]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/sparse.c
md: fix for divide error in status_resync
[thirdparty/kernel/linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available()) {
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 } else {
71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 nid);
73 if (!section)
74 panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 __func__, array_size, nid);
76 }
77
78 return section;
79 }
80
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85
86 if (mem_section[root])
87 return -EEXIST;
88
89 section = sparse_index_alloc(nid);
90 if (!section)
91 return -ENOMEM;
92
93 mem_section[root] = section;
94
95 return 0;
96 }
97 #else /* !SPARSEMEM_EXTREME */
98 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 {
100 return 0;
101 }
102 #endif
103
104 #ifdef CONFIG_SPARSEMEM_EXTREME
105 int __section_nr(struct mem_section* ms)
106 {
107 unsigned long root_nr;
108 struct mem_section *root = NULL;
109
110 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
111 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
112 if (!root)
113 continue;
114
115 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
116 break;
117 }
118
119 VM_BUG_ON(!root);
120
121 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
122 }
123 #else
124 int __section_nr(struct mem_section* ms)
125 {
126 return (int)(ms - mem_section[0]);
127 }
128 #endif
129
130 /*
131 * During early boot, before section_mem_map is used for an actual
132 * mem_map, we use section_mem_map to store the section's NUMA
133 * node. This keeps us from having to use another data structure. The
134 * node information is cleared just before we store the real mem_map.
135 */
136 static inline unsigned long sparse_encode_early_nid(int nid)
137 {
138 return (nid << SECTION_NID_SHIFT);
139 }
140
141 static inline int sparse_early_nid(struct mem_section *section)
142 {
143 return (section->section_mem_map >> SECTION_NID_SHIFT);
144 }
145
146 /* Validate the physical addressing limitations of the model */
147 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
148 unsigned long *end_pfn)
149 {
150 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
151
152 /*
153 * Sanity checks - do not allow an architecture to pass
154 * in larger pfns than the maximum scope of sparsemem:
155 */
156 if (*start_pfn > max_sparsemem_pfn) {
157 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
158 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
159 *start_pfn, *end_pfn, max_sparsemem_pfn);
160 WARN_ON_ONCE(1);
161 *start_pfn = max_sparsemem_pfn;
162 *end_pfn = max_sparsemem_pfn;
163 } else if (*end_pfn > max_sparsemem_pfn) {
164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn, *end_pfn, max_sparsemem_pfn);
167 WARN_ON_ONCE(1);
168 *end_pfn = max_sparsemem_pfn;
169 }
170 }
171
172 /*
173 * There are a number of times that we loop over NR_MEM_SECTIONS,
174 * looking for section_present() on each. But, when we have very
175 * large physical address spaces, NR_MEM_SECTIONS can also be
176 * very large which makes the loops quite long.
177 *
178 * Keeping track of this gives us an easy way to break out of
179 * those loops early.
180 */
181 int __highest_present_section_nr;
182 static void section_mark_present(struct mem_section *ms)
183 {
184 int section_nr = __section_nr(ms);
185
186 if (section_nr > __highest_present_section_nr)
187 __highest_present_section_nr = section_nr;
188
189 ms->section_mem_map |= SECTION_MARKED_PRESENT;
190 }
191
192 static inline int next_present_section_nr(int section_nr)
193 {
194 do {
195 section_nr++;
196 if (present_section_nr(section_nr))
197 return section_nr;
198 } while ((section_nr <= __highest_present_section_nr));
199
200 return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr) \
203 for (section_nr = next_present_section_nr(start-1); \
204 ((section_nr != -1) && \
205 (section_nr <= __highest_present_section_nr)); \
206 section_nr = next_present_section_nr(section_nr))
207
208 static inline unsigned long first_present_section_nr(void)
209 {
210 return next_present_section_nr(-1);
211 }
212
213 /* Record a memory area against a node. */
214 void __init memory_present(int nid, unsigned long start, unsigned long end)
215 {
216 unsigned long pfn;
217
218 #ifdef CONFIG_SPARSEMEM_EXTREME
219 if (unlikely(!mem_section)) {
220 unsigned long size, align;
221
222 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
223 align = 1 << (INTERNODE_CACHE_SHIFT);
224 mem_section = memblock_alloc(size, align);
225 if (!mem_section)
226 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
227 __func__, size, align);
228 }
229 #endif
230
231 start &= PAGE_SECTION_MASK;
232 mminit_validate_memmodel_limits(&start, &end);
233 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
234 unsigned long section = pfn_to_section_nr(pfn);
235 struct mem_section *ms;
236
237 sparse_index_init(section, nid);
238 set_section_nid(section, nid);
239
240 ms = __nr_to_section(section);
241 if (!ms->section_mem_map) {
242 ms->section_mem_map = sparse_encode_early_nid(nid) |
243 SECTION_IS_ONLINE;
244 section_mark_present(ms);
245 }
246 }
247 }
248
249 /*
250 * Mark all memblocks as present using memory_present(). This is a
251 * convienence function that is useful for a number of arches
252 * to mark all of the systems memory as present during initialization.
