]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swap.c
irqchip/brcmstb-l2: Make two init functions static
[thirdparty/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 __ClearPageWaiters(page);
73 mem_cgroup_uncharge(page);
74 }
75
76 static void __put_single_page(struct page *page)
77 {
78 __page_cache_release(page);
79 free_unref_page(page);
80 }
81
82 static void __put_compound_page(struct page *page)
83 {
84 compound_page_dtor *dtor;
85
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96 }
97
98 void __put_page(struct page *page)
99 {
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
110 if (unlikely(PageCompound(page)))
111 __put_compound_page(page);
112 else
113 __put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116
117 /**
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
123 */
124 void put_pages_list(struct list_head *pages)
125 {
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = lru_to_page(pages);
130 list_del(&victim->lru);
131 put_page(victim);
132 }
133 }
134 EXPORT_SYMBOL(put_pages_list);
135
136 /*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151 {
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 get_page(pages[seg]);
160 }
161
162 return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166 /*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187
188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
191 {
192 int i;
193 struct pglist_data *pgdat = NULL;
194 struct lruvec *lruvec;
195 unsigned long flags = 0;
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
199 struct pglist_data *pagepgdat = page_pgdat(page);
200
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
206 }
207
208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 (*move_fn)(page, lruvec, arg);
210 }
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 release_pages(pvec->pages, pvec->nr);
214 pagevec_reinit(pvec);
215 }
216
217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
219 {
220 int *pgmoved = arg;
221
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 (*pgmoved)++;
227 }
228 }
229
230 /*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240 }
241
242 /*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
245 * inactive list.
246 */
247 void rotate_reclaimable_page(struct page *page)
248 {
249 if (!PageLocked(page) && !PageDirty(page) &&
250 !PageUnevictable(page) && PageLRU(page)) {
251 struct pagevec *pvec;
252 unsigned long flags;
253
254 get_page(page);
255 local_irq_save(flags);
256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 if (!pagevec_add(pvec, page) || PageCompound(page))
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
261 }
262
263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 int file, int rotated)
265 {
266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
271 }
272
273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
275 {
276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
279
280 del_page_from_lru_list(page, lruvec, lru);
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
283 add_page_to_lru_list(page, lruvec, lru);
284 trace_mm_lru_activate(page);
285
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
288 }
289 }
290
291 #ifdef CONFIG_SMP
292 static void activate_page_drain(int cpu)
293 {
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299
300 static bool need_activate_page_drain(int cpu)
301 {
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304
305 void activate_page(struct page *page)
306 {
307 page = compound_head(page);
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
311 get_page(page);
312 if (!pagevec_add(pvec, page) || PageCompound(page))
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316 }
317
318 #else
319 static inline void activate_page_drain(int cpu)
320 {
321 }
322
323 static bool need_activate_page_drain(int cpu)
324 {
325 return false;
326 }
327
328 void activate_page(struct page *page)
329 {
330 struct zone *zone = page_zone(page);
331
332 page = compound_head(page);
333 spin_lock_irq(zone_lru_lock(zone));
334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
335 spin_unlock_irq(zone_lru_lock(zone));
336 }
337 #endif
338
339 static void __lru_cache_activate_page(struct page *page)
340 {
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364 }
365
366 /*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
375 */
376 void mark_page_accessed(struct page *page)
377 {
378 page = compound_head(page);
379 if (!PageActive(page) && !PageUnevictable(page) &&
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
392 ClearPageReferenced(page);
393 if (page_is_file_cache(page))
394 workingset_activation(page);
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
398 if (page_is_idle(page))
399 clear_page_idle(page);
400 }
401 EXPORT_SYMBOL(mark_page_accessed);
402
403 static void __lru_cache_add(struct page *page)
404 {
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
407 get_page(page);
408 if (!pagevec_add(pvec, page) || PageCompound(page))
409 __pagevec_lru_add(pvec);
410 put_cpu_var(lru_add_pvec);
411 }
412
413 /**
414 * lru_cache_add_anon - add a page to the page lists
415 * @page: the page to add
416 */
417 void lru_cache_add_anon(struct page *page)
418 {
419 if (PageActive(page))
420 ClearPageActive(page);
421 __lru_cache_add(page);
422 }
423
424 void lru_cache_add_file(struct page *page)
425 {
426 if (PageActive(page))
427 ClearPageActive(page);
428 __lru_cache_add(page);
429 }
430 EXPORT_SYMBOL(lru_cache_add_file);
431
432 /**
433 * lru_cache_add - add a page to a page list
434 * @page: the page to be added to the LRU.
