]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/sparse.c
Merge tag 'iomap-5.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[thirdparty/linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available()) {
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 } else {
71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 nid);
73 if (!section)
74 panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 __func__, array_size, nid);
76 }
77
78 return section;
79 }
80
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85
86 /*
87 * An existing section is possible in the sub-section hotplug
88 * case. First hot-add instantiates, follow-on hot-add reuses
89 * the existing section.
90 *
91 * The mem_hotplug_lock resolves the apparent race below.
92 */
93 if (mem_section[root])
94 return 0;
95
96 section = sparse_index_alloc(nid);
97 if (!section)
98 return -ENOMEM;
99
100 mem_section[root] = section;
101
102 return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 return 0;
108 }
109 #endif
110
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114 unsigned long root_nr;
115 struct mem_section *root = NULL;
116
117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 if (!root)
120 continue;
121
122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 break;
124 }
125
126 VM_BUG_ON(!root);
127
128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133 return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136
137 /*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
142 */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 return (nid << SECTION_NID_SHIFT);
146 }
147
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 unsigned long *end_pfn)
156 {
157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159 /*
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
162 */
163 if (*start_pfn > max_sparsemem_pfn) {
164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn, *end_pfn, max_sparsemem_pfn);
167 WARN_ON_ONCE(1);
168 *start_pfn = max_sparsemem_pfn;
169 *end_pfn = max_sparsemem_pfn;
170 } else if (*end_pfn > max_sparsemem_pfn) {
171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn, *end_pfn, max_sparsemem_pfn);
174 WARN_ON_ONCE(1);
175 *end_pfn = max_sparsemem_pfn;
176 }
177 }
178
179 /*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each. But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191 unsigned long section_nr = __section_nr(ms);
192
193 if (section_nr > __highest_present_section_nr)
194 __highest_present_section_nr = section_nr;
195
196 ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198
199 static inline unsigned long next_present_section_nr(unsigned long section_nr)
200 {
201 do {
202 section_nr++;
203 if (present_section_nr(section_nr))
204 return section_nr;
205 } while ((section_nr <= __highest_present_section_nr));
206
207 return -1;
208 }
209 #define for_each_present_section_nr(start, section_nr) \
210 for (section_nr = next_present_section_nr(start-1); \
211 ((section_nr != -1) && \
212 (section_nr <= __highest_present_section_nr)); \
213 section_nr = next_present_section_nr(section_nr))
214
215 static inline unsigned long first_present_section_nr(void)
216 {
217 return next_present_section_nr(-1);
218 }
219
220 void subsection_mask_set(unsigned long *map, unsigned long pfn,
221 unsigned long nr_pages)
222 {
223 int idx = subsection_map_index(pfn);
224 int end = subsection_map_index(pfn + nr_pages - 1);
225
226 bitmap_set(map, idx, end - idx + 1);
227 }
228
229 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
230 {
231 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
232 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
233
234 if (!nr_pages)
235 return;
236
237 for (nr = start_sec; nr <= end_sec; nr++) {
238 struct mem_section *ms;
239 unsigned long pfns;
240
241 pfns = min(nr_pages, PAGES_PER_SECTION
242 - (pfn & ~PAGE_SECTION_MASK));
243 ms = __nr_to_section(nr);
244 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
245
246 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
247 pfns, subsection_map_index(pfn),
248 subsection_map_index(pfn + pfns - 1));
249
250 pfn += pfns;
251 nr_pages -= pfns;
252 }
253 }
254
255 /* Record a memory area against a node. */
256 void __init memory_present(int nid, unsigned long start, unsigned long end)
257 {
258 unsigned long pfn;
259
260 #ifdef CONFIG_SPARSEMEM_EXTREME
261 if (unlikely(!mem_section)) {
262 unsigned long size, align;
263
264 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
265 align = 1 << (INTERNODE_CACHE_SHIFT);
266 mem_section = memblock_alloc(size, align);
267 if (!mem_section)
268 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
269 __func__, size, align);
270 }
271 #endif
272
273 start &= PAGE_SECTION_MASK;
274 mminit_validate_memmodel_limits(&start, &end);
275 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
276 unsigned long section = pfn_to_section_nr(pfn);
277 struct mem_section *ms;
278
279 sparse_index_init(section, nid);
280 set_section_nid(section, nid);
281
282 ms = __nr_to_section(section);
283 if (!ms->section_mem_map) {
284 ms->section_mem_map = sparse_encode_early_nid(nid) |
285 SECTION_IS_ONLINE;
286 section_mark_present(ms);
287 }
288 }
289 }
290
291 /*
292 * Mark all memblocks as present using memory_present(). This is a
293 * convienence function that is useful for a number of arches
294 * to mark all of the systems memory as present during initialization.
