]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swapfile.c
mm/swapfile.c: __swap_entry_free() always free 1 entry
[thirdparty/linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 unsigned long tmp, max;
605
606 new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
613 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 /*
615 * we don't have free cluster but have some clusters in
616 * discarding, do discard now and reclaim them
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = *offset = si->cluster_next;
620 goto new_cluster;
621 } else
622 return false;
623 }
624
625 /*
626 * Other CPUs can use our cluster if they can't find a free cluster,
627 * check if there is still free entry in the cluster
628 */
629 tmp = cluster->next;
630 max = min_t(unsigned long, si->max,
631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 if (tmp < max) {
633 ci = lock_cluster(si, tmp);
634 while (tmp < max) {
635 if (!si->swap_map[tmp])
636 break;
637 tmp++;
638 }
639 unlock_cluster(ci);
640 }
641 if (tmp >= max) {
642 cluster_set_null(&cluster->index);
643 goto new_cluster;
644 }
645 cluster->next = tmp + 1;
646 *offset = tmp;
647 *scan_base = tmp;
648 return true;
649 }
650
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 int nid;
654
655 for_each_node(nid)
656 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 spin_lock(&swap_avail_lock);
662 __del_from_avail_list(p);
663 spin_unlock(&swap_avail_lock);
664 }
665
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 unsigned int nr_entries)
668 {
669 unsigned int end = offset + nr_entries - 1;
670
671 if (offset == si->lowest_bit)
672 si->lowest_bit += nr_entries;
673 if (end == si->highest_bit)
674 si->highest_bit -= nr_entries;
675 si->inuse_pages += nr_entries;
676 if (si->inuse_pages == si->pages) {
677 si->lowest_bit = si->max;
678 si->highest_bit = 0;
679 del_from_avail_list(si);
680 }
681 }
682
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 int nid;
686
687 spin_lock(&swap_avail_lock);
688 for_each_node(nid) {
689 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 }
692 spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 unsigned int nr_entries)
697 {
698 unsigned long end = offset + nr_entries - 1;
699 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
700
701 if (offset < si->lowest_bit)
702 si->lowest_bit = offset;
703 if (end > si->highest_bit) {
704 bool was_full = !si->highest_bit;
705
706 si->highest_bit = end;
707 if (was_full && (si->flags & SWP_WRITEOK))
708 add_to_avail_list(si);
709 }
710 atomic_long_add(nr_entries, &nr_swap_pages);
711 si->inuse_pages -= nr_entries;
712 if (si->flags & SWP_BLKDEV)
713 swap_slot_free_notify =
714 si->bdev->bd_disk->fops->swap_slot_free_notify;
715 else
716 swap_slot_free_notify = NULL;
717 while (offset <= end) {
718 frontswap_invalidate_page(si->type, offset);
719 if (swap_slot_free_notify)
720 swap_slot_free_notify(si->bdev, offset);
721 offset++;
722 }
723 }
724
725 static int scan_swap_map_slots(struct swap_info_struct *si,
726 unsigned char usage, int nr,
727 swp_entry_t slots[])
728 {
729 struct swap_cluster_info *ci;
730 unsigned long offset;
731 unsigned long scan_base;
732 unsigned long last_in_cluster = 0;
733 int latency_ration = LATENCY_LIMIT;
734 int n_ret = 0;
735 bool scanned_many = false;
736
737 /*
738 * We try to cluster swap pages by allocating them sequentially
739 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
740 * way, however, we resort to first-free allocation, starting
741 * a new cluster. This prevents us from scattering swap pages
742 * all over the entire swap partition, so that we reduce
743 * overall disk seek times between swap pages. -- sct
744 * But we do now try to find an empty cluster. -Andrea
745 * And we let swap pages go all over an SSD partition. Hugh
746 */
747
748 si->flags += SWP_SCANNING;
749 scan_base = offset = si->cluster_next;
750
751 /* SSD algorithm */
752 if (si->cluster_info) {
753 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
754 goto scan;
755 } else if (unlikely(!si->cluster_nr--)) {
756 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
757 si->cluster_nr = SWAPFILE_CLUSTER - 1;
758 goto checks;
759 }
760
761 spin_unlock(&si->lock);
762
763 /*
764 * If seek is expensive, start searching for new cluster from
765 * start of partition, to minimize the span of allocated swap.
766 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
767 * case, just handled by scan_swap_map_try_ssd_cluster() above.
768 */
769 scan_base = offset = si->lowest_bit;
770 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
771
772 /* Locate the first empty (unaligned) cluster */
773 for (; last_in_cluster <= si->highest_bit; offset++) {
774 if (si->swap_map[offset])
775 last_in_cluster = offset + SWAPFILE_CLUSTER;
776 else if (offset == last_in_cluster) {
777 spin_lock(&si->lock);
778 offset -= SWAPFILE_CLUSTER - 1;
779 si->cluster_next = offset;
780 si->cluster_nr = SWAPFILE_CLUSTER - 1;
781 goto checks;
782 }
783 if (unlikely(--latency_ration < 0)) {
784 cond_resched();
785 latency_ration = LATENCY_LIMIT;
786 }
787 }
788
789 offset = scan_base;
790 spin_lock(&si->lock);
791 si->cluster_nr = SWAPFILE_CLUSTER - 1;
792 }
793
794 checks:
795 if (si->cluster_info) {
796 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
797 /* take a break if we already got some slots */
798 if (n_ret)
799 goto done;
800 if (!scan_swap_map_try_ssd_cluster(si, &offset,
801 &scan_base))
802 goto scan;
803 }
804 }
805 if (!(si->flags & SWP_WRITEOK))
806 goto no_page;
807 if (!si->highest_bit)
808 goto no_page;
809 if (offset > si->highest_bit)
810 scan_base = offset = si->lowest_bit;
811
812 ci = lock_cluster(si, offset);
813 /* reuse swap entry of cache-only swap if not busy. */
814 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
815 int swap_was_freed;
816 unlock_cluster(ci);
817 spin_unlock(&si->lock);
818 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
819 spin_lock(&si->lock);
820 /* entry was freed successfully, try to use this again */
821 if (swap_was_freed)
822 goto checks;
823 goto scan; /* check next one */
824 }
825
826 if (si->swap_map[offset]) {
827 unlock_cluster(ci);
828 if (!n_ret)
829 goto scan;
830 else
831 goto done;
832 }
833 si->swap_map[offset] = usage;
834 inc_cluster_info_page(si, si->cluster_info, offset);
835 unlock_cluster(ci);
836
837 swap_range_alloc(si, offset, 1);
838 si->cluster_next = offset + 1;
839 slots[n_ret++] = swp_entry(si->type, offset);
840
841 /* got enough slots or reach max slots? */
842 if ((n_ret == nr) || (offset >= si->highest_bit))
843 goto done;
844
845 /* search for next available slot */
846
847 /* time to take a break? */
848 if (unlikely(--latency_ration < 0)) {
849 if (n_ret)
850 goto done;
851 spin_unlock(&si->lock);
852 cond_resched();
853 spin_lock(&si->lock);
854 latency_ration = LATENCY_LIMIT;
855 }
856
857 /* try to get more slots in cluster */
858 if (si->cluster_info) {
859 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
860 goto checks;
861 } else if (si->cluster_nr && !si->swap_map[++offset]) {
862 /* non-ssd case, still more slots in cluster? */
863 --si->cluster_nr;
864 goto checks;
865 }
866
867 /*
868 * Even if there's no free clusters available (fragmented),
869 * try to scan a little more quickly with lock held unless we
870 * have scanned too many slots already.
871 */
872 if (!scanned_many) {
873 unsigned long scan_limit;
874
875 if (offset < scan_base)
876 scan_limit = scan_base;
877 else
878 scan_limit = si->highest_bit;
879 for (; offset <= scan_limit && --latency_ration > 0;
880 offset++) {
881 if (!si->swap_map[offset])
882 goto checks;
883 }
884 }
885
886 done:
887 si->flags -= SWP_SCANNING;
888 return n_ret;
889
890 scan:
891 spin_unlock(&si->lock);
892 while (++offset <= si->highest_bit) {
893 if (!si->swap_map[offset]) {
894 spin_lock(&si->lock);
895 goto checks;
896 }
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 spin_lock(&si->lock);
899 goto checks;
900 }
901 if (unlikely(--latency_ration < 0)) {
902 cond_resched();
903 latency_ration = LATENCY_LIMIT;
904 scanned_many = true;
905 }
906 }
907 offset = si->lowest_bit;
908 while (offset < scan_base) {
909 if (!si->swap_map[offset]) {
910 spin_lock(&si->lock);
911 goto checks;
912 }
913 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
914 spin_lock(&si->lock);
915 goto checks;
916 }
917 if (unlikely(--latency_ration < 0)) {
918 cond_resched();
919 latency_ration = LATENCY_LIMIT;
920 scanned_many = true;
921 }
922 offset++;
923 }
924 spin_lock(&si->lock);
925
926 no_page:
927 si->flags -= SWP_SCANNING;
928 return n_ret;
929 }
930
931 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
932 {
933 unsigned long idx;
934 struct swap_cluster_info *ci;
935 unsigned long offset, i;
936 unsigned char *map;
937
938 /*
939 * Should not even be attempting cluster allocations when huge
940 * page swap is disabled. Warn and fail the allocation.