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
440 */
441 void lru_cache_add(struct page *page)
442 {
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
445 __lru_cache_add(page);
446 }
447
448 /**
449 * lru_cache_add_active_or_unevictable
450 * @page: the page to be added to LRU
451 * @vma: vma in which page is mapped for determining reclaimability
452 *
453 * Place @page on the active or unevictable LRU list, depending on its
454 * evictability. Note that if the page is not evictable, it goes
455 * directly back onto it's zone's unevictable list, it does NOT use a
456 * per cpu pagevec.
457 */
458 void lru_cache_add_active_or_unevictable(struct page *page,
459 struct vm_area_struct *vma)
460 {
461 VM_BUG_ON_PAGE(PageLRU(page), page);
462
463 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
464 SetPageActive(page);
465 else if (!TestSetPageMlocked(page)) {
466 /*
467 * We use the irq-unsafe __mod_zone_page_stat because this
468 * counter is not modified from interrupt context, and the pte
469 * lock is held(spinlock), which implies preemption disabled.
470 */
471 __mod_zone_page_state(page_zone(page), NR_MLOCK,
472 hpage_nr_pages(page));
473 count_vm_event(UNEVICTABLE_PGMLOCKED);
474 }
475 lru_cache_add(page);
476 }
477
478 /*
479 * If the page can not be invalidated, it is moved to the
480 * inactive list to speed up its reclaim. It is moved to the
481 * head of the list, rather than the tail, to give the flusher
482 * threads some time to write it out, as this is much more
483 * effective than the single-page writeout from reclaim.
484 *
485 * If the page isn't page_mapped and dirty/writeback, the page
486 * could reclaim asap using PG_reclaim.
487 *
488 * 1. active, mapped page -> none
489 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
490 * 3. inactive, mapped page -> none
491 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
492 * 5. inactive, clean -> inactive, tail
493 * 6. Others -> none
494 *
495 * In 4, why it moves inactive's head, the VM expects the page would
496 * be write it out by flusher threads as this is much more effective
497 * than the single-page writeout from reclaim.
498 */
499 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
500 void *arg)
501 {
502 int lru, file;
503 bool active;
504
505 if (!PageLRU(page))
506 return;
507
508 if (PageUnevictable(page))
509 return;
510
511 /* Some processes are using the page */
512 if (page_mapped(page))
513 return;
514
515 active = PageActive(page);
516 file = page_is_file_cache(page);
517 lru = page_lru_base_type(page);
518
519 del_page_from_lru_list(page, lruvec, lru + active);
520 ClearPageActive(page);
521 ClearPageReferenced(page);
522 add_page_to_lru_list(page, lruvec, lru);
523
524 if (PageWriteback(page) || PageDirty(page)) {
525 /*
526 * PG_reclaim could be raced with end_page_writeback
527 * It can make readahead confusing. But race window
528 * is _really_ small and it's non-critical problem.
529 */
530 SetPageReclaim(page);
531 } else {
532 /*
533 * The page's writeback ends up during pagevec
534 * We moves tha page into tail of inactive.
535 */
536 list_move_tail(&page->lru, &lruvec->lists[lru]);
537 __count_vm_event(PGROTATED);
538 }
539
540 if (active)
541 __count_vm_event(PGDEACTIVATE);
542 update_page_reclaim_stat(lruvec, file, 0);
543 }
544
545
546 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
547 void *arg)
548 {
549 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
550 !PageSwapCache(page) && !PageUnevictable(page)) {
551 bool active = PageActive(page);
552
553 del_page_from_lru_list(page, lruvec,
554 LRU_INACTIVE_ANON + active);
555 ClearPageActive(page);
556 ClearPageReferenced(page);
557 /*
558 * lazyfree pages are clean anonymous pages. They have
559 * SwapBacked flag cleared to distinguish normal anonymous
560 * pages
561 */
562 ClearPageSwapBacked(page);
563 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
564
565 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
566 count_memcg_page_event(page, PGLAZYFREE);
567 update_page_reclaim_stat(lruvec, 1, 0);
568 }
569 }
570
571 /*
572 * Drain pages out of the cpu's pagevecs.
573 * Either "cpu" is the current CPU, and preemption has already been
574 * disabled; or "cpu" is being hot-unplugged, and is already dead.
