]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swap_state.c
cifs: pass a path to open_shroot and check if it is the root or not
[thirdparty/linux.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26
27 /*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31 static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
63
64 static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69 } swap_cache_info;
70
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72
73 void show_swap_cache_info(void)
74 {
75 printk("%lu pages in swap cache\n", total_swapcache_pages());
76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 swap_cache_info.add_total, swap_cache_info.del_total,
78 swap_cache_info.find_success, swap_cache_info.find_total);
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 }
83
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
85 {
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
88 struct page *page;
89
90 page = xa_load(&address_space->i_pages, idx);
91 if (xa_is_value(page))
92 return page;
93 return NULL;
94 }
95
96 /*
97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98 * but sets SwapCache flag and private instead of mapping and index.
99 */
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
102 {
103 struct address_space *address_space = swap_address_space(entry);
104 pgoff_t idx = swp_offset(entry);
105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 unsigned long i, nr = thp_nr_pages(page);
107 void *old;
108
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112
113 page_ref_add(page, nr);
114 SetPageSwapCache(page);
115
116 do {
117 unsigned long nr_shadows = 0;
118
119 xas_lock_irq(&xas);
120 xas_create_range(&xas);
121 if (xas_error(&xas))
122 goto unlock;
123 for (i = 0; i < nr; i++) {
124 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
125 old = xas_load(&xas);
126 if (xa_is_value(old)) {
127 nr_shadows++;
128 if (shadowp)
129 *shadowp = old;
130 }
131 set_page_private(page + i, entry.val + i);
132 xas_store(&xas, page);
133 xas_next(&xas);
134 }
135 address_space->nrexceptional -= nr_shadows;
136 address_space->nrpages += nr;
137 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
139 ADD_CACHE_INFO(add_total, nr);
140 unlock:
141 xas_unlock_irq(&xas);
142 } while (xas_nomem(&xas, gfp));
143
144 if (!xas_error(&xas))
145 return 0;
146
147 ClearPageSwapCache(page);
148 page_ref_sub(page, nr);
149 return xas_error(&xas);
150 }
151
152 /*
153 * This must be called only on pages that have
154 * been verified to be in the swap cache.
155 */
156 void __delete_from_swap_cache(struct page *page,
157 swp_entry_t entry, void *shadow)
158 {
159 struct address_space *address_space = swap_address_space(entry);
160 int i, nr = thp_nr_pages(page);
161 pgoff_t idx = swp_offset(entry);
162 XA_STATE(xas, &address_space->i_pages, idx);
163
164 VM_BUG_ON_PAGE(!PageLocked(page), page);
165 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 VM_BUG_ON_PAGE(PageWriteback(page), page);
167
168 for (i = 0; i < nr; i++) {
169 void *entry = xas_store(&xas, shadow);
170 VM_BUG_ON_PAGE(entry != page, entry);
171 set_page_private(page + i, 0);
172 xas_next(&xas);
173 }
174 ClearPageSwapCache(page);
175 if (shadow)
176 address_space->nrexceptional += nr;
177 address_space->nrpages -= nr;
178 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
179 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
180 ADD_CACHE_INFO(del_total, nr);
181 }
182
183 /**
184 * add_to_swap - allocate swap space for a page
185 * @page: page we want to move to swap
186 *
187 * Allocate swap space for the page and add the page to the
188 * swap cache. Caller needs to hold the page lock.
189 */
190 int add_to_swap(struct page *page)
191 {
192 swp_entry_t entry;
193 int err;
194
195 VM_BUG_ON_PAGE(!PageLocked(page), page);
196 VM_BUG_ON_PAGE(!PageUptodate(page), page);
197
198 entry = get_swap_page(page);
199 if (!entry.val)
200 return 0;
201
202 /*
203 * XArray node allocations from PF_MEMALLOC contexts could
204 * completely exhaust the page allocator. __GFP_NOMEMALLOC
205 * stops emergency reserves from being allocated.
206 *
207 * TODO: this could cause a theoretical memory reclaim
208 * deadlock in the swap out path.
209 */
210 /*
211 * Add it to the swap cache.
212 */
213 err = add_to_swap_cache(page, entry,
214 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
215 if (err)
216 /*
217 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
218 * clear SWAP_HAS_CACHE flag.
