]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/slab_common.c
Merge tag 'wireless-drivers-for-davem-2017-10-31' of git://git.kernel.org/pub/scm...
[people/arne_f/kernel.git] / mm / slab_common.c
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
7
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25
26 #include "slab.h"
27
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32
33 static LIST_HEAD(slab_caches_to_rcu_destroy);
34 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 slab_caches_to_rcu_destroy_workfn);
37
38 /*
39 * Set of flags that will prevent slab merging
40 */
41 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
43 SLAB_FAILSLAB | SLAB_KASAN)
44
45 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 SLAB_NOTRACK | SLAB_ACCOUNT)
47
48 /*
49 * Merge control. If this is set then no merging of slab caches will occur.
50 */
51 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
52
53 static int __init setup_slab_nomerge(char *str)
54 {
55 slab_nomerge = true;
56 return 1;
57 }
58
59 #ifdef CONFIG_SLUB
60 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
61 #endif
62
63 __setup("slab_nomerge", setup_slab_nomerge);
64
65 /*
66 * Determine the size of a slab object
67 */
68 unsigned int kmem_cache_size(struct kmem_cache *s)
69 {
70 return s->object_size;
71 }
72 EXPORT_SYMBOL(kmem_cache_size);
73
74 #ifdef CONFIG_DEBUG_VM
75 static int kmem_cache_sanity_check(const char *name, size_t size)
76 {
77 struct kmem_cache *s = NULL;
78
79 if (!name || in_interrupt() || size < sizeof(void *) ||
80 size > KMALLOC_MAX_SIZE) {
81 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
82 return -EINVAL;
83 }
84
85 list_for_each_entry(s, &slab_caches, list) {
86 char tmp;
87 int res;
88
89 /*
90 * This happens when the module gets unloaded and doesn't
91 * destroy its slab cache and no-one else reuses the vmalloc
92 * area of the module. Print a warning.
93 */
94 res = probe_kernel_address(s->name, tmp);
95 if (res) {
96 pr_err("Slab cache with size %d has lost its name\n",
97 s->object_size);
98 continue;
99 }
100 }
101
102 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
103 return 0;
104 }
105 #else
106 static inline int kmem_cache_sanity_check(const char *name, size_t size)
107 {
108 return 0;
109 }
110 #endif
111
112 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
113 {
114 size_t i;
115
116 for (i = 0; i < nr; i++) {
117 if (s)
118 kmem_cache_free(s, p[i]);
119 else
120 kfree(p[i]);
121 }
122 }
123
124 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 void **p)
126 {
127 size_t i;
128
129 for (i = 0; i < nr; i++) {
130 void *x = p[i] = kmem_cache_alloc(s, flags);
131 if (!x) {
132 __kmem_cache_free_bulk(s, i, p);
133 return 0;
134 }
135 }
136 return i;
137 }
138
139 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
140
141 LIST_HEAD(slab_root_caches);
142
143 void slab_init_memcg_params(struct kmem_cache *s)
144 {
145 s->memcg_params.root_cache = NULL;
146 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
147 INIT_LIST_HEAD(&s->memcg_params.children);
148 }
149
150 static int init_memcg_params(struct kmem_cache *s,
151 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
152 {
153 struct memcg_cache_array *arr;
154
155 if (root_cache) {
156 s->memcg_params.root_cache = root_cache;
157 s->memcg_params.memcg = memcg;
158 INIT_LIST_HEAD(&s->memcg_params.children_node);
159 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
160 return 0;
161 }
162
163 slab_init_memcg_params(s);
164
165 if (!memcg_nr_cache_ids)
166 return 0;
167
168 arr = kvzalloc(sizeof(struct memcg_cache_array) +
169 memcg_nr_cache_ids * sizeof(void *),
170 GFP_KERNEL);
171 if (!arr)
172 return -ENOMEM;
173
174 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
175 return 0;
176 }
177
178 static void destroy_memcg_params(struct kmem_cache *s)
179 {
180 if (is_root_cache(s))
181 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
182 }
183
184 static void free_memcg_params(struct rcu_head *rcu)
185 {
186 struct memcg_cache_array *old;
187
188 old = container_of(rcu, struct memcg_cache_array, rcu);
189 kvfree(old);
190 }
191
192 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
193 {
194 struct memcg_cache_array *old, *new;
195
196 new = kvzalloc(sizeof(struct memcg_cache_array) +
197 new_array_size * sizeof(void *), GFP_KERNEL);
198 if (!new)
199 return -ENOMEM;
200
201 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
202 lockdep_is_held(&slab_mutex));
203 if (old)
204 memcpy(new->entries, old->entries,
205 memcg_nr_cache_ids * sizeof(void *));
206
207 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
208 if (old)
209 call_rcu(&old->rcu, free_memcg_params);
210 return 0;
211 }
212
213 int memcg_update_all_caches(int num_memcgs)
214 {
215 struct kmem_cache *s;
216 int ret = 0;
217
218 mutex_lock(&slab_mutex);
219 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
220 ret = update_memcg_params(s, num_memcgs);
221 /*
222 * Instead of freeing the memory, we'll just leave the caches
223 * up to this point in an updated state.
