]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/swapfile.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[thirdparty/kernel/stable.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/blkdev.h>
20 #include <linux/random.h>
21 #include <linux/writeback.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/init.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 #include <linux/oom.h>
35 #include <linux/frontswap.h>
36 #include <linux/swapfile.h>
37 #include <linux/export.h>
38 #include <linux/swap_slots.h>
39
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <linux/swapops.h>
43 #include <linux/swap_cgroup.h>
44
45 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
46 unsigned char);
47 static void free_swap_count_continuations(struct swap_info_struct *);
48 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
49
50 DEFINE_SPINLOCK(swap_lock);
51 static unsigned int nr_swapfiles;
52 atomic_long_t nr_swap_pages;
53 /*
54 * Some modules use swappable objects and may try to swap them out under
55 * memory pressure (via the shrinker). Before doing so, they may wish to
56 * check to see if any swap space is available.
57 */
58 EXPORT_SYMBOL_GPL(nr_swap_pages);
59 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
60 long total_swap_pages;
61 static int least_priority;
62
63 static const char Bad_file[] = "Bad swap file entry ";
64 static const char Unused_file[] = "Unused swap file entry ";
65 static const char Bad_offset[] = "Bad swap offset entry ";
66 static const char Unused_offset[] = "Unused swap offset entry ";
67
68 /*
69 * all active swap_info_structs
70 * protected with swap_lock, and ordered by priority.
71 */
72 PLIST_HEAD(swap_active_head);
73
74 /*
75 * all available (active, not full) swap_info_structs
76 * protected with swap_avail_lock, ordered by priority.
77 * This is used by get_swap_page() instead of swap_active_head
78 * because swap_active_head includes all swap_info_structs,
79 * but get_swap_page() doesn't need to look at full ones.
80 * This uses its own lock instead of swap_lock because when a
81 * swap_info_struct changes between not-full/full, it needs to
82 * add/remove itself to/from this list, but the swap_info_struct->lock
83 * is held and the locking order requires swap_lock to be taken
84 * before any swap_info_struct->lock.
85 */
86 static PLIST_HEAD(swap_avail_head);
87 static DEFINE_SPINLOCK(swap_avail_lock);
88
89 struct swap_info_struct *swap_info[MAX_SWAPFILES];
90
91 static DEFINE_MUTEX(swapon_mutex);
92
93 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
94 /* Activity counter to indicate that a swapon or swapoff has occurred */
95 static atomic_t proc_poll_event = ATOMIC_INIT(0);
96
97 static inline unsigned char swap_count(unsigned char ent)
98 {
99 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
100 }
101
102 /* returns 1 if swap entry is freed */
103 static int
104 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
105 {
106 swp_entry_t entry = swp_entry(si->type, offset);
107 struct page *page;
108 int ret = 0;
109
110 page = find_get_page(swap_address_space(entry), swp_offset(entry));
111 if (!page)
112 return 0;
113 /*
114 * This function is called from scan_swap_map() and it's called
115 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
116 * We have to use trylock for avoiding deadlock. This is a special
117 * case and you should use try_to_free_swap() with explicit lock_page()
118 * in usual operations.
119 */
120 if (trylock_page(page)) {
121 ret = try_to_free_swap(page);
122 unlock_page(page);
123 }
124 put_page(page);
125 return ret;
126 }
127
128 /*
129 * swapon tell device that all the old swap contents can be discarded,
130 * to allow the swap device to optimize its wear-levelling.
131 */
132 static int discard_swap(struct swap_info_struct *si)
133 {
134 struct swap_extent *se;
135 sector_t start_block;
136 sector_t nr_blocks;
137 int err = 0;
138
139 /* Do not discard the swap header page! */
140 se = &si->first_swap_extent;
141 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
142 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
143 if (nr_blocks) {
144 err = blkdev_issue_discard(si->bdev, start_block,
145 nr_blocks, GFP_KERNEL, 0);
146 if (err)
147 return err;
148 cond_resched();
149 }
150
151 list_for_each_entry(se, &si->first_swap_extent.list, list) {
152 start_block = se->start_block << (PAGE_SHIFT - 9);
153 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155 err = blkdev_issue_discard(si->bdev, start_block,
156 nr_blocks, GFP_KERNEL, 0);
157 if (err)
158 break;
159
160 cond_resched();
161 }
162 return err; /* That will often be -EOPNOTSUPP */
163 }
164
165 /*
166 * swap allocation tell device that a cluster of swap can now be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169 static void discard_swap_cluster(struct swap_info_struct *si,
170 pgoff_t start_page, pgoff_t nr_pages)
171 {
172 struct swap_extent *se = si->curr_swap_extent;
173 int found_extent = 0;
174
175 while (nr_pages) {
176 if (se->start_page <= start_page &&
177 start_page < se->start_page + se->nr_pages) {
178 pgoff_t offset = start_page - se->start_page;
179 sector_t start_block = se->start_block + offset;
180 sector_t nr_blocks = se->nr_pages - offset;
181
182 if (nr_blocks > nr_pages)
183 nr_blocks = nr_pages;
184 start_page += nr_blocks;
185 nr_pages -= nr_blocks;
186
187 if (!found_extent++)
188 si->curr_swap_extent = se;
189
190 start_block <<= PAGE_SHIFT - 9;
191 nr_blocks <<= PAGE_SHIFT - 9;
192 if (blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_NOIO, 0))
194 break;
195 }
196
197 se = list_next_entry(se, list);
198 }
199 }
200
201 #define SWAPFILE_CLUSTER 256
202 #define LATENCY_LIMIT 256
203
204 static inline void cluster_set_flag(struct swap_cluster_info *info,
205 unsigned int flag)
206 {
207 info->flags = flag;
208 }
209
210 static inline unsigned int cluster_count(struct swap_cluster_info *info)
211 {
212 return info->data;
213 }
214
215 static inline void cluster_set_count(struct swap_cluster_info *info,
216 unsigned int c)
217 {
218 info->data = c;
219 }
220
221 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
222 unsigned int c, unsigned int f)
223 {
224 info->flags = f;
225 info->data = c;
226 }
227
228 static inline unsigned int cluster_next(struct swap_cluster_info *info)
229 {
230 return info->data;
231 }
232
233 static inline void cluster_set_next(struct swap_cluster_info *info,
234 unsigned int n)
235 {
236 info->data = n;
237 }
238
239 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
240 unsigned int n, unsigned int f)
241 {
242 info->flags = f;
243 info->data = n;
244 }
245
246 static inline bool cluster_is_free(struct swap_cluster_info *info)
247 {
248 return info->flags & CLUSTER_FLAG_FREE;
249 }
250
251 static inline bool cluster_is_null(struct swap_cluster_info *info)
252 {
253 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 }
255
256 static inline void cluster_set_null(struct swap_cluster_info *info)
257 {
258 info->flags = CLUSTER_FLAG_NEXT_NULL;
259 info->data = 0;
260 }
261
262 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
263 unsigned long offset)
264 {
265 struct swap_cluster_info *ci;
266
267 ci = si->cluster_info;
268 if (ci) {
269 ci += offset / SWAPFILE_CLUSTER;
270 spin_lock(&ci->lock);
271 }
272 return ci;
273 }
274
275 static inline void unlock_cluster(struct swap_cluster_info *ci)
276 {
277 if (ci)
278 spin_unlock(&ci->lock);
279 }
280
281 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
282 struct swap_info_struct *si,
283 unsigned long offset)
284 {
285 struct swap_cluster_info *ci;
286
287 ci = lock_cluster(si, offset);
288 if (!ci)
289 spin_lock(&si->lock);
290
291 return ci;
292 }
293
294 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
295 struct swap_cluster_info *ci)
296 {
297 if (ci)
298 unlock_cluster(ci);
299 else
300 spin_unlock(&si->lock);
301 }
302
303 static inline bool cluster_list_empty(struct swap_cluster_list *list)
304 {
305 return cluster_is_null(&list->head);
306 }
307
308 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
309 {
310 return cluster_next(&list->head);
311 }
312
313 static void cluster_list_init(struct swap_cluster_list *list)
314 {
315 cluster_set_null(&list->head);
316 cluster_set_null(&list->tail);
317 }
318
319 static void cluster_list_add_tail(struct swap_cluster_list *list,
320 struct swap_cluster_info *ci,
321 unsigned int idx)
322 {
323 if (cluster_list_empty(list)) {
324 cluster_set_next_flag(&list->head, idx, 0);
325 cluster_set_next_flag(&list->tail, idx, 0);
326 } else {
327 struct swap_cluster_info *ci_tail;
328 unsigned int tail = cluster_next(&list->tail);
329
330 /*
331 * Nested cluster lock, but both cluster locks are
332 * only acquired when we held swap_info_struct->lock
333 */
334 ci_tail = ci + tail;
335 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
336 cluster_set_next(ci_tail, idx);
337 unlock_cluster(ci_tail);
338 cluster_set_next_flag(&list->tail, idx, 0);
339 }
340 }
341
342 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
343 struct swap_cluster_info *ci)
344 {
345 unsigned int idx;
346
347 idx = cluster_next(&list->head);
348 if (cluster_next(&list->tail) == idx) {
349 cluster_set_null(&list->head);
350 cluster_set_null(&list->tail);
351 } else
352 cluster_set_next_flag(&list->head,
353 cluster_next(&ci[idx]), 0);
354
355 return idx;
356 }
357
358 /* Add a cluster to discard list and schedule it to do discard */
359 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
360 unsigned int idx)
361 {
362 /*
363 * If scan_swap_map() can't find a free cluster, it will check
364 * si->swap_map directly. To make sure the discarding cluster isn't
365 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
366 * will be cleared after discard
367 */
368 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
369 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
370
371 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
372
373 schedule_work(&si->discard_work);
374 }
375
376 /*
377 * Doing discard actually. After a cluster discard is finished, the cluster
378 * will be added to free cluster list. caller should hold si->lock.
379 */
380 static void swap_do_scheduled_discard(struct swap_info_struct *si)
381 {
382 struct swap_cluster_info *info, *ci;
383 unsigned int idx;
384
385 info = si->cluster_info;
386
387 while (!cluster_list_empty(&si->discard_clusters)) {
388 idx = cluster_list_del_first(&si->discard_clusters, info);
389 spin_unlock(&si->lock);
390
391 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
392 SWAPFILE_CLUSTER);
393
394 spin_lock(&si->lock);
395 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
396 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
397 unlock_cluster(ci);
398 cluster_list_add_tail(&si->free_clusters, info, idx);
399 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
400 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
401 0, SWAPFILE_CLUSTER);
402 unlock_cluster(ci);
403 }
404 }
405
406 static void swap_discard_work(struct work_struct *work)
407 {
408 struct swap_info_struct *si;
409
410 si = container_of(work, struct swap_info_struct, discard_work);
411
412 spin_lock(&si->lock);
413 swap_do_scheduled_discard(si);
414 spin_unlock(&si->lock);
415 }
416
417 /*
418 * The cluster corresponding to page_nr will be used. The cluster will be
419 * removed from free cluster list and its usage counter will be increased.
420 */
421 static void inc_cluster_info_page(struct swap_info_struct *p,
422 struct swap_cluster_info *cluster_info, unsigned long page_nr)
423 {
424 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
425
426 if (!cluster_info)
427 return;
428 if (cluster_is_free(&cluster_info[idx])) {
429 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
430 cluster_list_del_first(&p->free_clusters, cluster_info);
431 cluster_set_count_flag(&cluster_info[idx], 0, 0);
432 }
433
434 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
435 cluster_set_count(&cluster_info[idx],
436 cluster_count(&cluster_info[idx]) + 1);
437 }
438
439 /*
440 * The cluster corresponding to page_nr decreases one usage. If the usage
441 * counter becomes 0, which means no page in the cluster is in using, we can
442 * optionally discard the cluster and add it to free cluster list.
443 */
444 static void dec_cluster_info_page(struct swap_info_struct *p,
445 struct swap_cluster_info *cluster_info, unsigned long page_nr)
446 {
447 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
448
449 if (!cluster_info)
450 return;
451
452 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
453 cluster_set_count(&cluster_info[idx],
454 cluster_count(&cluster_info[idx]) - 1);
455
456 if (cluster_count(&cluster_info[idx]) == 0) {
457 /*
458 * If the swap is discardable, prepare discard the cluster
459 * instead of free it immediately. The cluster will be freed
460 * after discard.
