]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/slub.c
dt-bindings: arm: tegra: ahb: Convert to json-schema
[thirdparty/linux.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47
48 #include "internal.h"
49
50 /*
51 * Lock order:
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
57 *
58 * slab_mutex
59 *
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
68 *
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
76 *
77 * Frozen slabs
78 *
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
84 * slab's freelist.
85 *
86 * list_lock
87 *
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
99 *
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
167 */
168
169 /*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
177 #else
178 #define slub_get_cpu_ptr(var) \
179 ({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182 })
183 #define slub_put_cpu_ptr(var) \
184 do { \
185 (void)(var); \
186 migrate_enable(); \
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH() (false)
189 #endif
190
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif /* CONFIG_SLUB_DEBUG */
204
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210 };
211
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221 }
222
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
227
228 return p;
229 }
230
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235 #else
236 return false;
237 #endif
238 }
239
240 /*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250
251 #ifndef CONFIG_SLUB_TINY
252 /*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256 #define MIN_PARTIAL 5
257
258 /*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
271
272 /*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
280 /*
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287 #define OO_SHIFT 16
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
290
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300 #endif
301
302 /*
303 * Tracking user of a slab.
304 */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 unsigned long addr; /* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
310 #endif
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314 };
315
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
325 #endif
326
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343
344 /*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350 static nodemask_t slab_nodes;
351
352 #ifndef CONFIG_SLUB_TINY
353 /*
354 * Workqueue used for flush_cpu_slab().
355 */
356 static struct workqueue_struct *flushwq;
357 #endif
358
359 /********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
363 /*
364 * Returns freelist pointer (ptr). With hardening, this is obfuscated
365 * with an XOR of the address where the pointer is held and a per-cache
366 * random number.
367 */
368 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
369 unsigned long ptr_addr)
370 {
371 #ifdef CONFIG_SLAB_FREELIST_HARDENED
372 /*
373 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
374 * Normally, this doesn't cause any issues, as both set_freepointer()
375 * and get_freepointer() are called with a pointer with the same tag.
376 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
377 * example, when __free_slub() iterates over objects in a cache, it
378 * passes untagged pointers to check_object(). check_object() in turns
379 * calls get_freepointer() with an untagged pointer, which causes the
380 * freepointer to be restored incorrectly.
381 */
382 return (void *)((unsigned long)ptr ^ s->random ^
383 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
384 #else
385 return ptr;
386 #endif
387 }
388
389 /* Returns the freelist pointer recorded at location ptr_addr. */
390 static inline void *freelist_dereference(const struct kmem_cache *s,
391 void *ptr_addr)
392 {
393 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
394 (unsigned long)ptr_addr);
395 }
396
397 static inline void *get_freepointer(struct kmem_cache *s, void *object)
398 {
399 object = kasan_reset_tag(object);
400 return freelist_dereference(s, object + s->offset);
401 }
402
403 #ifndef CONFIG_SLUB_TINY
404 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
405 {
406 prefetchw(object + s->offset);
407 }
408 #endif
409
410 /*
411 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
412 * pointer value in the case the current thread loses the race for the next
413 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
414 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
415 * KMSAN will still check all arguments of cmpxchg because of imperfect
416 * handling of inline assembly.
417 * To work around this problem, we apply __no_kmsan_checks to ensure that
418 * get_freepointer_safe() returns initialized memory.
419 */
420 __no_kmsan_checks
421 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
422 {
423 unsigned long freepointer_addr;
424 void *p;
425
426 if (!debug_pagealloc_enabled_static())
427 return get_freepointer(s, object);
428
429 object = kasan_reset_tag(object);
430 freepointer_addr = (unsigned long)object + s->offset;
431 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
432 return freelist_ptr(s, p, freepointer_addr);
433 }
434
435 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
436 {
437 unsigned long freeptr_addr = (unsigned long)object + s->offset;
438
439 #ifdef CONFIG_SLAB_FREELIST_HARDENED
440 BUG_ON(object == fp); /* naive detection of double free or corruption */
441 #endif
442
443 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
444 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
445 }
446
447 /* Loop over all objects in a slab */
448 #define for_each_object(__p, __s, __addr, __objects) \
449 for (__p = fixup_red_left(__s, __addr); \
450 __p < (__addr) + (__objects) * (__s)->size; \
451 __p += (__s)->size)
452
453 static inline unsigned int order_objects(unsigned int order, unsigned int size)
454 {
455 return ((unsigned int)PAGE_SIZE << order) / size;
456 }
457
458 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
459 unsigned int size)
460 {
461 struct kmem_cache_order_objects x = {
462 (order << OO_SHIFT) + order_objects(order, size)
463 };
464
465 return x;
466 }
467
468 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
469 {
470 return x.x >> OO_SHIFT;
471 }
472
473 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
474 {
475 return x.x & OO_MASK;
476 }
477
478 #ifdef CONFIG_SLUB_CPU_PARTIAL
479 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
480 {
481 unsigned int nr_slabs;
482
483 s->cpu_partial = nr_objects;
484
485 /*
486 * We take the number of objects but actually limit the number of
487 * slabs on the per cpu partial list, in order to limit excessive
488 * growth of the list. For simplicity we assume that the slabs will
489 * be half-full.
490 */
491 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
492 s->cpu_partial_slabs = nr_slabs;
493 }
494 #else
495 static inline void
496 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
497 {
498 }
499 #endif /* CONFIG_SLUB_CPU_PARTIAL */
500
501 /*
502 * Per slab locking using the pagelock
503 */
504 static __always_inline void slab_lock(struct slab *slab)
505 {
506 struct page *page = slab_page(slab);
507
508 VM_BUG_ON_PAGE(PageTail(page), page);
509 bit_spin_lock(PG_locked, &page->flags);
510 }
511
512 static __always_inline void slab_unlock(struct slab *slab)
513 {
514 struct page *page = slab_page(slab);
515
516 VM_BUG_ON_PAGE(PageTail(page), page);
517 __bit_spin_unlock(PG_locked, &page->flags);
518 }
519
520 static inline bool
521 __update_freelist_fast(struct slab *slab,
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new)
524 {
525 #ifdef system_has_freelist_aba
526 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
527 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
528
529 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
530 #else
531 return false;
532 #endif
533 }
534
535 static inline bool
536 __update_freelist_slow(struct slab *slab,
537 void *freelist_old, unsigned long counters_old,
538 void *freelist_new, unsigned long counters_new)
539 {
540 bool ret = false;
541
542 slab_lock(slab);
543 if (slab->freelist == freelist_old &&
544 slab->counters == counters_old) {
545 slab->freelist = freelist_new;
546 slab->counters = counters_new;
547 ret = true;
548 }
549 slab_unlock(slab);
550
551 return ret;
552 }
553
554 /*
555 * Interrupts must be disabled (for the fallback code to work right), typically
556 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
557 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
558 * allocation/ free operation in hardirq context. Therefore nothing can
559 * interrupt the operation.
560 */
561 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
562 void *freelist_old, unsigned long counters_old,
563 void *freelist_new, unsigned long counters_new,
564 const char *n)
565 {
566 bool ret;
567
568 if (USE_LOCKLESS_FAST_PATH())
569 lockdep_assert_irqs_disabled();
570
571 if (s->flags & __CMPXCHG_DOUBLE) {
572 ret = __update_freelist_fast(slab, freelist_old, counters_old,
573 freelist_new, counters_new);
574 } else {
575 ret = __update_freelist_slow(slab, freelist_old, counters_old,
576 freelist_new, counters_new);
577 }
578 if (likely(ret))
579 return true;
580
581 cpu_relax();
582 stat(s, CMPXCHG_DOUBLE_FAIL);
583
584 #ifdef SLUB_DEBUG_CMPXCHG
585 pr_info("%s %s: cmpxchg double redo ", n, s->name);
586 #endif
587
588 return false;
589 }
590
591 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
592 void *freelist_old, unsigned long counters_old,
593 void *freelist_new, unsigned long counters_new,
594 const char *n)
595 {
596 bool ret;
597
598 if (s->flags & __CMPXCHG_DOUBLE) {
599 ret = __update_freelist_fast(slab, freelist_old, counters_old,
600 freelist_new, counters_new);
601 } else {
602 unsigned long flags;
603
604 local_irq_save(flags);
605 ret = __update_freelist_slow(slab, freelist_old, counters_old,
606 freelist_new, counters_new);
607 local_irq_restore(flags);
608 }
609 if (likely(ret))
610 return true;
611
612 cpu_relax();
613 stat(s, CMPXCHG_DOUBLE_FAIL);
614
615 #ifdef SLUB_DEBUG_CMPXCHG
616 pr_info("%s %s: cmpxchg double redo ", n, s->name);
617 #endif
618
619 return false;
620 }
621
622 #ifdef CONFIG_SLUB_DEBUG
623 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
624 static DEFINE_SPINLOCK(object_map_lock);
625
626 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
627 struct slab *slab)
628 {
629 void *addr = slab_address(slab);
630 void *p;
631
632 bitmap_zero(obj_map, slab->objects);
633
634 for (p = slab->freelist; p; p = get_freepointer(s, p))
635 set_bit(__obj_to_index(s, addr, p), obj_map);
636 }
637
638 #if IS_ENABLED(CONFIG_KUNIT)
639 static bool slab_add_kunit_errors(void)
640 {
641 struct kunit_resource *resource;
642
643 if (!kunit_get_current_test())
644 return false;
645
646 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
647 if (!resource)
648 return false;
649
650 (*(int *)resource->data)++;
651 kunit_put_resource(resource);
652 return true;
653 }
654 #else
655 static inline bool slab_add_kunit_errors(void) { return false; }
656 #endif
657
658 static inline unsigned int size_from_object(struct kmem_cache *s)
659 {
660 if (s->flags & SLAB_RED_ZONE)
661 return s->size - s->red_left_pad;
662
663 return s->size;
664 }
665
666 static inline void *restore_red_left(struct kmem_cache *s, void *p)
667 {
668 if (s->flags & SLAB_RED_ZONE)
669 p -= s->red_left_pad;
670
671 return p;
672 }
673
674 /*
675 * Debug settings:
676 */
677 #if defined(CONFIG_SLUB_DEBUG_ON)
678 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
679 #else
680 static slab_flags_t slub_debug;
681 #endif
682
683 static char *slub_debug_string;
684 static int disable_higher_order_debug;
685
686 /*
687 * slub is about to manipulate internal object metadata. This memory lies
688 * outside the range of the allocated object, so accessing it would normally
689 * be reported by kasan as a bounds error. metadata_access_enable() is used
690 * to tell kasan that these accesses are OK.
691 */
692 static inline void metadata_access_enable(void)
693 {
694 kasan_disable_current();
695 }
696
697 static inline void metadata_access_disable(void)
698 {
699 kasan_enable_current();
700 }
701
702 /*
703 * Object debugging
704 */
705
706 /* Verify that a pointer has an address that is valid within a slab page */
707 static inline int check_valid_pointer(struct kmem_cache *s,
708 struct slab *slab, void *object)
709 {
710 void *base;
711
712 if (!object)
713 return 1;
714
715 base = slab_address(slab);
716 object = kasan_reset_tag(object);
717 object = restore_red_left(s, object);
718 if (object < base || object >= base + slab->objects * s->size ||
719 (object - base) % s->size) {
720 return 0;
721 }
722
723 return 1;
724 }
725
726 static void print_section(char *level, char *text, u8 *addr,
727 unsigned int length)
728 {
729 metadata_access_enable();
730 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
731 16, 1, kasan_reset_tag((void *)addr), length, 1);
732 metadata_access_disable();
733 }
734
735 /*
736 * See comment in calculate_sizes().
737 */
738 static inline bool freeptr_outside_object(struct kmem_cache *s)
739 {
740 return s->offset >= s->inuse;
741 }
742
743 /*
744 * Return offset of the end of info block which is inuse + free pointer if
745 * not overlapping with object.
746 */
747 static inline unsigned int get_info_end(struct kmem_cache *s)
748 {
749 if (freeptr_outside_object(s))
750 return s->inuse + sizeof(void *);
751 else
752 return s->inuse;
753 }
754
755 static struct track *get_track(struct kmem_cache *s, void *object,
756 enum track_item alloc)
757 {
758 struct track *p;
759
760 p = object + get_info_end(s);
761
762 return kasan_reset_tag(p + alloc);
763 }
764
765 #ifdef CONFIG_STACKDEPOT
766 static noinline depot_stack_handle_t set_track_prepare(void)
767 {
768 depot_stack_handle_t handle;
769 unsigned long entries[TRACK_ADDRS_COUNT];
770 unsigned int nr_entries;
771
772 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
773 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
774
775 return handle;
776 }
777 #else
778 static inline depot_stack_handle_t set_track_prepare(void)
779 {
780 return 0;
781 }
782 #endif
783
784 static void set_track_update(struct kmem_cache *s, void *object,
785 enum track_item alloc, unsigned long addr,
786 depot_stack_handle_t handle)
787 {
788 struct track *p = get_track(s, object, alloc);
789
790 #ifdef CONFIG_STACKDEPOT
791 p->handle = handle;
792 #endif
793 p->addr = addr;
794 p->cpu = smp_processor_id();
795 p->pid = current->pid;
796 p->when = jiffies;
797 }
798
799 static __always_inline void set_track(struct kmem_cache *s, void *object,
800 enum track_item alloc, unsigned long addr)
801 {
802 depot_stack_handle_t handle = set_track_prepare();
803
804 set_track_update(s, object, alloc, addr, handle);
805 }
806
807 static void init_tracking(struct kmem_cache *s, void *object)
808 {
809 struct track *p;
810
811 if (!(s->flags & SLAB_STORE_USER))
812 return;
813
814 p = get_track(s, object, TRACK_ALLOC);
815 memset(p, 0, 2*sizeof(struct track));
816 }
817
818 static void print_track(const char *s, struct track *t, unsigned long pr_time)
819 {
820 depot_stack_handle_t handle __maybe_unused;
821
822 if (!t->addr)
823 return;
824
825 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
826 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
827 #ifdef CONFIG_STACKDEPOT
828 handle = READ_ONCE(t->handle);
829 if (handle)
830 stack_depot_print(handle);
831 else
832 pr_err("object allocation/free stack trace missing\n");
833 #endif
834 }
835
836 void print_tracking(struct kmem_cache *s, void *object)
837 {
838 unsigned long pr_time = jiffies;
839 if (!(s->flags & SLAB_STORE_USER))
840 return;
841
842 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
843 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
844 }
845
846 static void print_slab_info(const struct slab *slab)
847 {
848 struct folio *folio = (struct folio *)slab_folio(slab);
849
850 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
851 slab, slab->objects, slab->inuse, slab->freelist,
852 folio_flags(folio, 0));
853 }
854
855 /*
856 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
857 * family will round up the real request size to these fixed ones, so
858 * there could be an extra area than what is requested. Save the original
859 * request size in the meta data area, for better debug and sanity check.
860 */
861 static inline void set_orig_size(struct kmem_cache *s,
862 void *object, unsigned int orig_size)
863 {
864 void *p = kasan_reset_tag(object);
865
866 if (!slub_debug_orig_size(s))
867 return;
868
869 #ifdef CONFIG_KASAN_GENERIC
870 /*
871 * KASAN could save its free meta data in object's data area at
872 * offset 0, if the size is larger than 'orig_size', it will
873 * overlap the data redzone in [orig_size+1, object_size], and
874 * the check should be skipped.
875 */
876 if (kasan_metadata_size(s, true) > orig_size)
877 orig_size = s->object_size;
878 #endif
879
880 p += get_info_end(s);
881 p += sizeof(struct track) * 2;
882
883 *(unsigned int *)p = orig_size;
884 }
885
886 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
887 {
888 void *p = kasan_reset_tag(object);
889
890 if (!slub_debug_orig_size(s))
891 return s->object_size;
892
893 p += get_info_end(s);
894 p += sizeof(struct track) * 2;
895
896 return *(unsigned int *)p;
897 }
898
899 void skip_orig_size_check(struct kmem_cache *s, const void *object)
900 {
901 set_orig_size(s, (void *)object, s->object_size);
902 }
903
904 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
905 {
906 struct va_format vaf;
907 va_list args;
908
909 va_start(args, fmt);
910 vaf.fmt = fmt;
911 vaf.va = &args;
912 pr_err("=============================================================================\n");
913 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
914 pr_err("-----------------------------------------------------------------------------\n\n");
915 va_end(args);
916 }
917
918 __printf(2, 3)
919 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
920 {
921 struct va_format vaf;
922 va_list args;
923
924 if (slab_add_kunit_errors())
925 return;
926
927 va_start(args, fmt);
928 vaf.fmt = fmt;
929 vaf.va = &args;
930 pr_err("FIX %s: %pV\n", s->name, &vaf);
931 va_end(args);
932 }
933
934 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
935 {
936 unsigned int off; /* Offset of last byte */
937 u8 *addr = slab_address(slab);
938
939 print_tracking(s, p);
940
941 print_slab_info(slab);
942
943 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
944 p, p - addr, get_freepointer(s, p));
945
946 if (s->flags & SLAB_RED_ZONE)
947 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
948 s->red_left_pad);
949 else if (p > addr + 16)
950 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
951
952 print_section(KERN_ERR, "Object ", p,
953 min_t(unsigned int, s->object_size, PAGE_SIZE));
954 if (s->flags & SLAB_RED_ZONE)
955 print_section(KERN_ERR, "Redzone ", p + s->object_size,
956 s->inuse - s->object_size);
957
958 off = get_info_end(s);
959
960 if (s->flags & SLAB_STORE_USER)
961 off += 2 * sizeof(struct track);
962
963 if (slub_debug_orig_size(s))
964 off += sizeof(unsigned int);
965
966 off += kasan_metadata_size(s, false);
967
968 if (off != size_from_object(s))
969 /* Beginning of the filler is the free pointer */
970 print_section(KERN_ERR, "Padding ", p + off,
971 size_from_object(s) - off);
972
973 dump_stack();
974 }
975
976 static void object_err(struct kmem_cache *s, struct slab *slab,
977 u8 *object, char *reason)
978 {
979 if (slab_add_kunit_errors())
980 return;
981
982 slab_bug(s, "%s", reason);
983 print_trailer(s, slab, object);
984 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
985 }
986
987 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
988 void **freelist, void *nextfree)
989 {
990 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
991 !check_valid_pointer(s, slab, nextfree) && freelist) {
992 object_err(s, slab, *freelist, "Freechain corrupt");
993 *freelist = NULL;
994 slab_fix(s, "Isolate corrupted freechain");
995 return true;
996 }
997
998 return false;
999 }
1000
1001 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1002 const char *fmt, ...)
1003 {
1004 va_list args;
1005 char buf[100];
1006
1007 if (slab_add_kunit_errors())
1008 return;
1009
1010 va_start(args, fmt);
1011 vsnprintf(buf, sizeof(buf), fmt, args);
1012 va_end(args);
1013 slab_bug(s, "%s", buf);
1014 print_slab_info(slab);
1015 dump_stack();
1016 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1017 }
1018
1019 static void init_object(struct kmem_cache *s, void *object, u8 val)
1020 {
1021 u8 *p = kasan_reset_tag(object);
1022 unsigned int poison_size = s->object_size;
1023
1024 if (s->flags & SLAB_RED_ZONE) {
1025 memset(p - s->red_left_pad, val, s->red_left_pad);
1026
1027 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1028 /*
1029 * Redzone the extra allocated space by kmalloc than
1030 * requested, and the poison size will be limited to
1031 * the original request size accordingly.
1032 */
1033 poison_size = get_orig_size(s, object);
1034 }
1035 }
1036
1037 if (s->flags & __OBJECT_POISON) {
1038 memset(p, POISON_FREE, poison_size - 1);
1039 p[poison_size - 1] = POISON_END;
1040 }
1041
1042 if (s->flags & SLAB_RED_ZONE)
1043 memset(p + poison_size, val, s->inuse - poison_size);
1044 }
1045
1046 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1047 void *from, void *to)
1048 {
1049 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1050 memset(from, data, to - from);
1051 }
1052
1053 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1054 u8 *object, char *what,
1055 u8 *start, unsigned int value, unsigned int bytes)
1056 {
1057 u8 *fault;
1058 u8 *end;
1059 u8 *addr = slab_address(slab);
1060
1061 metadata_access_enable();
1062 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1063 metadata_access_disable();
1064 if (!fault)
1065 return 1;
1066
1067 end = start + bytes;
1068 while (end > fault && end[-1] == value)
1069 end--;
1070
1071 if (slab_add_kunit_errors())
1072 goto skip_bug_print;
1073
1074 slab_bug(s, "%s overwritten", what);
1075 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1076 fault, end - 1, fault - addr,
1077 fault[0], value);
1078 print_trailer(s, slab, object);
1079 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1080
1081 skip_bug_print:
1082 restore_bytes(s, what, value, fault, end);
1083 return 0;
1084 }
1085
1086 /*
1087 * Object layout:
1088 *
1089 * object address
1090 * Bytes of the object to be managed.
1091 * If the freepointer may overlay the object then the free
1092 * pointer is at the middle of the object.
1093 *
1094 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1095 * 0xa5 (POISON_END)
1096 *
1097 * object + s->object_size
1098 * Padding to reach word boundary. This is also used for Redzoning.
1099 * Padding is extended by another word if Redzoning is enabled and
1100 * object_size == inuse.
1101 *
1102 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1103 * 0xcc (RED_ACTIVE) for objects in use.
1104 *
1105 * object + s->inuse
1106 * Meta data starts here.
1107 *
1108 * A. Free pointer (if we cannot overwrite object on free)
1109 * B. Tracking data for SLAB_STORE_USER
1110 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1111 * D. Padding to reach required alignment boundary or at minimum
1112 * one word if debugging is on to be able to detect writes
1113 * before the word boundary.
1114 *
1115 * Padding is done using 0x5a (POISON_INUSE)
1116 *
1117 * object + s->size
1118 * Nothing is used beyond s->size.
1119 *
1120 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1121 * ignored. And therefore no slab options that rely on these boundaries
1122 * may be used with merged slabcaches.