219 */
220 goto fail;
221 /*
222 * Normally the page will be dirtied in unmap because its pte should be
223 * dirty. A special case is MADV_FREE page. The page's pte could have
224 * dirty bit cleared but the page's SwapBacked bit is still set because
225 * clearing the dirty bit and SwapBacked bit has no lock protected. For
226 * such page, unmap will not set dirty bit for it, so page reclaim will
227 * not write the page out. This can cause data corruption when the page
228 * is swap in later. Always setting the dirty bit for the page solves
229 * the problem.
230 */
231 set_page_dirty(page);
232
233 return 1;
234
235 fail:
236 put_swap_page(page, entry);
237 return 0;
238 }
239
240 /*
241 * This must be called only on pages that have
242 * been verified to be in the swap cache and locked.
243 * It will never put the page into the free list,
244 * the caller has a reference on the page.
245 */
246 void delete_from_swap_cache(struct page *page)
247 {
248 swp_entry_t entry = { .val = page_private(page) };
249 struct address_space *address_space = swap_address_space(entry);
250
251 xa_lock_irq(&address_space->i_pages);
252 __delete_from_swap_cache(page, entry, NULL);
253 xa_unlock_irq(&address_space->i_pages);
254
255 put_swap_page(page, entry);
256 page_ref_sub(page, thp_nr_pages(page));
257 }
258
259 void clear_shadow_from_swap_cache(int type, unsigned long begin,
260 unsigned long end)
261 {
262 unsigned long curr = begin;
263 void *old;
264
265 for (;;) {
266 unsigned long nr_shadows = 0;
267 swp_entry_t entry = swp_entry(type, curr);
268 struct address_space *address_space = swap_address_space(entry);
269 XA_STATE(xas, &address_space->i_pages, curr);
270
271 xa_lock_irq(&address_space->i_pages);
272 xas_for_each(&xas, old, end) {
273 if (!xa_is_value(old))
274 continue;
275 xas_store(&xas, NULL);
276 nr_shadows++;
277 }
278 address_space->nrexceptional -= nr_shadows;
279 xa_unlock_irq(&address_space->i_pages);
280
281 /* search the next swapcache until we meet end */
282 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
283 curr++;
284 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
285 if (curr > end)
286 break;
287 }
288 }
289
290 /*
291 * If we are the only user, then try to free up the swap cache.
292 *
293 * Its ok to check for PageSwapCache without the page lock
294 * here because we are going to recheck again inside
295 * try_to_free_swap() _with_ the lock.
296 * - Marcelo
297 */
298 static inline void free_swap_cache(struct page *page)
299 {
300 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
301 try_to_free_swap(page);
302 unlock_page(page);
303 }
304 }
305
306 /*
307 * Perform a free_page(), also freeing any swap cache associated with
308 * this page if it is the last user of the page.
309 */
310 void free_page_and_swap_cache(struct page *page)
311 {
312 free_swap_cache(page);
313 if (!is_huge_zero_page(page))
314 put_page(page);
315 }
316
317 /*
318 * Passed an array of pages, drop them all from swapcache and then release
319 * them. They are removed from the LRU and freed if this is their last use.
320 */
321 void free_pages_and_swap_cache(struct page **pages, int nr)
322 {
323 struct page **pagep = pages;
324 int i;
325
326 lru_add_drain();
327 for (i = 0; i < nr; i++)
328 free_swap_cache(pagep[i]);
329 release_pages(pagep, nr);
330 }
331
332 static inline bool swap_use_vma_readahead(void)
333 {
334 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
335 }
336
337 /*
338 * Lookup a swap entry in the swap cache. A found page will be returned
339 * unlocked and with its refcount incremented - we rely on the kernel
340 * lock getting page table operations atomic even if we drop the page
341 * lock before returning.
342 */
343 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
344 unsigned long addr)
345 {
346 struct page *page;
347 struct swap_info_struct *si;
348
349 si = get_swap_device(entry);
350 if (!si)
351 return NULL;
352 page = find_get_page(swap_address_space(entry), swp_offset(entry));
353 put_swap_device(si);
354
355 INC_CACHE_INFO(find_total);
356 if (page) {
357 bool vma_ra = swap_use_vma_readahead();
358 bool readahead;
359
360 INC_CACHE_INFO(find_success);
361 /*
362 * At the moment, we don't support PG_readahead for anon THP
363 * so let's bail out rather than confusing the readahead stat.