224 */
225 if (ret)
226 break;
227 }
228 mutex_unlock(&slab_mutex);
229 return ret;
230 }
231
232 void memcg_link_cache(struct kmem_cache *s)
233 {
234 if (is_root_cache(s)) {
235 list_add(&s->root_caches_node, &slab_root_caches);
236 } else {
237 list_add(&s->memcg_params.children_node,
238 &s->memcg_params.root_cache->memcg_params.children);
239 list_add(&s->memcg_params.kmem_caches_node,
240 &s->memcg_params.memcg->kmem_caches);
241 }
242 }
243
244 static void memcg_unlink_cache(struct kmem_cache *s)
245 {
246 if (is_root_cache(s)) {
247 list_del(&s->root_caches_node);
248 } else {
249 list_del(&s->memcg_params.children_node);
250 list_del(&s->memcg_params.kmem_caches_node);
251 }
252 }
253 #else
254 static inline int init_memcg_params(struct kmem_cache *s,
255 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
256 {
257 return 0;
258 }
259
260 static inline void destroy_memcg_params(struct kmem_cache *s)
261 {
262 }
263
264 static inline void memcg_unlink_cache(struct kmem_cache *s)
265 {
266 }
267 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
268
269 /*
270 * Find a mergeable slab cache
271 */
272 int slab_unmergeable(struct kmem_cache *s)
273 {
274 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
275 return 1;
276
277 if (!is_root_cache(s))
278 return 1;
279
280 if (s->ctor)
281 return 1;
282
283 /*
284 * We may have set a slab to be unmergeable during bootstrap.
285 */
286 if (s->refcount < 0)
287 return 1;
288
289 return 0;
290 }
291
292 struct kmem_cache *find_mergeable(size_t size, size_t align,
293 unsigned long flags, const char *name, void (*ctor)(void *))
294 {
295 struct kmem_cache *s;
296
297 if (slab_nomerge)
298 return NULL;
299
300 if (ctor)
301 return NULL;
302
303 size = ALIGN(size, sizeof(void *));
304 align = calculate_alignment(flags, align, size);
305 size = ALIGN(size, align);
306 flags = kmem_cache_flags(size, flags, name, NULL);
307
308 if (flags & SLAB_NEVER_MERGE)
309 return NULL;
310
311 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
312 if (slab_unmergeable(s))
313 continue;
314
315 if (size > s->size)
316 continue;
317
318 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
319 continue;
320 /*
321 * Check if alignment is compatible.
322 * Courtesy of Adrian Drzewiecki
323 */
324 if ((s->size & ~(align - 1)) != s->size)
325 continue;
326
327 if (s->size - size >= sizeof(void *))
328 continue;
329
330 if (IS_ENABLED(CONFIG_SLAB) && align &&
331 (align > s->align || s->align % align))
332 continue;
333
334 return s;
335 }
336 return NULL;
337 }
338
339 /*
340 * Figure out what the alignment of the objects will be given a set of
341 * flags, a user specified alignment and the size of the objects.
342 */
343 unsigned long calculate_alignment(unsigned long flags,
344 unsigned long align, unsigned long size)
345 {
346 /*
347 * If the user wants hardware cache aligned objects then follow that
348 * suggestion if the object is sufficiently large.
349 *
350 * The hardware cache alignment cannot override the specified
351 * alignment though. If that is greater then use it.
352 */
353 if (flags & SLAB_HWCACHE_ALIGN) {
354 unsigned long ralign = cache_line_size();
355 while (size <= ralign / 2)
356 ralign /= 2;
357 align = max(align, ralign);
358 }
359
360 if (align < ARCH_SLAB_MINALIGN)
361 align = ARCH_SLAB_MINALIGN;
362
363 return ALIGN(align, sizeof(void *));
364 }
365
366 static struct kmem_cache *create_cache(const char *name,
367 size_t object_size, size_t size, size_t align,
368 unsigned long flags, void (*ctor)(void *),
369 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
370 {
371 struct kmem_cache *s;
372 int err;
373
374 err = -ENOMEM;
375 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
376 if (!s)
377 goto out;
378
379 s->name = name;
380 s->object_size = object_size;
381 s->size = size;
382 s->align = align;
383 s->ctor = ctor;
384
385 err = init_memcg_params(s, memcg, root_cache);
386 if (err)
387 goto out_free_cache;
388
389 err = __kmem_cache_create(s, flags);
390 if (err)
391 goto out_free_cache;
392
393 s->refcount = 1;
394 list_add(&s->list, &slab_caches);
395 memcg_link_cache(s);
396 out:
397 if (err)
398 return ERR_PTR(err);
399 return s;
400
401 out_free_cache:
402 destroy_memcg_params(s);
403 kmem_cache_free(kmem_cache, s);
404 goto out;
405 }
406
407 /*
408 * kmem_cache_create - Create a cache.