253 */
254 void __init memblocks_present(void)
255 {
256 struct memblock_region *reg;
257
258 for_each_memblock(memory, reg) {
259 memory_present(memblock_get_region_node(reg),
260 memblock_region_memory_base_pfn(reg),
261 memblock_region_memory_end_pfn(reg));
262 }
263 }
264
265 /*
266 * Subtle, we encode the real pfn into the mem_map such that
267 * the identity pfn - section_mem_map will return the actual
268 * physical page frame number.
269 */
270 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
271 {
272 unsigned long coded_mem_map =
273 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
274 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
275 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
276 return coded_mem_map;
277 }
278
279 /*
280 * Decode mem_map from the coded memmap
281 */
282 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
283 {
284 /* mask off the extra low bits of information */
285 coded_mem_map &= SECTION_MAP_MASK;
286 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
287 }
288
289 static void __meminit sparse_init_one_section(struct mem_section *ms,
290 unsigned long pnum, struct page *mem_map,
291 unsigned long *pageblock_bitmap)
292 {
293 ms->section_mem_map &= ~SECTION_MAP_MASK;
294 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
295 SECTION_HAS_MEM_MAP;
296 ms->pageblock_flags = pageblock_bitmap;
297 }
298
299 unsigned long usemap_size(void)
300 {
301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
306 {
307 return kmalloc(usemap_size(), GFP_KERNEL);
308 }
309 #endif /* CONFIG_MEMORY_HOTPLUG */
310
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314 unsigned long size)
315 {
316 unsigned long goal, limit;
317 unsigned long *p;
318 int nid;
319 /*
320 * A page may contain usemaps for other sections preventing the
321 * page being freed and making a section unremovable while
322 * other sections referencing the usemap remain active. Similarly,
323 * a pgdat can prevent a section being removed. If section A
324 * contains a pgdat and section B contains the usemap, both
325 * sections become inter-dependent. This allocates usemaps
326 * from the same section as the pgdat where possible to avoid
327 * this problem.
328 */
329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330 limit = goal + (1UL << PA_SECTION_SHIFT);
331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333 p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
334 if (!p && limit) {
335 limit = 0;
336 goto again;
337 }
338 return p;
339 }
340
341 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
342 {
343 unsigned long usemap_snr, pgdat_snr;
344 static unsigned long old_usemap_snr;
345 static unsigned long old_pgdat_snr;
346 struct pglist_data *pgdat = NODE_DATA(nid);
347 int usemap_nid;
348
349 /* First call */
350 if (!old_usemap_snr) {
351 old_usemap_snr = NR_MEM_SECTIONS;
352 old_pgdat_snr = NR_MEM_SECTIONS;
353 }
354
355 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
356 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
357 if (usemap_snr == pgdat_snr)
358 return;
359
360 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
361 /* skip redundant message */
362 return;
363
364 old_usemap_snr = usemap_snr;
365 old_pgdat_snr = pgdat_snr;
366
367 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
368 if (usemap_nid != nid) {
369 pr_info("node %d must be removed before remove section %ld\n",
370 nid, usemap_snr);
371 return;
372 }
373 /*
374 * There is a circular dependency.
375 * Some platforms allow un-removable section because they will just
376 * gather other removable sections for dynamic partitioning.
