]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/swap_state.c
net: handle the return value of pskb_carve_frag_list() correctly
[people/arne_f/kernel.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24
25 #include <asm/pgtable.h>
26 #include "internal.h"
27
28 /*
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
31 */
32 static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .set_page_dirty = swap_set_page_dirty,
35 #ifdef CONFIG_MIGRATION
36 .migratepage = migrate_page,
37 #endif
38 };
39
40 struct address_space *swapper_spaces[MAX_SWAPFILES];
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
42 bool swap_vma_readahead = true;
43
44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48
49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52
53 #define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
57
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61
62 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
63 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
64
65 static struct {
66 unsigned long add_total;
67 unsigned long del_total;
68 unsigned long find_success;
69 unsigned long find_total;
70 } swap_cache_info;
71
72 unsigned long total_swapcache_pages(void)
73 {
74 unsigned int i, j, nr;
75 unsigned long ret = 0;
76 struct address_space *spaces;
77
78 rcu_read_lock();
79 for (i = 0; i < MAX_SWAPFILES; i++) {
80 /*
81 * The corresponding entries in nr_swapper_spaces and
82 * swapper_spaces will be reused only after at least
83 * one grace period. So it is impossible for them
84 * belongs to different usage.
85 */
86 nr = nr_swapper_spaces[i];
87 spaces = rcu_dereference(swapper_spaces[i]);
88 if (!nr || !spaces)
89 continue;
90 for (j = 0; j < nr; j++)
91 ret += spaces[j].nrpages;
92 }
93 rcu_read_unlock();
94 return ret;
95 }
96
97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98
99 void show_swap_cache_info(void)
100 {
101 printk("%lu pages in swap cache\n", total_swapcache_pages());
102 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103 swap_cache_info.add_total, swap_cache_info.del_total,
104 swap_cache_info.find_success, swap_cache_info.find_total);
105 printk("Free swap = %ldkB\n",
106 get_nr_swap_pages() << (PAGE_SHIFT - 10));
107 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108 }
109
110 /*
111 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
112 * but sets SwapCache flag and private instead of mapping and index.
113 */
114 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
115 {
116 int error, i, nr = hpage_nr_pages(page);
117 struct address_space *address_space;
118 pgoff_t idx = swp_offset(entry);
119
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
123
124 page_ref_add(page, nr);
125 SetPageSwapCache(page);
126
127 address_space = swap_address_space(entry);
128 spin_lock_irq(&address_space->tree_lock);
129 for (i = 0; i < nr; i++) {
130 set_page_private(page + i, entry.val + i);
131 error = radix_tree_insert(&address_space->page_tree,
132 idx + i, page + i);
133 if (unlikely(error))
134 break;
135 }
136 if (likely(!error)) {
137 address_space->nrpages += nr;
138 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
139 ADD_CACHE_INFO(add_total, nr);
140 } else {
141 /*
142 * Only the context which have set SWAP_HAS_CACHE flag
143 * would call add_to_swap_cache().
144 * So add_to_swap_cache() doesn't returns -EEXIST.
145 */
146 VM_BUG_ON(error == -EEXIST);
147 set_page_private(page + i, 0UL);
148 while (i--) {
149 radix_tree_delete(&address_space->page_tree, idx + i);
150 set_page_private(page + i, 0UL);
151 }
152 ClearPageSwapCache(page);
153 page_ref_sub(page, nr);
154 }
155 spin_unlock_irq(&address_space->tree_lock);
156
157 return error;
158 }
159
160
161 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
162 {
163 int error;
164
165 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
166 if (!error) {
167 error = __add_to_swap_cache(page, entry);
168 radix_tree_preload_end();
169 }
170 return error;
171 }
172
173 /*
174 * This must be called only on pages that have
175 * been verified to be in the swap cache.
176 */
177 void __delete_from_swap_cache(struct page *page)
178 {
179 struct address_space *address_space;
180 int i, nr = hpage_nr_pages(page);
181 swp_entry_t entry;
182 pgoff_t idx;
183
184 VM_BUG_ON_PAGE(!PageLocked(page), page);
185 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
186 VM_BUG_ON_PAGE(PageWriteback(page), page);
187
188 entry.val = page_private(page);
189 address_space = swap_address_space(entry);
190 idx = swp_offset(entry);
191 for (i = 0; i < nr; i++) {
192 radix_tree_delete(&address_space->page_tree, idx + i);
193 set_page_private(page + i, 0);
194 }
195 ClearPageSwapCache(page);
196 address_space->nrpages -= nr;
197 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
198 ADD_CACHE_INFO(del_total, nr);
199 }
200
201 /**
202 * add_to_swap - allocate swap space for a page
203 * @page: page we want to move to swap
204 *
205 * Allocate swap space for the page and add the page to the
206 * swap cache. Caller needs to hold the page lock.