1123 */
1124
1125 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1126 {
1127 unsigned long off = get_info_end(s); /* The end of info */
1128
1129 if (s->flags & SLAB_STORE_USER) {
1130 /* We also have user information there */
1131 off += 2 * sizeof(struct track);
1132
1133 if (s->flags & SLAB_KMALLOC)
1134 off += sizeof(unsigned int);
1135 }
1136
1137 off += kasan_metadata_size(s, false);
1138
1139 if (size_from_object(s) == off)
1140 return 1;
1141
1142 return check_bytes_and_report(s, slab, p, "Object padding",
1143 p + off, POISON_INUSE, size_from_object(s) - off);
1144 }
1145
1146 /* Check the pad bytes at the end of a slab page */
1147 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1148 {
1149 u8 *start;
1150 u8 *fault;
1151 u8 *end;
1152 u8 *pad;
1153 int length;
1154 int remainder;
1155
1156 if (!(s->flags & SLAB_POISON))
1157 return;
1158
1159 start = slab_address(slab);
1160 length = slab_size(slab);
1161 end = start + length;
1162 remainder = length % s->size;
1163 if (!remainder)
1164 return;
1165
1166 pad = end - remainder;
1167 metadata_access_enable();
1168 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1169 metadata_access_disable();
1170 if (!fault)
1171 return;
1172 while (end > fault && end[-1] == POISON_INUSE)
1173 end--;
1174
1175 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1176 fault, end - 1, fault - start);
1177 print_section(KERN_ERR, "Padding ", pad, remainder);
1178
1179 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1180 }
1181
1182 static int check_object(struct kmem_cache *s, struct slab *slab,
1183 void *object, u8 val)
1184 {
1185 u8 *p = object;
1186 u8 *endobject = object + s->object_size;
1187 unsigned int orig_size;
1188
1189 if (s->flags & SLAB_RED_ZONE) {
1190 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1191 object - s->red_left_pad, val, s->red_left_pad))
1192 return 0;
1193
1194 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1195 endobject, val, s->inuse - s->object_size))
1196 return 0;
1197
1198 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1199 orig_size = get_orig_size(s, object);
1200
1201 if (s->object_size > orig_size &&
1202 !check_bytes_and_report(s, slab, object,
1203 "kmalloc Redzone", p + orig_size,
1204 val, s->object_size - orig_size)) {
1205 return 0;
1206 }
1207 }
1208 } else {
1209 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1210 check_bytes_and_report(s, slab, p, "Alignment padding",
1211 endobject, POISON_INUSE,
1212 s->inuse - s->object_size);
1213 }
1214 }
1215
1216 if (s->flags & SLAB_POISON) {
1217 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1218 (!check_bytes_and_report(s, slab, p, "Poison", p,
1219 POISON_FREE, s->object_size - 1) ||
1220 !check_bytes_and_report(s, slab, p, "End Poison",
1221 p + s->object_size - 1, POISON_END, 1)))
1222 return 0;
1223 /*
1224 * check_pad_bytes cleans up on its own.
1225 */
1226 check_pad_bytes(s, slab, p);
1227 }
1228
1229 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1230 /*
1231 * Object and freepointer overlap. Cannot check
1232 * freepointer while object is allocated.
1233 */
1234 return 1;
1235
1236 /* Check free pointer validity */
1237 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1238 object_err(s, slab, p, "Freepointer corrupt");
1239 /*
1240 * No choice but to zap it and thus lose the remainder
1241 * of the free objects in this slab. May cause
1242 * another error because the object count is now wrong.
1243 */
1244 set_freepointer(s, p, NULL);
1245 return 0;
1246 }
1247 return 1;
1248 }
1249
1250 static int check_slab(struct kmem_cache *s, struct slab *slab)
1251 {
1252 int maxobj;
1253
1254 if (!folio_test_slab(slab_folio(slab))) {
1255 slab_err(s, slab, "Not a valid slab page");
1256 return 0;
1257 }
1258
1259 maxobj = order_objects(slab_order(slab), s->size);
1260 if (slab->objects > maxobj) {
1261 slab_err(s, slab, "objects %u > max %u",
1262 slab->objects, maxobj);
1263 return 0;
1264 }
1265 if (slab->inuse > slab->objects) {
1266 slab_err(s, slab, "inuse %u > max %u",
1267 slab->inuse, slab->objects);
1268 return 0;
1269 }
1270 /* Slab_pad_check fixes things up after itself */
1271 slab_pad_check(s, slab);
1272 return 1;
1273 }
1274
1275 /*
1276 * Determine if a certain object in a slab is on the freelist. Must hold the
1277 * slab lock to guarantee that the chains are in a consistent state.
1278 */
1279 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1280 {
1281 int nr = 0;
1282 void *fp;
1283 void *object = NULL;
1284 int max_objects;
1285
1286 fp = slab->freelist;
1287 while (fp && nr <= slab->objects) {
1288 if (fp == search)
1289 return 1;
1290 if (!check_valid_pointer(s, slab, fp)) {
1291 if (object) {
1292 object_err(s, slab, object,
1293 "Freechain corrupt");
1294 set_freepointer(s, object, NULL);
1295 } else {
1296 slab_err(s, slab, "Freepointer corrupt");
1297 slab->freelist = NULL;
1298 slab->inuse = slab->objects;
1299 slab_fix(s, "Freelist cleared");
1300 return 0;
1301 }
1302 break;
1303 }
1304 object = fp;
1305 fp = get_freepointer(s, object);
1306 nr++;
1307 }
1308
1309 max_objects = order_objects(slab_order(slab), s->size);
1310 if (max_objects > MAX_OBJS_PER_PAGE)
1311 max_objects = MAX_OBJS_PER_PAGE;
1312
1313 if (slab->objects != max_objects) {
1314 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1315 slab->objects, max_objects);
1316 slab->objects = max_objects;
1317 slab_fix(s, "Number of objects adjusted");
1318 }
1319 if (slab->inuse != slab->objects - nr) {
1320 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1321 slab->inuse, slab->objects - nr);
1322 slab->inuse = slab->objects - nr;
1323 slab_fix(s, "Object count adjusted");
1324 }
1325 return search == NULL;
1326 }
1327
1328 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1329 int alloc)
1330 {
1331 if (s->flags & SLAB_TRACE) {
1332 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1333 s->name,
1334 alloc ? "alloc" : "free",
1335 object, slab->inuse,
1336 slab->freelist);
1337
1338 if (!alloc)
1339 print_section(KERN_INFO, "Object ", (void *)object,
1340 s->object_size);
1341
1342 dump_stack();
1343 }
1344 }
1345
1346 /*
1347 * Tracking of fully allocated slabs for debugging purposes.
1348 */
1349 static void add_full(struct kmem_cache *s,
1350 struct kmem_cache_node *n, struct slab *slab)
1351 {
1352 if (!(s->flags & SLAB_STORE_USER))
1353 return;
1354
1355 lockdep_assert_held(&n->list_lock);
1356 list_add(&slab->slab_list, &n->full);
1357 }
1358
1359 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1360 {
1361 if (!(s->flags & SLAB_STORE_USER))
1362 return;
1363
1364 lockdep_assert_held(&n->list_lock);
1365 list_del(&slab->slab_list);
1366 }
1367
1368 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1369 {
1370 return atomic_long_read(&n->nr_slabs);
1371 }
1372
1373 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1374 {
1375 struct kmem_cache_node *n = get_node(s, node);
1376
1377 /*
1378 * May be called early in order to allocate a slab for the
1379 * kmem_cache_node structure. Solve the chicken-egg
1380 * dilemma by deferring the increment of the count during
1381 * bootstrap (see early_kmem_cache_node_alloc).
1382 */
1383 if (likely(n)) {
1384 atomic_long_inc(&n->nr_slabs);
1385 atomic_long_add(objects, &n->total_objects);
1386 }
1387 }
1388 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1389 {
1390 struct kmem_cache_node *n = get_node(s, node);
1391
1392 atomic_long_dec(&n->nr_slabs);
1393 atomic_long_sub(objects, &n->total_objects);
1394 }
1395
1396 /* Object debug checks for alloc/free paths */
1397 static void setup_object_debug(struct kmem_cache *s, void *object)
1398 {
1399 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1400 return;
1401
1402 init_object(s, object, SLUB_RED_INACTIVE);
1403 init_tracking(s, object);
1404 }
1405
1406 static
1407 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1408 {
1409 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1410 return;
1411
1412 metadata_access_enable();
1413 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1414 metadata_access_disable();
1415 }
1416
1417 static inline int alloc_consistency_checks(struct kmem_cache *s,
1418 struct slab *slab, void *object)
1419 {
1420 if (!check_slab(s, slab))
1421 return 0;
1422
1423 if (!check_valid_pointer(s, slab, object)) {
1424 object_err(s, slab, object, "Freelist Pointer check fails");
1425 return 0;
1426 }
1427
1428 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1429 return 0;
1430
1431 return 1;
1432 }
1433
1434 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1435 struct slab *slab, void *object, int orig_size)
1436 {
1437 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1438 if (!alloc_consistency_checks(s, slab, object))
1439 goto bad;
1440 }
1441
1442 /* Success. Perform special debug activities for allocs */
1443 trace(s, slab, object, 1);
1444 set_orig_size(s, object, orig_size);
1445 init_object(s, object, SLUB_RED_ACTIVE);
1446 return true;
1447
1448 bad:
1449 if (folio_test_slab(slab_folio(slab))) {
1450 /*
1451 * If this is a slab page then lets do the best we can
1452 * to avoid issues in the future. Marking all objects
1453 * as used avoids touching the remaining objects.
1454 */
1455 slab_fix(s, "Marking all objects used");
1456 slab->inuse = slab->objects;
1457 slab->freelist = NULL;
1458 }
1459 return false;
1460 }
1461
1462 static inline int free_consistency_checks(struct kmem_cache *s,
1463 struct slab *slab, void *object, unsigned long addr)
1464 {
1465 if (!check_valid_pointer(s, slab, object)) {
1466 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1467 return 0;
1468 }
1469
1470 if (on_freelist(s, slab, object)) {
1471 object_err(s, slab, object, "Object already free");
1472 return 0;
1473 }
1474
1475 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1476 return 0;
1477
1478 if (unlikely(s != slab->slab_cache)) {
1479 if (!folio_test_slab(slab_folio(slab))) {
1480 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1481 object);
1482 } else if (!slab->slab_cache) {
1483 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1484 object);
1485 dump_stack();
1486 } else
1487 object_err(s, slab, object,
1488 "page slab pointer corrupt.");
1489 return 0;
1490 }
1491 return 1;
1492 }
1493
1494 /*
1495 * Parse a block of slub_debug options. Blocks are delimited by ';'
1496 *
1497 * @str: start of block
1498 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1499 * @slabs: return start of list of slabs, or NULL when there's no list
1500 * @init: assume this is initial parsing and not per-kmem-create parsing
1501 *
1502 * returns the start of next block if there's any, or NULL
1503 */
1504 static char *
1505 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1506 {
1507 bool higher_order_disable = false;
1508
1509 /* Skip any completely empty blocks */
1510 while (*str && *str == ';')
1511 str++;
1512
1513 if (*str == ',') {
1514 /*
1515 * No options but restriction on slabs. This means full
1516 * debugging for slabs matching a pattern.
1517 */
1518 *flags = DEBUG_DEFAULT_FLAGS;
1519 goto check_slabs;
1520 }
1521 *flags = 0;
1522
1523 /* Determine which debug features should be switched on */
1524 for (; *str && *str != ',' && *str != ';'; str++) {
1525 switch (tolower(*str)) {
1526 case '-':
1527 *flags = 0;
1528 break;
1529 case 'f':
1530 *flags |= SLAB_CONSISTENCY_CHECKS;
1531 break;
1532 case 'z':
1533 *flags |= SLAB_RED_ZONE;
1534 break;
1535 case 'p':
1536 *flags |= SLAB_POISON;
1537 break;
1538 case 'u':
1539 *flags |= SLAB_STORE_USER;
1540 break;
1541 case 't':
1542 *flags |= SLAB_TRACE;
1543 break;
1544 case 'a':
1545 *flags |= SLAB_FAILSLAB;
1546 break;
1547 case 'o':
1548 /*
1549 * Avoid enabling debugging on caches if its minimum
1550 * order would increase as a result.
1551 */
1552 higher_order_disable = true;
1553 break;
1554 default:
1555 if (init)
1556 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1557 }
1558 }
1559 check_slabs:
1560 if (*str == ',')
1561 *slabs = ++str;
1562 else
1563 *slabs = NULL;
1564
1565 /* Skip over the slab list */
1566 while (*str && *str != ';')
1567 str++;
1568
1569 /* Skip any completely empty blocks */
1570 while (*str && *str == ';')
1571 str++;
1572
1573 if (init && higher_order_disable)
1574 disable_higher_order_debug = 1;
1575
1576 if (*str)
1577 return str;
1578 else
1579 return NULL;
1580 }
1581
1582 static int __init setup_slub_debug(char *str)
1583 {
1584 slab_flags_t flags;
1585 slab_flags_t global_flags;
1586 char *saved_str;
1587 char *slab_list;
1588 bool global_slub_debug_changed = false;
1589 bool slab_list_specified = false;
1590
1591 global_flags = DEBUG_DEFAULT_FLAGS;
1592 if (*str++ != '=' || !*str)
1593 /*
1594 * No options specified. Switch on full debugging.
1595 */
1596 goto out;
1597
1598 saved_str = str;
1599 while (str) {
1600 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1601
1602 if (!slab_list) {
1603 global_flags = flags;
1604 global_slub_debug_changed = true;
1605 } else {
1606 slab_list_specified = true;
1607 if (flags & SLAB_STORE_USER)
1608 stack_depot_request_early_init();
1609 }
1610 }
1611
1612 /*
1613 * For backwards compatibility, a single list of flags with list of
1614 * slabs means debugging is only changed for those slabs, so the global
1615 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1616 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1617 * long as there is no option specifying flags without a slab list.
1618 */
1619 if (slab_list_specified) {
1620 if (!global_slub_debug_changed)
1621 global_flags = slub_debug;
1622 slub_debug_string = saved_str;
1623 }
1624 out:
1625 slub_debug = global_flags;
1626 if (slub_debug & SLAB_STORE_USER)
1627 stack_depot_request_early_init();
1628 if (slub_debug != 0 || slub_debug_string)
1629 static_branch_enable(&slub_debug_enabled);
1630 else
1631 static_branch_disable(&slub_debug_enabled);
1632 if ((static_branch_unlikely(&init_on_alloc) ||
1633 static_branch_unlikely(&init_on_free)) &&
1634 (slub_debug & SLAB_POISON))
1635 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1636 return 1;
1637 }
1638
1639 __setup("slub_debug", setup_slub_debug);
1640
1641 /*
1642 * kmem_cache_flags - apply debugging options to the cache
1643 * @object_size: the size of an object without meta data
1644 * @flags: flags to set
1645 * @name: name of the cache
1646 *
1647 * Debug option(s) are applied to @flags. In addition to the debug
1648 * option(s), if a slab name (or multiple) is specified i.e.
1649 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1650 * then only the select slabs will receive the debug option(s).
1651 */
1652 slab_flags_t kmem_cache_flags(unsigned int object_size,
1653 slab_flags_t flags, const char *name)
1654 {
1655 char *iter;
1656 size_t len;
1657 char *next_block;
1658 slab_flags_t block_flags;
1659 slab_flags_t slub_debug_local = slub_debug;
1660
1661 if (flags & SLAB_NO_USER_FLAGS)
1662 return flags;
1663
1664 /*
1665 * If the slab cache is for debugging (e.g. kmemleak) then
1666 * don't store user (stack trace) information by default,
1667 * but let the user enable it via the command line below.
1668 */
1669 if (flags & SLAB_NOLEAKTRACE)
1670 slub_debug_local &= ~SLAB_STORE_USER;
1671
1672 len = strlen(name);
1673 next_block = slub_debug_string;
1674 /* Go through all blocks of debug options, see if any matches our slab's name */
1675 while (next_block) {
1676 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1677 if (!iter)
1678 continue;
1679 /* Found a block that has a slab list, search it */
1680 while (*iter) {
1681 char *end, *glob;
1682 size_t cmplen;
1683
1684 end = strchrnul(iter, ',');
1685 if (next_block && next_block < end)
1686 end = next_block - 1;
1687
1688 glob = strnchr(iter, end - iter, '*');
1689 if (glob)
1690 cmplen = glob - iter;
1691 else
1692 cmplen = max_t(size_t, len, (end - iter));
1693
1694 if (!strncmp(name, iter, cmplen)) {
1695 flags |= block_flags;
1696 return flags;
1697 }
1698
1699 if (!*end || *end == ';')
1700 break;
1701 iter = end + 1;
1702 }
1703 }
1704
1705 return flags | slub_debug_local;
1706 }
1707 #else /* !CONFIG_SLUB_DEBUG */
1708 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1709 static inline
1710 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1711
1712 static inline bool alloc_debug_processing(struct kmem_cache *s,
1713 struct slab *slab, void *object, int orig_size) { return true; }
1714
1715 static inline bool free_debug_processing(struct kmem_cache *s,
1716 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1717 unsigned long addr, depot_stack_handle_t handle) { return true; }
1718
1719 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1720 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1721 void *object, u8 val) { return 1; }
1722 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1723 static inline void set_track(struct kmem_cache *s, void *object,
1724 enum track_item alloc, unsigned long addr) {}
1725 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1726 struct slab *slab) {}
1727 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1728 struct slab *slab) {}
1729 slab_flags_t kmem_cache_flags(unsigned int object_size,
1730 slab_flags_t flags, const char *name)
1731 {
1732 return flags;
1733 }
1734 #define slub_debug 0
1735
1736 #define disable_higher_order_debug 0
1737
1738 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1739 { return 0; }
1740 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1741 int objects) {}
1742 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1743 int objects) {}
1744
1745 #ifndef CONFIG_SLUB_TINY
1746 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1747 void **freelist, void *nextfree)
1748 {
1749 return false;
1750 }
1751 #endif
1752 #endif /* CONFIG_SLUB_DEBUG */
1753
1754 /*
1755 * Hooks for other subsystems that check memory allocations. In a typical
1756 * production configuration these hooks all should produce no code at all.
1757 */
1758 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1759 void *x, bool init)
1760 {
1761 kmemleak_free_recursive(x, s->flags);
1762 kmsan_slab_free(s, x);
1763
1764 debug_check_no_locks_freed(x, s->object_size);
1765
1766 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1767 debug_check_no_obj_freed(x, s->object_size);
1768
1769 /* Use KCSAN to help debug racy use-after-free. */
1770 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1771 __kcsan_check_access(x, s->object_size,
1772 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1773
1774 /*
1775 * As memory initialization might be integrated into KASAN,
1776 * kasan_slab_free and initialization memset's must be
1777 * kept together to avoid discrepancies in behavior.
1778 *
1779 * The initialization memset's clear the object and the metadata,
1780 * but don't touch the SLAB redzone.
1781 */
1782 if (init) {
1783 int rsize;
1784
1785 if (!kasan_has_integrated_init())
1786 memset(kasan_reset_tag(x), 0, s->object_size);
1787 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1788 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1789 s->size - s->inuse - rsize);
1790 }
1791 /* KASAN might put x into memory quarantine, delaying its reuse. */
1792 return kasan_slab_free(s, x, init);
1793 }
1794
1795 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1796 void **head, void **tail,
1797 int *cnt)
1798 {
1799
1800 void *object;
1801 void *next = *head;
1802 void *old_tail = *tail ? *tail : *head;
1803
1804 if (is_kfence_address(next)) {
1805 slab_free_hook(s, next, false);
1806 return true;
1807 }
1808
1809 /* Head and tail of the reconstructed freelist */
1810 *head = NULL;
1811 *tail = NULL;
1812
1813 do {
1814 object = next;
1815 next = get_freepointer(s, object);
1816
1817 /* If object's reuse doesn't have to be delayed */
1818 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1819 /* Move object to the new freelist */
1820 set_freepointer(s, object, *head);
1821 *head = object;
1822 if (!*tail)
1823 *tail = object;
1824 } else {
1825 /*
1826 * Adjust the reconstructed freelist depth
1827 * accordingly if object's reuse is delayed.
1828 */
1829 --(*cnt);
1830 }
1831 } while (object != old_tail);
1832
1833 if (*head == *tail)
1834 *tail = NULL;
1835
1836 return *head != NULL;
1837 }
1838
1839 static void *setup_object(struct kmem_cache *s, void *object)
1840 {
1841 setup_object_debug(s, object);
1842 object = kasan_init_slab_obj(s, object);
1843 if (unlikely(s->ctor)) {
1844 kasan_unpoison_object_data(s, object);
1845 s->ctor(object);
1846 kasan_poison_object_data(s, object);
1847 }
1848 return object;
1849 }
1850
1851 /*
1852 * Slab allocation and freeing
1853 */
1854 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1855 struct kmem_cache_order_objects oo)
1856 {
1857 struct folio *folio;
1858 struct slab *slab;
1859 unsigned int order = oo_order(oo);
1860
1861 if (node == NUMA_NO_NODE)
1862 folio = (struct folio *)alloc_pages(flags, order);
1863 else
1864 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1865
1866 if (!folio)
1867 return NULL;
1868
1869 slab = folio_slab(folio);
1870 __folio_set_slab(folio);
1871 /* Make the flag visible before any changes to folio->mapping */
1872 smp_wmb();
1873 if (folio_is_pfmemalloc(folio))
1874 slab_set_pfmemalloc(slab);
1875
1876 return slab;
1877 }
1878
1879 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1880 /* Pre-initialize the random sequence cache */
1881 static int init_cache_random_seq(struct kmem_cache *s)
1882 {
1883 unsigned int count = oo_objects(s->oo);
1884 int err;
1885
1886 /* Bailout if already initialised */
1887 if (s->random_seq)
1888 return 0;
1889
1890 err = cache_random_seq_create(s, count, GFP_KERNEL);
1891 if (err) {
1892 pr_err("SLUB: Unable to initialize free list for %s\n",
1893 s->name);
1894 return err;
1895 }
1896
1897 /* Transform to an offset on the set of pages */
1898 if (s->random_seq) {
1899 unsigned int i;
1900
1901 for (i = 0; i < count; i++)
1902 s->random_seq[i] *= s->size;
1903 }
1904 return 0;
1905 }
1906
1907 /* Initialize each random sequence freelist per cache */
1908 static void __init init_freelist_randomization(void)
1909 {
1910 struct kmem_cache *s;
1911
1912 mutex_lock(&slab_mutex);
1913
1914 list_for_each_entry(s, &slab_caches, list)
1915 init_cache_random_seq(s);
1916
1917 mutex_unlock(&slab_mutex);
1918 }
1919
1920 /* Get the next entry on the pre-computed freelist randomized */
1921 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1922 unsigned long *pos, void *start,
1923 unsigned long page_limit,
1924 unsigned long freelist_count)
1925 {
1926 unsigned int idx;
1927
1928 /*
1929 * If the target page allocation failed, the number of objects on the
1930 * page might be smaller than the usual size defined by the cache.