364 */
365 if (unlikely(PageTransCompound(page)))
366 return page;
367
368 readahead = TestClearPageReadahead(page);
369 if (vma && vma_ra) {
370 unsigned long ra_val;
371 int win, hits;
372
373 ra_val = GET_SWAP_RA_VAL(vma);
374 win = SWAP_RA_WIN(ra_val);
375 hits = SWAP_RA_HITS(ra_val);
376 if (readahead)
377 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 atomic_long_set(&vma->swap_readahead_info,
379 SWAP_RA_VAL(addr, win, hits));
380 }
381
382 if (readahead) {
383 count_vm_event(SWAP_RA_HIT);
384 if (!vma || !vma_ra)
385 atomic_inc(&swapin_readahead_hits);
386 }
387 }
388
389 return page;
390 }
391
392 /**
393 * find_get_incore_page - Find and get a page from the page or swap caches.
394 * @mapping: The address_space to search.
395 * @index: The page cache index.
396 *
397 * This differs from find_get_page() in that it will also look for the
398 * page in the swap cache.
399 *
400 * Return: The found page or %NULL.
401 */
402 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
403 {
404 swp_entry_t swp;
405 struct swap_info_struct *si;
406 struct page *page = pagecache_get_page(mapping, index,
407 FGP_ENTRY | FGP_HEAD, 0);
408
409 if (!page)
410 return page;
411 if (!xa_is_value(page))
412 return find_subpage(page, index);
413 if (!shmem_mapping(mapping))
414 return NULL;
415
416 swp = radix_to_swp_entry(page);
417 /* Prevent swapoff from happening to us */
418 si = get_swap_device(swp);
419 if (!si)
420 return NULL;
421 page = find_get_page(swap_address_space(swp), swp_offset(swp));
422 put_swap_device(si);
423 return page;
424 }
425
426 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
427 struct vm_area_struct *vma, unsigned long addr,
428 bool *new_page_allocated)
429 {
430 struct swap_info_struct *si;
431 struct page *page;
432 void *shadow = NULL;
433
434 *new_page_allocated = false;
435
436 for (;;) {
437 int err;
438 /*
439 * First check the swap cache. Since this is normally
440 * called after lookup_swap_cache() failed, re-calling
441 * that would confuse statistics.
442 */
443 si = get_swap_device(entry);
444 if (!si)
445 return NULL;
446 page = find_get_page(swap_address_space(entry),
447 swp_offset(entry));
448 put_swap_device(si);
449 if (page)
450 return page;
451
452 /*
453 * Just skip read ahead for unused swap slot.
454 * During swap_off when swap_slot_cache is disabled,
455 * we have to handle the race between putting
456 * swap entry in swap cache and marking swap slot
457 * as SWAP_HAS_CACHE. That's done in later part of code or
458 * else swap_off will be aborted if we return NULL.
459 */
460 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
461 return NULL;
462
463 /*
464 * Get a new page to read into from swap. Allocate it now,
465 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
466 * cause any racers to loop around until we add it to cache.
467 */
468 page = alloc_page_vma(gfp_mask, vma, addr);
469 if (!page)
470 return NULL;
471
472 /*
473 * Swap entry may have been freed since our caller observed it.
474 */
475 err = swapcache_prepare(entry);
476 if (!err)
477 break;
478
479 put_page(page);
480 if (err != -EEXIST)
481 return NULL;
482
483 /*
484 * We might race against __delete_from_swap_cache(), and
485 * stumble across a swap_map entry whose SWAP_HAS_CACHE
486 * has not yet been cleared. Or race against another
487 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
488 * in swap_map, but not yet added its page to swap cache.
489 */
490 cond_resched();
491 }
492
493 /*
494 * The swap entry is ours to swap in. Prepare the new page.