461 */
462 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
463 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
464 swap_cluster_schedule_discard(p, idx);
465 return;
466 }
467
468 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
469 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
470 }
471 }
472
473 /*
474 * It's possible scan_swap_map() uses a free cluster in the middle of free
475 * cluster list. Avoiding such abuse to avoid list corruption.
476 */
477 static bool
478 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
479 unsigned long offset)
480 {
481 struct percpu_cluster *percpu_cluster;
482 bool conflict;
483
484 offset /= SWAPFILE_CLUSTER;
485 conflict = !cluster_list_empty(&si->free_clusters) &&
486 offset != cluster_list_first(&si->free_clusters) &&
487 cluster_is_free(&si->cluster_info[offset]);
488
489 if (!conflict)
490 return false;
491
492 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
493 cluster_set_null(&percpu_cluster->index);
494 return true;
495 }
496
497 /*
498 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
499 * might involve allocating a new cluster for current CPU too.
500 */
501 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
502 unsigned long *offset, unsigned long *scan_base)
503 {
504 struct percpu_cluster *cluster;
505 struct swap_cluster_info *ci;
506 bool found_free;
507 unsigned long tmp, max;
508
509 new_cluster:
510 cluster = this_cpu_ptr(si->percpu_cluster);
511 if (cluster_is_null(&cluster->index)) {
512 if (!cluster_list_empty(&si->free_clusters)) {
513 cluster->index = si->free_clusters.head;
514 cluster->next = cluster_next(&cluster->index) *
515 SWAPFILE_CLUSTER;
516 } else if (!cluster_list_empty(&si->discard_clusters)) {
517 /*
518 * we don't have free cluster but have some clusters in
519 * discarding, do discard now and reclaim them
520 */
521 swap_do_scheduled_discard(si);
522 *scan_base = *offset = si->cluster_next;
523 goto new_cluster;
524 } else
525 return false;
526 }
527
528 found_free = false;
529
530 /*
531 * Other CPUs can use our cluster if they can't find a free cluster,
532 * check if there is still free entry in the cluster
533 */
534 tmp = cluster->next;
535 max = min_t(unsigned long, si->max,
536 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
537 if (tmp >= max) {
538 cluster_set_null(&cluster->index);
539 goto new_cluster;
540 }
541 ci = lock_cluster(si, tmp);
542 while (tmp < max) {
543 if (!si->swap_map[tmp]) {
544 found_free = true;
545 break;
546 }
547 tmp++;
548 }
549 unlock_cluster(ci);
550 if (!found_free) {
551 cluster_set_null(&cluster->index);
552 goto new_cluster;
553 }
554 cluster->next = tmp + 1;
555 *offset = tmp;
556 *scan_base = tmp;
557 return found_free;
558 }
559
560 static int scan_swap_map_slots(struct swap_info_struct *si,
561 unsigned char usage, int nr,
562 swp_entry_t slots[])
563 {
564 struct swap_cluster_info *ci;
565 unsigned long offset;
566 unsigned long scan_base;
567 unsigned long last_in_cluster = 0;
568 int latency_ration = LATENCY_LIMIT;
569 int n_ret = 0;
570
571 if (nr > SWAP_BATCH)
572 nr = SWAP_BATCH;
573
574 /*
575 * We try to cluster swap pages by allocating them sequentially
576 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
577 * way, however, we resort to first-free allocation, starting
578 * a new cluster. This prevents us from scattering swap pages
579 * all over the entire swap partition, so that we reduce
580 * overall disk seek times between swap pages. -- sct
581 * But we do now try to find an empty cluster. -Andrea
582 * And we let swap pages go all over an SSD partition. Hugh
583 */
584
585 si->flags += SWP_SCANNING;
586 scan_base = offset = si->cluster_next;
587
588 /* SSD algorithm */
589 if (si->cluster_info) {
590 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
591 goto checks;
592 else
593 goto scan;
594 }
595
596 if (unlikely(!si->cluster_nr--)) {
597 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
598 si->cluster_nr = SWAPFILE_CLUSTER - 1;
599 goto checks;
600 }
601
602 spin_unlock(&si->lock);
603
604 /*
605 * If seek is expensive, start searching for new cluster from
606 * start of partition, to minimize the span of allocated swap.
607 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
608 * case, just handled by scan_swap_map_try_ssd_cluster() above.
609 */
610 scan_base = offset = si->lowest_bit;
611 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
612
613 /* Locate the first empty (unaligned) cluster */
614 for (; last_in_cluster <= si->highest_bit; offset++) {
615 if (si->swap_map[offset])
616 last_in_cluster = offset + SWAPFILE_CLUSTER;
617 else if (offset == last_in_cluster) {
618 spin_lock(&si->lock);
619 offset -= SWAPFILE_CLUSTER - 1;
620 si->cluster_next = offset;
621 si->cluster_nr = SWAPFILE_CLUSTER - 1;
622 goto checks;
623 }
624 if (unlikely(--latency_ration < 0)) {
625 cond_resched();
626 latency_ration = LATENCY_LIMIT;
627 }
628 }
629
630 offset = scan_base;
631 spin_lock(&si->lock);
632 si->cluster_nr = SWAPFILE_CLUSTER - 1;
633 }
634
635 checks:
636 if (si->cluster_info) {
637 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
638 /* take a break if we already got some slots */
639 if (n_ret)
640 goto done;
641 if (!scan_swap_map_try_ssd_cluster(si, &offset,
642 &scan_base))
643 goto scan;
644 }
645 }
646 if (!(si->flags & SWP_WRITEOK))
647 goto no_page;
648 if (!si->highest_bit)
649 goto no_page;
650 if (offset > si->highest_bit)
651 scan_base = offset = si->lowest_bit;
652
653 ci = lock_cluster(si, offset);
654 /* reuse swap entry of cache-only swap if not busy. */
655 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
656 int swap_was_freed;
657 unlock_cluster(ci);
658 spin_unlock(&si->lock);
659 swap_was_freed = __try_to_reclaim_swap(si, offset);
660 spin_lock(&si->lock);
661 /* entry was freed successfully, try to use this again */
662 if (swap_was_freed)
663 goto checks;
664 goto scan; /* check next one */
665 }
666
667 if (si->swap_map[offset]) {
668 unlock_cluster(ci);
669 if (!n_ret)
670 goto scan;
671 else
672 goto done;
673 }
674
675 if (offset == si->lowest_bit)
676 si->lowest_bit++;
677 if (offset == si->highest_bit)
678 si->highest_bit--;
679 si->inuse_pages++;
680 if (si->inuse_pages == si->pages) {
681 si->lowest_bit = si->max;
682 si->highest_bit = 0;
683 spin_lock(&swap_avail_lock);
684 plist_del(&si->avail_list, &swap_avail_head);
685 spin_unlock(&swap_avail_lock);
686 }
687 si->swap_map[offset] = usage;
688 inc_cluster_info_page(si, si->cluster_info, offset);
689 unlock_cluster(ci);
690 si->cluster_next = offset + 1;
691 slots[n_ret++] = swp_entry(si->type, offset);
692
693 /* got enough slots or reach max slots? */
694 if ((n_ret == nr) || (offset >= si->highest_bit))
695 goto done;
696
697 /* search for next available slot */
698
699 /* time to take a break? */
700 if (unlikely(--latency_ration < 0)) {
701 if (n_ret)
702 goto done;
703 spin_unlock(&si->lock);
704 cond_resched();
705 spin_lock(&si->lock);
706 latency_ration = LATENCY_LIMIT;
707 }
708
709 /* try to get more slots in cluster */
710 if (si->cluster_info) {
711 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
712 goto checks;
713 else
714 goto done;
715 }
716 /* non-ssd case */
717 ++offset;
718
719 /* non-ssd case, still more slots in cluster? */
720 if (si->cluster_nr && !si->swap_map[offset]) {
721 --si->cluster_nr;
722 goto checks;
723 }
724
725 done:
726 si->flags -= SWP_SCANNING;
727 return n_ret;
728
729 scan:
730 spin_unlock(&si->lock);
731 while (++offset <= si->highest_bit) {
732 if (!si->swap_map[offset]) {
733 spin_lock(&si->lock);
734 goto checks;
735 }
736 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
737 spin_lock(&si->lock);
738 goto checks;
739 }
740 if (unlikely(--latency_ration < 0)) {
741 cond_resched();
742 latency_ration = LATENCY_LIMIT;
743 }
744 }
745 offset = si->lowest_bit;
746 while (offset < scan_base) {
747 if (!si->swap_map[offset]) {
748 spin_lock(&si->lock);
749 goto checks;
750 }
751 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
752 spin_lock(&si->lock);
753 goto checks;
754 }
755 if (unlikely(--latency_ration < 0)) {
756 cond_resched();
757 latency_ration = LATENCY_LIMIT;
758 }
759 offset++;
760 }
761 spin_lock(&si->lock);
762
763 no_page:
764 si->flags -= SWP_SCANNING;
765 return n_ret;
766 }
767
768 static unsigned long scan_swap_map(struct swap_info_struct *si,
769 unsigned char usage)
770 {
771 swp_entry_t entry;
772 int n_ret;
773
774 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
775
776 if (n_ret)
777 return swp_offset(entry);
778 else
779 return 0;
780
781 }
782
783 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
784 {
785 struct swap_info_struct *si, *next;
786 long avail_pgs;
787 int n_ret = 0;
788
789 avail_pgs = atomic_long_read(&nr_swap_pages);
790 if (avail_pgs <= 0)
791 goto noswap;
792
793 if (n_goal > SWAP_BATCH)
794 n_goal = SWAP_BATCH;
795
796 if (n_goal > avail_pgs)
797 n_goal = avail_pgs;
798
799 atomic_long_sub(n_goal, &nr_swap_pages);
800
801 spin_lock(&swap_avail_lock);
802
803 start_over:
804 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
805 /* requeue si to after same-priority siblings */
806 plist_requeue(&si->avail_list, &swap_avail_head);
807 spin_unlock(&swap_avail_lock);
808 spin_lock(&si->lock);
809 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
810 spin_lock(&swap_avail_lock);
811 if (plist_node_empty(&si->avail_list)) {
812 spin_unlock(&si->lock);
813 goto nextsi;
814 }
815 WARN(!si->highest_bit,
816 "swap_info %d in list but !highest_bit\n",
817 si->type);
818 WARN(!(si->flags & SWP_WRITEOK),
819 "swap_info %d in list but !SWP_WRITEOK\n",
820 si->type);
821 plist_del(&si->avail_list, &swap_avail_head);
822 spin_unlock(&si->lock);
823 goto nextsi;
824 }
825 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
826 n_goal, swp_entries);
827 spin_unlock(&si->lock);
828 if (n_ret)
829 goto check_out;
830 pr_debug("scan_swap_map of si %d failed to find offset\n",
831 si->type);
832
833 spin_lock(&swap_avail_lock);
834 nextsi:
835 /*
836 * if we got here, it's likely that si was almost full before,
837 * and since scan_swap_map() can drop the si->lock, multiple
838 * callers probably all tried to get a page from the same si
839 * and it filled up before we could get one; or, the si filled
840 * up between us dropping swap_avail_lock and taking si->lock.
841 * Since we dropped the swap_avail_lock, the swap_avail_head
842 * list may have been modified; so if next is still in the
843 * swap_avail_head list then try it, otherwise start over
844 * if we have not gotten any slots.