409 * @name: A string which is used in /proc/slabinfo to identify this cache.
410 * @size: The size of objects to be created in this cache.
411 * @align: The required alignment for the objects.
412 * @flags: SLAB flags
413 * @ctor: A constructor for the objects.
414 *
415 * Returns a ptr to the cache on success, NULL on failure.
416 * Cannot be called within a interrupt, but can be interrupted.
417 * The @ctor is run when new pages are allocated by the cache.
418 *
419 * The flags are
420 *
421 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
422 * to catch references to uninitialised memory.
423 *
424 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
425 * for buffer overruns.
426 *
427 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
428 * cacheline. This can be beneficial if you're counting cycles as closely
429 * as davem.
430 */
431 struct kmem_cache *
432 kmem_cache_create(const char *name, size_t size, size_t align,
433 unsigned long flags, void (*ctor)(void *))
434 {
435 struct kmem_cache *s = NULL;
436 const char *cache_name;
437 int err;
438
439 get_online_cpus();
440 get_online_mems();
441 memcg_get_cache_ids();
442
443 mutex_lock(&slab_mutex);
444
445 err = kmem_cache_sanity_check(name, size);
446 if (err) {
447 goto out_unlock;
448 }
449
450 /* Refuse requests with allocator specific flags */
451 if (flags & ~SLAB_FLAGS_PERMITTED) {
452 err = -EINVAL;
453 goto out_unlock;
454 }
455
456 /*
457 * Some allocators will constraint the set of valid flags to a subset
458 * of all flags. We expect them to define CACHE_CREATE_MASK in this
459 * case, and we'll just provide them with a sanitized version of the
460 * passed flags.
461 */
462 flags &= CACHE_CREATE_MASK;
463
464 s = __kmem_cache_alias(name, size, align, flags, ctor);
465 if (s)
466 goto out_unlock;
467
468 cache_name = kstrdup_const(name, GFP_KERNEL);
469 if (!cache_name) {
470 err = -ENOMEM;
471 goto out_unlock;
472 }
473
474 s = create_cache(cache_name, size, size,
475 calculate_alignment(flags, align, size),
476 flags, ctor, NULL, NULL);
477 if (IS_ERR(s)) {
478 err = PTR_ERR(s);
479 kfree_const(cache_name);
480 }
481
482 out_unlock:
483 mutex_unlock(&slab_mutex);
484
485 memcg_put_cache_ids();
486 put_online_mems();
487 put_online_cpus();
488
489 if (err) {
490 if (flags & SLAB_PANIC)
491 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
492 name, err);
493 else {
494 pr_warn("kmem_cache_create(%s) failed with error %d\n",
495 name, err);
496 dump_stack();
497 }
498 return NULL;
499 }
500 return s;
501 }
502 EXPORT_SYMBOL(kmem_cache_create);
503
504 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
505 {
506 LIST_HEAD(to_destroy);
507 struct kmem_cache *s, *s2;
508
509 /*
510 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
511 * @slab_caches_to_rcu_destroy list. The slab pages are freed
512 * through RCU and and the associated kmem_cache are dereferenced
513 * while freeing the pages, so the kmem_caches should be freed only
514 * after the pending RCU operations are finished. As rcu_barrier()
515 * is a pretty slow operation, we batch all pending destructions
516 * asynchronously.
517 */
518 mutex_lock(&slab_mutex);
519 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
520 mutex_unlock(&slab_mutex);
521
522 if (list_empty(&to_destroy))
523 return;
524
525 rcu_barrier();
526
527 list_for_each_entry_safe(s, s2, &to_destroy, list) {
528 #ifdef SLAB_SUPPORTS_SYSFS
529 sysfs_slab_release(s);
530 #else
531 slab_kmem_cache_release(s);
532 #endif
533 }
534 }
535
536 static int shutdown_cache(struct kmem_cache *s)
537 {
538 /* free asan quarantined objects */
539 kasan_cache_shutdown(s);
540
541 if (__kmem_cache_shutdown(s) != 0)
542 return -EBUSY;
543
544 memcg_unlink_cache(s);
545 list_del(&s->list);
546
547 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
548 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
549 schedule_work(&slab_caches_to_rcu_destroy_work);
550 } else {
551 #ifdef SLAB_SUPPORTS_SYSFS
552 sysfs_slab_release(s);
553 #else
554 slab_kmem_cache_release(s);
555 #endif
556 }
557
558 return 0;
559 }
560
561 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
562 /*
563 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
564 * @memcg: The memory cgroup the new cache is for.
565 * @root_cache: The parent of the new cache.
566 *
567 * This function attempts to create a kmem cache that will serve allocation
568 * requests going from @memcg to @root_cache. The new cache inherits properties
569 * from its parent.
