]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/sparse.c
Merge tag 'x86-urgent-2020-05-31' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21
22 /*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 ____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46
47 int page_to_nid(const struct page *page)
48 {
49 return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
70 if (slab_is_available()) {
71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 } else {
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
79
80 return section;
81 }
82
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
87
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
95 if (mem_section[root])
96 return 0;
97
98 section = sparse_index_alloc(nid);
99 if (!section)
100 return -ENOMEM;
101
102 mem_section[root] = section;
103
104 return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 return 0;
110 }
111 #endif
112
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 unsigned long root_nr;
117 struct mem_section *root = NULL;
118
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
128 VM_BUG_ON(!root);
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138
139 /*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 return (nid << SECTION_NID_SHIFT);
148 }
149
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
158 {
159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
172 } else if (*end_pfn > max_sparsemem_pfn) {
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179 }
180
181 /*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193 unsigned long section_nr = __section_nr(ms);
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200
201 #define for_each_present_section_nr(start, section_nr) \
202 for (section_nr = next_present_section_nr(start-1); \
203 ((section_nr != -1) && \
204 (section_nr <= __highest_present_section_nr)); \
205 section_nr = next_present_section_nr(section_nr))
206
207 static inline unsigned long first_present_section_nr(void)
208 {
209 return next_present_section_nr(-1);
210 }
211
212 #ifdef CONFIG_SPARSEMEM_VMEMMAP
213 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
214 unsigned long nr_pages)
215 {
216 int idx = subsection_map_index(pfn);
217 int end = subsection_map_index(pfn + nr_pages - 1);
218
219 bitmap_set(map, idx, end - idx + 1);
220 }
221
222 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
223 {
224 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
225 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
226
227 if (!nr_pages)
228 return;
229
230 for (nr = start_sec; nr <= end_sec; nr++) {
231 struct mem_section *ms;
232 unsigned long pfns;
233
234 pfns = min(nr_pages, PAGES_PER_SECTION
235 - (pfn & ~PAGE_SECTION_MASK));
236 ms = __nr_to_section(nr);
237 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
238
239 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
240 pfns, subsection_map_index(pfn),
241 subsection_map_index(pfn + pfns - 1));
242
243 pfn += pfns;
244 nr_pages -= pfns;
245 }
246 }
247 #else
248 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
249 {
250 }
251 #endif
252
253 /* Record a memory area against a node. */
254 void __init memory_present(int nid, unsigned long start, unsigned long end)
255 {
256 unsigned long pfn;
257
258 #ifdef CONFIG_SPARSEMEM_EXTREME
259 if (unlikely(!mem_section)) {
260 unsigned long size, align;
261
262 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
263 align = 1 << (INTERNODE_CACHE_SHIFT);
264 mem_section = memblock_alloc(size, align);
265 if (!mem_section)
266 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
267 __func__, size, align);
268 }
269 #endif
270
271 start &= PAGE_SECTION_MASK;
272 mminit_validate_memmodel_limits(&start, &end);
273 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
274 unsigned long section = pfn_to_section_nr(pfn);
275 struct mem_section *ms;
276
277 sparse_index_init(section, nid);
278 set_section_nid(section, nid);
279
280 ms = __nr_to_section(section);
281 if (!ms->section_mem_map) {
282 ms->section_mem_map = sparse_encode_early_nid(nid) |
283 SECTION_IS_ONLINE;
284 section_mark_present(ms);
285 }
286 }
287 }
288
289 /*
290 * Mark all memblocks as present using memory_present(). This is a
291 * convienence function that is useful for a number of arches
292 * to mark all of the systems memory as present during initialization.
293 */
294 void __init memblocks_present(void)
295 {
296 struct memblock_region *reg;
297
298 for_each_memblock(memory, reg) {
299 memory_present(memblock_get_region_node(reg),
300 memblock_region_memory_base_pfn(reg),
301 memblock_region_memory_end_pfn(reg));
302 }
303 }
304
305 /*
306 * Subtle, we encode the real pfn into the mem_map such that
307 * the identity pfn - section_mem_map will return the actual
308 * physical page frame number.