1931 */
1932 do {
1933 idx = s->random_seq[*pos];
1934 *pos += 1;
1935 if (*pos >= freelist_count)
1936 *pos = 0;
1937 } while (unlikely(idx >= page_limit));
1938
1939 return (char *)start + idx;
1940 }
1941
1942 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1943 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1944 {
1945 void *start;
1946 void *cur;
1947 void *next;
1948 unsigned long idx, pos, page_limit, freelist_count;
1949
1950 if (slab->objects < 2 || !s->random_seq)
1951 return false;
1952
1953 freelist_count = oo_objects(s->oo);
1954 pos = get_random_u32_below(freelist_count);
1955
1956 page_limit = slab->objects * s->size;
1957 start = fixup_red_left(s, slab_address(slab));
1958
1959 /* First entry is used as the base of the freelist */
1960 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1961 freelist_count);
1962 cur = setup_object(s, cur);
1963 slab->freelist = cur;
1964
1965 for (idx = 1; idx < slab->objects; idx++) {
1966 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1967 freelist_count);
1968 next = setup_object(s, next);
1969 set_freepointer(s, cur, next);
1970 cur = next;
1971 }
1972 set_freepointer(s, cur, NULL);
1973
1974 return true;
1975 }
1976 #else
1977 static inline int init_cache_random_seq(struct kmem_cache *s)
1978 {
1979 return 0;
1980 }
1981 static inline void init_freelist_randomization(void) { }
1982 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1983 {
1984 return false;
1985 }
1986 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1987
1988 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1989 {
1990 struct slab *slab;
1991 struct kmem_cache_order_objects oo = s->oo;
1992 gfp_t alloc_gfp;
1993 void *start, *p, *next;
1994 int idx;
1995 bool shuffle;
1996
1997 flags &= gfp_allowed_mask;
1998
1999 flags |= s->allocflags;
2000
2001 /*
2002 * Let the initial higher-order allocation fail under memory pressure
2003 * so we fall-back to the minimum order allocation.
2004 */
2005 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2006 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2007 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2008
2009 slab = alloc_slab_page(alloc_gfp, node, oo);
2010 if (unlikely(!slab)) {
2011 oo = s->min;
2012 alloc_gfp = flags;
2013 /*
2014 * Allocation may have failed due to fragmentation.
2015 * Try a lower order alloc if possible
2016 */
2017 slab = alloc_slab_page(alloc_gfp, node, oo);
2018 if (unlikely(!slab))
2019 return NULL;
2020 stat(s, ORDER_FALLBACK);
2021 }
2022
2023 slab->objects = oo_objects(oo);
2024 slab->inuse = 0;
2025 slab->frozen = 0;
2026
2027 account_slab(slab, oo_order(oo), s, flags);
2028
2029 slab->slab_cache = s;
2030
2031 kasan_poison_slab(slab);
2032
2033 start = slab_address(slab);
2034
2035 setup_slab_debug(s, slab, start);
2036
2037 shuffle = shuffle_freelist(s, slab);
2038
2039 if (!shuffle) {
2040 start = fixup_red_left(s, start);
2041 start = setup_object(s, start);
2042 slab->freelist = start;
2043 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2044 next = p + s->size;
2045 next = setup_object(s, next);
2046 set_freepointer(s, p, next);
2047 p = next;
2048 }
2049 set_freepointer(s, p, NULL);
2050 }
2051
2052 return slab;
2053 }
2054
2055 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2056 {
2057 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2058 flags = kmalloc_fix_flags(flags);
2059
2060 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2061
2062 return allocate_slab(s,
2063 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2064 }
2065
2066 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2067 {
2068 struct folio *folio = slab_folio(slab);
2069 int order = folio_order(folio);
2070 int pages = 1 << order;
2071
2072 __slab_clear_pfmemalloc(slab);
2073 folio->mapping = NULL;
2074 /* Make the mapping reset visible before clearing the flag */
2075 smp_wmb();
2076 __folio_clear_slab(folio);
2077 mm_account_reclaimed_pages(pages);
2078 unaccount_slab(slab, order, s);
2079 __free_pages(&folio->page, order);
2080 }
2081
2082 static void rcu_free_slab(struct rcu_head *h)
2083 {
2084 struct slab *slab = container_of(h, struct slab, rcu_head);
2085
2086 __free_slab(slab->slab_cache, slab);
2087 }
2088
2089 static void free_slab(struct kmem_cache *s, struct slab *slab)
2090 {
2091 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2092 void *p;
2093
2094 slab_pad_check(s, slab);
2095 for_each_object(p, s, slab_address(slab), slab->objects)
2096 check_object(s, slab, p, SLUB_RED_INACTIVE);
2097 }
2098
2099 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2100 call_rcu(&slab->rcu_head, rcu_free_slab);
2101 else
2102 __free_slab(s, slab);
2103 }
2104
2105 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2106 {
2107 dec_slabs_node(s, slab_nid(slab), slab->objects);
2108 free_slab(s, slab);
2109 }
2110
2111 /*
2112 * Management of partially allocated slabs.
2113 */
2114 static inline void
2115 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2116 {
2117 n->nr_partial++;
2118 if (tail == DEACTIVATE_TO_TAIL)
2119 list_add_tail(&slab->slab_list, &n->partial);
2120 else
2121 list_add(&slab->slab_list, &n->partial);
2122 }
2123
2124 static inline void add_partial(struct kmem_cache_node *n,
2125 struct slab *slab, int tail)
2126 {
2127 lockdep_assert_held(&n->list_lock);
2128 __add_partial(n, slab, tail);
2129 }
2130
2131 static inline void remove_partial(struct kmem_cache_node *n,
2132 struct slab *slab)
2133 {
2134 lockdep_assert_held(&n->list_lock);
2135 list_del(&slab->slab_list);
2136 n->nr_partial--;
2137 }
2138
2139 /*
2140 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2141 * slab from the n->partial list. Remove only a single object from the slab, do
2142 * the alloc_debug_processing() checks and leave the slab on the list, or move
2143 * it to full list if it was the last free object.
2144 */
2145 static void *alloc_single_from_partial(struct kmem_cache *s,
2146 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2147 {
2148 void *object;
2149
2150 lockdep_assert_held(&n->list_lock);
2151
2152 object = slab->freelist;
2153 slab->freelist = get_freepointer(s, object);
2154 slab->inuse++;
2155
2156 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2157 remove_partial(n, slab);
2158 return NULL;
2159 }
2160
2161 if (slab->inuse == slab->objects) {
2162 remove_partial(n, slab);
2163 add_full(s, n, slab);
2164 }
2165
2166 return object;
2167 }
2168
2169 /*
2170 * Called only for kmem_cache_debug() caches to allocate from a freshly
2171 * allocated slab. Allocate a single object instead of whole freelist
2172 * and put the slab to the partial (or full) list.
2173 */
2174 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2175 struct slab *slab, int orig_size)
2176 {
2177 int nid = slab_nid(slab);
2178 struct kmem_cache_node *n = get_node(s, nid);
2179 unsigned long flags;
2180 void *object;
2181
2182
2183 object = slab->freelist;
2184 slab->freelist = get_freepointer(s, object);
2185 slab->inuse = 1;
2186
2187 if (!alloc_debug_processing(s, slab, object, orig_size))
2188 /*
2189 * It's not really expected that this would fail on a
2190 * freshly allocated slab, but a concurrent memory
2191 * corruption in theory could cause that.
2192 */
2193 return NULL;
2194
2195 spin_lock_irqsave(&n->list_lock, flags);
2196
2197 if (slab->inuse == slab->objects)
2198 add_full(s, n, slab);
2199 else
2200 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2201
2202 inc_slabs_node(s, nid, slab->objects);
2203 spin_unlock_irqrestore(&n->list_lock, flags);
2204
2205 return object;
2206 }
2207
2208 /*
2209 * Remove slab from the partial list, freeze it and
2210 * return the pointer to the freelist.
2211 *
2212 * Returns a list of objects or NULL if it fails.
2213 */
2214 static inline void *acquire_slab(struct kmem_cache *s,
2215 struct kmem_cache_node *n, struct slab *slab,
2216 int mode)
2217 {
2218 void *freelist;
2219 unsigned long counters;
2220 struct slab new;
2221
2222 lockdep_assert_held(&n->list_lock);
2223
2224 /*
2225 * Zap the freelist and set the frozen bit.
2226 * The old freelist is the list of objects for the
2227 * per cpu allocation list.
2228 */
2229 freelist = slab->freelist;
2230 counters = slab->counters;
2231 new.counters = counters;
2232 if (mode) {
2233 new.inuse = slab->objects;
2234 new.freelist = NULL;
2235 } else {
2236 new.freelist = freelist;
2237 }
2238
2239 VM_BUG_ON(new.frozen);
2240 new.frozen = 1;
2241
2242 if (!__slab_update_freelist(s, slab,
2243 freelist, counters,
2244 new.freelist, new.counters,
2245 "acquire_slab"))
2246 return NULL;
2247
2248 remove_partial(n, slab);
2249 WARN_ON(!freelist);
2250 return freelist;
2251 }
2252
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2255 #else
2256 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2257 int drain) { }
2258 #endif
2259 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2260
2261 /*
2262 * Try to allocate a partial slab from a specific node.
2263 */
2264 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2265 struct partial_context *pc)
2266 {
2267 struct slab *slab, *slab2;
2268 void *object = NULL;
2269 unsigned long flags;
2270 unsigned int partial_slabs = 0;
2271
2272 /*
2273 * Racy check. If we mistakenly see no partial slabs then we
2274 * just allocate an empty slab. If we mistakenly try to get a
2275 * partial slab and there is none available then get_partial()
2276 * will return NULL.
2277 */
2278 if (!n || !n->nr_partial)
2279 return NULL;
2280
2281 spin_lock_irqsave(&n->list_lock, flags);
2282 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2283 void *t;
2284
2285 if (!pfmemalloc_match(slab, pc->flags))
2286 continue;
2287
2288 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2289 object = alloc_single_from_partial(s, n, slab,
2290 pc->orig_size);
2291 if (object)
2292 break;
2293 continue;
2294 }
2295
2296 t = acquire_slab(s, n, slab, object == NULL);
2297 if (!t)
2298 break;
2299
2300 if (!object) {
2301 *pc->slab = slab;
2302 stat(s, ALLOC_FROM_PARTIAL);
2303 object = t;
2304 } else {
2305 put_cpu_partial(s, slab, 0);
2306 stat(s, CPU_PARTIAL_NODE);
2307 partial_slabs++;
2308 }
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 if (!kmem_cache_has_cpu_partial(s)
2311 || partial_slabs > s->cpu_partial_slabs / 2)
2312 break;
2313 #else
2314 break;
2315 #endif
2316
2317 }
2318 spin_unlock_irqrestore(&n->list_lock, flags);
2319 return object;
2320 }
2321
2322 /*
2323 * Get a slab from somewhere. Search in increasing NUMA distances.
2324 */
2325 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2326 {
2327 #ifdef CONFIG_NUMA
2328 struct zonelist *zonelist;
2329 struct zoneref *z;
2330 struct zone *zone;
2331 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2332 void *object;
2333 unsigned int cpuset_mems_cookie;
2334
2335 /*
2336 * The defrag ratio allows a configuration of the tradeoffs between
2337 * inter node defragmentation and node local allocations. A lower
2338 * defrag_ratio increases the tendency to do local allocations
2339 * instead of attempting to obtain partial slabs from other nodes.
2340 *
2341 * If the defrag_ratio is set to 0 then kmalloc() always
2342 * returns node local objects. If the ratio is higher then kmalloc()
2343 * may return off node objects because partial slabs are obtained
2344 * from other nodes and filled up.
2345 *
2346 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2347 * (which makes defrag_ratio = 1000) then every (well almost)
2348 * allocation will first attempt to defrag slab caches on other nodes.
2349 * This means scanning over all nodes to look for partial slabs which
2350 * may be expensive if we do it every time we are trying to find a slab
2351 * with available objects.
2352 */
2353 if (!s->remote_node_defrag_ratio ||
2354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2355 return NULL;
2356
2357 do {
2358 cpuset_mems_cookie = read_mems_allowed_begin();
2359 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2360 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2361 struct kmem_cache_node *n;
2362
2363 n = get_node(s, zone_to_nid(zone));
2364
2365 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2366 n->nr_partial > s->min_partial) {
2367 object = get_partial_node(s, n, pc);
2368 if (object) {
2369 /*
2370 * Don't check read_mems_allowed_retry()
2371 * here - if mems_allowed was updated in
2372 * parallel, that was a harmless race
2373 * between allocation and the cpuset
2374 * update
2375 */
2376 return object;
2377 }
2378 }
2379 }
2380 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2381 #endif /* CONFIG_NUMA */
2382 return NULL;
2383 }
2384
2385 /*
2386 * Get a partial slab, lock it and return it.
2387 */
2388 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2389 {
2390 void *object;
2391 int searchnode = node;
2392
2393 if (node == NUMA_NO_NODE)
2394 searchnode = numa_mem_id();
2395
2396 object = get_partial_node(s, get_node(s, searchnode), pc);
2397 if (object || node != NUMA_NO_NODE)
2398 return object;
2399
2400 return get_any_partial(s, pc);
2401 }
2402
2403 #ifndef CONFIG_SLUB_TINY
2404
2405 #ifdef CONFIG_PREEMPTION
2406 /*
2407 * Calculate the next globally unique transaction for disambiguation
2408 * during cmpxchg. The transactions start with the cpu number and are then
2409 * incremented by CONFIG_NR_CPUS.
2410 */
2411 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2412 #else
2413 /*
2414 * No preemption supported therefore also no need to check for
2415 * different cpus.
2416 */
2417 #define TID_STEP 1
2418 #endif /* CONFIG_PREEMPTION */
2419
2420 static inline unsigned long next_tid(unsigned long tid)
2421 {
2422 return tid + TID_STEP;
2423 }
2424
2425 #ifdef SLUB_DEBUG_CMPXCHG
2426 static inline unsigned int tid_to_cpu(unsigned long tid)
2427 {
2428 return tid % TID_STEP;
2429 }
2430
2431 static inline unsigned long tid_to_event(unsigned long tid)
2432 {
2433 return tid / TID_STEP;
2434 }
2435 #endif
2436
2437 static inline unsigned int init_tid(int cpu)
2438 {
2439 return cpu;
2440 }
2441
2442 static inline void note_cmpxchg_failure(const char *n,
2443 const struct kmem_cache *s, unsigned long tid)
2444 {
2445 #ifdef SLUB_DEBUG_CMPXCHG
2446 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2447
2448 pr_info("%s %s: cmpxchg redo ", n, s->name);
2449
2450 #ifdef CONFIG_PREEMPTION
2451 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2452 pr_warn("due to cpu change %d -> %d\n",
2453 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2454 else
2455 #endif
2456 if (tid_to_event(tid) != tid_to_event(actual_tid))
2457 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2458 tid_to_event(tid), tid_to_event(actual_tid));
2459 else
2460 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2461 actual_tid, tid, next_tid(tid));
2462 #endif
2463 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2464 }
2465
2466 static void init_kmem_cache_cpus(struct kmem_cache *s)
2467 {
2468 int cpu;
2469 struct kmem_cache_cpu *c;
2470
2471 for_each_possible_cpu(cpu) {
2472 c = per_cpu_ptr(s->cpu_slab, cpu);
2473 local_lock_init(&c->lock);
2474 c->tid = init_tid(cpu);
2475 }
2476 }
2477
2478 /*
2479 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2480 * unfreezes the slabs and puts it on the proper list.
2481 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2482 * by the caller.
2483 */
2484 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2485 void *freelist)
2486 {
2487 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2488 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2489 int free_delta = 0;
2490 enum slab_modes mode = M_NONE;
2491 void *nextfree, *freelist_iter, *freelist_tail;
2492 int tail = DEACTIVATE_TO_HEAD;
2493 unsigned long flags = 0;
2494 struct slab new;
2495 struct slab old;
2496
2497 if (slab->freelist) {
2498 stat(s, DEACTIVATE_REMOTE_FREES);
2499 tail = DEACTIVATE_TO_TAIL;
2500 }
2501
2502 /*
2503 * Stage one: Count the objects on cpu's freelist as free_delta and
2504 * remember the last object in freelist_tail for later splicing.
2505 */
2506 freelist_tail = NULL;
2507 freelist_iter = freelist;
2508 while (freelist_iter) {
2509 nextfree = get_freepointer(s, freelist_iter);
2510
2511 /*
2512 * If 'nextfree' is invalid, it is possible that the object at
2513 * 'freelist_iter' is already corrupted. So isolate all objects
2514 * starting at 'freelist_iter' by skipping them.
2515 */
2516 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2517 break;
2518
2519 freelist_tail = freelist_iter;
2520 free_delta++;
2521
2522 freelist_iter = nextfree;
2523 }
2524
2525 /*
2526 * Stage two: Unfreeze the slab while splicing the per-cpu
2527 * freelist to the head of slab's freelist.
2528 *
2529 * Ensure that the slab is unfrozen while the list presence
2530 * reflects the actual number of objects during unfreeze.
2531 *
2532 * We first perform cmpxchg holding lock and insert to list
2533 * when it succeed. If there is mismatch then the slab is not
2534 * unfrozen and number of objects in the slab may have changed.
2535 * Then release lock and retry cmpxchg again.
2536 */
2537 redo:
2538
2539 old.freelist = READ_ONCE(slab->freelist);
2540 old.counters = READ_ONCE(slab->counters);
2541 VM_BUG_ON(!old.frozen);
2542
2543 /* Determine target state of the slab */
2544 new.counters = old.counters;
2545 if (freelist_tail) {
2546 new.inuse -= free_delta;
2547 set_freepointer(s, freelist_tail, old.freelist);
2548 new.freelist = freelist;
2549 } else
2550 new.freelist = old.freelist;
2551
2552 new.frozen = 0;
2553
2554 if (!new.inuse && n->nr_partial >= s->min_partial) {
2555 mode = M_FREE;
2556 } else if (new.freelist) {
2557 mode = M_PARTIAL;
2558 /*
2559 * Taking the spinlock removes the possibility that
2560 * acquire_slab() will see a slab that is frozen
2561 */
2562 spin_lock_irqsave(&n->list_lock, flags);
2563 } else {
2564 mode = M_FULL_NOLIST;
2565 }
2566
2567
2568 if (!slab_update_freelist(s, slab,
2569 old.freelist, old.counters,
2570 new.freelist, new.counters,
2571 "unfreezing slab")) {
2572 if (mode == M_PARTIAL)
2573 spin_unlock_irqrestore(&n->list_lock, flags);
2574 goto redo;
2575 }
2576
2577
2578 if (mode == M_PARTIAL) {
2579 add_partial(n, slab, tail);
2580 spin_unlock_irqrestore(&n->list_lock, flags);
2581 stat(s, tail);
2582 } else if (mode == M_FREE) {
2583 stat(s, DEACTIVATE_EMPTY);
2584 discard_slab(s, slab);
2585 stat(s, FREE_SLAB);
2586 } else if (mode == M_FULL_NOLIST) {
2587 stat(s, DEACTIVATE_FULL);
2588 }
2589 }
2590
2591 #ifdef CONFIG_SLUB_CPU_PARTIAL
2592 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2593 {
2594 struct kmem_cache_node *n = NULL, *n2 = NULL;
2595 struct slab *slab, *slab_to_discard = NULL;
2596 unsigned long flags = 0;
2597
2598 while (partial_slab) {
2599 struct slab new;
2600 struct slab old;
2601
2602 slab = partial_slab;
2603 partial_slab = slab->next;
2604
2605 n2 = get_node(s, slab_nid(slab));
2606 if (n != n2) {
2607 if (n)
2608 spin_unlock_irqrestore(&n->list_lock, flags);
2609
2610 n = n2;
2611 spin_lock_irqsave(&n->list_lock, flags);
2612 }
2613
2614 do {
2615
2616 old.freelist = slab->freelist;
2617 old.counters = slab->counters;
2618 VM_BUG_ON(!old.frozen);
2619
2620 new.counters = old.counters;
2621 new.freelist = old.freelist;
2622
2623 new.frozen = 0;
2624
2625 } while (!__slab_update_freelist(s, slab,
2626 old.freelist, old.counters,
2627 new.freelist, new.counters,
2628 "unfreezing slab"));
2629
2630 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2631 slab->next = slab_to_discard;
2632 slab_to_discard = slab;
2633 } else {
2634 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2635 stat(s, FREE_ADD_PARTIAL);
2636 }
2637 }
2638
2639 if (n)
2640 spin_unlock_irqrestore(&n->list_lock, flags);
2641
2642 while (slab_to_discard) {
2643 slab = slab_to_discard;
2644 slab_to_discard = slab_to_discard->next;
2645
2646 stat(s, DEACTIVATE_EMPTY);
2647 discard_slab(s, slab);
2648 stat(s, FREE_SLAB);
2649 }
2650 }
2651
2652 /*
2653 * Unfreeze all the cpu partial slabs.
