1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
54 * 1. slab_mutex (Global Mutex)
55 * 2. node->list_lock (Spinlock)
56 * 3. kmem_cache->cpu_slab->lock (Local lock)
57 * 4. slab_lock(slab) (Only on some arches)
58 * 5. object_map_lock (Only for debugging)
62 * The role of the slab_mutex is to protect the list of all the slabs
63 * and to synchronize major metadata changes to slab cache structures.
64 * Also synchronizes memory hotplug callbacks.
68 * The slab_lock is a wrapper around the page lock, thus it is a bit
71 * The slab_lock is only used on arches that do not have the ability
72 * to do a cmpxchg_double. It only protects:
74 * A. slab->freelist -> List of free objects in a slab
75 * B. slab->inuse -> Number of objects in use
76 * C. slab->objects -> Number of objects in slab
77 * D. slab->frozen -> frozen state
81 * If a slab is frozen then it is exempt from list management. It is
82 * the cpu slab which is actively allocated from by the processor that
83 * froze it and it is not on any list. The processor that froze the
84 * slab is the one who can perform list operations on the slab. Other
85 * processors may put objects onto the freelist but the processor that
86 * froze the slab is the only one that can retrieve the objects from the
91 * The partially empty slabs cached on the CPU partial list are used
92 * for performance reasons, which speeds up the allocation process.
93 * These slabs are not frozen, but are also exempt from list management,
94 * by clearing the PG_workingset flag when moving out of the node
95 * partial list. Please see __slab_free() for more details.
97 * To sum up, the current scheme is:
98 * - node partial slab: PG_Workingset && !frozen
99 * - cpu partial slab: !PG_Workingset && !frozen
100 * - cpu slab: !PG_Workingset && frozen
101 * - full slab: !PG_Workingset && !frozen
105 * The list_lock protects the partial and full list on each node and
106 * the partial slab counter. If taken then no new slabs may be added or
107 * removed from the lists nor make the number of partial slabs be modified.
108 * (Note that the total number of slabs is an atomic value that may be
109 * modified without taking the list lock).
111 * The list_lock is a centralized lock and thus we avoid taking it as
112 * much as possible. As long as SLUB does not have to handle partial
113 * slabs, operations can continue without any centralized lock. F.e.
114 * allocating a long series of objects that fill up slabs does not require
117 * For debug caches, all allocations are forced to go through a list_lock
118 * protected region to serialize against concurrent validation.
120 * cpu_slab->lock local lock
122 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
123 * except the stat counters. This is a percpu structure manipulated only by
124 * the local cpu, so the lock protects against being preempted or interrupted
125 * by an irq. Fast path operations rely on lockless operations instead.
127 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128 * which means the lockless fastpath cannot be used as it might interfere with
129 * an in-progress slow path operations. In this case the local lock is always
130 * taken but it still utilizes the freelist for the common operations.
134 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135 * are fully lockless when satisfied from the percpu slab (and when
136 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
137 * They also don't disable preemption or migration or irqs. They rely on
138 * the transaction id (tid) field to detect being preempted or moved to
141 * irq, preemption, migration considerations
143 * Interrupts are disabled as part of list_lock or local_lock operations, or
144 * around the slab_lock operation, in order to make the slab allocator safe
145 * to use in the context of an irq.
147 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150 * doesn't have to be revalidated in each section protected by the local lock.
152 * SLUB assigns one slab for allocation to each processor.
153 * Allocations only occur from these slabs called cpu slabs.
155 * Slabs with free elements are kept on a partial list and during regular
156 * operations no list for full slabs is used. If an object in a full slab is
157 * freed then the slab will show up again on the partial lists.
158 * We track full slabs for debugging purposes though because otherwise we
159 * cannot scan all objects.
161 * Slabs are freed when they become empty. Teardown and setup is
162 * minimal so we rely on the page allocators per cpu caches for
163 * fast frees and allocs.
165 * slab->frozen The slab is frozen and exempt from list processing.
166 * This means that the slab is dedicated to a purpose
167 * such as satisfying allocations for a specific
168 * processor. Objects may be freed in the slab while
169 * it is frozen but slab_free will then skip the usual
170 * list operations. It is up to the processor holding
171 * the slab to integrate the slab into the slab lists
172 * when the slab is no longer needed.
174 * One use of this flag is to mark slabs that are
175 * used for allocations. Then such a slab becomes a cpu
176 * slab. The cpu slab may be equipped with an additional
177 * freelist that allows lockless access to
178 * free objects in addition to the regular freelist
179 * that requires the slab lock.
181 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
182 * options set. This moves slab handling out of
183 * the fast path and disables lockless freelists.
187 * We could simply use migrate_disable()/enable() but as long as it's a
188 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH() (true)
195 #define slub_get_cpu_ptr(var) \
200 #define slub_put_cpu_ptr(var) \
205 #define USE_LOCKLESS_FAST_PATH() (false)
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
211 #define __fastpath_inline
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled
);
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled
);
220 #endif /* CONFIG_SLUB_DEBUG */
223 static DEFINE_STATIC_KEY_FALSE(strict_numa
);
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context
{
229 unsigned int orig_size
;
233 static inline bool kmem_cache_debug(struct kmem_cache
*s
)
235 return kmem_cache_debug_flags(s
, SLAB_DEBUG_FLAGS
);
238 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
240 if (kmem_cache_debug_flags(s
, SLAB_RED_ZONE
))
241 p
+= s
->red_left_pad
;
246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 return !kmem_cache_debug(s
);
256 * Issues still to be resolved:
258 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260 * - Variable sizing of the per node arrays
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
266 #ifndef CONFIG_SLUB_TINY
268 * Minimum number of partial slabs. These will be left on the partial
269 * lists even if they are empty. kmem_cache_shrink may reclaim them.
271 #define MIN_PARTIAL 5
274 * Maximum number of desirable partial slabs.
275 * The existence of more partial slabs makes kmem_cache_shrink
276 * sort the partial list by the number of objects in use.
278 #define MAX_PARTIAL 10
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 SLAB_POISON | SLAB_STORE_USER)
288 * These debug flags cannot use CMPXCHG because there might be consistency
289 * issues when checking or reading debug information
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
296 * Debugging flags that require metadata to be stored in the slab. These get
297 * disabled when slab_debug=O is used and a cache's min order increases with
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
303 #define OO_MASK ((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
306 /* Internal SLUB flags */
308 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
318 * Tracking user of a slab.
320 #define TRACK_ADDRS_COUNT 16
322 unsigned long addr
; /* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 depot_stack_handle_t handle
;
326 int cpu
; /* Was running on cpu */
327 int pid
; /* Pid context */
328 unsigned long when
; /* When did the operation occur */
331 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache
*);
335 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
337 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
338 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache
*);
345 static inline void debugfs_slab_add(struct kmem_cache
*s
) { }
349 ALLOC_FASTPATH
, /* Allocation from cpu slab */
350 ALLOC_SLOWPATH
, /* Allocation by getting a new cpu slab */
351 FREE_FASTPATH
, /* Free to cpu slab */
352 FREE_SLOWPATH
, /* Freeing not to cpu slab */
353 FREE_FROZEN
, /* Freeing to frozen slab */
354 FREE_ADD_PARTIAL
, /* Freeing moves slab to partial list */
355 FREE_REMOVE_PARTIAL
, /* Freeing removes last object */
356 ALLOC_FROM_PARTIAL
, /* Cpu slab acquired from node partial list */
357 ALLOC_SLAB
, /* Cpu slab acquired from page allocator */
358 ALLOC_REFILL
, /* Refill cpu slab from slab freelist */
359 ALLOC_NODE_MISMATCH
, /* Switching cpu slab */
360 FREE_SLAB
, /* Slab freed to the page allocator */
361 CPUSLAB_FLUSH
, /* Abandoning of the cpu slab */
362 DEACTIVATE_FULL
, /* Cpu slab was full when deactivated */
363 DEACTIVATE_EMPTY
, /* Cpu slab was empty when deactivated */
364 DEACTIVATE_TO_HEAD
, /* Cpu slab was moved to the head of partials */
365 DEACTIVATE_TO_TAIL
, /* Cpu slab was moved to the tail of partials */
366 DEACTIVATE_REMOTE_FREES
,/* Slab contained remotely freed objects */
367 DEACTIVATE_BYPASS
, /* Implicit deactivation */
368 ORDER_FALLBACK
, /* Number of times fallback was necessary */
369 CMPXCHG_DOUBLE_CPU_FAIL
,/* Failures of this_cpu_cmpxchg_double */
370 CMPXCHG_DOUBLE_FAIL
, /* Failures of slab freelist update */
371 CPU_PARTIAL_ALLOC
, /* Used cpu partial on alloc */
372 CPU_PARTIAL_FREE
, /* Refill cpu partial on free */
373 CPU_PARTIAL_NODE
, /* Refill cpu partial from node partial */
374 CPU_PARTIAL_DRAIN
, /* Drain cpu partial to node partial */
378 #ifndef CONFIG_SLUB_TINY
380 * When changing the layout, make sure freelist and tid are still compatible
381 * with this_cpu_cmpxchg_double() alignment requirements.
383 struct kmem_cache_cpu
{
386 void **freelist
; /* Pointer to next available object */
387 unsigned long tid
; /* Globally unique transaction id */
389 freelist_aba_t freelist_tid
;
391 struct slab
*slab
; /* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 struct slab
*partial
; /* Partially allocated slabs */
395 local_lock_t lock
; /* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 unsigned int stat
[NR_SLUB_STAT_ITEMS
];
400 #endif /* CONFIG_SLUB_TINY */
402 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
404 #ifdef CONFIG_SLUB_STATS
406 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 * avoid this_cpu_add()'s irq-disable overhead.
409 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
414 void stat_add(const struct kmem_cache
*s
, enum stat_item si
, int v
)
416 #ifdef CONFIG_SLUB_STATS
417 raw_cpu_add(s
->cpu_slab
->stat
[si
], v
);
422 * The slab lists for all objects.
424 struct kmem_cache_node
{
425 spinlock_t list_lock
;
426 unsigned long nr_partial
;
427 struct list_head partial
;
428 #ifdef CONFIG_SLUB_DEBUG
429 atomic_long_t nr_slabs
;
430 atomic_long_t total_objects
;
431 struct list_head full
;
435 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
437 return s
->node
[node
];
441 * Iterator over all nodes. The body will be executed for each node that has
442 * a kmem_cache_node structure allocated (which is true for all online nodes)
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 for (__node = 0; __node < nr_node_ids; __node++) \
446 if ((__n = get_node(__s, __node)))
449 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451 * differ during memory hotplug/hotremove operations.
452 * Protected by slab_mutex.
454 static nodemask_t slab_nodes
;
456 #ifndef CONFIG_SLUB_TINY
458 * Workqueue used for flush_cpu_slab().
460 static struct workqueue_struct
*flushwq
;
463 /********************************************************************
464 * Core slab cache functions
465 *******************************************************************/
468 * Returns freelist pointer (ptr). With hardening, this is obfuscated
469 * with an XOR of the address where the pointer is held and a per-cache
472 static inline freeptr_t
freelist_ptr_encode(const struct kmem_cache
*s
,
473 void *ptr
, unsigned long ptr_addr
)
475 unsigned long encoded
;
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 encoded
= (unsigned long)ptr
^ s
->random
^ swab(ptr_addr
);
480 encoded
= (unsigned long)ptr
;
482 return (freeptr_t
){.v
= encoded
};
485 static inline void *freelist_ptr_decode(const struct kmem_cache
*s
,
486 freeptr_t ptr
, unsigned long ptr_addr
)
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 decoded
= (void *)(ptr
.v
^ s
->random
^ swab(ptr_addr
));
493 decoded
= (void *)ptr
.v
;
498 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
500 unsigned long ptr_addr
;
503 object
= kasan_reset_tag(object
);
504 ptr_addr
= (unsigned long)object
+ s
->offset
;
505 p
= *(freeptr_t
*)(ptr_addr
);
506 return freelist_ptr_decode(s
, p
, ptr_addr
);
509 #ifndef CONFIG_SLUB_TINY
510 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
512 prefetchw(object
+ s
->offset
);
517 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518 * pointer value in the case the current thread loses the race for the next
519 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521 * KMSAN will still check all arguments of cmpxchg because of imperfect
522 * handling of inline assembly.
523 * To work around this problem, we apply __no_kmsan_checks to ensure that
524 * get_freepointer_safe() returns initialized memory.
527 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
529 unsigned long freepointer_addr
;
532 if (!debug_pagealloc_enabled_static())
533 return get_freepointer(s
, object
);
535 object
= kasan_reset_tag(object
);
536 freepointer_addr
= (unsigned long)object
+ s
->offset
;
537 copy_from_kernel_nofault(&p
, (freeptr_t
*)freepointer_addr
, sizeof(p
));
538 return freelist_ptr_decode(s
, p
, freepointer_addr
);
541 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
543 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
549 freeptr_addr
= (unsigned long)kasan_reset_tag((void *)freeptr_addr
);
550 *(freeptr_t
*)freeptr_addr
= freelist_ptr_encode(s
, fp
, freeptr_addr
);
554 * See comment in calculate_sizes().
556 static inline bool freeptr_outside_object(struct kmem_cache
*s
)
558 return s
->offset
>= s
->inuse
;
562 * Return offset of the end of info block which is inuse + free pointer if
563 * not overlapping with object.
565 static inline unsigned int get_info_end(struct kmem_cache
*s
)
567 if (freeptr_outside_object(s
))
568 return s
->inuse
+ sizeof(void *);
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 for (__p = fixup_red_left(__s, __addr); \
576 __p < (__addr) + (__objects) * (__s)->size; \
579 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
581 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
584 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
587 struct kmem_cache_order_objects x
= {
588 (order
<< OO_SHIFT
) + order_objects(order
, size
)
594 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
596 return x
.x
>> OO_SHIFT
;
599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
601 return x
.x
& OO_MASK
;
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
605 static void slub_set_cpu_partial(struct kmem_cache
*s
, unsigned int nr_objects
)
607 unsigned int nr_slabs
;
609 s
->cpu_partial
= nr_objects
;
612 * We take the number of objects but actually limit the number of
613 * slabs on the per cpu partial list, in order to limit excessive
614 * growth of the list. For simplicity we assume that the slabs will
617 nr_slabs
= DIV_ROUND_UP(nr_objects
* 2, oo_objects(s
->oo
));
618 s
->cpu_partial_slabs
= nr_slabs
;
621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache
*s
)
623 return s
->cpu_partial_slabs
;
627 slub_set_cpu_partial(struct kmem_cache
*s
, unsigned int nr_objects
)
631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache
*s
)
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
638 * Per slab locking using the pagelock
640 static __always_inline
void slab_lock(struct slab
*slab
)
642 bit_spin_lock(PG_locked
, &slab
->__page_flags
);
645 static __always_inline
void slab_unlock(struct slab
*slab
)
647 bit_spin_unlock(PG_locked
, &slab
->__page_flags
);
651 __update_freelist_fast(struct slab
*slab
,
652 void *freelist_old
, unsigned long counters_old
,
653 void *freelist_new
, unsigned long counters_new
)
655 #ifdef system_has_freelist_aba
656 freelist_aba_t old
= { .freelist
= freelist_old
, .counter
= counters_old
};
657 freelist_aba_t
new = { .freelist
= freelist_new
, .counter
= counters_new
};
659 return try_cmpxchg_freelist(&slab
->freelist_counter
.full
, &old
.full
, new.full
);
666 __update_freelist_slow(struct slab
*slab
,
667 void *freelist_old
, unsigned long counters_old
,
668 void *freelist_new
, unsigned long counters_new
)
673 if (slab
->freelist
== freelist_old
&&
674 slab
->counters
== counters_old
) {
675 slab
->freelist
= freelist_new
;
676 slab
->counters
= counters_new
;
685 * Interrupts must be disabled (for the fallback code to work right), typically
686 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688 * allocation/ free operation in hardirq context. Therefore nothing can
689 * interrupt the operation.
691 static inline bool __slab_update_freelist(struct kmem_cache
*s
, struct slab
*slab
,
692 void *freelist_old
, unsigned long counters_old
,
693 void *freelist_new
, unsigned long counters_new
,
698 if (USE_LOCKLESS_FAST_PATH())
699 lockdep_assert_irqs_disabled();
701 if (s
->flags
& __CMPXCHG_DOUBLE
) {
702 ret
= __update_freelist_fast(slab
, freelist_old
, counters_old
,
703 freelist_new
, counters_new
);
705 ret
= __update_freelist_slow(slab
, freelist_old
, counters_old
,
706 freelist_new
, counters_new
);
712 stat(s
, CMPXCHG_DOUBLE_FAIL
);
714 #ifdef SLUB_DEBUG_CMPXCHG
715 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
721 static inline bool slab_update_freelist(struct kmem_cache
*s
, struct slab
*slab
,
722 void *freelist_old
, unsigned long counters_old
,
723 void *freelist_new
, unsigned long counters_new
,
728 if (s
->flags
& __CMPXCHG_DOUBLE
) {
729 ret
= __update_freelist_fast(slab
, freelist_old
, counters_old
,
730 freelist_new
, counters_new
);
734 local_irq_save(flags
);
735 ret
= __update_freelist_slow(slab
, freelist_old
, counters_old
,
736 freelist_new
, counters_new
);
737 local_irq_restore(flags
);
743 stat(s
, CMPXCHG_DOUBLE_FAIL
);
745 #ifdef SLUB_DEBUG_CMPXCHG
746 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
753 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754 * family will round up the real request size to these fixed ones, so
755 * there could be an extra area than what is requested. Save the original
756 * request size in the meta data area, for better debug and sanity check.
758 static inline void set_orig_size(struct kmem_cache
*s
,
759 void *object
, unsigned int orig_size
)
761 void *p
= kasan_reset_tag(object
);
763 if (!slub_debug_orig_size(s
))
766 p
+= get_info_end(s
);
767 p
+= sizeof(struct track
) * 2;
769 *(unsigned int *)p
= orig_size
;
772 static inline unsigned int get_orig_size(struct kmem_cache
*s
, void *object
)
774 void *p
= kasan_reset_tag(object
);
776 if (is_kfence_address(object
))
777 return kfence_ksize(object
);
779 if (!slub_debug_orig_size(s
))
780 return s
->object_size
;
782 p
+= get_info_end(s
);
783 p
+= sizeof(struct track
) * 2;
785 return *(unsigned int *)p
;
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map
[BITS_TO_LONGS(MAX_OBJS_PER_PAGE
)];
790 static DEFINE_SPINLOCK(object_map_lock
);
792 static void __fill_map(unsigned long *obj_map
, struct kmem_cache
*s
,
795 void *addr
= slab_address(slab
);
798 bitmap_zero(obj_map
, slab
->objects
);
800 for (p
= slab
->freelist
; p
; p
= get_freepointer(s
, p
))
801 set_bit(__obj_to_index(s
, addr
, p
), obj_map
);
804 #if IS_ENABLED(CONFIG_KUNIT)
805 static bool slab_add_kunit_errors(void)
807 struct kunit_resource
*resource
;
809 if (!kunit_get_current_test())
812 resource
= kunit_find_named_resource(current
->kunit_test
, "slab_errors");
816 (*(int *)resource
->data
)++;
817 kunit_put_resource(resource
);
821 bool slab_in_kunit_test(void)
823 struct kunit_resource
*resource
;
825 if (!kunit_get_current_test())
828 resource
= kunit_find_named_resource(current
->kunit_test
, "slab_errors");
832 kunit_put_resource(resource
);
836 static inline bool slab_add_kunit_errors(void) { return false; }
839 static inline unsigned int size_from_object(struct kmem_cache
*s
)
841 if (s
->flags
& SLAB_RED_ZONE
)
842 return s
->size
- s
->red_left_pad
;
847 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
849 if (s
->flags
& SLAB_RED_ZONE
)
850 p
-= s
->red_left_pad
;
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
861 static slab_flags_t slub_debug
;
864 static char *slub_debug_string
;
865 static int disable_higher_order_debug
;
868 * slub is about to manipulate internal object metadata. This memory lies
869 * outside the range of the allocated object, so accessing it would normally
870 * be reported by kasan as a bounds error. metadata_access_enable() is used
871 * to tell kasan that these accesses are OK.
873 static inline void metadata_access_enable(void)
875 kasan_disable_current();
876 kmsan_disable_current();
879 static inline void metadata_access_disable(void)
881 kmsan_enable_current();
882 kasan_enable_current();
889 /* Verify that a pointer has an address that is valid within a slab page */
890 static inline int check_valid_pointer(struct kmem_cache
*s
,
891 struct slab
*slab
, void *object
)
898 base
= slab_address(slab
);
899 object
= kasan_reset_tag(object
);
900 object
= restore_red_left(s
, object
);
901 if (object
< base
|| object
>= base
+ slab
->objects
* s
->size
||
902 (object
- base
) % s
->size
) {
909 static void print_section(char *level
, char *text
, u8
*addr
,
912 metadata_access_enable();
913 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
,
914 16, 1, kasan_reset_tag((void *)addr
), length
, 1);
915 metadata_access_disable();
918 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
919 enum track_item alloc
)
923 p
= object
+ get_info_end(s
);
925 return kasan_reset_tag(p
+ alloc
);
928 #ifdef CONFIG_STACKDEPOT
929 static noinline depot_stack_handle_t
set_track_prepare(void)
931 depot_stack_handle_t handle
;
932 unsigned long entries
[TRACK_ADDRS_COUNT
];
933 unsigned int nr_entries
;
935 nr_entries
= stack_trace_save(entries
, ARRAY_SIZE(entries
), 3);
936 handle
= stack_depot_save(entries
, nr_entries
, GFP_NOWAIT
);
941 static inline depot_stack_handle_t
set_track_prepare(void)
947 static void set_track_update(struct kmem_cache
*s
, void *object
,
948 enum track_item alloc
, unsigned long addr
,
949 depot_stack_handle_t handle
)
951 struct track
*p
= get_track(s
, object
, alloc
);
953 #ifdef CONFIG_STACKDEPOT
957 p
->cpu
= smp_processor_id();
958 p
->pid
= current
->pid
;
962 static __always_inline
void set_track(struct kmem_cache
*s
, void *object
,
963 enum track_item alloc
, unsigned long addr
)
965 depot_stack_handle_t handle
= set_track_prepare();
967 set_track_update(s
, object
, alloc
, addr
, handle
);
970 static void init_tracking(struct kmem_cache
*s
, void *object
)
974 if (!(s
->flags
& SLAB_STORE_USER
))
977 p
= get_track(s
, object
, TRACK_ALLOC
);
978 memset(p
, 0, 2*sizeof(struct track
));
981 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
983 depot_stack_handle_t handle __maybe_unused
;
988 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
990 #ifdef CONFIG_STACKDEPOT
991 handle
= READ_ONCE(t
->handle
);
993 stack_depot_print(handle
);
995 pr_err("object allocation/free stack trace missing\n");
999 void print_tracking(struct kmem_cache
*s
, void *object
)
1001 unsigned long pr_time
= jiffies
;
1002 if (!(s
->flags
& SLAB_STORE_USER
))
1005 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
1006 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
1009 static void print_slab_info(const struct slab
*slab
)
1011 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 slab
, slab
->objects
, slab
->inuse
, slab
->freelist
,
1013 &slab
->__page_flags
);
1016 void skip_orig_size_check(struct kmem_cache
*s
, const void *object
)
1018 set_orig_size(s
, (void *)object
, s
->object_size
);
1021 static void __slab_bug(struct kmem_cache
*s
, const char *fmt
, va_list argsp
)
1023 struct va_format vaf
;
1026 va_copy(args
, argsp
);
1029 pr_err("=============================================================================\n");
1030 pr_err("BUG %s (%s): %pV\n", s
? s
->name
: "<unknown>", print_tainted(), &vaf
);
1031 pr_err("-----------------------------------------------------------------------------\n\n");
1035 static void slab_bug(struct kmem_cache
*s
, const char *fmt
, ...)
1039 va_start(args
, fmt
);
1040 __slab_bug(s
, fmt
, args
);
1045 static void slab_fix(struct kmem_cache
*s
, const char *fmt
, ...)
1047 struct va_format vaf
;
1050 if (slab_add_kunit_errors())
1053 va_start(args
, fmt
);
1056 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
1060 static void print_trailer(struct kmem_cache
*s
, struct slab
*slab
, u8
*p
)
1062 unsigned int off
; /* Offset of last byte */
1063 u8
*addr
= slab_address(slab
);
1065 print_tracking(s
, p
);
1067 print_slab_info(slab
);
1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 p
, p
- addr
, get_freepointer(s
, p
));
1072 if (s
->flags
& SLAB_RED_ZONE
)
1073 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
1075 else if (p
> addr
+ 16)
1076 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
1078 print_section(KERN_ERR
, "Object ", p
,
1079 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
1080 if (s
->flags
& SLAB_RED_ZONE
)
1081 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
1082 s
->inuse
- s
->object_size
);
1084 off
= get_info_end(s
);
1086 if (s
->flags
& SLAB_STORE_USER
)
1087 off
+= 2 * sizeof(struct track
);
1089 if (slub_debug_orig_size(s
))
1090 off
+= sizeof(unsigned int);
1092 off
+= kasan_metadata_size(s
, false);
1094 if (off
!= size_from_object(s
))
1095 /* Beginning of the filler is the free pointer */
1096 print_section(KERN_ERR
, "Padding ", p
+ off
,
1097 size_from_object(s
) - off
);
1100 static void object_err(struct kmem_cache
*s
, struct slab
*slab
,
1101 u8
*object
, const char *reason
)
1103 if (slab_add_kunit_errors())
1106 slab_bug(s
, reason
);
1107 print_trailer(s
, slab
, object
);
1108 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
1113 static bool freelist_corrupted(struct kmem_cache
*s
, struct slab
*slab
,
1114 void **freelist
, void *nextfree
)
1116 if ((s
->flags
& SLAB_CONSISTENCY_CHECKS
) &&
1117 !check_valid_pointer(s
, slab
, nextfree
) && freelist
) {
1118 object_err(s
, slab
, *freelist
, "Freechain corrupt");
1120 slab_fix(s
, "Isolate corrupted freechain");
1127 static void __slab_err(struct slab
*slab
)
1129 if (slab_in_kunit_test())
1132 print_slab_info(slab
);
1133 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
1138 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct slab
*slab
,
1139 const char *fmt
, ...)