207 */
208 int add_to_swap(struct page *page)
209 {
210 swp_entry_t entry;
211 int err;
212
213 VM_BUG_ON_PAGE(!PageLocked(page), page);
214 VM_BUG_ON_PAGE(!PageUptodate(page), page);
215
216 entry = get_swap_page(page);
217 if (!entry.val)
218 return 0;
219
220 if (mem_cgroup_try_charge_swap(page, entry))
221 goto fail;
222
223 /*
224 * Radix-tree node allocations from PF_MEMALLOC contexts could
225 * completely exhaust the page allocator. __GFP_NOMEMALLOC
226 * stops emergency reserves from being allocated.
227 *
228 * TODO: this could cause a theoretical memory reclaim
229 * deadlock in the swap out path.
230 */
231 /*
232 * Add it to the swap cache.
233 */
234 err = add_to_swap_cache(page, entry,
235 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
236 /* -ENOMEM radix-tree allocation failure */
237 if (err)
238 /*
239 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
240 * clear SWAP_HAS_CACHE flag.
241 */
242 goto fail;
243 /*
244 * Normally the page will be dirtied in unmap because its pte should be
245 * dirty. A special case is MADV_FREE page. The page'e pte could have
246 * dirty bit cleared but the page's SwapBacked bit is still set because
247 * clearing the dirty bit and SwapBacked bit has no lock protected. For
248 * such page, unmap will not set dirty bit for it, so page reclaim will
249 * not write the page out. This can cause data corruption when the page
250 * is swap in later. Always setting the dirty bit for the page solves
251 * the problem.
252 */
253 set_page_dirty(page);
254
255 return 1;
256
257 fail:
258 put_swap_page(page, entry);
259 return 0;
260 }
261
262 /*
263 * This must be called only on pages that have
264 * been verified to be in the swap cache and locked.
265 * It will never put the page into the free list,
266 * the caller has a reference on the page.
267 */
268 void delete_from_swap_cache(struct page *page)
269 {
270 swp_entry_t entry;
271 struct address_space *address_space;
272
273 entry.val = page_private(page);
274
275 address_space = swap_address_space(entry);
276 spin_lock_irq(&address_space->tree_lock);
277 __delete_from_swap_cache(page);
278 spin_unlock_irq(&address_space->tree_lock);
279
280 put_swap_page(page, entry);
281 page_ref_sub(page, hpage_nr_pages(page));
282 }
283
284 /*
285 * If we are the only user, then try to free up the swap cache.
286 *
287 * Its ok to check for PageSwapCache without the page lock
288 * here because we are going to recheck again inside
289 * try_to_free_swap() _with_ the lock.
290 * - Marcelo
291 */
292 static inline void free_swap_cache(struct page *page)
293 {
294 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
295 try_to_free_swap(page);
296 unlock_page(page);
297 }
298 }
299
300 /*
301 * Perform a free_page(), also freeing any swap cache associated with
302 * this page if it is the last user of the page.
303 */
304 void free_page_and_swap_cache(struct page *page)
305 {
306 free_swap_cache(page);
307 if (!is_huge_zero_page(page))
308 put_page(page);
309 }
310
311 /*
312 * Passed an array of pages, drop them all from swapcache and then release
313 * them. They are removed from the LRU and freed if this is their last use.
314 */
315 void free_pages_and_swap_cache(struct page **pages, int nr)
316 {
317 struct page **pagep = pages;
318 int i;
319
320 lru_add_drain();
321 for (i = 0; i < nr; i++)
322 free_swap_cache(pagep[i]);
323 release_pages(pagep, nr, false);
324 }
325
326 /*
327 * Lookup a swap entry in the swap cache. A found page will be returned
328 * unlocked and with its refcount incremented - we rely on the kernel
329 * lock getting page table operations atomic even if we drop the page
330 * lock before returning.