2654 */
2655 static void unfreeze_partials(struct kmem_cache *s)
2656 {
2657 struct slab *partial_slab;
2658 unsigned long flags;
2659
2660 local_lock_irqsave(&s->cpu_slab->lock, flags);
2661 partial_slab = this_cpu_read(s->cpu_slab->partial);
2662 this_cpu_write(s->cpu_slab->partial, NULL);
2663 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2664
2665 if (partial_slab)
2666 __unfreeze_partials(s, partial_slab);
2667 }
2668
2669 static void unfreeze_partials_cpu(struct kmem_cache *s,
2670 struct kmem_cache_cpu *c)
2671 {
2672 struct slab *partial_slab;
2673
2674 partial_slab = slub_percpu_partial(c);
2675 c->partial = NULL;
2676
2677 if (partial_slab)
2678 __unfreeze_partials(s, partial_slab);
2679 }
2680
2681 /*
2682 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2683 * partial slab slot if available.
2684 *
2685 * If we did not find a slot then simply move all the partials to the
2686 * per node partial list.
2687 */
2688 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2689 {
2690 struct slab *oldslab;
2691 struct slab *slab_to_unfreeze = NULL;
2692 unsigned long flags;
2693 int slabs = 0;
2694
2695 local_lock_irqsave(&s->cpu_slab->lock, flags);
2696
2697 oldslab = this_cpu_read(s->cpu_slab->partial);
2698
2699 if (oldslab) {
2700 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2701 /*
2702 * Partial array is full. Move the existing set to the
2703 * per node partial list. Postpone the actual unfreezing
2704 * outside of the critical section.
2705 */
2706 slab_to_unfreeze = oldslab;
2707 oldslab = NULL;
2708 } else {
2709 slabs = oldslab->slabs;
2710 }
2711 }
2712
2713 slabs++;
2714
2715 slab->slabs = slabs;
2716 slab->next = oldslab;
2717
2718 this_cpu_write(s->cpu_slab->partial, slab);
2719
2720 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2721
2722 if (slab_to_unfreeze) {
2723 __unfreeze_partials(s, slab_to_unfreeze);
2724 stat(s, CPU_PARTIAL_DRAIN);
2725 }
2726 }
2727
2728 #else /* CONFIG_SLUB_CPU_PARTIAL */
2729
2730 static inline void unfreeze_partials(struct kmem_cache *s) { }
2731 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2732 struct kmem_cache_cpu *c) { }
2733
2734 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2735
2736 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2737 {
2738 unsigned long flags;
2739 struct slab *slab;
2740 void *freelist;
2741
2742 local_lock_irqsave(&s->cpu_slab->lock, flags);
2743
2744 slab = c->slab;
2745 freelist = c->freelist;
2746
2747 c->slab = NULL;
2748 c->freelist = NULL;
2749 c->tid = next_tid(c->tid);
2750
2751 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2752
2753 if (slab) {
2754 deactivate_slab(s, slab, freelist);
2755 stat(s, CPUSLAB_FLUSH);
2756 }
2757 }
2758
2759 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2760 {
2761 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2762 void *freelist = c->freelist;
2763 struct slab *slab = c->slab;
2764
2765 c->slab = NULL;
2766 c->freelist = NULL;
2767 c->tid = next_tid(c->tid);
2768
2769 if (slab) {
2770 deactivate_slab(s, slab, freelist);
2771 stat(s, CPUSLAB_FLUSH);
2772 }
2773
2774 unfreeze_partials_cpu(s, c);
2775 }
2776
2777 struct slub_flush_work {
2778 struct work_struct work;
2779 struct kmem_cache *s;
2780 bool skip;
2781 };
2782
2783 /*
2784 * Flush cpu slab.
2785 *
2786 * Called from CPU work handler with migration disabled.
2787 */
2788 static void flush_cpu_slab(struct work_struct *w)
2789 {
2790 struct kmem_cache *s;
2791 struct kmem_cache_cpu *c;
2792 struct slub_flush_work *sfw;
2793
2794 sfw = container_of(w, struct slub_flush_work, work);
2795
2796 s = sfw->s;
2797 c = this_cpu_ptr(s->cpu_slab);
2798
2799 if (c->slab)
2800 flush_slab(s, c);
2801
2802 unfreeze_partials(s);
2803 }
2804
2805 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2806 {
2807 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2808
2809 return c->slab || slub_percpu_partial(c);
2810 }
2811
2812 static DEFINE_MUTEX(flush_lock);
2813 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2814
2815 static void flush_all_cpus_locked(struct kmem_cache *s)
2816 {
2817 struct slub_flush_work *sfw;
2818 unsigned int cpu;
2819
2820 lockdep_assert_cpus_held();
2821 mutex_lock(&flush_lock);
2822
2823 for_each_online_cpu(cpu) {
2824 sfw = &per_cpu(slub_flush, cpu);
2825 if (!has_cpu_slab(cpu, s)) {
2826 sfw->skip = true;
2827 continue;
2828 }
2829 INIT_WORK(&sfw->work, flush_cpu_slab);
2830 sfw->skip = false;
2831 sfw->s = s;
2832 queue_work_on(cpu, flushwq, &sfw->work);
2833 }
2834
2835 for_each_online_cpu(cpu) {
2836 sfw = &per_cpu(slub_flush, cpu);
2837 if (sfw->skip)
2838 continue;
2839 flush_work(&sfw->work);
2840 }
2841
2842 mutex_unlock(&flush_lock);
2843 }
2844
2845 static void flush_all(struct kmem_cache *s)
2846 {
2847 cpus_read_lock();
2848 flush_all_cpus_locked(s);
2849 cpus_read_unlock();
2850 }
2851
2852 /*
2853 * Use the cpu notifier to insure that the cpu slabs are flushed when
2854 * necessary.
2855 */
2856 static int slub_cpu_dead(unsigned int cpu)
2857 {
2858 struct kmem_cache *s;
2859
2860 mutex_lock(&slab_mutex);
2861 list_for_each_entry(s, &slab_caches, list)
2862 __flush_cpu_slab(s, cpu);
2863 mutex_unlock(&slab_mutex);
2864 return 0;
2865 }
2866
2867 #else /* CONFIG_SLUB_TINY */
2868 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2869 static inline void flush_all(struct kmem_cache *s) { }
2870 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2871 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2872 #endif /* CONFIG_SLUB_TINY */
2873
2874 /*
2875 * Check if the objects in a per cpu structure fit numa
2876 * locality expectations.
2877 */
2878 static inline int node_match(struct slab *slab, int node)
2879 {
2880 #ifdef CONFIG_NUMA
2881 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2882 return 0;
2883 #endif
2884 return 1;
2885 }
2886
2887 #ifdef CONFIG_SLUB_DEBUG
2888 static int count_free(struct slab *slab)
2889 {
2890 return slab->objects - slab->inuse;
2891 }
2892
2893 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2894 {
2895 return atomic_long_read(&n->total_objects);
2896 }
2897
2898 /* Supports checking bulk free of a constructed freelist */
2899 static inline bool free_debug_processing(struct kmem_cache *s,
2900 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2901 unsigned long addr, depot_stack_handle_t handle)
2902 {
2903 bool checks_ok = false;
2904 void *object = head;
2905 int cnt = 0;
2906
2907 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2908 if (!check_slab(s, slab))
2909 goto out;
2910 }
2911
2912 if (slab->inuse < *bulk_cnt) {
2913 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2914 slab->inuse, *bulk_cnt);
2915 goto out;
2916 }
2917
2918 next_object:
2919
2920 if (++cnt > *bulk_cnt)
2921 goto out_cnt;
2922
2923 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2924 if (!free_consistency_checks(s, slab, object, addr))
2925 goto out;
2926 }
2927
2928 if (s->flags & SLAB_STORE_USER)
2929 set_track_update(s, object, TRACK_FREE, addr, handle);
2930 trace(s, slab, object, 0);
2931 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2932 init_object(s, object, SLUB_RED_INACTIVE);
2933
2934 /* Reached end of constructed freelist yet? */
2935 if (object != tail) {
2936 object = get_freepointer(s, object);
2937 goto next_object;
2938 }
2939 checks_ok = true;
2940
2941 out_cnt:
2942 if (cnt != *bulk_cnt) {
2943 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2944 *bulk_cnt, cnt);
2945 *bulk_cnt = cnt;
2946 }
2947
2948 out:
2949
2950 if (!checks_ok)
2951 slab_fix(s, "Object at 0x%p not freed", object);
2952
2953 return checks_ok;
2954 }
2955 #endif /* CONFIG_SLUB_DEBUG */
2956
2957 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2958 static unsigned long count_partial(struct kmem_cache_node *n,
2959 int (*get_count)(struct slab *))
2960 {
2961 unsigned long flags;
2962 unsigned long x = 0;
2963 struct slab *slab;
2964
2965 spin_lock_irqsave(&n->list_lock, flags);
2966 list_for_each_entry(slab, &n->partial, slab_list)
2967 x += get_count(slab);
2968 spin_unlock_irqrestore(&n->list_lock, flags);
2969 return x;
2970 }
2971 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2972
2973 #ifdef CONFIG_SLUB_DEBUG
2974 static noinline void
2975 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2976 {
2977 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2978 DEFAULT_RATELIMIT_BURST);
2979 int node;
2980 struct kmem_cache_node *n;
2981
2982 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2983 return;
2984
2985 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2986 nid, gfpflags, &gfpflags);
2987 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2988 s->name, s->object_size, s->size, oo_order(s->oo),
2989 oo_order(s->min));
2990
2991 if (oo_order(s->min) > get_order(s->object_size))
2992 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2993 s->name);
2994
2995 for_each_kmem_cache_node(s, node, n) {
2996 unsigned long nr_slabs;
2997 unsigned long nr_objs;
2998 unsigned long nr_free;
2999
3000 nr_free = count_partial(n, count_free);
3001 nr_slabs = node_nr_slabs(n);
3002 nr_objs = node_nr_objs(n);
3003
3004 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3005 node, nr_slabs, nr_objs, nr_free);
3006 }
3007 }
3008 #else /* CONFIG_SLUB_DEBUG */
3009 static inline void
3010 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3011 #endif
3012
3013 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3014 {
3015 if (unlikely(slab_test_pfmemalloc(slab)))
3016 return gfp_pfmemalloc_allowed(gfpflags);
3017
3018 return true;
3019 }
3020
3021 #ifndef CONFIG_SLUB_TINY
3022 static inline bool
3023 __update_cpu_freelist_fast(struct kmem_cache *s,
3024 void *freelist_old, void *freelist_new,
3025 unsigned long tid)
3026 {
3027 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3028 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3029
3030 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3031 &old.full, new.full);
3032 }
3033
3034 /*
3035 * Check the slab->freelist and either transfer the freelist to the
3036 * per cpu freelist or deactivate the slab.
3037 *
3038 * The slab is still frozen if the return value is not NULL.
3039 *
3040 * If this function returns NULL then the slab has been unfrozen.
3041 */
3042 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3043 {
3044 struct slab new;
3045 unsigned long counters;
3046 void *freelist;
3047
3048 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3049
3050 do {
3051 freelist = slab->freelist;
3052 counters = slab->counters;
3053
3054 new.counters = counters;
3055 VM_BUG_ON(!new.frozen);
3056
3057 new.inuse = slab->objects;
3058 new.frozen = freelist != NULL;
3059
3060 } while (!__slab_update_freelist(s, slab,
3061 freelist, counters,
3062 NULL, new.counters,
3063 "get_freelist"));
3064
3065 return freelist;
3066 }
3067
3068 /*
3069 * Slow path. The lockless freelist is empty or we need to perform
3070 * debugging duties.
3071 *
3072 * Processing is still very fast if new objects have been freed to the
3073 * regular freelist. In that case we simply take over the regular freelist
3074 * as the lockless freelist and zap the regular freelist.
3075 *
3076 * If that is not working then we fall back to the partial lists. We take the
3077 * first element of the freelist as the object to allocate now and move the
3078 * rest of the freelist to the lockless freelist.
3079 *
3080 * And if we were unable to get a new slab from the partial slab lists then
3081 * we need to allocate a new slab. This is the slowest path since it involves
3082 * a call to the page allocator and the setup of a new slab.
3083 *
3084 * Version of __slab_alloc to use when we know that preemption is
3085 * already disabled (which is the case for bulk allocation).
3086 */
3087 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3088 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3089 {
3090 void *freelist;
3091 struct slab *slab;
3092 unsigned long flags;
3093 struct partial_context pc;
3094
3095 stat(s, ALLOC_SLOWPATH);
3096
3097 reread_slab:
3098
3099 slab = READ_ONCE(c->slab);
3100 if (!slab) {
3101 /*
3102 * if the node is not online or has no normal memory, just
3103 * ignore the node constraint
3104 */
3105 if (unlikely(node != NUMA_NO_NODE &&
3106 !node_isset(node, slab_nodes)))
3107 node = NUMA_NO_NODE;
3108 goto new_slab;
3109 }
3110 redo:
3111
3112 if (unlikely(!node_match(slab, node))) {
3113 /*
3114 * same as above but node_match() being false already
3115 * implies node != NUMA_NO_NODE
3116 */
3117 if (!node_isset(node, slab_nodes)) {
3118 node = NUMA_NO_NODE;
3119 } else {
3120 stat(s, ALLOC_NODE_MISMATCH);
3121 goto deactivate_slab;
3122 }
3123 }
3124
3125 /*
3126 * By rights, we should be searching for a slab page that was
3127 * PFMEMALLOC but right now, we are losing the pfmemalloc
3128 * information when the page leaves the per-cpu allocator
3129 */
3130 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3131 goto deactivate_slab;
3132
3133 /* must check again c->slab in case we got preempted and it changed */
3134 local_lock_irqsave(&s->cpu_slab->lock, flags);
3135 if (unlikely(slab != c->slab)) {
3136 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3137 goto reread_slab;
3138 }
3139 freelist = c->freelist;
3140 if (freelist)
3141 goto load_freelist;
3142
3143 freelist = get_freelist(s, slab);
3144
3145 if (!freelist) {
3146 c->slab = NULL;
3147 c->tid = next_tid(c->tid);
3148 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3149 stat(s, DEACTIVATE_BYPASS);
3150 goto new_slab;
3151 }
3152
3153 stat(s, ALLOC_REFILL);
3154
3155 load_freelist:
3156
3157 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3158
3159 /*
3160 * freelist is pointing to the list of objects to be used.
3161 * slab is pointing to the slab from which the objects are obtained.
3162 * That slab must be frozen for per cpu allocations to work.
3163 */
3164 VM_BUG_ON(!c->slab->frozen);
3165 c->freelist = get_freepointer(s, freelist);
3166 c->tid = next_tid(c->tid);
3167 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 return freelist;
3169
3170 deactivate_slab:
3171
3172 local_lock_irqsave(&s->cpu_slab->lock, flags);
3173 if (slab != c->slab) {
3174 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3175 goto reread_slab;
3176 }
3177 freelist = c->freelist;
3178 c->slab = NULL;
3179 c->freelist = NULL;
3180 c->tid = next_tid(c->tid);
3181 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3182 deactivate_slab(s, slab, freelist);
3183
3184 new_slab:
3185
3186 if (slub_percpu_partial(c)) {
3187 local_lock_irqsave(&s->cpu_slab->lock, flags);
3188 if (unlikely(c->slab)) {
3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 goto reread_slab;
3191 }
3192 if (unlikely(!slub_percpu_partial(c))) {
3193 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3194 /* we were preempted and partial list got empty */
3195 goto new_objects;
3196 }
3197
3198 slab = c->slab = slub_percpu_partial(c);
3199 slub_set_percpu_partial(c, slab);
3200 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3201 stat(s, CPU_PARTIAL_ALLOC);
3202 goto redo;
3203 }
3204
3205 new_objects:
3206
3207 pc.flags = gfpflags;
3208 pc.slab = &slab;
3209 pc.orig_size = orig_size;
3210 freelist = get_partial(s, node, &pc);
3211 if (freelist)
3212 goto check_new_slab;
3213
3214 slub_put_cpu_ptr(s->cpu_slab);
3215 slab = new_slab(s, gfpflags, node);
3216 c = slub_get_cpu_ptr(s->cpu_slab);
3217
3218 if (unlikely(!slab)) {
3219 slab_out_of_memory(s, gfpflags, node);
3220 return NULL;
3221 }
3222
3223 stat(s, ALLOC_SLAB);
3224
3225 if (kmem_cache_debug(s)) {
3226 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3227
3228 if (unlikely(!freelist))
3229 goto new_objects;
3230
3231 if (s->flags & SLAB_STORE_USER)
3232 set_track(s, freelist, TRACK_ALLOC, addr);
3233
3234 return freelist;
3235 }
3236
3237 /*
3238 * No other reference to the slab yet so we can
3239 * muck around with it freely without cmpxchg
3240 */
3241 freelist = slab->freelist;
3242 slab->freelist = NULL;
3243 slab->inuse = slab->objects;
3244 slab->frozen = 1;
3245
3246 inc_slabs_node(s, slab_nid(slab), slab->objects);
3247
3248 check_new_slab:
3249
3250 if (kmem_cache_debug(s)) {
3251 /*
3252 * For debug caches here we had to go through
3253 * alloc_single_from_partial() so just store the tracking info
3254 * and return the object
3255 */
3256 if (s->flags & SLAB_STORE_USER)
3257 set_track(s, freelist, TRACK_ALLOC, addr);
3258
3259 return freelist;
3260 }
3261
3262 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3263 /*
3264 * For !pfmemalloc_match() case we don't load freelist so that
3265 * we don't make further mismatched allocations easier.
3266 */
3267 deactivate_slab(s, slab, get_freepointer(s, freelist));
3268 return freelist;
3269 }
3270
3271 retry_load_slab:
3272
3273 local_lock_irqsave(&s->cpu_slab->lock, flags);
3274 if (unlikely(c->slab)) {
3275 void *flush_freelist = c->freelist;
3276 struct slab *flush_slab = c->slab;
3277
3278 c->slab = NULL;
3279 c->freelist = NULL;
3280 c->tid = next_tid(c->tid);
3281
3282 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3283
3284 deactivate_slab(s, flush_slab, flush_freelist);
3285
3286 stat(s, CPUSLAB_FLUSH);
3287
3288 goto retry_load_slab;
3289 }
3290 c->slab = slab;
3291
3292 goto load_freelist;
3293 }
3294
3295 /*
3296 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3297 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3298 * pointer.
3299 */
3300 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3301 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3302 {
3303 void *p;
3304
3305 #ifdef CONFIG_PREEMPT_COUNT
3306 /*
3307 * We may have been preempted and rescheduled on a different
3308 * cpu before disabling preemption. Need to reload cpu area
3309 * pointer.
3310 */
3311 c = slub_get_cpu_ptr(s->cpu_slab);
3312 #endif
3313
3314 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3315 #ifdef CONFIG_PREEMPT_COUNT
3316 slub_put_cpu_ptr(s->cpu_slab);
3317 #endif
3318 return p;
3319 }
3320
3321 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3322 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3323 {
3324 struct kmem_cache_cpu *c;
3325 struct slab *slab;
3326 unsigned long tid;
3327 void *object;
3328
3329 redo:
3330 /*
3331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3332 * enabled. We may switch back and forth between cpus while
3333 * reading from one cpu area. That does not matter as long
3334 * as we end up on the original cpu again when doing the cmpxchg.
3335 *
3336 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3337 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3338 * the tid. If we are preempted and switched to another cpu between the
3339 * two reads, it's OK as the two are still associated with the same cpu
3340 * and cmpxchg later will validate the cpu.
3341 */
3342 c = raw_cpu_ptr(s->cpu_slab);
3343 tid = READ_ONCE(c->tid);
3344
3345 /*
3346 * Irqless object alloc/free algorithm used here depends on sequence
3347 * of fetching cpu_slab's data. tid should be fetched before anything
3348 * on c to guarantee that object and slab associated with previous tid
3349 * won't be used with current tid. If we fetch tid first, object and
3350 * slab could be one associated with next tid and our alloc/free
3351 * request will be failed. In this case, we will retry. So, no problem.
3352 */
3353 barrier();
3354
3355 /*
3356 * The transaction ids are globally unique per cpu and per operation on
3357 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3358 * occurs on the right processor and that there was no operation on the
3359 * linked list in between.
3360 */
3361
3362 object = c->freelist;
3363 slab = c->slab;
3364
3365 if (!USE_LOCKLESS_FAST_PATH() ||
3366 unlikely(!object || !slab || !node_match(slab, node))) {
3367 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3368 } else {
3369 void *next_object = get_freepointer_safe(s, object);
3370
3371 /*
3372 * The cmpxchg will only match if there was no additional
3373 * operation and if we are on the right processor.
3374 *
3375 * The cmpxchg does the following atomically (without lock
3376 * semantics!)
3377 * 1. Relocate first pointer to the current per cpu area.
3378 * 2. Verify that tid and freelist have not been changed
3379 * 3. If they were not changed replace tid and freelist
3380 *
3381 * Since this is without lock semantics the protection is only
3382 * against code executing on this cpu *not* from access by
3383 * other cpus.
3384 */
3385 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3386 note_cmpxchg_failure("slab_alloc", s, tid);
3387 goto redo;
3388 }
3389 prefetch_freepointer(s, next_object);
3390 stat(s, ALLOC_FASTPATH);
3391 }
3392
3393 return object;
3394 }
3395 #else /* CONFIG_SLUB_TINY */
3396 static void *__slab_alloc_node(struct kmem_cache *s,
3397 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3398 {
3399 struct partial_context pc;
3400 struct slab *slab;
3401 void *object;
3402
3403 pc.flags = gfpflags;
3404 pc.slab = &slab;
3405 pc.orig_size = orig_size;
3406 object = get_partial(s, node, &pc);
3407
3408 if (object)
3409 return object;
3410
3411 slab = new_slab(s, gfpflags, node);
3412 if (unlikely(!slab)) {
3413 slab_out_of_memory(s, gfpflags, node);
3414 return NULL;
3415 }
3416
3417 object = alloc_single_from_new_slab(s, slab, orig_size);
3418
3419 return object;
3420 }
3421 #endif /* CONFIG_SLUB_TINY */
3422
3423 /*
3424 * If the object has been wiped upon free, make sure it's fully initialized by
3425 * zeroing out freelist pointer.