941 */
942 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
943 VM_WARN_ON_ONCE(1);
944 return 0;
945 }
946
947 if (cluster_list_empty(&si->free_clusters))
948 return 0;
949
950 idx = cluster_list_first(&si->free_clusters);
951 offset = idx * SWAPFILE_CLUSTER;
952 ci = lock_cluster(si, offset);
953 alloc_cluster(si, idx);
954 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
955
956 map = si->swap_map + offset;
957 for (i = 0; i < SWAPFILE_CLUSTER; i++)
958 map[i] = SWAP_HAS_CACHE;
959 unlock_cluster(ci);
960 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
961 *slot = swp_entry(si->type, offset);
962
963 return 1;
964 }
965
966 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
967 {
968 unsigned long offset = idx * SWAPFILE_CLUSTER;
969 struct swap_cluster_info *ci;
970
971 ci = lock_cluster(si, offset);
972 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
973 cluster_set_count_flag(ci, 0, 0);
974 free_cluster(si, idx);
975 unlock_cluster(ci);
976 swap_range_free(si, offset, SWAPFILE_CLUSTER);
977 }
978
979 static unsigned long scan_swap_map(struct swap_info_struct *si,
980 unsigned char usage)
981 {
982 swp_entry_t entry;
983 int n_ret;
984
985 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
986
987 if (n_ret)
988 return swp_offset(entry);
989 else
990 return 0;
991
992 }
993
994 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
995 {
996 unsigned long size = swap_entry_size(entry_size);
997 struct swap_info_struct *si, *next;
998 long avail_pgs;
999 int n_ret = 0;
1000 int node;
1001
1002 /* Only single cluster request supported */
1003 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1004
1005 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1006 if (avail_pgs <= 0)
1007 goto noswap;
1008
1009 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1010
1011 atomic_long_sub(n_goal * size, &nr_swap_pages);
1012
1013 spin_lock(&swap_avail_lock);
1014
1015 start_over:
1016 node = numa_node_id();
1017 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1018 /* requeue si to after same-priority siblings */
1019 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1020 spin_unlock(&swap_avail_lock);
1021 spin_lock(&si->lock);
1022 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1023 spin_lock(&swap_avail_lock);
1024 if (plist_node_empty(&si->avail_lists[node])) {
1025 spin_unlock(&si->lock);
1026 goto nextsi;
1027 }
1028 WARN(!si->highest_bit,
1029 "swap_info %d in list but !highest_bit\n",
1030 si->type);
1031 WARN(!(si->flags & SWP_WRITEOK),
1032 "swap_info %d in list but !SWP_WRITEOK\n",
1033 si->type);
1034 __del_from_avail_list(si);
1035 spin_unlock(&si->lock);
1036 goto nextsi;
1037 }
1038 if (size == SWAPFILE_CLUSTER) {
1039 if (!(si->flags & SWP_FS))
1040 n_ret = swap_alloc_cluster(si, swp_entries);
1041 } else
1042 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1043 n_goal, swp_entries);
1044 spin_unlock(&si->lock);
1045 if (n_ret || size == SWAPFILE_CLUSTER)
1046 goto check_out;
1047 pr_debug("scan_swap_map of si %d failed to find offset\n",
1048 si->type);
1049
1050 spin_lock(&swap_avail_lock);
1051 nextsi:
1052 /*
1053 * if we got here, it's likely that si was almost full before,
1054 * and since scan_swap_map() can drop the si->lock, multiple
1055 * callers probably all tried to get a page from the same si
1056 * and it filled up before we could get one; or, the si filled
1057 * up between us dropping swap_avail_lock and taking si->lock.
1058 * Since we dropped the swap_avail_lock, the swap_avail_head
1059 * list may have been modified; so if next is still in the
1060 * swap_avail_head list then try it, otherwise start over
1061 * if we have not gotten any slots.
1062 */
1063 if (plist_node_empty(&next->avail_lists[node]))
1064 goto start_over;
1065 }
1066
1067 spin_unlock(&swap_avail_lock);
1068
1069 check_out:
1070 if (n_ret < n_goal)
1071 atomic_long_add((long)(n_goal - n_ret) * size,
1072 &nr_swap_pages);
1073 noswap:
1074 return n_ret;
1075 }
1076
1077 /* The only caller of this function is now suspend routine */
1078 swp_entry_t get_swap_page_of_type(int type)
1079 {
1080 struct swap_info_struct *si = swap_type_to_swap_info(type);
1081 pgoff_t offset;
1082
1083 if (!si)
1084 goto fail;
1085
1086 spin_lock(&si->lock);
1087 if (si->flags & SWP_WRITEOK) {
1088 atomic_long_dec(&nr_swap_pages);
1089 /* This is called for allocating swap entry, not cache */
1090 offset = scan_swap_map(si, 1);
1091 if (offset) {
1092 spin_unlock(&si->lock);
1093 return swp_entry(type, offset);
1094 }
1095 atomic_long_inc(&nr_swap_pages);
1096 }
1097 spin_unlock(&si->lock);
1098 fail:
1099 return (swp_entry_t) {0};
1100 }
1101
1102 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1103 {
1104 struct swap_info_struct *p;
1105 unsigned long offset;
1106
1107 if (!entry.val)
1108 goto out;
1109 p = swp_swap_info(entry);
1110 if (!p)
1111 goto bad_nofile;
1112 if (!(p->flags & SWP_USED))
1113 goto bad_device;
1114 offset = swp_offset(entry);
1115 if (offset >= p->max)
1116 goto bad_offset;
1117 return p;
1118
1119 bad_offset:
1120 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1121 goto out;
1122 bad_device:
1123 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1124 goto out;
1125 bad_nofile:
1126 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1127 out:
1128 return NULL;
1129 }
1130
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 struct swap_info_struct *p;
1134
1135 p = __swap_info_get(entry);
1136 if (!p)
1137 goto out;
1138 if (!p->swap_map[swp_offset(entry)])
1139 goto bad_free;
1140 return p;
1141
1142 bad_free:
1143 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1144 goto out;
1145 out:
1146 return NULL;
1147 }
1148
1149 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1150 {
1151 struct swap_info_struct *p;
1152
1153 p = _swap_info_get(entry);
1154 if (p)
1155 spin_lock(&p->lock);
1156 return p;
1157 }
1158
1159 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1160 struct swap_info_struct *q)
1161 {
1162 struct swap_info_struct *p;
1163
1164 p = _swap_info_get(entry);
1165
1166 if (p != q) {
1167 if (q != NULL)
1168 spin_unlock(&q->lock);
1169 if (p != NULL)
1170 spin_lock(&p->lock);
1171 }
1172 return p;
1173 }
1174
1175 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1176 unsigned long offset,
1177 unsigned char usage)
1178 {
1179 unsigned char count;
1180 unsigned char has_cache;
1181
1182 count = p->swap_map[offset];
1183
1184 has_cache = count & SWAP_HAS_CACHE;
1185 count &= ~SWAP_HAS_CACHE;
1186
1187 if (usage == SWAP_HAS_CACHE) {
1188 VM_BUG_ON(!has_cache);
1189 has_cache = 0;
1190 } else if (count == SWAP_MAP_SHMEM) {
1191 /*
1192 * Or we could insist on shmem.c using a special
1193 * swap_shmem_free() and free_shmem_swap_and_cache()...
1194 */
1195 count = 0;
1196 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1197 if (count == COUNT_CONTINUED) {
1198 if (swap_count_continued(p, offset, count))
1199 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1200 else
1201 count = SWAP_MAP_MAX;
1202 } else
1203 count--;
1204 }
1205
1206 usage = count | has_cache;
1207 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1208
1209 return usage;
1210 }
1211
1212 /*
1213 * Check whether swap entry is valid in the swap device. If so,
1214 * return pointer to swap_info_struct, and keep the swap entry valid
1215 * via preventing the swap device from being swapoff, until
1216 * put_swap_device() is called. Otherwise return NULL.
1217 *
1218 * The entirety of the RCU read critical section must come before the
1219 * return from or after the call to synchronize_rcu() in
1220 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1221 * true, the si->map, si->cluster_info, etc. must be valid in the
1222 * critical section.
1223 *
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1226 * in put_swap_device() if there isn't any other way to prevent
1227 * swapoff, such as page lock, page table lock, etc. The caller must
1228 * be prepared for that. For example, the following situation is
1229 * possible.
1230 *
1231 * CPU1 CPU2
1232 * do_swap_page()
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1237 * // check swap_map
1238 * // verify PTE not changed
1239 *
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1246 */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1251
1252 if (!entry.val)
1253 goto out;
1254 si = swp_swap_info(entry);
1255 if (!si)
1256 goto bad_nofile;
1257
1258 rcu_read_lock();
1259 if (!(si->flags & SWP_VALID))
1260 goto unlock_out;
1261 offset = swp_offset(entry);
1262 if (offset >= si->max)
1263 goto unlock_out;
1264
1265 return si;
1266 bad_nofile:
1267 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1268 out:
1269 return NULL;
1270 unlock_out:
1271 rcu_read_unlock();
1272 return NULL;
1273 }
1274
1275 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1276 swp_entry_t entry)
1277 {
1278 struct swap_cluster_info *ci;
1279 unsigned long offset = swp_offset(entry);
1280 unsigned char usage;
1281
1282 ci = lock_cluster_or_swap_info(p, offset);
1283 usage = __swap_entry_free_locked(p, offset, 1);
1284 unlock_cluster_or_swap_info(p, ci);
1285 if (!usage)
1286 free_swap_slot(entry);
1287
1288 return usage;
1289 }
1290
1291 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1292 {
1293 struct swap_cluster_info *ci;
1294 unsigned long offset = swp_offset(entry);
1295 unsigned char count;
1296
1297 ci = lock_cluster(p, offset);
1298 count = p->swap_map[offset];
1299 VM_BUG_ON(count != SWAP_HAS_CACHE);
1300 p->swap_map[offset] = 0;
1301 dec_cluster_info_page(p, p->cluster_info, offset);
1302 unlock_cluster(ci);
1303
1304 mem_cgroup_uncharge_swap(entry, 1);
1305 swap_range_free(p, offset, 1);
1306 }
1307
1308 /*
1309 * Caller has made sure that the swap device corresponding to entry
1310 * is still around or has not been recycled.