309 */
310 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
311 {
312 unsigned long coded_mem_map =
313 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
314 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
315 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
316 return coded_mem_map;
317 }
318
319 /*
320 * Decode mem_map from the coded memmap
321 */
322 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
323 {
324 /* mask off the extra low bits of information */
325 coded_mem_map &= SECTION_MAP_MASK;
326 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
327 }
328
329 static void __meminit sparse_init_one_section(struct mem_section *ms,
330 unsigned long pnum, struct page *mem_map,
331 struct mem_section_usage *usage, unsigned long flags)
332 {
333 ms->section_mem_map &= ~SECTION_MAP_MASK;
334 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
335 | SECTION_HAS_MEM_MAP | flags;
336 ms->usage = usage;
337 }
338
339 static unsigned long usemap_size(void)
340 {
341 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
342 }
343
344 size_t mem_section_usage_size(void)
345 {
346 return sizeof(struct mem_section_usage) + usemap_size();
347 }
348
349 #ifdef CONFIG_MEMORY_HOTREMOVE
350 static struct mem_section_usage * __init
351 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
352 unsigned long size)
353 {
354 struct mem_section_usage *usage;
355 unsigned long goal, limit;
356 int nid;
357 /*
358 * A page may contain usemaps for other sections preventing the
359 * page being freed and making a section unremovable while
360 * other sections referencing the usemap remain active. Similarly,
361 * a pgdat can prevent a section being removed. If section A
362 * contains a pgdat and section B contains the usemap, both
363 * sections become inter-dependent. This allocates usemaps
364 * from the same section as the pgdat where possible to avoid
365 * this problem.
366 */
367 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
368 limit = goal + (1UL << PA_SECTION_SHIFT);
369 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
370 again:
371 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
372 if (!usage && limit) {
373 limit = 0;
374 goto again;
375 }
376 return usage;
377 }
378
379 static void __init check_usemap_section_nr(int nid,
380 struct mem_section_usage *usage)
381 {
382 unsigned long usemap_snr, pgdat_snr;
383 static unsigned long old_usemap_snr;
384 static unsigned long old_pgdat_snr;
385 struct pglist_data *pgdat = NODE_DATA(nid);
386 int usemap_nid;
387
388 /* First call */
389 if (!old_usemap_snr) {
390 old_usemap_snr = NR_MEM_SECTIONS;
391 old_pgdat_snr = NR_MEM_SECTIONS;
392 }
393
394 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
395 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
396 if (usemap_snr == pgdat_snr)
397 return;
398
399 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
400 /* skip redundant message */
401 return;
402
403 old_usemap_snr = usemap_snr;
404 old_pgdat_snr = pgdat_snr;
405
406 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
407 if (usemap_nid != nid) {
408 pr_info("node %d must be removed before remove section %ld\n",
409 nid, usemap_snr);
410 return;
411 }
412 /*
413 * There is a circular dependency.
414 * Some platforms allow un-removable section because they will just
415 * gather other removable sections for dynamic partitioning.
416 * Just notify un-removable section's number here.
417 */
418 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
419 usemap_snr, pgdat_snr, nid);
420 }
421 #else
422 static struct mem_section_usage * __init
423 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
424 unsigned long size)
425 {
426 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
427 }
428
429 static void __init check_usemap_section_nr(int nid,
430 struct mem_section_usage *usage)
431 {
432 }
433 #endif /* CONFIG_MEMORY_HOTREMOVE */
434
435 #ifdef CONFIG_SPARSEMEM_VMEMMAP
436 static unsigned long __init section_map_size(void)
437 {
438 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
439 }
440
441 #else
442 static unsigned long __init section_map_size(void)
443 {
444 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
445 }
446
447 struct page __init *__populate_section_memmap(unsigned long pfn,
448 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
449 {
450 unsigned long size = section_map_size();
451 struct page *map = sparse_buffer_alloc(size);
452 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
453
454 if (map)
455 return map;
456
457 map = memblock_alloc_try_nid_raw(size, size, addr,
458 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
459 if (!map)
460 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
461 __func__, size, PAGE_SIZE, nid, &addr);
462
463 return map;
464 }
465 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
466
467 static void *sparsemap_buf __meminitdata;
468 static void *sparsemap_buf_end __meminitdata;
469
470 static inline void __meminit sparse_buffer_free(unsigned long size)
471 {
472 WARN_ON(!sparsemap_buf || size == 0);
473 memblock_free_early(__pa(sparsemap_buf), size);
474 }
475
476 static void __init sparse_buffer_init(unsigned long size, int nid)
477 {
478 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
479 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
480 /*
481 * Pre-allocated buffer is mainly used by __populate_section_memmap
482 * and we want it to be properly aligned to the section size - this is
483 * especially the case for VMEMMAP which maps memmap to PMDs
484 */
485 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
486 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
487 sparsemap_buf_end = sparsemap_buf + size;
488 }
489
490 static void __init sparse_buffer_fini(void)
491 {
492 unsigned long size = sparsemap_buf_end - sparsemap_buf;
493
494 if (sparsemap_buf && size > 0)
495 sparse_buffer_free(size);
496 sparsemap_buf = NULL;
497 }
498
499 void * __meminit sparse_buffer_alloc(unsigned long size)
500 {
501 void *ptr = NULL;
502
503 if (sparsemap_buf) {
504 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
505 if (ptr + size > sparsemap_buf_end)
506 ptr = NULL;
507 else {
508 /* Free redundant aligned space */
509 if ((unsigned long)(ptr - sparsemap_buf) > 0)
510 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
511 sparsemap_buf = ptr + size;
512 }
513 }
514 return ptr;
515 }
516
517 void __weak __meminit vmemmap_populate_print_last(void)
518 {
519 }
520
521 /*
522 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
523 * And number of present sections in this node is map_count.