331 */
332 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
333 unsigned long addr)
334 {
335 struct page *page;
336 unsigned long ra_info;
337 int win, hits, readahead;
338
339 page = find_get_page(swap_address_space(entry), swp_offset(entry));
340
341 INC_CACHE_INFO(find_total);
342 if (page) {
343 INC_CACHE_INFO(find_success);
344 if (unlikely(PageTransCompound(page)))
345 return page;
346 readahead = TestClearPageReadahead(page);
347 if (vma) {
348 ra_info = GET_SWAP_RA_VAL(vma);
349 win = SWAP_RA_WIN(ra_info);
350 hits = SWAP_RA_HITS(ra_info);
351 if (readahead)
352 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
353 atomic_long_set(&vma->swap_readahead_info,
354 SWAP_RA_VAL(addr, win, hits));
355 }
356 if (readahead) {
357 count_vm_event(SWAP_RA_HIT);
358 if (!vma)
359 atomic_inc(&swapin_readahead_hits);
360 }
361 }
362 return page;
363 }
364
365 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
366 struct vm_area_struct *vma, unsigned long addr,
367 bool *new_page_allocated)
368 {
369 struct page *found_page, *new_page = NULL;
370 struct address_space *swapper_space = swap_address_space(entry);
371 int err;
372 *new_page_allocated = false;
373
374 do {
375 /*
376 * First check the swap cache. Since this is normally
377 * called after lookup_swap_cache() failed, re-calling
378 * that would confuse statistics.
379 */
380 found_page = find_get_page(swapper_space, swp_offset(entry));
381 if (found_page)
382 break;
383
384 /*
385 * Just skip read ahead for unused swap slot.
386 * During swap_off when swap_slot_cache is disabled,
387 * we have to handle the race between putting
388 * swap entry in swap cache and marking swap slot
389 * as SWAP_HAS_CACHE. That's done in later part of code or
390 * else swap_off will be aborted if we return NULL.
391 */
392 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
393 break;
394
395 /*
396 * Get a new page to read into from swap.
397 */
398 if (!new_page) {
399 new_page = alloc_page_vma(gfp_mask, vma, addr);
400 if (!new_page)
401 break; /* Out of memory */
402 }
403
404 /*
405 * call radix_tree_preload() while we can wait.
406 */
407 err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
408 if (err)
409 break;
410
411 /*
412 * Swap entry may have been freed since our caller observed it.
413 */
414 err = swapcache_prepare(entry);
415 if (err == -EEXIST) {
416 radix_tree_preload_end();
417 /*
418 * We might race against get_swap_page() and stumble
419 * across a SWAP_HAS_CACHE swap_map entry whose page
420 * has not been brought into the swapcache yet.
421 */
422 cond_resched();
423 continue;
424 }
425 if (err) { /* swp entry is obsolete ? */
426 radix_tree_preload_end();
427 break;
428 }
429
430 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
431 __SetPageLocked(new_page);
432 __SetPageSwapBacked(new_page);
433 err = __add_to_swap_cache(new_page, entry);
434 if (likely(!err)) {
435 radix_tree_preload_end();
436 /*
437 * Initiate read into locked page and return.
438 */
439 lru_cache_add_anon(new_page);
440 *new_page_allocated = true;
441 return new_page;
442 }
443 radix_tree_preload_end();
444 __ClearPageLocked(new_page);
445 /*
446 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
447 * clear SWAP_HAS_CACHE flag.
448 */
449 put_swap_page(new_page, entry);
450 } while (err != -ENOMEM);
451
452 if (new_page)
453 put_page(new_page);
454 return found_page;
455 }
456
457 /*
458 * Locate a page of swap in physical memory, reserving swap cache space
459 * and reading the disk if it is not already cached.
460 * A failure return means that either the page allocation failed or that
461 * the swap entry is no longer in use.
462 */
463 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
464 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
465 {
466 bool page_was_allocated;
467 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
468 vma, addr, &page_was_allocated);
469
470 if (page_was_allocated)
471 swap_readpage(retpage, do_poll);
472
473 return retpage;
474 }
475
476 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
477 unsigned long offset,
478 int hits,
479 int max_pages,
480 int prev_win)
481 {
482 unsigned int pages, last_ra;
483
484 /*
485 * This heuristic has been found to work well on both sequential and
486 * random loads, swapping to hard disk or to SSD: please don't ask
487 * what the "+ 2" means, it just happens to work well, that's all.
488 */
489 pages = hits + 2;
490 if (pages == 2) {
491 /*
492 * We can have no readahead hits to judge by: but must not get
493 * stuck here forever, so check for an adjacent offset instead
494 * (and don't even bother to check whether swap type is same).