1311 */
1312 void swap_free(swp_entry_t entry)
1313 {
1314 struct swap_info_struct *p;
1315
1316 p = _swap_info_get(entry);
1317 if (p)
1318 __swap_entry_free(p, entry);
1319 }
1320
1321 /*
1322 * Called after dropping swapcache to decrease refcnt to swap entries.
1323 */
1324 void put_swap_page(struct page *page, swp_entry_t entry)
1325 {
1326 unsigned long offset = swp_offset(entry);
1327 unsigned long idx = offset / SWAPFILE_CLUSTER;
1328 struct swap_cluster_info *ci;
1329 struct swap_info_struct *si;
1330 unsigned char *map;
1331 unsigned int i, free_entries = 0;
1332 unsigned char val;
1333 int size = swap_entry_size(hpage_nr_pages(page));
1334
1335 si = _swap_info_get(entry);
1336 if (!si)
1337 return;
1338
1339 ci = lock_cluster_or_swap_info(si, offset);
1340 if (size == SWAPFILE_CLUSTER) {
1341 VM_BUG_ON(!cluster_is_huge(ci));
1342 map = si->swap_map + offset;
1343 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1344 val = map[i];
1345 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1346 if (val == SWAP_HAS_CACHE)
1347 free_entries++;
1348 }
1349 cluster_clear_huge(ci);
1350 if (free_entries == SWAPFILE_CLUSTER) {
1351 unlock_cluster_or_swap_info(si, ci);
1352 spin_lock(&si->lock);
1353 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1354 swap_free_cluster(si, idx);
1355 spin_unlock(&si->lock);
1356 return;
1357 }
1358 }
1359 for (i = 0; i < size; i++, entry.val++) {
1360 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1361 unlock_cluster_or_swap_info(si, ci);
1362 free_swap_slot(entry);
1363 if (i == size - 1)
1364 return;
1365 lock_cluster_or_swap_info(si, offset);
1366 }
1367 }
1368 unlock_cluster_or_swap_info(si, ci);
1369 }
1370
1371 #ifdef CONFIG_THP_SWAP
1372 int split_swap_cluster(swp_entry_t entry)
1373 {
1374 struct swap_info_struct *si;
1375 struct swap_cluster_info *ci;
1376 unsigned long offset = swp_offset(entry);
1377
1378 si = _swap_info_get(entry);
1379 if (!si)
1380 return -EBUSY;
1381 ci = lock_cluster(si, offset);
1382 cluster_clear_huge(ci);
1383 unlock_cluster(ci);
1384 return 0;
1385 }
1386 #endif
1387
1388 static int swp_entry_cmp(const void *ent1, const void *ent2)
1389 {
1390 const swp_entry_t *e1 = ent1, *e2 = ent2;
1391
1392 return (int)swp_type(*e1) - (int)swp_type(*e2);
1393 }
1394
1395 void swapcache_free_entries(swp_entry_t *entries, int n)
1396 {
1397 struct swap_info_struct *p, *prev;
1398 int i;
1399
1400 if (n <= 0)
1401 return;
1402
1403 prev = NULL;
1404 p = NULL;
1405
1406 /*
1407 * Sort swap entries by swap device, so each lock is only taken once.
1408 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1409 * so low that it isn't necessary to optimize further.
1410 */
1411 if (nr_swapfiles > 1)
1412 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1413 for (i = 0; i < n; ++i) {
1414 p = swap_info_get_cont(entries[i], prev);
1415 if (p)
1416 swap_entry_free(p, entries[i]);
1417 prev = p;
1418 }
1419 if (p)
1420 spin_unlock(&p->lock);
1421 }
1422
1423 /*
1424 * How many references to page are currently swapped out?
1425 * This does not give an exact answer when swap count is continued,
1426 * but does include the high COUNT_CONTINUED flag to allow for that.
1427 */
1428 int page_swapcount(struct page *page)
1429 {
1430 int count = 0;
1431 struct swap_info_struct *p;
1432 struct swap_cluster_info *ci;
1433 swp_entry_t entry;
1434 unsigned long offset;
1435
1436 entry.val = page_private(page);
1437 p = _swap_info_get(entry);
1438 if (p) {
1439 offset = swp_offset(entry);
1440 ci = lock_cluster_or_swap_info(p, offset);
1441 count = swap_count(p->swap_map[offset]);
1442 unlock_cluster_or_swap_info(p, ci);
1443 }
1444 return count;
1445 }
1446
1447 int __swap_count(swp_entry_t entry)
1448 {
1449 struct swap_info_struct *si;
1450 pgoff_t offset = swp_offset(entry);
1451 int count = 0;
1452
1453 si = get_swap_device(entry);
1454 if (si) {
1455 count = swap_count(si->swap_map[offset]);
1456 put_swap_device(si);
1457 }
1458 return count;
1459 }
1460
1461 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1462 {
1463 int count = 0;
1464 pgoff_t offset = swp_offset(entry);
1465 struct swap_cluster_info *ci;
1466
1467 ci = lock_cluster_or_swap_info(si, offset);
1468 count = swap_count(si->swap_map[offset]);
1469 unlock_cluster_or_swap_info(si, ci);
1470 return count;
1471 }
1472
1473 /*
1474 * How many references to @entry are currently swapped out?
1475 * This does not give an exact answer when swap count is continued,
1476 * but does include the high COUNT_CONTINUED flag to allow for that.
1477 */
1478 int __swp_swapcount(swp_entry_t entry)
1479 {
1480 int count = 0;
1481 struct swap_info_struct *si;
1482
1483 si = get_swap_device(entry);
1484 if (si) {
1485 count = swap_swapcount(si, entry);
1486 put_swap_device(si);
1487 }
1488 return count;
1489 }
1490
1491 /*
1492 * How many references to @entry are currently swapped out?
1493 * This considers COUNT_CONTINUED so it returns exact answer.
1494 */
1495 int swp_swapcount(swp_entry_t entry)
1496 {
1497 int count, tmp_count, n;
1498 struct swap_info_struct *p;
1499 struct swap_cluster_info *ci;
1500 struct page *page;
1501 pgoff_t offset;
1502 unsigned char *map;
1503
1504 p = _swap_info_get(entry);
1505 if (!p)
1506 return 0;
1507
1508 offset = swp_offset(entry);
1509
1510 ci = lock_cluster_or_swap_info(p, offset);
1511
1512 count = swap_count(p->swap_map[offset]);
1513 if (!(count & COUNT_CONTINUED))
1514 goto out;
1515
1516 count &= ~COUNT_CONTINUED;
1517 n = SWAP_MAP_MAX + 1;
1518
1519 page = vmalloc_to_page(p->swap_map + offset);
1520 offset &= ~PAGE_MASK;
1521 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1522
1523 do {
1524 page = list_next_entry(page, lru);
1525 map = kmap_atomic(page);
1526 tmp_count = map[offset];
1527 kunmap_atomic(map);
1528
1529 count += (tmp_count & ~COUNT_CONTINUED) * n;
1530 n *= (SWAP_CONT_MAX + 1);
1531 } while (tmp_count & COUNT_CONTINUED);
1532 out:
1533 unlock_cluster_or_swap_info(p, ci);
1534 return count;
1535 }
1536
1537 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1538 swp_entry_t entry)
1539 {
1540 struct swap_cluster_info *ci;
1541 unsigned char *map = si->swap_map;
1542 unsigned long roffset = swp_offset(entry);
1543 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1544 int i;
1545 bool ret = false;
1546
1547 ci = lock_cluster_or_swap_info(si, offset);
1548 if (!ci || !cluster_is_huge(ci)) {
1549 if (swap_count(map[roffset]))
1550 ret = true;
1551 goto unlock_out;
1552 }
1553 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1554 if (swap_count(map[offset + i])) {
1555 ret = true;
1556 break;
1557 }
1558 }
1559 unlock_out:
1560 unlock_cluster_or_swap_info(si, ci);
1561 return ret;
1562 }
1563
1564 static bool page_swapped(struct page *page)
1565 {
1566 swp_entry_t entry;
1567 struct swap_info_struct *si;
1568
1569 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1570 return page_swapcount(page) != 0;
1571
1572 page = compound_head(page);
1573 entry.val = page_private(page);
1574 si = _swap_info_get(entry);
1575 if (si)
1576 return swap_page_trans_huge_swapped(si, entry);
1577 return false;
1578 }
1579
1580 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1581 int *total_swapcount)
1582 {
1583 int i, map_swapcount, _total_mapcount, _total_swapcount;
1584 unsigned long offset = 0;
1585 struct swap_info_struct *si;
1586 struct swap_cluster_info *ci = NULL;
1587 unsigned char *map = NULL;
1588 int mapcount, swapcount = 0;
1589
1590 /* hugetlbfs shouldn't call it */
1591 VM_BUG_ON_PAGE(PageHuge(page), page);
1592
1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1594 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1595 if (PageSwapCache(page))
1596 swapcount = page_swapcount(page);
1597 if (total_swapcount)
1598 *total_swapcount = swapcount;
1599 return mapcount + swapcount;
1600 }
1601
1602 page = compound_head(page);
1603
1604 _total_mapcount = _total_swapcount = map_swapcount = 0;
1605 if (PageSwapCache(page)) {
1606 swp_entry_t entry;
1607
1608 entry.val = page_private(page);
1609 si = _swap_info_get(entry);
1610 if (si) {
1611 map = si->swap_map;
1612 offset = swp_offset(entry);
1613 }
1614 }
1615 if (map)
1616 ci = lock_cluster(si, offset);
1617 for (i = 0; i < HPAGE_PMD_NR; i++) {
1618 mapcount = atomic_read(&page[i]._mapcount) + 1;
1619 _total_mapcount += mapcount;
1620 if (map) {
1621 swapcount = swap_count(map[offset + i]);
1622 _total_swapcount += swapcount;
1623 }
1624 map_swapcount = max(map_swapcount, mapcount + swapcount);
1625 }
1626 unlock_cluster(ci);
1627 if (PageDoubleMap(page)) {
1628 map_swapcount -= 1;
1629 _total_mapcount -= HPAGE_PMD_NR;
1630 }
1631 mapcount = compound_mapcount(page);
1632 map_swapcount += mapcount;
1633 _total_mapcount += mapcount;
1634 if (total_mapcount)
1635 *total_mapcount = _total_mapcount;
1636 if (total_swapcount)
1637 *total_swapcount = _total_swapcount;
1638
1639 return map_swapcount;
1640 }
1641
1642 /*
1643 * We can write to an anon page without COW if there are no other references
1644 * to it. And as a side-effect, free up its swap: because the old content
1645 * on disk will never be read, and seeking back there to write new content
1646 * later would only waste time away from clustering.