295 */
296 void __init memblocks_present(void)
297 {
298 struct memblock_region *reg;
299
300 for_each_memblock(memory, reg) {
301 memory_present(memblock_get_region_node(reg),
302 memblock_region_memory_base_pfn(reg),
303 memblock_region_memory_end_pfn(reg));
304 }
305 }
306
307 /*
308 * Subtle, we encode the real pfn into the mem_map such that
309 * the identity pfn - section_mem_map will return the actual
310 * physical page frame number.
311 */
312 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
313 {
314 unsigned long coded_mem_map =
315 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
316 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
317 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
318 return coded_mem_map;
319 }
320
321 /*
322 * Decode mem_map from the coded memmap
323 */
324 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
325 {
326 /* mask off the extra low bits of information */
327 coded_mem_map &= SECTION_MAP_MASK;
328 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
329 }
330
331 static void __meminit sparse_init_one_section(struct mem_section *ms,
332 unsigned long pnum, struct page *mem_map,
333 struct mem_section_usage *usage, unsigned long flags)
334 {
335 ms->section_mem_map &= ~SECTION_MAP_MASK;
336 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
337 | SECTION_HAS_MEM_MAP | flags;
338 ms->usage = usage;
339 }
340
341 static unsigned long usemap_size(void)
342 {
343 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
344 }
345
346 size_t mem_section_usage_size(void)
347 {
348 return sizeof(struct mem_section_usage) + usemap_size();
349 }
350
351 #ifdef CONFIG_MEMORY_HOTREMOVE
352 static struct mem_section_usage * __init
353 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
354 unsigned long size)
355 {
356 struct mem_section_usage *usage;
357 unsigned long goal, limit;
358 int nid;
359 /*
360 * A page may contain usemaps for other sections preventing the
361 * page being freed and making a section unremovable while
362 * other sections referencing the usemap remain active. Similarly,
363 * a pgdat can prevent a section being removed. If section A
364 * contains a pgdat and section B contains the usemap, both
365 * sections become inter-dependent. This allocates usemaps
366 * from the same section as the pgdat where possible to avoid
367 * this problem.
368 */
369 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
370 limit = goal + (1UL << PA_SECTION_SHIFT);
371 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
372 again:
373 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
374 if (!usage && limit) {
375 limit = 0;
376 goto again;
377 }
378 return usage;
379 }
380
381 static void __init check_usemap_section_nr(int nid,
382 struct mem_section_usage *usage)
383 {
384 unsigned long usemap_snr, pgdat_snr;
385 static unsigned long old_usemap_snr;
386 static unsigned long old_pgdat_snr;
387 struct pglist_data *pgdat = NODE_DATA(nid);
388 int usemap_nid;
389
390 /* First call */
391 if (!old_usemap_snr) {
392 old_usemap_snr = NR_MEM_SECTIONS;
393 old_pgdat_snr = NR_MEM_SECTIONS;
394 }
395
396 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
397 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
398 if (usemap_snr == pgdat_snr)
399 return;
400
401 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
402 /* skip redundant message */
403 return;
404
405 old_usemap_snr = usemap_snr;
406 old_pgdat_snr = pgdat_snr;
407
408 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
409 if (usemap_nid != nid) {
410 pr_info("node %d must be removed before remove section %ld\n",
411 nid, usemap_snr);
412 return;
413 }
414 /*
415 * There is a circular dependency.
416 * Some platforms allow un-removable section because they will just
417 * gather other removable sections for dynamic partitioning.
418 * Just notify un-removable section's number here.