575 */
576 void lru_add_drain_cpu(int cpu)
577 {
578 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
579
580 if (pagevec_count(pvec))
581 __pagevec_lru_add(pvec);
582
583 pvec = &per_cpu(lru_rotate_pvecs, cpu);
584 if (pagevec_count(pvec)) {
585 unsigned long flags;
586
587 /* No harm done if a racing interrupt already did this */
588 local_irq_save(flags);
589 pagevec_move_tail(pvec);
590 local_irq_restore(flags);
591 }
592
593 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
594 if (pagevec_count(pvec))
595 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
596
597 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
598 if (pagevec_count(pvec))
599 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
600
601 activate_page_drain(cpu);
602 }
603
604 /**
605 * deactivate_file_page - forcefully deactivate a file page
606 * @page: page to deactivate
607 *
608 * This function hints the VM that @page is a good reclaim candidate,
609 * for example if its invalidation fails due to the page being dirty
610 * or under writeback.
611 */
612 void deactivate_file_page(struct page *page)
613 {
614 /*
615 * In a workload with many unevictable page such as mprotect,
616 * unevictable page deactivation for accelerating reclaim is pointless.
617 */
618 if (PageUnevictable(page))
619 return;
620
621 if (likely(get_page_unless_zero(page))) {
622 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
623
624 if (!pagevec_add(pvec, page) || PageCompound(page))
625 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
626 put_cpu_var(lru_deactivate_file_pvecs);
627 }
628 }
629
630 /**
631 * mark_page_lazyfree - make an anon page lazyfree
632 * @page: page to deactivate
633 *
634 * mark_page_lazyfree() moves @page to the inactive file list.
635 * This is done to accelerate the reclaim of @page.
636 */
637 void mark_page_lazyfree(struct page *page)
638 {
639 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
640 !PageSwapCache(page) && !PageUnevictable(page)) {
641 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
642
643 get_page(page);
644 if (!pagevec_add(pvec, page) || PageCompound(page))
645 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
646 put_cpu_var(lru_lazyfree_pvecs);
647 }
648 }
649
650 void lru_add_drain(void)
651 {
652 lru_add_drain_cpu(get_cpu());
653 put_cpu();
654 }
655
656 static void lru_add_drain_per_cpu(struct work_struct *dummy)
657 {
658 lru_add_drain();
659 }
660
661 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
662
663 /*
664 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
665 * kworkers being shut down before our page_alloc_cpu_dead callback is
666 * executed on the offlined cpu.
667 * Calling this function with cpu hotplug locks held can actually lead
668 * to obscure indirect dependencies via WQ context.
669 */
670 void lru_add_drain_all(void)
671 {
672 static DEFINE_MUTEX(lock);
673 static struct cpumask has_work;
674 int cpu;
675
676 /*
677 * Make sure nobody triggers this path before mm_percpu_wq is fully
678 * initialized.
679 */
680 if (WARN_ON(!mm_percpu_wq))
681 return;
682
683 mutex_lock(&lock);
684 cpumask_clear(&has_work);
685
686 for_each_online_cpu(cpu) {
687 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
688
689 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
690 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
691 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
692 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
693 need_activate_page_drain(cpu)) {
694 INIT_WORK(work, lru_add_drain_per_cpu);
695 queue_work_on(cpu, mm_percpu_wq, work);
696 cpumask_set_cpu(cpu, &has_work);
697 }
698 }
699
700 for_each_cpu(cpu, &has_work)
701 flush_work(&per_cpu(lru_add_drain_work, cpu));
702
703 mutex_unlock(&lock);
704 }
705
706 /**
707 * release_pages - batched put_page()
708 * @pages: array of pages to release
709 * @nr: number of pages
710 *
711 * Decrement the reference count on all the pages in @pages. If it
712 * fell to zero, remove the page from the LRU and free it.
713 */
714 void release_pages(struct page **pages, int nr)
715 {
716 int i;
717 LIST_HEAD(pages_to_free);
718 struct pglist_data *locked_pgdat = NULL;
719 struct lruvec *lruvec;
720 unsigned long uninitialized_var(flags);
721 unsigned int uninitialized_var(lock_batch);
722
723 for (i = 0; i < nr; i++) {
724 struct page *page = pages[i];
725
726 /*
727 * Make sure the IRQ-safe lock-holding time does not get
728 * excessive with a continuous string of pages from the
729 * same pgdat. The lock is held only if pgdat != NULL.