570 */
571 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
572 struct kmem_cache *root_cache)
573 {
574 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
575 struct cgroup_subsys_state *css = &memcg->css;
576 struct memcg_cache_array *arr;
577 struct kmem_cache *s = NULL;
578 char *cache_name;
579 int idx;
580
581 get_online_cpus();
582 get_online_mems();
583
584 mutex_lock(&slab_mutex);
585
586 /*
587 * The memory cgroup could have been offlined while the cache
588 * creation work was pending.
589 */
590 if (memcg->kmem_state != KMEM_ONLINE)
591 goto out_unlock;
592
593 idx = memcg_cache_id(memcg);
594 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
595 lockdep_is_held(&slab_mutex));
596
597 /*
598 * Since per-memcg caches are created asynchronously on first
599 * allocation (see memcg_kmem_get_cache()), several threads can try to
600 * create the same cache, but only one of them may succeed.
601 */
602 if (arr->entries[idx])
603 goto out_unlock;
604
605 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
606 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
607 css->serial_nr, memcg_name_buf);
608 if (!cache_name)
609 goto out_unlock;
610
611 s = create_cache(cache_name, root_cache->object_size,
612 root_cache->size, root_cache->align,
613 root_cache->flags & CACHE_CREATE_MASK,
614 root_cache->ctor, memcg, root_cache);
615 /*
616 * If we could not create a memcg cache, do not complain, because
617 * that's not critical at all as we can always proceed with the root
618 * cache.
619 */
620 if (IS_ERR(s)) {
621 kfree(cache_name);
622 goto out_unlock;
623 }
624
625 /*
626 * Since readers won't lock (see cache_from_memcg_idx()), we need a
627 * barrier here to ensure nobody will see the kmem_cache partially
628 * initialized.
629 */
630 smp_wmb();
631 arr->entries[idx] = s;
632
633 out_unlock:
634 mutex_unlock(&slab_mutex);
635
636 put_online_mems();
637 put_online_cpus();
638 }
639
640 static void kmemcg_deactivate_workfn(struct work_struct *work)
641 {
642 struct kmem_cache *s = container_of(work, struct kmem_cache,
643 memcg_params.deact_work);
644
645 get_online_cpus();
646 get_online_mems();
647
648 mutex_lock(&slab_mutex);
649
650 s->memcg_params.deact_fn(s);
651
652 mutex_unlock(&slab_mutex);
653
654 put_online_mems();
655 put_online_cpus();
656
657 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
658 css_put(&s->memcg_params.memcg->css);
659 }
660
661 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
662 {
663 struct kmem_cache *s = container_of(head, struct kmem_cache,
664 memcg_params.deact_rcu_head);
665
666 /*
667 * We need to grab blocking locks. Bounce to ->deact_work. The
668 * work item shares the space with the RCU head and can't be
669 * initialized eariler.
670 */
671 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
672 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
673 }
674
675 /**
676 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
677 * sched RCU grace period
678 * @s: target kmem_cache
679 * @deact_fn: deactivation function to call
680 *
681 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
682 * held after a sched RCU grace period. The slab is guaranteed to stay
683 * alive until @deact_fn is finished. This is to be used from
684 * __kmemcg_cache_deactivate().
685 */
686 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
687 void (*deact_fn)(struct kmem_cache *))
688 {
689 if (WARN_ON_ONCE(is_root_cache(s)) ||
690 WARN_ON_ONCE(s->memcg_params.deact_fn))
691 return;
692
693 /* pin memcg so that @s doesn't get destroyed in the middle */
694 css_get(&s->memcg_params.memcg->css);
695
696 s->memcg_params.deact_fn = deact_fn;
697 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
698 }
699
700 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
701 {
702 int idx;
703 struct memcg_cache_array *arr;
704 struct kmem_cache *s, *c;
705
706 idx = memcg_cache_id(memcg);
707
708 get_online_cpus();
709 get_online_mems();
710
711 mutex_lock(&slab_mutex);
712 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
713 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
714 lockdep_is_held(&slab_mutex));
715 c = arr->entries[idx];
716 if (!c)
717 continue;
718
719 __kmemcg_cache_deactivate(c);
720 arr->entries[idx] = NULL;
721 }
722 mutex_unlock(&slab_mutex);
723
724 put_online_mems();
725 put_online_cpus();
726 }
727
728 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
729 {
730 struct kmem_cache *s, *s2;
731
732 get_online_cpus();
733 get_online_mems();
734
735 mutex_lock(&slab_mutex);
736 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
737 memcg_params.kmem_caches_node) {
738 /*
739 * The cgroup is about to be freed and therefore has no charges
740 * left. Hence, all its caches must be empty by now.