1647 *
1648 * NOTE: total_map_swapcount should not be relied upon by the caller if
1649 * reuse_swap_page() returns false, but it may be always overwritten
1650 * (see the other implementation for CONFIG_SWAP=n).
1651 */
1652 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1653 {
1654 int count, total_mapcount, total_swapcount;
1655
1656 VM_BUG_ON_PAGE(!PageLocked(page), page);
1657 if (unlikely(PageKsm(page)))
1658 return false;
1659 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1660 &total_swapcount);
1661 if (total_map_swapcount)
1662 *total_map_swapcount = total_mapcount + total_swapcount;
1663 if (count == 1 && PageSwapCache(page) &&
1664 (likely(!PageTransCompound(page)) ||
1665 /* The remaining swap count will be freed soon */
1666 total_swapcount == page_swapcount(page))) {
1667 if (!PageWriteback(page)) {
1668 page = compound_head(page);
1669 delete_from_swap_cache(page);
1670 SetPageDirty(page);
1671 } else {
1672 swp_entry_t entry;
1673 struct swap_info_struct *p;
1674
1675 entry.val = page_private(page);
1676 p = swap_info_get(entry);
1677 if (p->flags & SWP_STABLE_WRITES) {
1678 spin_unlock(&p->lock);
1679 return false;
1680 }
1681 spin_unlock(&p->lock);
1682 }
1683 }
1684
1685 return count <= 1;
1686 }
1687
1688 /*
1689 * If swap is getting full, or if there are no more mappings of this page,
1690 * then try_to_free_swap is called to free its swap space.
1691 */
1692 int try_to_free_swap(struct page *page)
1693 {
1694 VM_BUG_ON_PAGE(!PageLocked(page), page);
1695
1696 if (!PageSwapCache(page))
1697 return 0;
1698 if (PageWriteback(page))
1699 return 0;
1700 if (page_swapped(page))
1701 return 0;
1702
1703 /*
1704 * Once hibernation has begun to create its image of memory,
1705 * there's a danger that one of the calls to try_to_free_swap()
1706 * - most probably a call from __try_to_reclaim_swap() while
1707 * hibernation is allocating its own swap pages for the image,
1708 * but conceivably even a call from memory reclaim - will free
1709 * the swap from a page which has already been recorded in the
1710 * image as a clean swapcache page, and then reuse its swap for
1711 * another page of the image. On waking from hibernation, the
1712 * original page might be freed under memory pressure, then
1713 * later read back in from swap, now with the wrong data.
1714 *
1715 * Hibernation suspends storage while it is writing the image
1716 * to disk so check that here.
1717 */
1718 if (pm_suspended_storage())
1719 return 0;
1720
1721 page = compound_head(page);
1722 delete_from_swap_cache(page);
1723 SetPageDirty(page);
1724 return 1;
1725 }
1726
1727 /*
1728 * Free the swap entry like above, but also try to
1729 * free the page cache entry if it is the last user.
1730 */
1731 int free_swap_and_cache(swp_entry_t entry)
1732 {
1733 struct swap_info_struct *p;
1734 unsigned char count;
1735
1736 if (non_swap_entry(entry))
1737 return 1;
1738
1739 p = _swap_info_get(entry);
1740 if (p) {
1741 count = __swap_entry_free(p, entry);
1742 if (count == SWAP_HAS_CACHE &&
1743 !swap_page_trans_huge_swapped(p, entry))
1744 __try_to_reclaim_swap(p, swp_offset(entry),
1745 TTRS_UNMAPPED | TTRS_FULL);
1746 }
1747 return p != NULL;
1748 }
1749
1750 #ifdef CONFIG_HIBERNATION
1751 /*
1752 * Find the swap type that corresponds to given device (if any).
1753 *
1754 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1755 * from 0, in which the swap header is expected to be located.
1756 *
1757 * This is needed for the suspend to disk (aka swsusp).
1758 */
1759 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1760 {
1761 struct block_device *bdev = NULL;
1762 int type;
1763
1764 if (device)
1765 bdev = bdget(device);
1766
1767 spin_lock(&swap_lock);
1768 for (type = 0; type < nr_swapfiles; type++) {
1769 struct swap_info_struct *sis = swap_info[type];
1770
1771 if (!(sis->flags & SWP_WRITEOK))
1772 continue;
1773
1774 if (!bdev) {
1775 if (bdev_p)
1776 *bdev_p = bdgrab(sis->bdev);
1777
1778 spin_unlock(&swap_lock);
1779 return type;
1780 }
1781 if (bdev == sis->bdev) {
1782 struct swap_extent *se = first_se(sis);
1783
1784 if (se->start_block == offset) {
1785 if (bdev_p)
1786 *bdev_p = bdgrab(sis->bdev);
1787
1788 spin_unlock(&swap_lock);
1789 bdput(bdev);
1790 return type;
1791 }
1792 }
1793 }
1794 spin_unlock(&swap_lock);
1795 if (bdev)
1796 bdput(bdev);
1797
1798 return -ENODEV;
1799 }
1800
1801 /*
1802 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1803 * corresponding to given index in swap_info (swap type).
1804 */
1805 sector_t swapdev_block(int type, pgoff_t offset)
1806 {
1807 struct block_device *bdev;
1808 struct swap_info_struct *si = swap_type_to_swap_info(type);
1809
1810 if (!si || !(si->flags & SWP_WRITEOK))
1811 return 0;
1812 return map_swap_entry(swp_entry(type, offset), &bdev);
1813 }
1814
1815 /*
1816 * Return either the total number of swap pages of given type, or the number
1817 * of free pages of that type (depending on @free)
1818 *
1819 * This is needed for software suspend
1820 */
1821 unsigned int count_swap_pages(int type, int free)
1822 {
1823 unsigned int n = 0;
1824
1825 spin_lock(&swap_lock);
1826 if ((unsigned int)type < nr_swapfiles) {
1827 struct swap_info_struct *sis = swap_info[type];
1828
1829 spin_lock(&sis->lock);
1830 if (sis->flags & SWP_WRITEOK) {
1831 n = sis->pages;
1832 if (free)
1833 n -= sis->inuse_pages;
1834 }
1835 spin_unlock(&sis->lock);
1836 }
1837 spin_unlock(&swap_lock);
1838 return n;
1839 }
1840 #endif /* CONFIG_HIBERNATION */
1841
1842 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1843 {
1844 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1845 }
1846
1847 /*
1848 * No need to decide whether this PTE shares the swap entry with others,
1849 * just let do_wp_page work it out if a write is requested later - to
1850 * force COW, vm_page_prot omits write permission from any private vma.
1851 */
1852 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1853 unsigned long addr, swp_entry_t entry, struct page *page)
1854 {
1855 struct page *swapcache;
1856 struct mem_cgroup *memcg;
1857 spinlock_t *ptl;
1858 pte_t *pte;
1859 int ret = 1;
1860
1861 swapcache = page;
1862 page = ksm_might_need_to_copy(page, vma, addr);
1863 if (unlikely(!page))
1864 return -ENOMEM;
1865
1866 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1867 &memcg, false)) {
1868 ret = -ENOMEM;
1869 goto out_nolock;
1870 }
1871
1872 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1873 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1874 mem_cgroup_cancel_charge(page, memcg, false);
1875 ret = 0;
1876 goto out;
1877 }
1878
1879 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1880 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1881 get_page(page);
1882 set_pte_at(vma->vm_mm, addr, pte,
1883 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1884 if (page == swapcache) {
1885 page_add_anon_rmap(page, vma, addr, false);
1886 mem_cgroup_commit_charge(page, memcg, true, false);
1887 } else { /* ksm created a completely new copy */
1888 page_add_new_anon_rmap(page, vma, addr, false);
1889 mem_cgroup_commit_charge(page, memcg, false, false);
1890 lru_cache_add_active_or_unevictable(page, vma);
1891 }
1892 swap_free(entry);
1893 /*
1894 * Move the page to the active list so it is not
1895 * immediately swapped out again after swapon.