495 */
496
497 __SetPageLocked(page);
498 __SetPageSwapBacked(page);
499
500 /* May fail (-ENOMEM) if XArray node allocation failed. */
501 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
502 put_swap_page(page, entry);
503 goto fail_unlock;
504 }
505
506 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
507 delete_from_swap_cache(page);
508 goto fail_unlock;
509 }
510
511 if (shadow)
512 workingset_refault(page, shadow);
513
514 /* Caller will initiate read into locked page */
515 lru_cache_add(page);
516 *new_page_allocated = true;
517 return page;
518
519 fail_unlock:
520 unlock_page(page);
521 put_page(page);
522 return NULL;
523 }
524
525 /*
526 * Locate a page of swap in physical memory, reserving swap cache space
527 * and reading the disk if it is not already cached.
528 * A failure return means that either the page allocation failed or that
529 * the swap entry is no longer in use.
530 */
531 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
532 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
533 {
534 bool page_was_allocated;
535 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
536 vma, addr, &page_was_allocated);
537
538 if (page_was_allocated)
539 swap_readpage(retpage, do_poll);
540
541 return retpage;
542 }
543
544 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
545 unsigned long offset,
546 int hits,
547 int max_pages,
548 int prev_win)
549 {
550 unsigned int pages, last_ra;
551
552 /*
553 * This heuristic has been found to work well on both sequential and
554 * random loads, swapping to hard disk or to SSD: please don't ask
555 * what the "+ 2" means, it just happens to work well, that's all.
556 */
557 pages = hits + 2;
558 if (pages == 2) {
559 /*
560 * We can have no readahead hits to judge by: but must not get
561 * stuck here forever, so check for an adjacent offset instead
562 * (and don't even bother to check whether swap type is same).
563 */
564 if (offset != prev_offset + 1 && offset != prev_offset - 1)
565 pages = 1;
566 } else {
567 unsigned int roundup = 4;
568 while (roundup < pages)
569 roundup <<= 1;
570 pages = roundup;
571 }
572
573 if (pages > max_pages)
574 pages = max_pages;
575
576 /* Don't shrink readahead too fast */
577 last_ra = prev_win / 2;
578 if (pages < last_ra)
579 pages = last_ra;
580
581 return pages;
582 }
583
584 static unsigned long swapin_nr_pages(unsigned long offset)
585 {
586 static unsigned long prev_offset;
587 unsigned int hits, pages, max_pages;
588 static atomic_t last_readahead_pages;
589
590 max_pages = 1 << READ_ONCE(page_cluster);
591 if (max_pages <= 1)
592 return 1;
593
594 hits = atomic_xchg(&swapin_readahead_hits, 0);
595 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
596 max_pages,
597 atomic_read(&last_readahead_pages));
598 if (!hits)
599 WRITE_ONCE(prev_offset, offset);
600 atomic_set(&last_readahead_pages, pages);
601
602 return pages;
603 }
604
605 /**
606 * swap_cluster_readahead - swap in pages in hope we need them soon
607 * @entry: swap entry of this memory
608 * @gfp_mask: memory allocation flags
609 * @vmf: fault information
610 *
611 * Returns the struct page for entry and addr, after queueing swapin.
612 *
613 * Primitive swap readahead code. We simply read an aligned block of
614 * (1 << page_cluster) entries in the swap area. This method is chosen
615 * because it doesn't cost us any seek time. We also make sure to queue
616 * the 'original' request together with the readahead ones...
617 *
618 * This has been extended to use the NUMA policies from the mm triggering
619 * the readahead.
620 *
621 * Caller must hold read mmap_lock if vmf->vma is not NULL.