845 */
846 if (plist_node_empty(&next->avail_list))
847 goto start_over;
848 }
849
850 spin_unlock(&swap_avail_lock);
851
852 check_out:
853 if (n_ret < n_goal)
854 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
855 noswap:
856 return n_ret;
857 }
858
859 /* The only caller of this function is now suspend routine */
860 swp_entry_t get_swap_page_of_type(int type)
861 {
862 struct swap_info_struct *si;
863 pgoff_t offset;
864
865 si = swap_info[type];
866 spin_lock(&si->lock);
867 if (si && (si->flags & SWP_WRITEOK)) {
868 atomic_long_dec(&nr_swap_pages);
869 /* This is called for allocating swap entry, not cache */
870 offset = scan_swap_map(si, 1);
871 if (offset) {
872 spin_unlock(&si->lock);
873 return swp_entry(type, offset);
874 }
875 atomic_long_inc(&nr_swap_pages);
876 }
877 spin_unlock(&si->lock);
878 return (swp_entry_t) {0};
879 }
880
881 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
882 {
883 struct swap_info_struct *p;
884 unsigned long offset, type;
885
886 if (!entry.val)
887 goto out;
888 type = swp_type(entry);
889 if (type >= nr_swapfiles)
890 goto bad_nofile;
891 p = swap_info[type];
892 if (!(p->flags & SWP_USED))
893 goto bad_device;
894 offset = swp_offset(entry);
895 if (offset >= p->max)
896 goto bad_offset;
897 return p;
898
899 bad_offset:
900 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
901 goto out;
902 bad_device:
903 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
904 goto out;
905 bad_nofile:
906 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
907 out:
908 return NULL;
909 }
910
911 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
912 {
913 struct swap_info_struct *p;
914
915 p = __swap_info_get(entry);
916 if (!p)
917 goto out;
918 if (!p->swap_map[swp_offset(entry)])
919 goto bad_free;
920 return p;
921
922 bad_free:
923 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
924 goto out;
925 out:
926 return NULL;
927 }
928
929 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
930 {
931 struct swap_info_struct *p;
932
933 p = _swap_info_get(entry);
934 if (p)
935 spin_lock(&p->lock);
936 return p;
937 }
938
939 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
940 struct swap_info_struct *q)
941 {
942 struct swap_info_struct *p;
943
944 p = _swap_info_get(entry);
945
946 if (p != q) {
947 if (q != NULL)
948 spin_unlock(&q->lock);
949 if (p != NULL)
950 spin_lock(&p->lock);
951 }
952 return p;
953 }
954
955 static unsigned char __swap_entry_free(struct swap_info_struct *p,
956 swp_entry_t entry, unsigned char usage)
957 {
958 struct swap_cluster_info *ci;
959 unsigned long offset = swp_offset(entry);
960 unsigned char count;
961 unsigned char has_cache;
962
963 ci = lock_cluster_or_swap_info(p, offset);
964
965 count = p->swap_map[offset];
966
967 has_cache = count & SWAP_HAS_CACHE;
968 count &= ~SWAP_HAS_CACHE;
969
970 if (usage == SWAP_HAS_CACHE) {
971 VM_BUG_ON(!has_cache);
972 has_cache = 0;
973 } else if (count == SWAP_MAP_SHMEM) {
974 /*
975 * Or we could insist on shmem.c using a special
976 * swap_shmem_free() and free_shmem_swap_and_cache()...
977 */
978 count = 0;
979 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
980 if (count == COUNT_CONTINUED) {
981 if (swap_count_continued(p, offset, count))
982 count = SWAP_MAP_MAX | COUNT_CONTINUED;
983 else
984 count = SWAP_MAP_MAX;
985 } else
986 count--;
987 }
988
989 usage = count | has_cache;
990 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
991
992 unlock_cluster_or_swap_info(p, ci);
993
994 return usage;
995 }
996
997 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
998 {
999 struct swap_cluster_info *ci;
1000 unsigned long offset = swp_offset(entry);
1001 unsigned char count;
1002
1003 ci = lock_cluster(p, offset);
1004 count = p->swap_map[offset];
1005 VM_BUG_ON(count != SWAP_HAS_CACHE);
1006 p->swap_map[offset] = 0;
1007 dec_cluster_info_page(p, p->cluster_info, offset);
1008 unlock_cluster(ci);
1009
1010 mem_cgroup_uncharge_swap(entry);
1011 if (offset < p->lowest_bit)
1012 p->lowest_bit = offset;
1013 if (offset > p->highest_bit) {
1014 bool was_full = !p->highest_bit;
1015
1016 p->highest_bit = offset;
1017 if (was_full && (p->flags & SWP_WRITEOK)) {
1018 spin_lock(&swap_avail_lock);
1019 WARN_ON(!plist_node_empty(&p->avail_list));
1020 if (plist_node_empty(&p->avail_list))
1021 plist_add(&p->avail_list,
1022 &swap_avail_head);
1023 spin_unlock(&swap_avail_lock);
1024 }
1025 }
1026 atomic_long_inc(&nr_swap_pages);
1027 p->inuse_pages--;
1028 frontswap_invalidate_page(p->type, offset);
1029 if (p->flags & SWP_BLKDEV) {
1030 struct gendisk *disk = p->bdev->bd_disk;
1031
1032 if (disk->fops->swap_slot_free_notify)
1033 disk->fops->swap_slot_free_notify(p->bdev,
1034 offset);
1035 }
1036 }
1037
1038 /*
1039 * Caller has made sure that the swap device corresponding to entry
1040 * is still around or has not been recycled.
1041 */
1042 void swap_free(swp_entry_t entry)
1043 {
1044 struct swap_info_struct *p;
1045
1046 p = _swap_info_get(entry);
1047 if (p) {
1048 if (!__swap_entry_free(p, entry, 1))
1049 free_swap_slot(entry);
1050 }
1051 }
1052
1053 /*
1054 * Called after dropping swapcache to decrease refcnt to swap entries.
1055 */
1056 void swapcache_free(swp_entry_t entry)
1057 {
1058 struct swap_info_struct *p;
1059
1060 p = _swap_info_get(entry);
1061 if (p) {
1062 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1063 free_swap_slot(entry);
1064 }
1065 }
1066
1067 void swapcache_free_entries(swp_entry_t *entries, int n)
1068 {
1069 struct swap_info_struct *p, *prev;
1070 int i;
1071
1072 if (n <= 0)
1073 return;
1074
1075 prev = NULL;
1076 p = NULL;
1077 for (i = 0; i < n; ++i) {
1078 p = swap_info_get_cont(entries[i], prev);
1079 if (p)
1080 swap_entry_free(p, entries[i]);
1081 else
1082 break;
1083 prev = p;
1084 }
1085 if (p)
1086 spin_unlock(&p->lock);
1087 }
1088
1089 /*
1090 * How many references to page are currently swapped out?
1091 * This does not give an exact answer when swap count is continued,
1092 * but does include the high COUNT_CONTINUED flag to allow for that.
1093 */
1094 int page_swapcount(struct page *page)
1095 {
1096 int count = 0;
1097 struct swap_info_struct *p;
1098 struct swap_cluster_info *ci;
1099 swp_entry_t entry;
1100 unsigned long offset;
1101
1102 entry.val = page_private(page);
1103 p = _swap_info_get(entry);
1104 if (p) {
1105 offset = swp_offset(entry);
1106 ci = lock_cluster_or_swap_info(p, offset);
1107 count = swap_count(p->swap_map[offset]);
1108 unlock_cluster_or_swap_info(p, ci);
1109 }
1110 return count;
1111 }
1112
1113 /*
1114 * How many references to @entry are currently swapped out?
1115 * This does not give an exact answer when swap count is continued,
1116 * but does include the high COUNT_CONTINUED flag to allow for that.
1117 */
1118 int __swp_swapcount(swp_entry_t entry)
1119 {
1120 int count = 0;
1121 pgoff_t offset;
1122 struct swap_info_struct *si;
1123 struct swap_cluster_info *ci;
1124
1125 si = __swap_info_get(entry);
1126 if (si) {
1127 offset = swp_offset(entry);
1128 ci = lock_cluster_or_swap_info(si, offset);
1129 count = swap_count(si->swap_map[offset]);
1130 unlock_cluster_or_swap_info(si, ci);
1131 }
1132 return count;
1133 }
1134
1135 /*
1136 * How many references to @entry are currently swapped out?
1137 * This considers COUNT_CONTINUED so it returns exact answer.
1138 */
1139 int swp_swapcount(swp_entry_t entry)
1140 {
1141 int count, tmp_count, n;
1142 struct swap_info_struct *p;
1143 struct swap_cluster_info *ci;
1144 struct page *page;
1145 pgoff_t offset;
1146 unsigned char *map;
1147
1148 p = _swap_info_get(entry);
1149 if (!p)
1150 return 0;
1151
1152 offset = swp_offset(entry);
1153
1154 ci = lock_cluster_or_swap_info(p, offset);
1155
1156 count = swap_count(p->swap_map[offset]);
1157 if (!(count & COUNT_CONTINUED))
1158 goto out;
1159
1160 count &= ~COUNT_CONTINUED;
1161 n = SWAP_MAP_MAX + 1;
1162
1163 page = vmalloc_to_page(p->swap_map + offset);
1164 offset &= ~PAGE_MASK;
1165 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1166
1167 do {
1168 page = list_next_entry(page, lru);
1169 map = kmap_atomic(page);
1170 tmp_count = map[offset];
1171 kunmap_atomic(map);
1172
1173 count += (tmp_count & ~COUNT_CONTINUED) * n;
1174 n *= (SWAP_CONT_MAX + 1);
1175 } while (tmp_count & COUNT_CONTINUED);
1176 out:
1177 unlock_cluster_or_swap_info(p, ci);
1178 return count;
1179 }
1180
1181 /*
1182 * We can write to an anon page without COW if there are no other references
1183 * to it. And as a side-effect, free up its swap: because the old content
1184 * on disk will never be read, and seeking back there to write new content
1185 * later would only waste time away from clustering.
1186 *
1187 * NOTE: total_mapcount should not be relied upon by the caller if
1188 * reuse_swap_page() returns false, but it may be always overwritten
1189 * (see the other implementation for CONFIG_SWAP=n).
1190 */
1191 bool reuse_swap_page(struct page *page, int *total_mapcount)
1192 {
1193 int count;
1194
1195 VM_BUG_ON_PAGE(!PageLocked(page), page);
1196 if (unlikely(PageKsm(page)))
1197 return false;
1198 count = page_trans_huge_mapcount(page, total_mapcount);
1199 if (count <= 1 && PageSwapCache(page)) {
1200 count += page_swapcount(page);
1201 if (count != 1)
1202 goto out;
1203 if (!PageWriteback(page)) {
1204 delete_from_swap_cache(page);
1205 SetPageDirty(page);
1206 } else {
1207 swp_entry_t entry;
1208 struct swap_info_struct *p;
1209
1210 entry.val = page_private(page);
1211 p = swap_info_get(entry);
1212 if (p->flags & SWP_STABLE_WRITES) {
1213 spin_unlock(&p->lock);
1214 return false;
1215 }
1216 spin_unlock(&p->lock);
1217 }
1218 }
1219 out:
1220 return count <= 1;
1221 }
1222
1223 /*
1224 * If swap is getting full, or if there are no more mappings of this page,
1225 * then try_to_free_swap is called to free its swap space.
1226 */
1227 int try_to_free_swap(struct page *page)
1228 {
1229 VM_BUG_ON_PAGE(!PageLocked(page), page);
1230
1231 if (!PageSwapCache(page))
1232 return 0;
1233 if (PageWriteback(page))
1234 return 0;
1235 if (page_swapcount(page))
1236 return 0;
1237
1238 /*
1239 * Once hibernation has begun to create its image of memory,
1240 * there's a danger that one of the calls to try_to_free_swap()
1241 * - most probably a call from __try_to_reclaim_swap() while
1242 * hibernation is allocating its own swap pages for the image,
1243 * but conceivably even a call from memory reclaim - will free
1244 * the swap from a page which has already been recorded in the
1245 * image as a clean swapcache page, and then reuse its swap for
1246 * another page of the image. On waking from hibernation, the
1247 * original page might be freed under memory pressure, then
1248 * later read back in from swap, now with the wrong data.
1249 *
1250 * Hibernation suspends storage while it is writing the image
1251 * to disk so check that here.
1252 */
1253 if (pm_suspended_storage())
1254 return 0;
1255
1256 delete_from_swap_cache(page);
1257 SetPageDirty(page);
1258 return 1;
1259 }
1260
1261 /*
1262 * Free the swap entry like above, but also try to
1263 * free the page cache entry if it is the last user.
1264 */
1265 int free_swap_and_cache(swp_entry_t entry)
1266 {
1267 struct swap_info_struct *p;
1268 struct page *page = NULL;
1269 unsigned char count;
1270
1271 if (non_swap_entry(entry))
1272 return 1;
1273
1274 p = _swap_info_get(entry);
1275 if (p) {
1276 count = __swap_entry_free(p, entry, 1);
1277 if (count == SWAP_HAS_CACHE) {
1278 page = find_get_page(swap_address_space(entry),
1279 swp_offset(entry));
1280 if (page && !trylock_page(page)) {
1281 put_page(page);
1282 page = NULL;
1283 }
1284 } else if (!count)
1285 free_swap_slot(entry);
1286 }
1287 if (page) {
1288 /*
1289 * Not mapped elsewhere, or swap space full? Free it!