1896 */
1897 activate_page(page);
1898 out:
1899 pte_unmap_unlock(pte, ptl);
1900 out_nolock:
1901 if (page != swapcache) {
1902 unlock_page(page);
1903 put_page(page);
1904 }
1905 return ret;
1906 }
1907
1908 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1909 unsigned long addr, unsigned long end,
1910 unsigned int type, bool frontswap,
1911 unsigned long *fs_pages_to_unuse)
1912 {
1913 struct page *page;
1914 swp_entry_t entry;
1915 pte_t *pte;
1916 struct swap_info_struct *si;
1917 unsigned long offset;
1918 int ret = 0;
1919 volatile unsigned char *swap_map;
1920
1921 si = swap_info[type];
1922 pte = pte_offset_map(pmd, addr);
1923 do {
1924 struct vm_fault vmf;
1925
1926 if (!is_swap_pte(*pte))
1927 continue;
1928
1929 entry = pte_to_swp_entry(*pte);
1930 if (swp_type(entry) != type)
1931 continue;
1932
1933 offset = swp_offset(entry);
1934 if (frontswap && !frontswap_test(si, offset))
1935 continue;
1936
1937 pte_unmap(pte);
1938 swap_map = &si->swap_map[offset];
1939 page = lookup_swap_cache(entry, vma, addr);
1940 if (!page) {
1941 vmf.vma = vma;
1942 vmf.address = addr;
1943 vmf.pmd = pmd;
1944 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1945 &vmf);
1946 }
1947 if (!page) {
1948 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1949 goto try_next;
1950 return -ENOMEM;
1951 }
1952
1953 lock_page(page);
1954 wait_on_page_writeback(page);
1955 ret = unuse_pte(vma, pmd, addr, entry, page);
1956 if (ret < 0) {
1957 unlock_page(page);
1958 put_page(page);
1959 goto out;
1960 }
1961
1962 try_to_free_swap(page);
1963 unlock_page(page);
1964 put_page(page);
1965
1966 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1967 ret = FRONTSWAP_PAGES_UNUSED;
1968 goto out;
1969 }
1970 try_next:
1971 pte = pte_offset_map(pmd, addr);
1972 } while (pte++, addr += PAGE_SIZE, addr != end);
1973 pte_unmap(pte - 1);
1974
1975 ret = 0;
1976 out:
1977 return ret;
1978 }
1979
1980 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1981 unsigned long addr, unsigned long end,
1982 unsigned int type, bool frontswap,
1983 unsigned long *fs_pages_to_unuse)
1984 {
1985 pmd_t *pmd;
1986 unsigned long next;
1987 int ret;
1988
1989 pmd = pmd_offset(pud, addr);
1990 do {
1991 cond_resched();
1992 next = pmd_addr_end(addr, end);
1993 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1994 continue;
1995 ret = unuse_pte_range(vma, pmd, addr, next, type,
1996 frontswap, fs_pages_to_unuse);
1997 if (ret)
1998 return ret;
1999 } while (pmd++, addr = next, addr != end);
2000 return 0;
2001 }
2002
2003 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2004 unsigned long addr, unsigned long end,
2005 unsigned int type, bool frontswap,
2006 unsigned long *fs_pages_to_unuse)
2007 {
2008 pud_t *pud;
2009 unsigned long next;
2010 int ret;
2011
2012 pud = pud_offset(p4d, addr);
2013 do {
2014 next = pud_addr_end(addr, end);
2015 if (pud_none_or_clear_bad(pud))
2016 continue;
2017 ret = unuse_pmd_range(vma, pud, addr, next, type,
2018 frontswap, fs_pages_to_unuse);
2019 if (ret)
2020 return ret;
2021 } while (pud++, addr = next, addr != end);
2022 return 0;
2023 }
2024
2025 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2026 unsigned long addr, unsigned long end,
2027 unsigned int type, bool frontswap,
2028 unsigned long *fs_pages_to_unuse)
2029 {
2030 p4d_t *p4d;
2031 unsigned long next;
2032 int ret;
2033
2034 p4d = p4d_offset(pgd, addr);
2035 do {
2036 next = p4d_addr_end(addr, end);
2037 if (p4d_none_or_clear_bad(p4d))
2038 continue;
2039 ret = unuse_pud_range(vma, p4d, addr, next, type,
2040 frontswap, fs_pages_to_unuse);
2041 if (ret)
2042 return ret;
2043 } while (p4d++, addr = next, addr != end);
2044 return 0;
2045 }
2046
2047 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2048 bool frontswap, unsigned long *fs_pages_to_unuse)
2049 {
2050 pgd_t *pgd;
2051 unsigned long addr, end, next;
2052 int ret;
2053
2054 addr = vma->vm_start;
2055 end = vma->vm_end;
2056
2057 pgd = pgd_offset(vma->vm_mm, addr);
2058 do {
2059 next = pgd_addr_end(addr, end);
2060 if (pgd_none_or_clear_bad(pgd))
2061 continue;
2062 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2063 frontswap, fs_pages_to_unuse);
2064 if (ret)
2065 return ret;
2066 } while (pgd++, addr = next, addr != end);
2067 return 0;
2068 }
2069
2070 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2071 bool frontswap, unsigned long *fs_pages_to_unuse)
2072 {
2073 struct vm_area_struct *vma;
2074 int ret = 0;
2075
2076 down_read(&mm->mmap_sem);
2077 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2078 if (vma->anon_vma) {
2079 ret = unuse_vma(vma, type, frontswap,
2080 fs_pages_to_unuse);
2081 if (ret)
2082 break;
2083 }
2084 cond_resched();
2085 }
2086 up_read(&mm->mmap_sem);
2087 return ret;
2088 }
2089
2090 /*
2091 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2092 * from current position to next entry still in use. Return 0
2093 * if there are no inuse entries after prev till end of the map.
2094 */
2095 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2096 unsigned int prev, bool frontswap)
2097 {
2098 unsigned int i;
2099 unsigned char count;
2100
2101 /*
2102 * No need for swap_lock here: we're just looking
2103 * for whether an entry is in use, not modifying it; false
2104 * hits are okay, and sys_swapoff() has already prevented new
2105 * allocations from this area (while holding swap_lock).
2106 */
2107 for (i = prev + 1; i < si->max; i++) {
2108 count = READ_ONCE(si->swap_map[i]);
2109 if (count && swap_count(count) != SWAP_MAP_BAD)
2110 if (!frontswap || frontswap_test(si, i))
2111 break;
2112 if ((i % LATENCY_LIMIT) == 0)
2113 cond_resched();
2114 }
2115
2116 if (i == si->max)
2117 i = 0;
2118
2119 return i;
2120 }
2121
2122 /*
2123 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2124 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2125 */
2126 int try_to_unuse(unsigned int type, bool frontswap,
2127 unsigned long pages_to_unuse)
2128 {
2129 struct mm_struct *prev_mm;
2130 struct mm_struct *mm;
2131 struct list_head *p;
2132 int retval = 0;
2133 struct swap_info_struct *si = swap_info[type];
2134 struct page *page;
2135 swp_entry_t entry;
2136 unsigned int i;
2137
2138 if (!READ_ONCE(si->inuse_pages))
2139 return 0;
2140
2141 if (!frontswap)
2142 pages_to_unuse = 0;
2143
2144 retry:
2145 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2146 if (retval)
2147 goto out;
2148
2149 prev_mm = &init_mm;
2150 mmget(prev_mm);
2151
2152 spin_lock(&mmlist_lock);
2153 p = &init_mm.mmlist;
2154 while (READ_ONCE(si->inuse_pages) &&
2155 !signal_pending(current) &&
2156 (p = p->next) != &init_mm.mmlist) {
2157
2158 mm = list_entry(p, struct mm_struct, mmlist);
2159 if (!mmget_not_zero(mm))
2160 continue;
2161 spin_unlock(&mmlist_lock);
2162 mmput(prev_mm);
2163 prev_mm = mm;
2164 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2165
2166 if (retval) {
2167 mmput(prev_mm);
2168 goto out;
2169 }
2170
2171 /*
2172 * Make sure that we aren't completely killing
2173 * interactive performance.
2174 */
2175 cond_resched();
2176 spin_lock(&mmlist_lock);
2177 }
2178 spin_unlock(&mmlist_lock);
2179
2180 mmput(prev_mm);
2181
2182 i = 0;
2183 while (READ_ONCE(si->inuse_pages) &&
2184 !signal_pending(current) &&
2185 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2186
2187 entry = swp_entry(type, i);
2188 page = find_get_page(swap_address_space(entry), i);
2189 if (!page)
2190 continue;
2191
2192 /*
2193 * It is conceivable that a racing task removed this page from
2194 * swap cache just before we acquired the page lock. The page
2195 * might even be back in swap cache on another swap area. But
2196 * that is okay, try_to_free_swap() only removes stale pages.
2197 */
2198 lock_page(page);
2199 wait_on_page_writeback(page);
2200 try_to_free_swap(page);
2201 unlock_page(page);
2202 put_page(page);
2203
2204 /*
2205 * For frontswap, we just need to unuse pages_to_unuse, if
2206 * it was specified. Need not check frontswap again here as
2207 * we already zeroed out pages_to_unuse if not frontswap.
2208 */
2209 if (pages_to_unuse && --pages_to_unuse == 0)
2210 goto out;
2211 }
2212
2213 /*
2214 * Lets check again to see if there are still swap entries in the map.
2215 * If yes, we would need to do retry the unuse logic again.
2216 * Under global memory pressure, swap entries can be reinserted back
2217 * into process space after the mmlist loop above passes over them.
2218 *
2219 * Limit the number of retries? No: when mmget_not_zero() above fails,
2220 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2221 * at its own independent pace; and even shmem_writepage() could have
2222 * been preempted after get_swap_page(), temporarily hiding that swap.
2223 * It's easy and robust (though cpu-intensive) just to keep retrying.