524 */
525 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
526 unsigned long pnum_end,
527 unsigned long map_count)
528 {
529 struct mem_section_usage *usage;
530 unsigned long pnum;
531 struct page *map;
532
533 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
534 mem_section_usage_size() * map_count);
535 if (!usage) {
536 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
537 goto failed;
538 }
539 sparse_buffer_init(map_count * section_map_size(), nid);
540 for_each_present_section_nr(pnum_begin, pnum) {
541 unsigned long pfn = section_nr_to_pfn(pnum);
542
543 if (pnum >= pnum_end)
544 break;
545
546 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
547 nid, NULL);
548 if (!map) {
549 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
550 __func__, nid);
551 pnum_begin = pnum;
552 goto failed;
553 }
554 check_usemap_section_nr(nid, usage);
555 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
556 SECTION_IS_EARLY);
557 usage = (void *) usage + mem_section_usage_size();
558 }
559 sparse_buffer_fini();
560 return;
561 failed:
562 /* We failed to allocate, mark all the following pnums as not present */
563 for_each_present_section_nr(pnum_begin, pnum) {
564 struct mem_section *ms;
565
566 if (pnum >= pnum_end)
567 break;
568 ms = __nr_to_section(pnum);
569 ms->section_mem_map = 0;
570 }
571 }
572
573 /*
574 * Allocate the accumulated non-linear sections, allocate a mem_map
575 * for each and record the physical to section mapping.
576 */
577 void __init sparse_init(void)
578 {
579 unsigned long pnum_begin = first_present_section_nr();
580 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
581 unsigned long pnum_end, map_count = 1;
582
583 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
584 set_pageblock_order();
585
586 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
587 int nid = sparse_early_nid(__nr_to_section(pnum_end));
588
589 if (nid == nid_begin) {
590 map_count++;
591 continue;
592 }
593 /* Init node with sections in range [pnum_begin, pnum_end) */
594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595 nid_begin = nid;
596 pnum_begin = pnum_end;
597 map_count = 1;
598 }
599 /* cover the last node */
600 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
601 vmemmap_populate_print_last();
602 }
603
604 #ifdef CONFIG_MEMORY_HOTPLUG
605
606 /* Mark all memory sections within the pfn range as online */
607 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
608 {
609 unsigned long pfn;
610
611 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
612 unsigned long section_nr = pfn_to_section_nr(pfn);
613 struct mem_section *ms;
614
615 /* onlining code should never touch invalid ranges */
616 if (WARN_ON(!valid_section_nr(section_nr)))
617 continue;
618
619 ms = __nr_to_section(section_nr);
620 ms->section_mem_map |= SECTION_IS_ONLINE;
621 }
622 }
623
624 #ifdef CONFIG_MEMORY_HOTREMOVE
625 /* Mark all memory sections within the pfn range as offline */
626 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
627 {
628 unsigned long pfn;
629
630 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
631 unsigned long section_nr = pfn_to_section_nr(pfn);
632 struct mem_section *ms;
633
634 /*
635 * TODO this needs some double checking. Offlining code makes
636 * sure to check pfn_valid but those checks might be just bogus
637 */
638 if (WARN_ON(!valid_section_nr(section_nr)))
639 continue;
640
641 ms = __nr_to_section(section_nr);
642 ms->section_mem_map &= ~SECTION_IS_ONLINE;
643 }
644 }
645 #endif
646
647 #ifdef CONFIG_SPARSEMEM_VMEMMAP
648 static struct page * __meminit populate_section_memmap(unsigned long pfn,
649 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
650 {
651 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
652 }
653
654 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
655 struct vmem_altmap *altmap)
656 {
657 unsigned long start = (unsigned long) pfn_to_page(pfn);
658 unsigned long end = start + nr_pages * sizeof(struct page);
659
660 vmemmap_free(start, end, altmap);
661 }
662 static void free_map_bootmem(struct page *memmap)
663 {
664 unsigned long start = (unsigned long)memmap;
665 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
666
667 vmemmap_free(start, end, NULL);
668 }
669
670 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
671 {
672 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