3426 */
3427 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3428 void *obj)
3429 {
3430 if (unlikely(slab_want_init_on_free(s)) && obj)
3431 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3432 0, sizeof(void *));
3433 }
3434
3435 /*
3436 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3437 * have the fastpath folded into their functions. So no function call
3438 * overhead for requests that can be satisfied on the fastpath.
3439 *
3440 * The fastpath works by first checking if the lockless freelist can be used.
3441 * If not then __slab_alloc is called for slow processing.
3442 *
3443 * Otherwise we can simply pick the next object from the lockless free list.
3444 */
3445 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3446 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3447 {
3448 void *object;
3449 struct obj_cgroup *objcg = NULL;
3450 bool init = false;
3451
3452 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3453 if (!s)
3454 return NULL;
3455
3456 object = kfence_alloc(s, orig_size, gfpflags);
3457 if (unlikely(object))
3458 goto out;
3459
3460 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3461
3462 maybe_wipe_obj_freeptr(s, object);
3463 init = slab_want_init_on_alloc(gfpflags, s);
3464
3465 out:
3466 /*
3467 * When init equals 'true', like for kzalloc() family, only
3468 * @orig_size bytes might be zeroed instead of s->object_size
3469 */
3470 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3471
3472 return object;
3473 }
3474
3475 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3476 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3477 {
3478 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3479 }
3480
3481 static __fastpath_inline
3482 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3483 gfp_t gfpflags)
3484 {
3485 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3486
3487 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3488
3489 return ret;
3490 }
3491
3492 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3493 {
3494 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3495 }
3496 EXPORT_SYMBOL(kmem_cache_alloc);
3497
3498 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3499 gfp_t gfpflags)
3500 {
3501 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3502 }
3503 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3504
3505 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3506 int node, size_t orig_size,
3507 unsigned long caller)
3508 {
3509 return slab_alloc_node(s, NULL, gfpflags, node,
3510 caller, orig_size);
3511 }
3512
3513 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3514 {
3515 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3516
3517 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3518
3519 return ret;
3520 }
3521 EXPORT_SYMBOL(kmem_cache_alloc_node);
3522
3523 static noinline void free_to_partial_list(
3524 struct kmem_cache *s, struct slab *slab,
3525 void *head, void *tail, int bulk_cnt,
3526 unsigned long addr)
3527 {
3528 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3529 struct slab *slab_free = NULL;
3530 int cnt = bulk_cnt;
3531 unsigned long flags;
3532 depot_stack_handle_t handle = 0;
3533
3534 if (s->flags & SLAB_STORE_USER)
3535 handle = set_track_prepare();
3536
3537 spin_lock_irqsave(&n->list_lock, flags);
3538
3539 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3540 void *prior = slab->freelist;
3541
3542 /* Perform the actual freeing while we still hold the locks */
3543 slab->inuse -= cnt;
3544 set_freepointer(s, tail, prior);
3545 slab->freelist = head;
3546
3547 /*
3548 * If the slab is empty, and node's partial list is full,
3549 * it should be discarded anyway no matter it's on full or
3550 * partial list.
3551 */
3552 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3553 slab_free = slab;
3554
3555 if (!prior) {
3556 /* was on full list */
3557 remove_full(s, n, slab);
3558 if (!slab_free) {
3559 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3560 stat(s, FREE_ADD_PARTIAL);
3561 }
3562 } else if (slab_free) {
3563 remove_partial(n, slab);
3564 stat(s, FREE_REMOVE_PARTIAL);
3565 }
3566 }
3567
3568 if (slab_free) {
3569 /*
3570 * Update the counters while still holding n->list_lock to
3571 * prevent spurious validation warnings
3572 */
3573 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3574 }
3575
3576 spin_unlock_irqrestore(&n->list_lock, flags);
3577
3578 if (slab_free) {
3579 stat(s, FREE_SLAB);
3580 free_slab(s, slab_free);
3581 }
3582 }
3583
3584 /*
3585 * Slow path handling. This may still be called frequently since objects
3586 * have a longer lifetime than the cpu slabs in most processing loads.
3587 *
3588 * So we still attempt to reduce cache line usage. Just take the slab
3589 * lock and free the item. If there is no additional partial slab
3590 * handling required then we can return immediately.
3591 */
3592 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3593 void *head, void *tail, int cnt,
3594 unsigned long addr)
3595
3596 {
3597 void *prior;
3598 int was_frozen;
3599 struct slab new;
3600 unsigned long counters;
3601 struct kmem_cache_node *n = NULL;
3602 unsigned long flags;
3603
3604 stat(s, FREE_SLOWPATH);
3605
3606 if (kfence_free(head))
3607 return;
3608
3609 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3610 free_to_partial_list(s, slab, head, tail, cnt, addr);
3611 return;
3612 }
3613
3614 do {
3615 if (unlikely(n)) {
3616 spin_unlock_irqrestore(&n->list_lock, flags);
3617 n = NULL;
3618 }
3619 prior = slab->freelist;
3620 counters = slab->counters;
3621 set_freepointer(s, tail, prior);
3622 new.counters = counters;
3623 was_frozen = new.frozen;
3624 new.inuse -= cnt;
3625 if ((!new.inuse || !prior) && !was_frozen) {
3626
3627 if (kmem_cache_has_cpu_partial(s) && !prior) {
3628
3629 /*
3630 * Slab was on no list before and will be
3631 * partially empty
3632 * We can defer the list move and instead
3633 * freeze it.
3634 */
3635 new.frozen = 1;
3636
3637 } else { /* Needs to be taken off a list */
3638
3639 n = get_node(s, slab_nid(slab));
3640 /*
3641 * Speculatively acquire the list_lock.
3642 * If the cmpxchg does not succeed then we may
3643 * drop the list_lock without any processing.
3644 *
3645 * Otherwise the list_lock will synchronize with
3646 * other processors updating the list of slabs.
3647 */
3648 spin_lock_irqsave(&n->list_lock, flags);
3649
3650 }
3651 }
3652
3653 } while (!slab_update_freelist(s, slab,
3654 prior, counters,
3655 head, new.counters,
3656 "__slab_free"));
3657
3658 if (likely(!n)) {
3659
3660 if (likely(was_frozen)) {
3661 /*
3662 * The list lock was not taken therefore no list
3663 * activity can be necessary.
3664 */
3665 stat(s, FREE_FROZEN);
3666 } else if (new.frozen) {
3667 /*
3668 * If we just froze the slab then put it onto the
3669 * per cpu partial list.
3670 */
3671 put_cpu_partial(s, slab, 1);
3672 stat(s, CPU_PARTIAL_FREE);
3673 }
3674
3675 return;
3676 }
3677
3678 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3679 goto slab_empty;
3680
3681 /*
3682 * Objects left in the slab. If it was not on the partial list before
3683 * then add it.
3684 */
3685 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3686 remove_full(s, n, slab);
3687 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3688 stat(s, FREE_ADD_PARTIAL);
3689 }
3690 spin_unlock_irqrestore(&n->list_lock, flags);
3691 return;
3692
3693 slab_empty:
3694 if (prior) {
3695 /*
3696 * Slab on the partial list.
3697 */
3698 remove_partial(n, slab);
3699 stat(s, FREE_REMOVE_PARTIAL);
3700 } else {
3701 /* Slab must be on the full list */
3702 remove_full(s, n, slab);
3703 }
3704
3705 spin_unlock_irqrestore(&n->list_lock, flags);
3706 stat(s, FREE_SLAB);
3707 discard_slab(s, slab);
3708 }
3709
3710 #ifndef CONFIG_SLUB_TINY
3711 /*
3712 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3713 * can perform fastpath freeing without additional function calls.
3714 *
3715 * The fastpath is only possible if we are freeing to the current cpu slab
3716 * of this processor. This typically the case if we have just allocated
3717 * the item before.
3718 *
3719 * If fastpath is not possible then fall back to __slab_free where we deal
3720 * with all sorts of special processing.
3721 *
3722 * Bulk free of a freelist with several objects (all pointing to the
3723 * same slab) possible by specifying head and tail ptr, plus objects
3724 * count (cnt). Bulk free indicated by tail pointer being set.
3725 */
3726 static __always_inline void do_slab_free(struct kmem_cache *s,
3727 struct slab *slab, void *head, void *tail,
3728 int cnt, unsigned long addr)
3729 {
3730 void *tail_obj = tail ? : head;
3731 struct kmem_cache_cpu *c;
3732 unsigned long tid;
3733 void **freelist;
3734
3735 redo:
3736 /*
3737 * Determine the currently cpus per cpu slab.
3738 * The cpu may change afterward. However that does not matter since
3739 * data is retrieved via this pointer. If we are on the same cpu
3740 * during the cmpxchg then the free will succeed.
3741 */
3742 c = raw_cpu_ptr(s->cpu_slab);
3743 tid = READ_ONCE(c->tid);
3744
3745 /* Same with comment on barrier() in slab_alloc_node() */
3746 barrier();
3747
3748 if (unlikely(slab != c->slab)) {
3749 __slab_free(s, slab, head, tail_obj, cnt, addr);
3750 return;
3751 }
3752
3753 if (USE_LOCKLESS_FAST_PATH()) {
3754 freelist = READ_ONCE(c->freelist);
3755
3756 set_freepointer(s, tail_obj, freelist);
3757
3758 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3759 note_cmpxchg_failure("slab_free", s, tid);
3760 goto redo;
3761 }
3762 } else {
3763 /* Update the free list under the local lock */
3764 local_lock(&s->cpu_slab->lock);
3765 c = this_cpu_ptr(s->cpu_slab);
3766 if (unlikely(slab != c->slab)) {
3767 local_unlock(&s->cpu_slab->lock);
3768 goto redo;
3769 }
3770 tid = c->tid;
3771 freelist = c->freelist;
3772
3773 set_freepointer(s, tail_obj, freelist);
3774 c->freelist = head;
3775 c->tid = next_tid(tid);
3776
3777 local_unlock(&s->cpu_slab->lock);
3778 }
3779 stat(s, FREE_FASTPATH);
3780 }
3781 #else /* CONFIG_SLUB_TINY */
3782 static void do_slab_free(struct kmem_cache *s,
3783 struct slab *slab, void *head, void *tail,
3784 int cnt, unsigned long addr)
3785 {
3786 void *tail_obj = tail ? : head;
3787
3788 __slab_free(s, slab, head, tail_obj, cnt, addr);
3789 }
3790 #endif /* CONFIG_SLUB_TINY */
3791
3792 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3793 void *head, void *tail, void **p, int cnt,
3794 unsigned long addr)
3795 {
3796 memcg_slab_free_hook(s, slab, p, cnt);
3797 /*
3798 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3799 * to remove objects, whose reuse must be delayed.
3800 */
3801 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3802 do_slab_free(s, slab, head, tail, cnt, addr);
3803 }
3804
3805 #ifdef CONFIG_KASAN_GENERIC
3806 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3807 {
3808 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3809 }
3810 #endif
3811
3812 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3813 {
3814 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3815 }
3816
3817 void kmem_cache_free(struct kmem_cache *s, void *x)
3818 {
3819 s = cache_from_obj(s, x);
3820 if (!s)
3821 return;
3822 trace_kmem_cache_free(_RET_IP_, x, s);
3823 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3824 }
3825 EXPORT_SYMBOL(kmem_cache_free);
3826
3827 struct detached_freelist {
3828 struct slab *slab;
3829 void *tail;
3830 void *freelist;
3831 int cnt;
3832 struct kmem_cache *s;
3833 };
3834
3835 /*
3836 * This function progressively scans the array with free objects (with
3837 * a limited look ahead) and extract objects belonging to the same
3838 * slab. It builds a detached freelist directly within the given
3839 * slab/objects. This can happen without any need for
3840 * synchronization, because the objects are owned by running process.
3841 * The freelist is build up as a single linked list in the objects.
3842 * The idea is, that this detached freelist can then be bulk
3843 * transferred to the real freelist(s), but only requiring a single
3844 * synchronization primitive. Look ahead in the array is limited due
3845 * to performance reasons.
3846 */
3847 static inline
3848 int build_detached_freelist(struct kmem_cache *s, size_t size,
3849 void **p, struct detached_freelist *df)
3850 {
3851 int lookahead = 3;
3852 void *object;
3853 struct folio *folio;
3854 size_t same;
3855
3856 object = p[--size];
3857 folio = virt_to_folio(object);
3858 if (!s) {
3859 /* Handle kalloc'ed objects */
3860 if (unlikely(!folio_test_slab(folio))) {
3861 free_large_kmalloc(folio, object);
3862 df->slab = NULL;
3863 return size;
3864 }
3865 /* Derive kmem_cache from object */
3866 df->slab = folio_slab(folio);
3867 df->s = df->slab->slab_cache;
3868 } else {
3869 df->slab = folio_slab(folio);
3870 df->s = cache_from_obj(s, object); /* Support for memcg */
3871 }
3872
3873 /* Start new detached freelist */
3874 df->tail = object;
3875 df->freelist = object;
3876 df->cnt = 1;
3877
3878 if (is_kfence_address(object))
3879 return size;
3880
3881 set_freepointer(df->s, object, NULL);
3882
3883 same = size;
3884 while (size) {
3885 object = p[--size];
3886 /* df->slab is always set at this point */
3887 if (df->slab == virt_to_slab(object)) {
3888 /* Opportunity build freelist */
3889 set_freepointer(df->s, object, df->freelist);
3890 df->freelist = object;
3891 df->cnt++;
3892 same--;
3893 if (size != same)
3894 swap(p[size], p[same]);
3895 continue;
3896 }
3897
3898 /* Limit look ahead search */
3899 if (!--lookahead)
3900 break;
3901 }
3902
3903 return same;
3904 }
3905
3906 /* Note that interrupts must be enabled when calling this function. */
3907 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3908 {
3909 if (!size)
3910 return;
3911
3912 do {
3913 struct detached_freelist df;
3914
3915 size = build_detached_freelist(s, size, p, &df);
3916 if (!df.slab)
3917 continue;
3918
3919 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3920 _RET_IP_);
3921 } while (likely(size));
3922 }
3923 EXPORT_SYMBOL(kmem_cache_free_bulk);
3924
3925 #ifndef CONFIG_SLUB_TINY
3926 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3927 size_t size, void **p, struct obj_cgroup *objcg)
3928 {
3929 struct kmem_cache_cpu *c;
3930 unsigned long irqflags;
3931 int i;
3932
3933 /*
3934 * Drain objects in the per cpu slab, while disabling local
3935 * IRQs, which protects against PREEMPT and interrupts
3936 * handlers invoking normal fastpath.
3937 */
3938 c = slub_get_cpu_ptr(s->cpu_slab);
3939 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3940
3941 for (i = 0; i < size; i++) {
3942 void *object = kfence_alloc(s, s->object_size, flags);
3943
3944 if (unlikely(object)) {
3945 p[i] = object;
3946 continue;
3947 }
3948
3949 object = c->freelist;
3950 if (unlikely(!object)) {
3951 /*
3952 * We may have removed an object from c->freelist using
3953 * the fastpath in the previous iteration; in that case,
3954 * c->tid has not been bumped yet.
3955 * Since ___slab_alloc() may reenable interrupts while
3956 * allocating memory, we should bump c->tid now.
3957 */
3958 c->tid = next_tid(c->tid);
3959
3960 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3961
3962 /*
3963 * Invoking slow path likely have side-effect
3964 * of re-populating per CPU c->freelist
3965 */
3966 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3967 _RET_IP_, c, s->object_size);
3968 if (unlikely(!p[i]))
3969 goto error;
3970
3971 c = this_cpu_ptr(s->cpu_slab);
3972 maybe_wipe_obj_freeptr(s, p[i]);
3973
3974 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3975
3976 continue; /* goto for-loop */
3977 }
3978 c->freelist = get_freepointer(s, object);
3979 p[i] = object;
3980 maybe_wipe_obj_freeptr(s, p[i]);
3981 }
3982 c->tid = next_tid(c->tid);
3983 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3984 slub_put_cpu_ptr(s->cpu_slab);
3985
3986 return i;
3987
3988 error:
3989 slub_put_cpu_ptr(s->cpu_slab);
3990 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3991 kmem_cache_free_bulk(s, i, p);
3992 return 0;
3993
3994 }
3995 #else /* CONFIG_SLUB_TINY */
3996 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3997 size_t size, void **p, struct obj_cgroup *objcg)
3998 {
3999 int i;
4000
4001 for (i = 0; i < size; i++) {
4002 void *object = kfence_alloc(s, s->object_size, flags);
4003
4004 if (unlikely(object)) {
4005 p[i] = object;
4006 continue;
4007 }
4008
4009 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4010 _RET_IP_, s->object_size);
4011 if (unlikely(!p[i]))
4012 goto error;
4013
4014 maybe_wipe_obj_freeptr(s, p[i]);
4015 }
4016
4017 return i;
4018
4019 error:
4020 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4021 kmem_cache_free_bulk(s, i, p);
4022 return 0;
4023 }
4024 #endif /* CONFIG_SLUB_TINY */
4025
4026 /* Note that interrupts must be enabled when calling this function. */
4027 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4028 void **p)
4029 {
4030 int i;
4031 struct obj_cgroup *objcg = NULL;
4032
4033 if (!size)
4034 return 0;
4035
4036 /* memcg and kmem_cache debug support */
4037 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4038 if (unlikely(!s))
4039 return 0;
4040
4041 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4042
4043 /*
4044 * memcg and kmem_cache debug support and memory initialization.
4045 * Done outside of the IRQ disabled fastpath loop.
4046 */
4047 if (i != 0)
4048 slab_post_alloc_hook(s, objcg, flags, size, p,
4049 slab_want_init_on_alloc(flags, s), s->object_size);
4050 return i;
4051 }
4052 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4053
4054
4055 /*
4056 * Object placement in a slab is made very easy because we always start at
4057 * offset 0. If we tune the size of the object to the alignment then we can
4058 * get the required alignment by putting one properly sized object after
4059 * another.
4060 *
4061 * Notice that the allocation order determines the sizes of the per cpu
4062 * caches. Each processor has always one slab available for allocations.
4063 * Increasing the allocation order reduces the number of times that slabs
4064 * must be moved on and off the partial lists and is therefore a factor in
4065 * locking overhead.
4066 */
4067
4068 /*
4069 * Minimum / Maximum order of slab pages. This influences locking overhead
4070 * and slab fragmentation. A higher order reduces the number of partial slabs
4071 * and increases the number of allocations possible without having to
4072 * take the list_lock.
4073 */
4074 static unsigned int slub_min_order;
4075 static unsigned int slub_max_order =
4076 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4077 static unsigned int slub_min_objects;
4078
4079 /*
4080 * Calculate the order of allocation given an slab object size.
4081 *
4082 * The order of allocation has significant impact on performance and other
4083 * system components. Generally order 0 allocations should be preferred since
4084 * order 0 does not cause fragmentation in the page allocator. Larger objects
4085 * be problematic to put into order 0 slabs because there may be too much
4086 * unused space left. We go to a higher order if more than 1/16th of the slab
4087 * would be wasted.
4088 *
4089 * In order to reach satisfactory performance we must ensure that a minimum
4090 * number of objects is in one slab. Otherwise we may generate too much
4091 * activity on the partial lists which requires taking the list_lock. This is
4092 * less a concern for large slabs though which are rarely used.
4093 *
4094 * slub_max_order specifies the order where we begin to stop considering the
4095 * number of objects in a slab as critical. If we reach slub_max_order then
4096 * we try to keep the page order as low as possible. So we accept more waste
4097 * of space in favor of a small page order.
4098 *
4099 * Higher order allocations also allow the placement of more objects in a
4100 * slab and thereby reduce object handling overhead. If the user has
4101 * requested a higher minimum order then we start with that one instead of
4102 * the smallest order which will fit the object.
4103 */
4104 static inline unsigned int calc_slab_order(unsigned int size,
4105 unsigned int min_objects, unsigned int max_order,
4106 unsigned int fract_leftover)
4107 {
4108 unsigned int min_order = slub_min_order;
4109 unsigned int order;
4110
4111 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4112 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4113
4114 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4115 order <= max_order; order++) {
4116
4117 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4118 unsigned int rem;
4119
4120 rem = slab_size % size;
4121
4122 if (rem <= slab_size / fract_leftover)
4123 break;
4124 }
4125
4126 return order;
4127 }
4128
4129 static inline int calculate_order(unsigned int size)
4130 {
4131 unsigned int order;
4132 unsigned int min_objects;
4133 unsigned int max_objects;
4134 unsigned int nr_cpus;
4135
4136 /*
4137 * Attempt to find best configuration for a slab. This
4138 * works by first attempting to generate a layout with
4139 * the best configuration and backing off gradually.
4140 *
4141 * First we increase the acceptable waste in a slab. Then
4142 * we reduce the minimum objects required in a slab.
4143 */
4144 min_objects = slub_min_objects;
4145 if (!min_objects) {
4146 /*
4147 * Some architectures will only update present cpus when
4148 * onlining them, so don't trust the number if it's just 1. But
4149 * we also don't want to use nr_cpu_ids always, as on some other
4150 * architectures, there can be many possible cpus, but never
4151 * onlined. Here we compromise between trying to avoid too high
4152 * order on systems that appear larger than they are, and too
4153 * low order on systems that appear smaller than they are.
4154 */
4155 nr_cpus = num_present_cpus();
4156 if (nr_cpus <= 1)
4157 nr_cpus = nr_cpu_ids;
4158 min_objects = 4 * (fls(nr_cpus) + 1);
4159 }
4160 max_objects = order_objects(slub_max_order, size);
4161 min_objects = min(min_objects, max_objects);
4162
4163 while (min_objects > 1) {
4164 unsigned int fraction;
4165
4166 fraction = 16;
4167 while (fraction >= 4) {
4168 order = calc_slab_order(size, min_objects,
4169 slub_max_order, fraction);
4170 if (order <= slub_max_order)
4171 return order;
4172 fraction /= 2;
4173 }
4174 min_objects--;
4175 }
4176
4177 /*
4178 * We were unable to place multiple objects in a slab. Now
4179 * lets see if we can place a single object there.
4180 */
4181 order = calc_slab_order(size, 1, slub_max_order, 1);
4182 if (order <= slub_max_order)
4183 return order;
4184
4185 /*
4186 * Doh this slab cannot be placed using slub_max_order.