1290 * Also recheck PageSwapCache now page is locked (above).
1291 */
1292 if (PageSwapCache(page) && !PageWriteback(page) &&
1293 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1294 delete_from_swap_cache(page);
1295 SetPageDirty(page);
1296 }
1297 unlock_page(page);
1298 put_page(page);
1299 }
1300 return p != NULL;
1301 }
1302
1303 #ifdef CONFIG_HIBERNATION
1304 /*
1305 * Find the swap type that corresponds to given device (if any).
1306 *
1307 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1308 * from 0, in which the swap header is expected to be located.
1309 *
1310 * This is needed for the suspend to disk (aka swsusp).
1311 */
1312 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1313 {
1314 struct block_device *bdev = NULL;
1315 int type;
1316
1317 if (device)
1318 bdev = bdget(device);
1319
1320 spin_lock(&swap_lock);
1321 for (type = 0; type < nr_swapfiles; type++) {
1322 struct swap_info_struct *sis = swap_info[type];
1323
1324 if (!(sis->flags & SWP_WRITEOK))
1325 continue;
1326
1327 if (!bdev) {
1328 if (bdev_p)
1329 *bdev_p = bdgrab(sis->bdev);
1330
1331 spin_unlock(&swap_lock);
1332 return type;
1333 }
1334 if (bdev == sis->bdev) {
1335 struct swap_extent *se = &sis->first_swap_extent;
1336
1337 if (se->start_block == offset) {
1338 if (bdev_p)
1339 *bdev_p = bdgrab(sis->bdev);
1340
1341 spin_unlock(&swap_lock);
1342 bdput(bdev);
1343 return type;
1344 }
1345 }
1346 }
1347 spin_unlock(&swap_lock);
1348 if (bdev)
1349 bdput(bdev);
1350
1351 return -ENODEV;
1352 }
1353
1354 /*
1355 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1356 * corresponding to given index in swap_info (swap type).
1357 */
1358 sector_t swapdev_block(int type, pgoff_t offset)
1359 {
1360 struct block_device *bdev;
1361
1362 if ((unsigned int)type >= nr_swapfiles)
1363 return 0;
1364 if (!(swap_info[type]->flags & SWP_WRITEOK))
1365 return 0;
1366 return map_swap_entry(swp_entry(type, offset), &bdev);
1367 }
1368
1369 /*
1370 * Return either the total number of swap pages of given type, or the number
1371 * of free pages of that type (depending on @free)
1372 *
1373 * This is needed for software suspend
1374 */
1375 unsigned int count_swap_pages(int type, int free)
1376 {
1377 unsigned int n = 0;
1378
1379 spin_lock(&swap_lock);
1380 if ((unsigned int)type < nr_swapfiles) {
1381 struct swap_info_struct *sis = swap_info[type];
1382
1383 spin_lock(&sis->lock);
1384 if (sis->flags & SWP_WRITEOK) {
1385 n = sis->pages;
1386 if (free)
1387 n -= sis->inuse_pages;
1388 }
1389 spin_unlock(&sis->lock);
1390 }
1391 spin_unlock(&swap_lock);
1392 return n;
1393 }
1394 #endif /* CONFIG_HIBERNATION */
1395
1396 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1397 {
1398 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1399 }
1400
1401 /*
1402 * No need to decide whether this PTE shares the swap entry with others,
1403 * just let do_wp_page work it out if a write is requested later - to
1404 * force COW, vm_page_prot omits write permission from any private vma.
1405 */
1406 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1407 unsigned long addr, swp_entry_t entry, struct page *page)
1408 {
1409 struct page *swapcache;
1410 struct mem_cgroup *memcg;
1411 spinlock_t *ptl;
1412 pte_t *pte;
1413 int ret = 1;
1414
1415 swapcache = page;
1416 page = ksm_might_need_to_copy(page, vma, addr);
1417 if (unlikely(!page))
1418 return -ENOMEM;
1419
1420 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1421 &memcg, false)) {
1422 ret = -ENOMEM;
1423 goto out_nolock;
1424 }
1425
1426 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1427 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1428 mem_cgroup_cancel_charge(page, memcg, false);
1429 ret = 0;
1430 goto out;
1431 }
1432
1433 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1434 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1435 get_page(page);
1436 set_pte_at(vma->vm_mm, addr, pte,
1437 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1438 if (page == swapcache) {
1439 page_add_anon_rmap(page, vma, addr, false);
1440 mem_cgroup_commit_charge(page, memcg, true, false);
1441 } else { /* ksm created a completely new copy */
1442 page_add_new_anon_rmap(page, vma, addr, false);
1443 mem_cgroup_commit_charge(page, memcg, false, false);
1444 lru_cache_add_active_or_unevictable(page, vma);
1445 }
1446 swap_free(entry);
1447 /*
1448 * Move the page to the active list so it is not
1449 * immediately swapped out again after swapon.
1450 */
1451 activate_page(page);
1452 out:
1453 pte_unmap_unlock(pte, ptl);
1454 out_nolock:
1455 if (page != swapcache) {
1456 unlock_page(page);
1457 put_page(page);
1458 }
1459 return ret;
1460 }
1461
1462 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1463 unsigned long addr, unsigned long end,
1464 swp_entry_t entry, struct page *page)
1465 {
1466 pte_t swp_pte = swp_entry_to_pte(entry);
1467 pte_t *pte;
1468 int ret = 0;
1469
1470 /*
1471 * We don't actually need pte lock while scanning for swp_pte: since
1472 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1473 * page table while we're scanning; though it could get zapped, and on
1474 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1475 * of unmatched parts which look like swp_pte, so unuse_pte must
1476 * recheck under pte lock. Scanning without pte lock lets it be
1477 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1478 */
1479 pte = pte_offset_map(pmd, addr);
1480 do {
1481 /*
1482 * swapoff spends a _lot_ of time in this loop!
1483 * Test inline before going to call unuse_pte.
1484 */
1485 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1486 pte_unmap(pte);
1487 ret = unuse_pte(vma, pmd, addr, entry, page);
1488 if (ret)
1489 goto out;
1490 pte = pte_offset_map(pmd, addr);
1491 }
1492 } while (pte++, addr += PAGE_SIZE, addr != end);
1493 pte_unmap(pte - 1);
1494 out:
1495 return ret;
1496 }
1497
1498 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1499 unsigned long addr, unsigned long end,
1500 swp_entry_t entry, struct page *page)
1501 {
1502 pmd_t *pmd;
1503 unsigned long next;
1504 int ret;
1505
1506 pmd = pmd_offset(pud, addr);
1507 do {
1508 cond_resched();
1509 next = pmd_addr_end(addr, end);
1510 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1511 continue;
1512 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1513 if (ret)
1514 return ret;
1515 } while (pmd++, addr = next, addr != end);
1516 return 0;
1517 }
1518
1519 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1520 unsigned long addr, unsigned long end,
1521 swp_entry_t entry, struct page *page)
1522 {
1523 pud_t *pud;
1524 unsigned long next;
1525 int ret;
1526
1527 pud = pud_offset(pgd, addr);
1528 do {
1529 next = pud_addr_end(addr, end);
1530 if (pud_none_or_clear_bad(pud))
1531 continue;
1532 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1533 if (ret)
1534 return ret;
1535 } while (pud++, addr = next, addr != end);
1536 return 0;
1537 }
1538
1539 static int unuse_vma(struct vm_area_struct *vma,
1540 swp_entry_t entry, struct page *page)
1541 {
1542 pgd_t *pgd;
1543 unsigned long addr, end, next;
1544 int ret;
1545
1546 if (page_anon_vma(page)) {
1547 addr = page_address_in_vma(page, vma);
1548 if (addr == -EFAULT)
1549 return 0;
1550 else
1551 end = addr + PAGE_SIZE;
1552 } else {
1553 addr = vma->vm_start;
1554 end = vma->vm_end;
1555 }
1556
1557 pgd = pgd_offset(vma->vm_mm, addr);
1558 do {
1559 next = pgd_addr_end(addr, end);
1560 if (pgd_none_or_clear_bad(pgd))
1561 continue;
1562 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1563 if (ret)
1564 return ret;
1565 } while (pgd++, addr = next, addr != end);
1566 return 0;
1567 }
1568
1569 static int unuse_mm(struct mm_struct *mm,
1570 swp_entry_t entry, struct page *page)
1571 {
1572 struct vm_area_struct *vma;
1573 int ret = 0;
1574
1575 if (!down_read_trylock(&mm->mmap_sem)) {
1576 /*
1577 * Activate page so shrink_inactive_list is unlikely to unmap
1578 * its ptes while lock is dropped, so swapoff can make progress.
1579 */
1580 activate_page(page);
1581 unlock_page(page);
1582 down_read(&mm->mmap_sem);
1583 lock_page(page);
1584 }
1585 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1586 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1587 break;
1588 cond_resched();
1589 }
1590 up_read(&mm->mmap_sem);
1591 return (ret < 0)? ret: 0;
1592 }
1593
1594 /*
1595 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1596 * from current position to next entry still in use.
1597 * Recycle to start on reaching the end, returning 0 when empty.
1598 */
1599 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1600 unsigned int prev, bool frontswap)
1601 {
1602 unsigned int max = si->max;
1603 unsigned int i = prev;
1604 unsigned char count;
1605
1606 /*
1607 * No need for swap_lock here: we're just looking
1608 * for whether an entry is in use, not modifying it; false
1609 * hits are okay, and sys_swapoff() has already prevented new
1610 * allocations from this area (while holding swap_lock).
1611 */
1612 for (;;) {
1613 if (++i >= max) {
1614 if (!prev) {
1615 i = 0;
1616 break;
1617 }
1618 /*
1619 * No entries in use at top of swap_map,
1620 * loop back to start and recheck there.
1621 */
1622 max = prev + 1;
1623 prev = 0;
1624 i = 1;
1625 }
1626 count = READ_ONCE(si->swap_map[i]);
1627 if (count && swap_count(count) != SWAP_MAP_BAD)
1628 if (!frontswap || frontswap_test(si, i))
1629 break;
1630 if ((i % LATENCY_LIMIT) == 0)
1631 cond_resched();
1632 }
1633 return i;
1634 }
1635
1636 /*
1637 * We completely avoid races by reading each swap page in advance,
1638 * and then search for the process using it. All the necessary
1639 * page table adjustments can then be made atomically.
1640 *
1641 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1642 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1643 */
1644 int try_to_unuse(unsigned int type, bool frontswap,
1645 unsigned long pages_to_unuse)
1646 {
1647 struct swap_info_struct *si = swap_info[type];
1648 struct mm_struct *start_mm;
1649 volatile unsigned char *swap_map; /* swap_map is accessed without
1650 * locking. Mark it as volatile
1651 * to prevent compiler doing
1652 * something odd.
1653 */
1654 unsigned char swcount;
1655 struct page *page;
1656 swp_entry_t entry;
1657 unsigned int i = 0;
1658 int retval = 0;
1659
1660 /*
1661 * When searching mms for an entry, a good strategy is to
1662 * start at the first mm we freed the previous entry from
1663 * (though actually we don't notice whether we or coincidence
1664 * freed the entry). Initialize this start_mm with a hold.
1665 *
1666 * A simpler strategy would be to start at the last mm we
1667 * freed the previous entry from; but that would take less
1668 * advantage of mmlist ordering, which clusters forked mms
1669 * together, child after parent. If we race with dup_mmap(), we
1670 * prefer to resolve parent before child, lest we miss entries
1671 * duplicated after we scanned child: using last mm would invert
1672 * that.
1673 */
1674 start_mm = &init_mm;
1675 mmget(&init_mm);
1676
1677 /*
1678 * Keep on scanning until all entries have gone. Usually,
1679 * one pass through swap_map is enough, but not necessarily:
1680 * there are races when an instance of an entry might be missed.
1681 */
1682 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1683 if (signal_pending(current)) {
1684 retval = -EINTR;
1685 break;
1686 }
1687
1688 /*
1689 * Get a page for the entry, using the existing swap
1690 * cache page if there is one. Otherwise, get a clean
1691 * page and read the swap into it.