741 */
742 BUG_ON(shutdown_cache(s));
743 }
744 mutex_unlock(&slab_mutex);
745
746 put_online_mems();
747 put_online_cpus();
748 }
749
750 static int shutdown_memcg_caches(struct kmem_cache *s)
751 {
752 struct memcg_cache_array *arr;
753 struct kmem_cache *c, *c2;
754 LIST_HEAD(busy);
755 int i;
756
757 BUG_ON(!is_root_cache(s));
758
759 /*
760 * First, shutdown active caches, i.e. caches that belong to online
761 * memory cgroups.
762 */
763 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
764 lockdep_is_held(&slab_mutex));
765 for_each_memcg_cache_index(i) {
766 c = arr->entries[i];
767 if (!c)
768 continue;
769 if (shutdown_cache(c))
770 /*
771 * The cache still has objects. Move it to a temporary
772 * list so as not to try to destroy it for a second
773 * time while iterating over inactive caches below.
774 */
775 list_move(&c->memcg_params.children_node, &busy);
776 else
777 /*
778 * The cache is empty and will be destroyed soon. Clear
779 * the pointer to it in the memcg_caches array so that
780 * it will never be accessed even if the root cache
781 * stays alive.
782 */
783 arr->entries[i] = NULL;
784 }
785
786 /*
787 * Second, shutdown all caches left from memory cgroups that are now
788 * offline.
789 */
790 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
791 memcg_params.children_node)
792 shutdown_cache(c);
793
794 list_splice(&busy, &s->memcg_params.children);
795
796 /*
797 * A cache being destroyed must be empty. In particular, this means
798 * that all per memcg caches attached to it must be empty too.
799 */
800 if (!list_empty(&s->memcg_params.children))
801 return -EBUSY;
802 return 0;
803 }
804 #else
805 static inline int shutdown_memcg_caches(struct kmem_cache *s)
806 {
807 return 0;
808 }
809 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
810
811 void slab_kmem_cache_release(struct kmem_cache *s)
812 {
813 __kmem_cache_release(s);
814 destroy_memcg_params(s);
815 kfree_const(s->name);
816 kmem_cache_free(kmem_cache, s);
817 }
818
819 void kmem_cache_destroy(struct kmem_cache *s)
820 {
821 int err;
822
823 if (unlikely(!s))
824 return;
825
826 get_online_cpus();
827 get_online_mems();
828
829 mutex_lock(&slab_mutex);
830
831 s->refcount--;
832 if (s->refcount)
833 goto out_unlock;
834
835 err = shutdown_memcg_caches(s);
836 if (!err)
837 err = shutdown_cache(s);
838
839 if (err) {
840 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
841 s->name);
842 dump_stack();
843 }
844 out_unlock:
845 mutex_unlock(&slab_mutex);
846
847 put_online_mems();
848 put_online_cpus();
849 }
850 EXPORT_SYMBOL(kmem_cache_destroy);
851
852 /**
853 * kmem_cache_shrink - Shrink a cache.
854 * @cachep: The cache to shrink.
855 *
856 * Releases as many slabs as possible for a cache.
857 * To help debugging, a zero exit status indicates all slabs were released.
858 */
859 int kmem_cache_shrink(struct kmem_cache *cachep)
860 {
861 int ret;
862
863 get_online_cpus();
864 get_online_mems();
865 kasan_cache_shrink(cachep);
866 ret = __kmem_cache_shrink(cachep);
867 put_online_mems();
868 put_online_cpus();
869 return ret;
870 }
871 EXPORT_SYMBOL(kmem_cache_shrink);
872
873 bool slab_is_available(void)
874 {
875 return slab_state >= UP;
876 }
877
878 #ifndef CONFIG_SLOB
879 /* Create a cache during boot when no slab services are available yet */
880 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
881 unsigned long flags)
882 {
883 int err;
884
885 s->name = name;
886 s->size = s->object_size = size;
887 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
888
889 slab_init_memcg_params(s);
890
891 err = __kmem_cache_create(s, flags);
892
893 if (err)
894 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
895 name, size, err);
896
897 s->refcount = -1; /* Exempt from merging for now */
898 }
899
900 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
901 unsigned long flags)
902 {
903 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
904
905 if (!s)
906 panic("Out of memory when creating slab %s\n", name);
907
908 create_boot_cache(s, name, size, flags);
909 list_add(&s->list, &slab_caches);
910 memcg_link_cache(s);
911 s->refcount = 1;
912 return s;
913 }
914
915 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
916 EXPORT_SYMBOL(kmalloc_caches);
917
918 #ifdef CONFIG_ZONE_DMA
919 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
920 EXPORT_SYMBOL(kmalloc_dma_caches);
921 #endif
922
923 /*
924 * Conversion table for small slabs sizes / 8 to the index in the
925 * kmalloc array. This is necessary for slabs < 192 since we have non power
926 * of two cache sizes there. The size of larger slabs can be determined using
927 * fls.