4187 */
4188 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4189 if (order <= MAX_ORDER)
4190 return order;
4191 return -ENOSYS;
4192 }
4193
4194 static void
4195 init_kmem_cache_node(struct kmem_cache_node *n)
4196 {
4197 n->nr_partial = 0;
4198 spin_lock_init(&n->list_lock);
4199 INIT_LIST_HEAD(&n->partial);
4200 #ifdef CONFIG_SLUB_DEBUG
4201 atomic_long_set(&n->nr_slabs, 0);
4202 atomic_long_set(&n->total_objects, 0);
4203 INIT_LIST_HEAD(&n->full);
4204 #endif
4205 }
4206
4207 #ifndef CONFIG_SLUB_TINY
4208 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4209 {
4210 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4211 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4212 sizeof(struct kmem_cache_cpu));
4213
4214 /*
4215 * Must align to double word boundary for the double cmpxchg
4216 * instructions to work; see __pcpu_double_call_return_bool().
4217 */
4218 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4219 2 * sizeof(void *));
4220
4221 if (!s->cpu_slab)
4222 return 0;
4223
4224 init_kmem_cache_cpus(s);
4225
4226 return 1;
4227 }
4228 #else
4229 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4230 {
4231 return 1;
4232 }
4233 #endif /* CONFIG_SLUB_TINY */
4234
4235 static struct kmem_cache *kmem_cache_node;
4236
4237 /*
4238 * No kmalloc_node yet so do it by hand. We know that this is the first
4239 * slab on the node for this slabcache. There are no concurrent accesses
4240 * possible.
4241 *
4242 * Note that this function only works on the kmem_cache_node
4243 * when allocating for the kmem_cache_node. This is used for bootstrapping
4244 * memory on a fresh node that has no slab structures yet.
4245 */
4246 static void early_kmem_cache_node_alloc(int node)
4247 {
4248 struct slab *slab;
4249 struct kmem_cache_node *n;
4250
4251 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4252
4253 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4254
4255 BUG_ON(!slab);
4256 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4257 if (slab_nid(slab) != node) {
4258 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4259 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4260 }
4261
4262 n = slab->freelist;
4263 BUG_ON(!n);
4264 #ifdef CONFIG_SLUB_DEBUG
4265 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4266 init_tracking(kmem_cache_node, n);
4267 #endif
4268 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4269 slab->freelist = get_freepointer(kmem_cache_node, n);
4270 slab->inuse = 1;
4271 kmem_cache_node->node[node] = n;
4272 init_kmem_cache_node(n);
4273 inc_slabs_node(kmem_cache_node, node, slab->objects);
4274
4275 /*
4276 * No locks need to be taken here as it has just been
4277 * initialized and there is no concurrent access.
4278 */
4279 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4280 }
4281
4282 static void free_kmem_cache_nodes(struct kmem_cache *s)
4283 {
4284 int node;
4285 struct kmem_cache_node *n;
4286
4287 for_each_kmem_cache_node(s, node, n) {
4288 s->node[node] = NULL;
4289 kmem_cache_free(kmem_cache_node, n);
4290 }
4291 }
4292
4293 void __kmem_cache_release(struct kmem_cache *s)
4294 {
4295 cache_random_seq_destroy(s);
4296 #ifndef CONFIG_SLUB_TINY
4297 free_percpu(s->cpu_slab);
4298 #endif
4299 free_kmem_cache_nodes(s);
4300 }
4301
4302 static int init_kmem_cache_nodes(struct kmem_cache *s)
4303 {
4304 int node;
4305
4306 for_each_node_mask(node, slab_nodes) {
4307 struct kmem_cache_node *n;
4308
4309 if (slab_state == DOWN) {
4310 early_kmem_cache_node_alloc(node);
4311 continue;
4312 }
4313 n = kmem_cache_alloc_node(kmem_cache_node,
4314 GFP_KERNEL, node);
4315
4316 if (!n) {
4317 free_kmem_cache_nodes(s);
4318 return 0;
4319 }
4320
4321 init_kmem_cache_node(n);
4322 s->node[node] = n;
4323 }
4324 return 1;
4325 }
4326
4327 static void set_cpu_partial(struct kmem_cache *s)
4328 {
4329 #ifdef CONFIG_SLUB_CPU_PARTIAL
4330 unsigned int nr_objects;
4331
4332 /*
4333 * cpu_partial determined the maximum number of objects kept in the
4334 * per cpu partial lists of a processor.
4335 *
4336 * Per cpu partial lists mainly contain slabs that just have one
4337 * object freed. If they are used for allocation then they can be
4338 * filled up again with minimal effort. The slab will never hit the
4339 * per node partial lists and therefore no locking will be required.
4340 *
4341 * For backwards compatibility reasons, this is determined as number
4342 * of objects, even though we now limit maximum number of pages, see
4343 * slub_set_cpu_partial()
4344 */
4345 if (!kmem_cache_has_cpu_partial(s))
4346 nr_objects = 0;
4347 else if (s->size >= PAGE_SIZE)
4348 nr_objects = 6;
4349 else if (s->size >= 1024)
4350 nr_objects = 24;
4351 else if (s->size >= 256)
4352 nr_objects = 52;
4353 else
4354 nr_objects = 120;
4355
4356 slub_set_cpu_partial(s, nr_objects);
4357 #endif
4358 }
4359
4360 /*
4361 * calculate_sizes() determines the order and the distribution of data within
4362 * a slab object.
4363 */
4364 static int calculate_sizes(struct kmem_cache *s)
4365 {
4366 slab_flags_t flags = s->flags;
4367 unsigned int size = s->object_size;
4368 unsigned int order;
4369
4370 /*
4371 * Round up object size to the next word boundary. We can only
4372 * place the free pointer at word boundaries and this determines
4373 * the possible location of the free pointer.
4374 */
4375 size = ALIGN(size, sizeof(void *));
4376
4377 #ifdef CONFIG_SLUB_DEBUG
4378 /*
4379 * Determine if we can poison the object itself. If the user of
4380 * the slab may touch the object after free or before allocation
4381 * then we should never poison the object itself.
4382 */
4383 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4384 !s->ctor)
4385 s->flags |= __OBJECT_POISON;
4386 else
4387 s->flags &= ~__OBJECT_POISON;
4388
4389
4390 /*
4391 * If we are Redzoning then check if there is some space between the
4392 * end of the object and the free pointer. If not then add an
4393 * additional word to have some bytes to store Redzone information.
4394 */
4395 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4396 size += sizeof(void *);
4397 #endif
4398
4399 /*
4400 * With that we have determined the number of bytes in actual use
4401 * by the object and redzoning.
4402 */
4403 s->inuse = size;
4404
4405 if (slub_debug_orig_size(s) ||
4406 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4407 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4408 s->ctor) {
4409 /*
4410 * Relocate free pointer after the object if it is not
4411 * permitted to overwrite the first word of the object on
4412 * kmem_cache_free.
4413 *
4414 * This is the case if we do RCU, have a constructor or
4415 * destructor, are poisoning the objects, or are
4416 * redzoning an object smaller than sizeof(void *).
4417 *
4418 * The assumption that s->offset >= s->inuse means free
4419 * pointer is outside of the object is used in the
4420 * freeptr_outside_object() function. If that is no
4421 * longer true, the function needs to be modified.
4422 */
4423 s->offset = size;
4424 size += sizeof(void *);
4425 } else {
4426 /*
4427 * Store freelist pointer near middle of object to keep
4428 * it away from the edges of the object to avoid small
4429 * sized over/underflows from neighboring allocations.
4430 */
4431 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4432 }
4433
4434 #ifdef CONFIG_SLUB_DEBUG
4435 if (flags & SLAB_STORE_USER) {
4436 /*
4437 * Need to store information about allocs and frees after
4438 * the object.
4439 */
4440 size += 2 * sizeof(struct track);
4441
4442 /* Save the original kmalloc request size */
4443 if (flags & SLAB_KMALLOC)
4444 size += sizeof(unsigned int);
4445 }
4446 #endif
4447
4448 kasan_cache_create(s, &size, &s->flags);
4449 #ifdef CONFIG_SLUB_DEBUG
4450 if (flags & SLAB_RED_ZONE) {
4451 /*
4452 * Add some empty padding so that we can catch
4453 * overwrites from earlier objects rather than let
4454 * tracking information or the free pointer be
4455 * corrupted if a user writes before the start
4456 * of the object.
4457 */
4458 size += sizeof(void *);
4459
4460 s->red_left_pad = sizeof(void *);
4461 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4462 size += s->red_left_pad;
4463 }
4464 #endif
4465
4466 /*
4467 * SLUB stores one object immediately after another beginning from
4468 * offset 0. In order to align the objects we have to simply size
4469 * each object to conform to the alignment.
4470 */
4471 size = ALIGN(size, s->align);
4472 s->size = size;
4473 s->reciprocal_size = reciprocal_value(size);
4474 order = calculate_order(size);
4475
4476 if ((int)order < 0)
4477 return 0;
4478
4479 s->allocflags = 0;
4480 if (order)
4481 s->allocflags |= __GFP_COMP;
4482
4483 if (s->flags & SLAB_CACHE_DMA)
4484 s->allocflags |= GFP_DMA;
4485
4486 if (s->flags & SLAB_CACHE_DMA32)
4487 s->allocflags |= GFP_DMA32;
4488
4489 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4490 s->allocflags |= __GFP_RECLAIMABLE;
4491
4492 /*
4493 * Determine the number of objects per slab
4494 */
4495 s->oo = oo_make(order, size);
4496 s->min = oo_make(get_order(size), size);
4497
4498 return !!oo_objects(s->oo);
4499 }
4500
4501 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4502 {
4503 s->flags = kmem_cache_flags(s->size, flags, s->name);
4504 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4505 s->random = get_random_long();
4506 #endif
4507
4508 if (!calculate_sizes(s))
4509 goto error;
4510 if (disable_higher_order_debug) {
4511 /*
4512 * Disable debugging flags that store metadata if the min slab
4513 * order increased.
4514 */
4515 if (get_order(s->size) > get_order(s->object_size)) {
4516 s->flags &= ~DEBUG_METADATA_FLAGS;
4517 s->offset = 0;
4518 if (!calculate_sizes(s))
4519 goto error;
4520 }
4521 }
4522
4523 #ifdef system_has_freelist_aba
4524 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4525 /* Enable fast mode */
4526 s->flags |= __CMPXCHG_DOUBLE;
4527 }
4528 #endif
4529
4530 /*
4531 * The larger the object size is, the more slabs we want on the partial
4532 * list to avoid pounding the page allocator excessively.
4533 */
4534 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4535 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4536
4537 set_cpu_partial(s);
4538
4539 #ifdef CONFIG_NUMA
4540 s->remote_node_defrag_ratio = 1000;
4541 #endif
4542
4543 /* Initialize the pre-computed randomized freelist if slab is up */
4544 if (slab_state >= UP) {
4545 if (init_cache_random_seq(s))
4546 goto error;
4547 }
4548
4549 if (!init_kmem_cache_nodes(s))
4550 goto error;
4551
4552 if (alloc_kmem_cache_cpus(s))
4553 return 0;
4554
4555 error:
4556 __kmem_cache_release(s);
4557 return -EINVAL;
4558 }
4559
4560 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4561 const char *text)
4562 {
4563 #ifdef CONFIG_SLUB_DEBUG
4564 void *addr = slab_address(slab);
4565 void *p;
4566
4567 slab_err(s, slab, text, s->name);
4568
4569 spin_lock(&object_map_lock);
4570 __fill_map(object_map, s, slab);
4571
4572 for_each_object(p, s, addr, slab->objects) {
4573
4574 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4575 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4576 print_tracking(s, p);
4577 }
4578 }
4579 spin_unlock(&object_map_lock);
4580 #endif
4581 }
4582
4583 /*
4584 * Attempt to free all partial slabs on a node.
4585 * This is called from __kmem_cache_shutdown(). We must take list_lock
4586 * because sysfs file might still access partial list after the shutdowning.
4587 */
4588 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4589 {
4590 LIST_HEAD(discard);
4591 struct slab *slab, *h;
4592
4593 BUG_ON(irqs_disabled());
4594 spin_lock_irq(&n->list_lock);
4595 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4596 if (!slab->inuse) {
4597 remove_partial(n, slab);
4598 list_add(&slab->slab_list, &discard);
4599 } else {
4600 list_slab_objects(s, slab,
4601 "Objects remaining in %s on __kmem_cache_shutdown()");
4602 }
4603 }
4604 spin_unlock_irq(&n->list_lock);
4605
4606 list_for_each_entry_safe(slab, h, &discard, slab_list)
4607 discard_slab(s, slab);
4608 }
4609
4610 bool __kmem_cache_empty(struct kmem_cache *s)
4611 {
4612 int node;
4613 struct kmem_cache_node *n;
4614
4615 for_each_kmem_cache_node(s, node, n)
4616 if (n->nr_partial || node_nr_slabs(n))
4617 return false;
4618 return true;
4619 }
4620
4621 /*
4622 * Release all resources used by a slab cache.
4623 */
4624 int __kmem_cache_shutdown(struct kmem_cache *s)
4625 {
4626 int node;
4627 struct kmem_cache_node *n;
4628
4629 flush_all_cpus_locked(s);
4630 /* Attempt to free all objects */
4631 for_each_kmem_cache_node(s, node, n) {
4632 free_partial(s, n);
4633 if (n->nr_partial || node_nr_slabs(n))
4634 return 1;
4635 }
4636 return 0;
4637 }
4638
4639 #ifdef CONFIG_PRINTK
4640 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4641 {
4642 void *base;
4643 int __maybe_unused i;
4644 unsigned int objnr;
4645 void *objp;
4646 void *objp0;
4647 struct kmem_cache *s = slab->slab_cache;
4648 struct track __maybe_unused *trackp;
4649
4650 kpp->kp_ptr = object;
4651 kpp->kp_slab = slab;
4652 kpp->kp_slab_cache = s;
4653 base = slab_address(slab);
4654 objp0 = kasan_reset_tag(object);
4655 #ifdef CONFIG_SLUB_DEBUG
4656 objp = restore_red_left(s, objp0);
4657 #else
4658 objp = objp0;
4659 #endif
4660 objnr = obj_to_index(s, slab, objp);
4661 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4662 objp = base + s->size * objnr;
4663 kpp->kp_objp = objp;
4664 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4665 || (objp - base) % s->size) ||
4666 !(s->flags & SLAB_STORE_USER))
4667 return;
4668 #ifdef CONFIG_SLUB_DEBUG
4669 objp = fixup_red_left(s, objp);
4670 trackp = get_track(s, objp, TRACK_ALLOC);
4671 kpp->kp_ret = (void *)trackp->addr;
4672 #ifdef CONFIG_STACKDEPOT
4673 {
4674 depot_stack_handle_t handle;
4675 unsigned long *entries;
4676 unsigned int nr_entries;
4677
4678 handle = READ_ONCE(trackp->handle);
4679 if (handle) {
4680 nr_entries = stack_depot_fetch(handle, &entries);
4681 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4682 kpp->kp_stack[i] = (void *)entries[i];
4683 }
4684
4685 trackp = get_track(s, objp, TRACK_FREE);
4686 handle = READ_ONCE(trackp->handle);
4687 if (handle) {
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_free_stack[i] = (void *)entries[i];
4691 }
4692 }
4693 #endif
4694 #endif
4695 }
4696 #endif
4697
4698 /********************************************************************
4699 * Kmalloc subsystem
4700 *******************************************************************/
4701
4702 static int __init setup_slub_min_order(char *str)
4703 {
4704 get_option(&str, (int *)&slub_min_order);
4705
4706 return 1;
4707 }
4708
4709 __setup("slub_min_order=", setup_slub_min_order);
4710
4711 static int __init setup_slub_max_order(char *str)
4712 {
4713 get_option(&str, (int *)&slub_max_order);
4714 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4715
4716 return 1;
4717 }
4718
4719 __setup("slub_max_order=", setup_slub_max_order);
4720
4721 static int __init setup_slub_min_objects(char *str)
4722 {
4723 get_option(&str, (int *)&slub_min_objects);
4724
4725 return 1;
4726 }
4727
4728 __setup("slub_min_objects=", setup_slub_min_objects);
4729
4730 #ifdef CONFIG_HARDENED_USERCOPY
4731 /*
4732 * Rejects incorrectly sized objects and objects that are to be copied
4733 * to/from userspace but do not fall entirely within the containing slab
4734 * cache's usercopy region.
4735 *
4736 * Returns NULL if check passes, otherwise const char * to name of cache
4737 * to indicate an error.
4738 */
4739 void __check_heap_object(const void *ptr, unsigned long n,
4740 const struct slab *slab, bool to_user)
4741 {
4742 struct kmem_cache *s;
4743 unsigned int offset;
4744 bool is_kfence = is_kfence_address(ptr);
4745
4746 ptr = kasan_reset_tag(ptr);
4747
4748 /* Find object and usable object size. */
4749 s = slab->slab_cache;
4750
4751 /* Reject impossible pointers. */
4752 if (ptr < slab_address(slab))
4753 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4754 to_user, 0, n);
4755
4756 /* Find offset within object. */
4757 if (is_kfence)
4758 offset = ptr - kfence_object_start(ptr);
4759 else
4760 offset = (ptr - slab_address(slab)) % s->size;
4761
4762 /* Adjust for redzone and reject if within the redzone. */
4763 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4764 if (offset < s->red_left_pad)
4765 usercopy_abort("SLUB object in left red zone",
4766 s->name, to_user, offset, n);
4767 offset -= s->red_left_pad;
4768 }
4769
4770 /* Allow address range falling entirely within usercopy region. */
4771 if (offset >= s->useroffset &&
4772 offset - s->useroffset <= s->usersize &&
4773 n <= s->useroffset - offset + s->usersize)
4774 return;
4775
4776 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4777 }
4778 #endif /* CONFIG_HARDENED_USERCOPY */
4779
4780 #define SHRINK_PROMOTE_MAX 32
4781
4782 /*
4783 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4784 * up most to the head of the partial lists. New allocations will then
4785 * fill those up and thus they can be removed from the partial lists.
4786 *
4787 * The slabs with the least items are placed last. This results in them
4788 * being allocated from last increasing the chance that the last objects
4789 * are freed in them.
4790 */
4791 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4792 {
4793 int node;
4794 int i;
4795 struct kmem_cache_node *n;
4796 struct slab *slab;
4797 struct slab *t;
4798 struct list_head discard;
4799 struct list_head promote[SHRINK_PROMOTE_MAX];
4800 unsigned long flags;
4801 int ret = 0;
4802
4803 for_each_kmem_cache_node(s, node, n) {
4804 INIT_LIST_HEAD(&discard);
4805 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4806 INIT_LIST_HEAD(promote + i);
4807
4808 spin_lock_irqsave(&n->list_lock, flags);
4809
4810 /*
4811 * Build lists of slabs to discard or promote.
4812 *
4813 * Note that concurrent frees may occur while we hold the
4814 * list_lock. slab->inuse here is the upper limit.
4815 */
4816 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4817 int free = slab->objects - slab->inuse;
4818
4819 /* Do not reread slab->inuse */
4820 barrier();
4821
4822 /* We do not keep full slabs on the list */
4823 BUG_ON(free <= 0);
4824
4825 if (free == slab->objects) {
4826 list_move(&slab->slab_list, &discard);
4827 n->nr_partial--;
4828 dec_slabs_node(s, node, slab->objects);
4829 } else if (free <= SHRINK_PROMOTE_MAX)
4830 list_move(&slab->slab_list, promote + free - 1);
4831 }
4832
4833 /*
4834 * Promote the slabs filled up most to the head of the
4835 * partial list.
4836 */
4837 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4838 list_splice(promote + i, &n->partial);
4839
4840 spin_unlock_irqrestore(&n->list_lock, flags);
4841
4842 /* Release empty slabs */
4843 list_for_each_entry_safe(slab, t, &discard, slab_list)
4844 free_slab(s, slab);
4845
4846 if (node_nr_slabs(n))
4847 ret = 1;
4848 }
4849
4850 return ret;
4851 }
4852
4853 int __kmem_cache_shrink(struct kmem_cache *s)
4854 {
4855 flush_all(s);
4856 return __kmem_cache_do_shrink(s);
4857 }
4858
4859 static int slab_mem_going_offline_callback(void *arg)
4860 {
4861 struct kmem_cache *s;
4862
4863 mutex_lock(&slab_mutex);
4864 list_for_each_entry(s, &slab_caches, list) {
4865 flush_all_cpus_locked(s);
4866 __kmem_cache_do_shrink(s);
4867 }
4868 mutex_unlock(&slab_mutex);
4869
4870 return 0;
4871 }
4872
4873 static void slab_mem_offline_callback(void *arg)
4874 {
4875 struct memory_notify *marg = arg;
4876 int offline_node;
4877
4878 offline_node = marg->status_change_nid_normal;
4879
4880 /*
4881 * If the node still has available memory. we need kmem_cache_node
4882 * for it yet.
4883 */
4884 if (offline_node < 0)
4885 return;
4886
4887 mutex_lock(&slab_mutex);
4888 node_clear(offline_node, slab_nodes);
4889 /*
4890 * We no longer free kmem_cache_node structures here, as it would be
4891 * racy with all get_node() users, and infeasible to protect them with
4892 * slab_mutex.
4893 */
4894 mutex_unlock(&slab_mutex);
4895 }
4896
4897 static int slab_mem_going_online_callback(void *arg)
4898 {
4899 struct kmem_cache_node *n;
4900 struct kmem_cache *s;
4901 struct memory_notify *marg = arg;
4902 int nid = marg->status_change_nid_normal;
4903 int ret = 0;
4904
4905 /*
4906 * If the node's memory is already available, then kmem_cache_node is
4907 * already created. Nothing to do.
4908 */
4909 if (nid < 0)
4910 return 0;
4911
4912 /*
4913 * We are bringing a node online. No memory is available yet. We must
4914 * allocate a kmem_cache_node structure in order to bring the node
4915 * online.