419 */
420 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
421 usemap_snr, pgdat_snr, nid);
422 }
423 #else
424 static struct mem_section_usage * __init
425 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
426 unsigned long size)
427 {
428 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
429 }
430
431 static void __init check_usemap_section_nr(int nid,
432 struct mem_section_usage *usage)
433 {
434 }
435 #endif /* CONFIG_MEMORY_HOTREMOVE */
436
437 #ifdef CONFIG_SPARSEMEM_VMEMMAP
438 static unsigned long __init section_map_size(void)
439 {
440 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
441 }
442
443 #else
444 static unsigned long __init section_map_size(void)
445 {
446 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
447 }
448
449 struct page __init *__populate_section_memmap(unsigned long pfn,
450 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
451 {
452 unsigned long size = section_map_size();
453 struct page *map = sparse_buffer_alloc(size);
454 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
455
456 if (map)
457 return map;
458
459 map = memblock_alloc_try_nid(size,
460 PAGE_SIZE, addr,
461 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
462 if (!map)
463 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
464 __func__, size, PAGE_SIZE, nid, &addr);
465
466 return map;
467 }
468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
469
470 static void *sparsemap_buf __meminitdata;
471 static void *sparsemap_buf_end __meminitdata;
472
473 static void __init sparse_buffer_init(unsigned long size, int nid)
474 {
475 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
476 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
477 sparsemap_buf =
478 memblock_alloc_try_nid_raw(size, PAGE_SIZE,
479 addr,
480 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481 sparsemap_buf_end = sparsemap_buf + size;
482 }
483
484 static void __init sparse_buffer_fini(void)
485 {
486 unsigned long size = sparsemap_buf_end - sparsemap_buf;
487
488 if (sparsemap_buf && size > 0)
489 memblock_free_early(__pa(sparsemap_buf), size);
490 sparsemap_buf = NULL;
491 }
492
493 void * __meminit sparse_buffer_alloc(unsigned long size)
494 {
495 void *ptr = NULL;
496
497 if (sparsemap_buf) {
498 ptr = PTR_ALIGN(sparsemap_buf, size);
499 if (ptr + size > sparsemap_buf_end)
500 ptr = NULL;
501 else
502 sparsemap_buf = ptr + size;
503 }
504 return ptr;
505 }
506
507 void __weak __meminit vmemmap_populate_print_last(void)
508 {
509 }
510
511 /*
512 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
513 * And number of present sections in this node is map_count.
514 */
515 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
516 unsigned long pnum_end,
517 unsigned long map_count)
518 {
519 struct mem_section_usage *usage;
520 unsigned long pnum;
521 struct page *map;
522
523 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
524 mem_section_usage_size() * map_count);
525 if (!usage) {
526 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
527 goto failed;
528 }
529 sparse_buffer_init(map_count * section_map_size(), nid);
530 for_each_present_section_nr(pnum_begin, pnum) {
531 unsigned long pfn = section_nr_to_pfn(pnum);
532
533 if (pnum >= pnum_end)
534 break;
535
536 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
537 nid, NULL);
538 if (!map) {
539 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
540 __func__, nid);
541 pnum_begin = pnum;
542 goto failed;
543 }
544 check_usemap_section_nr(nid, usage);
545 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
546 SECTION_IS_EARLY);
547 usage = (void *) usage + mem_section_usage_size();
548 }
549 sparse_buffer_fini();
550 return;
551 failed:
552 /* We failed to allocate, mark all the following pnums as not present */
553 for_each_present_section_nr(pnum_begin, pnum) {
554 struct mem_section *ms;
555
556 if (pnum >= pnum_end)
557 break;
558 ms = __nr_to_section(pnum);
559 ms->section_mem_map = 0;
560 }
561 }
562
563 /*
564 * Allocate the accumulated non-linear sections, allocate a mem_map
565 * for each and record the physical to section mapping.