928 */
929 static s8 size_index[24] = {
930 3, /* 8 */
931 4, /* 16 */
932 5, /* 24 */
933 5, /* 32 */
934 6, /* 40 */
935 6, /* 48 */
936 6, /* 56 */
937 6, /* 64 */
938 1, /* 72 */
939 1, /* 80 */
940 1, /* 88 */
941 1, /* 96 */
942 7, /* 104 */
943 7, /* 112 */
944 7, /* 120 */
945 7, /* 128 */
946 2, /* 136 */
947 2, /* 144 */
948 2, /* 152 */
949 2, /* 160 */
950 2, /* 168 */
951 2, /* 176 */
952 2, /* 184 */
953 2 /* 192 */
954 };
955
956 static inline int size_index_elem(size_t bytes)
957 {
958 return (bytes - 1) / 8;
959 }
960
961 /*
962 * Find the kmem_cache structure that serves a given size of
963 * allocation
964 */
965 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
966 {
967 int index;
968
969 if (unlikely(size > KMALLOC_MAX_SIZE)) {
970 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
971 return NULL;
972 }
973
974 if (size <= 192) {
975 if (!size)
976 return ZERO_SIZE_PTR;
977
978 index = size_index[size_index_elem(size)];
979 } else
980 index = fls(size - 1);
981
982 #ifdef CONFIG_ZONE_DMA
983 if (unlikely((flags & GFP_DMA)))
984 return kmalloc_dma_caches[index];
985
986 #endif
987 return kmalloc_caches[index];
988 }
989
990 /*
991 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
992 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
993 * kmalloc-67108864.
994 */
995 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
996 {NULL, 0}, {"kmalloc-96", 96},
997 {"kmalloc-192", 192}, {"kmalloc-8", 8},
998 {"kmalloc-16", 16}, {"kmalloc-32", 32},
999 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1000 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1001 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1002 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1003 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1004 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1005 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1006 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1007 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1008 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1009 {"kmalloc-67108864", 67108864}
1010 };
1011
1012 /*
1013 * Patch up the size_index table if we have strange large alignment
1014 * requirements for the kmalloc array. This is only the case for
1015 * MIPS it seems. The standard arches will not generate any code here.
1016 *
1017 * Largest permitted alignment is 256 bytes due to the way we
1018 * handle the index determination for the smaller caches.
1019 *
1020 * Make sure that nothing crazy happens if someone starts tinkering
1021 * around with ARCH_KMALLOC_MINALIGN
1022 */
1023 void __init setup_kmalloc_cache_index_table(void)
1024 {
1025 int i;
1026
1027 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1028 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1029
1030 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1031 int elem = size_index_elem(i);
1032
1033 if (elem >= ARRAY_SIZE(size_index))
1034 break;
1035 size_index[elem] = KMALLOC_SHIFT_LOW;
1036 }
1037
1038 if (KMALLOC_MIN_SIZE >= 64) {
1039 /*
1040 * The 96 byte size cache is not used if the alignment
1041 * is 64 byte.
1042 */
1043 for (i = 64 + 8; i <= 96; i += 8)
1044 size_index[size_index_elem(i)] = 7;
1045
1046 }
1047
1048 if (KMALLOC_MIN_SIZE >= 128) {
1049 /*
1050 * The 192 byte sized cache is not used if the alignment
1051 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1052 * instead.
1053 */
1054 for (i = 128 + 8; i <= 192; i += 8)
1055 size_index[size_index_elem(i)] = 8;
1056 }
1057 }
1058
1059 static void __init new_kmalloc_cache(int idx, unsigned long flags)
1060 {
1061 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1062 kmalloc_info[idx].size, flags);
1063 }
1064
1065 /*
1066 * Create the kmalloc array. Some of the regular kmalloc arrays
1067 * may already have been created because they were needed to
1068 * enable allocations for slab creation.
1069 */
1070 void __init create_kmalloc_caches(unsigned long flags)
1071 {
1072 int i;
1073
1074 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1075 if (!kmalloc_caches[i])
1076 new_kmalloc_cache(i, flags);
1077
1078 /*
1079 * Caches that are not of the two-to-the-power-of size.
1080 * These have to be created immediately after the
1081 * earlier power of two caches
1082 */
1083 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1084 new_kmalloc_cache(1, flags);
1085 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1086 new_kmalloc_cache(2, flags);
1087 }
1088
1089 /* Kmalloc array is now usable */
1090 slab_state = UP;
1091
1092 #ifdef CONFIG_ZONE_DMA
1093 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1094 struct kmem_cache *s = kmalloc_caches[i];
1095
1096 if (s) {
1097 int size = kmalloc_size(i);
1098 char *n = kasprintf(GFP_NOWAIT,
1099 "dma-kmalloc-%d", size);
1100
1101 BUG_ON(!n);
1102 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1103 size, SLAB_CACHE_DMA | flags);
1104 }
1105 }
1106 #endif
1107 }
1108 #endif /* !CONFIG_SLOB */
1109
1110 /*
1111 * To avoid unnecessary overhead, we pass through large allocation requests
1112 * directly to the page allocator. We use __GFP_COMP, because we will need to
1113 * know the allocation order to free the pages properly in kfree.