1143 if (slab_add_kunit_errors())
1146 va_start(args
, fmt
);
1147 __slab_bug(s
, fmt
, args
);
1153 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
1155 u8
*p
= kasan_reset_tag(object
);
1156 unsigned int poison_size
= s
->object_size
;
1158 if (s
->flags
& SLAB_RED_ZONE
) {
1160 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 * the shadow makes it possible to distinguish uninit-value
1162 * from use-after-free.
1164 memset_no_sanitize_memory(p
- s
->red_left_pad
, val
,
1167 if (slub_debug_orig_size(s
) && val
== SLUB_RED_ACTIVE
) {
1169 * Redzone the extra allocated space by kmalloc than
1170 * requested, and the poison size will be limited to
1171 * the original request size accordingly.
1173 poison_size
= get_orig_size(s
, object
);
1177 if (s
->flags
& __OBJECT_POISON
) {
1178 memset_no_sanitize_memory(p
, POISON_FREE
, poison_size
- 1);
1179 memset_no_sanitize_memory(p
+ poison_size
- 1, POISON_END
, 1);
1182 if (s
->flags
& SLAB_RED_ZONE
)
1183 memset_no_sanitize_memory(p
+ poison_size
, val
,
1184 s
->inuse
- poison_size
);
1187 static void restore_bytes(struct kmem_cache
*s
, const char *message
, u8 data
,
1188 void *from
, void *to
)
1190 slab_fix(s
, "Restoring %s 0x%p-0x%p=0x%x", message
, from
, to
- 1, data
);
1191 memset(from
, data
, to
- from
);
1195 #define pad_check_attributes noinline __no_kmsan_checks
1197 #define pad_check_attributes
1200 static pad_check_attributes
int
1201 check_bytes_and_report(struct kmem_cache
*s
, struct slab
*slab
,
1202 u8
*object
, const char *what
, u8
*start
, unsigned int value
,
1203 unsigned int bytes
, bool slab_obj_print
)
1207 u8
*addr
= slab_address(slab
);
1209 metadata_access_enable();
1210 fault
= memchr_inv(kasan_reset_tag(start
), value
, bytes
);
1211 metadata_access_disable();
1215 end
= start
+ bytes
;
1216 while (end
> fault
&& end
[-1] == value
)
1219 if (slab_add_kunit_errors())
1220 goto skip_bug_print
;
1222 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 what
, fault
, end
- 1, fault
- addr
, fault
[0], value
);
1226 object_err(s
, slab
, object
, "Object corrupt");
1229 restore_bytes(s
, what
, value
, fault
, end
);
1237 * Bytes of the object to be managed.
1238 * If the freepointer may overlay the object then the free
1239 * pointer is at the middle of the object.
1241 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1244 * object + s->object_size
1245 * Padding to reach word boundary. This is also used for Redzoning.
1246 * Padding is extended by another word if Redzoning is enabled and
1247 * object_size == inuse.
1249 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1253 * Meta data starts here.
1255 * A. Free pointer (if we cannot overwrite object on free)
1256 * B. Tracking data for SLAB_STORE_USER
1257 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258 * D. Padding to reach required alignment boundary or at minimum
1259 * one word if debugging is on to be able to detect writes
1260 * before the word boundary.
1262 * Padding is done using 0x5a (POISON_INUSE)
1265 * Nothing is used beyond s->size.
1267 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268 * ignored. And therefore no slab options that rely on these boundaries
1269 * may be used with merged slabcaches.
1272 static int check_pad_bytes(struct kmem_cache
*s
, struct slab
*slab
, u8
*p
)
1274 unsigned long off
= get_info_end(s
); /* The end of info */
1276 if (s
->flags
& SLAB_STORE_USER
) {
1277 /* We also have user information there */
1278 off
+= 2 * sizeof(struct track
);
1280 if (s
->flags
& SLAB_KMALLOC
)
1281 off
+= sizeof(unsigned int);
1284 off
+= kasan_metadata_size(s
, false);
1286 if (size_from_object(s
) == off
)
1289 return check_bytes_and_report(s
, slab
, p
, "Object padding",
1290 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
, true);
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes
void
1295 slab_pad_check(struct kmem_cache
*s
, struct slab
*slab
)
1304 if (!(s
->flags
& SLAB_POISON
))
1307 start
= slab_address(slab
);
1308 length
= slab_size(slab
);
1309 end
= start
+ length
;
1310 remainder
= length
% s
->size
;
1314 pad
= end
- remainder
;
1315 metadata_access_enable();
1316 fault
= memchr_inv(kasan_reset_tag(pad
), POISON_INUSE
, remainder
);
1317 metadata_access_disable();
1320 while (end
> fault
&& end
[-1] == POISON_INUSE
)
1323 slab_bug(s
, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 fault
, end
- 1, fault
- start
);
1325 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
1328 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
1331 static int check_object(struct kmem_cache
*s
, struct slab
*slab
,
1332 void *object
, u8 val
)
1335 u8
*endobject
= object
+ s
->object_size
;
1336 unsigned int orig_size
, kasan_meta_size
;
1339 if (s
->flags
& SLAB_RED_ZONE
) {
1340 if (!check_bytes_and_report(s
, slab
, object
, "Left Redzone",
1341 object
- s
->red_left_pad
, val
, s
->red_left_pad
, ret
))
1344 if (!check_bytes_and_report(s
, slab
, object
, "Right Redzone",
1345 endobject
, val
, s
->inuse
- s
->object_size
, ret
))
1348 if (slub_debug_orig_size(s
) && val
== SLUB_RED_ACTIVE
) {
1349 orig_size
= get_orig_size(s
, object
);
1351 if (s
->object_size
> orig_size
&&
1352 !check_bytes_and_report(s
, slab
, object
,
1353 "kmalloc Redzone", p
+ orig_size
,
1354 val
, s
->object_size
- orig_size
, ret
)) {
1359 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
1360 if (!check_bytes_and_report(s
, slab
, p
, "Alignment padding",
1361 endobject
, POISON_INUSE
,
1362 s
->inuse
- s
->object_size
, ret
))
1367 if (s
->flags
& SLAB_POISON
) {
1368 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
)) {
1370 * KASAN can save its free meta data inside of the
1371 * object at offset 0. Thus, skip checking the part of
1372 * the redzone that overlaps with the meta data.
1374 kasan_meta_size
= kasan_metadata_size(s
, true);
1375 if (kasan_meta_size
< s
->object_size
- 1 &&
1376 !check_bytes_and_report(s
, slab
, p
, "Poison",
1377 p
+ kasan_meta_size
, POISON_FREE
,
1378 s
->object_size
- kasan_meta_size
- 1, ret
))
1380 if (kasan_meta_size
< s
->object_size
&&
1381 !check_bytes_and_report(s
, slab
, p
, "End Poison",
1382 p
+ s
->object_size
- 1, POISON_END
, 1, ret
))
1386 * check_pad_bytes cleans up on its own.
1388 if (!check_pad_bytes(s
, slab
, p
))
1393 * Cannot check freepointer while object is allocated if
1394 * object and freepointer overlap.
1396 if ((freeptr_outside_object(s
) || val
!= SLUB_RED_ACTIVE
) &&
1397 !check_valid_pointer(s
, slab
, get_freepointer(s
, p
))) {
1398 object_err(s
, slab
, p
, "Freepointer corrupt");
1400 * No choice but to zap it and thus lose the remainder
1401 * of the free objects in this slab. May cause
1402 * another error because the object count is now wrong.
1404 set_freepointer(s
, p
, NULL
);
1411 static int check_slab(struct kmem_cache
*s
, struct slab
*slab
)
1415 if (!folio_test_slab(slab_folio(slab
))) {
1416 slab_err(s
, slab
, "Not a valid slab page");
1420 maxobj
= order_objects(slab_order(slab
), s
->size
);
1421 if (slab
->objects
> maxobj
) {
1422 slab_err(s
, slab
, "objects %u > max %u",
1423 slab
->objects
, maxobj
);
1426 if (slab
->inuse
> slab
->objects
) {
1427 slab_err(s
, slab
, "inuse %u > max %u",
1428 slab
->inuse
, slab
->objects
);
1432 slab_err(s
, slab
, "Slab disabled since SLUB metadata consistency check failed");
1436 /* Slab_pad_check fixes things up after itself */
1437 slab_pad_check(s
, slab
);
1442 * Determine if a certain object in a slab is on the freelist. Must hold the
1443 * slab lock to guarantee that the chains are in a consistent state.
1445 static bool on_freelist(struct kmem_cache
*s
, struct slab
*slab
, void *search
)
1449 void *object
= NULL
;
1452 fp
= slab
->freelist
;
1453 while (fp
&& nr
<= slab
->objects
) {
1456 if (!check_valid_pointer(s
, slab
, fp
)) {
1458 object_err(s
, slab
, object
,
1459 "Freechain corrupt");
1460 set_freepointer(s
, object
, NULL
);
1463 slab_err(s
, slab
, "Freepointer corrupt");
1464 slab
->freelist
= NULL
;
1465 slab
->inuse
= slab
->objects
;
1466 slab_fix(s
, "Freelist cleared");
1471 fp
= get_freepointer(s
, object
);
1475 if (nr
> slab
->objects
) {
1476 slab_err(s
, slab
, "Freelist cycle detected");
1477 slab
->freelist
= NULL
;
1478 slab
->inuse
= slab
->objects
;
1479 slab_fix(s
, "Freelist cleared");
1483 max_objects
= order_objects(slab_order(slab
), s
->size
);
1484 if (max_objects
> MAX_OBJS_PER_PAGE
)
1485 max_objects
= MAX_OBJS_PER_PAGE
;
1487 if (slab
->objects
!= max_objects
) {
1488 slab_err(s
, slab
, "Wrong number of objects. Found %d but should be %d",
1489 slab
->objects
, max_objects
);
1490 slab
->objects
= max_objects
;
1491 slab_fix(s
, "Number of objects adjusted");
1493 if (slab
->inuse
!= slab
->objects
- nr
) {
1494 slab_err(s
, slab
, "Wrong object count. Counter is %d but counted were %d",
1495 slab
->inuse
, slab
->objects
- nr
);
1496 slab
->inuse
= slab
->objects
- nr
;
1497 slab_fix(s
, "Object count adjusted");
1499 return search
== NULL
;
1502 static void trace(struct kmem_cache
*s
, struct slab
*slab
, void *object
,
1505 if (s
->flags
& SLAB_TRACE
) {
1506 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1508 alloc
? "alloc" : "free",
1509 object
, slab
->inuse
,
1513 print_section(KERN_INFO
, "Object ", (void *)object
,
1521 * Tracking of fully allocated slabs for debugging purposes.
1523 static void add_full(struct kmem_cache
*s
,
1524 struct kmem_cache_node
*n
, struct slab
*slab
)
1526 if (!(s
->flags
& SLAB_STORE_USER
))
1529 lockdep_assert_held(&n
->list_lock
);
1530 list_add(&slab
->slab_list
, &n
->full
);
1533 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct slab
*slab
)
1535 if (!(s
->flags
& SLAB_STORE_USER
))
1538 lockdep_assert_held(&n
->list_lock
);
1539 list_del(&slab
->slab_list
);
1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1544 return atomic_long_read(&n
->nr_slabs
);
1547 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1549 struct kmem_cache_node
*n
= get_node(s
, node
);
1551 atomic_long_inc(&n
->nr_slabs
);
1552 atomic_long_add(objects
, &n
->total_objects
);
1554 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1556 struct kmem_cache_node
*n
= get_node(s
, node
);
1558 atomic_long_dec(&n
->nr_slabs
);
1559 atomic_long_sub(objects
, &n
->total_objects
);
1562 /* Object debug checks for alloc/free paths */
1563 static void setup_object_debug(struct kmem_cache
*s
, void *object
)
1565 if (!kmem_cache_debug_flags(s
, SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
))
1568 init_object(s
, object
, SLUB_RED_INACTIVE
);
1569 init_tracking(s
, object
);
1573 void setup_slab_debug(struct kmem_cache
*s
, struct slab
*slab
, void *addr
)
1575 if (!kmem_cache_debug_flags(s
, SLAB_POISON
))
1578 metadata_access_enable();
1579 memset(kasan_reset_tag(addr
), POISON_INUSE
, slab_size(slab
));
1580 metadata_access_disable();
1583 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1584 struct slab
*slab
, void *object
)
1586 if (!check_slab(s
, slab
))
1589 if (!check_valid_pointer(s
, slab
, object
)) {
1590 object_err(s
, slab
, object
, "Freelist Pointer check fails");
1594 if (!check_object(s
, slab
, object
, SLUB_RED_INACTIVE
))
1600 static noinline
bool alloc_debug_processing(struct kmem_cache
*s
,
1601 struct slab
*slab
, void *object
, int orig_size
)
1603 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1604 if (!alloc_consistency_checks(s
, slab
, object
))
1608 /* Success. Perform special debug activities for allocs */
1609 trace(s
, slab
, object
, 1);
1610 set_orig_size(s
, object
, orig_size
);
1611 init_object(s
, object
, SLUB_RED_ACTIVE
);
1615 if (folio_test_slab(slab_folio(slab
))) {
1617 * If this is a slab page then lets do the best we can
1618 * to avoid issues in the future. Marking all objects
1619 * as used avoids touching the remaining objects.
1621 slab_fix(s
, "Marking all objects used");
1622 slab
->inuse
= slab
->objects
;
1623 slab
->freelist
= NULL
;
1624 slab
->frozen
= 1; /* mark consistency-failed slab as frozen */
1629 static inline int free_consistency_checks(struct kmem_cache
*s
,
1630 struct slab
*slab
, void *object
, unsigned long addr
)
1632 if (!check_valid_pointer(s
, slab
, object
)) {
1633 slab_err(s
, slab
, "Invalid object pointer 0x%p", object
);
1637 if (on_freelist(s
, slab
, object
)) {
1638 object_err(s
, slab
, object
, "Object already free");
1642 if (!check_object(s
, slab
, object
, SLUB_RED_ACTIVE
))
1645 if (unlikely(s
!= slab
->slab_cache
)) {
1646 if (!folio_test_slab(slab_folio(slab
))) {
1647 slab_err(s
, slab
, "Attempt to free object(0x%p) outside of slab",
1649 } else if (!slab
->slab_cache
) {
1650 slab_err(NULL
, slab
, "No slab cache for object 0x%p",
1653 object_err(s
, slab
, object
,
1654 "page slab pointer corrupt.");
1662 * Parse a block of slab_debug options. Blocks are delimited by ';'
1664 * @str: start of block
1665 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666 * @slabs: return start of list of slabs, or NULL when there's no list
1667 * @init: assume this is initial parsing and not per-kmem-create parsing
1669 * returns the start of next block if there's any, or NULL
1672 parse_slub_debug_flags(char *str
, slab_flags_t
*flags
, char **slabs
, bool init
)
1674 bool higher_order_disable
= false;
1676 /* Skip any completely empty blocks */
1677 while (*str
&& *str
== ';')
1682 * No options but restriction on slabs. This means full
1683 * debugging for slabs matching a pattern.
1685 *flags
= DEBUG_DEFAULT_FLAGS
;
1690 /* Determine which debug features should be switched on */
1691 for (; *str
&& *str
!= ',' && *str
!= ';'; str
++) {
1692 switch (tolower(*str
)) {
1697 *flags
|= SLAB_CONSISTENCY_CHECKS
;
1700 *flags
|= SLAB_RED_ZONE
;
1703 *flags
|= SLAB_POISON
;
1706 *flags
|= SLAB_STORE_USER
;
1709 *flags
|= SLAB_TRACE
;
1712 *flags
|= SLAB_FAILSLAB
;
1716 * Avoid enabling debugging on caches if its minimum
1717 * order would increase as a result.
1719 higher_order_disable
= true;
1723 pr_err("slab_debug option '%c' unknown. skipped\n", *str
);
1732 /* Skip over the slab list */
1733 while (*str
&& *str
!= ';')
1736 /* Skip any completely empty blocks */
1737 while (*str
&& *str
== ';')
1740 if (init
&& higher_order_disable
)
1741 disable_higher_order_debug
= 1;
1749 static int __init
setup_slub_debug(char *str
)
1752 slab_flags_t global_flags
;
1755 bool global_slub_debug_changed
= false;
1756 bool slab_list_specified
= false;
1758 global_flags
= DEBUG_DEFAULT_FLAGS
;
1759 if (*str
++ != '=' || !*str
)
1761 * No options specified. Switch on full debugging.
1767 str
= parse_slub_debug_flags(str
, &flags
, &slab_list
, true);
1770 global_flags
= flags
;
1771 global_slub_debug_changed
= true;
1773 slab_list_specified
= true;
1774 if (flags
& SLAB_STORE_USER
)
1775 stack_depot_request_early_init();
1780 * For backwards compatibility, a single list of flags with list of
1781 * slabs means debugging is only changed for those slabs, so the global
1782 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 * long as there is no option specifying flags without a slab list.
1786 if (slab_list_specified
) {
1787 if (!global_slub_debug_changed
)
1788 global_flags
= slub_debug
;
1789 slub_debug_string
= saved_str
;
1792 slub_debug
= global_flags
;
1793 if (slub_debug
& SLAB_STORE_USER
)
1794 stack_depot_request_early_init();
1795 if (slub_debug
!= 0 || slub_debug_string
)
1796 static_branch_enable(&slub_debug_enabled
);
1798 static_branch_disable(&slub_debug_enabled
);
1799 if ((static_branch_unlikely(&init_on_alloc
) ||
1800 static_branch_unlikely(&init_on_free
)) &&
1801 (slub_debug
& SLAB_POISON
))
1802 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1806 __setup("slab_debug", setup_slub_debug
);
1807 __setup_param("slub_debug", slub_debug
, setup_slub_debug
, 0);
1810 * kmem_cache_flags - apply debugging options to the cache
1811 * @flags: flags to set
1812 * @name: name of the cache
1814 * Debug option(s) are applied to @flags. In addition to the debug
1815 * option(s), if a slab name (or multiple) is specified i.e.
1816 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817 * then only the select slabs will receive the debug option(s).
1819 slab_flags_t
kmem_cache_flags(slab_flags_t flags
, const char *name
)
1824 slab_flags_t block_flags
;
1825 slab_flags_t slub_debug_local
= slub_debug
;
1827 if (flags
& SLAB_NO_USER_FLAGS
)
1831 * If the slab cache is for debugging (e.g. kmemleak) then
1832 * don't store user (stack trace) information by default,
1833 * but let the user enable it via the command line below.
1835 if (flags
& SLAB_NOLEAKTRACE
)
1836 slub_debug_local
&= ~SLAB_STORE_USER
;
1839 next_block
= slub_debug_string
;
1840 /* Go through all blocks of debug options, see if any matches our slab's name */
1841 while (next_block
) {
1842 next_block
= parse_slub_debug_flags(next_block
, &block_flags
, &iter
, false);
1845 /* Found a block that has a slab list, search it */
1850 end
= strchrnul(iter
, ',');
1851 if (next_block
&& next_block
< end
)
1852 end
= next_block
- 1;
1854 glob
= strnchr(iter
, end
- iter
, '*');
1856 cmplen
= glob
- iter
;
1858 cmplen
= max_t(size_t, len
, (end
- iter
));
1860 if (!strncmp(name
, iter
, cmplen
)) {
1861 flags
|= block_flags
;
1865 if (!*end
|| *end
== ';')
1871 return flags
| slub_debug_local
;
1873 #else /* !CONFIG_SLUB_DEBUG */
1874 static inline void setup_object_debug(struct kmem_cache
*s
, void *object
) {}
1876 void setup_slab_debug(struct kmem_cache
*s
, struct slab
*slab
, void *addr
) {}
1878 static inline bool alloc_debug_processing(struct kmem_cache
*s
,
1879 struct slab
*slab
, void *object
, int orig_size
) { return true; }
1881 static inline bool free_debug_processing(struct kmem_cache
*s
,
1882 struct slab
*slab
, void *head
, void *tail
, int *bulk_cnt
,
1883 unsigned long addr
, depot_stack_handle_t handle
) { return true; }
1885 static inline void slab_pad_check(struct kmem_cache
*s
, struct slab
*slab
) {}
1886 static inline int check_object(struct kmem_cache
*s
, struct slab
*slab
,
1887 void *object
, u8 val
) { return 1; }
1888 static inline depot_stack_handle_t
set_track_prepare(void) { return 0; }
1889 static inline void set_track(struct kmem_cache
*s
, void *object
,
1890 enum track_item alloc
, unsigned long addr
) {}
1891 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1892 struct slab
*slab
) {}
1893 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1894 struct slab
*slab
) {}
1895 slab_flags_t
kmem_cache_flags(slab_flags_t flags
, const char *name
)
1899 #define slub_debug 0
1901 #define disable_higher_order_debug 0
1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1905 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1907 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1909 #ifndef CONFIG_SLUB_TINY
1910 static bool freelist_corrupted(struct kmem_cache
*s
, struct slab
*slab
,
1911 void **freelist
, void *nextfree
)
1916 #endif /* CONFIG_SLUB_DEBUG */
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1922 static inline void mark_objexts_empty(struct slabobj_ext
*obj_exts
)
1924 struct slabobj_ext
*slab_exts
;
1925 struct slab
*obj_exts_slab
;
1927 obj_exts_slab
= virt_to_slab(obj_exts
);
1928 slab_exts
= slab_obj_exts(obj_exts_slab
);
1930 unsigned int offs
= obj_to_index(obj_exts_slab
->slab_cache
,
1931 obj_exts_slab
, obj_exts
);
1932 /* codetag should be NULL */
1933 WARN_ON(slab_exts
[offs
].ref
.ct
);
1934 set_codetag_empty(&slab_exts
[offs
].ref
);
1938 static inline void mark_failed_objexts_alloc(struct slab
*slab
)
1940 slab
->obj_exts
= OBJEXTS_ALLOC_FAIL
;
1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts
,
1944 struct slabobj_ext
*vec
, unsigned int objects
)
1947 * If vector previously failed to allocate then we have live
1948 * objects with no tag reference. Mark all references in this
1949 * vector as empty to avoid warnings later on.
1951 if (obj_exts
& OBJEXTS_ALLOC_FAIL
) {
1954 for (i
= 0; i
< objects
; i
++)
1955 set_codetag_empty(&vec
[i
].ref
);
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1961 static inline void mark_objexts_empty(struct slabobj_ext
*obj_exts
) {}
1962 static inline void mark_failed_objexts_alloc(struct slab
*slab
) {}
1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts
,
1964 struct slabobj_ext
*vec
, unsigned int objects
) {}
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1969 * The allocated objcg pointers array is not accounted directly.
1970 * Moreover, it should not come from DMA buffer and is not readily
1971 * reclaimable. So those GFP bits should be masked off.
1973 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1974 __GFP_ACCOUNT | __GFP_NOFAIL)
1976 static inline void init_slab_obj_exts(struct slab
*slab
)
1981 int alloc_slab_obj_exts(struct slab
*slab
, struct kmem_cache
*s
,
1982 gfp_t gfp
, bool new_slab
)
1984 unsigned int objects
= objs_per_slab(s
, slab
);
1985 unsigned long new_exts
;
1986 unsigned long old_exts
;
1987 struct slabobj_ext
*vec
;
1989 gfp
&= ~OBJCGS_CLEAR_MASK
;
1990 /* Prevent recursive extension vector allocation */
1991 gfp
|= __GFP_NO_OBJ_EXT
;
1992 vec
= kcalloc_node(objects
, sizeof(struct slabobj_ext
), gfp
,
1995 /* Mark vectors which failed to allocate */
1997 mark_failed_objexts_alloc(slab
);
2002 new_exts
= (unsigned long)vec
;
2004 new_exts
|= MEMCG_DATA_OBJEXTS
;
2006 old_exts
= READ_ONCE(slab
->obj_exts
);
2007 handle_failed_objexts_alloc(old_exts
, vec
, objects
);
2010 * If the slab is brand new and nobody can yet access its
2011 * obj_exts, no synchronization is required and obj_exts can
2012 * be simply assigned.
2014 slab
->obj_exts
= new_exts
;
2015 } else if ((old_exts
& ~OBJEXTS_FLAGS_MASK
) ||
2016 cmpxchg(&slab
->obj_exts
, old_exts
, new_exts
) != old_exts
) {
2018 * If the slab is already in use, somebody can allocate and
2019 * assign slabobj_exts in parallel. In this case the existing
2020 * objcg vector should be reused.
2022 mark_objexts_empty(vec
);
2027 kmemleak_not_leak(vec
);
2031 static inline void free_slab_obj_exts(struct slab
*slab
)
2033 struct slabobj_ext
*obj_exts
;
2035 obj_exts
= slab_obj_exts(slab
);
2040 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2041 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2042 * warning if slab has extensions but the extension of an object is
2043 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2044 * the extension for obj_exts is expected to be NULL.