622 */
623 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
624 struct vm_fault *vmf)
625 {
626 struct page *page;
627 unsigned long entry_offset = swp_offset(entry);
628 unsigned long offset = entry_offset;
629 unsigned long start_offset, end_offset;
630 unsigned long mask;
631 struct swap_info_struct *si = swp_swap_info(entry);
632 struct blk_plug plug;
633 bool do_poll = true, page_allocated;
634 struct vm_area_struct *vma = vmf->vma;
635 unsigned long addr = vmf->address;
636
637 mask = swapin_nr_pages(offset) - 1;
638 if (!mask)
639 goto skip;
640
641 /* Test swap type to make sure the dereference is safe */
642 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
643 struct inode *inode = si->swap_file->f_mapping->host;
644 if (inode_read_congested(inode))
645 goto skip;
646 }
647
648 do_poll = false;
649 /* Read a page_cluster sized and aligned cluster around offset. */
650 start_offset = offset & ~mask;
651 end_offset = offset | mask;
652 if (!start_offset) /* First page is swap header. */
653 start_offset++;
654 if (end_offset >= si->max)
655 end_offset = si->max - 1;
656
657 blk_start_plug(&plug);
658 for (offset = start_offset; offset <= end_offset ; offset++) {
659 /* Ok, do the async read-ahead now */
660 page = __read_swap_cache_async(
661 swp_entry(swp_type(entry), offset),
662 gfp_mask, vma, addr, &page_allocated);
663 if (!page)
664 continue;
665 if (page_allocated) {
666 swap_readpage(page, false);
667 if (offset != entry_offset) {
668 SetPageReadahead(page);
669 count_vm_event(SWAP_RA);
670 }
671 }
672 put_page(page);
673 }
674 blk_finish_plug(&plug);
675
676 lru_add_drain(); /* Push any new pages onto the LRU now */
677 skip:
678 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
679 }
680
681 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
682 {
683 struct address_space *spaces, *space;
684 unsigned int i, nr;
685
686 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
687 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
688 if (!spaces)
689 return -ENOMEM;
690 for (i = 0; i < nr; i++) {
691 space = spaces + i;
692 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
693 atomic_set(&space->i_mmap_writable, 0);
694 space->a_ops = &swap_aops;
695 /* swap cache doesn't use writeback related tags */
696 mapping_set_no_writeback_tags(space);
697 }
698 nr_swapper_spaces[type] = nr;
699 swapper_spaces[type] = spaces;
700
701 return 0;
702 }
703
704 void exit_swap_address_space(unsigned int type)
705 {
706 kvfree(swapper_spaces[type]);
707 nr_swapper_spaces[type] = 0;
708 swapper_spaces[type] = NULL;
709 }
710
711 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
712 unsigned long faddr,
713 unsigned long lpfn,
714 unsigned long rpfn,
715 unsigned long *start,
716 unsigned long *end)
717 {
718 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
719 PFN_DOWN(faddr & PMD_MASK));
720 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
721 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
722 }
723
724 static void swap_ra_info(struct vm_fault *vmf,
725 struct vma_swap_readahead *ra_info)
726 {
727 struct vm_area_struct *vma = vmf->vma;
728 unsigned long ra_val;
729 swp_entry_t entry;
730 unsigned long faddr, pfn, fpfn;
731 unsigned long start, end;
732 pte_t *pte, *orig_pte;
733 unsigned int max_win, hits, prev_win, win, left;
734 #ifndef CONFIG_64BIT
735 pte_t *tpte;
736 #endif
737
738 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
739 SWAP_RA_ORDER_CEILING);
740 if (max_win == 1) {
741 ra_info->win = 1;
742 return;
743 }
744
745 faddr = vmf->address;
746 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
747 entry = pte_to_swp_entry(*pte);
748 if ((unlikely(non_swap_entry(entry)))) {
749 pte_unmap(orig_pte);
750 return;
751 }
752
753 fpfn = PFN_DOWN(faddr);
754 ra_val = GET_SWAP_RA_VAL(vma);
755 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
756 prev_win = SWAP_RA_WIN(ra_val);
757 hits = SWAP_RA_HITS(ra_val);
758 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
759 max_win, prev_win);
760 atomic_long_set(&vma->swap_readahead_info,
761 SWAP_RA_VAL(faddr, win, 0));
762
763 if (win == 1) {
764 pte_unmap(orig_pte);
765 return;
766 }
767
768 /* Copy the PTEs because the page table may be unmapped */
769 if (fpfn == pfn + 1)
770 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
771 else if (pfn == fpfn + 1)
772 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
773 &start, &end);
774 else {
775 left = (win - 1) / 2;
776 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
777 &start, &end);
778 }
779 ra_info->nr_pte = end - start;
780 ra_info->offset = fpfn - start;
781 pte -= ra_info->offset;
782 #ifdef CONFIG_64BIT
783 ra_info->ptes = pte;
784 #else
785 tpte = ra_info->ptes;
786 for (pfn = start; pfn != end; pfn++)
787 *tpte++ = *pte++;
788 #endif
789 pte_unmap(orig_pte);
790 }
791
792 /**
793 * swap_vma_readahead - swap in pages in hope we need them soon
794 * @fentry: swap entry of this memory
795 * @gfp_mask: memory allocation flags
796 * @vmf: fault information
797 *
798 * Returns the struct page for entry and addr, after queueing swapin.