2224 */
2225 if (READ_ONCE(si->inuse_pages)) {
2226 if (!signal_pending(current))
2227 goto retry;
2228 retval = -EINTR;
2229 }
2230 out:
2231 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2232 }
2233
2234 /*
2235 * After a successful try_to_unuse, if no swap is now in use, we know
2236 * we can empty the mmlist. swap_lock must be held on entry and exit.
2237 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2238 * added to the mmlist just after page_duplicate - before would be racy.
2239 */
2240 static void drain_mmlist(void)
2241 {
2242 struct list_head *p, *next;
2243 unsigned int type;
2244
2245 for (type = 0; type < nr_swapfiles; type++)
2246 if (swap_info[type]->inuse_pages)
2247 return;
2248 spin_lock(&mmlist_lock);
2249 list_for_each_safe(p, next, &init_mm.mmlist)
2250 list_del_init(p);
2251 spin_unlock(&mmlist_lock);
2252 }
2253
2254 /*
2255 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2256 * corresponds to page offset for the specified swap entry.
2257 * Note that the type of this function is sector_t, but it returns page offset
2258 * into the bdev, not sector offset.
2259 */
2260 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2261 {
2262 struct swap_info_struct *sis;
2263 struct swap_extent *se;
2264 pgoff_t offset;
2265
2266 sis = swp_swap_info(entry);
2267 *bdev = sis->bdev;
2268
2269 offset = swp_offset(entry);
2270 se = offset_to_swap_extent(sis, offset);
2271 return se->start_block + (offset - se->start_page);
2272 }
2273
2274 /*
2275 * Returns the page offset into bdev for the specified page's swap entry.
2276 */
2277 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2278 {
2279 swp_entry_t entry;
2280 entry.val = page_private(page);
2281 return map_swap_entry(entry, bdev);
2282 }
2283
2284 /*
2285 * Free all of a swapdev's extent information
2286 */
2287 static void destroy_swap_extents(struct swap_info_struct *sis)
2288 {
2289 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2290 struct rb_node *rb = sis->swap_extent_root.rb_node;
2291 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2292
2293 rb_erase(rb, &sis->swap_extent_root);
2294 kfree(se);
2295 }
2296
2297 if (sis->flags & SWP_ACTIVATED) {
2298 struct file *swap_file = sis->swap_file;
2299 struct address_space *mapping = swap_file->f_mapping;
2300
2301 sis->flags &= ~SWP_ACTIVATED;
2302 if (mapping->a_ops->swap_deactivate)
2303 mapping->a_ops->swap_deactivate(swap_file);
2304 }
2305 }
2306
2307 /*
2308 * Add a block range (and the corresponding page range) into this swapdev's
2309 * extent tree.
2310 *
2311 * This function rather assumes that it is called in ascending page order.
2312 */
2313 int
2314 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2315 unsigned long nr_pages, sector_t start_block)
2316 {
2317 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2318 struct swap_extent *se;
2319 struct swap_extent *new_se;
2320
2321 /*
2322 * place the new node at the right most since the
2323 * function is called in ascending page order.
2324 */
2325 while (*link) {
2326 parent = *link;
2327 link = &parent->rb_right;
2328 }
2329
2330 if (parent) {
2331 se = rb_entry(parent, struct swap_extent, rb_node);
2332 BUG_ON(se->start_page + se->nr_pages != start_page);
2333 if (se->start_block + se->nr_pages == start_block) {
2334 /* Merge it */
2335 se->nr_pages += nr_pages;
2336 return 0;
2337 }
2338 }
2339
2340 /* No merge, insert a new extent. */
2341 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2342 if (new_se == NULL)
2343 return -ENOMEM;
2344 new_se->start_page = start_page;
2345 new_se->nr_pages = nr_pages;
2346 new_se->start_block = start_block;
2347
2348 rb_link_node(&new_se->rb_node, parent, link);
2349 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2350 return 1;
2351 }
2352 EXPORT_SYMBOL_GPL(add_swap_extent);
2353
2354 /*
2355 * A `swap extent' is a simple thing which maps a contiguous range of pages
2356 * onto a contiguous range of disk blocks. An ordered list of swap extents
2357 * is built at swapon time and is then used at swap_writepage/swap_readpage
2358 * time for locating where on disk a page belongs.
2359 *
2360 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2361 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2362 * swap files identically.
2363 *
2364 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2365 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2366 * swapfiles are handled *identically* after swapon time.
2367 *
2368 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2369 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2370 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2371 * requirements, they are simply tossed out - we will never use those blocks
2372 * for swapping.
2373 *
2374 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2375 * prevents users from writing to the swap device, which will corrupt memory.
2376 *
2377 * The amount of disk space which a single swap extent represents varies.
2378 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2379 * extents in the list. To avoid much list walking, we cache the previous
2380 * search location in `curr_swap_extent', and start new searches from there.
2381 * This is extremely effective. The average number of iterations in
2382 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2383 */
2384 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2385 {
2386 struct file *swap_file = sis->swap_file;
2387 struct address_space *mapping = swap_file->f_mapping;
2388 struct inode *inode = mapping->host;
2389 int ret;
2390
2391 if (S_ISBLK(inode->i_mode)) {
2392 ret = add_swap_extent(sis, 0, sis->max, 0);
2393 *span = sis->pages;
2394 return ret;
2395 }
2396
2397 if (mapping->a_ops->swap_activate) {
2398 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2399 if (ret >= 0)
2400 sis->flags |= SWP_ACTIVATED;
2401 if (!ret) {
2402 sis->flags |= SWP_FS;
2403 ret = add_swap_extent(sis, 0, sis->max, 0);
2404 *span = sis->pages;
2405 }
2406 return ret;
2407 }
2408
2409 return generic_swapfile_activate(sis, swap_file, span);
2410 }
2411
2412 static int swap_node(struct swap_info_struct *p)
2413 {
2414 struct block_device *bdev;
2415
2416 if (p->bdev)
2417 bdev = p->bdev;
2418 else
2419 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2420
2421 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2422 }
2423
2424 static void setup_swap_info(struct swap_info_struct *p, int prio,
2425 unsigned char *swap_map,
2426 struct swap_cluster_info *cluster_info)
2427 {
2428 int i;
2429
2430 if (prio >= 0)
2431 p->prio = prio;
2432 else
2433 p->prio = --least_priority;
2434 /*
2435 * the plist prio is negated because plist ordering is
2436 * low-to-high, while swap ordering is high-to-low
2437 */
2438 p->list.prio = -p->prio;
2439 for_each_node(i) {
2440 if (p->prio >= 0)
2441 p->avail_lists[i].prio = -p->prio;
2442 else {
2443 if (swap_node(p) == i)
2444 p->avail_lists[i].prio = 1;
2445 else
2446 p->avail_lists[i].prio = -p->prio;
2447 }
2448 }
2449 p->swap_map = swap_map;
2450 p->cluster_info = cluster_info;
2451 }
2452
2453 static void _enable_swap_info(struct swap_info_struct *p)
2454 {
2455 p->flags |= SWP_WRITEOK | SWP_VALID;
2456 atomic_long_add(p->pages, &nr_swap_pages);
2457 total_swap_pages += p->pages;
2458
2459 assert_spin_locked(&swap_lock);
2460 /*
2461 * both lists are plists, and thus priority ordered.
2462 * swap_active_head needs to be priority ordered for swapoff(),
2463 * which on removal of any swap_info_struct with an auto-assigned
2464 * (i.e. negative) priority increments the auto-assigned priority
2465 * of any lower-priority swap_info_structs.
2466 * swap_avail_head needs to be priority ordered for get_swap_page(),
2467 * which allocates swap pages from the highest available priority
2468 * swap_info_struct.