2046 mark_objexts_empty(obj_exts
);
2051 #else /* CONFIG_SLAB_OBJ_EXT */
2053 static inline void init_slab_obj_exts(struct slab
*slab
)
2057 static int alloc_slab_obj_exts(struct slab
*slab
, struct kmem_cache
*s
,
2058 gfp_t gfp
, bool new_slab
)
2063 static inline void free_slab_obj_exts(struct slab
*slab
)
2067 #endif /* CONFIG_SLAB_OBJ_EXT */
2069 #ifdef CONFIG_MEM_ALLOC_PROFILING
2071 static inline struct slabobj_ext
*
2072 prepare_slab_obj_exts_hook(struct kmem_cache
*s
, gfp_t flags
, void *p
)
2079 if (s
->flags
& (SLAB_NO_OBJ_EXT
| SLAB_NOLEAKTRACE
))
2082 if (flags
& __GFP_NO_OBJ_EXT
)
2085 slab
= virt_to_slab(p
);
2086 if (!slab_obj_exts(slab
) &&
2087 alloc_slab_obj_exts(slab
, s
, flags
, false)) {
2088 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2093 return slab_obj_exts(slab
) + obj_to_index(s
, slab
, p
);
2096 /* Should be called only if mem_alloc_profiling_enabled() */
2097 static noinline
void
2098 __alloc_tagging_slab_alloc_hook(struct kmem_cache
*s
, void *object
, gfp_t flags
)
2100 struct slabobj_ext
*obj_exts
;
2102 obj_exts
= prepare_slab_obj_exts_hook(s
, flags
, object
);
2104 * Currently obj_exts is used only for allocation profiling.
2105 * If other users appear then mem_alloc_profiling_enabled()
2106 * check should be added before alloc_tag_add().
2108 if (likely(obj_exts
))
2109 alloc_tag_add(&obj_exts
->ref
, current
->alloc_tag
, s
->size
);
2113 alloc_tagging_slab_alloc_hook(struct kmem_cache
*s
, void *object
, gfp_t flags
)
2115 if (mem_alloc_profiling_enabled())
2116 __alloc_tagging_slab_alloc_hook(s
, object
, flags
);
2119 /* Should be called only if mem_alloc_profiling_enabled() */
2120 static noinline
void
2121 __alloc_tagging_slab_free_hook(struct kmem_cache
*s
, struct slab
*slab
, void **p
,
2124 struct slabobj_ext
*obj_exts
;
2127 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2128 if (s
->flags
& (SLAB_NO_OBJ_EXT
| SLAB_NOLEAKTRACE
))
2131 obj_exts
= slab_obj_exts(slab
);
2135 for (i
= 0; i
< objects
; i
++) {
2136 unsigned int off
= obj_to_index(s
, slab
, p
[i
]);
2138 alloc_tag_sub(&obj_exts
[off
].ref
, s
->size
);
2143 alloc_tagging_slab_free_hook(struct kmem_cache
*s
, struct slab
*slab
, void **p
,
2146 if (mem_alloc_profiling_enabled())
2147 __alloc_tagging_slab_free_hook(s
, slab
, p
, objects
);
2150 #else /* CONFIG_MEM_ALLOC_PROFILING */
2153 alloc_tagging_slab_alloc_hook(struct kmem_cache
*s
, void *object
, gfp_t flags
)
2158 alloc_tagging_slab_free_hook(struct kmem_cache
*s
, struct slab
*slab
, void **p
,
2163 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2168 static void memcg_alloc_abort_single(struct kmem_cache
*s
, void *object
);
2170 static __fastpath_inline
2171 bool memcg_slab_post_alloc_hook(struct kmem_cache
*s
, struct list_lru
*lru
,
2172 gfp_t flags
, size_t size
, void **p
)
2174 if (likely(!memcg_kmem_online()))
2177 if (likely(!(flags
& __GFP_ACCOUNT
) && !(s
->flags
& SLAB_ACCOUNT
)))
2180 if (likely(__memcg_slab_post_alloc_hook(s
, lru
, flags
, size
, p
)))
2183 if (likely(size
== 1)) {
2184 memcg_alloc_abort_single(s
, *p
);
2187 kmem_cache_free_bulk(s
, size
, p
);
2193 static __fastpath_inline
2194 void memcg_slab_free_hook(struct kmem_cache
*s
, struct slab
*slab
, void **p
,
2197 struct slabobj_ext
*obj_exts
;
2199 if (!memcg_kmem_online())
2202 obj_exts
= slab_obj_exts(slab
);
2203 if (likely(!obj_exts
))
2206 __memcg_slab_free_hook(s
, slab
, p
, objects
, obj_exts
);
2209 static __fastpath_inline
2210 bool memcg_slab_post_charge(void *p
, gfp_t flags
)
2212 struct slabobj_ext
*slab_exts
;
2213 struct kmem_cache
*s
;
2214 struct folio
*folio
;
2218 folio
= virt_to_folio(p
);
2219 if (!folio_test_slab(folio
)) {
2222 if (folio_memcg_kmem(folio
))
2225 if (__memcg_kmem_charge_page(folio_page(folio
, 0), flags
,
2226 folio_order(folio
)))
2230 * This folio has already been accounted in the global stats but
2231 * not in the memcg stats. So, subtract from the global and use
2232 * the interface which adds to both global and memcg stats.
2234 size
= folio_size(folio
);
2235 node_stat_mod_folio(folio
, NR_SLAB_UNRECLAIMABLE_B
, -size
);
2236 lruvec_stat_mod_folio(folio
, NR_SLAB_UNRECLAIMABLE_B
, size
);
2240 slab
= folio_slab(folio
);
2241 s
= slab
->slab_cache
;
2244 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2245 * of slab_obj_exts being allocated from the same slab and thus the slab
2246 * becoming effectively unfreeable.
2248 if (is_kmalloc_normal(s
))
2251 /* Ignore already charged objects. */
2252 slab_exts
= slab_obj_exts(slab
);
2254 off
= obj_to_index(s
, slab
, p
);
2255 if (unlikely(slab_exts
[off
].objcg
))
2259 return __memcg_slab_post_alloc_hook(s
, NULL
, flags
, 1, &p
);
2262 #else /* CONFIG_MEMCG */
2263 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache
*s
,
2264 struct list_lru
*lru
,
2265 gfp_t flags
, size_t size
,
2271 static inline void memcg_slab_free_hook(struct kmem_cache
*s
, struct slab
*slab
,
2272 void **p
, int objects
)
2276 static inline bool memcg_slab_post_charge(void *p
, gfp_t flags
)
2280 #endif /* CONFIG_MEMCG */
2282 #ifdef CONFIG_SLUB_RCU_DEBUG
2283 static void slab_free_after_rcu_debug(struct rcu_head
*rcu_head
);
2285 struct rcu_delayed_free
{
2286 struct rcu_head head
;
2292 * Hooks for other subsystems that check memory allocations. In a typical
2293 * production configuration these hooks all should produce no code at all.
2295 * Returns true if freeing of the object can proceed, false if its reuse
2296 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2299 static __always_inline
2300 bool slab_free_hook(struct kmem_cache
*s
, void *x
, bool init
,
2301 bool after_rcu_delay
)
2303 /* Are the object contents still accessible? */
2304 bool still_accessible
= (s
->flags
& SLAB_TYPESAFE_BY_RCU
) && !after_rcu_delay
;
2306 kmemleak_free_recursive(x
, s
->flags
);
2307 kmsan_slab_free(s
, x
);
2309 debug_check_no_locks_freed(x
, s
->object_size
);
2311 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
2312 debug_check_no_obj_freed(x
, s
->object_size
);
2314 /* Use KCSAN to help debug racy use-after-free. */
2315 if (!still_accessible
)
2316 __kcsan_check_access(x
, s
->object_size
,
2317 KCSAN_ACCESS_WRITE
| KCSAN_ACCESS_ASSERT
);
2323 * Give KASAN a chance to notice an invalid free operation before we
2324 * modify the object.
2326 if (kasan_slab_pre_free(s
, x
))
2329 #ifdef CONFIG_SLUB_RCU_DEBUG
2330 if (still_accessible
) {
2331 struct rcu_delayed_free
*delayed_free
;
2333 delayed_free
= kmalloc(sizeof(*delayed_free
), GFP_NOWAIT
);
2336 * Let KASAN track our call stack as a "related work
2337 * creation", just like if the object had been freed
2338 * normally via kfree_rcu().
2339 * We have to do this manually because the rcu_head is
2340 * not located inside the object.
2342 kasan_record_aux_stack(x
);
2344 delayed_free
->object
= x
;
2345 call_rcu(&delayed_free
->head
, slab_free_after_rcu_debug
);
2349 #endif /* CONFIG_SLUB_RCU_DEBUG */
2352 * As memory initialization might be integrated into KASAN,
2353 * kasan_slab_free and initialization memset's must be
2354 * kept together to avoid discrepancies in behavior.
2356 * The initialization memset's clear the object and the metadata,
2357 * but don't touch the SLAB redzone.
2359 * The object's freepointer is also avoided if stored outside the
2362 if (unlikely(init
)) {
2364 unsigned int inuse
, orig_size
;
2366 inuse
= get_info_end(s
);
2367 orig_size
= get_orig_size(s
, x
);
2368 if (!kasan_has_integrated_init())
2369 memset(kasan_reset_tag(x
), 0, orig_size
);
2370 rsize
= (s
->flags
& SLAB_RED_ZONE
) ? s
->red_left_pad
: 0;
2371 memset((char *)kasan_reset_tag(x
) + inuse
, 0,
2372 s
->size
- inuse
- rsize
);
2374 * Restore orig_size, otherwize kmalloc redzone overwritten
2377 set_orig_size(s
, x
, orig_size
);
2380 /* KASAN might put x into memory quarantine, delaying its reuse. */
2381 return !kasan_slab_free(s
, x
, init
, still_accessible
);
2384 static __fastpath_inline
2385 bool slab_free_freelist_hook(struct kmem_cache
*s
, void **head
, void **tail
,
2391 void *old_tail
= *tail
;
2394 if (is_kfence_address(next
)) {
2395 slab_free_hook(s
, next
, false, false);
2399 /* Head and tail of the reconstructed freelist */
2403 init
= slab_want_init_on_free(s
);
2407 next
= get_freepointer(s
, object
);
2409 /* If object's reuse doesn't have to be delayed */
2410 if (likely(slab_free_hook(s
, object
, init
, false))) {
2411 /* Move object to the new freelist */
2412 set_freepointer(s
, object
, *head
);
2418 * Adjust the reconstructed freelist depth
2419 * accordingly if object's reuse is delayed.
2423 } while (object
!= old_tail
);
2425 return *head
!= NULL
;
2428 static void *setup_object(struct kmem_cache
*s
, void *object
)
2430 setup_object_debug(s
, object
);
2431 object
= kasan_init_slab_obj(s
, object
);
2432 if (unlikely(s
->ctor
)) {
2433 kasan_unpoison_new_object(s
, object
);
2435 kasan_poison_new_object(s
, object
);
2441 * Slab allocation and freeing
2443 static inline struct slab
*alloc_slab_page(gfp_t flags
, int node
,
2444 struct kmem_cache_order_objects oo
)
2446 struct folio
*folio
;
2448 unsigned int order
= oo_order(oo
);
2450 if (node
== NUMA_NO_NODE
)
2451 folio
= (struct folio
*)alloc_frozen_pages(flags
, order
);
2453 folio
= (struct folio
*)__alloc_frozen_pages(flags
, order
, node
, NULL
);
2458 slab
= folio_slab(folio
);
2459 __folio_set_slab(folio
);
2460 if (folio_is_pfmemalloc(folio
))
2461 slab_set_pfmemalloc(slab
);
2466 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2467 /* Pre-initialize the random sequence cache */
2468 static int init_cache_random_seq(struct kmem_cache
*s
)
2470 unsigned int count
= oo_objects(s
->oo
);
2473 /* Bailout if already initialised */
2477 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
2479 pr_err("SLUB: Unable to initialize free list for %s\n",
2484 /* Transform to an offset on the set of pages */
2485 if (s
->random_seq
) {
2488 for (i
= 0; i
< count
; i
++)
2489 s
->random_seq
[i
] *= s
->size
;
2494 /* Initialize each random sequence freelist per cache */
2495 static void __init
init_freelist_randomization(void)
2497 struct kmem_cache
*s
;
2499 mutex_lock(&slab_mutex
);
2501 list_for_each_entry(s
, &slab_caches
, list
)
2502 init_cache_random_seq(s
);
2504 mutex_unlock(&slab_mutex
);
2507 /* Get the next entry on the pre-computed freelist randomized */
2508 static void *next_freelist_entry(struct kmem_cache
*s
,
2509 unsigned long *pos
, void *start
,
2510 unsigned long page_limit
,
2511 unsigned long freelist_count
)
2516 * If the target page allocation failed, the number of objects on the
2517 * page might be smaller than the usual size defined by the cache.
2520 idx
= s
->random_seq
[*pos
];
2522 if (*pos
>= freelist_count
)
2524 } while (unlikely(idx
>= page_limit
));
2526 return (char *)start
+ idx
;
2529 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2530 static bool shuffle_freelist(struct kmem_cache
*s
, struct slab
*slab
)
2535 unsigned long idx
, pos
, page_limit
, freelist_count
;
2537 if (slab
->objects
< 2 || !s
->random_seq
)
2540 freelist_count
= oo_objects(s
->oo
);
2541 pos
= get_random_u32_below(freelist_count
);
2543 page_limit
= slab
->objects
* s
->size
;
2544 start
= fixup_red_left(s
, slab_address(slab
));
2546 /* First entry is used as the base of the freelist */
2547 cur
= next_freelist_entry(s
, &pos
, start
, page_limit
, freelist_count
);
2548 cur
= setup_object(s
, cur
);
2549 slab
->freelist
= cur
;
2551 for (idx
= 1; idx
< slab
->objects
; idx
++) {
2552 next
= next_freelist_entry(s
, &pos
, start
, page_limit
,
2554 next
= setup_object(s
, next
);
2555 set_freepointer(s
, cur
, next
);
2558 set_freepointer(s
, cur
, NULL
);
2563 static inline int init_cache_random_seq(struct kmem_cache
*s
)
2567 static inline void init_freelist_randomization(void) { }
2568 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct slab
*slab
)
2572 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2574 static __always_inline
void account_slab(struct slab
*slab
, int order
,
2575 struct kmem_cache
*s
, gfp_t gfp
)
2577 if (memcg_kmem_online() && (s
->flags
& SLAB_ACCOUNT
))
2578 alloc_slab_obj_exts(slab
, s
, gfp
, true);
2580 mod_node_page_state(slab_pgdat(slab
), cache_vmstat_idx(s
),
2581 PAGE_SIZE
<< order
);
2584 static __always_inline
void unaccount_slab(struct slab
*slab
, int order
,
2585 struct kmem_cache
*s
)
2588 * The slab object extensions should now be freed regardless of
2589 * whether mem_alloc_profiling_enabled() or not because profiling
2590 * might have been disabled after slab->obj_exts got allocated.
2592 free_slab_obj_exts(slab
);
2594 mod_node_page_state(slab_pgdat(slab
), cache_vmstat_idx(s
),
2595 -(PAGE_SIZE
<< order
));
2598 static struct slab
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
2601 struct kmem_cache_order_objects oo
= s
->oo
;
2603 void *start
, *p
, *next
;
2607 flags
&= gfp_allowed_mask
;
2609 flags
|= s
->allocflags
;
2612 * Let the initial higher-order allocation fail under memory pressure
2613 * so we fall-back to the minimum order allocation.
2615 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
2616 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
2617 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~__GFP_RECLAIM
;
2619 slab
= alloc_slab_page(alloc_gfp
, node
, oo
);
2620 if (unlikely(!slab
)) {
2624 * Allocation may have failed due to fragmentation.
2625 * Try a lower order alloc if possible
2627 slab
= alloc_slab_page(alloc_gfp
, node
, oo
);
2628 if (unlikely(!slab
))
2630 stat(s
, ORDER_FALLBACK
);
2633 slab
->objects
= oo_objects(oo
);
2636 init_slab_obj_exts(slab
);
2638 account_slab(slab
, oo_order(oo
), s
, flags
);
2640 slab
->slab_cache
= s
;
2642 kasan_poison_slab(slab
);
2644 start
= slab_address(slab
);
2646 setup_slab_debug(s
, slab
, start
);
2648 shuffle
= shuffle_freelist(s
, slab
);
2651 start
= fixup_red_left(s
, start
);
2652 start
= setup_object(s
, start
);
2653 slab
->freelist
= start
;
2654 for (idx
= 0, p
= start
; idx
< slab
->objects
- 1; idx
++) {
2656 next
= setup_object(s
, next
);
2657 set_freepointer(s
, p
, next
);
2660 set_freepointer(s
, p
, NULL
);
2666 static struct slab
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
2668 if (unlikely(flags
& GFP_SLAB_BUG_MASK
))
2669 flags
= kmalloc_fix_flags(flags
);
2671 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2673 return allocate_slab(s
,
2674 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
2677 static void __free_slab(struct kmem_cache
*s
, struct slab
*slab
)
2679 struct folio
*folio
= slab_folio(slab
);
2680 int order
= folio_order(folio
);
2681 int pages
= 1 << order
;
2683 __slab_clear_pfmemalloc(slab
);
2684 folio
->mapping
= NULL
;
2685 __folio_clear_slab(folio
);
2686 mm_account_reclaimed_pages(pages
);
2687 unaccount_slab(slab
, order
, s
);
2688 free_frozen_pages(&folio
->page
, order
);
2691 static void rcu_free_slab(struct rcu_head
*h
)
2693 struct slab
*slab
= container_of(h
, struct slab
, rcu_head
);
2695 __free_slab(slab
->slab_cache
, slab
);
2698 static void free_slab(struct kmem_cache
*s
, struct slab
*slab
)
2700 if (kmem_cache_debug_flags(s
, SLAB_CONSISTENCY_CHECKS
)) {
2703 slab_pad_check(s
, slab
);
2704 for_each_object(p
, s
, slab_address(slab
), slab
->objects
)
2705 check_object(s
, slab
, p
, SLUB_RED_INACTIVE
);
2708 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
2709 call_rcu(&slab
->rcu_head
, rcu_free_slab
);
2711 __free_slab(s
, slab
);
2714 static void discard_slab(struct kmem_cache
*s
, struct slab
*slab
)
2716 dec_slabs_node(s
, slab_nid(slab
), slab
->objects
);
2721 * SLUB reuses PG_workingset bit to keep track of whether it's on
2722 * the per-node partial list.
2724 static inline bool slab_test_node_partial(const struct slab
*slab
)
2726 return folio_test_workingset(slab_folio(slab
));
2729 static inline void slab_set_node_partial(struct slab
*slab
)
2731 set_bit(PG_workingset
, folio_flags(slab_folio(slab
), 0));
2734 static inline void slab_clear_node_partial(struct slab
*slab
)
2736 clear_bit(PG_workingset
, folio_flags(slab_folio(slab
), 0));
2740 * Management of partially allocated slabs.
2743 __add_partial(struct kmem_cache_node
*n
, struct slab
*slab
, int tail
)
2746 if (tail
== DEACTIVATE_TO_TAIL
)
2747 list_add_tail(&slab
->slab_list
, &n
->partial
);
2749 list_add(&slab
->slab_list
, &n
->partial
);
2750 slab_set_node_partial(slab
);
2753 static inline void add_partial(struct kmem_cache_node
*n
,
2754 struct slab
*slab
, int tail
)
2756 lockdep_assert_held(&n
->list_lock
);
2757 __add_partial(n
, slab
, tail
);
2760 static inline void remove_partial(struct kmem_cache_node
*n
,
2763 lockdep_assert_held(&n
->list_lock
);
2764 list_del(&slab
->slab_list
);
2765 slab_clear_node_partial(slab
);
2770 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2771 * slab from the n->partial list. Remove only a single object from the slab, do
2772 * the alloc_debug_processing() checks and leave the slab on the list, or move
2773 * it to full list if it was the last free object.
2775 static void *alloc_single_from_partial(struct kmem_cache
*s
,
2776 struct kmem_cache_node
*n
, struct slab
*slab
, int orig_size
)
2780 lockdep_assert_held(&n
->list_lock
);
2782 object
= slab
->freelist
;
2783 slab
->freelist
= get_freepointer(s
, object
);
2786 if (!alloc_debug_processing(s
, slab
, object
, orig_size
)) {
2787 if (folio_test_slab(slab_folio(slab
)))
2788 remove_partial(n
, slab
);
2792 if (slab
->inuse
== slab
->objects
) {
2793 remove_partial(n
, slab
);
2794 add_full(s
, n
, slab
);
2801 * Called only for kmem_cache_debug() caches to allocate from a freshly
2802 * allocated slab. Allocate a single object instead of whole freelist
2803 * and put the slab to the partial (or full) list.
2805 static void *alloc_single_from_new_slab(struct kmem_cache
*s
,
2806 struct slab
*slab
, int orig_size
)
2808 int nid
= slab_nid(slab
);
2809 struct kmem_cache_node
*n
= get_node(s
, nid
);
2810 unsigned long flags
;
2814 object
= slab
->freelist
;
2815 slab
->freelist
= get_freepointer(s
, object
);
2818 if (!alloc_debug_processing(s
, slab
, object
, orig_size
))
2820 * It's not really expected that this would fail on a
2821 * freshly allocated slab, but a concurrent memory
2822 * corruption in theory could cause that.
2826 spin_lock_irqsave(&n
->list_lock
, flags
);
2828 if (slab
->inuse
== slab
->objects
)
2829 add_full(s
, n
, slab
);
2831 add_partial(n
, slab
, DEACTIVATE_TO_HEAD
);
2833 inc_slabs_node(s
, nid
, slab
->objects
);
2834 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2839 #ifdef CONFIG_SLUB_CPU_PARTIAL
2840 static void put_cpu_partial(struct kmem_cache
*s
, struct slab
*slab
, int drain
);
2842 static inline void put_cpu_partial(struct kmem_cache
*s
, struct slab
*slab
,
2845 static inline bool pfmemalloc_match(struct slab
*slab
, gfp_t gfpflags
);
2848 * Try to allocate a partial slab from a specific node.
2850 static struct slab
*get_partial_node(struct kmem_cache
*s
,
2851 struct kmem_cache_node
*n
,
2852 struct partial_context
*pc
)
2854 struct slab
*slab
, *slab2
, *partial
= NULL
;
2855 unsigned long flags
;
2856 unsigned int partial_slabs
= 0;
2859 * Racy check. If we mistakenly see no partial slabs then we
2860 * just allocate an empty slab. If we mistakenly try to get a
2861 * partial slab and there is none available then get_partial()
2864 if (!n
|| !n
->nr_partial
)
2867 spin_lock_irqsave(&n
->list_lock
, flags
);
2868 list_for_each_entry_safe(slab
, slab2
, &n
->partial
, slab_list
) {
2869 if (!pfmemalloc_match(slab
, pc
->flags
))
2872 if (IS_ENABLED(CONFIG_SLUB_TINY
) || kmem_cache_debug(s
)) {
2873 void *object
= alloc_single_from_partial(s
, n
, slab
,
2877 pc
->object
= object
;
2883 remove_partial(n
, slab
);
2887 stat(s
, ALLOC_FROM_PARTIAL
);
2889 if ((slub_get_cpu_partial(s
) == 0)) {
2893 put_cpu_partial(s
, slab
, 0);
2894 stat(s
, CPU_PARTIAL_NODE
);
2896 if (++partial_slabs
> slub_get_cpu_partial(s
) / 2) {
2901 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2906 * Get a slab from somewhere. Search in increasing NUMA distances.
2908 static struct slab
*get_any_partial(struct kmem_cache
*s
,
2909 struct partial_context
*pc
)
2912 struct zonelist
*zonelist
;
2915 enum zone_type highest_zoneidx
= gfp_zone(pc
->flags
);
2917 unsigned int cpuset_mems_cookie
;
2920 * The defrag ratio allows a configuration of the tradeoffs between
2921 * inter node defragmentation and node local allocations. A lower
2922 * defrag_ratio increases the tendency to do local allocations
2923 * instead of attempting to obtain partial slabs from other nodes.
2925 * If the defrag_ratio is set to 0 then kmalloc() always
2926 * returns node local objects. If the ratio is higher then kmalloc()
2927 * may return off node objects because partial slabs are obtained
2928 * from other nodes and filled up.
2930 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2931 * (which makes defrag_ratio = 1000) then every (well almost)
2932 * allocation will first attempt to defrag slab caches on other nodes.
2933 * This means scanning over all nodes to look for partial slabs which
2934 * may be expensive if we do it every time we are trying to find a slab
2935 * with available objects.
2937 if (!s
->remote_node_defrag_ratio
||
2938 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
2942 cpuset_mems_cookie
= read_mems_allowed_begin();
2943 zonelist
= node_zonelist(mempolicy_slab_node(), pc
->flags
);
2944 for_each_zone_zonelist(zone
, z
, zonelist
, highest_zoneidx
) {
2945 struct kmem_cache_node
*n
;
2947 n
= get_node(s
, zone_to_nid(zone
));
2949 if (n
&& cpuset_zone_allowed(zone
, pc
->flags
) &&
2950 n
->nr_partial
> s
->min_partial
) {
2951 slab
= get_partial_node(s
, n
, pc
);
2954 * Don't check read_mems_allowed_retry()
2955 * here - if mems_allowed was updated in
2956 * parallel, that was a harmless race
2957 * between allocation and the cpuset
2964 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
2965 #endif /* CONFIG_NUMA */
2970 * Get a partial slab, lock it and return it.