1114 */
1115 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1116 {
1117 void *ret;
1118 struct page *page;
1119
1120 flags |= __GFP_COMP;
1121 page = alloc_pages(flags, order);
1122 ret = page ? page_address(page) : NULL;
1123 kmemleak_alloc(ret, size, 1, flags);
1124 kasan_kmalloc_large(ret, size, flags);
1125 return ret;
1126 }
1127 EXPORT_SYMBOL(kmalloc_order);
1128
1129 #ifdef CONFIG_TRACING
1130 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1131 {
1132 void *ret = kmalloc_order(size, flags, order);
1133 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1134 return ret;
1135 }
1136 EXPORT_SYMBOL(kmalloc_order_trace);
1137 #endif
1138
1139 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1140 /* Randomize a generic freelist */
1141 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1142 size_t count)
1143 {
1144 size_t i;
1145 unsigned int rand;
1146
1147 for (i = 0; i < count; i++)
1148 list[i] = i;
1149
1150 /* Fisher-Yates shuffle */
1151 for (i = count - 1; i > 0; i--) {
1152 rand = prandom_u32_state(state);
1153 rand %= (i + 1);
1154 swap(list[i], list[rand]);
1155 }
1156 }
1157
1158 /* Create a random sequence per cache */
1159 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1160 gfp_t gfp)
1161 {
1162 struct rnd_state state;
1163
1164 if (count < 2 || cachep->random_seq)
1165 return 0;
1166
1167 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1168 if (!cachep->random_seq)
1169 return -ENOMEM;
1170
1171 /* Get best entropy at this stage of boot */
1172 prandom_seed_state(&state, get_random_long());
1173
1174 freelist_randomize(&state, cachep->random_seq, count);
1175 return 0;
1176 }
1177
1178 /* Destroy the per-cache random freelist sequence */
1179 void cache_random_seq_destroy(struct kmem_cache *cachep)
1180 {
1181 kfree(cachep->random_seq);
1182 cachep->random_seq = NULL;
1183 }
1184 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1185
1186 #ifdef CONFIG_SLABINFO
1187
1188 #ifdef CONFIG_SLAB
1189 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1190 #else
1191 #define SLABINFO_RIGHTS S_IRUSR
1192 #endif
1193
1194 static void print_slabinfo_header(struct seq_file *m)
1195 {
1196 /*
1197 * Output format version, so at least we can change it
1198 * without _too_ many complaints.
1199 */
1200 #ifdef CONFIG_DEBUG_SLAB
1201 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1202 #else
1203 seq_puts(m, "slabinfo - version: 2.1\n");
1204 #endif
1205 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1207 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1208 #ifdef CONFIG_DEBUG_SLAB
1209 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1211 #endif
1212 seq_putc(m, '\n');
1213 }
1214
1215 void *slab_start(struct seq_file *m, loff_t *pos)
1216 {
1217 mutex_lock(&slab_mutex);
1218 return seq_list_start(&slab_root_caches, *pos);
1219 }
1220
1221 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222 {
1223 return seq_list_next(p, &slab_root_caches, pos);
1224 }
1225
1226 void slab_stop(struct seq_file *m, void *p)
1227 {
1228 mutex_unlock(&slab_mutex);
1229 }
1230
1231 static void
1232 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1233 {
1234 struct kmem_cache *c;
1235 struct slabinfo sinfo;
1236
1237 if (!is_root_cache(s))
1238 return;
1239
1240 for_each_memcg_cache(c, s) {
1241 memset(&sinfo, 0, sizeof(sinfo));
1242 get_slabinfo(c, &sinfo);
1243
1244 info->active_slabs += sinfo.active_slabs;
1245 info->num_slabs += sinfo.num_slabs;
1246 info->shared_avail += sinfo.shared_avail;
1247 info->active_objs += sinfo.active_objs;
1248 info->num_objs += sinfo.num_objs;
1249 }
1250 }
1251
1252 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253 {
1254 struct slabinfo sinfo;
1255
1256 memset(&sinfo, 0, sizeof(sinfo));
1257 get_slabinfo(s, &sinfo);
1258
1259 memcg_accumulate_slabinfo(s, &sinfo);
1260
1261 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264
1265 seq_printf(m, " : tunables %4u %4u %4u",
1266 sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 slabinfo_show_stats(m, s);
1270 seq_putc(m, '\n');
1271 }
1272
1273 static int slab_show(struct seq_file *m, void *p)
1274 {
1275 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276
1277 if (p == slab_root_caches.next)
1278 print_slabinfo_header(m);
1279 cache_show(s, m);
1280 return 0;
1281 }
1282
1283 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1284 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1285 {
1286 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1287
1288 mutex_lock(&slab_mutex);
1289 return seq_list_start(&memcg->kmem_caches, *pos);
1290 }
1291
1292 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1293 {