1692 */
1693 swap_map = &si->swap_map[i];
1694 entry = swp_entry(type, i);
1695 page = read_swap_cache_async(entry,
1696 GFP_HIGHUSER_MOVABLE, NULL, 0);
1697 if (!page) {
1698 /*
1699 * Either swap_duplicate() failed because entry
1700 * has been freed independently, and will not be
1701 * reused since sys_swapoff() already disabled
1702 * allocation from here, or alloc_page() failed.
1703 */
1704 swcount = *swap_map;
1705 /*
1706 * We don't hold lock here, so the swap entry could be
1707 * SWAP_MAP_BAD (when the cluster is discarding).
1708 * Instead of fail out, We can just skip the swap
1709 * entry because swapoff will wait for discarding
1710 * finish anyway.
1711 */
1712 if (!swcount || swcount == SWAP_MAP_BAD)
1713 continue;
1714 retval = -ENOMEM;
1715 break;
1716 }
1717
1718 /*
1719 * Don't hold on to start_mm if it looks like exiting.
1720 */
1721 if (atomic_read(&start_mm->mm_users) == 1) {
1722 mmput(start_mm);
1723 start_mm = &init_mm;
1724 mmget(&init_mm);
1725 }
1726
1727 /*
1728 * Wait for and lock page. When do_swap_page races with
1729 * try_to_unuse, do_swap_page can handle the fault much
1730 * faster than try_to_unuse can locate the entry. This
1731 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1732 * defer to do_swap_page in such a case - in some tests,
1733 * do_swap_page and try_to_unuse repeatedly compete.
1734 */
1735 wait_on_page_locked(page);
1736 wait_on_page_writeback(page);
1737 lock_page(page);
1738 wait_on_page_writeback(page);
1739
1740 /*
1741 * Remove all references to entry.
1742 */
1743 swcount = *swap_map;
1744 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1745 retval = shmem_unuse(entry, page);
1746 /* page has already been unlocked and released */
1747 if (retval < 0)
1748 break;
1749 continue;
1750 }
1751 if (swap_count(swcount) && start_mm != &init_mm)
1752 retval = unuse_mm(start_mm, entry, page);
1753
1754 if (swap_count(*swap_map)) {
1755 int set_start_mm = (*swap_map >= swcount);
1756 struct list_head *p = &start_mm->mmlist;
1757 struct mm_struct *new_start_mm = start_mm;
1758 struct mm_struct *prev_mm = start_mm;
1759 struct mm_struct *mm;
1760
1761 mmget(new_start_mm);
1762 mmget(prev_mm);
1763 spin_lock(&mmlist_lock);
1764 while (swap_count(*swap_map) && !retval &&
1765 (p = p->next) != &start_mm->mmlist) {
1766 mm = list_entry(p, struct mm_struct, mmlist);
1767 if (!mmget_not_zero(mm))
1768 continue;
1769 spin_unlock(&mmlist_lock);
1770 mmput(prev_mm);
1771 prev_mm = mm;
1772
1773 cond_resched();
1774
1775 swcount = *swap_map;
1776 if (!swap_count(swcount)) /* any usage ? */
1777 ;
1778 else if (mm == &init_mm)
1779 set_start_mm = 1;
1780 else
1781 retval = unuse_mm(mm, entry, page);
1782
1783 if (set_start_mm && *swap_map < swcount) {
1784 mmput(new_start_mm);
1785 mmget(mm);
1786 new_start_mm = mm;
1787 set_start_mm = 0;
1788 }
1789 spin_lock(&mmlist_lock);
1790 }
1791 spin_unlock(&mmlist_lock);
1792 mmput(prev_mm);
1793 mmput(start_mm);
1794 start_mm = new_start_mm;
1795 }
1796 if (retval) {
1797 unlock_page(page);
1798 put_page(page);
1799 break;
1800 }
1801
1802 /*
1803 * If a reference remains (rare), we would like to leave
1804 * the page in the swap cache; but try_to_unmap could
1805 * then re-duplicate the entry once we drop page lock,
1806 * so we might loop indefinitely; also, that page could
1807 * not be swapped out to other storage meanwhile. So:
1808 * delete from cache even if there's another reference,
1809 * after ensuring that the data has been saved to disk -
1810 * since if the reference remains (rarer), it will be
1811 * read from disk into another page. Splitting into two
1812 * pages would be incorrect if swap supported "shared
1813 * private" pages, but they are handled by tmpfs files.
1814 *
1815 * Given how unuse_vma() targets one particular offset
1816 * in an anon_vma, once the anon_vma has been determined,
1817 * this splitting happens to be just what is needed to
1818 * handle where KSM pages have been swapped out: re-reading
1819 * is unnecessarily slow, but we can fix that later on.
1820 */
1821 if (swap_count(*swap_map) &&
1822 PageDirty(page) && PageSwapCache(page)) {
1823 struct writeback_control wbc = {
1824 .sync_mode = WB_SYNC_NONE,
1825 };
1826
1827 swap_writepage(page, &wbc);
1828 lock_page(page);
1829 wait_on_page_writeback(page);
1830 }
1831
1832 /*
1833 * It is conceivable that a racing task removed this page from
1834 * swap cache just before we acquired the page lock at the top,
1835 * or while we dropped it in unuse_mm(). The page might even
1836 * be back in swap cache on another swap area: that we must not
1837 * delete, since it may not have been written out to swap yet.
1838 */
1839 if (PageSwapCache(page) &&
1840 likely(page_private(page) == entry.val))
1841 delete_from_swap_cache(page);
1842
1843 /*
1844 * So we could skip searching mms once swap count went
1845 * to 1, we did not mark any present ptes as dirty: must
1846 * mark page dirty so shrink_page_list will preserve it.
1847 */
1848 SetPageDirty(page);
1849 unlock_page(page);
1850 put_page(page);
1851
1852 /*
1853 * Make sure that we aren't completely killing
1854 * interactive performance.
1855 */
1856 cond_resched();
1857 if (frontswap && pages_to_unuse > 0) {
1858 if (!--pages_to_unuse)
1859 break;
1860 }
1861 }
1862
1863 mmput(start_mm);
1864 return retval;
1865 }
1866
1867 /*
1868 * After a successful try_to_unuse, if no swap is now in use, we know
1869 * we can empty the mmlist. swap_lock must be held on entry and exit.
1870 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1871 * added to the mmlist just after page_duplicate - before would be racy.
1872 */
1873 static void drain_mmlist(void)
1874 {
1875 struct list_head *p, *next;
1876 unsigned int type;
1877
1878 for (type = 0; type < nr_swapfiles; type++)
1879 if (swap_info[type]->inuse_pages)
1880 return;
1881 spin_lock(&mmlist_lock);
1882 list_for_each_safe(p, next, &init_mm.mmlist)
1883 list_del_init(p);
1884 spin_unlock(&mmlist_lock);
1885 }
1886
1887 /*
1888 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1889 * corresponds to page offset for the specified swap entry.
1890 * Note that the type of this function is sector_t, but it returns page offset
1891 * into the bdev, not sector offset.
1892 */
1893 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1894 {
1895 struct swap_info_struct *sis;
1896 struct swap_extent *start_se;
1897 struct swap_extent *se;
1898 pgoff_t offset;
1899
1900 sis = swap_info[swp_type(entry)];
1901 *bdev = sis->bdev;
1902
1903 offset = swp_offset(entry);
1904 start_se = sis->curr_swap_extent;
1905 se = start_se;
1906
1907 for ( ; ; ) {
1908 if (se->start_page <= offset &&
1909 offset < (se->start_page + se->nr_pages)) {
1910 return se->start_block + (offset - se->start_page);
1911 }
1912 se = list_next_entry(se, list);
1913 sis->curr_swap_extent = se;
1914 BUG_ON(se == start_se); /* It *must* be present */
1915 }
1916 }
1917
1918 /*
1919 * Returns the page offset into bdev for the specified page's swap entry.
1920 */
1921 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1922 {
1923 swp_entry_t entry;
1924 entry.val = page_private(page);
1925 return map_swap_entry(entry, bdev);
1926 }
1927
1928 /*
1929 * Free all of a swapdev's extent information
1930 */
1931 static void destroy_swap_extents(struct swap_info_struct *sis)
1932 {
1933 while (!list_empty(&sis->first_swap_extent.list)) {
1934 struct swap_extent *se;
1935
1936 se = list_first_entry(&sis->first_swap_extent.list,
1937 struct swap_extent, list);
1938 list_del(&se->list);
1939 kfree(se);
1940 }
1941
1942 if (sis->flags & SWP_FILE) {
1943 struct file *swap_file = sis->swap_file;
1944 struct address_space *mapping = swap_file->f_mapping;
1945
1946 sis->flags &= ~SWP_FILE;
1947 mapping->a_ops->swap_deactivate(swap_file);
1948 }
1949 }
1950
1951 /*
1952 * Add a block range (and the corresponding page range) into this swapdev's
1953 * extent list. The extent list is kept sorted in page order.
1954 *
1955 * This function rather assumes that it is called in ascending page order.
1956 */
1957 int
1958 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1959 unsigned long nr_pages, sector_t start_block)
1960 {
1961 struct swap_extent *se;
1962 struct swap_extent *new_se;
1963 struct list_head *lh;
1964
1965 if (start_page == 0) {
1966 se = &sis->first_swap_extent;
1967 sis->curr_swap_extent = se;
1968 se->start_page = 0;
1969 se->nr_pages = nr_pages;
1970 se->start_block = start_block;
1971 return 1;
1972 } else {
1973 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1974 se = list_entry(lh, struct swap_extent, list);
1975 BUG_ON(se->start_page + se->nr_pages != start_page);
1976 if (se->start_block + se->nr_pages == start_block) {
1977 /* Merge it */
1978 se->nr_pages += nr_pages;
1979 return 0;
1980 }
1981 }
1982
1983 /*
1984 * No merge. Insert a new extent, preserving ordering.
1985 */
1986 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1987 if (new_se == NULL)
1988 return -ENOMEM;
1989 new_se->start_page = start_page;
1990 new_se->nr_pages = nr_pages;
1991 new_se->start_block = start_block;
1992
1993 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1994 return 1;
1995 }
1996
1997 /*
1998 * A `swap extent' is a simple thing which maps a contiguous range of pages
1999 * onto a contiguous range of disk blocks. An ordered list of swap extents
2000 * is built at swapon time and is then used at swap_writepage/swap_readpage
2001 * time for locating where on disk a page belongs.
2002 *
2003 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2004 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2005 * swap files identically.
2006 *
2007 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2008 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2009 * swapfiles are handled *identically* after swapon time.
2010 *
2011 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2012 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2013 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2014 * requirements, they are simply tossed out - we will never use those blocks
2015 * for swapping.
2016 *
2017 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2018 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2019 * which will scribble on the fs.
2020 *
2021 * The amount of disk space which a single swap extent represents varies.
2022 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2023 * extents in the list. To avoid much list walking, we cache the previous
2024 * search location in `curr_swap_extent', and start new searches from there.
2025 * This is extremely effective. The average number of iterations in
2026 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2027 */
2028 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2029 {
2030 struct file *swap_file = sis->swap_file;
2031 struct address_space *mapping = swap_file->f_mapping;
2032 struct inode *inode = mapping->host;
2033 int ret;
2034
2035 if (S_ISBLK(inode->i_mode)) {
2036 ret = add_swap_extent(sis, 0, sis->max, 0);
2037 *span = sis->pages;
2038 return ret;
2039 }
2040
2041 if (mapping->a_ops->swap_activate) {
2042 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2043 if (!ret) {
2044 sis->flags |= SWP_FILE;
2045 ret = add_swap_extent(sis, 0, sis->max, 0);
2046 *span = sis->pages;
2047 }
2048 return ret;
2049 }
2050
2051 return generic_swapfile_activate(sis, swap_file, span);
2052 }
2053
2054 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2055 unsigned char *swap_map,
2056 struct swap_cluster_info *cluster_info)
2057 {
2058 if (prio >= 0)
2059 p->prio = prio;
2060 else
2061 p->prio = --least_priority;
2062 /*
2063 * the plist prio is negated because plist ordering is
2064 * low-to-high, while swap ordering is high-to-low
2065 */
2066 p->list.prio = -p->prio;
2067 p->avail_list.prio = -p->prio;
2068 p->swap_map = swap_map;
2069 p->cluster_info = cluster_info;
2070 p->flags |= SWP_WRITEOK;
2071 atomic_long_add(p->pages, &nr_swap_pages);
2072 total_swap_pages += p->pages;
2073
2074 assert_spin_locked(&swap_lock);
2075 /*
2076 * both lists are plists, and thus priority ordered.