495 */
496 if (offset != prev_offset + 1 && offset != prev_offset - 1)
497 pages = 1;
498 } else {
499 unsigned int roundup = 4;
500 while (roundup < pages)
501 roundup <<= 1;
502 pages = roundup;
503 }
504
505 if (pages > max_pages)
506 pages = max_pages;
507
508 /* Don't shrink readahead too fast */
509 last_ra = prev_win / 2;
510 if (pages < last_ra)
511 pages = last_ra;
512
513 return pages;
514 }
515
516 static unsigned long swapin_nr_pages(unsigned long offset)
517 {
518 static unsigned long prev_offset;
519 unsigned int hits, pages, max_pages;
520 static atomic_t last_readahead_pages;
521
522 max_pages = 1 << READ_ONCE(page_cluster);
523 if (max_pages <= 1)
524 return 1;
525
526 hits = atomic_xchg(&swapin_readahead_hits, 0);
527 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
528 atomic_read(&last_readahead_pages));
529 if (!hits)
530 prev_offset = offset;
531 atomic_set(&last_readahead_pages, pages);
532
533 return pages;
534 }
535
536 /**
537 * swapin_readahead - swap in pages in hope we need them soon
538 * @entry: swap entry of this memory
539 * @gfp_mask: memory allocation flags
540 * @vma: user vma this address belongs to
541 * @addr: target address for mempolicy
542 *
543 * Returns the struct page for entry and addr, after queueing swapin.
544 *
545 * Primitive swap readahead code. We simply read an aligned block of
546 * (1 << page_cluster) entries in the swap area. This method is chosen
547 * because it doesn't cost us any seek time. We also make sure to queue
548 * the 'original' request together with the readahead ones...
549 *
550 * This has been extended to use the NUMA policies from the mm triggering
551 * the readahead.
552 *
553 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
554 */
555 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
556 struct vm_area_struct *vma, unsigned long addr)
557 {
558 struct page *page;
559 unsigned long entry_offset = swp_offset(entry);
560 unsigned long offset = entry_offset;
561 unsigned long start_offset, end_offset;
562 unsigned long mask;
563 struct blk_plug plug;
564 bool do_poll = true, page_allocated;
565
566 mask = swapin_nr_pages(offset) - 1;
567 if (!mask)
568 goto skip;
569
570 do_poll = false;
571 /* Read a page_cluster sized and aligned cluster around offset. */
572 start_offset = offset & ~mask;
573 end_offset = offset | mask;
574 if (!start_offset) /* First page is swap header. */
575 start_offset++;
576
577 blk_start_plug(&plug);
578 for (offset = start_offset; offset <= end_offset ; offset++) {
579 /* Ok, do the async read-ahead now */
580 page = __read_swap_cache_async(
581 swp_entry(swp_type(entry), offset),
582 gfp_mask, vma, addr, &page_allocated);
583 if (!page)
584 continue;
585 if (page_allocated) {
586 swap_readpage(page, false);
587 if (offset != entry_offset &&
588 likely(!PageTransCompound(page))) {
589 SetPageReadahead(page);
590 count_vm_event(SWAP_RA);
591 }
592 }
593 put_page(page);
594 }
595 blk_finish_plug(&plug);
596
597 lru_add_drain(); /* Push any new pages onto the LRU now */
598 skip:
599 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
600 }
601
602 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
603 {
604 struct address_space *spaces, *space;
605 unsigned int i, nr;
606
607 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
608 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
609 if (!spaces)
610 return -ENOMEM;
611 for (i = 0; i < nr; i++) {
612 space = spaces + i;
613 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
614 atomic_set(&space->i_mmap_writable, 0);
615 space->a_ops = &swap_aops;
616 /* swap cache doesn't use writeback related tags */
617 mapping_set_no_writeback_tags(space);
618 spin_lock_init(&space->tree_lock);
619 }
620 nr_swapper_spaces[type] = nr;
621 rcu_assign_pointer(swapper_spaces[type], spaces);
622
623 return 0;
624 }
625
626 void exit_swap_address_space(unsigned int type)
627 {
628 struct address_space *spaces;
629
630 spaces = swapper_spaces[type];
631 nr_swapper_spaces[type] = 0;
632 rcu_assign_pointer(swapper_spaces[type], NULL);
633 synchronize_rcu();
634 kvfree(spaces);
635 }
636
637 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
638 unsigned long faddr,
639 unsigned long lpfn,
640 unsigned long rpfn,
641 unsigned long *start,
642 unsigned long *end)
643 {
644 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
645 PFN_DOWN(faddr & PMD_MASK));
646 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
647 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