2972 static struct slab
*get_partial(struct kmem_cache
*s
, int node
,
2973 struct partial_context
*pc
)
2976 int searchnode
= node
;
2978 if (node
== NUMA_NO_NODE
)
2979 searchnode
= numa_mem_id();
2981 slab
= get_partial_node(s
, get_node(s
, searchnode
), pc
);
2982 if (slab
|| (node
!= NUMA_NO_NODE
&& (pc
->flags
& __GFP_THISNODE
)))
2985 return get_any_partial(s
, pc
);
2988 #ifndef CONFIG_SLUB_TINY
2990 #ifdef CONFIG_PREEMPTION
2992 * Calculate the next globally unique transaction for disambiguation
2993 * during cmpxchg. The transactions start with the cpu number and are then
2994 * incremented by CONFIG_NR_CPUS.
2996 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2999 * No preemption supported therefore also no need to check for
3003 #endif /* CONFIG_PREEMPTION */
3005 static inline unsigned long next_tid(unsigned long tid
)
3007 return tid
+ TID_STEP
;
3010 #ifdef SLUB_DEBUG_CMPXCHG
3011 static inline unsigned int tid_to_cpu(unsigned long tid
)
3013 return tid
% TID_STEP
;
3016 static inline unsigned long tid_to_event(unsigned long tid
)
3018 return tid
/ TID_STEP
;
3022 static inline unsigned int init_tid(int cpu
)
3027 static inline void note_cmpxchg_failure(const char *n
,
3028 const struct kmem_cache
*s
, unsigned long tid
)
3030 #ifdef SLUB_DEBUG_CMPXCHG
3031 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
3033 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
3035 #ifdef CONFIG_PREEMPTION
3036 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
3037 pr_warn("due to cpu change %d -> %d\n",
3038 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
3041 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
3042 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3043 tid_to_event(tid
), tid_to_event(actual_tid
));
3045 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3046 actual_tid
, tid
, next_tid(tid
));
3048 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
3051 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
3054 struct kmem_cache_cpu
*c
;
3056 for_each_possible_cpu(cpu
) {
3057 c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3058 local_lock_init(&c
->lock
);
3059 c
->tid
= init_tid(cpu
);
3064 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3065 * unfreezes the slabs and puts it on the proper list.
3066 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3069 static void deactivate_slab(struct kmem_cache
*s
, struct slab
*slab
,
3072 struct kmem_cache_node
*n
= get_node(s
, slab_nid(slab
));
3074 void *nextfree
, *freelist_iter
, *freelist_tail
;
3075 int tail
= DEACTIVATE_TO_HEAD
;
3076 unsigned long flags
= 0;
3080 if (READ_ONCE(slab
->freelist
)) {
3081 stat(s
, DEACTIVATE_REMOTE_FREES
);
3082 tail
= DEACTIVATE_TO_TAIL
;
3086 * Stage one: Count the objects on cpu's freelist as free_delta and
3087 * remember the last object in freelist_tail for later splicing.
3089 freelist_tail
= NULL
;
3090 freelist_iter
= freelist
;
3091 while (freelist_iter
) {
3092 nextfree
= get_freepointer(s
, freelist_iter
);
3095 * If 'nextfree' is invalid, it is possible that the object at
3096 * 'freelist_iter' is already corrupted. So isolate all objects
3097 * starting at 'freelist_iter' by skipping them.
3099 if (freelist_corrupted(s
, slab
, &freelist_iter
, nextfree
))
3102 freelist_tail
= freelist_iter
;
3105 freelist_iter
= nextfree
;
3109 * Stage two: Unfreeze the slab while splicing the per-cpu
3110 * freelist to the head of slab's freelist.
3113 old
.freelist
= READ_ONCE(slab
->freelist
);
3114 old
.counters
= READ_ONCE(slab
->counters
);
3115 VM_BUG_ON(!old
.frozen
);
3117 /* Determine target state of the slab */
3118 new.counters
= old
.counters
;
3120 if (freelist_tail
) {
3121 new.inuse
-= free_delta
;
3122 set_freepointer(s
, freelist_tail
, old
.freelist
);
3123 new.freelist
= freelist
;
3125 new.freelist
= old
.freelist
;
3127 } while (!slab_update_freelist(s
, slab
,
3128 old
.freelist
, old
.counters
,
3129 new.freelist
, new.counters
,
3130 "unfreezing slab"));
3133 * Stage three: Manipulate the slab list based on the updated state.
3135 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
) {
3136 stat(s
, DEACTIVATE_EMPTY
);
3137 discard_slab(s
, slab
);
3139 } else if (new.freelist
) {
3140 spin_lock_irqsave(&n
->list_lock
, flags
);
3141 add_partial(n
, slab
, tail
);
3142 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3145 stat(s
, DEACTIVATE_FULL
);
3149 #ifdef CONFIG_SLUB_CPU_PARTIAL
3150 static void __put_partials(struct kmem_cache
*s
, struct slab
*partial_slab
)
3152 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
3153 struct slab
*slab
, *slab_to_discard
= NULL
;
3154 unsigned long flags
= 0;
3156 while (partial_slab
) {
3157 slab
= partial_slab
;
3158 partial_slab
= slab
->next
;
3160 n2
= get_node(s
, slab_nid(slab
));
3163 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3166 spin_lock_irqsave(&n
->list_lock
, flags
);
3169 if (unlikely(!slab
->inuse
&& n
->nr_partial
>= s
->min_partial
)) {
3170 slab
->next
= slab_to_discard
;
3171 slab_to_discard
= slab
;
3173 add_partial(n
, slab
, DEACTIVATE_TO_TAIL
);
3174 stat(s
, FREE_ADD_PARTIAL
);
3179 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3181 while (slab_to_discard
) {
3182 slab
= slab_to_discard
;
3183 slab_to_discard
= slab_to_discard
->next
;
3185 stat(s
, DEACTIVATE_EMPTY
);
3186 discard_slab(s
, slab
);
3192 * Put all the cpu partial slabs to the node partial list.
3194 static void put_partials(struct kmem_cache
*s
)
3196 struct slab
*partial_slab
;
3197 unsigned long flags
;
3199 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3200 partial_slab
= this_cpu_read(s
->cpu_slab
->partial
);
3201 this_cpu_write(s
->cpu_slab
->partial
, NULL
);
3202 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3205 __put_partials(s
, partial_slab
);
3208 static void put_partials_cpu(struct kmem_cache
*s
,
3209 struct kmem_cache_cpu
*c
)
3211 struct slab
*partial_slab
;
3213 partial_slab
= slub_percpu_partial(c
);
3217 __put_partials(s
, partial_slab
);
3221 * Put a slab into a partial slab slot if available.
3223 * If we did not find a slot then simply move all the partials to the
3224 * per node partial list.
3226 static void put_cpu_partial(struct kmem_cache
*s
, struct slab
*slab
, int drain
)
3228 struct slab
*oldslab
;
3229 struct slab
*slab_to_put
= NULL
;
3230 unsigned long flags
;
3233 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3235 oldslab
= this_cpu_read(s
->cpu_slab
->partial
);
3238 if (drain
&& oldslab
->slabs
>= s
->cpu_partial_slabs
) {
3240 * Partial array is full. Move the existing set to the
3241 * per node partial list. Postpone the actual unfreezing
3242 * outside of the critical section.
3244 slab_to_put
= oldslab
;
3247 slabs
= oldslab
->slabs
;
3253 slab
->slabs
= slabs
;
3254 slab
->next
= oldslab
;
3256 this_cpu_write(s
->cpu_slab
->partial
, slab
);
3258 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3261 __put_partials(s
, slab_to_put
);
3262 stat(s
, CPU_PARTIAL_DRAIN
);
3266 #else /* CONFIG_SLUB_CPU_PARTIAL */
3268 static inline void put_partials(struct kmem_cache
*s
) { }
3269 static inline void put_partials_cpu(struct kmem_cache
*s
,
3270 struct kmem_cache_cpu
*c
) { }
3272 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3274 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
3276 unsigned long flags
;
3280 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3283 freelist
= c
->freelist
;
3287 c
->tid
= next_tid(c
->tid
);
3289 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3292 deactivate_slab(s
, slab
, freelist
);
3293 stat(s
, CPUSLAB_FLUSH
);
3297 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
3299 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3300 void *freelist
= c
->freelist
;
3301 struct slab
*slab
= c
->slab
;
3305 c
->tid
= next_tid(c
->tid
);
3308 deactivate_slab(s
, slab
, freelist
);
3309 stat(s
, CPUSLAB_FLUSH
);
3312 put_partials_cpu(s
, c
);
3315 struct slub_flush_work
{
3316 struct work_struct work
;
3317 struct kmem_cache
*s
;
3324 * Called from CPU work handler with migration disabled.
3326 static void flush_cpu_slab(struct work_struct
*w
)
3328 struct kmem_cache
*s
;
3329 struct kmem_cache_cpu
*c
;
3330 struct slub_flush_work
*sfw
;
3332 sfw
= container_of(w
, struct slub_flush_work
, work
);
3335 c
= this_cpu_ptr(s
->cpu_slab
);
3343 static bool has_cpu_slab(int cpu
, struct kmem_cache
*s
)
3345 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3347 return c
->slab
|| slub_percpu_partial(c
);
3350 static DEFINE_MUTEX(flush_lock
);
3351 static DEFINE_PER_CPU(struct slub_flush_work
, slub_flush
);
3353 static void flush_all_cpus_locked(struct kmem_cache
*s
)
3355 struct slub_flush_work
*sfw
;
3358 lockdep_assert_cpus_held();
3359 mutex_lock(&flush_lock
);
3361 for_each_online_cpu(cpu
) {
3362 sfw
= &per_cpu(slub_flush
, cpu
);
3363 if (!has_cpu_slab(cpu
, s
)) {
3367 INIT_WORK(&sfw
->work
, flush_cpu_slab
);
3370 queue_work_on(cpu
, flushwq
, &sfw
->work
);
3373 for_each_online_cpu(cpu
) {
3374 sfw
= &per_cpu(slub_flush
, cpu
);
3377 flush_work(&sfw
->work
);
3380 mutex_unlock(&flush_lock
);
3383 static void flush_all(struct kmem_cache
*s
)
3386 flush_all_cpus_locked(s
);
3391 * Use the cpu notifier to insure that the cpu slabs are flushed when
3394 static int slub_cpu_dead(unsigned int cpu
)
3396 struct kmem_cache
*s
;
3398 mutex_lock(&slab_mutex
);
3399 list_for_each_entry(s
, &slab_caches
, list
)
3400 __flush_cpu_slab(s
, cpu
);
3401 mutex_unlock(&slab_mutex
);
3405 #else /* CONFIG_SLUB_TINY */
3406 static inline void flush_all_cpus_locked(struct kmem_cache
*s
) { }
3407 static inline void flush_all(struct kmem_cache
*s
) { }
3408 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
) { }
3409 static inline int slub_cpu_dead(unsigned int cpu
) { return 0; }
3410 #endif /* CONFIG_SLUB_TINY */
3413 * Check if the objects in a per cpu structure fit numa
3414 * locality expectations.
3416 static inline int node_match(struct slab
*slab
, int node
)
3419 if (node
!= NUMA_NO_NODE
&& slab_nid(slab
) != node
)
3425 #ifdef CONFIG_SLUB_DEBUG
3426 static int count_free(struct slab
*slab
)
3428 return slab
->objects
- slab
->inuse
;
3431 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
3433 return atomic_long_read(&n
->total_objects
);
3436 /* Supports checking bulk free of a constructed freelist */
3437 static inline bool free_debug_processing(struct kmem_cache
*s
,
3438 struct slab
*slab
, void *head
, void *tail
, int *bulk_cnt
,
3439 unsigned long addr
, depot_stack_handle_t handle
)
3441 bool checks_ok
= false;
3442 void *object
= head
;
3445 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
3446 if (!check_slab(s
, slab
))
3450 if (slab
->inuse
< *bulk_cnt
) {
3451 slab_err(s
, slab
, "Slab has %d allocated objects but %d are to be freed\n",
3452 slab
->inuse
, *bulk_cnt
);
3458 if (++cnt
> *bulk_cnt
)
3461 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
3462 if (!free_consistency_checks(s
, slab
, object
, addr
))
3466 if (s
->flags
& SLAB_STORE_USER
)
3467 set_track_update(s
, object
, TRACK_FREE
, addr
, handle
);
3468 trace(s
, slab
, object
, 0);
3469 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3470 init_object(s
, object
, SLUB_RED_INACTIVE
);
3472 /* Reached end of constructed freelist yet? */
3473 if (object
!= tail
) {
3474 object
= get_freepointer(s
, object
);
3480 if (cnt
!= *bulk_cnt
) {
3481 slab_err(s
, slab
, "Bulk free expected %d objects but found %d\n",
3489 slab_fix(s
, "Object at 0x%p not freed", object
);
3493 #endif /* CONFIG_SLUB_DEBUG */
3495 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3496 static unsigned long count_partial(struct kmem_cache_node
*n
,
3497 int (*get_count
)(struct slab
*))
3499 unsigned long flags
;
3500 unsigned long x
= 0;
3503 spin_lock_irqsave(&n
->list_lock
, flags
);
3504 list_for_each_entry(slab
, &n
->partial
, slab_list
)
3505 x
+= get_count(slab
);
3506 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3509 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3511 #ifdef CONFIG_SLUB_DEBUG
3512 #define MAX_PARTIAL_TO_SCAN 10000
3514 static unsigned long count_partial_free_approx(struct kmem_cache_node
*n
)
3516 unsigned long flags
;
3517 unsigned long x
= 0;
3520 spin_lock_irqsave(&n
->list_lock
, flags
);
3521 if (n
->nr_partial
<= MAX_PARTIAL_TO_SCAN
) {
3522 list_for_each_entry(slab
, &n
->partial
, slab_list
)
3523 x
+= slab
->objects
- slab
->inuse
;
3526 * For a long list, approximate the total count of objects in
3527 * it to meet the limit on the number of slabs to scan.
3528 * Scan from both the list's head and tail for better accuracy.
3530 unsigned long scanned
= 0;
3532 list_for_each_entry(slab
, &n
->partial
, slab_list
) {
3533 x
+= slab
->objects
- slab
->inuse
;
3534 if (++scanned
== MAX_PARTIAL_TO_SCAN
/ 2)
3537 list_for_each_entry_reverse(slab
, &n
->partial
, slab_list
) {
3538 x
+= slab
->objects
- slab
->inuse
;
3539 if (++scanned
== MAX_PARTIAL_TO_SCAN
)
3542 x
= mult_frac(x
, n
->nr_partial
, scanned
);
3543 x
= min(x
, node_nr_objs(n
));
3545 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3549 static noinline
void
3550 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
3552 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3553 DEFAULT_RATELIMIT_BURST
);
3554 int cpu
= raw_smp_processor_id();
3556 struct kmem_cache_node
*n
;
3558 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
3561 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3562 cpu
, cpu_to_node(cpu
), nid
, gfpflags
, &gfpflags
);
3563 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3564 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
3567 if (oo_order(s
->min
) > get_order(s
->object_size
))
3568 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3571 for_each_kmem_cache_node(s
, node
, n
) {
3572 unsigned long nr_slabs
;
3573 unsigned long nr_objs
;
3574 unsigned long nr_free
;
3576 nr_free
= count_partial_free_approx(n
);
3577 nr_slabs
= node_nr_slabs(n
);
3578 nr_objs
= node_nr_objs(n
);
3580 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3581 node
, nr_slabs
, nr_objs
, nr_free
);
3584 #else /* CONFIG_SLUB_DEBUG */
3586 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
) { }
3589 static inline bool pfmemalloc_match(struct slab
*slab
, gfp_t gfpflags
)
3591 if (unlikely(slab_test_pfmemalloc(slab
)))
3592 return gfp_pfmemalloc_allowed(gfpflags
);
3597 #ifndef CONFIG_SLUB_TINY
3599 __update_cpu_freelist_fast(struct kmem_cache
*s
,
3600 void *freelist_old
, void *freelist_new
,
3603 freelist_aba_t old
= { .freelist
= freelist_old
, .counter
= tid
};
3604 freelist_aba_t
new = { .freelist
= freelist_new
, .counter
= next_tid(tid
) };
3606 return this_cpu_try_cmpxchg_freelist(s
->cpu_slab
->freelist_tid
.full
,
3607 &old
.full
, new.full
);
3611 * Check the slab->freelist and either transfer the freelist to the
3612 * per cpu freelist or deactivate the slab.
3614 * The slab is still frozen if the return value is not NULL.
3616 * If this function returns NULL then the slab has been unfrozen.
3618 static inline void *get_freelist(struct kmem_cache
*s
, struct slab
*slab
)
3621 unsigned long counters
;
3624 lockdep_assert_held(this_cpu_ptr(&s
->cpu_slab
->lock
));
3627 freelist
= slab
->freelist
;
3628 counters
= slab
->counters
;
3630 new.counters
= counters
;
3632 new.inuse
= slab
->objects
;
3633 new.frozen
= freelist
!= NULL
;
3635 } while (!__slab_update_freelist(s
, slab
,
3644 * Freeze the partial slab and return the pointer to the freelist.
3646 static inline void *freeze_slab(struct kmem_cache
*s
, struct slab
*slab
)
3649 unsigned long counters
;
3653 freelist
= slab
->freelist
;
3654 counters
= slab
->counters
;
3656 new.counters
= counters
;
3657 VM_BUG_ON(new.frozen
);
3659 new.inuse
= slab
->objects
;
3662 } while (!slab_update_freelist(s
, slab
,
3671 * Slow path. The lockless freelist is empty or we need to perform
3674 * Processing is still very fast if new objects have been freed to the
3675 * regular freelist. In that case we simply take over the regular freelist
3676 * as the lockless freelist and zap the regular freelist.
3678 * If that is not working then we fall back to the partial lists. We take the
3679 * first element of the freelist as the object to allocate now and move the
3680 * rest of the freelist to the lockless freelist.
3682 * And if we were unable to get a new slab from the partial slab lists then
3683 * we need to allocate a new slab. This is the slowest path since it involves
3684 * a call to the page allocator and the setup of a new slab.
3686 * Version of __slab_alloc to use when we know that preemption is
3687 * already disabled (which is the case for bulk allocation).
3689 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
3690 unsigned long addr
, struct kmem_cache_cpu
*c
, unsigned int orig_size
)
3694 unsigned long flags
;
3695 struct partial_context pc
;
3696 bool try_thisnode
= true;
3698 stat(s
, ALLOC_SLOWPATH
);
3702 slab
= READ_ONCE(c
->slab
);
3705 * if the node is not online or has no normal memory, just
3706 * ignore the node constraint
3708 if (unlikely(node
!= NUMA_NO_NODE
&&
3709 !node_isset(node
, slab_nodes
)))
3710 node
= NUMA_NO_NODE
;
3714 if (unlikely(!node_match(slab
, node
))) {
3716 * same as above but node_match() being false already
3717 * implies node != NUMA_NO_NODE
3719 if (!node_isset(node
, slab_nodes
)) {
3720 node
= NUMA_NO_NODE
;
3722 stat(s
, ALLOC_NODE_MISMATCH
);
3723 goto deactivate_slab
;
3728 * By rights, we should be searching for a slab page that was
3729 * PFMEMALLOC but right now, we are losing the pfmemalloc
3730 * information when the page leaves the per-cpu allocator
3732 if (unlikely(!pfmemalloc_match(slab
, gfpflags
)))
3733 goto deactivate_slab
;
3735 /* must check again c->slab in case we got preempted and it changed */
3736 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3737 if (unlikely(slab
!= c
->slab
)) {
3738 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3741 freelist
= c
->freelist
;
3745 freelist
= get_freelist(s
, slab
);
3749 c
->tid
= next_tid(c
->tid
);
3750 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3751 stat(s
, DEACTIVATE_BYPASS
);
3755 stat(s
, ALLOC_REFILL
);
3759 lockdep_assert_held(this_cpu_ptr(&s
->cpu_slab
->lock
));
3762 * freelist is pointing to the list of objects to be used.
3763 * slab is pointing to the slab from which the objects are obtained.
3764 * That slab must be frozen for per cpu allocations to work.
3766 VM_BUG_ON(!c
->slab
->frozen
);
3767 c
->freelist
= get_freepointer(s
, freelist
);
3768 c
->tid
= next_tid(c
->tid
);
3769 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3774 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3775 if (slab
!= c
->slab
) {
3776 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3779 freelist
= c
->freelist
;
3782 c
->tid
= next_tid(c
->tid
);
3783 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3784 deactivate_slab(s
, slab
, freelist
);
3788 #ifdef CONFIG_SLUB_CPU_PARTIAL
3789 while (slub_percpu_partial(c
)) {
3790 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3791 if (unlikely(c
->slab
)) {
3792 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3795 if (unlikely(!slub_percpu_partial(c
))) {
3796 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3797 /* we were preempted and partial list got empty */
3801 slab
= slub_percpu_partial(c
);
3802 slub_set_percpu_partial(c
, slab
);
3804 if (likely(node_match(slab
, node
) &&
3805 pfmemalloc_match(slab
, gfpflags
))) {
3807 freelist
= get_freelist(s
, slab
);
3808 VM_BUG_ON(!freelist
);
3809 stat(s
, CPU_PARTIAL_ALLOC
);
3813 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3816 __put_partials(s
, slab
);
3822 pc
.flags
= gfpflags
;
3824 * When a preferred node is indicated but no __GFP_THISNODE
3826 * 1) try to get a partial slab from target node only by having
3827 * __GFP_THISNODE in pc.flags for get_partial()
3828 * 2) if 1) failed, try to allocate a new slab from target node with
3829 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3830 * 3) if 2) failed, retry with original gfpflags which will allow
3831 * get_partial() try partial lists of other nodes before potentially
3832 * allocating new page from other nodes
3834 if (unlikely(node
!= NUMA_NO_NODE
&& !(gfpflags
& __GFP_THISNODE
)
3836 pc
.flags
= GFP_NOWAIT
| __GFP_THISNODE
;
3838 pc
.orig_size
= orig_size
;
3839 slab
= get_partial(s
, node
, &pc
);
3841 if (kmem_cache_debug(s
)) {
3842 freelist
= pc
.object
;
3844 * For debug caches here we had to go through
3845 * alloc_single_from_partial() so just store the
3846 * tracking info and return the object.
3848 if (s
->flags
& SLAB_STORE_USER
)
3849 set_track(s
, freelist
, TRACK_ALLOC
, addr
);
3854 freelist
= freeze_slab(s
, slab
);
3855 goto retry_load_slab
;
3858 slub_put_cpu_ptr(s
->cpu_slab
);
3859 slab
= new_slab(s
, pc
.flags
, node
);
3860 c
= slub_get_cpu_ptr(s
->cpu_slab
);
3862 if (unlikely(!slab
)) {
3863 if (node
!= NUMA_NO_NODE
&& !(gfpflags
& __GFP_THISNODE
)
3865 try_thisnode
= false;
3868 slab_out_of_memory(s
, gfpflags
, node
);
3872 stat(s
, ALLOC_SLAB
);
3874 if (kmem_cache_debug(s
)) {
3875 freelist
= alloc_single_from_new_slab(s
, slab
, orig_size
);
3877 if (unlikely(!freelist
))
3880 if (s
->flags
& SLAB_STORE_USER
)
3881 set_track(s
, freelist
, TRACK_ALLOC
, addr
);
3887 * No other reference to the slab yet so we can
3888 * muck around with it freely without cmpxchg
3890 freelist
= slab
->freelist
;
3891 slab
->freelist
= NULL
;
3892 slab
->inuse
= slab
->objects
;
3895 inc_slabs_node(s
, slab_nid(slab
), slab
->objects
);
3897 if (unlikely(!pfmemalloc_match(slab
, gfpflags
))) {
3899 * For !pfmemalloc_match() case we don't load freelist so that
3900 * we don't make further mismatched allocations easier.
3902 deactivate_slab(s
, slab
, get_freepointer(s
, freelist
));
3908 local_lock_irqsave(&s
->cpu_slab
->lock
, flags
);
3909 if (unlikely(c
->slab
)) {
3910 void *flush_freelist
= c
->freelist
;
3911 struct slab
*flush_slab
= c
->slab
;
3915 c
->tid
= next_tid(c
->tid
);
3917 local_unlock_irqrestore(&s
->cpu_slab
->lock
, flags
);
3919 deactivate_slab(s
, flush_slab
, flush_freelist
);
3921 stat(s
, CPUSLAB_FLUSH
);
3923 goto retry_load_slab
;
3931 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3932 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3935 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
3936 unsigned long addr
, struct kmem_cache_cpu
*c
, unsigned int orig_size
)
3940 #ifdef CONFIG_PREEMPT_COUNT
3942 * We may have been preempted and rescheduled on a different
3943 * cpu before disabling preemption. Need to reload cpu area
3946 c
= slub_get_cpu_ptr(s
->cpu_slab
);
3949 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
, orig_size
);
3950 #ifdef CONFIG_PREEMPT_COUNT
3951 slub_put_cpu_ptr(s
->cpu_slab
);
3956 static __always_inline
void *__slab_alloc_node(struct kmem_cache
*s
,
3957 gfp_t gfpflags
, int node
, unsigned long addr
, size_t orig_size
)
3959 struct kmem_cache_cpu
*c
;
3966 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3967 * enabled. We may switch back and forth between cpus while
3968 * reading from one cpu area. That does not matter as long
3969 * as we end up on the original cpu again when doing the cmpxchg.