2077 * swap_active_head needs to be priority ordered for swapoff(),
2078 * which on removal of any swap_info_struct with an auto-assigned
2079 * (i.e. negative) priority increments the auto-assigned priority
2080 * of any lower-priority swap_info_structs.
2081 * swap_avail_head needs to be priority ordered for get_swap_page(),
2082 * which allocates swap pages from the highest available priority
2083 * swap_info_struct.
2084 */
2085 plist_add(&p->list, &swap_active_head);
2086 spin_lock(&swap_avail_lock);
2087 plist_add(&p->avail_list, &swap_avail_head);
2088 spin_unlock(&swap_avail_lock);
2089 }
2090
2091 static void enable_swap_info(struct swap_info_struct *p, int prio,
2092 unsigned char *swap_map,
2093 struct swap_cluster_info *cluster_info,
2094 unsigned long *frontswap_map)
2095 {
2096 frontswap_init(p->type, frontswap_map);
2097 spin_lock(&swap_lock);
2098 spin_lock(&p->lock);
2099 _enable_swap_info(p, prio, swap_map, cluster_info);
2100 spin_unlock(&p->lock);
2101 spin_unlock(&swap_lock);
2102 }
2103
2104 static void reinsert_swap_info(struct swap_info_struct *p)
2105 {
2106 spin_lock(&swap_lock);
2107 spin_lock(&p->lock);
2108 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2109 spin_unlock(&p->lock);
2110 spin_unlock(&swap_lock);
2111 }
2112
2113 bool has_usable_swap(void)
2114 {
2115 bool ret = true;
2116
2117 spin_lock(&swap_lock);
2118 if (plist_head_empty(&swap_active_head))
2119 ret = false;
2120 spin_unlock(&swap_lock);
2121 return ret;
2122 }
2123
2124 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2125 {
2126 struct swap_info_struct *p = NULL;
2127 unsigned char *swap_map;
2128 struct swap_cluster_info *cluster_info;
2129 unsigned long *frontswap_map;
2130 struct file *swap_file, *victim;
2131 struct address_space *mapping;
2132 struct inode *inode;
2133 struct filename *pathname;
2134 int err, found = 0;
2135 unsigned int old_block_size;
2136
2137 if (!capable(CAP_SYS_ADMIN))
2138 return -EPERM;
2139
2140 BUG_ON(!current->mm);
2141
2142 pathname = getname(specialfile);
2143 if (IS_ERR(pathname))
2144 return PTR_ERR(pathname);
2145
2146 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2147 err = PTR_ERR(victim);
2148 if (IS_ERR(victim))
2149 goto out;
2150
2151 mapping = victim->f_mapping;
2152 spin_lock(&swap_lock);
2153 plist_for_each_entry(p, &swap_active_head, list) {
2154 if (p->flags & SWP_WRITEOK) {
2155 if (p->swap_file->f_mapping == mapping) {
2156 found = 1;
2157 break;
2158 }
2159 }
2160 }
2161 if (!found) {
2162 err = -EINVAL;
2163 spin_unlock(&swap_lock);
2164 goto out_dput;
2165 }
2166 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2167 vm_unacct_memory(p->pages);
2168 else {
2169 err = -ENOMEM;
2170 spin_unlock(&swap_lock);
2171 goto out_dput;
2172 }
2173 spin_lock(&swap_avail_lock);
2174 plist_del(&p->avail_list, &swap_avail_head);
2175 spin_unlock(&swap_avail_lock);
2176 spin_lock(&p->lock);
2177 if (p->prio < 0) {
2178 struct swap_info_struct *si = p;
2179
2180 plist_for_each_entry_continue(si, &swap_active_head, list) {
2181 si->prio++;
2182 si->list.prio--;
2183 si->avail_list.prio--;
2184 }
2185 least_priority++;
2186 }
2187 plist_del(&p->list, &swap_active_head);
2188 atomic_long_sub(p->pages, &nr_swap_pages);
2189 total_swap_pages -= p->pages;
2190 p->flags &= ~SWP_WRITEOK;
2191 spin_unlock(&p->lock);
2192 spin_unlock(&swap_lock);
2193
2194 disable_swap_slots_cache_lock();
2195
2196 set_current_oom_origin();
2197 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2198 clear_current_oom_origin();
2199
2200 if (err) {
2201 /* re-insert swap space back into swap_list */
2202 reinsert_swap_info(p);
2203 reenable_swap_slots_cache_unlock();
2204 goto out_dput;
2205 }
2206
2207 reenable_swap_slots_cache_unlock();
2208
2209 flush_work(&p->discard_work);
2210
2211 destroy_swap_extents(p);
2212 if (p->flags & SWP_CONTINUED)
2213 free_swap_count_continuations(p);
2214
2215 mutex_lock(&swapon_mutex);
2216 spin_lock(&swap_lock);
2217 spin_lock(&p->lock);
2218 drain_mmlist();
2219
2220 /* wait for anyone still in scan_swap_map */
2221 p->highest_bit = 0; /* cuts scans short */
2222 while (p->flags >= SWP_SCANNING) {
2223 spin_unlock(&p->lock);
2224 spin_unlock(&swap_lock);
2225 schedule_timeout_uninterruptible(1);
2226 spin_lock(&swap_lock);
2227 spin_lock(&p->lock);
2228 }
2229
2230 swap_file = p->swap_file;
2231 old_block_size = p->old_block_size;
2232 p->swap_file = NULL;
2233 p->max = 0;
2234 swap_map = p->swap_map;
2235 p->swap_map = NULL;
2236 cluster_info = p->cluster_info;
2237 p->cluster_info = NULL;
2238 frontswap_map = frontswap_map_get(p);
2239 spin_unlock(&p->lock);
2240 spin_unlock(&swap_lock);
2241 frontswap_invalidate_area(p->type);
2242 frontswap_map_set(p, NULL);
2243 mutex_unlock(&swapon_mutex);
2244 free_percpu(p->percpu_cluster);
2245 p->percpu_cluster = NULL;
2246 vfree(swap_map);
2247 vfree(cluster_info);
2248 vfree(frontswap_map);
2249 /* Destroy swap account information */
2250 swap_cgroup_swapoff(p->type);
2251 exit_swap_address_space(p->type);
2252
2253 inode = mapping->host;
2254 if (S_ISBLK(inode->i_mode)) {
2255 struct block_device *bdev = I_BDEV(inode);
2256 set_blocksize(bdev, old_block_size);
2257 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2258 } else {
2259 inode_lock(inode);
2260 inode->i_flags &= ~S_SWAPFILE;
2261 inode_unlock(inode);
2262 }
2263 filp_close(swap_file, NULL);
2264
2265 /*
2266 * Clear the SWP_USED flag after all resources are freed so that swapon
2267 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2268 * not hold p->lock after we cleared its SWP_WRITEOK.
2269 */
2270 spin_lock(&swap_lock);
2271 p->flags = 0;
2272 spin_unlock(&swap_lock);
2273
2274 err = 0;
2275 atomic_inc(&proc_poll_event);
2276 wake_up_interruptible(&proc_poll_wait);
2277
2278 out_dput:
2279 filp_close(victim, NULL);
2280 out:
2281 putname(pathname);
2282 return err;
2283 }
2284
2285 #ifdef CONFIG_PROC_FS
2286 static unsigned swaps_poll(struct file *file, poll_table *wait)
2287 {
2288 struct seq_file *seq = file->private_data;
2289
2290 poll_wait(file, &proc_poll_wait, wait);
2291
2292 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2293 seq->poll_event = atomic_read(&proc_poll_event);
2294 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2295 }
2296
2297 return POLLIN | POLLRDNORM;
2298 }
2299
2300 /* iterator */
2301 static void *swap_start(struct seq_file *swap, loff_t *pos)
2302 {
2303 struct swap_info_struct *si;
2304 int type;
2305 loff_t l = *pos;
2306
2307 mutex_lock(&swapon_mutex);
2308
2309 if (!l)
2310 return SEQ_START_TOKEN;
2311
2312 for (type = 0; type < nr_swapfiles; type++) {
2313 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2314 si = swap_info[type];
2315 if (!(si->flags & SWP_USED) || !si->swap_map)
2316 continue;
2317 if (!--l)
2318 return si;
2319 }
2320
2321 return NULL;
2322 }
2323
2324 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2325 {
2326 struct swap_info_struct *si = v;
2327 int type;
2328
2329 if (v == SEQ_START_TOKEN)
2330 type = 0;
2331 else
2332 type = si->type + 1;
2333
2334 for (; type < nr_swapfiles; type++) {
2335 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2336 si = swap_info[type];
2337 if (!(si->flags & SWP_USED) || !si->swap_map)
2338 continue;
2339 ++*pos;
2340 return si;
2341 }
2342
2343 return NULL;
2344 }
2345
2346 static void swap_stop(struct seq_file *swap, void *v)
2347 {
2348 mutex_unlock(&swapon_mutex);
2349 }
2350
2351 static int swap_show(struct seq_file *swap, void *v)
2352 {
2353 struct swap_info_struct *si = v;
2354 struct file *file;
2355 int len;
2356
2357 if (si == SEQ_START_TOKEN) {
2358 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2359 return 0;
2360 }
2361
2362 file = si->swap_file;
2363 len = seq_file_path(swap, file, " \t\n\\");
2364 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2365 len < 40 ? 40 - len : 1, " ",
2366 S_ISBLK(file_inode(file)->i_mode) ?
2367 "partition" : "file\t",
2368 si->pages << (PAGE_SHIFT - 10),
2369 si->inuse_pages << (PAGE_SHIFT - 10),
2370 si->prio);
2371 return 0;
2372 }
2373
2374 static const struct seq_operations swaps_op = {
2375 .start = swap_start,
2376 .next = swap_next,
2377 .stop = swap_stop,
2378 .show = swap_show
2379 };
2380
2381 static int swaps_open(struct inode *inode, struct file *file)
2382 {
2383 struct seq_file *seq;
2384 int ret;
2385
2386 ret = seq_open(file, &swaps_op);
2387 if (ret)
2388 return ret;
2389
2390 seq = file->private_data;
2391 seq->poll_event = atomic_read(&proc_poll_event);
2392 return 0;
2393 }
2394
2395 static const struct file_operations proc_swaps_operations = {
2396 .open = swaps_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
2399 .release = seq_release,
2400 .poll = swaps_poll,
2401 };
2402
2403 static int __init procswaps_init(void)
2404 {
2405 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2406 return 0;
2407 }
2408 __initcall(procswaps_init);
2409 #endif /* CONFIG_PROC_FS */
2410
2411 #ifdef MAX_SWAPFILES_CHECK
2412 static int __init max_swapfiles_check(void)
2413 {
2414 MAX_SWAPFILES_CHECK();
2415 return 0;
2416 }
2417 late_initcall(max_swapfiles_check);
2418 #endif
2419
2420 static struct swap_info_struct *alloc_swap_info(void)
2421 {
2422 struct swap_info_struct *p;
2423 unsigned int type;
2424
2425 p = kzalloc(sizeof(*p), GFP_KERNEL);
2426 if (!p)
2427 return ERR_PTR(-ENOMEM);
2428
2429 spin_lock(&swap_lock);
2430 for (type = 0; type < nr_swapfiles; type++) {
2431 if (!(swap_info[type]->flags & SWP_USED))
2432 break;
2433 }
2434 if (type >= MAX_SWAPFILES) {
2435 spin_unlock(&swap_lock);
2436 kfree(p);
2437 return ERR_PTR(-EPERM);
2438 }
2439 if (type >= nr_swapfiles) {
2440 p->type = type;
2441 swap_info[type] = p;
2442 /*
2443 * Write swap_info[type] before nr_swapfiles, in case a
2444 * racing procfs swap_start() or swap_next() is reading them.
2445 * (We never shrink nr_swapfiles, we never free this entry.)
2446 */
2447 smp_wmb();
2448 nr_swapfiles++;
2449 } else {
2450 kfree(p);
2451 p = swap_info[type];
2452 /*
2453 * Do not memset this entry: a racing procfs swap_next()
2454 * would be relying on p->type to remain valid.