673 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
674 struct mem_section *ms = __pfn_to_section(pfn);
675 unsigned long *subsection_map = ms->usage
676 ? &ms->usage->subsection_map[0] : NULL;
677
678 subsection_mask_set(map, pfn, nr_pages);
679 if (subsection_map)
680 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
681
682 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
683 "section already deactivated (%#lx + %ld)\n",
684 pfn, nr_pages))
685 return -EINVAL;
686
687 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
688 return 0;
689 }
690
691 static bool is_subsection_map_empty(struct mem_section *ms)
692 {
693 return bitmap_empty(&ms->usage->subsection_map[0],
694 SUBSECTIONS_PER_SECTION);
695 }
696
697 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
698 {
699 struct mem_section *ms = __pfn_to_section(pfn);
700 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
701 unsigned long *subsection_map;
702 int rc = 0;
703
704 subsection_mask_set(map, pfn, nr_pages);
705
706 subsection_map = &ms->usage->subsection_map[0];
707
708 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
709 rc = -EINVAL;
710 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
711 rc = -EEXIST;
712 else
713 bitmap_or(subsection_map, map, subsection_map,
714 SUBSECTIONS_PER_SECTION);
715
716 return rc;
717 }
718 #else
719 struct page * __meminit populate_section_memmap(unsigned long pfn,
720 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
721 {
722 return kvmalloc_node(array_size(sizeof(struct page),
723 PAGES_PER_SECTION), GFP_KERNEL, nid);
724 }
725
726 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
727 struct vmem_altmap *altmap)
728 {
729 kvfree(pfn_to_page(pfn));
730 }
731
732 static void free_map_bootmem(struct page *memmap)
733 {
734 unsigned long maps_section_nr, removing_section_nr, i;
735 unsigned long magic, nr_pages;
736 struct page *page = virt_to_page(memmap);
737
738 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
739 >> PAGE_SHIFT;
740
741 for (i = 0; i < nr_pages; i++, page++) {
742 magic = (unsigned long) page->freelist;
743
744 BUG_ON(magic == NODE_INFO);
745
746 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
747 removing_section_nr = page_private(page);
748
749 /*
750 * When this function is called, the removing section is
751 * logical offlined state. This means all pages are isolated
752 * from page allocator. If removing section's memmap is placed
753 * on the same section, it must not be freed.
754 * If it is freed, page allocator may allocate it which will
755 * be removed physically soon.
756 */
757 if (maps_section_nr != removing_section_nr)
758 put_page_bootmem(page);
759 }
760 }
761
762 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
763 {
764 return 0;
765 }
766
767 static bool is_subsection_map_empty(struct mem_section *ms)
768 {
769 return true;
770 }
771
772 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
773 {
774 return 0;
775 }
776 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
777
778 /*
779 * To deactivate a memory region, there are 3 cases to handle across
780 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
781 *
782 * 1. deactivation of a partial hot-added section (only possible in
783 * the SPARSEMEM_VMEMMAP=y case).
784 * a) section was present at memory init.
785 * b) section was hot-added post memory init.
786 * 2. deactivation of a complete hot-added section.
787 * 3. deactivation of a complete section from memory init.
788 *
789 * For 1, when subsection_map does not empty we will not be freeing the
790 * usage map, but still need to free the vmemmap range.
791 *
792 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
793 */
794 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
795 struct vmem_altmap *altmap)
796 {
797 struct mem_section *ms = __pfn_to_section(pfn);
798 bool section_is_early = early_section(ms);
799 struct page *memmap = NULL;
800 bool empty;
801
802 if (clear_subsection_map(pfn, nr_pages))
803 return;
804
805 empty = is_subsection_map_empty(ms);
806 if (empty) {
807 unsigned long section_nr = pfn_to_section_nr(pfn);
808
809 /*
810 * When removing an early section, the usage map is kept (as the
811 * usage maps of other sections fall into the same page). It
812 * will be re-used when re-adding the section - which is then no
813 * longer an early section. If the usage map is PageReserved, it
814 * was allocated during boot.