2469 */
2470 plist_add(&p->list, &swap_active_head);
2471 add_to_avail_list(p);
2472 }
2473
2474 static void enable_swap_info(struct swap_info_struct *p, int prio,
2475 unsigned char *swap_map,
2476 struct swap_cluster_info *cluster_info,
2477 unsigned long *frontswap_map)
2478 {
2479 frontswap_init(p->type, frontswap_map);
2480 spin_lock(&swap_lock);
2481 spin_lock(&p->lock);
2482 setup_swap_info(p, prio, swap_map, cluster_info);
2483 spin_unlock(&p->lock);
2484 spin_unlock(&swap_lock);
2485 /*
2486 * Guarantee swap_map, cluster_info, etc. fields are valid
2487 * between get/put_swap_device() if SWP_VALID bit is set
2488 */
2489 synchronize_rcu();
2490 spin_lock(&swap_lock);
2491 spin_lock(&p->lock);
2492 _enable_swap_info(p);
2493 spin_unlock(&p->lock);
2494 spin_unlock(&swap_lock);
2495 }
2496
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499 spin_lock(&swap_lock);
2500 spin_lock(&p->lock);
2501 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502 _enable_swap_info(p);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2505 }
2506
2507 bool has_usable_swap(void)
2508 {
2509 bool ret = true;
2510
2511 spin_lock(&swap_lock);
2512 if (plist_head_empty(&swap_active_head))
2513 ret = false;
2514 spin_unlock(&swap_lock);
2515 return ret;
2516 }
2517
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520 struct swap_info_struct *p = NULL;
2521 unsigned char *swap_map;
2522 struct swap_cluster_info *cluster_info;
2523 unsigned long *frontswap_map;
2524 struct file *swap_file, *victim;
2525 struct address_space *mapping;
2526 struct inode *inode;
2527 struct filename *pathname;
2528 int err, found = 0;
2529 unsigned int old_block_size;
2530
2531 if (!capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2533
2534 BUG_ON(!current->mm);
2535
2536 pathname = getname(specialfile);
2537 if (IS_ERR(pathname))
2538 return PTR_ERR(pathname);
2539
2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541 err = PTR_ERR(victim);
2542 if (IS_ERR(victim))
2543 goto out;
2544
2545 mapping = victim->f_mapping;
2546 spin_lock(&swap_lock);
2547 plist_for_each_entry(p, &swap_active_head, list) {
2548 if (p->flags & SWP_WRITEOK) {
2549 if (p->swap_file->f_mapping == mapping) {
2550 found = 1;
2551 break;
2552 }
2553 }
2554 }
2555 if (!found) {
2556 err = -EINVAL;
2557 spin_unlock(&swap_lock);
2558 goto out_dput;
2559 }
2560 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561 vm_unacct_memory(p->pages);
2562 else {
2563 err = -ENOMEM;
2564 spin_unlock(&swap_lock);
2565 goto out_dput;
2566 }
2567 del_from_avail_list(p);
2568 spin_lock(&p->lock);
2569 if (p->prio < 0) {
2570 struct swap_info_struct *si = p;
2571 int nid;
2572
2573 plist_for_each_entry_continue(si, &swap_active_head, list) {
2574 si->prio++;
2575 si->list.prio--;
2576 for_each_node(nid) {
2577 if (si->avail_lists[nid].prio != 1)
2578 si->avail_lists[nid].prio--;
2579 }
2580 }
2581 least_priority++;
2582 }
2583 plist_del(&p->list, &swap_active_head);
2584 atomic_long_sub(p->pages, &nr_swap_pages);
2585 total_swap_pages -= p->pages;
2586 p->flags &= ~SWP_WRITEOK;
2587 spin_unlock(&p->lock);
2588 spin_unlock(&swap_lock);
2589
2590 disable_swap_slots_cache_lock();
2591
2592 set_current_oom_origin();
2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594 clear_current_oom_origin();
2595
2596 if (err) {
2597 /* re-insert swap space back into swap_list */
2598 reinsert_swap_info(p);
2599 reenable_swap_slots_cache_unlock();
2600 goto out_dput;
2601 }
2602
2603 reenable_swap_slots_cache_unlock();
2604
2605 spin_lock(&swap_lock);
2606 spin_lock(&p->lock);
2607 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2608 spin_unlock(&p->lock);
2609 spin_unlock(&swap_lock);
2610 /*
2611 * wait for swap operations protected by get/put_swap_device()
2612 * to complete
2613 */
2614 synchronize_rcu();
2615
2616 flush_work(&p->discard_work);
2617
2618 destroy_swap_extents(p);
2619 if (p->flags & SWP_CONTINUED)
2620 free_swap_count_continuations(p);
2621
2622 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623 atomic_dec(&nr_rotate_swap);
2624
2625 mutex_lock(&swapon_mutex);
2626 spin_lock(&swap_lock);
2627 spin_lock(&p->lock);
2628 drain_mmlist();
2629
2630 /* wait for anyone still in scan_swap_map */
2631 p->highest_bit = 0; /* cuts scans short */
2632 while (p->flags >= SWP_SCANNING) {
2633 spin_unlock(&p->lock);
2634 spin_unlock(&swap_lock);
2635 schedule_timeout_uninterruptible(1);
2636 spin_lock(&swap_lock);
2637 spin_lock(&p->lock);
2638 }
2639
2640 swap_file = p->swap_file;
2641 old_block_size = p->old_block_size;
2642 p->swap_file = NULL;
2643 p->max = 0;
2644 swap_map = p->swap_map;
2645 p->swap_map = NULL;
2646 cluster_info = p->cluster_info;
2647 p->cluster_info = NULL;
2648 frontswap_map = frontswap_map_get(p);
2649 spin_unlock(&p->lock);
2650 spin_unlock(&swap_lock);
2651 frontswap_invalidate_area(p->type);
2652 frontswap_map_set(p, NULL);
2653 mutex_unlock(&swapon_mutex);
2654 free_percpu(p->percpu_cluster);
2655 p->percpu_cluster = NULL;
2656 vfree(swap_map);
2657 kvfree(cluster_info);
2658 kvfree(frontswap_map);
2659 /* Destroy swap account information */
2660 swap_cgroup_swapoff(p->type);
2661 exit_swap_address_space(p->type);
2662
2663 inode = mapping->host;
2664 if (S_ISBLK(inode->i_mode)) {
2665 struct block_device *bdev = I_BDEV(inode);
2666
2667 set_blocksize(bdev, old_block_size);
2668 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2669 }
2670
2671 inode_lock(inode);
2672 inode->i_flags &= ~S_SWAPFILE;
2673 inode_unlock(inode);
2674 filp_close(swap_file, NULL);
2675
2676 /*
2677 * Clear the SWP_USED flag after all resources are freed so that swapon
2678 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2679 * not hold p->lock after we cleared its SWP_WRITEOK.
2680 */
2681 spin_lock(&swap_lock);
2682 p->flags = 0;
2683 spin_unlock(&swap_lock);
2684
2685 err = 0;
2686 atomic_inc(&proc_poll_event);
2687 wake_up_interruptible(&proc_poll_wait);
2688
2689 out_dput:
2690 filp_close(victim, NULL);
2691 out:
2692 putname(pathname);
2693 return err;
2694 }
2695
2696 #ifdef CONFIG_PROC_FS
2697 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2698 {
2699 struct seq_file *seq = file->private_data;
2700
2701 poll_wait(file, &proc_poll_wait, wait);
2702
2703 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2704 seq->poll_event = atomic_read(&proc_poll_event);
2705 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2706 }
2707
2708 return EPOLLIN | EPOLLRDNORM;
2709 }
2710
2711 /* iterator */
2712 static void *swap_start(struct seq_file *swap, loff_t *pos)
2713 {
2714 struct swap_info_struct *si;
2715 int type;
2716 loff_t l = *pos;
2717
2718 mutex_lock(&swapon_mutex);
2719
2720 if (!l)
2721 return SEQ_START_TOKEN;
2722
2723 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2724 if (!(si->flags & SWP_USED) || !si->swap_map)
2725 continue;
2726 if (!--l)
2727 return si;
2728 }
2729
2730 return NULL;
2731 }
2732
2733 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2734 {
2735 struct swap_info_struct *si = v;
2736 int type;
2737
2738 if (v == SEQ_START_TOKEN)
2739 type = 0;
2740 else
2741 type = si->type + 1;
2742
2743 ++(*pos);
2744 for (; (si = swap_type_to_swap_info(type)); type++) {
2745 if (!(si->flags & SWP_USED) || !si->swap_map)
2746 continue;
2747 return si;
2748 }
2749
2750 return NULL;
2751 }
2752
2753 static void swap_stop(struct seq_file *swap, void *v)
2754 {
2755 mutex_unlock(&swapon_mutex);
2756 }
2757
2758 static int swap_show(struct seq_file *swap, void *v)
2759 {
2760 struct swap_info_struct *si = v;
2761 struct file *file;
2762 int len;
2763
2764 if (si == SEQ_START_TOKEN) {
2765 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2766 return 0;
2767 }
2768
2769 file = si->swap_file;
2770 len = seq_file_path(swap, file, " \t\n\\");
2771 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2772 len < 40 ? 40 - len : 1, " ",
2773 S_ISBLK(file_inode(file)->i_mode) ?
2774 "partition" : "file\t",
2775 si->pages << (PAGE_SHIFT - 10),
2776 si->inuse_pages << (PAGE_SHIFT - 10),
2777 si->prio);
2778 return 0;
2779 }
2780
2781 static const struct seq_operations swaps_op = {
2782 .start = swap_start,
2783 .next = swap_next,
2784 .stop = swap_stop,
2785 .show = swap_show
2786 };
2787
2788 static int swaps_open(struct inode *inode, struct file *file)
2789 {
2790 struct seq_file *seq;
2791 int ret;
2792
2793 ret = seq_open(file, &swaps_op);
2794 if (ret)
2795 return ret;
2796
2797 seq = file->private_data;
2798 seq->poll_event = atomic_read(&proc_poll_event);
2799 return 0;
2800 }
2801
2802 static const struct proc_ops swaps_proc_ops = {
2803 .proc_flags = PROC_ENTRY_PERMANENT,
2804 .proc_open = swaps_open,
2805 .proc_read = seq_read,
2806 .proc_lseek = seq_lseek,
2807 .proc_release = seq_release,
2808 .proc_poll = swaps_poll,
2809 };
2810
2811 static int __init procswaps_init(void)
2812 {
2813 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2814 return 0;
2815 }
2816 __initcall(procswaps_init);
2817 #endif /* CONFIG_PROC_FS */
2818
2819 #ifdef MAX_SWAPFILES_CHECK
2820 static int __init max_swapfiles_check(void)
2821 {
2822 MAX_SWAPFILES_CHECK();
2823 return 0;
2824 }
2825 late_initcall(max_swapfiles_check);
2826 #endif
2827
2828 static struct swap_info_struct *alloc_swap_info(void)
2829 {
2830 struct swap_info_struct *p;
2831 unsigned int type;
2832 int i;
2833
2834 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2835 if (!p)
2836 return ERR_PTR(-ENOMEM);
2837
2838 spin_lock(&swap_lock);
2839 for (type = 0; type < nr_swapfiles; type++) {
2840 if (!(swap_info[type]->flags & SWP_USED))
2841 break;
2842 }
2843 if (type >= MAX_SWAPFILES) {
2844 spin_unlock(&swap_lock);
2845 kvfree(p);
2846 return ERR_PTR(-EPERM);
2847 }
2848 if (type >= nr_swapfiles) {
2849 p->type = type;
2850 WRITE_ONCE(swap_info[type], p);
2851 /*
2852 * Write swap_info[type] before nr_swapfiles, in case a
2853 * racing procfs swap_start() or swap_next() is reading them.