4916 */
4917 mutex_lock(&slab_mutex);
4918 list_for_each_entry(s, &slab_caches, list) {
4919 /*
4920 * The structure may already exist if the node was previously
4921 * onlined and offlined.
4922 */
4923 if (get_node(s, nid))
4924 continue;
4925 /*
4926 * XXX: kmem_cache_alloc_node will fallback to other nodes
4927 * since memory is not yet available from the node that
4928 * is brought up.
4929 */
4930 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4931 if (!n) {
4932 ret = -ENOMEM;
4933 goto out;
4934 }
4935 init_kmem_cache_node(n);
4936 s->node[nid] = n;
4937 }
4938 /*
4939 * Any cache created after this point will also have kmem_cache_node
4940 * initialized for the new node.
4941 */
4942 node_set(nid, slab_nodes);
4943 out:
4944 mutex_unlock(&slab_mutex);
4945 return ret;
4946 }
4947
4948 static int slab_memory_callback(struct notifier_block *self,
4949 unsigned long action, void *arg)
4950 {
4951 int ret = 0;
4952
4953 switch (action) {
4954 case MEM_GOING_ONLINE:
4955 ret = slab_mem_going_online_callback(arg);
4956 break;
4957 case MEM_GOING_OFFLINE:
4958 ret = slab_mem_going_offline_callback(arg);
4959 break;
4960 case MEM_OFFLINE:
4961 case MEM_CANCEL_ONLINE:
4962 slab_mem_offline_callback(arg);
4963 break;
4964 case MEM_ONLINE:
4965 case MEM_CANCEL_OFFLINE:
4966 break;
4967 }
4968 if (ret)
4969 ret = notifier_from_errno(ret);
4970 else
4971 ret = NOTIFY_OK;
4972 return ret;
4973 }
4974
4975 /********************************************************************
4976 * Basic setup of slabs
4977 *******************************************************************/
4978
4979 /*
4980 * Used for early kmem_cache structures that were allocated using
4981 * the page allocator. Allocate them properly then fix up the pointers
4982 * that may be pointing to the wrong kmem_cache structure.
4983 */
4984
4985 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4986 {
4987 int node;
4988 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4989 struct kmem_cache_node *n;
4990
4991 memcpy(s, static_cache, kmem_cache->object_size);
4992
4993 /*
4994 * This runs very early, and only the boot processor is supposed to be
4995 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4996 * IPIs around.
4997 */
4998 __flush_cpu_slab(s, smp_processor_id());
4999 for_each_kmem_cache_node(s, node, n) {
5000 struct slab *p;
5001
5002 list_for_each_entry(p, &n->partial, slab_list)
5003 p->slab_cache = s;
5004
5005 #ifdef CONFIG_SLUB_DEBUG
5006 list_for_each_entry(p, &n->full, slab_list)
5007 p->slab_cache = s;
5008 #endif
5009 }
5010 list_add(&s->list, &slab_caches);
5011 return s;
5012 }
5013
5014 void __init kmem_cache_init(void)
5015 {
5016 static __initdata struct kmem_cache boot_kmem_cache,
5017 boot_kmem_cache_node;
5018 int node;
5019
5020 if (debug_guardpage_minorder())
5021 slub_max_order = 0;
5022
5023 /* Print slub debugging pointers without hashing */
5024 if (__slub_debug_enabled())
5025 no_hash_pointers_enable(NULL);
5026
5027 kmem_cache_node = &boot_kmem_cache_node;
5028 kmem_cache = &boot_kmem_cache;
5029
5030 /*
5031 * Initialize the nodemask for which we will allocate per node
5032 * structures. Here we don't need taking slab_mutex yet.
5033 */
5034 for_each_node_state(node, N_NORMAL_MEMORY)
5035 node_set(node, slab_nodes);
5036
5037 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5038 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5039
5040 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5041
5042 /* Able to allocate the per node structures */
5043 slab_state = PARTIAL;
5044
5045 create_boot_cache(kmem_cache, "kmem_cache",
5046 offsetof(struct kmem_cache, node) +
5047 nr_node_ids * sizeof(struct kmem_cache_node *),
5048 SLAB_HWCACHE_ALIGN, 0, 0);
5049
5050 kmem_cache = bootstrap(&boot_kmem_cache);
5051 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5052
5053 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5054 setup_kmalloc_cache_index_table();
5055 create_kmalloc_caches(0);
5056
5057 /* Setup random freelists for each cache */
5058 init_freelist_randomization();
5059
5060 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5061 slub_cpu_dead);
5062
5063 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5064 cache_line_size(),
5065 slub_min_order, slub_max_order, slub_min_objects,
5066 nr_cpu_ids, nr_node_ids);
5067 }
5068
5069 void __init kmem_cache_init_late(void)
5070 {
5071 #ifndef CONFIG_SLUB_TINY
5072 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5073 WARN_ON(!flushwq);
5074 #endif
5075 }
5076
5077 struct kmem_cache *
5078 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5079 slab_flags_t flags, void (*ctor)(void *))
5080 {
5081 struct kmem_cache *s;
5082
5083 s = find_mergeable(size, align, flags, name, ctor);
5084 if (s) {
5085 if (sysfs_slab_alias(s, name))
5086 return NULL;
5087
5088 s->refcount++;
5089
5090 /*
5091 * Adjust the object sizes so that we clear
5092 * the complete object on kzalloc.
5093 */
5094 s->object_size = max(s->object_size, size);
5095 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5096 }
5097
5098 return s;
5099 }
5100
5101 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5102 {
5103 int err;
5104
5105 err = kmem_cache_open(s, flags);
5106 if (err)
5107 return err;
5108
5109 /* Mutex is not taken during early boot */
5110 if (slab_state <= UP)
5111 return 0;
5112
5113 err = sysfs_slab_add(s);
5114 if (err) {
5115 __kmem_cache_release(s);
5116 return err;
5117 }
5118
5119 if (s->flags & SLAB_STORE_USER)
5120 debugfs_slab_add(s);
5121
5122 return 0;
5123 }
5124
5125 #ifdef SLAB_SUPPORTS_SYSFS
5126 static int count_inuse(struct slab *slab)
5127 {
5128 return slab->inuse;
5129 }
5130
5131 static int count_total(struct slab *slab)
5132 {
5133 return slab->objects;
5134 }
5135 #endif
5136
5137 #ifdef CONFIG_SLUB_DEBUG
5138 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5139 unsigned long *obj_map)
5140 {
5141 void *p;
5142 void *addr = slab_address(slab);
5143
5144 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5145 return;
5146
5147 /* Now we know that a valid freelist exists */
5148 __fill_map(obj_map, s, slab);
5149 for_each_object(p, s, addr, slab->objects) {
5150 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5151 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5152
5153 if (!check_object(s, slab, p, val))
5154 break;
5155 }
5156 }
5157
5158 static int validate_slab_node(struct kmem_cache *s,
5159 struct kmem_cache_node *n, unsigned long *obj_map)
5160 {
5161 unsigned long count = 0;
5162 struct slab *slab;
5163 unsigned long flags;
5164
5165 spin_lock_irqsave(&n->list_lock, flags);
5166
5167 list_for_each_entry(slab, &n->partial, slab_list) {
5168 validate_slab(s, slab, obj_map);
5169 count++;
5170 }
5171 if (count != n->nr_partial) {
5172 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5173 s->name, count, n->nr_partial);
5174 slab_add_kunit_errors();
5175 }
5176
5177 if (!(s->flags & SLAB_STORE_USER))
5178 goto out;
5179
5180 list_for_each_entry(slab, &n->full, slab_list) {
5181 validate_slab(s, slab, obj_map);
5182 count++;
5183 }
5184 if (count != node_nr_slabs(n)) {
5185 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5186 s->name, count, node_nr_slabs(n));
5187 slab_add_kunit_errors();
5188 }
5189
5190 out:
5191 spin_unlock_irqrestore(&n->list_lock, flags);
5192 return count;
5193 }
5194
5195 long validate_slab_cache(struct kmem_cache *s)
5196 {
5197 int node;
5198 unsigned long count = 0;
5199 struct kmem_cache_node *n;
5200 unsigned long *obj_map;
5201
5202 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5203 if (!obj_map)
5204 return -ENOMEM;
5205
5206 flush_all(s);
5207 for_each_kmem_cache_node(s, node, n)
5208 count += validate_slab_node(s, n, obj_map);
5209
5210 bitmap_free(obj_map);
5211
5212 return count;
5213 }
5214 EXPORT_SYMBOL(validate_slab_cache);
5215
5216 #ifdef CONFIG_DEBUG_FS
5217 /*
5218 * Generate lists of code addresses where slabcache objects are allocated
5219 * and freed.
5220 */
5221
5222 struct location {
5223 depot_stack_handle_t handle;
5224 unsigned long count;
5225 unsigned long addr;
5226 unsigned long waste;
5227 long long sum_time;
5228 long min_time;
5229 long max_time;
5230 long min_pid;
5231 long max_pid;
5232 DECLARE_BITMAP(cpus, NR_CPUS);
5233 nodemask_t nodes;
5234 };
5235
5236 struct loc_track {
5237 unsigned long max;
5238 unsigned long count;
5239 struct location *loc;
5240 loff_t idx;
5241 };
5242
5243 static struct dentry *slab_debugfs_root;
5244
5245 static void free_loc_track(struct loc_track *t)
5246 {
5247 if (t->max)
5248 free_pages((unsigned long)t->loc,
5249 get_order(sizeof(struct location) * t->max));
5250 }
5251
5252 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5253 {
5254 struct location *l;
5255 int order;
5256
5257 order = get_order(sizeof(struct location) * max);
5258
5259 l = (void *)__get_free_pages(flags, order);
5260 if (!l)
5261 return 0;
5262
5263 if (t->count) {
5264 memcpy(l, t->loc, sizeof(struct location) * t->count);
5265 free_loc_track(t);
5266 }
5267 t->max = max;
5268 t->loc = l;
5269 return 1;
5270 }
5271
5272 static int add_location(struct loc_track *t, struct kmem_cache *s,
5273 const struct track *track,
5274 unsigned int orig_size)
5275 {
5276 long start, end, pos;
5277 struct location *l;
5278 unsigned long caddr, chandle, cwaste;
5279 unsigned long age = jiffies - track->when;
5280 depot_stack_handle_t handle = 0;
5281 unsigned int waste = s->object_size - orig_size;
5282
5283 #ifdef CONFIG_STACKDEPOT
5284 handle = READ_ONCE(track->handle);
5285 #endif
5286 start = -1;
5287 end = t->count;
5288
5289 for ( ; ; ) {
5290 pos = start + (end - start + 1) / 2;
5291
5292 /*
5293 * There is nothing at "end". If we end up there
5294 * we need to add something to before end.
5295 */
5296 if (pos == end)
5297 break;
5298
5299 l = &t->loc[pos];
5300 caddr = l->addr;
5301 chandle = l->handle;
5302 cwaste = l->waste;
5303 if ((track->addr == caddr) && (handle == chandle) &&
5304 (waste == cwaste)) {
5305
5306 l->count++;
5307 if (track->when) {
5308 l->sum_time += age;
5309 if (age < l->min_time)
5310 l->min_time = age;
5311 if (age > l->max_time)
5312 l->max_time = age;
5313
5314 if (track->pid < l->min_pid)
5315 l->min_pid = track->pid;
5316 if (track->pid > l->max_pid)
5317 l->max_pid = track->pid;
5318
5319 cpumask_set_cpu(track->cpu,
5320 to_cpumask(l->cpus));
5321 }
5322 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5323 return 1;
5324 }
5325
5326 if (track->addr < caddr)
5327 end = pos;
5328 else if (track->addr == caddr && handle < chandle)
5329 end = pos;
5330 else if (track->addr == caddr && handle == chandle &&
5331 waste < cwaste)
5332 end = pos;
5333 else
5334 start = pos;
5335 }
5336
5337 /*
5338 * Not found. Insert new tracking element.
5339 */
5340 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5341 return 0;
5342
5343 l = t->loc + pos;
5344 if (pos < t->count)
5345 memmove(l + 1, l,
5346 (t->count - pos) * sizeof(struct location));
5347 t->count++;
5348 l->count = 1;
5349 l->addr = track->addr;
5350 l->sum_time = age;
5351 l->min_time = age;
5352 l->max_time = age;
5353 l->min_pid = track->pid;
5354 l->max_pid = track->pid;
5355 l->handle = handle;
5356 l->waste = waste;
5357 cpumask_clear(to_cpumask(l->cpus));
5358 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5359 nodes_clear(l->nodes);
5360 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5361 return 1;
5362 }
5363
5364 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5365 struct slab *slab, enum track_item alloc,
5366 unsigned long *obj_map)
5367 {
5368 void *addr = slab_address(slab);
5369 bool is_alloc = (alloc == TRACK_ALLOC);
5370 void *p;
5371
5372 __fill_map(obj_map, s, slab);
5373
5374 for_each_object(p, s, addr, slab->objects)
5375 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5376 add_location(t, s, get_track(s, p, alloc),
5377 is_alloc ? get_orig_size(s, p) :
5378 s->object_size);
5379 }
5380 #endif /* CONFIG_DEBUG_FS */
5381 #endif /* CONFIG_SLUB_DEBUG */
5382
5383 #ifdef SLAB_SUPPORTS_SYSFS
5384 enum slab_stat_type {
5385 SL_ALL, /* All slabs */
5386 SL_PARTIAL, /* Only partially allocated slabs */
5387 SL_CPU, /* Only slabs used for cpu caches */
5388 SL_OBJECTS, /* Determine allocated objects not slabs */
5389 SL_TOTAL /* Determine object capacity not slabs */
5390 };
5391
5392 #define SO_ALL (1 << SL_ALL)
5393 #define SO_PARTIAL (1 << SL_PARTIAL)
5394 #define SO_CPU (1 << SL_CPU)
5395 #define SO_OBJECTS (1 << SL_OBJECTS)
5396 #define SO_TOTAL (1 << SL_TOTAL)
5397
5398 static ssize_t show_slab_objects(struct kmem_cache *s,
5399 char *buf, unsigned long flags)
5400 {
5401 unsigned long total = 0;
5402 int node;
5403 int x;
5404 unsigned long *nodes;
5405 int len = 0;
5406
5407 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5408 if (!nodes)
5409 return -ENOMEM;
5410
5411 if (flags & SO_CPU) {
5412 int cpu;
5413
5414 for_each_possible_cpu(cpu) {
5415 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5416 cpu);
5417 int node;
5418 struct slab *slab;
5419
5420 slab = READ_ONCE(c->slab);
5421 if (!slab)
5422 continue;
5423
5424 node = slab_nid(slab);
5425 if (flags & SO_TOTAL)
5426 x = slab->objects;
5427 else if (flags & SO_OBJECTS)
5428 x = slab->inuse;
5429 else
5430 x = 1;
5431
5432 total += x;
5433 nodes[node] += x;
5434
5435 #ifdef CONFIG_SLUB_CPU_PARTIAL
5436 slab = slub_percpu_partial_read_once(c);
5437 if (slab) {
5438 node = slab_nid(slab);
5439 if (flags & SO_TOTAL)
5440 WARN_ON_ONCE(1);
5441 else if (flags & SO_OBJECTS)
5442 WARN_ON_ONCE(1);
5443 else
5444 x = slab->slabs;
5445 total += x;
5446 nodes[node] += x;
5447 }
5448 #endif
5449 }
5450 }
5451
5452 /*
5453 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5454 * already held which will conflict with an existing lock order:
5455 *
5456 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5457 *
5458 * We don't really need mem_hotplug_lock (to hold off
5459 * slab_mem_going_offline_callback) here because slab's memory hot
5460 * unplug code doesn't destroy the kmem_cache->node[] data.