730 */
731 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
732 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
733 locked_pgdat = NULL;
734 }
735
736 if (is_huge_zero_page(page))
737 continue;
738
739 /* Device public page can not be huge page */
740 if (is_device_public_page(page)) {
741 if (locked_pgdat) {
742 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
743 flags);
744 locked_pgdat = NULL;
745 }
746 put_devmap_managed_page(page);
747 continue;
748 }
749
750 page = compound_head(page);
751 if (!put_page_testzero(page))
752 continue;
753
754 if (PageCompound(page)) {
755 if (locked_pgdat) {
756 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
757 locked_pgdat = NULL;
758 }
759 __put_compound_page(page);
760 continue;
761 }
762
763 if (PageLRU(page)) {
764 struct pglist_data *pgdat = page_pgdat(page);
765
766 if (pgdat != locked_pgdat) {
767 if (locked_pgdat)
768 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
769 flags);
770 lock_batch = 0;
771 locked_pgdat = pgdat;
772 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
773 }
774
775 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
776 VM_BUG_ON_PAGE(!PageLRU(page), page);
777 __ClearPageLRU(page);
778 del_page_from_lru_list(page, lruvec, page_off_lru(page));
779 }
780
781 /* Clear Active bit in case of parallel mark_page_accessed */
782 __ClearPageActive(page);
783 __ClearPageWaiters(page);
784
785 list_add(&page->lru, &pages_to_free);
786 }
787 if (locked_pgdat)
788 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
789
790 mem_cgroup_uncharge_list(&pages_to_free);
791 free_unref_page_list(&pages_to_free);
792 }
793 EXPORT_SYMBOL(release_pages);
794
795 /*
796 * The pages which we're about to release may be in the deferred lru-addition
797 * queues. That would prevent them from really being freed right now. That's
798 * OK from a correctness point of view but is inefficient - those pages may be
799 * cache-warm and we want to give them back to the page allocator ASAP.
800 *
801 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
802 * and __pagevec_lru_add_active() call release_pages() directly to avoid
803 * mutual recursion.
804 */
805 void __pagevec_release(struct pagevec *pvec)
806 {
807 if (!pvec->percpu_pvec_drained) {
808 lru_add_drain();
809 pvec->percpu_pvec_drained = true;
810 }
811 release_pages(pvec->pages, pagevec_count(pvec));
812 pagevec_reinit(pvec);
813 }
814 EXPORT_SYMBOL(__pagevec_release);
815
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 /* used by __split_huge_page_refcount() */
818 void lru_add_page_tail(struct page *page, struct page *page_tail,
819 struct lruvec *lruvec, struct list_head *list)
820 {
821 const int file = 0;
822
823 VM_BUG_ON_PAGE(!PageHead(page), page);
824 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
825 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
826 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
827
828 if (!list)
829 SetPageLRU(page_tail);
830
831 if (likely(PageLRU(page)))
832 list_add_tail(&page_tail->lru, &page->lru);
833 else if (list) {
834 /* page reclaim is reclaiming a huge page */
835 get_page(page_tail);
836 list_add_tail(&page_tail->lru, list);
837 } else {
838 struct list_head *list_head;
839 /*
840 * Head page has not yet been counted, as an hpage,
841 * so we must account for each subpage individually.
842 *
843 * Use the standard add function to put page_tail on the list,
844 * but then correct its position so they all end up in order.
845 */
846 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
847 list_head = page_tail->lru.prev;
848 list_move_tail(&page_tail->lru, list_head);
849 }
850
851 if (!PageUnevictable(page))
852 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
853 }
854 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
855
856 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
857 void *arg)
858 {
859 enum lru_list lru;
860 int was_unevictable = TestClearPageUnevictable(page);
861
862 VM_BUG_ON_PAGE(PageLRU(page), page);
863
864 SetPageLRU(page);
865 /*
866 * Page becomes evictable in two ways:
867 * 1) Within LRU lock [munlock_vma_pages() and __munlock_pagevec()].
868 * 2) Before acquiring LRU lock to put the page to correct LRU and then
869 * a) do PageLRU check with lock [check_move_unevictable_pages]
870 * b) do PageLRU check before lock [clear_page_mlock]
871 *
872 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
873 * following strict ordering:
874 *
875 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
876 *
877 * SetPageLRU() TestClearPageMlocked()
878 * smp_mb() // explicit ordering // above provides strict
879 * // ordering
880 * PageMlocked() PageLRU()
881 *
882 *
883 * if '#1' does not observe setting of PG_lru by '#0' and fails
884 * isolation, the explicit barrier will make sure that page_evictable
885 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
886 * can be reordered after PageMlocked check and can make '#1' to fail
887 * the isolation of the page whose Mlocked bit is cleared (#0 is also
888 * looking at the same page) and the evictable page will be stranded
889 * in an unevictable LRU.