648 }
649
650 struct page *swap_readahead_detect(struct vm_fault *vmf,
651 struct vma_swap_readahead *swap_ra)
652 {
653 struct vm_area_struct *vma = vmf->vma;
654 unsigned long swap_ra_info;
655 struct page *page;
656 swp_entry_t entry;
657 unsigned long faddr, pfn, fpfn;
658 unsigned long start, end;
659 pte_t *pte;
660 unsigned int max_win, hits, prev_win, win, left;
661 #ifndef CONFIG_64BIT
662 pte_t *tpte;
663 #endif
664
665 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
666 SWAP_RA_ORDER_CEILING);
667 if (max_win == 1) {
668 swap_ra->win = 1;
669 return NULL;
670 }
671
672 faddr = vmf->address;
673 entry = pte_to_swp_entry(vmf->orig_pte);
674 if ((unlikely(non_swap_entry(entry))))
675 return NULL;
676 page = lookup_swap_cache(entry, vma, faddr);
677 if (page)
678 return page;
679
680 fpfn = PFN_DOWN(faddr);
681 swap_ra_info = GET_SWAP_RA_VAL(vma);
682 pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
683 prev_win = SWAP_RA_WIN(swap_ra_info);
684 hits = SWAP_RA_HITS(swap_ra_info);
685 swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
686 max_win, prev_win);
687 atomic_long_set(&vma->swap_readahead_info,
688 SWAP_RA_VAL(faddr, win, 0));
689
690 if (win == 1)
691 return NULL;
692
693 /* Copy the PTEs because the page table may be unmapped */
694 if (fpfn == pfn + 1)
695 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
696 else if (pfn == fpfn + 1)
697 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
698 &start, &end);
699 else {
700 left = (win - 1) / 2;
701 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
702 &start, &end);
703 }
704 swap_ra->nr_pte = end - start;
705 swap_ra->offset = fpfn - start;
706 pte = vmf->pte - swap_ra->offset;
707 #ifdef CONFIG_64BIT
708 swap_ra->ptes = pte;
709 #else
710 tpte = swap_ra->ptes;
711 for (pfn = start; pfn != end; pfn++)
712 *tpte++ = *pte++;
713 #endif
714
715 return NULL;
716 }
717
718 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
719 struct vm_fault *vmf,
720 struct vma_swap_readahead *swap_ra)
721 {
722 struct blk_plug plug;
723 struct vm_area_struct *vma = vmf->vma;
724 struct page *page;
725 pte_t *pte, pentry;
726 swp_entry_t entry;
727 unsigned int i;
728 bool page_allocated;
729
730 if (swap_ra->win == 1)
731 goto skip;
732
733 blk_start_plug(&plug);
734 for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
735 i++, pte++) {
736 pentry = *pte;
737 if (pte_none(pentry))
738 continue;
739 if (pte_present(pentry))
740 continue;
741 entry = pte_to_swp_entry(pentry);
742 if (unlikely(non_swap_entry(entry)))
743 continue;
744 page = __read_swap_cache_async(entry, gfp_mask, vma,
745 vmf->address, &page_allocated);
746 if (!page)
747 continue;
748 if (page_allocated) {
749 swap_readpage(page, false);
750 if (i != swap_ra->offset &&
751 likely(!PageTransCompound(page))) {
752 SetPageReadahead(page);
753 count_vm_event(SWAP_RA);
754 }
755 }
756 put_page(page);
757 }
758 blk_finish_plug(&plug);
759 lru_add_drain();
760 skip:
761 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
762 swap_ra->win == 1);
763 }
764
765 #ifdef CONFIG_SYSFS
766 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
767 struct kobj_attribute *attr, char *buf)
768 {
769 return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
770 }
771 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
772 struct kobj_attribute *attr,
773 const char *buf, size_t count)
774 {
775 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
776 swap_vma_readahead = true;
777 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
778 swap_vma_readahead = false;
779 else
780 return -EINVAL;
781
782 return count;
783 }
784 static struct kobj_attribute vma_ra_enabled_attr =
785 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
786 vma_ra_enabled_store);
787
788 static struct attribute *swap_attrs[] = {
789 &vma_ra_enabled_attr.attr,
790 NULL,
791 };
792
793 static struct attribute_group swap_attr_group = {
794 .attrs = swap_attrs,
795 };
796
797 static int __init swap_init_sysfs(void)
798 {
799 int err;
800 struct kobject *swap_kobj;
801
802 swap_kobj = kobject_create_and_add("swap", mm_kobj);
803 if (!swap_kobj) {
804 pr_err("failed to create swap kobject\n");
805 return -ENOMEM;
806 }
807 err = sysfs_create_group(swap_kobj, &swap_attr_group);
808 if (err) {
809 pr_err("failed to register swap group\n");
810 goto delete_obj;
811 }
812 return 0;
813
814 delete_obj:
815 kobject_put(swap_kobj);
816 return err;
817 }
818 subsys_initcall(swap_init_sysfs);
819 #endif