3971 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3972 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3973 * the tid. If we are preempted and switched to another cpu between the
3974 * two reads, it's OK as the two are still associated with the same cpu
3975 * and cmpxchg later will validate the cpu.
3977 c
= raw_cpu_ptr(s
->cpu_slab
);
3978 tid
= READ_ONCE(c
->tid
);
3981 * Irqless object alloc/free algorithm used here depends on sequence
3982 * of fetching cpu_slab's data. tid should be fetched before anything
3983 * on c to guarantee that object and slab associated with previous tid
3984 * won't be used with current tid. If we fetch tid first, object and
3985 * slab could be one associated with next tid and our alloc/free
3986 * request will be failed. In this case, we will retry. So, no problem.
3991 * The transaction ids are globally unique per cpu and per operation on
3992 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3993 * occurs on the right processor and that there was no operation on the
3994 * linked list in between.
3997 object
= c
->freelist
;
4001 if (static_branch_unlikely(&strict_numa
) &&
4002 node
== NUMA_NO_NODE
) {
4004 struct mempolicy
*mpol
= current
->mempolicy
;
4008 * Special BIND rule support. If existing slab
4009 * is in permitted set then do not redirect
4010 * to a particular node.
4011 * Otherwise we apply the memory policy to get
4012 * the node we need to allocate on.
4014 if (mpol
->mode
!= MPOL_BIND
|| !slab
||
4015 !node_isset(slab_nid(slab
), mpol
->nodes
))
4017 node
= mempolicy_slab_node();
4022 if (!USE_LOCKLESS_FAST_PATH() ||
4023 unlikely(!object
|| !slab
|| !node_match(slab
, node
))) {
4024 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
, orig_size
);
4026 void *next_object
= get_freepointer_safe(s
, object
);
4029 * The cmpxchg will only match if there was no additional
4030 * operation and if we are on the right processor.
4032 * The cmpxchg does the following atomically (without lock
4034 * 1. Relocate first pointer to the current per cpu area.
4035 * 2. Verify that tid and freelist have not been changed
4036 * 3. If they were not changed replace tid and freelist
4038 * Since this is without lock semantics the protection is only
4039 * against code executing on this cpu *not* from access by
4042 if (unlikely(!__update_cpu_freelist_fast(s
, object
, next_object
, tid
))) {
4043 note_cmpxchg_failure("slab_alloc", s
, tid
);
4046 prefetch_freepointer(s
, next_object
);
4047 stat(s
, ALLOC_FASTPATH
);
4052 #else /* CONFIG_SLUB_TINY */
4053 static void *__slab_alloc_node(struct kmem_cache
*s
,
4054 gfp_t gfpflags
, int node
, unsigned long addr
, size_t orig_size
)
4056 struct partial_context pc
;
4060 pc
.flags
= gfpflags
;
4061 pc
.orig_size
= orig_size
;
4062 slab
= get_partial(s
, node
, &pc
);
4067 slab
= new_slab(s
, gfpflags
, node
);
4068 if (unlikely(!slab
)) {
4069 slab_out_of_memory(s
, gfpflags
, node
);
4073 object
= alloc_single_from_new_slab(s
, slab
, orig_size
);
4077 #endif /* CONFIG_SLUB_TINY */
4080 * If the object has been wiped upon free, make sure it's fully initialized by
4081 * zeroing out freelist pointer.
4083 * Note that we also wipe custom freelist pointers.
4085 static __always_inline
void maybe_wipe_obj_freeptr(struct kmem_cache
*s
,
4088 if (unlikely(slab_want_init_on_free(s
)) && obj
&&
4089 !freeptr_outside_object(s
))
4090 memset((void *)((char *)kasan_reset_tag(obj
) + s
->offset
),
4094 static __fastpath_inline
4095 struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
4097 flags
&= gfp_allowed_mask
;
4101 if (unlikely(should_failslab(s
, flags
)))
4107 static __fastpath_inline
4108 bool slab_post_alloc_hook(struct kmem_cache
*s
, struct list_lru
*lru
,
4109 gfp_t flags
, size_t size
, void **p
, bool init
,
4110 unsigned int orig_size
)
4112 unsigned int zero_size
= s
->object_size
;
4113 bool kasan_init
= init
;
4115 gfp_t init_flags
= flags
& gfp_allowed_mask
;
4118 * For kmalloc object, the allocated memory size(object_size) is likely
4119 * larger than the requested size(orig_size). If redzone check is
4120 * enabled for the extra space, don't zero it, as it will be redzoned
4121 * soon. The redzone operation for this extra space could be seen as a
4122 * replacement of current poisoning under certain debug option, and
4123 * won't break other sanity checks.
4125 if (kmem_cache_debug_flags(s
, SLAB_STORE_USER
| SLAB_RED_ZONE
) &&
4126 (s
->flags
& SLAB_KMALLOC
))
4127 zero_size
= orig_size
;
4130 * When slab_debug is enabled, avoid memory initialization integrated
4131 * into KASAN and instead zero out the memory via the memset below with
4132 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4133 * cause false-positive reports. This does not lead to a performance
4134 * penalty on production builds, as slab_debug is not intended to be
4137 if (__slub_debug_enabled())
4141 * As memory initialization might be integrated into KASAN,
4142 * kasan_slab_alloc and initialization memset must be
4143 * kept together to avoid discrepancies in behavior.
4145 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4147 for (i
= 0; i
< size
; i
++) {
4148 p
[i
] = kasan_slab_alloc(s
, p
[i
], init_flags
, kasan_init
);
4149 if (p
[i
] && init
&& (!kasan_init
||
4150 !kasan_has_integrated_init()))
4151 memset(p
[i
], 0, zero_size
);
4152 kmemleak_alloc_recursive(p
[i
], s
->object_size
, 1,
4153 s
->flags
, init_flags
);
4154 kmsan_slab_alloc(s
, p
[i
], init_flags
);
4155 alloc_tagging_slab_alloc_hook(s
, p
[i
], flags
);
4158 return memcg_slab_post_alloc_hook(s
, lru
, flags
, size
, p
);
4162 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4163 * have the fastpath folded into their functions. So no function call
4164 * overhead for requests that can be satisfied on the fastpath.
4166 * The fastpath works by first checking if the lockless freelist can be used.
4167 * If not then __slab_alloc is called for slow processing.
4169 * Otherwise we can simply pick the next object from the lockless free list.
4171 static __fastpath_inline
void *slab_alloc_node(struct kmem_cache
*s
, struct list_lru
*lru
,
4172 gfp_t gfpflags
, int node
, unsigned long addr
, size_t orig_size
)
4177 s
= slab_pre_alloc_hook(s
, gfpflags
);
4181 object
= kfence_alloc(s
, orig_size
, gfpflags
);
4182 if (unlikely(object
))
4185 object
= __slab_alloc_node(s
, gfpflags
, node
, addr
, orig_size
);
4187 maybe_wipe_obj_freeptr(s
, object
);
4188 init
= slab_want_init_on_alloc(gfpflags
, s
);
4192 * When init equals 'true', like for kzalloc() family, only
4193 * @orig_size bytes might be zeroed instead of s->object_size
4194 * In case this fails due to memcg_slab_post_alloc_hook(),
4195 * object is set to NULL
4197 slab_post_alloc_hook(s
, lru
, gfpflags
, 1, &object
, init
, orig_size
);
4202 void *kmem_cache_alloc_noprof(struct kmem_cache
*s
, gfp_t gfpflags
)
4204 void *ret
= slab_alloc_node(s
, NULL
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
,
4207 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
, gfpflags
, NUMA_NO_NODE
);
4211 EXPORT_SYMBOL(kmem_cache_alloc_noprof
);
4213 void *kmem_cache_alloc_lru_noprof(struct kmem_cache
*s
, struct list_lru
*lru
,
4216 void *ret
= slab_alloc_node(s
, lru
, gfpflags
, NUMA_NO_NODE
, _RET_IP_
,
4219 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
, gfpflags
, NUMA_NO_NODE
);
4223 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof
);
4225 bool kmem_cache_charge(void *objp
, gfp_t gfpflags
)
4227 if (!memcg_kmem_online())
4230 return memcg_slab_post_charge(objp
, gfpflags
);
4232 EXPORT_SYMBOL(kmem_cache_charge
);
4235 * kmem_cache_alloc_node - Allocate an object on the specified node
4236 * @s: The cache to allocate from.
4237 * @gfpflags: See kmalloc().
4238 * @node: node number of the target node.
4240 * Identical to kmem_cache_alloc but it will allocate memory on the given
4241 * node, which can improve the performance for cpu bound structures.
4243 * Fallback to other node is possible if __GFP_THISNODE is not set.
4245 * Return: pointer to the new object or %NULL in case of error
4247 void *kmem_cache_alloc_node_noprof(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
4249 void *ret
= slab_alloc_node(s
, NULL
, gfpflags
, node
, _RET_IP_
, s
->object_size
);
4251 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
, gfpflags
, node
);
4255 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof
);
4258 * To avoid unnecessary overhead, we pass through large allocation requests
4259 * directly to the page allocator. We use __GFP_COMP, because we will need to
4260 * know the allocation order to free the pages properly in kfree.
4262 static void *___kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
4264 struct folio
*folio
;
4266 unsigned int order
= get_order(size
);
4268 if (unlikely(flags
& GFP_SLAB_BUG_MASK
))
4269 flags
= kmalloc_fix_flags(flags
);
4271 flags
|= __GFP_COMP
;
4272 folio
= (struct folio
*)alloc_pages_node_noprof(node
, flags
, order
);
4274 ptr
= folio_address(folio
);
4275 lruvec_stat_mod_folio(folio
, NR_SLAB_UNRECLAIMABLE_B
,
4276 PAGE_SIZE
<< order
);
4277 __folio_set_large_kmalloc(folio
);
4280 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
4281 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4282 kmemleak_alloc(ptr
, size
, 1, flags
);
4283 kmsan_kmalloc_large(ptr
, size
, flags
);
4288 void *__kmalloc_large_noprof(size_t size
, gfp_t flags
)
4290 void *ret
= ___kmalloc_large_node(size
, flags
, NUMA_NO_NODE
);
4292 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< get_order(size
),
4293 flags
, NUMA_NO_NODE
);
4296 EXPORT_SYMBOL(__kmalloc_large_noprof
);
4298 void *__kmalloc_large_node_noprof(size_t size
, gfp_t flags
, int node
)
4300 void *ret
= ___kmalloc_large_node(size
, flags
, node
);
4302 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< get_order(size
),
4306 EXPORT_SYMBOL(__kmalloc_large_node_noprof
);
4308 static __always_inline
4309 void *__do_kmalloc_node(size_t size
, kmem_buckets
*b
, gfp_t flags
, int node
,
4310 unsigned long caller
)
4312 struct kmem_cache
*s
;
4315 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4316 ret
= __kmalloc_large_node_noprof(size
, flags
, node
);
4317 trace_kmalloc(caller
, ret
, size
,
4318 PAGE_SIZE
<< get_order(size
), flags
, node
);
4322 if (unlikely(!size
))
4323 return ZERO_SIZE_PTR
;
4325 s
= kmalloc_slab(size
, b
, flags
, caller
);
4327 ret
= slab_alloc_node(s
, NULL
, flags
, node
, caller
, size
);
4328 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
4329 trace_kmalloc(caller
, ret
, size
, s
->size
, flags
, node
);
4332 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size
, b
), gfp_t flags
, int node
)
4334 return __do_kmalloc_node(size
, PASS_BUCKET_PARAM(b
), flags
, node
, _RET_IP_
);
4336 EXPORT_SYMBOL(__kmalloc_node_noprof
);
4338 void *__kmalloc_noprof(size_t size
, gfp_t flags
)
4340 return __do_kmalloc_node(size
, NULL
, flags
, NUMA_NO_NODE
, _RET_IP_
);
4342 EXPORT_SYMBOL(__kmalloc_noprof
);
4344 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size
, b
), gfp_t flags
,
4345 int node
, unsigned long caller
)
4347 return __do_kmalloc_node(size
, PASS_BUCKET_PARAM(b
), flags
, node
, caller
);
4350 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof
);
4352 void *__kmalloc_cache_noprof(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
4354 void *ret
= slab_alloc_node(s
, NULL
, gfpflags
, NUMA_NO_NODE
,
4357 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
, NUMA_NO_NODE
);
4359 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
4362 EXPORT_SYMBOL(__kmalloc_cache_noprof
);
4364 void *__kmalloc_cache_node_noprof(struct kmem_cache
*s
, gfp_t gfpflags
,
4365 int node
, size_t size
)
4367 void *ret
= slab_alloc_node(s
, NULL
, gfpflags
, node
, _RET_IP_
, size
);
4369 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
, node
);
4371 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
4374 EXPORT_SYMBOL(__kmalloc_cache_node_noprof
);
4376 static noinline
void free_to_partial_list(
4377 struct kmem_cache
*s
, struct slab
*slab
,
4378 void *head
, void *tail
, int bulk_cnt
,
4381 struct kmem_cache_node
*n
= get_node(s
, slab_nid(slab
));
4382 struct slab
*slab_free
= NULL
;
4384 unsigned long flags
;
4385 depot_stack_handle_t handle
= 0;
4387 if (s
->flags
& SLAB_STORE_USER
)
4388 handle
= set_track_prepare();
4390 spin_lock_irqsave(&n
->list_lock
, flags
);
4392 if (free_debug_processing(s
, slab
, head
, tail
, &cnt
, addr
, handle
)) {
4393 void *prior
= slab
->freelist
;
4395 /* Perform the actual freeing while we still hold the locks */
4397 set_freepointer(s
, tail
, prior
);
4398 slab
->freelist
= head
;
4401 * If the slab is empty, and node's partial list is full,
4402 * it should be discarded anyway no matter it's on full or
4405 if (slab
->inuse
== 0 && n
->nr_partial
>= s
->min_partial
)
4409 /* was on full list */
4410 remove_full(s
, n
, slab
);
4412 add_partial(n
, slab
, DEACTIVATE_TO_TAIL
);
4413 stat(s
, FREE_ADD_PARTIAL
);
4415 } else if (slab_free
) {
4416 remove_partial(n
, slab
);
4417 stat(s
, FREE_REMOVE_PARTIAL
);
4423 * Update the counters while still holding n->list_lock to
4424 * prevent spurious validation warnings
4426 dec_slabs_node(s
, slab_nid(slab_free
), slab_free
->objects
);
4429 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4433 free_slab(s
, slab_free
);
4438 * Slow path handling. This may still be called frequently since objects
4439 * have a longer lifetime than the cpu slabs in most processing loads.
4441 * So we still attempt to reduce cache line usage. Just take the slab
4442 * lock and free the item. If there is no additional partial slab
4443 * handling required then we can return immediately.
4445 static void __slab_free(struct kmem_cache
*s
, struct slab
*slab
,
4446 void *head
, void *tail
, int cnt
,
4453 unsigned long counters
;
4454 struct kmem_cache_node
*n
= NULL
;
4455 unsigned long flags
;
4456 bool on_node_partial
;
4458 stat(s
, FREE_SLOWPATH
);
4460 if (IS_ENABLED(CONFIG_SLUB_TINY
) || kmem_cache_debug(s
)) {
4461 free_to_partial_list(s
, slab
, head
, tail
, cnt
, addr
);
4467 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4470 prior
= slab
->freelist
;
4471 counters
= slab
->counters
;
4472 set_freepointer(s
, tail
, prior
);
4473 new.counters
= counters
;
4474 was_frozen
= new.frozen
;
4476 if ((!new.inuse
|| !prior
) && !was_frozen
) {
4477 /* Needs to be taken off a list */
4478 if (!kmem_cache_has_cpu_partial(s
) || prior
) {
4480 n
= get_node(s
, slab_nid(slab
));
4482 * Speculatively acquire the list_lock.
4483 * If the cmpxchg does not succeed then we may
4484 * drop the list_lock without any processing.
4486 * Otherwise the list_lock will synchronize with
4487 * other processors updating the list of slabs.
4489 spin_lock_irqsave(&n
->list_lock
, flags
);
4491 on_node_partial
= slab_test_node_partial(slab
);
4495 } while (!slab_update_freelist(s
, slab
,
4502 if (likely(was_frozen
)) {
4504 * The list lock was not taken therefore no list
4505 * activity can be necessary.
4507 stat(s
, FREE_FROZEN
);
4508 } else if (kmem_cache_has_cpu_partial(s
) && !prior
) {
4510 * If we started with a full slab then put it onto the
4511 * per cpu partial list.
4513 put_cpu_partial(s
, slab
, 1);
4514 stat(s
, CPU_PARTIAL_FREE
);
4521 * This slab was partially empty but not on the per-node partial list,
4522 * in which case we shouldn't manipulate its list, just return.
4524 if (prior
&& !on_node_partial
) {
4525 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4529 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
4533 * Objects left in the slab. If it was not on the partial list before
4536 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
4537 add_partial(n
, slab
, DEACTIVATE_TO_TAIL
);
4538 stat(s
, FREE_ADD_PARTIAL
);
4540 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4546 * Slab on the partial list.
4548 remove_partial(n
, slab
);
4549 stat(s
, FREE_REMOVE_PARTIAL
);
4552 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4554 discard_slab(s
, slab
);
4557 #ifndef CONFIG_SLUB_TINY
4559 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4560 * can perform fastpath freeing without additional function calls.
4562 * The fastpath is only possible if we are freeing to the current cpu slab
4563 * of this processor. This typically the case if we have just allocated
4566 * If fastpath is not possible then fall back to __slab_free where we deal
4567 * with all sorts of special processing.
4569 * Bulk free of a freelist with several objects (all pointing to the
4570 * same slab) possible by specifying head and tail ptr, plus objects
4571 * count (cnt). Bulk free indicated by tail pointer being set.
4573 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
4574 struct slab
*slab
, void *head
, void *tail
,
4575 int cnt
, unsigned long addr
)
4577 struct kmem_cache_cpu
*c
;
4583 * Determine the currently cpus per cpu slab.
4584 * The cpu may change afterward. However that does not matter since
4585 * data is retrieved via this pointer. If we are on the same cpu
4586 * during the cmpxchg then the free will succeed.
4588 c
= raw_cpu_ptr(s
->cpu_slab
);
4589 tid
= READ_ONCE(c
->tid
);
4591 /* Same with comment on barrier() in __slab_alloc_node() */
4594 if (unlikely(slab
!= c
->slab
)) {
4595 __slab_free(s
, slab
, head
, tail
, cnt
, addr
);
4599 if (USE_LOCKLESS_FAST_PATH()) {
4600 freelist
= READ_ONCE(c
->freelist
);
4602 set_freepointer(s
, tail
, freelist
);
4604 if (unlikely(!__update_cpu_freelist_fast(s
, freelist
, head
, tid
))) {
4605 note_cmpxchg_failure("slab_free", s
, tid
);
4609 /* Update the free list under the local lock */
4610 local_lock(&s
->cpu_slab
->lock
);
4611 c
= this_cpu_ptr(s
->cpu_slab
);
4612 if (unlikely(slab
!= c
->slab
)) {
4613 local_unlock(&s
->cpu_slab
->lock
);
4617 freelist
= c
->freelist
;
4619 set_freepointer(s
, tail
, freelist
);
4621 c
->tid
= next_tid(tid
);
4623 local_unlock(&s
->cpu_slab
->lock
);
4625 stat_add(s
, FREE_FASTPATH
, cnt
);
4627 #else /* CONFIG_SLUB_TINY */
4628 static void do_slab_free(struct kmem_cache
*s
,
4629 struct slab
*slab
, void *head
, void *tail
,
4630 int cnt
, unsigned long addr
)
4632 __slab_free(s
, slab
, head
, tail
, cnt
, addr
);
4634 #endif /* CONFIG_SLUB_TINY */
4636 static __fastpath_inline
4637 void slab_free(struct kmem_cache
*s
, struct slab
*slab
, void *object
,
4640 memcg_slab_free_hook(s
, slab
, &object
, 1);
4641 alloc_tagging_slab_free_hook(s
, slab
, &object
, 1);
4643 if (likely(slab_free_hook(s
, object
, slab_want_init_on_free(s
), false)))
4644 do_slab_free(s
, slab
, object
, object
, 1, addr
);
4648 /* Do not inline the rare memcg charging failed path into the allocation path */
4650 void memcg_alloc_abort_single(struct kmem_cache
*s
, void *object
)
4652 if (likely(slab_free_hook(s
, object
, slab_want_init_on_free(s
), false)))
4653 do_slab_free(s
, virt_to_slab(object
), object
, object
, 1, _RET_IP_
);
4657 static __fastpath_inline
4658 void slab_free_bulk(struct kmem_cache
*s
, struct slab
*slab
, void *head
,
4659 void *tail
, void **p
, int cnt
, unsigned long addr
)
4661 memcg_slab_free_hook(s
, slab
, p
, cnt
);
4662 alloc_tagging_slab_free_hook(s
, slab
, p
, cnt
);
4664 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4665 * to remove objects, whose reuse must be delayed.
4667 if (likely(slab_free_freelist_hook(s
, &head
, &tail
, &cnt
)))
4668 do_slab_free(s
, slab
, head
, tail
, cnt
, addr
);
4671 #ifdef CONFIG_SLUB_RCU_DEBUG
4672 static void slab_free_after_rcu_debug(struct rcu_head
*rcu_head
)
4674 struct rcu_delayed_free
*delayed_free
=
4675 container_of(rcu_head
, struct rcu_delayed_free
, head
);
4676 void *object
= delayed_free
->object
;
4677 struct slab
*slab
= virt_to_slab(object
);
4678 struct kmem_cache
*s
;
4680 kfree(delayed_free
);
4682 if (WARN_ON(is_kfence_address(object
)))
4685 /* find the object and the cache again */
4688 s
= slab
->slab_cache
;
4689 if (WARN_ON(!(s
->flags
& SLAB_TYPESAFE_BY_RCU
)))
4692 /* resume freeing */
4693 if (slab_free_hook(s
, object
, slab_want_init_on_free(s
), true))
4694 do_slab_free(s
, slab
, object
, object
, 1, _THIS_IP_
);
4696 #endif /* CONFIG_SLUB_RCU_DEBUG */
4698 #ifdef CONFIG_KASAN_GENERIC
4699 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
4701 do_slab_free(cache
, virt_to_slab(x
), x
, x
, 1, addr
);
4705 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
4709 slab
= virt_to_slab(obj
);
4710 if (WARN_ONCE(!slab
, "%s: Object is not a Slab page!\n", __func__
))
4712 return slab
->slab_cache
;
4715 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
4717 struct kmem_cache
*cachep
;
4719 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED
) &&
4720 !kmem_cache_debug_flags(s
, SLAB_CONSISTENCY_CHECKS
))
4723 cachep
= virt_to_cache(x
);
4724 if (WARN(cachep
&& cachep
!= s
,
4725 "%s: Wrong slab cache. %s but object is from %s\n",
4726 __func__
, s
->name
, cachep
->name
))
4727 print_tracking(cachep
, x
);
4732 * kmem_cache_free - Deallocate an object
4733 * @s: The cache the allocation was from.
4734 * @x: The previously allocated object.
4736 * Free an object which was previously allocated from this
4739 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
4741 s
= cache_from_obj(s
, x
);
4744 trace_kmem_cache_free(_RET_IP_
, x
, s
);
4745 slab_free(s
, virt_to_slab(x
), x
, _RET_IP_
);
4747 EXPORT_SYMBOL(kmem_cache_free
);
4749 static void free_large_kmalloc(struct folio
*folio
, void *object
)
4751 unsigned int order
= folio_order(folio
);
4753 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio
))) {
4754 dump_page(&folio
->page
, "Not a kmalloc allocation");
4758 if (WARN_ON_ONCE(order
== 0))
4759 pr_warn_once("object pointer: 0x%p\n", object
);
4761 kmemleak_free(object
);
4762 kasan_kfree_large(object
);
4763 kmsan_kfree_large(object
);
4765 lruvec_stat_mod_folio(folio
, NR_SLAB_UNRECLAIMABLE_B
,
4766 -(PAGE_SIZE
<< order
));
4767 __folio_clear_large_kmalloc(folio
);
4772 * Given an rcu_head embedded within an object obtained from kvmalloc at an
4773 * offset < 4k, free the object in question.
4775 void kvfree_rcu_cb(struct rcu_head
*head
)
4778 struct folio
*folio
;
4780 struct kmem_cache
*s
;
4783 if (is_vmalloc_addr(obj
)) {
4784 obj
= (void *) PAGE_ALIGN_DOWN((unsigned long)obj
);
4789 folio
= virt_to_folio(obj
);
4790 if (!folio_test_slab(folio
)) {
4792 * rcu_head offset can be only less than page size so no need to
4793 * consider folio order
4795 obj
= (void *) PAGE_ALIGN_DOWN((unsigned long)obj
);
4796 free_large_kmalloc(folio
, obj
);
4800 slab
= folio_slab(folio
);
4801 s
= slab
->slab_cache
;
4802 slab_addr
= folio_address(folio
);
4804 if (is_kfence_address(obj
)) {
4805 obj
= kfence_object_start(obj
);
4807 unsigned int idx
= __obj_to_index(s
, slab_addr
, obj
);
4809 obj
= slab_addr
+ s
->size
* idx
;
4810 obj
= fixup_red_left(s
, obj
);
4813 slab_free(s
, slab
, obj
, _RET_IP_
);
4817 * kfree - free previously allocated memory
4818 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4820 * If @object is NULL, no operation is performed.
