124
1125 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1126 flags, node);
1127 return ret;
1128 }
1129 EXPORT_SYMBOL(kmalloc_large_node);
1130
1131 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1132 /* Randomize a generic freelist */
1133 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1134 unsigned int count)
1135 {
1136 unsigned int rand;
1137 unsigned int i;
1138
1139 for (i = 0; i < count; i++)
1140 list[i] = i;
1141
1142 /* Fisher-Yates shuffle */
1143 for (i = count - 1; i > 0; i--) {
1144 rand = prandom_u32_state(state);
1145 rand %= (i + 1);
1146 swap(list[i], list[rand]);
1147 }
1148 }
1149
1150 /* Create a random sequence per cache */
1151 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1152 gfp_t gfp)
1153 {
1154 struct rnd_state state;
1155
1156 if (count < 2 || cachep->random_seq)
1157 return 0;
1158
1159 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1160 if (!cachep->random_seq)
1161 return -ENOMEM;
1162
1163 /* Get best entropy at this stage of boot */
1164 prandom_seed_state(&state, get_random_long());
1165
1166 freelist_randomize(&state, cachep->random_seq, count);
1167 return 0;
1168 }
1169
1170 /* Destroy the per-cache random freelist sequence */
1171 void cache_random_seq_destroy(struct kmem_cache *cachep)
1172 {
1173 kfree(cachep->random_seq);
1174 cachep->random_seq = NULL;
1175 }
1176 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1177
1178 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1179 #ifdef CONFIG_SLAB
1180 #define SLABINFO_RIGHTS (0600)
1181 #else
1182 #define SLABINFO_RIGHTS (0400)
1183 #endif
1184
1185 static void print_slabinfo_header(struct seq_file *m)
1186 {
1187 /*
1188 * Output format version, so at least we can change it
1189 * without _too_ many complaints.
1190 */
1191 #ifdef CONFIG_DEBUG_SLAB
1192 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1193 #else
1194 seq_puts(m, "slabinfo - version: 2.1\n");
1195 #endif
1196 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1197 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1198 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1199 #ifdef CONFIG_DEBUG_SLAB
1200 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1201 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1202 #endif
1203 seq_putc(m, '\n');
1204 }
1205
1206 static void *slab_start(struct seq_file *m, loff_t *pos)
1207 {
1208 mutex_lock(&slab_mutex);
1209 return seq_list_start(&slab_caches, *pos);
1210 }
1211
1212 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1213 {
1214 return seq_list_next(p, &slab_caches, pos);
1215 }
1216
1217 static void slab_stop(struct seq_file *m, void *p)
1218 {
1219 mutex_unlock(&slab_mutex);
1220 }
1221
1222 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1223 {
1224 struct slabinfo sinfo;
1225
1226 memset(&sinfo, 0, sizeof(sinfo));
1227 get_slabinfo(s, &sinfo);
1228
1229 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1230 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1231 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1232
1233 seq_printf(m, " : tunables %4u %4u %4u",
1234 sinfo.limit, sinfo.batchcount, sinfo.shared);
1235 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1236 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1237 slabinfo_show_stats(m, s);
1238 seq_putc(m, '\n');
1239 }
1240
1241 static int slab_show(struct seq_file *m, void *p)
1242 {
1243 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1244
1245 if (p == slab_caches.next)
1246 print_slabinfo_header(m);
1247 cache_show(s, m);
1248 return 0;
1249 }
1250
1251 void dump_unreclaimable_slab(void)
1252 {
1253 struct kmem_cache *s;
1254 struct slabinfo sinfo;
1255
1256 /*
1257 * Here acquiring slab_mutex is risky since we don't prefer to get
1258 * sleep in oom path. But, without mutex hold, it may introduce a
1259 * risk of crash.
1260 * Use mutex_trylock to protect the list traverse, dump nothing
1261 * without acquiring the mutex.