815 */
816 if (!PageReserved(virt_to_page(ms->usage))) {
817 kfree(ms->usage);
818 ms->usage = NULL;
819 }
820 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
821 /*
822 * Mark the section invalid so that valid_section()
823 * return false. This prevents code from dereferencing
824 * ms->usage array.
825 */
826 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
827 }
828
829 if (section_is_early && memmap)
830 free_map_bootmem(memmap);
831 else
832 depopulate_section_memmap(pfn, nr_pages, altmap);
833
834 if (empty)
835 ms->section_mem_map = (unsigned long)NULL;
836 }
837
838 static struct page * __meminit section_activate(int nid, unsigned long pfn,
839 unsigned long nr_pages, struct vmem_altmap *altmap)
840 {
841 struct mem_section *ms = __pfn_to_section(pfn);
842 struct mem_section_usage *usage = NULL;
843 struct page *memmap;
844 int rc = 0;
845
846 if (!ms->usage) {
847 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
848 if (!usage)
849 return ERR_PTR(-ENOMEM);
850 ms->usage = usage;
851 }
852
853 rc = fill_subsection_map(pfn, nr_pages);
854 if (rc) {
855 if (usage)
856 ms->usage = NULL;
857 kfree(usage);
858 return ERR_PTR(rc);
859 }
860
861 /*
862 * The early init code does not consider partially populated
863 * initial sections, it simply assumes that memory will never be
864 * referenced. If we hot-add memory into such a section then we
865 * do not need to populate the memmap and can simply reuse what
866 * is already there.
867 */
868 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
869 return pfn_to_page(pfn);
870
871 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
872 if (!memmap) {
873 section_deactivate(pfn, nr_pages, altmap);
874 return ERR_PTR(-ENOMEM);
875 }
876
877 return memmap;
878 }
879
880 /**
881 * sparse_add_section - add a memory section, or populate an existing one
882 * @nid: The node to add section on
883 * @start_pfn: start pfn of the memory range
884 * @nr_pages: number of pfns to add in the section
885 * @altmap: device page map
886 *
887 * This is only intended for hotplug.
888 *
889 * Note that only VMEMMAP supports sub-section aligned hotplug,
890 * the proper alignment and size are gated by check_pfn_span().
891 *
892 *
893 * Return:
894 * * 0 - On success.
895 * * -EEXIST - Section has been present.
896 * * -ENOMEM - Out of memory.
897 */
898 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
899 unsigned long nr_pages, struct vmem_altmap *altmap)
900 {
901 unsigned long section_nr = pfn_to_section_nr(start_pfn);
902 struct mem_section *ms;
903 struct page *memmap;
904 int ret;
905
906 ret = sparse_index_init(section_nr, nid);
907 if (ret < 0)
908 return ret;
909
910 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
911 if (IS_ERR(memmap))
912 return PTR_ERR(memmap);
913
914 /*
915 * Poison uninitialized struct pages in order to catch invalid flags
916 * combinations.
917 */
918 page_init_poison(memmap, sizeof(struct page) * nr_pages);
919
920 ms = __nr_to_section(section_nr);
921 set_section_nid(section_nr, nid);
922 section_mark_present(ms);
923
924 /* Align memmap to section boundary in the subsection case */
925 if (section_nr_to_pfn(section_nr) != start_pfn)
926 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
927 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
928
929 return 0;
930 }
931
932 #ifdef CONFIG_MEMORY_FAILURE
933 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
934 {
935 int i;
936
937 /*
938 * A further optimization is to have per section refcounted
939 * num_poisoned_pages. But that would need more space per memmap, so
940 * for now just do a quick global check to speed up this routine in the
941 * absence of bad pages.
942 */
943 if (atomic_long_read(&num_poisoned_pages) == 0)
944 return;
945
946 for (i = 0; i < nr_pages; i++) {
947 if (PageHWPoison(&memmap[i])) {
948 num_poisoned_pages_dec();
949 ClearPageHWPoison(&memmap[i]);
950 }
951 }
952 }
953 #else
954 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
955 {
956 }
957 #endif
958
959 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
960 unsigned long nr_pages, unsigned long map_offset,
961 struct vmem_altmap *altmap)
962 {
963 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
964 nr_pages - map_offset);
965 section_deactivate(pfn, nr_pages, altmap);
966 }
967 #endif /* CONFIG_MEMORY_HOTPLUG */