4822 void kfree(const void *object
)
4824 struct folio
*folio
;
4826 struct kmem_cache
*s
;
4827 void *x
= (void *)object
;
4829 trace_kfree(_RET_IP_
, object
);
4831 if (unlikely(ZERO_OR_NULL_PTR(object
)))
4834 folio
= virt_to_folio(object
);
4835 if (unlikely(!folio_test_slab(folio
))) {
4836 free_large_kmalloc(folio
, (void *)object
);
4840 slab
= folio_slab(folio
);
4841 s
= slab
->slab_cache
;
4842 slab_free(s
, slab
, x
, _RET_IP_
);
4844 EXPORT_SYMBOL(kfree
);
4846 static __always_inline
__realloc_size(2) void *
4847 __do_krealloc(const void *p
, size_t new_size
, gfp_t flags
)
4852 struct kmem_cache
*s
= NULL
;
4854 if (unlikely(ZERO_OR_NULL_PTR(p
)))
4857 /* Check for double-free. */
4858 if (!kasan_check_byte(p
))
4861 if (is_kfence_address(p
)) {
4862 ks
= orig_size
= kfence_ksize(p
);
4864 struct folio
*folio
;
4866 folio
= virt_to_folio(p
);
4867 if (unlikely(!folio_test_slab(folio
))) {
4868 /* Big kmalloc object */
4869 WARN_ON(folio_size(folio
) <= KMALLOC_MAX_CACHE_SIZE
);
4870 WARN_ON(p
!= folio_address(folio
));
4871 ks
= folio_size(folio
);
4873 s
= folio_slab(folio
)->slab_cache
;
4874 orig_size
= get_orig_size(s
, (void *)p
);
4875 ks
= s
->object_size
;
4879 /* If the old object doesn't fit, allocate a bigger one */
4883 /* Zero out spare memory. */
4884 if (want_init_on_alloc(flags
)) {
4885 kasan_disable_current();
4886 if (orig_size
&& orig_size
< new_size
)
4887 memset(kasan_reset_tag(p
) + orig_size
, 0, new_size
- orig_size
);
4889 memset(kasan_reset_tag(p
) + new_size
, 0, ks
- new_size
);
4890 kasan_enable_current();
4893 /* Setup kmalloc redzone when needed */
4894 if (s
&& slub_debug_orig_size(s
)) {
4895 set_orig_size(s
, (void *)p
, new_size
);
4896 if (s
->flags
& SLAB_RED_ZONE
&& new_size
< ks
)
4897 memset_no_sanitize_memory(kasan_reset_tag(p
) + new_size
,
4898 SLUB_RED_ACTIVE
, ks
- new_size
);
4901 p
= kasan_krealloc(p
, new_size
, flags
);
4905 ret
= kmalloc_node_track_caller_noprof(new_size
, flags
, NUMA_NO_NODE
, _RET_IP_
);
4907 /* Disable KASAN checks as the object's redzone is accessed. */
4908 kasan_disable_current();
4909 memcpy(ret
, kasan_reset_tag(p
), orig_size
?: ks
);
4910 kasan_enable_current();
4917 * krealloc - reallocate memory. The contents will remain unchanged.
4918 * @p: object to reallocate memory for.
4919 * @new_size: how many bytes of memory are required.
4920 * @flags: the type of memory to allocate.
4922 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4923 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4925 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4926 * initial memory allocation, every subsequent call to this API for the same
4927 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4928 * __GFP_ZERO is not fully honored by this API.
4930 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4931 * size of an allocation (but not the exact size it was allocated with) and
4932 * hence implements the following semantics for shrinking and growing buffers
4937 * |--------|----------------|
4940 * Otherwise, the original allocation size 'orig_size' could be used to
4941 * precisely clear the requested size, and the new size will also be stored
4942 * as the new 'orig_size'.
4944 * In any case, the contents of the object pointed to are preserved up to the
4945 * lesser of the new and old sizes.
4947 * Return: pointer to the allocated memory or %NULL in case of error
4949 void *krealloc_noprof(const void *p
, size_t new_size
, gfp_t flags
)
4953 if (unlikely(!new_size
)) {
4955 return ZERO_SIZE_PTR
;
4958 ret
= __do_krealloc(p
, new_size
, flags
);
4959 if (ret
&& kasan_reset_tag(p
) != kasan_reset_tag(ret
))
4964 EXPORT_SYMBOL(krealloc_noprof
);
4966 static gfp_t
kmalloc_gfp_adjust(gfp_t flags
, size_t size
)
4969 * We want to attempt a large physically contiguous block first because
4970 * it is less likely to fragment multiple larger blocks and therefore
4971 * contribute to a long term fragmentation less than vmalloc fallback.
4972 * However make sure that larger requests are not too disruptive - i.e.
4973 * do not direct reclaim unless physically continuous memory is preferred
4974 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
4975 * start working in the background
4977 if (size
> PAGE_SIZE
) {
4978 flags
|= __GFP_NOWARN
;
4980 if (!(flags
& __GFP_RETRY_MAYFAIL
))
4981 flags
&= ~__GFP_DIRECT_RECLAIM
;
4983 /* nofail semantic is implemented by the vmalloc fallback */
4984 flags
&= ~__GFP_NOFAIL
;
4991 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4992 * failure, fall back to non-contiguous (vmalloc) allocation.
4993 * @size: size of the request.
4994 * @b: which set of kmalloc buckets to allocate from.
4995 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4996 * @node: numa node to allocate from
4998 * Uses kmalloc to get the memory but if the allocation fails then falls back
4999 * to the vmalloc allocator. Use kvfree for freeing the memory.
5001 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5002 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5003 * preferable to the vmalloc fallback, due to visible performance drawbacks.
5005 * Return: pointer to the allocated memory of %NULL in case of failure
5007 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size
, b
), gfp_t flags
, int node
)
5012 * It doesn't really make sense to fallback to vmalloc for sub page
5015 ret
= __do_kmalloc_node(size
, PASS_BUCKET_PARAM(b
),
5016 kmalloc_gfp_adjust(flags
, size
),
5018 if (ret
|| size
<= PAGE_SIZE
)
5021 /* non-sleeping allocations are not supported by vmalloc */
5022 if (!gfpflags_allow_blocking(flags
))
5025 /* Don't even allow crazy sizes */
5026 if (unlikely(size
> INT_MAX
)) {
5027 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
5032 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5033 * since the callers already cannot assume anything
5034 * about the resulting pointer, and cannot play
5037 return __vmalloc_node_range_noprof(size
, 1, VMALLOC_START
, VMALLOC_END
,
5038 flags
, PAGE_KERNEL
, VM_ALLOW_HUGE_VMAP
,
5039 node
, __builtin_return_address(0));
5041 EXPORT_SYMBOL(__kvmalloc_node_noprof
);
5044 * kvfree() - Free memory.
5045 * @addr: Pointer to allocated memory.
5047 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5048 * It is slightly more efficient to use kfree() or vfree() if you are certain
5049 * that you know which one to use.
5051 * Context: Either preemptible task context or not-NMI interrupt.
5053 void kvfree(const void *addr
)
5055 if (is_vmalloc_addr(addr
))
5060 EXPORT_SYMBOL(kvfree
);
5063 * kvfree_sensitive - Free a data object containing sensitive information.
5064 * @addr: address of the data object to be freed.
5065 * @len: length of the data object.
5067 * Use the special memzero_explicit() function to clear the content of a
5068 * kvmalloc'ed object containing sensitive data to make sure that the
5069 * compiler won't optimize out the data clearing.
5071 void kvfree_sensitive(const void *addr
, size_t len
)
5073 if (likely(!ZERO_OR_NULL_PTR(addr
))) {
5074 memzero_explicit((void *)addr
, len
);
5078 EXPORT_SYMBOL(kvfree_sensitive
);
5081 * kvrealloc - reallocate memory; contents remain unchanged
5082 * @p: object to reallocate memory for
5083 * @size: the size to reallocate
5084 * @flags: the flags for the page level allocator
5086 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5087 * and @p is not a %NULL pointer, the object pointed to is freed.
5089 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5090 * initial memory allocation, every subsequent call to this API for the same
5091 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5092 * __GFP_ZERO is not fully honored by this API.
5094 * In any case, the contents of the object pointed to are preserved up to the
5095 * lesser of the new and old sizes.
5097 * This function must not be called concurrently with itself or kvfree() for the
5098 * same memory allocation.
5100 * Return: pointer to the allocated memory or %NULL in case of error
5102 void *kvrealloc_noprof(const void *p
, size_t size
, gfp_t flags
)
5106 if (is_vmalloc_addr(p
))
5107 return vrealloc_noprof(p
, size
, flags
);
5109 n
= krealloc_noprof(p
, size
, kmalloc_gfp_adjust(flags
, size
));
5111 /* We failed to krealloc(), fall back to kvmalloc(). */
5112 n
= kvmalloc_noprof(size
, flags
);
5117 /* We already know that `p` is not a vmalloc address. */
5118 kasan_disable_current();
5119 memcpy(n
, kasan_reset_tag(p
), ksize(p
));
5120 kasan_enable_current();
5128 EXPORT_SYMBOL(kvrealloc_noprof
);
5130 struct detached_freelist
{
5135 struct kmem_cache
*s
;
5139 * This function progressively scans the array with free objects (with
5140 * a limited look ahead) and extract objects belonging to the same
5141 * slab. It builds a detached freelist directly within the given
5142 * slab/objects. This can happen without any need for
5143 * synchronization, because the objects are owned by running process.
5144 * The freelist is build up as a single linked list in the objects.
5145 * The idea is, that this detached freelist can then be bulk
5146 * transferred to the real freelist(s), but only requiring a single
5147 * synchronization primitive. Look ahead in the array is limited due
5148 * to performance reasons.
5151 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
5152 void **p
, struct detached_freelist
*df
)
5156 struct folio
*folio
;
5160 folio
= virt_to_folio(object
);
5162 /* Handle kalloc'ed objects */
5163 if (unlikely(!folio_test_slab(folio
))) {
5164 free_large_kmalloc(folio
, object
);
5168 /* Derive kmem_cache from object */
5169 df
->slab
= folio_slab(folio
);
5170 df
->s
= df
->slab
->slab_cache
;
5172 df
->slab
= folio_slab(folio
);
5173 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
5176 /* Start new detached freelist */
5178 df
->freelist
= object
;
5181 if (is_kfence_address(object
))
5184 set_freepointer(df
->s
, object
, NULL
);
5189 /* df->slab is always set at this point */
5190 if (df
->slab
== virt_to_slab(object
)) {
5191 /* Opportunity build freelist */
5192 set_freepointer(df
->s
, object
, df
->freelist
);
5193 df
->freelist
= object
;
5197 swap(p
[size
], p
[same
]);
5201 /* Limit look ahead search */
5210 * Internal bulk free of objects that were not initialised by the post alloc
5211 * hooks and thus should not be processed by the free hooks
5213 static void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
5219 struct detached_freelist df
;
5221 size
= build_detached_freelist(s
, size
, p
, &df
);
5225 if (kfence_free(df
.freelist
))
5228 do_slab_free(df
.s
, df
.slab
, df
.freelist
, df
.tail
, df
.cnt
,
5230 } while (likely(size
));
5233 /* Note that interrupts must be enabled when calling this function. */
5234 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
5240 struct detached_freelist df
;
5242 size
= build_detached_freelist(s
, size
, p
, &df
);
5246 slab_free_bulk(df
.s
, df
.slab
, df
.freelist
, df
.tail
, &p
[size
],
5248 } while (likely(size
));
5250 EXPORT_SYMBOL(kmem_cache_free_bulk
);
5252 #ifndef CONFIG_SLUB_TINY
5254 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
5257 struct kmem_cache_cpu
*c
;
5258 unsigned long irqflags
;
5262 * Drain objects in the per cpu slab, while disabling local
5263 * IRQs, which protects against PREEMPT and interrupts
5264 * handlers invoking normal fastpath.
5266 c
= slub_get_cpu_ptr(s
->cpu_slab
);
5267 local_lock_irqsave(&s
->cpu_slab
->lock
, irqflags
);
5269 for (i
= 0; i
< size
; i
++) {
5270 void *object
= kfence_alloc(s
, s
->object_size
, flags
);
5272 if (unlikely(object
)) {
5277 object
= c
->freelist
;
5278 if (unlikely(!object
)) {
5280 * We may have removed an object from c->freelist using
5281 * the fastpath in the previous iteration; in that case,
5282 * c->tid has not been bumped yet.
5283 * Since ___slab_alloc() may reenable interrupts while
5284 * allocating memory, we should bump c->tid now.
5286 c
->tid
= next_tid(c
->tid
);
5288 local_unlock_irqrestore(&s
->cpu_slab
->lock
, irqflags
);
5291 * Invoking slow path likely have side-effect
5292 * of re-populating per CPU c->freelist
5294 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
5295 _RET_IP_
, c
, s
->object_size
);
5296 if (unlikely(!p
[i
]))
5299 c
= this_cpu_ptr(s
->cpu_slab
);
5300 maybe_wipe_obj_freeptr(s
, p
[i
]);
5302 local_lock_irqsave(&s
->cpu_slab
->lock
, irqflags
);
5304 continue; /* goto for-loop */
5306 c
->freelist
= get_freepointer(s
, object
);
5308 maybe_wipe_obj_freeptr(s
, p
[i
]);
5309 stat(s
, ALLOC_FASTPATH
);
5311 c
->tid
= next_tid(c
->tid
);
5312 local_unlock_irqrestore(&s
->cpu_slab
->lock
, irqflags
);
5313 slub_put_cpu_ptr(s
->cpu_slab
);
5318 slub_put_cpu_ptr(s
->cpu_slab
);
5319 __kmem_cache_free_bulk(s
, i
, p
);
5323 #else /* CONFIG_SLUB_TINY */
5324 static int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
,
5325 size_t size
, void **p
)
5329 for (i
= 0; i
< size
; i
++) {
5330 void *object
= kfence_alloc(s
, s
->object_size
, flags
);
5332 if (unlikely(object
)) {
5337 p
[i
] = __slab_alloc_node(s
, flags
, NUMA_NO_NODE
,
5338 _RET_IP_
, s
->object_size
);
5339 if (unlikely(!p
[i
]))
5342 maybe_wipe_obj_freeptr(s
, p
[i
]);
5348 __kmem_cache_free_bulk(s
, i
, p
);
5351 #endif /* CONFIG_SLUB_TINY */
5353 /* Note that interrupts must be enabled when calling this function. */
5354 int kmem_cache_alloc_bulk_noprof(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
5362 s
= slab_pre_alloc_hook(s
, flags
);
5366 i
= __kmem_cache_alloc_bulk(s
, flags
, size
, p
);
5367 if (unlikely(i
== 0))
5371 * memcg and kmem_cache debug support and memory initialization.
5372 * Done outside of the IRQ disabled fastpath loop.
5374 if (unlikely(!slab_post_alloc_hook(s
, NULL
, flags
, size
, p
,
5375 slab_want_init_on_alloc(flags
, s
), s
->object_size
))) {
5380 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof
);
5384 * Object placement in a slab is made very easy because we always start at
5385 * offset 0. If we tune the size of the object to the alignment then we can
5386 * get the required alignment by putting one properly sized object after
5389 * Notice that the allocation order determines the sizes of the per cpu
5390 * caches. Each processor has always one slab available for allocations.
5391 * Increasing the allocation order reduces the number of times that slabs
5392 * must be moved on and off the partial lists and is therefore a factor in
5397 * Minimum / Maximum order of slab pages. This influences locking overhead
5398 * and slab fragmentation. A higher order reduces the number of partial slabs
5399 * and increases the number of allocations possible without having to
5400 * take the list_lock.
5402 static unsigned int slub_min_order
;
5403 static unsigned int slub_max_order
=
5404 IS_ENABLED(CONFIG_SLUB_TINY
) ? 1 : PAGE_ALLOC_COSTLY_ORDER
;
5405 static unsigned int slub_min_objects
;
5408 * Calculate the order of allocation given an slab object size.
5410 * The order of allocation has significant impact on performance and other
5411 * system components. Generally order 0 allocations should be preferred since
5412 * order 0 does not cause fragmentation in the page allocator. Larger objects
5413 * be problematic to put into order 0 slabs because there may be too much
5414 * unused space left. We go to a higher order if more than 1/16th of the slab
5417 * In order to reach satisfactory performance we must ensure that a minimum
5418 * number of objects is in one slab. Otherwise we may generate too much
5419 * activity on the partial lists which requires taking the list_lock. This is
5420 * less a concern for large slabs though which are rarely used.
5422 * slab_max_order specifies the order where we begin to stop considering the
5423 * number of objects in a slab as critical. If we reach slab_max_order then
5424 * we try to keep the page order as low as possible. So we accept more waste
5425 * of space in favor of a small page order.
5427 * Higher order allocations also allow the placement of more objects in a
5428 * slab and thereby reduce object handling overhead. If the user has
5429 * requested a higher minimum order then we start with that one instead of
5430 * the smallest order which will fit the object.
5432 static inline unsigned int calc_slab_order(unsigned int size
,
5433 unsigned int min_order
, unsigned int max_order
,
5434 unsigned int fract_leftover
)
5438 for (order
= min_order
; order
<= max_order
; order
++) {
5440 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
5443 rem
= slab_size
% size
;
5445 if (rem
<= slab_size
/ fract_leftover
)
5452 static inline int calculate_order(unsigned int size
)
5455 unsigned int min_objects
;
5456 unsigned int max_objects
;
5457 unsigned int min_order
;
5459 min_objects
= slub_min_objects
;
5462 * Some architectures will only update present cpus when
5463 * onlining them, so don't trust the number if it's just 1. But
5464 * we also don't want to use nr_cpu_ids always, as on some other
5465 * architectures, there can be many possible cpus, but never
5466 * onlined. Here we compromise between trying to avoid too high
5467 * order on systems that appear larger than they are, and too
5468 * low order on systems that appear smaller than they are.
5470 unsigned int nr_cpus
= num_present_cpus();
5472 nr_cpus
= nr_cpu_ids
;
5473 min_objects
= 4 * (fls(nr_cpus
) + 1);
5475 /* min_objects can't be 0 because get_order(0) is undefined */
5476 max_objects
= max(order_objects(slub_max_order
, size
), 1U);
5477 min_objects
= min(min_objects
, max_objects
);
5479 min_order
= max_t(unsigned int, slub_min_order
,
5480 get_order(min_objects
* size
));
5481 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
5482 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
5485 * Attempt to find best configuration for a slab. This works by first
5486 * attempting to generate a layout with the best possible configuration
5487 * and backing off gradually.
5489 * We start with accepting at most 1/16 waste and try to find the
5490 * smallest order from min_objects-derived/slab_min_order up to
5491 * slab_max_order that will satisfy the constraint. Note that increasing
5492 * the order can only result in same or less fractional waste, not more.
5494 * If that fails, we increase the acceptable fraction of waste and try
5495 * again. The last iteration with fraction of 1/2 would effectively
5496 * accept any waste and give us the order determined by min_objects, as
5497 * long as at least single object fits within slab_max_order.
5499 for (unsigned int fraction
= 16; fraction
> 1; fraction
/= 2) {
5500 order
= calc_slab_order(size
, min_order
, slub_max_order
,
5502 if (order
<= slub_max_order
)
5507 * Doh this slab cannot be placed using slab_max_order.
5509 order
= get_order(size
);
5510 if (order
<= MAX_PAGE_ORDER
)
5516 init_kmem_cache_node(struct kmem_cache_node
*n
)
5519 spin_lock_init(&n
->list_lock
);
5520 INIT_LIST_HEAD(&n
->partial
);
5521 #ifdef CONFIG_SLUB_DEBUG
5522 atomic_long_set(&n
->nr_slabs
, 0);
5523 atomic_long_set(&n
->total_objects
, 0);
5524 INIT_LIST_HEAD(&n
->full
);
5528 #ifndef CONFIG_SLUB_TINY
5529 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
5531 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
5532 NR_KMALLOC_TYPES
* KMALLOC_SHIFT_HIGH
*
5533 sizeof(struct kmem_cache_cpu
));
5536 * Must align to double word boundary for the double cmpxchg
5537 * instructions to work; see __pcpu_double_call_return_bool().
5539 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
5540 2 * sizeof(void *));
5545 init_kmem_cache_cpus(s
);
5550 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
5554 #endif /* CONFIG_SLUB_TINY */
5556 static struct kmem_cache
*kmem_cache_node
;
5559 * No kmalloc_node yet so do it by hand. We know that this is the first
5560 * slab on the node for this slabcache. There are no concurrent accesses
5563 * Note that this function only works on the kmem_cache_node
5564 * when allocating for the kmem_cache_node. This is used for bootstrapping
5565 * memory on a fresh node that has no slab structures yet.
5567 static void early_kmem_cache_node_alloc(int node
)
5570 struct kmem_cache_node
*n
;
5572 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
5574 slab
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
5577 if (slab_nid(slab
) != node
) {
5578 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
5579 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5584 #ifdef CONFIG_SLUB_DEBUG
5585 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
5587 n
= kasan_slab_alloc(kmem_cache_node
, n
, GFP_KERNEL
, false);
5588 slab
->freelist
= get_freepointer(kmem_cache_node
, n
);
5590 kmem_cache_node
->node
[node
] = n
;
5591 init_kmem_cache_node(n
);
5592 inc_slabs_node(kmem_cache_node
, node
, slab
->objects
);
5595 * No locks need to be taken here as it has just been
5596 * initialized and there is no concurrent access.
5598 __add_partial(n
, slab
, DEACTIVATE_TO_HEAD
);
5601 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
5604 struct kmem_cache_node
*n
;
5606 for_each_kmem_cache_node(s
, node
, n
) {
5607 s
->node
[node
] = NULL
;
5608 kmem_cache_free(kmem_cache_node
, n
);
5612 void __kmem_cache_release(struct kmem_cache
*s
)
5614 cache_random_seq_destroy(s
);
5615 #ifndef CONFIG_SLUB_TINY
5616 free_percpu(s
->cpu_slab
);
5618 free_kmem_cache_nodes(s
);
5621 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
5625 for_each_node_mask(node
, slab_nodes
) {
5626 struct kmem_cache_node
*n
;
5628 if (slab_state
== DOWN
) {
5629 early_kmem_cache_node_alloc(node
);
5632 n
= kmem_cache_alloc_node(kmem_cache_node
,
5636 free_kmem_cache_nodes(s
);
5640 init_kmem_cache_node(n
);
5646 static void set_cpu_partial(struct kmem_cache
*s
)
5648 #ifdef CONFIG_SLUB_CPU_PARTIAL
5649 unsigned int nr_objects
;
5652 * cpu_partial determined the maximum number of objects kept in the
5653 * per cpu partial lists of a processor.
5655 * Per cpu partial lists mainly contain slabs that just have one
5656 * object freed. If they are used for allocation then they can be
5657 * filled up again with minimal effort. The slab will never hit the
5658 * per node partial lists and therefore no locking will be required.
5660 * For backwards compatibility reasons, this is determined as number
5661 * of objects, even though we now limit maximum number of pages, see
5662 * slub_set_cpu_partial()
5664 if (!kmem_cache_has_cpu_partial(s
))
5666 else if (s
->size
>= PAGE_SIZE
)
5668 else if (s
->size
>= 1024)
5670 else if (s
->size
>= 256)
5675 slub_set_cpu_partial(s
, nr_objects
);
5680 * calculate_sizes() determines the order and the distribution of data within
5683 static int calculate_sizes(struct kmem_cache_args
*args
, struct kmem_cache
*s
)
5685 slab_flags_t flags
= s
->flags
;
5686 unsigned int size
= s
->object_size
;
5690 * Round up object size to the next word boundary. We can only
5691 * place the free pointer at word boundaries and this determines
5692 * the possible location of the free pointer.
5694 size
= ALIGN(size
, sizeof(void *));
5696 #ifdef CONFIG_SLUB_DEBUG
5698 * Determine if we can poison the object itself. If the user of
5699 * the slab may touch the object after free or before allocation
5700 * then we should never poison the object itself.
5702 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
5704 s
->flags
|= __OBJECT_POISON
;
5706 s
->flags
&= ~__OBJECT_POISON
;
5710 * If we are Redzoning then check if there is some space between the
5711 * end of the object and the free pointer. If not then add an
5712 * additional word to have some bytes to store Redzone information.
5714 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
5715 size
+= sizeof(void *);
5719 * With that we have determined the number of bytes in actual use
5720 * by the object and redzoning.
5724 if (((flags
& SLAB_TYPESAFE_BY_RCU
) && !args
->use_freeptr_offset
) ||
5725 (flags
& SLAB_POISON
) || s
->ctor
||
5726 ((flags
& SLAB_RED_ZONE
) &&
5727 (s
->object_size
< sizeof(void *) || slub_debug_orig_size(s
)))) {
5729 * Relocate free pointer after the object if it is not
5730 * permitted to overwrite the first word of the object on
5733 * This is the case if we do RCU, have a constructor or
5734 * destructor, are poisoning the objects, or are
5735 * redzoning an object smaller than sizeof(void *) or are
5736 * redzoning an object with slub_debug_orig_size() enabled,
5737 * in which case the right redzone may be extended.
5739 * The assumption that s->offset >= s->inuse means free
5740 * pointer is outside of the object is used in the
5741 * freeptr_outside_object() function. If that is no
5742 * longer true, the function needs to be modified.