2455 */
2456 }
2457 INIT_LIST_HEAD(&p->first_swap_extent.list);
2458 plist_node_init(&p->list, 0);
2459 plist_node_init(&p->avail_list, 0);
2460 p->flags = SWP_USED;
2461 spin_unlock(&swap_lock);
2462 spin_lock_init(&p->lock);
2463
2464 return p;
2465 }
2466
2467 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2468 {
2469 int error;
2470
2471 if (S_ISBLK(inode->i_mode)) {
2472 p->bdev = bdgrab(I_BDEV(inode));
2473 error = blkdev_get(p->bdev,
2474 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2475 if (error < 0) {
2476 p->bdev = NULL;
2477 return error;
2478 }
2479 p->old_block_size = block_size(p->bdev);
2480 error = set_blocksize(p->bdev, PAGE_SIZE);
2481 if (error < 0)
2482 return error;
2483 p->flags |= SWP_BLKDEV;
2484 } else if (S_ISREG(inode->i_mode)) {
2485 p->bdev = inode->i_sb->s_bdev;
2486 inode_lock(inode);
2487 if (IS_SWAPFILE(inode))
2488 return -EBUSY;
2489 } else
2490 return -EINVAL;
2491
2492 return 0;
2493 }
2494
2495 static unsigned long read_swap_header(struct swap_info_struct *p,
2496 union swap_header *swap_header,
2497 struct inode *inode)
2498 {
2499 int i;
2500 unsigned long maxpages;
2501 unsigned long swapfilepages;
2502 unsigned long last_page;
2503
2504 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2505 pr_err("Unable to find swap-space signature\n");
2506 return 0;
2507 }
2508
2509 /* swap partition endianess hack... */
2510 if (swab32(swap_header->info.version) == 1) {
2511 swab32s(&swap_header->info.version);
2512 swab32s(&swap_header->info.last_page);
2513 swab32s(&swap_header->info.nr_badpages);
2514 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2515 return 0;
2516 for (i = 0; i < swap_header->info.nr_badpages; i++)
2517 swab32s(&swap_header->info.badpages[i]);
2518 }
2519 /* Check the swap header's sub-version */
2520 if (swap_header->info.version != 1) {
2521 pr_warn("Unable to handle swap header version %d\n",
2522 swap_header->info.version);
2523 return 0;
2524 }
2525
2526 p->lowest_bit = 1;
2527 p->cluster_next = 1;
2528 p->cluster_nr = 0;
2529
2530 /*
2531 * Find out how many pages are allowed for a single swap
2532 * device. There are two limiting factors: 1) the number
2533 * of bits for the swap offset in the swp_entry_t type, and
2534 * 2) the number of bits in the swap pte as defined by the
2535 * different architectures. In order to find the
2536 * largest possible bit mask, a swap entry with swap type 0
2537 * and swap offset ~0UL is created, encoded to a swap pte,
2538 * decoded to a swp_entry_t again, and finally the swap
2539 * offset is extracted. This will mask all the bits from
2540 * the initial ~0UL mask that can't be encoded in either
2541 * the swp_entry_t or the architecture definition of a
2542 * swap pte.
2543 */
2544 maxpages = swp_offset(pte_to_swp_entry(
2545 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2546 last_page = swap_header->info.last_page;
2547 if (last_page > maxpages) {
2548 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2549 maxpages << (PAGE_SHIFT - 10),
2550 last_page << (PAGE_SHIFT - 10));
2551 }
2552 if (maxpages > last_page) {
2553 maxpages = last_page + 1;
2554 /* p->max is an unsigned int: don't overflow it */
2555 if ((unsigned int)maxpages == 0)
2556 maxpages = UINT_MAX;
2557 }
2558 p->highest_bit = maxpages - 1;
2559
2560 if (!maxpages)
2561 return 0;
2562 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2563 if (swapfilepages && maxpages > swapfilepages) {
2564 pr_warn("Swap area shorter than signature indicates\n");
2565 return 0;
2566 }
2567 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2568 return 0;
2569 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2570 return 0;
2571
2572 return maxpages;
2573 }
2574
2575 #define SWAP_CLUSTER_INFO_COLS \
2576 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2577 #define SWAP_CLUSTER_SPACE_COLS \
2578 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2579 #define SWAP_CLUSTER_COLS \
2580 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2581
2582 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2583 union swap_header *swap_header,
2584 unsigned char *swap_map,
2585 struct swap_cluster_info *cluster_info,
2586 unsigned long maxpages,
2587 sector_t *span)
2588 {
2589 unsigned int j, k;
2590 unsigned int nr_good_pages;
2591 int nr_extents;
2592 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2593 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2594 unsigned long i, idx;
2595
2596 nr_good_pages = maxpages - 1; /* omit header page */
2597
2598 cluster_list_init(&p->free_clusters);
2599 cluster_list_init(&p->discard_clusters);
2600
2601 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2602 unsigned int page_nr = swap_header->info.badpages[i];
2603 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2604 return -EINVAL;
2605 if (page_nr < maxpages) {
2606 swap_map[page_nr] = SWAP_MAP_BAD;
2607 nr_good_pages--;
2608 /*
2609 * Haven't marked the cluster free yet, no list
2610 * operation involved
2611 */
2612 inc_cluster_info_page(p, cluster_info, page_nr);
2613 }
2614 }
2615
2616 /* Haven't marked the cluster free yet, no list operation involved */
2617 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2618 inc_cluster_info_page(p, cluster_info, i);
2619
2620 if (nr_good_pages) {
2621 swap_map[0] = SWAP_MAP_BAD;
2622 /*
2623 * Not mark the cluster free yet, no list
2624 * operation involved
2625 */
2626 inc_cluster_info_page(p, cluster_info, 0);
2627 p->max = maxpages;
2628 p->pages = nr_good_pages;
2629 nr_extents = setup_swap_extents(p, span);
2630 if (nr_extents < 0)
2631 return nr_extents;
2632 nr_good_pages = p->pages;
2633 }
2634 if (!nr_good_pages) {
2635 pr_warn("Empty swap-file\n");
2636 return -EINVAL;
2637 }
2638
2639 if (!cluster_info)
2640 return nr_extents;
2641
2642
2643 /*
2644 * Reduce false cache line sharing between cluster_info and
2645 * sharing same address space.
2646 */
2647 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2648 j = (k + col) % SWAP_CLUSTER_COLS;
2649 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2650 idx = i * SWAP_CLUSTER_COLS + j;
2651 if (idx >= nr_clusters)
2652 continue;
2653 if (cluster_count(&cluster_info[idx]))
2654 continue;
2655 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2656 cluster_list_add_tail(&p->free_clusters, cluster_info,
2657 idx);
2658 }
2659 }
2660 return nr_extents;
2661 }
2662
2663 /*
2664 * Helper to sys_swapon determining if a given swap
2665 * backing device queue supports DISCARD operations.
2666 */
2667 static bool swap_discardable(struct swap_info_struct *si)
2668 {
2669 struct request_queue *q = bdev_get_queue(si->bdev);
2670
2671 if (!q || !blk_queue_discard(q))
2672 return false;
2673
2674 return true;
2675 }
2676
2677 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2678 {
2679 struct swap_info_struct *p;
2680 struct filename *name;
2681 struct file *swap_file = NULL;
2682 struct address_space *mapping;
2683 int prio;
2684 int error;
2685 union swap_header *swap_header;
2686 int nr_extents;
2687 sector_t span;
2688 unsigned long maxpages;
2689 unsigned char *swap_map = NULL;
2690 struct swap_cluster_info *cluster_info = NULL;
2691 unsigned long *frontswap_map = NULL;
2692 struct page *page = NULL;
2693 struct inode *inode = NULL;
2694
2695 if (swap_flags & ~SWAP_FLAGS_VALID)
2696 return -EINVAL;
2697
2698 if (!capable(CAP_SYS_ADMIN))
2699 return -EPERM;
2700
2701 p = alloc_swap_info();
2702 if (IS_ERR(p))
2703 return PTR_ERR(p);
2704
2705 INIT_WORK(&p->discard_work, swap_discard_work);
2706
2707 name = getname(specialfile);
2708 if (IS_ERR(name)) {
2709 error = PTR_ERR(name);
2710 name = NULL;
2711 goto bad_swap;
2712 }
2713 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2714 if (IS_ERR(swap_file)) {
2715 error = PTR_ERR(swap_file);
2716 swap_file = NULL;
2717 goto bad_swap;
2718 }
2719
2720 p->swap_file = swap_file;
2721 mapping = swap_file->f_mapping;
2722 inode = mapping->host;
2723
2724 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2725 error = claim_swapfile(p, inode);
2726 if (unlikely(error))
2727 goto bad_swap;
2728
2729 /*
2730 * Read the swap header.
2731 */
2732 if (!mapping->a_ops->readpage) {
2733 error = -EINVAL;
2734 goto bad_swap;
2735 }
2736 page = read_mapping_page(mapping, 0, swap_file);
2737 if (IS_ERR(page)) {
2738 error = PTR_ERR(page);
2739 goto bad_swap;
2740 }
2741 swap_header = kmap(page);
2742
2743 maxpages = read_swap_header(p, swap_header, inode);
2744 if (unlikely(!maxpages)) {
2745 error = -EINVAL;
2746 goto bad_swap;
2747 }
2748
2749 /* OK, set up the swap map and apply the bad block list */
2750 swap_map = vzalloc(maxpages);
2751 if (!swap_map) {
2752 error = -ENOMEM;
2753 goto bad_swap;
2754 }
2755
2756 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2757 p->flags |= SWP_STABLE_WRITES;
2758
2759 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2760 int cpu;
2761 unsigned long ci, nr_cluster;
2762
2763 p->flags |= SWP_SOLIDSTATE;
2764 /*
2765 * select a random position to start with to help wear leveling
2766 * SSD
2767 */
2768 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2769 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2770
2771 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2772 if (!cluster_info) {
2773 error = -ENOMEM;
2774 goto bad_swap;
2775 }
2776
2777 for (ci = 0; ci < nr_cluster; ci++)
2778 spin_lock_init(&((cluster_info + ci)->lock));
2779
2780 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2781 if (!p->percpu_cluster) {
2782 error = -ENOMEM;
2783 goto bad_swap;
2784 }
2785 for_each_possible_cpu(cpu) {
2786 struct percpu_cluster *cluster;
2787 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2788 cluster_set_null(&cluster->index);
2789 }
2790 }
2791
2792 error = swap_cgroup_swapon(p->type, maxpages);
2793 if (error)
2794 goto bad_swap;
2795
2796 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2797 cluster_info, maxpages, &span);
2798 if (unlikely(nr_extents < 0)) {
2799 error = nr_extents;
2800 goto bad_swap;
2801 }
2802 /* frontswap enabled? set up bit-per-page map for frontswap */
2803 if (IS_ENABLED(CONFIG_FRONTSWAP))
2804 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2805
2806 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2807 /*
2808 * When discard is enabled for swap with no particular
2809 * policy flagged, we set all swap discard flags here in
2810 * order to sustain backward compatibility with older
2811 * swapon(8) releases.
2812 */
2813 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2814 SWP_PAGE_DISCARD);
2815
2816 /*
2817 * By flagging sys_swapon, a sysadmin can tell us to
2818 * either do single-time area discards only, or to just
2819 * perform discards for released swap page-clusters.
2820 * Now it's time to adjust the p->flags accordingly.