566 */
567 void __init sparse_init(void)
568 {
569 unsigned long pnum_begin = first_present_section_nr();
570 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
571 unsigned long pnum_end, map_count = 1;
572
573 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
574 set_pageblock_order();
575
576 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
577 int nid = sparse_early_nid(__nr_to_section(pnum_end));
578
579 if (nid == nid_begin) {
580 map_count++;
581 continue;
582 }
583 /* Init node with sections in range [pnum_begin, pnum_end) */
584 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
585 nid_begin = nid;
586 pnum_begin = pnum_end;
587 map_count = 1;
588 }
589 /* cover the last node */
590 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
591 vmemmap_populate_print_last();
592 }
593
594 #ifdef CONFIG_MEMORY_HOTPLUG
595
596 /* Mark all memory sections within the pfn range as online */
597 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
598 {
599 unsigned long pfn;
600
601 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
602 unsigned long section_nr = pfn_to_section_nr(pfn);
603 struct mem_section *ms;
604
605 /* onlining code should never touch invalid ranges */
606 if (WARN_ON(!valid_section_nr(section_nr)))
607 continue;
608
609 ms = __nr_to_section(section_nr);
610 ms->section_mem_map |= SECTION_IS_ONLINE;
611 }
612 }
613
614 #ifdef CONFIG_MEMORY_HOTREMOVE
615 /* Mark all memory sections within the pfn range as offline */
616 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
617 {
618 unsigned long pfn;
619
620 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
621 unsigned long section_nr = pfn_to_section_nr(pfn);
622 struct mem_section *ms;
623
624 /*
625 * TODO this needs some double checking. Offlining code makes
626 * sure to check pfn_valid but those checks might be just bogus
627 */
628 if (WARN_ON(!valid_section_nr(section_nr)))
629 continue;
630
631 ms = __nr_to_section(section_nr);
632 ms->section_mem_map &= ~SECTION_IS_ONLINE;
633 }
634 }
635 #endif
636
637 #ifdef CONFIG_SPARSEMEM_VMEMMAP
638 static struct page *populate_section_memmap(unsigned long pfn,
639 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
640 {
641 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
642 }
643
644 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
645 struct vmem_altmap *altmap)
646 {
647 unsigned long start = (unsigned long) pfn_to_page(pfn);
648 unsigned long end = start + nr_pages * sizeof(struct page);
649
650 vmemmap_free(start, end, altmap);
651 }
652 static void free_map_bootmem(struct page *memmap)
653 {
654 unsigned long start = (unsigned long)memmap;
655 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
656
657 vmemmap_free(start, end, NULL);
658 }
659 #else
660 struct page *populate_section_memmap(unsigned long pfn,
661 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
662 {
663 struct page *page, *ret;
664 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
665
666 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
667 if (page)
668 goto got_map_page;
669
670 ret = vmalloc(memmap_size);
671 if (ret)
672 goto got_map_ptr;
673
674 return NULL;
675 got_map_page:
676 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
677 got_map_ptr:
678
679 return ret;
680 }
681
682 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
683 struct vmem_altmap *altmap)
684 {
685 struct page *memmap = pfn_to_page(pfn);
686
687 if (is_vmalloc_addr(memmap))
688 vfree(memmap);
689 else
690 free_pages((unsigned long)memmap,
691 get_order(sizeof(struct page) * PAGES_PER_SECTION));
692 }
693
694 static void free_map_bootmem(struct page *memmap)
695 {
696 unsigned long maps_section_nr, removing_section_nr, i;
697 unsigned long magic, nr_pages;
698 struct page *page = virt_to_page(memmap);
699
700 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
701 >> PAGE_SHIFT;
702
703 for (i = 0; i < nr_pages; i++, page++) {
704 magic = (unsigned long) page->freelist;
705
706 BUG_ON(magic == NODE_INFO);
707
708 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
709 removing_section_nr = page_private(page);
710
711 /*
712 * When this function is called, the removing section is
713 * logical offlined state. This means all pages are isolated
714 * from page allocator. If removing section's memmap is placed
715 * on the same section, it must not be freed.
716 * If it is freed, page allocator may allocate it which will
717 * be removed physically soon.
718 */
719 if (maps_section_nr != removing_section_nr)
720 put_page_bootmem(page);
721 }
722 }
723 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
724
725 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
726 struct vmem_altmap *altmap)
727 {
728 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
729 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
730 struct mem_section *ms = __pfn_to_section(pfn);
731 bool section_is_early = early_section(ms);
732 struct page *memmap = NULL;
733 unsigned long *subsection_map = ms->usage
734 ? &ms->usage->subsection_map[0] : NULL;
735
736 subsection_mask_set(map, pfn, nr_pages);
737 if (subsection_map)
738 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
739
740 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
741 "section already deactivated (%#lx + %ld)\n",
742 pfn, nr_pages))
743 return;
744
745 /*
746 * There are 3 cases to handle across two configurations
747 * (SPARSEMEM_VMEMMAP={y,n}):
748 *
749 * 1/ deactivation of a partial hot-added section (only possible
750 * in the SPARSEMEM_VMEMMAP=y case).
751 * a/ section was present at memory init
752 * b/ section was hot-added post memory init
753 * 2/ deactivation of a complete hot-added section
754 * 3/ deactivation of a complete section from memory init
755 *
756 * For 1/, when subsection_map does not empty we will not be
757 * freeing the usage map, but still need to free the vmemmap
758 * range.