799 *
800 * Primitive swap readahead code. We simply read in a few pages whoes
801 * virtual addresses are around the fault address in the same vma.
802 *
803 * Caller must hold read mmap_lock if vmf->vma is not NULL.
804 *
805 */
806 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
807 struct vm_fault *vmf)
808 {
809 struct blk_plug plug;
810 struct vm_area_struct *vma = vmf->vma;
811 struct page *page;
812 pte_t *pte, pentry;
813 swp_entry_t entry;
814 unsigned int i;
815 bool page_allocated;
816 struct vma_swap_readahead ra_info = {
817 .win = 1,
818 };
819
820 swap_ra_info(vmf, &ra_info);
821 if (ra_info.win == 1)
822 goto skip;
823
824 blk_start_plug(&plug);
825 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
826 i++, pte++) {
827 pentry = *pte;
828 if (pte_none(pentry))
829 continue;
830 if (pte_present(pentry))
831 continue;
832 entry = pte_to_swp_entry(pentry);
833 if (unlikely(non_swap_entry(entry)))
834 continue;
835 page = __read_swap_cache_async(entry, gfp_mask, vma,
836 vmf->address, &page_allocated);
837 if (!page)
838 continue;
839 if (page_allocated) {
840 swap_readpage(page, false);
841 if (i != ra_info.offset) {
842 SetPageReadahead(page);
843 count_vm_event(SWAP_RA);
844 }
845 }
846 put_page(page);
847 }
848 blk_finish_plug(&plug);
849 lru_add_drain();
850 skip:
851 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
852 ra_info.win == 1);
853 }
854
855 /**
856 * swapin_readahead - swap in pages in hope we need them soon
857 * @entry: swap entry of this memory
858 * @gfp_mask: memory allocation flags
859 * @vmf: fault information
860 *
861 * Returns the struct page for entry and addr, after queueing swapin.
862 *
863 * It's a main entry function for swap readahead. By the configuration,
864 * it will read ahead blocks by cluster-based(ie, physical disk based)
865 * or vma-based(ie, virtual address based on faulty address) readahead.
866 */
867 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
868 struct vm_fault *vmf)
869 {
870 return swap_use_vma_readahead() ?
871 swap_vma_readahead(entry, gfp_mask, vmf) :
872 swap_cluster_readahead(entry, gfp_mask, vmf);
873 }
874
875 #ifdef CONFIG_SYSFS
876 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
877 struct kobj_attribute *attr, char *buf)
878 {
879 return sysfs_emit(buf, "%s\n",
880 enable_vma_readahead ? "true" : "false");
881 }
882 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
883 struct kobj_attribute *attr,
884 const char *buf, size_t count)
885 {
886 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
887 enable_vma_readahead = true;
888 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
889 enable_vma_readahead = false;
890 else
891 return -EINVAL;
892
893 return count;
894 }
895 static struct kobj_attribute vma_ra_enabled_attr =
896 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
897 vma_ra_enabled_store);
898
899 static struct attribute *swap_attrs[] = {
900 &vma_ra_enabled_attr.attr,
901 NULL,
902 };
903
904 static const struct attribute_group swap_attr_group = {
905 .attrs = swap_attrs,
906 };
907
908 static int __init swap_init_sysfs(void)
909 {
910 int err;
911 struct kobject *swap_kobj;
912
913 swap_kobj = kobject_create_and_add("swap", mm_kobj);
914 if (!swap_kobj) {
915 pr_err("failed to create swap kobject\n");
916 return -ENOMEM;
917 }
918 err = sysfs_create_group(swap_kobj, &swap_attr_group);
919 if (err) {
920 pr_err("failed to register swap group\n");
921 goto delete_obj;
922 }
923 return 0;
924
925 delete_obj:
926 kobject_put(swap_kobj);
927 return err;
928 }
929 subsys_initcall(swap_init_sysfs);
930 #endif