2821 */
2822 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2823 p->flags &= ~SWP_PAGE_DISCARD;
2824 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2825 p->flags &= ~SWP_AREA_DISCARD;
2826
2827 /* issue a swapon-time discard if it's still required */
2828 if (p->flags & SWP_AREA_DISCARD) {
2829 int err = discard_swap(p);
2830 if (unlikely(err))
2831 pr_err("swapon: discard_swap(%p): %d\n",
2832 p, err);
2833 }
2834 }
2835
2836 error = init_swap_address_space(p->type, maxpages);
2837 if (error)
2838 goto bad_swap;
2839
2840 mutex_lock(&swapon_mutex);
2841 prio = -1;
2842 if (swap_flags & SWAP_FLAG_PREFER)
2843 prio =
2844 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2845 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2846
2847 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2848 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2849 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2850 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2851 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2852 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2853 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2854 (frontswap_map) ? "FS" : "");
2855
2856 mutex_unlock(&swapon_mutex);
2857 atomic_inc(&proc_poll_event);
2858 wake_up_interruptible(&proc_poll_wait);
2859
2860 if (S_ISREG(inode->i_mode))
2861 inode->i_flags |= S_SWAPFILE;
2862 error = 0;
2863 goto out;
2864 bad_swap:
2865 free_percpu(p->percpu_cluster);
2866 p->percpu_cluster = NULL;
2867 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2868 set_blocksize(p->bdev, p->old_block_size);
2869 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2870 }
2871 destroy_swap_extents(p);
2872 swap_cgroup_swapoff(p->type);
2873 spin_lock(&swap_lock);
2874 p->swap_file = NULL;
2875 p->flags = 0;
2876 spin_unlock(&swap_lock);
2877 vfree(swap_map);
2878 vfree(cluster_info);
2879 if (swap_file) {
2880 if (inode && S_ISREG(inode->i_mode)) {
2881 inode_unlock(inode);
2882 inode = NULL;
2883 }
2884 filp_close(swap_file, NULL);
2885 }
2886 out:
2887 if (page && !IS_ERR(page)) {
2888 kunmap(page);
2889 put_page(page);
2890 }
2891 if (name)
2892 putname(name);
2893 if (inode && S_ISREG(inode->i_mode))
2894 inode_unlock(inode);
2895 if (!error)
2896 enable_swap_slots_cache();
2897 return error;
2898 }
2899
2900 void si_swapinfo(struct sysinfo *val)
2901 {
2902 unsigned int type;
2903 unsigned long nr_to_be_unused = 0;
2904
2905 spin_lock(&swap_lock);
2906 for (type = 0; type < nr_swapfiles; type++) {
2907 struct swap_info_struct *si = swap_info[type];
2908
2909 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2910 nr_to_be_unused += si->inuse_pages;
2911 }
2912 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2913 val->totalswap = total_swap_pages + nr_to_be_unused;
2914 spin_unlock(&swap_lock);
2915 }
2916
2917 /*
2918 * Verify that a swap entry is valid and increment its swap map count.
2919 *
2920 * Returns error code in following case.
2921 * - success -> 0
2922 * - swp_entry is invalid -> EINVAL
2923 * - swp_entry is migration entry -> EINVAL
2924 * - swap-cache reference is requested but there is already one. -> EEXIST
2925 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2926 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2927 */
2928 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2929 {
2930 struct swap_info_struct *p;
2931 struct swap_cluster_info *ci;
2932 unsigned long offset, type;
2933 unsigned char count;
2934 unsigned char has_cache;
2935 int err = -EINVAL;
2936
2937 if (non_swap_entry(entry))
2938 goto out;
2939
2940 type = swp_type(entry);
2941 if (type >= nr_swapfiles)
2942 goto bad_file;
2943 p = swap_info[type];
2944 offset = swp_offset(entry);
2945 if (unlikely(offset >= p->max))
2946 goto out;
2947
2948 ci = lock_cluster_or_swap_info(p, offset);
2949
2950 count = p->swap_map[offset];
2951
2952 /*
2953 * swapin_readahead() doesn't check if a swap entry is valid, so the
2954 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2955 */
2956 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2957 err = -ENOENT;
2958 goto unlock_out;
2959 }
2960
2961 has_cache = count & SWAP_HAS_CACHE;
2962 count &= ~SWAP_HAS_CACHE;
2963 err = 0;
2964
2965 if (usage == SWAP_HAS_CACHE) {
2966
2967 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2968 if (!has_cache && count)
2969 has_cache = SWAP_HAS_CACHE;
2970 else if (has_cache) /* someone else added cache */
2971 err = -EEXIST;
2972 else /* no users remaining */
2973 err = -ENOENT;
2974
2975 } else if (count || has_cache) {
2976
2977 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2978 count += usage;
2979 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2980 err = -EINVAL;
2981 else if (swap_count_continued(p, offset, count))
2982 count = COUNT_CONTINUED;
2983 else
2984 err = -ENOMEM;
2985 } else
2986 err = -ENOENT; /* unused swap entry */
2987
2988 p->swap_map[offset] = count | has_cache;
2989
2990 unlock_out:
2991 unlock_cluster_or_swap_info(p, ci);
2992 out:
2993 return err;
2994
2995 bad_file:
2996 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2997 goto out;
2998 }
2999
3000 /*
3001 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3002 * (in which case its reference count is never incremented).
3003 */
3004 void swap_shmem_alloc(swp_entry_t entry)
3005 {
3006 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3007 }
3008
3009 /*
3010 * Increase reference count of swap entry by 1.
3011 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3012 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3013 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3014 * might occur if a page table entry has got corrupted.
3015 */
3016 int swap_duplicate(swp_entry_t entry)
3017 {
3018 int err = 0;
3019
3020 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3021 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3022 return err;
3023 }
3024
3025 /*
3026 * @entry: swap entry for which we allocate swap cache.
3027 *
3028 * Called when allocating swap cache for existing swap entry,
3029 * This can return error codes. Returns 0 at success.
3030 * -EBUSY means there is a swap cache.
3031 * Note: return code is different from swap_duplicate().
3032 */
3033 int swapcache_prepare(swp_entry_t entry)
3034 {
3035 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3036 }
3037
3038 struct swap_info_struct *page_swap_info(struct page *page)
3039 {
3040 swp_entry_t swap = { .val = page_private(page) };
3041 return swap_info[swp_type(swap)];
3042 }
3043
3044 /*
3045 * out-of-line __page_file_ methods to avoid include hell.
3046 */
3047 struct address_space *__page_file_mapping(struct page *page)
3048 {
3049 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3050 return page_swap_info(page)->swap_file->f_mapping;
3051 }
3052 EXPORT_SYMBOL_GPL(__page_file_mapping);
3053
3054 pgoff_t __page_file_index(struct page *page)
3055 {
3056 swp_entry_t swap = { .val = page_private(page) };
3057 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3058 return swp_offset(swap);
3059 }
3060 EXPORT_SYMBOL_GPL(__page_file_index);
3061
3062 /*
3063 * add_swap_count_continuation - called when a swap count is duplicated
3064 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3065 * page of the original vmalloc'ed swap_map, to hold the continuation count
3066 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3067 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3068 *
3069 * These continuation pages are seldom referenced: the common paths all work
3070 * on the original swap_map, only referring to a continuation page when the
3071 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3072 *
3073 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3074 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3075 * can be called after dropping locks.
3076 */
3077 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3078 {
3079 struct swap_info_struct *si;
3080 struct swap_cluster_info *ci;
3081 struct page *head;
3082 struct page *page;
3083 struct page *list_page;
3084 pgoff_t offset;
3085 unsigned char count;
3086
3087 /*
3088 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3089 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3090 */
3091 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3092
3093 si = swap_info_get(entry);
3094 if (!si) {
3095 /*
3096 * An acceptable race has occurred since the failing
3097 * __swap_duplicate(): the swap entry has been freed,
3098 * perhaps even the whole swap_map cleared for swapoff.
3099 */
3100 goto outer;
3101 }
3102
3103 offset = swp_offset(entry);
3104
3105 ci = lock_cluster(si, offset);
3106
3107 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3108
3109 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3110 /*
3111 * The higher the swap count, the more likely it is that tasks
3112 * will race to add swap count continuation: we need to avoid
3113 * over-provisioning.
3114 */
3115 goto out;
3116 }
3117
3118 if (!page) {
3119 unlock_cluster(ci);
3120 spin_unlock(&si->lock);
3121 return -ENOMEM;
3122 }
3123
3124 /*
3125 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3126 * no architecture is using highmem pages for kernel page tables: so it
3127 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3128 */
3129 head = vmalloc_to_page(si->swap_map + offset);
3130 offset &= ~PAGE_MASK;
3131
3132 /*
3133 * Page allocation does not initialize the page's lru field,
3134 * but it does always reset its private field.
3135 */
3136 if (!page_private(head)) {
3137 BUG_ON(count & COUNT_CONTINUED);
3138 INIT_LIST_HEAD(&head->lru);
3139 set_page_private(head, SWP_CONTINUED);
3140 si->flags |= SWP_CONTINUED;
3141 }
3142
3143 list_for_each_entry(list_page, &head->lru, lru) {
3144 unsigned char *map;
3145
3146 /*
3147 * If the previous map said no continuation, but we've found
3148 * a continuation page, free our allocation and use this one.
3149 */
3150 if (!(count & COUNT_CONTINUED))
3151 goto out;
3152
3153 map = kmap_atomic(list_page) + offset;
3154 count = *map;
3155 kunmap_atomic(map);
3156
3157 /*
3158 * If this continuation count now has some space in it,
3159 * free our allocation and use this one.
3160 */
3161 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3162 goto out;
3163 }
3164
3165 list_add_tail(&page->lru, &head->lru);
3166 page = NULL; /* now it's attached, don't free it */
3167 out:
3168 unlock_cluster(ci);
3169 spin_unlock(&si->lock);
3170 outer:
3171 if (page)
3172 __free_page(page);
3173 return 0;
3174 }
3175
3176 /*
3177 * swap_count_continued - when the original swap_map count is incremented
3178 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3179 * into, carry if so, or else fail until a new continuation page is allocated;
3180 * when the original swap_map count is decremented from 0 with continuation,
3181 * borrow from the continuation and report whether it still holds more.
3182 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3183 * lock.
3184 */
3185 static bool swap_count_continued(struct swap_info_struct *si,
3186 pgoff_t offset, unsigned char count)
3187 {
3188 struct page *head;
3189 struct page *page;
3190 unsigned char *map;
3191
3192 head = vmalloc_to_page(si->swap_map + offset);
3193 if (page_private(head) != SWP_CONTINUED) {
3194 BUG_ON(count & COUNT_CONTINUED);
3195 return false; /* need to add count continuation */
3196 }
3197
3198 offset &= ~PAGE_MASK;
3199 page = list_entry(head->lru.next, struct page, lru);
3200 map = kmap_atomic(page) + offset;
3201
3202 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3203 goto init_map; /* jump over SWAP_CONT_MAX checks */
3204
3205 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3206 /*
3207 * Think of how you add 1 to 999
3208 */
3209 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3210 kunmap_atomic(map);
3211 page = list_entry(page->lru.next, struct page, lru);
3212 BUG_ON(page == head);
3213 map = kmap_atomic(page) + offset;
3214 }
3215 if (*map == SWAP_CONT_MAX) {
3216 kunmap_atomic(map);
3217 page = list_entry(page->lru.next, struct page, lru);
3218 if (page == head)
3219 return false; /* add count continuation */
3220 map = kmap_atomic(page) + offset;
3221 init_map: *map = 0; /* we didn't zero the page */
3222 }
3223 *map += 1;
3224 kunmap_atomic(map);
3225 page = list_entry(page->lru.prev, struct page, lru);
3226 while (page != head) {
3227 map = kmap_atomic(page) + offset;
3228 *map = COUNT_CONTINUED;
3229 kunmap_atomic(map);
3230 page = list_entry(page->lru.prev, struct page, lru);
3231 }
3232 return true; /* incremented */
3233
3234 } else { /* decrementing */
3235 /*
3236 * Think of how you subtract 1 from 1000
3237 */
3238 BUG_ON(count != COUNT_CONTINUED);
3239 while (*map == COUNT_CONTINUED) {
3240 kunmap_atomic(map);
3241 page = list_entry(page->lru.next, struct page, lru);
3242 BUG_ON(page == head);
3243 map = kmap_atomic(page) + offset;
3244 }
3245 BUG_ON(*map == 0);
3246 *map -= 1;
3247 if (*map == 0)
3248 count = 0;
3249 kunmap_atomic(map);
3250 page = list_entry(page->lru.prev, struct page, lru);
3251 while (page != head) {
3252 map = kmap_atomic(page) + offset;
3253 *map = SWAP_CONT_MAX | count;
3254 count = COUNT_CONTINUED;
3255 kunmap_atomic(map);
3256 page = list_entry(page->lru.prev, struct page, lru);
3257 }
3258 return count == COUNT_CONTINUED;
3259 }
3260 }
3261
3262 /*
3263 * free_swap_count_continuations - swapoff free all the continuation pages
3264 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3265 */
3266 static void free_swap_count_continuations(struct swap_info_struct *si)
3267 {
3268 pgoff_t offset;
3269
3270 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3271 struct page *head;
3272 head = vmalloc_to_page(si->swap_map + offset);
3273 if (page_private(head)) {
3274 struct page *page, *next;
3275
3276 list_for_each_entry_safe(page, next, &head->lru, lru) {
3277 list_del(&page->lru);
3278 __free_page(page);
3279 }
3280 }
3281 }
3282 }