1262 */
1263 if (!mutex_trylock(&slab_mutex)) {
1264 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1265 return;
1266 }
1267
1268 pr_info("Unreclaimable slab info:\n");
1269 pr_info("Name Used Total\n");
1270
1271 list_for_each_entry(s, &slab_caches, list) {
1272 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1273 continue;
1274
1275 get_slabinfo(s, &sinfo);
1276
1277 if (sinfo.num_objs > 0)
1278 pr_info("%-17s %10luKB %10luKB\n", s->name,
1279 (sinfo.active_objs * s->size) / 1024,
1280 (sinfo.num_objs * s->size) / 1024);
1281 }
1282 mutex_unlock(&slab_mutex);
1283 }
1284
1285 /*
1286 * slabinfo_op - iterator that generates /proc/slabinfo
1287 *
1288 * Output layout:
1289 * cache-name
1290 * num-active-objs
1291 * total-objs
1292 * object size
1293 * num-active-slabs
1294 * total-slabs
1295 * num-pages-per-slab
1296 * + further values on SMP and with statistics enabled
1297 */
1298 static const struct seq_operations slabinfo_op = {
1299 .start = slab_start,
1300 .next = slab_next,
1301 .stop = slab_stop,
1302 .show = slab_show,
1303 };
1304
1305 static int slabinfo_open(struct inode *inode, struct file *file)
1306 {
1307 return seq_open(file, &slabinfo_op);
1308 }
1309
1310 static const struct proc_ops slabinfo_proc_ops = {
1311 .proc_flags = PROC_ENTRY_PERMANENT,
1312 .proc_open = slabinfo_open,
1313 .proc_read = seq_read,
1314 .proc_write = slabinfo_write,
1315 .proc_lseek = seq_lseek,
1316 .proc_release = seq_release,
1317 };
1318
1319 static int __init slab_proc_init(void)
1320 {
1321 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1322 return 0;
1323 }
1324 module_init(slab_proc_init);
1325
1326 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1327
1328 static __always_inline __realloc_size(2) void *
1329 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1330 {
1331 void *ret;
1332 size_t ks;
1333
1334 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1335 if (likely(!ZERO_OR_NULL_PTR(p))) {
1336 if (!kasan_check_byte(p))
1337 return NULL;
1338 ks = kfence_ksize(p) ?: __ksize(p);
1339 } else
1340 ks = 0;
1341
1342 /* If the object still fits, repoison it precisely. */
1343 if (ks >= new_size) {
1344 p = kasan_krealloc((void *)p, new_size, flags);
1345 return (void *)p;
1346 }
1347
1348 ret = kmalloc_track_caller(new_size, flags);
1349 if (ret && p) {
1350 /* Disable KASAN checks as the object's redzone is accessed. */
1351 kasan_disable_current();
1352 memcpy(ret, kasan_reset_tag(p), ks);
1353 kasan_enable_current();
1354 }
1355
1356 return ret;
1357 }
1358
1359 /**
1360 * krealloc - reallocate memory. The contents will remain unchanged.
1361 * @p: object to reallocate memory for.
1362 * @new_size: how many bytes of memory are required.
1363 * @flags: the type of memory to allocate.
1364 *
1365 * The contents of the object pointed to are preserved up to the
1366 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1367 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1368 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1369 *
1370 * Return: pointer to the allocated memory or %NULL in case of error
1371 */
1372 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1373 {
1374 void *ret;
1375
1376 if (unlikely(!new_size)) {
1377 kfree(p);
1378 return ZERO_SIZE_PTR;
1379 }
1380
1381 ret = __do_krealloc(p, new_size, flags);
1382 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1383 kfree(p);
1384
1385 return ret;
1386 }
1387 EXPORT_SYMBOL(krealloc);
1388
1389 /**
1390 * kfree_sensitive - Clear sensitive information in memory before freeing
1391 * @p: object to free memory of
1392 *
1393 * The memory of the object @p points to is zeroed before freed.
1394 * If @p is %NULL, kfree_sensitive() does nothing.
1395 *
1396 * Note: this function zeroes the whole allocated buffer which can be a good
1397 * deal bigger than the requested buffer size passed to kmalloc(). So be
1398 * careful when using this function in performance sensitive code.
1399 */
1400 void kfree_sensitive(const void *p)
1401 {
1402 size_t ks;
1403 void *mem = (void *)p;
1404
1405 ks = ksize(mem);
1406 if (ks)
1407 memzero_explicit(mem, ks);
1408 kfree(mem);
1409 }
1410 EXPORT_SYMBOL(kfree_sensitive);
1411
1412 size_t ksize(const void *objp)
1413 {
1414 size_t size;
1415
1416 /*
1417 * We need to first check that the pointer to the object is valid, and
1418 * only then unpoison the memory. The report printed from ksize() is
1419 * more useful, then when it's printed later when the behaviour could
1420 * be undefined due to a potential use-after-free or double-free.
1421 *
1422 * We use kasan_check_byte(), which is supported for the hardware
1423 * tag-based KASAN mode, unlike kasan_check_read/write().
1424 *
1425 * If the pointed to memory is invalid, we return 0 to avoid users of
1426 * ksize() writing to and potentially corrupting the memory region.
1427 *
1428 * We want to perform the check before __ksize(), to avoid potentially
1429 * crashing in __ksize() due to accessing invalid metadata.
1430 */
1431 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1432 return 0;
1433
1434 size = kfence_ksize(objp) ?: __ksize(objp);
1435 /*
1436 * We assume that ksize callers could use whole allocated area,
1437 * so we need to unpoison this area.
1438 */
1439 kasan_unpoison_range(objp, size);
1440 return size;
1441 }
1442 EXPORT_SYMBOL(ksize);
1443
1444 /* Tracepoints definitions. */
1445 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1446 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1447 EXPORT_TRACEPOINT_SYMBOL(kfree);
1448 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1449
1450 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1451 {
1452 if (__should_failslab(s, gfpflags))
1453 return -ENOMEM;
1454 return 0;
1455 }
1456 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);