5745 size
+= sizeof(void *);
5746 } else if ((flags
& SLAB_TYPESAFE_BY_RCU
) && args
->use_freeptr_offset
) {
5747 s
->offset
= args
->freeptr_offset
;
5750 * Store freelist pointer near middle of object to keep
5751 * it away from the edges of the object to avoid small
5752 * sized over/underflows from neighboring allocations.
5754 s
->offset
= ALIGN_DOWN(s
->object_size
/ 2, sizeof(void *));
5757 #ifdef CONFIG_SLUB_DEBUG
5758 if (flags
& SLAB_STORE_USER
) {
5760 * Need to store information about allocs and frees after
5763 size
+= 2 * sizeof(struct track
);
5765 /* Save the original kmalloc request size */
5766 if (flags
& SLAB_KMALLOC
)
5767 size
+= sizeof(unsigned int);
5771 kasan_cache_create(s
, &size
, &s
->flags
);
5772 #ifdef CONFIG_SLUB_DEBUG
5773 if (flags
& SLAB_RED_ZONE
) {
5775 * Add some empty padding so that we can catch
5776 * overwrites from earlier objects rather than let
5777 * tracking information or the free pointer be
5778 * corrupted if a user writes before the start
5781 size
+= sizeof(void *);
5783 s
->red_left_pad
= sizeof(void *);
5784 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
5785 size
+= s
->red_left_pad
;
5790 * SLUB stores one object immediately after another beginning from
5791 * offset 0. In order to align the objects we have to simply size
5792 * each object to conform to the alignment.
5794 size
= ALIGN(size
, s
->align
);
5796 s
->reciprocal_size
= reciprocal_value(size
);
5797 order
= calculate_order(size
);
5802 s
->allocflags
= __GFP_COMP
;
5804 if (s
->flags
& SLAB_CACHE_DMA
)
5805 s
->allocflags
|= GFP_DMA
;
5807 if (s
->flags
& SLAB_CACHE_DMA32
)
5808 s
->allocflags
|= GFP_DMA32
;
5810 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5811 s
->allocflags
|= __GFP_RECLAIMABLE
;
5814 * Determine the number of objects per slab
5816 s
->oo
= oo_make(order
, size
);
5817 s
->min
= oo_make(get_order(size
), size
);
5819 return !!oo_objects(s
->oo
);
5822 static void list_slab_objects(struct kmem_cache
*s
, struct slab
*slab
)
5824 #ifdef CONFIG_SLUB_DEBUG
5825 void *addr
= slab_address(slab
);
5828 if (!slab_add_kunit_errors())
5829 slab_bug(s
, "Objects remaining on __kmem_cache_shutdown()");
5831 spin_lock(&object_map_lock
);
5832 __fill_map(object_map
, s
, slab
);
5834 for_each_object(p
, s
, addr
, slab
->objects
) {
5836 if (!test_bit(__obj_to_index(s
, addr
, p
), object_map
)) {
5837 if (slab_add_kunit_errors())
5839 pr_err("Object 0x%p @offset=%tu\n", p
, p
- addr
);
5840 print_tracking(s
, p
);
5843 spin_unlock(&object_map_lock
);
5850 * Attempt to free all partial slabs on a node.
5851 * This is called from __kmem_cache_shutdown(). We must take list_lock
5852 * because sysfs file might still access partial list after the shutdowning.
5854 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
5857 struct slab
*slab
, *h
;
5859 BUG_ON(irqs_disabled());
5860 spin_lock_irq(&n
->list_lock
);
5861 list_for_each_entry_safe(slab
, h
, &n
->partial
, slab_list
) {
5863 remove_partial(n
, slab
);
5864 list_add(&slab
->slab_list
, &discard
);
5866 list_slab_objects(s
, slab
);
5869 spin_unlock_irq(&n
->list_lock
);
5871 list_for_each_entry_safe(slab
, h
, &discard
, slab_list
)
5872 discard_slab(s
, slab
);
5875 bool __kmem_cache_empty(struct kmem_cache
*s
)
5878 struct kmem_cache_node
*n
;
5880 for_each_kmem_cache_node(s
, node
, n
)
5881 if (n
->nr_partial
|| node_nr_slabs(n
))
5887 * Release all resources used by a slab cache.
5889 int __kmem_cache_shutdown(struct kmem_cache
*s
)
5892 struct kmem_cache_node
*n
;
5894 flush_all_cpus_locked(s
);
5895 /* Attempt to free all objects */
5896 for_each_kmem_cache_node(s
, node
, n
) {
5898 if (n
->nr_partial
|| node_nr_slabs(n
))
5904 #ifdef CONFIG_PRINTK
5905 void __kmem_obj_info(struct kmem_obj_info
*kpp
, void *object
, struct slab
*slab
)
5908 int __maybe_unused i
;
5912 struct kmem_cache
*s
= slab
->slab_cache
;
5913 struct track __maybe_unused
*trackp
;
5915 kpp
->kp_ptr
= object
;
5916 kpp
->kp_slab
= slab
;
5917 kpp
->kp_slab_cache
= s
;
5918 base
= slab_address(slab
);
5919 objp0
= kasan_reset_tag(object
);
5920 #ifdef CONFIG_SLUB_DEBUG
5921 objp
= restore_red_left(s
, objp0
);
5925 objnr
= obj_to_index(s
, slab
, objp
);
5926 kpp
->kp_data_offset
= (unsigned long)((char *)objp0
- (char *)objp
);
5927 objp
= base
+ s
->size
* objnr
;
5928 kpp
->kp_objp
= objp
;
5929 if (WARN_ON_ONCE(objp
< base
|| objp
>= base
+ slab
->objects
* s
->size
5930 || (objp
- base
) % s
->size
) ||
5931 !(s
->flags
& SLAB_STORE_USER
))
5933 #ifdef CONFIG_SLUB_DEBUG
5934 objp
= fixup_red_left(s
, objp
);
5935 trackp
= get_track(s
, objp
, TRACK_ALLOC
);
5936 kpp
->kp_ret
= (void *)trackp
->addr
;
5937 #ifdef CONFIG_STACKDEPOT
5939 depot_stack_handle_t handle
;
5940 unsigned long *entries
;
5941 unsigned int nr_entries
;
5943 handle
= READ_ONCE(trackp
->handle
);
5945 nr_entries
= stack_depot_fetch(handle
, &entries
);
5946 for (i
= 0; i
< KS_ADDRS_COUNT
&& i
< nr_entries
; i
++)
5947 kpp
->kp_stack
[i
] = (void *)entries
[i
];
5950 trackp
= get_track(s
, objp
, TRACK_FREE
);
5951 handle
= READ_ONCE(trackp
->handle
);
5953 nr_entries
= stack_depot_fetch(handle
, &entries
);
5954 for (i
= 0; i
< KS_ADDRS_COUNT
&& i
< nr_entries
; i
++)
5955 kpp
->kp_free_stack
[i
] = (void *)entries
[i
];
5963 /********************************************************************
5965 *******************************************************************/
5967 static int __init
setup_slub_min_order(char *str
)
5969 get_option(&str
, (int *)&slub_min_order
);
5971 if (slub_min_order
> slub_max_order
)
5972 slub_max_order
= slub_min_order
;
5977 __setup("slab_min_order=", setup_slub_min_order
);
5978 __setup_param("slub_min_order=", slub_min_order
, setup_slub_min_order
, 0);
5981 static int __init
setup_slub_max_order(char *str
)
5983 get_option(&str
, (int *)&slub_max_order
);
5984 slub_max_order
= min_t(unsigned int, slub_max_order
, MAX_PAGE_ORDER
);
5986 if (slub_min_order
> slub_max_order
)
5987 slub_min_order
= slub_max_order
;
5992 __setup("slab_max_order=", setup_slub_max_order
);
5993 __setup_param("slub_max_order=", slub_max_order
, setup_slub_max_order
, 0);
5995 static int __init
setup_slub_min_objects(char *str
)
5997 get_option(&str
, (int *)&slub_min_objects
);
6002 __setup("slab_min_objects=", setup_slub_min_objects
);
6003 __setup_param("slub_min_objects=", slub_min_objects
, setup_slub_min_objects
, 0);
6006 static int __init
setup_slab_strict_numa(char *str
)
6008 if (nr_node_ids
> 1) {
6009 static_branch_enable(&strict_numa
);
6010 pr_info("SLUB: Strict NUMA enabled.\n");
6012 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6018 __setup("slab_strict_numa", setup_slab_strict_numa
);
6022 #ifdef CONFIG_HARDENED_USERCOPY
6024 * Rejects incorrectly sized objects and objects that are to be copied
6025 * to/from userspace but do not fall entirely within the containing slab
6026 * cache's usercopy region.
6028 * Returns NULL if check passes, otherwise const char * to name of cache
6029 * to indicate an error.
6031 void __check_heap_object(const void *ptr
, unsigned long n
,
6032 const struct slab
*slab
, bool to_user
)
6034 struct kmem_cache
*s
;
6035 unsigned int offset
;
6036 bool is_kfence
= is_kfence_address(ptr
);
6038 ptr
= kasan_reset_tag(ptr
);
6040 /* Find object and usable object size. */
6041 s
= slab
->slab_cache
;
6043 /* Reject impossible pointers. */
6044 if (ptr
< slab_address(slab
))
6045 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
6048 /* Find offset within object. */
6050 offset
= ptr
- kfence_object_start(ptr
);
6052 offset
= (ptr
- slab_address(slab
)) % s
->size
;
6054 /* Adjust for redzone and reject if within the redzone. */
6055 if (!is_kfence
&& kmem_cache_debug_flags(s
, SLAB_RED_ZONE
)) {
6056 if (offset
< s
->red_left_pad
)
6057 usercopy_abort("SLUB object in left red zone",
6058 s
->name
, to_user
, offset
, n
);
6059 offset
-= s
->red_left_pad
;
6062 /* Allow address range falling entirely within usercopy region. */
6063 if (offset
>= s
->useroffset
&&
6064 offset
- s
->useroffset
<= s
->usersize
&&
6065 n
<= s
->useroffset
- offset
+ s
->usersize
)
6068 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
6070 #endif /* CONFIG_HARDENED_USERCOPY */
6072 #define SHRINK_PROMOTE_MAX 32
6075 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6076 * up most to the head of the partial lists. New allocations will then
6077 * fill those up and thus they can be removed from the partial lists.
6079 * The slabs with the least items are placed last. This results in them
6080 * being allocated from last increasing the chance that the last objects
6081 * are freed in them.
6083 static int __kmem_cache_do_shrink(struct kmem_cache
*s
)
6087 struct kmem_cache_node
*n
;
6090 struct list_head discard
;
6091 struct list_head promote
[SHRINK_PROMOTE_MAX
];
6092 unsigned long flags
;
6095 for_each_kmem_cache_node(s
, node
, n
) {
6096 INIT_LIST_HEAD(&discard
);
6097 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
6098 INIT_LIST_HEAD(promote
+ i
);
6100 spin_lock_irqsave(&n
->list_lock
, flags
);
6103 * Build lists of slabs to discard or promote.
6105 * Note that concurrent frees may occur while we hold the
6106 * list_lock. slab->inuse here is the upper limit.
6108 list_for_each_entry_safe(slab
, t
, &n
->partial
, slab_list
) {
6109 int free
= slab
->objects
- slab
->inuse
;
6111 /* Do not reread slab->inuse */
6114 /* We do not keep full slabs on the list */
6117 if (free
== slab
->objects
) {
6118 list_move(&slab
->slab_list
, &discard
);
6119 slab_clear_node_partial(slab
);
6121 dec_slabs_node(s
, node
, slab
->objects
);
6122 } else if (free
<= SHRINK_PROMOTE_MAX
)
6123 list_move(&slab
->slab_list
, promote
+ free
- 1);
6127 * Promote the slabs filled up most to the head of the
6130 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
6131 list_splice(promote
+ i
, &n
->partial
);
6133 spin_unlock_irqrestore(&n
->list_lock
, flags
);
6135 /* Release empty slabs */
6136 list_for_each_entry_safe(slab
, t
, &discard
, slab_list
)
6139 if (node_nr_slabs(n
))
6146 int __kmem_cache_shrink(struct kmem_cache
*s
)
6149 return __kmem_cache_do_shrink(s
);
6152 static int slab_mem_going_offline_callback(void *arg
)
6154 struct kmem_cache
*s
;
6156 mutex_lock(&slab_mutex
);
6157 list_for_each_entry(s
, &slab_caches
, list
) {
6158 flush_all_cpus_locked(s
);
6159 __kmem_cache_do_shrink(s
);
6161 mutex_unlock(&slab_mutex
);
6166 static void slab_mem_offline_callback(void *arg
)
6168 struct memory_notify
*marg
= arg
;
6171 offline_node
= marg
->status_change_nid_normal
;
6174 * If the node still has available memory. we need kmem_cache_node
6177 if (offline_node
< 0)
6180 mutex_lock(&slab_mutex
);
6181 node_clear(offline_node
, slab_nodes
);
6183 * We no longer free kmem_cache_node structures here, as it would be
6184 * racy with all get_node() users, and infeasible to protect them with
6187 mutex_unlock(&slab_mutex
);
6190 static int slab_mem_going_online_callback(void *arg
)
6192 struct kmem_cache_node
*n
;
6193 struct kmem_cache
*s
;
6194 struct memory_notify
*marg
= arg
;
6195 int nid
= marg
->status_change_nid_normal
;
6199 * If the node's memory is already available, then kmem_cache_node is
6200 * already created. Nothing to do.
6206 * We are bringing a node online. No memory is available yet. We must
6207 * allocate a kmem_cache_node structure in order to bring the node
6210 mutex_lock(&slab_mutex
);
6211 list_for_each_entry(s
, &slab_caches
, list
) {
6213 * The structure may already exist if the node was previously
6214 * onlined and offlined.
6216 if (get_node(s
, nid
))
6219 * XXX: kmem_cache_alloc_node will fallback to other nodes
6220 * since memory is not yet available from the node that
6223 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
6228 init_kmem_cache_node(n
);
6232 * Any cache created after this point will also have kmem_cache_node
6233 * initialized for the new node.
6235 node_set(nid
, slab_nodes
);
6237 mutex_unlock(&slab_mutex
);
6241 static int slab_memory_callback(struct notifier_block
*self
,
6242 unsigned long action
, void *arg
)
6247 case MEM_GOING_ONLINE
:
6248 ret
= slab_mem_going_online_callback(arg
);
6250 case MEM_GOING_OFFLINE
:
6251 ret
= slab_mem_going_offline_callback(arg
);
6254 case MEM_CANCEL_ONLINE
:
6255 slab_mem_offline_callback(arg
);
6258 case MEM_CANCEL_OFFLINE
:
6262 ret
= notifier_from_errno(ret
);
6268 /********************************************************************
6269 * Basic setup of slabs
6270 *******************************************************************/
6273 * Used for early kmem_cache structures that were allocated using
6274 * the page allocator. Allocate them properly then fix up the pointers
6275 * that may be pointing to the wrong kmem_cache structure.
6278 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
6281 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
6282 struct kmem_cache_node
*n
;
6284 memcpy(s
, static_cache
, kmem_cache
->object_size
);
6287 * This runs very early, and only the boot processor is supposed to be
6288 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6291 __flush_cpu_slab(s
, smp_processor_id());
6292 for_each_kmem_cache_node(s
, node
, n
) {
6295 list_for_each_entry(p
, &n
->partial
, slab_list
)
6298 #ifdef CONFIG_SLUB_DEBUG
6299 list_for_each_entry(p
, &n
->full
, slab_list
)
6303 list_add(&s
->list
, &slab_caches
);
6307 void __init
kmem_cache_init(void)
6309 static __initdata
struct kmem_cache boot_kmem_cache
,
6310 boot_kmem_cache_node
;
6313 if (debug_guardpage_minorder())
6316 /* Print slub debugging pointers without hashing */
6317 if (__slub_debug_enabled())
6318 no_hash_pointers_enable(NULL
);
6320 kmem_cache_node
= &boot_kmem_cache_node
;
6321 kmem_cache
= &boot_kmem_cache
;
6324 * Initialize the nodemask for which we will allocate per node
6325 * structures. Here we don't need taking slab_mutex yet.
6327 for_each_node_state(node
, N_NORMAL_MEMORY
)
6328 node_set(node
, slab_nodes
);
6330 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
6331 sizeof(struct kmem_cache_node
),
6332 SLAB_HWCACHE_ALIGN
| SLAB_NO_OBJ_EXT
, 0, 0);
6334 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
6336 /* Able to allocate the per node structures */
6337 slab_state
= PARTIAL
;
6339 create_boot_cache(kmem_cache
, "kmem_cache",
6340 offsetof(struct kmem_cache
, node
) +
6341 nr_node_ids
* sizeof(struct kmem_cache_node
*),
6342 SLAB_HWCACHE_ALIGN
| SLAB_NO_OBJ_EXT
, 0, 0);
6344 kmem_cache
= bootstrap(&boot_kmem_cache
);
6345 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
6347 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6348 setup_kmalloc_cache_index_table();
6349 create_kmalloc_caches();
6351 /* Setup random freelists for each cache */
6352 init_freelist_randomization();
6354 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
6357 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6359 slub_min_order
, slub_max_order
, slub_min_objects
,
6360 nr_cpu_ids
, nr_node_ids
);
6363 void __init
kmem_cache_init_late(void)
6365 #ifndef CONFIG_SLUB_TINY
6366 flushwq
= alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM
, 0);
6372 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
6373 slab_flags_t flags
, void (*ctor
)(void *))
6375 struct kmem_cache
*s
;
6377 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
6379 if (sysfs_slab_alias(s
, name
))
6380 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6386 * Adjust the object sizes so that we clear
6387 * the complete object on kzalloc.
6389 s
->object_size
= max(s
->object_size
, size
);
6390 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
6396 int do_kmem_cache_create(struct kmem_cache
*s
, const char *name
,
6397 unsigned int size
, struct kmem_cache_args
*args
,
6403 s
->size
= s
->object_size
= size
;
6405 s
->flags
= kmem_cache_flags(flags
, s
->name
);
6406 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6407 s
->random
= get_random_long();
6409 s
->align
= args
->align
;
6410 s
->ctor
= args
->ctor
;
6411 #ifdef CONFIG_HARDENED_USERCOPY
6412 s
->useroffset
= args
->useroffset
;
6413 s
->usersize
= args
->usersize
;
6416 if (!calculate_sizes(args
, s
))
6418 if (disable_higher_order_debug
) {
6420 * Disable debugging flags that store metadata if the min slab
6423 if (get_order(s
->size
) > get_order(s
->object_size
)) {
6424 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
6426 if (!calculate_sizes(args
, s
))
6431 #ifdef system_has_freelist_aba
6432 if (system_has_freelist_aba() && !(s
->flags
& SLAB_NO_CMPXCHG
)) {
6433 /* Enable fast mode */
6434 s
->flags
|= __CMPXCHG_DOUBLE
;
6439 * The larger the object size is, the more slabs we want on the partial
6440 * list to avoid pounding the page allocator excessively.
6442 s
->min_partial
= min_t(unsigned long, MAX_PARTIAL
, ilog2(s
->size
) / 2);
6443 s
->min_partial
= max_t(unsigned long, MIN_PARTIAL
, s
->min_partial
);
6448 s
->remote_node_defrag_ratio
= 1000;
6451 /* Initialize the pre-computed randomized freelist if slab is up */
6452 if (slab_state
>= UP
) {
6453 if (init_cache_random_seq(s
))
6457 if (!init_kmem_cache_nodes(s
))
6460 if (!alloc_kmem_cache_cpus(s
))
6465 /* Mutex is not taken during early boot */
6466 if (slab_state
<= UP
)
6470 * Failing to create sysfs files is not critical to SLUB functionality.
6471 * If it fails, proceed with cache creation without these files.
6473 if (sysfs_slab_add(s
))
6474 pr_err("SLUB: Unable to add cache %s to sysfs\n", s
->name
);
6476 if (s
->flags
& SLAB_STORE_USER
)
6477 debugfs_slab_add(s
);
6481 __kmem_cache_release(s
);
6485 #ifdef SLAB_SUPPORTS_SYSFS
6486 static int count_inuse(struct slab
*slab
)
6491 static int count_total(struct slab
*slab
)
6493 return slab
->objects
;
6497 #ifdef CONFIG_SLUB_DEBUG
6498 static void validate_slab(struct kmem_cache
*s
, struct slab
*slab
,
6499 unsigned long *obj_map
)
6502 void *addr
= slab_address(slab
);
6504 if (!check_slab(s
, slab
) || !on_freelist(s
, slab
, NULL
))
6507 /* Now we know that a valid freelist exists */
6508 __fill_map(obj_map
, s
, slab
);
6509 for_each_object(p
, s
, addr
, slab
->objects
) {
6510 u8 val
= test_bit(__obj_to_index(s
, addr
, p
), obj_map
) ?
6511 SLUB_RED_INACTIVE
: SLUB_RED_ACTIVE
;
6513 if (!check_object(s
, slab
, p
, val
))
6518 static int validate_slab_node(struct kmem_cache
*s
,
6519 struct kmem_cache_node
*n
, unsigned long *obj_map
)
6521 unsigned long count
= 0;
6523 unsigned long flags
;
6525 spin_lock_irqsave(&n
->list_lock
, flags
);
6527 list_for_each_entry(slab
, &n
->partial
, slab_list
) {
6528 validate_slab(s
, slab
, obj_map
);
6531 if (count
!= n
->nr_partial
) {
6532 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6533 s
->name
, count
, n
->nr_partial
);
6534 slab_add_kunit_errors();
6537 if (!(s
->flags
& SLAB_STORE_USER
))
6540 list_for_each_entry(slab
, &n
->full
, slab_list
) {
6541 validate_slab(s
, slab
, obj_map
);
6544 if (count
!= node_nr_slabs(n
)) {
6545 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6546 s
->name
, count
, node_nr_slabs(n
));
6547 slab_add_kunit_errors();
6551 spin_unlock_irqrestore(&n
->list_lock
, flags
);
6555 long validate_slab_cache(struct kmem_cache
*s
)
6558 unsigned long count
= 0;
6559 struct kmem_cache_node
*n
;
6560 unsigned long *obj_map
;
6562 obj_map
= bitmap_alloc(oo_objects(s
->oo
), GFP_KERNEL
);
6567 for_each_kmem_cache_node(s
, node
, n
)
6568 count
+= validate_slab_node(s
, n
, obj_map
);
6570 bitmap_free(obj_map
);
6574 EXPORT_SYMBOL(validate_slab_cache
);
6576 #ifdef CONFIG_DEBUG_FS
6578 * Generate lists of code addresses where slabcache objects are allocated
6583 depot_stack_handle_t handle
;
6584 unsigned long count
;
6586 unsigned long waste
;
6592 DECLARE_BITMAP(cpus
, NR_CPUS
);
6598 unsigned long count
;
6599 struct location
*loc
;
6603 static struct dentry
*slab_debugfs_root
;
6605 static void free_loc_track(struct loc_track
*t
)
6608 free_pages((unsigned long)t
->loc
,
6609 get_order(sizeof(struct location
) * t
->max
));
6612 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
6617 order
= get_order(sizeof(struct location
) * max
);
6619 l
= (void *)__get_free_pages(flags
, order
);
6624 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
6632 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
6633 const struct track
*track
,
6634 unsigned int orig_size
)
6636 long start
, end
, pos
;
6638 unsigned long caddr
, chandle
, cwaste
;
6639 unsigned long age
= jiffies
- track
->when
;
6640 depot_stack_handle_t handle
= 0;
6641 unsigned int waste
= s
->object_size
- orig_size
;
6643 #ifdef CONFIG_STACKDEPOT
6644 handle
= READ_ONCE(track
->handle
);
6650 pos
= start
+ (end
- start
+ 1) / 2;
6653 * There is nothing at "end". If we end up there
6654 * we need to add something to before end.
6661 chandle
= l
->handle
;
6663 if ((track
->addr
== caddr
) && (handle
== chandle
) &&
6664 (waste
== cwaste
)) {
6669 if (age
< l
->min_time
)
6671 if (age
> l
->max_time
)
6674 if (track
->pid
< l
->min_pid
)
6675 l
->min_pid
= track
->pid
;
6676 if (track
->pid
> l
->max_pid
)
6677 l
->max_pid
= track
->pid
;
6679 cpumask_set_cpu(track
->cpu
,
6680 to_cpumask(l
->cpus
));
6682 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
6686 if (track
->addr
< caddr
)
6688 else if (track
->addr
== caddr
&& handle
< chandle
)
6690 else if (track
->addr
== caddr
&& handle
== chandle
&&
6698 * Not found. Insert new tracking element.