377 * Just notify un-removable section's number here.
378 */
379 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
380 usemap_snr, pgdat_snr, nid);
381 }
382 #else
383 static unsigned long * __init
384 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
385 unsigned long size)
386 {
387 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
388 }
389
390 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
391 {
392 }
393 #endif /* CONFIG_MEMORY_HOTREMOVE */
394
395 #ifdef CONFIG_SPARSEMEM_VMEMMAP
396 static unsigned long __init section_map_size(void)
397 {
398 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
399 }
400
401 #else
402 static unsigned long __init section_map_size(void)
403 {
404 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
405 }
406
407 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
408 struct vmem_altmap *altmap)
409 {
410 unsigned long size = section_map_size();
411 struct page *map = sparse_buffer_alloc(size);
412 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
413
414 if (map)
415 return map;
416
417 map = memblock_alloc_try_nid(size,
418 PAGE_SIZE, addr,
419 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
420 if (!map)
421 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
422 __func__, size, PAGE_SIZE, nid, &addr);
423
424 return map;
425 }
426 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
427
428 static void *sparsemap_buf __meminitdata;
429 static void *sparsemap_buf_end __meminitdata;
430
431 static void __init sparse_buffer_init(unsigned long size, int nid)
432 {
433 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
434 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
435 sparsemap_buf =
436 memblock_alloc_try_nid_raw(size, PAGE_SIZE,
437 addr,
438 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
439 sparsemap_buf_end = sparsemap_buf + size;
440 }
441
442 static void __init sparse_buffer_fini(void)
443 {
444 unsigned long size = sparsemap_buf_end - sparsemap_buf;
445
446 if (sparsemap_buf && size > 0)
447 memblock_free_early(__pa(sparsemap_buf), size);
448 sparsemap_buf = NULL;
449 }
450
451 void * __meminit sparse_buffer_alloc(unsigned long size)
452 {
453 void *ptr = NULL;
454
455 if (sparsemap_buf) {
456 ptr = PTR_ALIGN(sparsemap_buf, size);
457 if (ptr + size > sparsemap_buf_end)
458 ptr = NULL;
459 else
460 sparsemap_buf = ptr + size;
461 }
462 return ptr;
463 }
464
465 void __weak __meminit vmemmap_populate_print_last(void)
466 {
467 }
468
469 /*
470 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
471 * And number of present sections in this node is map_count.
472 */
473 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
474 unsigned long pnum_end,
475 unsigned long map_count)
476 {
477 unsigned long pnum, usemap_longs, *usemap;
478 struct page *map;
479
480 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
481 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
482 usemap_size() *
483 map_count);
484 if (!usemap) {
485 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
486 goto failed;
487 }
488 sparse_buffer_init(map_count * section_map_size(), nid);
489 for_each_present_section_nr(pnum_begin, pnum) {
490 if (pnum >= pnum_end)
491 break;
492
493 map = sparse_mem_map_populate(pnum, nid, NULL);
494 if (!map) {
495 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
496 __func__, nid);
497 pnum_begin = pnum;
498 goto failed;
499 }
500 check_usemap_section_nr(nid, usemap);
501 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
502 usemap += usemap_longs;
503 }
504 sparse_buffer_fini();
505 return;
506 failed:
507 /* We failed to allocate, mark all the following pnums as not present */
508 for_each_present_section_nr(pnum_begin, pnum) {
509 struct mem_section *ms;
510
511 if (pnum >= pnum_end)
512 break;
513 ms = __nr_to_section(pnum);
514 ms->section_mem_map = 0;
515 }
516 }
517
518 /*
519 * Allocate the accumulated non-linear sections, allocate a mem_map
520 * for each and record the physical to section mapping.