5461 */
5462
5463 #ifdef CONFIG_SLUB_DEBUG
5464 if (flags & SO_ALL) {
5465 struct kmem_cache_node *n;
5466
5467 for_each_kmem_cache_node(s, node, n) {
5468
5469 if (flags & SO_TOTAL)
5470 x = node_nr_objs(n);
5471 else if (flags & SO_OBJECTS)
5472 x = node_nr_objs(n) - count_partial(n, count_free);
5473 else
5474 x = node_nr_slabs(n);
5475 total += x;
5476 nodes[node] += x;
5477 }
5478
5479 } else
5480 #endif
5481 if (flags & SO_PARTIAL) {
5482 struct kmem_cache_node *n;
5483
5484 for_each_kmem_cache_node(s, node, n) {
5485 if (flags & SO_TOTAL)
5486 x = count_partial(n, count_total);
5487 else if (flags & SO_OBJECTS)
5488 x = count_partial(n, count_inuse);
5489 else
5490 x = n->nr_partial;
5491 total += x;
5492 nodes[node] += x;
5493 }
5494 }
5495
5496 len += sysfs_emit_at(buf, len, "%lu", total);
5497 #ifdef CONFIG_NUMA
5498 for (node = 0; node < nr_node_ids; node++) {
5499 if (nodes[node])
5500 len += sysfs_emit_at(buf, len, " N%d=%lu",
5501 node, nodes[node]);
5502 }
5503 #endif
5504 len += sysfs_emit_at(buf, len, "\n");
5505 kfree(nodes);
5506
5507 return len;
5508 }
5509
5510 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5511 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5512
5513 struct slab_attribute {
5514 struct attribute attr;
5515 ssize_t (*show)(struct kmem_cache *s, char *buf);
5516 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5517 };
5518
5519 #define SLAB_ATTR_RO(_name) \
5520 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5521
5522 #define SLAB_ATTR(_name) \
5523 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5524
5525 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5526 {
5527 return sysfs_emit(buf, "%u\n", s->size);
5528 }
5529 SLAB_ATTR_RO(slab_size);
5530
5531 static ssize_t align_show(struct kmem_cache *s, char *buf)
5532 {
5533 return sysfs_emit(buf, "%u\n", s->align);
5534 }
5535 SLAB_ATTR_RO(align);
5536
5537 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5538 {
5539 return sysfs_emit(buf, "%u\n", s->object_size);
5540 }
5541 SLAB_ATTR_RO(object_size);
5542
5543 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5544 {
5545 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5546 }
5547 SLAB_ATTR_RO(objs_per_slab);
5548
5549 static ssize_t order_show(struct kmem_cache *s, char *buf)
5550 {
5551 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5552 }
5553 SLAB_ATTR_RO(order);
5554
5555 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5556 {
5557 return sysfs_emit(buf, "%lu\n", s->min_partial);
5558 }
5559
5560 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5561 size_t length)
5562 {
5563 unsigned long min;
5564 int err;
5565
5566 err = kstrtoul(buf, 10, &min);
5567 if (err)
5568 return err;
5569
5570 s->min_partial = min;
5571 return length;
5572 }
5573 SLAB_ATTR(min_partial);
5574
5575 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5576 {
5577 unsigned int nr_partial = 0;
5578 #ifdef CONFIG_SLUB_CPU_PARTIAL
5579 nr_partial = s->cpu_partial;
5580 #endif
5581
5582 return sysfs_emit(buf, "%u\n", nr_partial);
5583 }
5584
5585 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5586 size_t length)
5587 {
5588 unsigned int objects;
5589 int err;
5590
5591 err = kstrtouint(buf, 10, &objects);
5592 if (err)
5593 return err;
5594 if (objects && !kmem_cache_has_cpu_partial(s))
5595 return -EINVAL;
5596
5597 slub_set_cpu_partial(s, objects);
5598 flush_all(s);
5599 return length;
5600 }
5601 SLAB_ATTR(cpu_partial);
5602
5603 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5604 {
5605 if (!s->ctor)
5606 return 0;
5607 return sysfs_emit(buf, "%pS\n", s->ctor);
5608 }
5609 SLAB_ATTR_RO(ctor);
5610
5611 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5612 {
5613 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5614 }
5615 SLAB_ATTR_RO(aliases);
5616
5617 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5618 {
5619 return show_slab_objects(s, buf, SO_PARTIAL);
5620 }
5621 SLAB_ATTR_RO(partial);
5622
5623 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5624 {
5625 return show_slab_objects(s, buf, SO_CPU);
5626 }
5627 SLAB_ATTR_RO(cpu_slabs);
5628
5629 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5630 {
5631 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5632 }
5633 SLAB_ATTR_RO(objects_partial);
5634
5635 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5636 {
5637 int objects = 0;
5638 int slabs = 0;
5639 int cpu __maybe_unused;
5640 int len = 0;
5641
5642 #ifdef CONFIG_SLUB_CPU_PARTIAL
5643 for_each_online_cpu(cpu) {
5644 struct slab *slab;
5645
5646 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5647
5648 if (slab)
5649 slabs += slab->slabs;
5650 }
5651 #endif
5652
5653 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5654 objects = (slabs * oo_objects(s->oo)) / 2;
5655 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5656
5657 #ifdef CONFIG_SLUB_CPU_PARTIAL
5658 for_each_online_cpu(cpu) {
5659 struct slab *slab;
5660
5661 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5662 if (slab) {
5663 slabs = READ_ONCE(slab->slabs);
5664 objects = (slabs * oo_objects(s->oo)) / 2;
5665 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5666 cpu, objects, slabs);
5667 }
5668 }
5669 #endif
5670 len += sysfs_emit_at(buf, len, "\n");
5671
5672 return len;
5673 }
5674 SLAB_ATTR_RO(slabs_cpu_partial);
5675
5676 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5677 {
5678 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5679 }
5680 SLAB_ATTR_RO(reclaim_account);
5681
5682 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5683 {
5684 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5685 }
5686 SLAB_ATTR_RO(hwcache_align);
5687
5688 #ifdef CONFIG_ZONE_DMA
5689 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5690 {
5691 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5692 }
5693 SLAB_ATTR_RO(cache_dma);
5694 #endif
5695
5696 #ifdef CONFIG_HARDENED_USERCOPY
5697 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5698 {
5699 return sysfs_emit(buf, "%u\n", s->usersize);
5700 }
5701 SLAB_ATTR_RO(usersize);
5702 #endif
5703
5704 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5705 {
5706 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5707 }
5708 SLAB_ATTR_RO(destroy_by_rcu);
5709
5710 #ifdef CONFIG_SLUB_DEBUG
5711 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5712 {
5713 return show_slab_objects(s, buf, SO_ALL);
5714 }
5715 SLAB_ATTR_RO(slabs);
5716
5717 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5718 {
5719 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5720 }
5721 SLAB_ATTR_RO(total_objects);
5722
5723 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5724 {
5725 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5726 }
5727 SLAB_ATTR_RO(objects);
5728
5729 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5730 {
5731 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5732 }
5733 SLAB_ATTR_RO(sanity_checks);
5734
5735 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5736 {
5737 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5738 }
5739 SLAB_ATTR_RO(trace);
5740
5741 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5742 {
5743 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5744 }
5745
5746 SLAB_ATTR_RO(red_zone);
5747
5748 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5749 {
5750 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5751 }
5752
5753 SLAB_ATTR_RO(poison);
5754
5755 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5756 {
5757 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5758 }
5759
5760 SLAB_ATTR_RO(store_user);
5761
5762 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5763 {
5764 return 0;
5765 }
5766
5767 static ssize_t validate_store(struct kmem_cache *s,
5768 const char *buf, size_t length)
5769 {
5770 int ret = -EINVAL;
5771
5772 if (buf[0] == '1' && kmem_cache_debug(s)) {
5773 ret = validate_slab_cache(s);
5774 if (ret >= 0)
5775 ret = length;
5776 }
5777 return ret;
5778 }
5779 SLAB_ATTR(validate);
5780
5781 #endif /* CONFIG_SLUB_DEBUG */
5782
5783 #ifdef CONFIG_FAILSLAB
5784 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5785 {
5786 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5787 }
5788
5789 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5790 size_t length)
5791 {
5792 if (s->refcount > 1)
5793 return -EINVAL;
5794
5795 if (buf[0] == '1')
5796 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5797 else
5798 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5799
5800 return length;
5801 }
5802 SLAB_ATTR(failslab);
5803 #endif
5804
5805 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5806 {
5807 return 0;
5808 }
5809
5810 static ssize_t shrink_store(struct kmem_cache *s,
5811 const char *buf, size_t length)
5812 {
5813 if (buf[0] == '1')
5814 kmem_cache_shrink(s);
5815 else
5816 return -EINVAL;
5817 return length;
5818 }
5819 SLAB_ATTR(shrink);
5820
5821 #ifdef CONFIG_NUMA
5822 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5823 {
5824 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5825 }
5826
5827 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5828 const char *buf, size_t length)
5829 {
5830 unsigned int ratio;
5831 int err;
5832
5833 err = kstrtouint(buf, 10, &ratio);
5834 if (err)
5835 return err;
5836 if (ratio > 100)
5837 return -ERANGE;
5838
5839 s->remote_node_defrag_ratio = ratio * 10;
5840
5841 return length;
5842 }
5843 SLAB_ATTR(remote_node_defrag_ratio);
5844 #endif
5845
5846 #ifdef CONFIG_SLUB_STATS
5847 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5848 {
5849 unsigned long sum = 0;
5850 int cpu;
5851 int len = 0;
5852 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5853
5854 if (!data)
5855 return -ENOMEM;
5856
5857 for_each_online_cpu(cpu) {
5858 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5859
5860 data[cpu] = x;
5861 sum += x;
5862 }
5863
5864 len += sysfs_emit_at(buf, len, "%lu", sum);
5865
5866 #ifdef CONFIG_SMP
5867 for_each_online_cpu(cpu) {
5868 if (data[cpu])
5869 len += sysfs_emit_at(buf, len, " C%d=%u",
5870 cpu, data[cpu]);
5871 }
5872 #endif
5873 kfree(data);
5874 len += sysfs_emit_at(buf, len, "\n");
5875
5876 return len;
5877 }
5878
5879 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5880 {
5881 int cpu;
5882
5883 for_each_online_cpu(cpu)
5884 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5885 }
5886
5887 #define STAT_ATTR(si, text) \
5888 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5889 { \
5890 return show_stat(s, buf, si); \
5891 } \
5892 static ssize_t text##_store(struct kmem_cache *s, \
5893 const char *buf, size_t length) \
5894 { \
5895 if (buf[0] != '0') \
5896 return -EINVAL; \
5897 clear_stat(s, si); \
5898 return length; \
5899 } \
5900 SLAB_ATTR(text); \
5901
5902 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5903 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5904 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5905 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5906 STAT_ATTR(FREE_FROZEN, free_frozen);
5907 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5908 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5909 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5910 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5911 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5912 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5913 STAT_ATTR(FREE_SLAB, free_slab);
5914 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5915 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5916 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5917 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5918 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5919 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5920 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5921 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5922 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5923 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5924 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5925 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5926 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5927 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5928 #endif /* CONFIG_SLUB_STATS */
5929
5930 #ifdef CONFIG_KFENCE
5931 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5932 {
5933 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5934 }
5935
5936 static ssize_t skip_kfence_store(struct kmem_cache *s,
5937 const char *buf, size_t length)
5938 {
5939 int ret = length;
5940
5941 if (buf[0] == '0')
5942 s->flags &= ~SLAB_SKIP_KFENCE;
5943 else if (buf[0] == '1')
5944 s->flags |= SLAB_SKIP_KFENCE;
5945 else
5946 ret = -EINVAL;
5947
5948 return ret;
5949 }
5950 SLAB_ATTR(skip_kfence);
5951 #endif
5952
5953 static struct attribute *slab_attrs[] = {
5954 &slab_size_attr.attr,
5955 &object_size_attr.attr,
5956 &objs_per_slab_attr.attr,
5957 &order_attr.attr,
5958 &min_partial_attr.attr,
5959 &cpu_partial_attr.attr,
5960 &objects_partial_attr.attr,
5961 &partial_attr.attr,
5962 &cpu_slabs_attr.attr,
5963 &ctor_attr.attr,
5964 &aliases_attr.attr,
5965 &align_attr.attr,
5966 &hwcache_align_attr.attr,
5967 &reclaim_account_attr.attr,
5968 &destroy_by_rcu_attr.attr,
5969 &shrink_attr.attr,
5970 &slabs_cpu_partial_attr.attr,
5971 #ifdef CONFIG_SLUB_DEBUG
5972 &total_objects_attr.attr,
5973 &objects_attr.attr,
5974 &slabs_attr.attr,
5975 &sanity_checks_attr.attr,
5976 &trace_attr.attr,
5977 &red_zone_attr.attr,
5978 &poison_attr.attr,
5979 &store_user_attr.attr,
5980 &validate_attr.attr,
5981 #endif
5982 #ifdef CONFIG_ZONE_DMA
5983 &cache_dma_attr.attr,
5984 #endif
5985 #ifdef CONFIG_NUMA
5986 &remote_node_defrag_ratio_attr.attr,
5987 #endif
5988 #ifdef CONFIG_SLUB_STATS
5989 &alloc_fastpath_attr.attr,
5990 &alloc_slowpath_attr.attr,
5991 &free_fastpath_attr.attr,
5992 &free_slowpath_attr.attr,
5993 &free_frozen_attr.attr,
5994 &free_add_partial_attr.attr,
5995 &free_remove_partial_attr.attr,
5996 &alloc_from_partial_attr.attr,
5997 &alloc_slab_attr.attr,
5998 &alloc_refill_attr.attr,
5999 &alloc_node_mismatch_attr.attr,
6000 &free_slab_attr.attr,
6001 &cpuslab_flush_attr.attr,
6002 &deactivate_full_attr.attr,
6003 &deactivate_empty_attr.attr,
6004 &deactivate_to_head_attr.attr,
6005 &deactivate_to_tail_attr.attr,
6006 &deactivate_remote_frees_attr.attr,
6007 &deactivate_bypass_attr.attr,
6008 &order_fallback_attr.attr,
6009 &cmpxchg_double_fail_attr.attr,
6010 &cmpxchg_double_cpu_fail_attr.attr,
6011 &cpu_partial_alloc_attr.attr,
6012 &cpu_partial_free_attr.attr,
6013 &cpu_partial_node_attr.attr,
6014 &cpu_partial_drain_attr.attr,
6015 #endif
6016 #ifdef CONFIG_FAILSLAB
6017 &failslab_attr.attr,
6018 #endif
6019 #ifdef CONFIG_HARDENED_USERCOPY
6020 &usersize_attr.attr,
6021 #endif
6022 #ifdef CONFIG_KFENCE
6023 &skip_kfence_attr.attr,
6024 #endif
6025
6026 NULL
6027 };
6028
6029 static const struct attribute_group slab_attr_group = {
6030 .attrs = slab_attrs,
6031 };
6032
6033 static ssize_t slab_attr_show(struct kobject *kobj,
6034 struct attribute *attr,
6035 char *buf)
6036 {
6037 struct slab_attribute *attribute;
6038 struct kmem_cache *s;
6039
6040 attribute = to_slab_attr(attr);
6041 s = to_slab(kobj);
6042
6043 if (!attribute->show)
6044 return -EIO;
6045
6046 return attribute->show(s, buf);
6047 }
6048
6049 static ssize_t slab_attr_store(struct kobject *kobj,
6050 struct attribute *attr,
6051 const char *buf, size_t len)
6052 {
6053 struct slab_attribute *attribute;
6054 struct kmem_cache *s;
6055
6056 attribute = to_slab_attr(attr);
6057 s = to_slab(kobj);
6058
6059 if (!attribute->store)
6060 return -EIO;
6061
6062 return attribute->store(s, buf, len);
6063 }
6064
6065 static void kmem_cache_release(struct kobject *k)
6066 {
6067 slab_kmem_cache_release(to_slab(k));
6068 }
6069
6070 static const struct sysfs_ops slab_sysfs_ops = {
6071 .show = slab_attr_show,
6072 .store = slab_attr_store,
6073 };
6074
6075 static const struct kobj_type slab_ktype = {
6076 .sysfs_ops = &slab_sysfs_ops,
6077 .release = kmem_cache_release,
6078 };
6079
6080 static struct kset *slab_kset;
6081
6082 static inline struct kset *cache_kset(struct kmem_cache *s)
6083 {
6084 return slab_kset;
6085 }
6086
6087 #define ID_STR_LENGTH 32
6088
6089 /* Create a unique string id for a slab cache:
6090 *
6091 * Format :[flags-]size
6092 */
6093 static char *create_unique_id(struct kmem_cache *s)
6094 {
6095 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6096 char *p = name;
6097
6098 if (!name)
6099 return ERR_PTR(-ENOMEM);
6100
6101 *p++ = ':';
6102 /*
6103 * First flags affecting slabcache operations. We will only
6104 * get here for aliasable slabs so we do not need to support
6105 * too many flags. The flags here must cover all flags that
6106 * are matched during merging to guarantee that the id is
6107 * unique.
6108 */
6109 if (s->flags & SLAB_CACHE_DMA)
6110 *p++ = 'd';
6111 if (s->flags & SLAB_CACHE_DMA32)
6112 *p++ = 'D';
6113 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6114 *p++ = 'a';
6115 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6116 *p++ = 'F';
6117 if (s->flags & SLAB_ACCOUNT)
6118 *p++ = 'A';
6119 if (p != name + 1)
6120 *p++ = '-';
6121 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6122
6123 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6124 kfree(name);
6125 return ERR_PTR(-EINVAL);
6126 }
6127 kmsan_unpoison_memory(name, p - name);
6128 return name;
6129 }
6130
6131 static int sysfs_slab_add(struct kmem_cache *s)
6132 {
6133 int err;
6134 const char *name;
6135 struct kset *kset = cache_kset(s);
6136 int unmergeable = slab_unmergeable(s);
6137
6138 if (!unmergeable && disable_higher_order_debug &&
6139 (slub_debug & DEBUG_METADATA_FLAGS))
6140 unmergeable = 1;
6141
6142 if (unmergeable) {
6143 /*
6144 * Slabcache can never be merged so we can use the name proper.
6145 * This is typically the case for debug situations. In that
6146 * case we can catch duplicate names easily.
6147 */
6148 sysfs_remove_link(&slab_kset->kobj, s->name);
6149 name = s->name;
6150 } else {
6151 /*
6152 * Create a unique name for the slab as a target
6153 * for the symlinks.
6154 */
6155 name = create_unique_id(s);
6156 if (IS_ERR(name))
6157 return PTR_ERR(name);
6158 }
6159
6160 s->kobj.kset = kset;
6161 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6162 if (err)
6163 goto out;
6164
6165 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6166 if (err)
6167 goto out_del_kobj;
6168
6169 if (!unmergeable) {
6170 /* Setup first alias */
6171 sysfs_slab_alias(s, s->name);
6172 }
6173 out:
6174 if (!unmergeable)
6175 kfree(name);
6176 return err;
6177 out_del_kobj:
6178 kobject_del(&s->kobj);
6179 goto out;
6180 }
6181
6182 void sysfs_slab_unlink(struct kmem_cache *s)
6183 {
6184 if (slab_state >= FULL)
6185 kobject_del(&s->kobj);
6186 }
6187
6188 void sysfs_slab_release(struct kmem_cache *s)
6189 {
6190 if (slab_state >= FULL)
6191 kobject_put(&s->kobj);
6192 }
6193
6194 /*
6195 * Need to buffer aliases during bootup until sysfs becomes
6196 * available lest we lose that information.
6197 */
6198 struct saved_alias {
6199 struct kmem_cache *s;
6200 const char *name;
6201 struct saved_alias *next;
6202 };
6203
6204 static struct saved_alias *alias_list;
6205
6206 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6207 {
6208 struct saved_alias *al;
6209
6210 if (slab_state == FULL) {
6211 /*
6212 * If we have a leftover link then remove it.
6213 */
6214 sysfs_remove_link(&slab_kset->kobj, name);
6215 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6216 }
6217
6218 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6219 if (!al)
6220 return -ENOMEM;
6221
6222 al->s = s;
6223 al->name = name;
6224 al->next = alias_list;
6225 alias_list = al;
6226 kmsan_unpoison_memory(al, sizeof(*al));
6227 return 0;
6228 }
6229
6230 static int __init slab_sysfs_init(void)
6231 {
6232 struct kmem_cache *s;
6233 int err;
6234
6235 mutex_lock(&slab_mutex);
6236
6237 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6238 if (!slab_kset) {
6239 mutex_unlock(&slab_mutex);
6240 pr_err("Cannot register slab subsystem.\n");
6241 return -ENOMEM;
6242 }
6243
6244 slab_state = FULL;
6245
6246 list_for_each_entry(s, &slab_caches, list) {
6247 err = sysfs_slab_add(s);
6248 if (err)
6249 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6250 s->name);
6251 }
6252
6253 while (alias_list) {
6254 struct saved_alias *al = alias_list;
6255
6256 alias_list = alias_list->next;
6257 err = sysfs_slab_alias(al->s, al->name);
6258 if (err)
6259 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6260 al->name);
6261 kfree(al);
6262 }
6263
6264 mutex_unlock(&slab_mutex);
6265 return 0;
6266 }
6267 late_initcall(slab_sysfs_init);
6268 #endif /* SLAB_SUPPORTS_SYSFS */
6269
6270 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6271 static int slab_debugfs_show(struct seq_file *seq, void *v)
6272 {
6273 struct loc_track *t = seq->private;
6274 struct location *l;
6275 unsigned long idx;
6276
6277 idx = (unsigned long) t->idx;
6278 if (idx < t->count) {
6279 l = &t->loc[idx];
6280
6281 seq_printf(seq, "%7ld ", l->count);
6282
6283 if (l->addr)
6284 seq_printf(seq, "%pS", (void *)l->addr);
6285 else
6286 seq_puts(seq, "<not-available>");
6287
6288 if (l->waste)
6289 seq_printf(seq, " waste=%lu/%lu",
6290 l->count * l->waste, l->waste);
6291
6292 if (l->sum_time != l->min_time) {
6293 seq_printf(seq, " age=%ld/%llu/%ld",
6294 l->min_time, div_u64(l->sum_time, l->count),
6295 l->max_time);
6296 } else
6297 seq_printf(seq, " age=%ld", l->min_time);
6298
6299 if (l->min_pid != l->max_pid)
6300 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6301 else
6302 seq_printf(seq, " pid=%ld",
6303 l->min_pid);
6304
6305 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6306 seq_printf(seq, " cpus=%*pbl",
6307 cpumask_pr_args(to_cpumask(l->cpus)));
6308
6309 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6310 seq_printf(seq, " nodes=%*pbl",
6311 nodemask_pr_args(&l->nodes));
6312
6313 #ifdef CONFIG_STACKDEPOT
6314 {
6315 depot_stack_handle_t handle;
6316 unsigned long *entries;
6317 unsigned int nr_entries, j;
6318
6319 handle = READ_ONCE(l->handle);
6320 if (handle) {
6321 nr_entries = stack_depot_fetch(handle, &entries);
6322 seq_puts(seq, "\n");
6323 for (j = 0; j < nr_entries; j++)
6324 seq_printf(seq, " %pS\n", (void *)entries[j]);
6325 }
6326 }
6327 #endif
6328 seq_puts(seq, "\n");
6329 }
6330
6331 if (!idx && !t->count)
6332 seq_puts(seq, "No data\n");
6333
6334 return 0;
6335 }
6336
6337 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6338 {
6339 }
6340
6341 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6342 {
6343 struct loc_track *t = seq->private;
6344
6345 t->idx = ++(*ppos);
6346 if (*ppos <= t->count)
6347 return ppos;
6348
6349 return NULL;
6350 }
6351
6352 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6353 {
6354 struct location *loc1 = (struct location *)a;
6355 struct location *loc2 = (struct location *)b;
6356
6357 if (loc1->count > loc2->count)
6358 return -1;
6359 else
6360 return 1;
6361 }
6362
6363 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6364 {
6365 struct loc_track *t = seq->private;
6366
6367 t->idx = *ppos;
6368 return ppos;
6369 }
6370
6371 static const struct seq_operations slab_debugfs_sops = {
6372 .start = slab_debugfs_start,
6373 .next = slab_debugfs_next,
6374 .stop = slab_debugfs_stop,
6375 .show = slab_debugfs_show,
6376 };
6377
6378 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6379 {
6380
6381 struct kmem_cache_node *n;
6382 enum track_item alloc;
6383 int node;
6384 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6385 sizeof(struct loc_track));
6386 struct kmem_cache *s = file_inode(filep)->i_private;
6387 unsigned long *obj_map;
6388
6389 if (!t)
6390 return -ENOMEM;
6391
6392 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6393 if (!obj_map) {
6394 seq_release_private(inode, filep);
6395 return -ENOMEM;
6396 }
6397
6398 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6399 alloc = TRACK_ALLOC;
6400 else
6401 alloc = TRACK_FREE;
6402
6403 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6404 bitmap_free(obj_map);
6405 seq_release_private(inode, filep);
6406 return -ENOMEM;
6407 }
6408
6409 for_each_kmem_cache_node(s, node, n) {
6410 unsigned long flags;
6411 struct slab *slab;
6412
6413 if (!node_nr_slabs(n))
6414 continue;
6415
6416 spin_lock_irqsave(&n->list_lock, flags);
6417 list_for_each_entry(slab, &n->partial, slab_list)
6418 process_slab(t, s, slab, alloc, obj_map);
6419 list_for_each_entry(slab, &n->full, slab_list)
6420 process_slab(t, s, slab, alloc, obj_map);
6421 spin_unlock_irqrestore(&n->list_lock, flags);
6422 }
6423
6424 /* Sort locations by count */
6425 sort_r(t->loc, t->count, sizeof(struct location),
6426 cmp_loc_by_count, NULL, NULL);
6427
6428 bitmap_free(obj_map);
6429 return 0;
6430 }
6431
6432 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6433 {
6434 struct seq_file *seq = file->private_data;
6435 struct loc_track *t = seq->private;
6436
6437 free_loc_track(t);
6438 return seq_release_private(inode, file);
6439 }
6440
6441 static const struct file_operations slab_debugfs_fops = {
6442 .open = slab_debug_trace_open,
6443 .read = seq_read,
6444 .llseek = seq_lseek,
6445 .release = slab_debug_trace_release,
6446 };
6447
6448 static void debugfs_slab_add(struct kmem_cache *s)
6449 {
6450 struct dentry *slab_cache_dir;
6451
6452 if (unlikely(!slab_debugfs_root))
6453 return;
6454
6455 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6456
6457 debugfs_create_file("alloc_traces", 0400,
6458 slab_cache_dir, s, &slab_debugfs_fops);
6459
6460 debugfs_create_file("free_traces", 0400,
6461 slab_cache_dir, s, &slab_debugfs_fops);
6462 }
6463
6464 void debugfs_slab_release(struct kmem_cache *s)
6465 {
6466 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6467 }
6468
6469 static int __init slab_debugfs_init(void)
6470 {
6471 struct kmem_cache *s;
6472
6473 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6474
6475 list_for_each_entry(s, &slab_caches, list)
6476 if (s->flags & SLAB_STORE_USER)
6477 debugfs_slab_add(s);
6478
6479 return 0;
6480
6481 }
6482 __initcall(slab_debugfs_init);
6483 #endif
6484 /*
6485 * The /proc/slabinfo ABI
6486 */
6487 #ifdef CONFIG_SLUB_DEBUG
6488 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6489 {
6490 unsigned long nr_slabs = 0;
6491 unsigned long nr_objs = 0;
6492 unsigned long nr_free = 0;
6493 int node;
6494 struct kmem_cache_node *n;
6495
6496 for_each_kmem_cache_node(s, node, n) {
6497 nr_slabs += node_nr_slabs(n);
6498 nr_objs += node_nr_objs(n);
6499 nr_free += count_partial(n, count_free);
6500 }
6501
6502 sinfo->active_objs = nr_objs - nr_free;
6503 sinfo->num_objs = nr_objs;
6504 sinfo->active_slabs = nr_slabs;
6505 sinfo->num_slabs = nr_slabs;
6506 sinfo->objects_per_slab = oo_objects(s->oo);
6507 sinfo->cache_order = oo_order(s->oo);
6508 }
6509
6510 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6511 {
6512 }
6513
6514 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6515 size_t count, loff_t *ppos)
6516 {
6517 return -EIO;
6518 }
6519 #endif /* CONFIG_SLUB_DEBUG */