1294 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1295
1296 return seq_list_next(p, &memcg->kmem_caches, pos);
1297 }
1298
1299 void memcg_slab_stop(struct seq_file *m, void *p)
1300 {
1301 mutex_unlock(&slab_mutex);
1302 }
1303
1304 int memcg_slab_show(struct seq_file *m, void *p)
1305 {
1306 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1307 memcg_params.kmem_caches_node);
1308 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1309
1310 if (p == memcg->kmem_caches.next)
1311 print_slabinfo_header(m);
1312 cache_show(s, m);
1313 return 0;
1314 }
1315 #endif
1316
1317 /*
1318 * slabinfo_op - iterator that generates /proc/slabinfo
1319 *
1320 * Output layout:
1321 * cache-name
1322 * num-active-objs
1323 * total-objs
1324 * object size
1325 * num-active-slabs
1326 * total-slabs
1327 * num-pages-per-slab
1328 * + further values on SMP and with statistics enabled
1329 */
1330 static const struct seq_operations slabinfo_op = {
1331 .start = slab_start,
1332 .next = slab_next,
1333 .stop = slab_stop,
1334 .show = slab_show,
1335 };
1336
1337 static int slabinfo_open(struct inode *inode, struct file *file)
1338 {
1339 return seq_open(file, &slabinfo_op);
1340 }
1341
1342 static const struct file_operations proc_slabinfo_operations = {
1343 .open = slabinfo_open,
1344 .read = seq_read,
1345 .write = slabinfo_write,
1346 .llseek = seq_lseek,
1347 .release = seq_release,
1348 };
1349
1350 static int __init slab_proc_init(void)
1351 {
1352 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1353 &proc_slabinfo_operations);
1354 return 0;
1355 }
1356 module_init(slab_proc_init);
1357 #endif /* CONFIG_SLABINFO */
1358
1359 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1360 gfp_t flags)
1361 {
1362 void *ret;
1363 size_t ks = 0;
1364
1365 if (p)
1366 ks = ksize(p);
1367
1368 if (ks >= new_size) {
1369 kasan_krealloc((void *)p, new_size, flags);
1370 return (void *)p;
1371 }
1372
1373 ret = kmalloc_track_caller(new_size, flags);
1374 if (ret && p)
1375 memcpy(ret, p, ks);
1376
1377 return ret;
1378 }
1379
1380 /**
1381 * __krealloc - like krealloc() but don't free @p.
1382 * @p: object to reallocate memory for.
1383 * @new_size: how many bytes of memory are required.
1384 * @flags: the type of memory to allocate.
1385 *
1386 * This function is like krealloc() except it never frees the originally
1387 * allocated buffer. Use this if you don't want to free the buffer immediately
1388 * like, for example, with RCU.
1389 */
1390 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1391 {
1392 if (unlikely(!new_size))
1393 return ZERO_SIZE_PTR;
1394
1395 return __do_krealloc(p, new_size, flags);
1396
1397 }
1398 EXPORT_SYMBOL(__krealloc);
1399
1400 /**
1401 * krealloc - reallocate memory. The contents will remain unchanged.
1402 * @p: object to reallocate memory for.
1403 * @new_size: how many bytes of memory are required.
1404 * @flags: the type of memory to allocate.
1405 *
1406 * The contents of the object pointed to are preserved up to the
1407 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1408 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1409 * %NULL pointer, the object pointed to is freed.
1410 */
1411 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1412 {
1413 void *ret;
1414
1415 if (unlikely(!new_size)) {
1416 kfree(p);
1417 return ZERO_SIZE_PTR;
1418 }
1419
1420 ret = __do_krealloc(p, new_size, flags);
1421 if (ret && p != ret)
1422 kfree(p);
1423
1424 return ret;
1425 }
1426 EXPORT_SYMBOL(krealloc);
1427
1428 /**
1429 * kzfree - like kfree but zero memory
1430 * @p: object to free memory of
1431 *
1432 * The memory of the object @p points to is zeroed before freed.
1433 * If @p is %NULL, kzfree() does nothing.
1434 *
1435 * Note: this function zeroes the whole allocated buffer which can be a good
1436 * deal bigger than the requested buffer size passed to kmalloc(). So be
1437 * careful when using this function in performance sensitive code.
1438 */
1439 void kzfree(const void *p)
1440 {
1441 size_t ks;
1442 void *mem = (void *)p;
1443
1444 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1445 return;
1446 ks = ksize(mem);
1447 memset(mem, 0, ks);
1448 kfree(mem);
1449 }
1450 EXPORT_SYMBOL(kzfree);
1451
1452 /* Tracepoints definitions. */
1453 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1454 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1455 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1456 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1457 EXPORT_TRACEPOINT_SYMBOL(kfree);
1458 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);