521 */
522 void __init sparse_init(void)
523 {
524 unsigned long pnum_begin = first_present_section_nr();
525 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
526 unsigned long pnum_end, map_count = 1;
527
528 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
529 set_pageblock_order();
530
531 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
532 int nid = sparse_early_nid(__nr_to_section(pnum_end));
533
534 if (nid == nid_begin) {
535 map_count++;
536 continue;
537 }
538 /* Init node with sections in range [pnum_begin, pnum_end) */
539 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
540 nid_begin = nid;
541 pnum_begin = pnum_end;
542 map_count = 1;
543 }
544 /* cover the last node */
545 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
546 vmemmap_populate_print_last();
547 }
548
549 #ifdef CONFIG_MEMORY_HOTPLUG
550
551 /* Mark all memory sections within the pfn range as online */
552 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
553 {
554 unsigned long pfn;
555
556 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
557 unsigned long section_nr = pfn_to_section_nr(pfn);
558 struct mem_section *ms;
559
560 /* onlining code should never touch invalid ranges */
561 if (WARN_ON(!valid_section_nr(section_nr)))
562 continue;
563
564 ms = __nr_to_section(section_nr);
565 ms->section_mem_map |= SECTION_IS_ONLINE;
566 }
567 }
568
569 #ifdef CONFIG_MEMORY_HOTREMOVE
570 /* Mark all memory sections within the pfn range as offline */
571 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
572 {
573 unsigned long pfn;
574
575 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
576 unsigned long section_nr = pfn_to_section_nr(pfn);
577 struct mem_section *ms;
578
579 /*
580 * TODO this needs some double checking. Offlining code makes
581 * sure to check pfn_valid but those checks might be just bogus
582 */
583 if (WARN_ON(!valid_section_nr(section_nr)))
584 continue;
585
586 ms = __nr_to_section(section_nr);
587 ms->section_mem_map &= ~SECTION_IS_ONLINE;
588 }
589 }
590 #endif
591
592 #ifdef CONFIG_SPARSEMEM_VMEMMAP
593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
594 struct vmem_altmap *altmap)
595 {
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum, nid, altmap);
598 }
599 static void __kfree_section_memmap(struct page *memmap,
600 struct vmem_altmap *altmap)
601 {
602 unsigned long start = (unsigned long)memmap;
603 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604
605 vmemmap_free(start, end, altmap);
606 }
607 #ifdef CONFIG_MEMORY_HOTREMOVE
608 static void free_map_bootmem(struct page *memmap)
609 {
610 unsigned long start = (unsigned long)memmap;
611 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612
613 vmemmap_free(start, end, NULL);
614 }
615 #endif /* CONFIG_MEMORY_HOTREMOVE */
616 #else
617 static struct page *__kmalloc_section_memmap(void)
618 {
619 struct page *page, *ret;
620 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621
622 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623 if (page)
624 goto got_map_page;
625
626 ret = vmalloc(memmap_size);
627 if (ret)
628 goto got_map_ptr;
629
630 return NULL;
631 got_map_page:
632 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633 got_map_ptr:
634
635 return ret;
636 }
637
638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
639 struct vmem_altmap *altmap)
640 {
641 return __kmalloc_section_memmap();
642 }
643
644 static void __kfree_section_memmap(struct page *memmap,
645 struct vmem_altmap *altmap)
646 {
647 if (is_vmalloc_addr(memmap))
648 vfree(memmap);
649 else
650 free_pages((unsigned long)memmap,
651 get_order(sizeof(struct page) * PAGES_PER_SECTION));
652 }
653
654 #ifdef CONFIG_MEMORY_HOTREMOVE
655 static void free_map_bootmem(struct page *memmap)
656 {
657 unsigned long maps_section_nr, removing_section_nr, i;
658 unsigned long magic, nr_pages;
659 struct page *page = virt_to_page(memmap);
660
661 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
662 >> PAGE_SHIFT;
663
664 for (i = 0; i < nr_pages; i++, page++) {
665 magic = (unsigned long) page->freelist;
666
667 BUG_ON(magic == NODE_INFO);
668
669 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
670 removing_section_nr = page_private(page);
671
672 /*
673 * When this function is called, the removing section is
674 * logical offlined state. This means all pages are isolated
675 * from page allocator. If removing section's memmap is placed
676 * on the same section, it must not be freed.
677 * If it is freed, page allocator may allocate it which will
678 * be removed physically soon.