759 *
760 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
761 */
762 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
763 if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
764 unsigned long section_nr = pfn_to_section_nr(pfn);
765
766 if (!section_is_early) {
767 kfree(ms->usage);
768 ms->usage = NULL;
769 }
770 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
771 ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
772 }
773
774 if (section_is_early && memmap)
775 free_map_bootmem(memmap);
776 else
777 depopulate_section_memmap(pfn, nr_pages, altmap);
778 }
779
780 static struct page * __meminit section_activate(int nid, unsigned long pfn,
781 unsigned long nr_pages, struct vmem_altmap *altmap)
782 {
783 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
784 struct mem_section *ms = __pfn_to_section(pfn);
785 struct mem_section_usage *usage = NULL;
786 unsigned long *subsection_map;
787 struct page *memmap;
788 int rc = 0;
789
790 subsection_mask_set(map, pfn, nr_pages);
791
792 if (!ms->usage) {
793 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
794 if (!usage)
795 return ERR_PTR(-ENOMEM);
796 ms->usage = usage;
797 }
798 subsection_map = &ms->usage->subsection_map[0];
799
800 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
801 rc = -EINVAL;
802 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
803 rc = -EEXIST;
804 else
805 bitmap_or(subsection_map, map, subsection_map,
806 SUBSECTIONS_PER_SECTION);
807
808 if (rc) {
809 if (usage)
810 ms->usage = NULL;
811 kfree(usage);
812 return ERR_PTR(rc);
813 }
814
815 /*
816 * The early init code does not consider partially populated
817 * initial sections, it simply assumes that memory will never be
818 * referenced. If we hot-add memory into such a section then we
819 * do not need to populate the memmap and can simply reuse what
820 * is already there.
821 */
822 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
823 return pfn_to_page(pfn);
824
825 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
826 if (!memmap) {
827 section_deactivate(pfn, nr_pages, altmap);
828 return ERR_PTR(-ENOMEM);
829 }
830
831 return memmap;
832 }
833
834 /**
835 * sparse_add_section - add a memory section, or populate an existing one
836 * @nid: The node to add section on
837 * @start_pfn: start pfn of the memory range
838 * @nr_pages: number of pfns to add in the section
839 * @altmap: device page map
840 *
841 * This is only intended for hotplug.
842 *
843 * Return:
844 * * 0 - On success.
845 * * -EEXIST - Section has been present.
846 * * -ENOMEM - Out of memory.
847 */
848 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
849 unsigned long nr_pages, struct vmem_altmap *altmap)
850 {
851 unsigned long section_nr = pfn_to_section_nr(start_pfn);
852 struct mem_section *ms;
853 struct page *memmap;
854 int ret;
855
856 ret = sparse_index_init(section_nr, nid);
857 if (ret < 0)
858 return ret;
859
860 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
861 if (IS_ERR(memmap))
862 return PTR_ERR(memmap);
863
864 /*
865 * Poison uninitialized struct pages in order to catch invalid flags
866 * combinations.
867 */
868 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
869
870 ms = __pfn_to_section(start_pfn);
871 set_section_nid(section_nr, nid);
872 section_mark_present(ms);
873
874 /* Align memmap to section boundary in the subsection case */
875 if (section_nr_to_pfn(section_nr) != start_pfn)
876 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
877 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
878
879 return 0;
880 }
881
882 #ifdef CONFIG_MEMORY_FAILURE
883 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
884 {
885 int i;
886
887 if (!memmap)
888 return;
889
890 /*
891 * A further optimization is to have per section refcounted
892 * num_poisoned_pages. But that would need more space per memmap, so
893 * for now just do a quick global check to speed up this routine in the
894 * absence of bad pages.
895 */
896 if (atomic_long_read(&num_poisoned_pages) == 0)
897 return;
898
899 for (i = 0; i < nr_pages; i++) {
900 if (PageHWPoison(&memmap[i])) {
901 atomic_long_sub(1, &num_poisoned_pages);
902 ClearPageHWPoison(&memmap[i]);
903 }
904 }
905 }
906 #else
907 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
908 {
909 }
910 #endif
911
912 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
913 unsigned long nr_pages, unsigned long map_offset,
914 struct vmem_altmap *altmap)
915 {
916 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
917 nr_pages - map_offset);
918 section_deactivate(pfn, nr_pages, altmap);
919 }
920 #endif /* CONFIG_MEMORY_HOTPLUG */