890 */
891 smp_mb();
892
893 if (page_evictable(page)) {
894 lru = page_lru(page);
895 update_page_reclaim_stat(lruvec, page_is_file_cache(page),
896 PageActive(page));
897 if (was_unevictable)
898 count_vm_event(UNEVICTABLE_PGRESCUED);
899 } else {
900 lru = LRU_UNEVICTABLE;
901 ClearPageActive(page);
902 SetPageUnevictable(page);
903 if (!was_unevictable)
904 count_vm_event(UNEVICTABLE_PGCULLED);
905 }
906
907 add_page_to_lru_list(page, lruvec, lru);
908 trace_mm_lru_insertion(page, lru);
909 }
910
911 /*
912 * Add the passed pages to the LRU, then drop the caller's refcount
913 * on them. Reinitialises the caller's pagevec.
914 */
915 void __pagevec_lru_add(struct pagevec *pvec)
916 {
917 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
918 }
919 EXPORT_SYMBOL(__pagevec_lru_add);
920
921 /**
922 * pagevec_lookup_entries - gang pagecache lookup
923 * @pvec: Where the resulting entries are placed
924 * @mapping: The address_space to search
925 * @start: The starting entry index
926 * @nr_entries: The maximum number of pages
927 * @indices: The cache indices corresponding to the entries in @pvec
928 *
929 * pagevec_lookup_entries() will search for and return a group of up
930 * to @nr_pages pages and shadow entries in the mapping. All
931 * entries are placed in @pvec. pagevec_lookup_entries() takes a
932 * reference against actual pages in @pvec.
933 *
934 * The search returns a group of mapping-contiguous entries with
935 * ascending indexes. There may be holes in the indices due to
936 * not-present entries.
937 *
938 * pagevec_lookup_entries() returns the number of entries which were
939 * found.
940 */
941 unsigned pagevec_lookup_entries(struct pagevec *pvec,
942 struct address_space *mapping,
943 pgoff_t start, unsigned nr_entries,
944 pgoff_t *indices)
945 {
946 pvec->nr = find_get_entries(mapping, start, nr_entries,
947 pvec->pages, indices);
948 return pagevec_count(pvec);
949 }
950
951 /**
952 * pagevec_remove_exceptionals - pagevec exceptionals pruning
953 * @pvec: The pagevec to prune
954 *
955 * pagevec_lookup_entries() fills both pages and exceptional radix
956 * tree entries into the pagevec. This function prunes all
957 * exceptionals from @pvec without leaving holes, so that it can be
958 * passed on to page-only pagevec operations.
959 */
960 void pagevec_remove_exceptionals(struct pagevec *pvec)
961 {
962 int i, j;
963
964 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
965 struct page *page = pvec->pages[i];
966 if (!xa_is_value(page))
967 pvec->pages[j++] = page;
968 }
969 pvec->nr = j;
970 }
971
972 /**
973 * pagevec_lookup_range - gang pagecache lookup
974 * @pvec: Where the resulting pages are placed
975 * @mapping: The address_space to search
976 * @start: The starting page index
977 * @end: The final page index
978 *
979 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
980 * pages in the mapping starting from index @start and upto index @end
981 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
982 * reference against the pages in @pvec.
983 *
984 * The search returns a group of mapping-contiguous pages with ascending
985 * indexes. There may be holes in the indices due to not-present pages. We
986 * also update @start to index the next page for the traversal.
987 *
988 * pagevec_lookup_range() returns the number of pages which were found. If this
989 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
990 * reached.
991 */
992 unsigned pagevec_lookup_range(struct pagevec *pvec,
993 struct address_space *mapping, pgoff_t *start, pgoff_t end)
994 {
995 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
996 pvec->pages);
997 return pagevec_count(pvec);
998 }
999 EXPORT_SYMBOL(pagevec_lookup_range);
1000
1001 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1002 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1003 xa_mark_t tag)
1004 {
1005 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1006 PAGEVEC_SIZE, pvec->pages);
1007 return pagevec_count(pvec);
1008 }
1009 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1010
1011 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1012 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1013 xa_mark_t tag, unsigned max_pages)
1014 {
1015 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1016 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1017 return pagevec_count(pvec);
1018 }
1019 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1020 /*
1021 * Perform any setup for the swap system
1022 */
1023 void __init swap_setup(void)
1024 {
1025 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1026
1027 /* Use a smaller cluster for small-memory machines */
1028 if (megs < 16)
1029 page_cluster = 2;
1030 else
1031 page_cluster = 3;
1032 /*
1033 * Right now other parts of the system means that we
1034 * _really_ don't want to cluster much more
1035 */
1036 }