6700 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
6706 (t
->count
- pos
) * sizeof(struct location
));
6709 l
->addr
= track
->addr
;
6713 l
->min_pid
= track
->pid
;
6714 l
->max_pid
= track
->pid
;
6717 cpumask_clear(to_cpumask(l
->cpus
));
6718 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
6719 nodes_clear(l
->nodes
);
6720 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
6724 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
6725 struct slab
*slab
, enum track_item alloc
,
6726 unsigned long *obj_map
)
6728 void *addr
= slab_address(slab
);
6729 bool is_alloc
= (alloc
== TRACK_ALLOC
);
6732 __fill_map(obj_map
, s
, slab
);
6734 for_each_object(p
, s
, addr
, slab
->objects
)
6735 if (!test_bit(__obj_to_index(s
, addr
, p
), obj_map
))
6736 add_location(t
, s
, get_track(s
, p
, alloc
),
6737 is_alloc
? get_orig_size(s
, p
) :
6740 #endif /* CONFIG_DEBUG_FS */
6741 #endif /* CONFIG_SLUB_DEBUG */
6743 #ifdef SLAB_SUPPORTS_SYSFS
6744 enum slab_stat_type
{
6745 SL_ALL
, /* All slabs */
6746 SL_PARTIAL
, /* Only partially allocated slabs */
6747 SL_CPU
, /* Only slabs used for cpu caches */
6748 SL_OBJECTS
, /* Determine allocated objects not slabs */
6749 SL_TOTAL
/* Determine object capacity not slabs */
6752 #define SO_ALL (1 << SL_ALL)
6753 #define SO_PARTIAL (1 << SL_PARTIAL)
6754 #define SO_CPU (1 << SL_CPU)
6755 #define SO_OBJECTS (1 << SL_OBJECTS)
6756 #define SO_TOTAL (1 << SL_TOTAL)
6758 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
6759 char *buf
, unsigned long flags
)
6761 unsigned long total
= 0;
6764 unsigned long *nodes
;
6767 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
6771 if (flags
& SO_CPU
) {
6774 for_each_possible_cpu(cpu
) {
6775 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
6780 slab
= READ_ONCE(c
->slab
);
6784 node
= slab_nid(slab
);
6785 if (flags
& SO_TOTAL
)
6787 else if (flags
& SO_OBJECTS
)
6795 #ifdef CONFIG_SLUB_CPU_PARTIAL
6796 slab
= slub_percpu_partial_read_once(c
);
6798 node
= slab_nid(slab
);
6799 if (flags
& SO_TOTAL
)
6801 else if (flags
& SO_OBJECTS
)
6804 x
= data_race(slab
->slabs
);
6813 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6814 * already held which will conflict with an existing lock order:
6816 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6818 * We don't really need mem_hotplug_lock (to hold off
6819 * slab_mem_going_offline_callback) here because slab's memory hot
6820 * unplug code doesn't destroy the kmem_cache->node[] data.
6823 #ifdef CONFIG_SLUB_DEBUG
6824 if (flags
& SO_ALL
) {
6825 struct kmem_cache_node
*n
;
6827 for_each_kmem_cache_node(s
, node
, n
) {
6829 if (flags
& SO_TOTAL
)
6830 x
= node_nr_objs(n
);
6831 else if (flags
& SO_OBJECTS
)
6832 x
= node_nr_objs(n
) - count_partial(n
, count_free
);
6834 x
= node_nr_slabs(n
);
6841 if (flags
& SO_PARTIAL
) {
6842 struct kmem_cache_node
*n
;
6844 for_each_kmem_cache_node(s
, node
, n
) {
6845 if (flags
& SO_TOTAL
)
6846 x
= count_partial(n
, count_total
);
6847 else if (flags
& SO_OBJECTS
)
6848 x
= count_partial(n
, count_inuse
);
6856 len
+= sysfs_emit_at(buf
, len
, "%lu", total
);
6858 for (node
= 0; node
< nr_node_ids
; node
++) {
6860 len
+= sysfs_emit_at(buf
, len
, " N%d=%lu",
6864 len
+= sysfs_emit_at(buf
, len
, "\n");
6870 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6871 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6873 struct slab_attribute
{
6874 struct attribute attr
;
6875 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
6876 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
6879 #define SLAB_ATTR_RO(_name) \
6880 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6882 #define SLAB_ATTR(_name) \
6883 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6885 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
6887 return sysfs_emit(buf
, "%u\n", s
->size
);
6889 SLAB_ATTR_RO(slab_size
);
6891 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
6893 return sysfs_emit(buf
, "%u\n", s
->align
);
6895 SLAB_ATTR_RO(align
);
6897 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
6899 return sysfs_emit(buf
, "%u\n", s
->object_size
);
6901 SLAB_ATTR_RO(object_size
);
6903 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
6905 return sysfs_emit(buf
, "%u\n", oo_objects(s
->oo
));
6907 SLAB_ATTR_RO(objs_per_slab
);
6909 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
6911 return sysfs_emit(buf
, "%u\n", oo_order(s
->oo
));
6913 SLAB_ATTR_RO(order
);
6915 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
6917 return sysfs_emit(buf
, "%lu\n", s
->min_partial
);
6920 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
6926 err
= kstrtoul(buf
, 10, &min
);
6930 s
->min_partial
= min
;
6933 SLAB_ATTR(min_partial
);
6935 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
6937 unsigned int nr_partial
= 0;
6938 #ifdef CONFIG_SLUB_CPU_PARTIAL
6939 nr_partial
= s
->cpu_partial
;
6942 return sysfs_emit(buf
, "%u\n", nr_partial
);
6945 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
6948 unsigned int objects
;
6951 err
= kstrtouint(buf
, 10, &objects
);
6954 if (objects
&& !kmem_cache_has_cpu_partial(s
))
6957 slub_set_cpu_partial(s
, objects
);
6961 SLAB_ATTR(cpu_partial
);
6963 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
6967 return sysfs_emit(buf
, "%pS\n", s
->ctor
);
6971 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
6973 return sysfs_emit(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
6975 SLAB_ATTR_RO(aliases
);
6977 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
6979 return show_slab_objects(s
, buf
, SO_PARTIAL
);
6981 SLAB_ATTR_RO(partial
);
6983 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
6985 return show_slab_objects(s
, buf
, SO_CPU
);
6987 SLAB_ATTR_RO(cpu_slabs
);
6989 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
6991 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
6993 SLAB_ATTR_RO(objects_partial
);
6995 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
6999 int cpu __maybe_unused
;
7002 #ifdef CONFIG_SLUB_CPU_PARTIAL
7003 for_each_online_cpu(cpu
) {
7006 slab
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
7009 slabs
+= data_race(slab
->slabs
);
7013 /* Approximate half-full slabs, see slub_set_cpu_partial() */
7014 objects
= (slabs
* oo_objects(s
->oo
)) / 2;
7015 len
+= sysfs_emit_at(buf
, len
, "%d(%d)", objects
, slabs
);
7017 #ifdef CONFIG_SLUB_CPU_PARTIAL
7018 for_each_online_cpu(cpu
) {
7021 slab
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
7023 slabs
= data_race(slab
->slabs
);
7024 objects
= (slabs
* oo_objects(s
->oo
)) / 2;
7025 len
+= sysfs_emit_at(buf
, len
, " C%d=%d(%d)",
7026 cpu
, objects
, slabs
);
7030 len
+= sysfs_emit_at(buf
, len
, "\n");
7034 SLAB_ATTR_RO(slabs_cpu_partial
);
7036 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
7038 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
7040 SLAB_ATTR_RO(reclaim_account
);
7042 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
7044 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
7046 SLAB_ATTR_RO(hwcache_align
);
7048 #ifdef CONFIG_ZONE_DMA
7049 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
7051 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
7053 SLAB_ATTR_RO(cache_dma
);
7056 #ifdef CONFIG_HARDENED_USERCOPY
7057 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
7059 return sysfs_emit(buf
, "%u\n", s
->usersize
);
7061 SLAB_ATTR_RO(usersize
);
7064 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
7066 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
7068 SLAB_ATTR_RO(destroy_by_rcu
);
7070 #ifdef CONFIG_SLUB_DEBUG
7071 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
7073 return show_slab_objects(s
, buf
, SO_ALL
);
7075 SLAB_ATTR_RO(slabs
);
7077 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
7079 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
7081 SLAB_ATTR_RO(total_objects
);
7083 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
7085 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
7087 SLAB_ATTR_RO(objects
);
7089 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
7091 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
7093 SLAB_ATTR_RO(sanity_checks
);
7095 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
7097 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
7099 SLAB_ATTR_RO(trace
);
7101 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
7103 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
7106 SLAB_ATTR_RO(red_zone
);
7108 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
7110 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
7113 SLAB_ATTR_RO(poison
);
7115 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
7117 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
7120 SLAB_ATTR_RO(store_user
);
7122 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
7127 static ssize_t
validate_store(struct kmem_cache
*s
,
7128 const char *buf
, size_t length
)
7132 if (buf
[0] == '1' && kmem_cache_debug(s
)) {
7133 ret
= validate_slab_cache(s
);
7139 SLAB_ATTR(validate
);
7141 #endif /* CONFIG_SLUB_DEBUG */
7143 #ifdef CONFIG_FAILSLAB
7144 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
7146 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
7149 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
7152 if (s
->refcount
> 1)
7156 WRITE_ONCE(s
->flags
, s
->flags
| SLAB_FAILSLAB
);
7158 WRITE_ONCE(s
->flags
, s
->flags
& ~SLAB_FAILSLAB
);
7162 SLAB_ATTR(failslab
);
7165 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
7170 static ssize_t
shrink_store(struct kmem_cache
*s
,
7171 const char *buf
, size_t length
)
7174 kmem_cache_shrink(s
);
7182 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
7184 return sysfs_emit(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
7187 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
7188 const char *buf
, size_t length
)
7193 err
= kstrtouint(buf
, 10, &ratio
);
7199 s
->remote_node_defrag_ratio
= ratio
* 10;
7203 SLAB_ATTR(remote_node_defrag_ratio
);
7206 #ifdef CONFIG_SLUB_STATS
7207 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
7209 unsigned long sum
= 0;
7212 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
7217 for_each_online_cpu(cpu
) {
7218 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
7224 len
+= sysfs_emit_at(buf
, len
, "%lu", sum
);
7227 for_each_online_cpu(cpu
) {
7229 len
+= sysfs_emit_at(buf
, len
, " C%d=%u",
7234 len
+= sysfs_emit_at(buf
, len
, "\n");
7239 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
7243 for_each_online_cpu(cpu
)
7244 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
7247 #define STAT_ATTR(si, text) \
7248 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7250 return show_stat(s, buf, si); \
7252 static ssize_t text##_store(struct kmem_cache *s, \
7253 const char *buf, size_t length) \
7255 if (buf[0] != '0') \
7257 clear_stat(s, si); \
7262 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7263 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
7264 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
7265 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
7266 STAT_ATTR(FREE_FROZEN
, free_frozen
);
7267 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
7268 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
7269 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
7270 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
7271 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
7272 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
7273 STAT_ATTR(FREE_SLAB
, free_slab
);
7274 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
7275 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
7276 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
7277 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
7278 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
7279 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
7280 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
7281 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
7282 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
7283 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
7284 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
7285 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
7286 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
7287 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
7288 #endif /* CONFIG_SLUB_STATS */
7290 #ifdef CONFIG_KFENCE
7291 static ssize_t
skip_kfence_show(struct kmem_cache
*s
, char *buf
)
7293 return sysfs_emit(buf
, "%d\n", !!(s
->flags
& SLAB_SKIP_KFENCE
));
7296 static ssize_t
skip_kfence_store(struct kmem_cache
*s
,
7297 const char *buf
, size_t length
)
7302 s
->flags
&= ~SLAB_SKIP_KFENCE
;
7303 else if (buf
[0] == '1')
7304 s
->flags
|= SLAB_SKIP_KFENCE
;
7310 SLAB_ATTR(skip_kfence
);
7313 static struct attribute
*slab_attrs
[] = {
7314 &slab_size_attr
.attr
,
7315 &object_size_attr
.attr
,
7316 &objs_per_slab_attr
.attr
,
7318 &min_partial_attr
.attr
,
7319 &cpu_partial_attr
.attr
,
7320 &objects_partial_attr
.attr
,
7322 &cpu_slabs_attr
.attr
,
7326 &hwcache_align_attr
.attr
,
7327 &reclaim_account_attr
.attr
,
7328 &destroy_by_rcu_attr
.attr
,
7330 &slabs_cpu_partial_attr
.attr
,
7331 #ifdef CONFIG_SLUB_DEBUG
7332 &total_objects_attr
.attr
,
7335 &sanity_checks_attr
.attr
,
7337 &red_zone_attr
.attr
,
7339 &store_user_attr
.attr
,
7340 &validate_attr
.attr
,
7342 #ifdef CONFIG_ZONE_DMA
7343 &cache_dma_attr
.attr
,
7346 &remote_node_defrag_ratio_attr
.attr
,
7348 #ifdef CONFIG_SLUB_STATS
7349 &alloc_fastpath_attr
.attr
,
7350 &alloc_slowpath_attr
.attr
,
7351 &free_fastpath_attr
.attr
,
7352 &free_slowpath_attr
.attr
,
7353 &free_frozen_attr
.attr
,
7354 &free_add_partial_attr
.attr
,
7355 &free_remove_partial_attr
.attr
,
7356 &alloc_from_partial_attr
.attr
,
7357 &alloc_slab_attr
.attr
,
7358 &alloc_refill_attr
.attr
,
7359 &alloc_node_mismatch_attr
.attr
,
7360 &free_slab_attr
.attr
,
7361 &cpuslab_flush_attr
.attr
,
7362 &deactivate_full_attr
.attr
,
7363 &deactivate_empty_attr
.attr
,
7364 &deactivate_to_head_attr
.attr
,
7365 &deactivate_to_tail_attr
.attr
,
7366 &deactivate_remote_frees_attr
.attr
,
7367 &deactivate_bypass_attr
.attr
,
7368 &order_fallback_attr
.attr
,
7369 &cmpxchg_double_fail_attr
.attr
,
7370 &cmpxchg_double_cpu_fail_attr
.attr
,
7371 &cpu_partial_alloc_attr
.attr
,
7372 &cpu_partial_free_attr
.attr
,
7373 &cpu_partial_node_attr
.attr
,
7374 &cpu_partial_drain_attr
.attr
,
7376 #ifdef CONFIG_FAILSLAB
7377 &failslab_attr
.attr
,
7379 #ifdef CONFIG_HARDENED_USERCOPY
7380 &usersize_attr
.attr
,
7382 #ifdef CONFIG_KFENCE
7383 &skip_kfence_attr
.attr
,
7389 static const struct attribute_group slab_attr_group
= {
7390 .attrs
= slab_attrs
,
7393 static ssize_t
slab_attr_show(struct kobject
*kobj
,
7394 struct attribute
*attr
,
7397 struct slab_attribute
*attribute
;
7398 struct kmem_cache
*s
;
7400 attribute
= to_slab_attr(attr
);
7403 if (!attribute
->show
)
7406 return attribute
->show(s
, buf
);
7409 static ssize_t
slab_attr_store(struct kobject
*kobj
,
7410 struct attribute
*attr
,
7411 const char *buf
, size_t len
)
7413 struct slab_attribute
*attribute
;
7414 struct kmem_cache
*s
;
7416 attribute
= to_slab_attr(attr
);
7419 if (!attribute
->store
)
7422 return attribute
->store(s
, buf
, len
);
7425 static void kmem_cache_release(struct kobject
*k
)
7427 slab_kmem_cache_release(to_slab(k
));
7430 static const struct sysfs_ops slab_sysfs_ops
= {
7431 .show
= slab_attr_show
,
7432 .store
= slab_attr_store
,
7435 static const struct kobj_type slab_ktype
= {
7436 .sysfs_ops
= &slab_sysfs_ops
,
7437 .release
= kmem_cache_release
,
7440 static struct kset
*slab_kset
;
7442 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
7447 #define ID_STR_LENGTH 32
7449 /* Create a unique string id for a slab cache:
7451 * Format :[flags-]size
7453 static char *create_unique_id(struct kmem_cache
*s
)
7455 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
7459 return ERR_PTR(-ENOMEM
);
7463 * First flags affecting slabcache operations. We will only
7464 * get here for aliasable slabs so we do not need to support
7465 * too many flags. The flags here must cover all flags that
7466 * are matched during merging to guarantee that the id is
7469 if (s
->flags
& SLAB_CACHE_DMA
)
7471 if (s
->flags
& SLAB_CACHE_DMA32
)
7473 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
7475 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
7477 if (s
->flags
& SLAB_ACCOUNT
)
7481 p
+= snprintf(p
, ID_STR_LENGTH
- (p
- name
), "%07u", s
->size
);
7483 if (WARN_ON(p
> name
+ ID_STR_LENGTH
- 1)) {
7485 return ERR_PTR(-EINVAL
);
7487 kmsan_unpoison_memory(name
, p
- name
);
7491 static int sysfs_slab_add(struct kmem_cache
*s
)
7495 struct kset
*kset
= cache_kset(s
);
7496 int unmergeable
= slab_unmergeable(s
);
7498 if (!unmergeable
&& disable_higher_order_debug
&&
7499 (slub_debug
& DEBUG_METADATA_FLAGS
))
7504 * Slabcache can never be merged so we can use the name proper.
7505 * This is typically the case for debug situations. In that
7506 * case we can catch duplicate names easily.
7508 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
7512 * Create a unique name for the slab as a target
7515 name
= create_unique_id(s
);
7517 return PTR_ERR(name
);
7520 s
->kobj
.kset
= kset
;
7521 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
7525 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
7530 /* Setup first alias */
7531 sysfs_slab_alias(s
, s
->name
);
7538 kobject_del(&s
->kobj
);
7542 void sysfs_slab_unlink(struct kmem_cache
*s
)
7544 if (s
->kobj
.state_in_sysfs
)
7545 kobject_del(&s
->kobj
);
7548 void sysfs_slab_release(struct kmem_cache
*s
)
7550 kobject_put(&s
->kobj
);
7554 * Need to buffer aliases during bootup until sysfs becomes
7555 * available lest we lose that information.
7557 struct saved_alias
{
7558 struct kmem_cache
*s
;
7560 struct saved_alias
*next
;
7563 static struct saved_alias
*alias_list
;
7565 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
7567 struct saved_alias
*al
;
7569 if (slab_state
== FULL
) {
7571 * If we have a leftover link then remove it.
7573 sysfs_remove_link(&slab_kset
->kobj
, name
);
7575 * The original cache may have failed to generate sysfs file.
7576 * In that case, sysfs_create_link() returns -ENOENT and
7577 * symbolic link creation is skipped.
7579 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
7582 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
7588 al
->next
= alias_list
;
7590 kmsan_unpoison_memory(al
, sizeof(*al
));
7594 static int __init
slab_sysfs_init(void)
7596 struct kmem_cache
*s
;
7599 mutex_lock(&slab_mutex
);
7601 slab_kset
= kset_create_and_add("slab", NULL
, kernel_kobj
);
7603 mutex_unlock(&slab_mutex
);
7604 pr_err("Cannot register slab subsystem.\n");
7610 list_for_each_entry(s
, &slab_caches
, list
) {
7611 err
= sysfs_slab_add(s
);
7613 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7617 while (alias_list
) {
7618 struct saved_alias
*al
= alias_list
;
7620 alias_list
= alias_list
->next
;
7621 err
= sysfs_slab_alias(al
->s
, al
->name
);
7623 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7628 mutex_unlock(&slab_mutex
);
7631 late_initcall(slab_sysfs_init
);
7632 #endif /* SLAB_SUPPORTS_SYSFS */
7634 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7635 static int slab_debugfs_show(struct seq_file
*seq
, void *v
)
7637 struct loc_track
*t
= seq
->private;
7641 idx
= (unsigned long) t
->idx
;
7642 if (idx
< t
->count
) {
7645 seq_printf(seq
, "%7ld ", l
->count
);
7648 seq_printf(seq
, "%pS", (void *)l
->addr
);
7650 seq_puts(seq
, "<not-available>");
7653 seq_printf(seq
, " waste=%lu/%lu",
7654 l
->count
* l
->waste
, l
->waste
);
7656 if (l
->sum_time
!= l
->min_time
) {
7657 seq_printf(seq
, " age=%ld/%llu/%ld",
7658 l
->min_time
, div_u64(l
->sum_time
, l
->count
),
7661 seq_printf(seq
, " age=%ld", l
->min_time
);
7663 if (l
->min_pid
!= l
->max_pid
)
7664 seq_printf(seq
, " pid=%ld-%ld", l
->min_pid
, l
->max_pid
);
7666 seq_printf(seq
, " pid=%ld",
7669 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l
->cpus
)))
7670 seq_printf(seq
, " cpus=%*pbl",
7671 cpumask_pr_args(to_cpumask(l
->cpus
)));
7673 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
))
7674 seq_printf(seq
, " nodes=%*pbl",
7675 nodemask_pr_args(&l
->nodes
));
7677 #ifdef CONFIG_STACKDEPOT
7679 depot_stack_handle_t handle
;
7680 unsigned long *entries
;
7681 unsigned int nr_entries
, j
;
7683 handle
= READ_ONCE(l
->handle
);
7685 nr_entries
= stack_depot_fetch(handle
, &entries
);
7686 seq_puts(seq
, "\n");
7687 for (j
= 0; j
< nr_entries
; j
++)
7688 seq_printf(seq
, " %pS\n", (void *)entries
[j
]);
7692 seq_puts(seq
, "\n");
7695 if (!idx
&& !t
->count
)
7696 seq_puts(seq
, "No data\n");
7701 static void slab_debugfs_stop(struct seq_file
*seq
, void *v
)
7705 static void *slab_debugfs_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
7707 struct loc_track
*t
= seq
->private;
7710 if (*ppos
<= t
->count
)
7716 static int cmp_loc_by_count(const void *a
, const void *b
, const void *data
)
7718 struct location
*loc1
= (struct location
*)a
;
7719 struct location
*loc2
= (struct location
*)b
;
7721 if (loc1
->count
> loc2
->count
)
7727 static void *slab_debugfs_start(struct seq_file
*seq
, loff_t
*ppos
)
7729 struct loc_track
*t
= seq
->private;
7735 static const struct seq_operations slab_debugfs_sops
= {
7736 .start
= slab_debugfs_start
,
7737 .next
= slab_debugfs_next
,
7738 .stop
= slab_debugfs_stop
,
7739 .show
= slab_debugfs_show
,
7742 static int slab_debug_trace_open(struct inode
*inode
, struct file
*filep
)
7745 struct kmem_cache_node
*n
;
7746 enum track_item alloc
;
7748 struct loc_track
*t
= __seq_open_private(filep
, &slab_debugfs_sops
,
7749 sizeof(struct loc_track
));
7750 struct kmem_cache
*s
= file_inode(filep
)->i_private
;
7751 unsigned long *obj_map
;
7756 obj_map
= bitmap_alloc(oo_objects(s
->oo
), GFP_KERNEL
);
7758 seq_release_private(inode
, filep
);
7762 alloc
= debugfs_get_aux_num(filep
);
7764 if (!alloc_loc_track(t
, PAGE_SIZE
/ sizeof(struct location
), GFP_KERNEL
)) {
7765 bitmap_free(obj_map
);
7766 seq_release_private(inode
, filep
);
7770 for_each_kmem_cache_node(s
, node
, n
) {
7771 unsigned long flags
;
7774 if (!node_nr_slabs(n
))
7777 spin_lock_irqsave(&n
->list_lock
, flags
);
7778 list_for_each_entry(slab
, &n
->partial
, slab_list
)
7779 process_slab(t
, s
, slab
, alloc
, obj_map
);
7780 list_for_each_entry(slab
, &n
->full
, slab_list
)
7781 process_slab(t
, s
, slab
, alloc
, obj_map
);
7782 spin_unlock_irqrestore(&n
->list_lock
, flags
);
7785 /* Sort locations by count */
7786 sort_r(t
->loc
, t
->count
, sizeof(struct location
),
7787 cmp_loc_by_count
, NULL
, NULL
);
7789 bitmap_free(obj_map
);
7793 static int slab_debug_trace_release(struct inode
*inode
, struct file
*file
)
7795 struct seq_file
*seq
= file
->private_data
;
7796 struct loc_track
*t
= seq
->private;
7799 return seq_release_private(inode
, file
);
7802 static const struct file_operations slab_debugfs_fops
= {
7803 .open
= slab_debug_trace_open
,
7805 .llseek
= seq_lseek
,
7806 .release
= slab_debug_trace_release
,
7809 static void debugfs_slab_add(struct kmem_cache
*s
)
7811 struct dentry
*slab_cache_dir
;
7813 if (unlikely(!slab_debugfs_root
))
7816 slab_cache_dir
= debugfs_create_dir(s
->name
, slab_debugfs_root
);
7818 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir
, s
,
7819 TRACK_ALLOC
, &slab_debugfs_fops
);
7821 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir
, s
,
7822 TRACK_FREE
, &slab_debugfs_fops
);
7825 void debugfs_slab_release(struct kmem_cache
*s
)
7827 debugfs_lookup_and_remove(s
->name
, slab_debugfs_root
);
7830 static int __init
slab_debugfs_init(void)
7832 struct kmem_cache
*s
;
7834 slab_debugfs_root
= debugfs_create_dir("slab", NULL
);
7836 list_for_each_entry(s
, &slab_caches
, list
)
7837 if (s
->flags
& SLAB_STORE_USER
)
7838 debugfs_slab_add(s
);
7843 __initcall(slab_debugfs_init
);
7846 * The /proc/slabinfo ABI
7848 #ifdef CONFIG_SLUB_DEBUG
7849 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
7851 unsigned long nr_slabs
= 0;
7852 unsigned long nr_objs
= 0;
7853 unsigned long nr_free
= 0;
7855 struct kmem_cache_node
*n
;
7857 for_each_kmem_cache_node(s
, node
, n
) {
7858 nr_slabs
+= node_nr_slabs(n
);
7859 nr_objs
+= node_nr_objs(n
);
7860 nr_free
+= count_partial_free_approx(n
);
7863 sinfo
->active_objs
= nr_objs
- nr_free
;
7864 sinfo
->num_objs
= nr_objs
;
7865 sinfo
->active_slabs
= nr_slabs
;
7866 sinfo
->num_slabs
= nr_slabs
;
7867 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
7868 sinfo
->cache_order
= oo_order(s
->oo
);
7870 #endif /* CONFIG_SLUB_DEBUG */