679 */
680 if (maps_section_nr != removing_section_nr)
681 put_page_bootmem(page);
682 }
683 }
684 #endif /* CONFIG_MEMORY_HOTREMOVE */
685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
686
687 /**
688 * sparse_add_one_section - add a memory section
689 * @nid: The node to add section on
690 * @start_pfn: start pfn of the memory range
691 * @altmap: device page map
692 *
693 * This is only intended for hotplug.
694 *
695 * Return:
696 * * 0 - On success.
697 * * -EEXIST - Section has been present.
698 * * -ENOMEM - Out of memory.
699 */
700 int __meminit sparse_add_one_section(int nid, unsigned long start_pfn,
701 struct vmem_altmap *altmap)
702 {
703 unsigned long section_nr = pfn_to_section_nr(start_pfn);
704 struct mem_section *ms;
705 struct page *memmap;
706 unsigned long *usemap;
707 int ret;
708
709 /*
710 * no locking for this, because it does its own
711 * plus, it does a kmalloc
712 */
713 ret = sparse_index_init(section_nr, nid);
714 if (ret < 0 && ret != -EEXIST)
715 return ret;
716 ret = 0;
717 memmap = kmalloc_section_memmap(section_nr, nid, altmap);
718 if (!memmap)
719 return -ENOMEM;
720 usemap = __kmalloc_section_usemap();
721 if (!usemap) {
722 __kfree_section_memmap(memmap, altmap);
723 return -ENOMEM;
724 }
725
726 ms = __pfn_to_section(start_pfn);
727 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
728 ret = -EEXIST;
729 goto out;
730 }
731
732 /*
733 * Poison uninitialized struct pages in order to catch invalid flags
734 * combinations.
735 */
736 page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
737
738 section_mark_present(ms);
739 sparse_init_one_section(ms, section_nr, memmap, usemap);
740
741 out:
742 if (ret < 0) {
743 kfree(usemap);
744 __kfree_section_memmap(memmap, altmap);
745 }
746 return ret;
747 }
748
749 #ifdef CONFIG_MEMORY_HOTREMOVE
750 #ifdef CONFIG_MEMORY_FAILURE
751 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
752 {
753 int i;
754
755 if (!memmap)
756 return;
757
758 /*
759 * A further optimization is to have per section refcounted
760 * num_poisoned_pages. But that would need more space per memmap, so
761 * for now just do a quick global check to speed up this routine in the
762 * absence of bad pages.
763 */
764 if (atomic_long_read(&num_poisoned_pages) == 0)
765 return;
766
767 for (i = 0; i < nr_pages; i++) {
768 if (PageHWPoison(&memmap[i])) {
769 atomic_long_sub(1, &num_poisoned_pages);
770 ClearPageHWPoison(&memmap[i]);
771 }
772 }
773 }
774 #else
775 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
776 {
777 }
778 #endif
779
780 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
781 struct vmem_altmap *altmap)
782 {
783 struct page *usemap_page;
784
785 if (!usemap)
786 return;
787
788 usemap_page = virt_to_page(usemap);
789 /*
790 * Check to see if allocation came from hot-plug-add
791 */
792 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
793 kfree(usemap);
794 if (memmap)
795 __kfree_section_memmap(memmap, altmap);
796 return;
797 }
798
799 /*
800 * The usemap came from bootmem. This is packed with other usemaps
801 * on the section which has pgdat at boot time. Just keep it as is now.
802 */
803
804 if (memmap)
805 free_map_bootmem(memmap);
806 }
807
808 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
809 unsigned long map_offset, struct vmem_altmap *altmap)
810 {
811 struct page *memmap = NULL;
812 unsigned long *usemap = NULL;
813
814 if (ms->section_mem_map) {
815 usemap = ms->pageblock_flags;
816 memmap = sparse_decode_mem_map(ms->section_mem_map,
817 __section_nr(ms));
818 ms->section_mem_map = 0;
819 ms->pageblock_flags = NULL;
820 }
821
822 clear_hwpoisoned_pages(memmap + map_offset,
823 PAGES_PER_SECTION - map_offset);
824 free_section_usemap(memmap, usemap, altmap);
825 }
826 #endif /* CONFIG_MEMORY_HOTREMOVE */
827 #endif /* CONFIG_MEMORY_HOTPLUG */