2854 * (We never shrink nr_swapfiles, we never free this entry.)
2855 */
2856 smp_wmb();
2857 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2858 } else {
2859 kvfree(p);
2860 p = swap_info[type];
2861 /*
2862 * Do not memset this entry: a racing procfs swap_next()
2863 * would be relying on p->type to remain valid.
2864 */
2865 }
2866 p->swap_extent_root = RB_ROOT;
2867 plist_node_init(&p->list, 0);
2868 for_each_node(i)
2869 plist_node_init(&p->avail_lists[i], 0);
2870 p->flags = SWP_USED;
2871 spin_unlock(&swap_lock);
2872 spin_lock_init(&p->lock);
2873 spin_lock_init(&p->cont_lock);
2874
2875 return p;
2876 }
2877
2878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2879 {
2880 int error;
2881
2882 if (S_ISBLK(inode->i_mode)) {
2883 p->bdev = bdgrab(I_BDEV(inode));
2884 error = blkdev_get(p->bdev,
2885 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2886 if (error < 0) {
2887 p->bdev = NULL;
2888 return error;
2889 }
2890 p->old_block_size = block_size(p->bdev);
2891 error = set_blocksize(p->bdev, PAGE_SIZE);
2892 if (error < 0)
2893 return error;
2894 /*
2895 * Zoned block devices contain zones that have a sequential
2896 * write only restriction. Hence zoned block devices are not
2897 * suitable for swapping. Disallow them here.
2898 */
2899 if (blk_queue_is_zoned(p->bdev->bd_queue))
2900 return -EINVAL;
2901 p->flags |= SWP_BLKDEV;
2902 } else if (S_ISREG(inode->i_mode)) {
2903 p->bdev = inode->i_sb->s_bdev;
2904 }
2905
2906 return 0;
2907 }
2908
2909
2910 /*
2911 * Find out how many pages are allowed for a single swap device. There
2912 * are two limiting factors:
2913 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2914 * 2) the number of bits in the swap pte, as defined by the different
2915 * architectures.
2916 *
2917 * In order to find the largest possible bit mask, a swap entry with
2918 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2919 * decoded to a swp_entry_t again, and finally the swap offset is
2920 * extracted.
2921 *
2922 * This will mask all the bits from the initial ~0UL mask that can't
2923 * be encoded in either the swp_entry_t or the architecture definition
2924 * of a swap pte.
2925 */
2926 unsigned long generic_max_swapfile_size(void)
2927 {
2928 return swp_offset(pte_to_swp_entry(
2929 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2930 }
2931
2932 /* Can be overridden by an architecture for additional checks. */
2933 __weak unsigned long max_swapfile_size(void)
2934 {
2935 return generic_max_swapfile_size();
2936 }
2937
2938 static unsigned long read_swap_header(struct swap_info_struct *p,
2939 union swap_header *swap_header,
2940 struct inode *inode)
2941 {
2942 int i;
2943 unsigned long maxpages;
2944 unsigned long swapfilepages;
2945 unsigned long last_page;
2946
2947 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2948 pr_err("Unable to find swap-space signature\n");
2949 return 0;
2950 }
2951
2952 /* swap partition endianess hack... */
2953 if (swab32(swap_header->info.version) == 1) {
2954 swab32s(&swap_header->info.version);
2955 swab32s(&swap_header->info.last_page);
2956 swab32s(&swap_header->info.nr_badpages);
2957 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2958 return 0;
2959 for (i = 0; i < swap_header->info.nr_badpages; i++)
2960 swab32s(&swap_header->info.badpages[i]);
2961 }
2962 /* Check the swap header's sub-version */
2963 if (swap_header->info.version != 1) {
2964 pr_warn("Unable to handle swap header version %d\n",
2965 swap_header->info.version);
2966 return 0;
2967 }
2968
2969 p->lowest_bit = 1;
2970 p->cluster_next = 1;
2971 p->cluster_nr = 0;
2972
2973 maxpages = max_swapfile_size();
2974 last_page = swap_header->info.last_page;
2975 if (!last_page) {
2976 pr_warn("Empty swap-file\n");
2977 return 0;
2978 }
2979 if (last_page > maxpages) {
2980 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2981 maxpages << (PAGE_SHIFT - 10),
2982 last_page << (PAGE_SHIFT - 10));
2983 }
2984 if (maxpages > last_page) {
2985 maxpages = last_page + 1;
2986 /* p->max is an unsigned int: don't overflow it */
2987 if ((unsigned int)maxpages == 0)
2988 maxpages = UINT_MAX;
2989 }
2990 p->highest_bit = maxpages - 1;
2991
2992 if (!maxpages)
2993 return 0;
2994 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2995 if (swapfilepages && maxpages > swapfilepages) {
2996 pr_warn("Swap area shorter than signature indicates\n");
2997 return 0;
2998 }
2999 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3000 return 0;
3001 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3002 return 0;
3003
3004 return maxpages;
3005 }
3006
3007 #define SWAP_CLUSTER_INFO_COLS \
3008 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3009 #define SWAP_CLUSTER_SPACE_COLS \
3010 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3011 #define SWAP_CLUSTER_COLS \
3012 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3013
3014 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3015 union swap_header *swap_header,
3016 unsigned char *swap_map,
3017 struct swap_cluster_info *cluster_info,
3018 unsigned long maxpages,
3019 sector_t *span)
3020 {
3021 unsigned int j, k;
3022 unsigned int nr_good_pages;
3023 int nr_extents;
3024 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3025 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3026 unsigned long i, idx;
3027
3028 nr_good_pages = maxpages - 1; /* omit header page */
3029
3030 cluster_list_init(&p->free_clusters);
3031 cluster_list_init(&p->discard_clusters);
3032
3033 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3034 unsigned int page_nr = swap_header->info.badpages[i];
3035 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3036 return -EINVAL;
3037 if (page_nr < maxpages) {
3038 swap_map[page_nr] = SWAP_MAP_BAD;
3039 nr_good_pages--;
3040 /*
3041 * Haven't marked the cluster free yet, no list
3042 * operation involved
3043 */
3044 inc_cluster_info_page(p, cluster_info, page_nr);
3045 }
3046 }
3047
3048 /* Haven't marked the cluster free yet, no list operation involved */
3049 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3050 inc_cluster_info_page(p, cluster_info, i);
3051
3052 if (nr_good_pages) {
3053 swap_map[0] = SWAP_MAP_BAD;
3054 /*
3055 * Not mark the cluster free yet, no list
3056 * operation involved
3057 */
3058 inc_cluster_info_page(p, cluster_info, 0);
3059 p->max = maxpages;
3060 p->pages = nr_good_pages;
3061 nr_extents = setup_swap_extents(p, span);
3062 if (nr_extents < 0)
3063 return nr_extents;
3064 nr_good_pages = p->pages;
3065 }
3066 if (!nr_good_pages) {
3067 pr_warn("Empty swap-file\n");
3068 return -EINVAL;
3069 }
3070
3071 if (!cluster_info)
3072 return nr_extents;
3073
3074
3075 /*
3076 * Reduce false cache line sharing between cluster_info and
3077 * sharing same address space.
3078 */
3079 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3080 j = (k + col) % SWAP_CLUSTER_COLS;
3081 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3082 idx = i * SWAP_CLUSTER_COLS + j;
3083 if (idx >= nr_clusters)
3084 continue;
3085 if (cluster_count(&cluster_info[idx]))
3086 continue;
3087 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3088 cluster_list_add_tail(&p->free_clusters, cluster_info,
3089 idx);
3090 }
3091 }
3092 return nr_extents;
3093 }
3094
3095 /*
3096 * Helper to sys_swapon determining if a given swap
3097 * backing device queue supports DISCARD operations.
3098 */
3099 static bool swap_discardable(struct swap_info_struct *si)
3100 {
3101 struct request_queue *q = bdev_get_queue(si->bdev);
3102
3103 if (!q || !blk_queue_discard(q))
3104 return false;
3105
3106 return true;
3107 }
3108
3109 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3110 {
3111 struct swap_info_struct *p;
3112 struct filename *name;
3113 struct file *swap_file = NULL;
3114 struct address_space *mapping;
3115 int prio;
3116 int error;
3117 union swap_header *swap_header;
3118 int nr_extents;
3119 sector_t span;
3120 unsigned long maxpages;
3121 unsigned char *swap_map = NULL;
3122 struct swap_cluster_info *cluster_info = NULL;
3123 unsigned long *frontswap_map = NULL;
3124 struct page *page = NULL;
3125 struct inode *inode = NULL;
3126 bool inced_nr_rotate_swap = false;
3127
3128 if (swap_flags & ~SWAP_FLAGS_VALID)
3129 return -EINVAL;
3130
3131 if (!capable(CAP_SYS_ADMIN))
3132 return -EPERM;
3133
3134 if (!swap_avail_heads)
3135 return -ENOMEM;
3136
3137 p = alloc_swap_info();
3138 if (IS_ERR(p))
3139 return PTR_ERR(p);
3140
3141 INIT_WORK(&p->discard_work, swap_discard_work);
3142
3143 name = getname(specialfile);
3144 if (IS_ERR(name)) {
3145 error = PTR_ERR(name);
3146 name = NULL;
3147 goto bad_swap;
3148 }
3149 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3150 if (IS_ERR(swap_file)) {
3151 error = PTR_ERR(swap_file);
3152 swap_file = NULL;
3153 goto bad_swap;
3154 }
3155
3156 p->swap_file = swap_file;
3157 mapping = swap_file->f_mapping;
3158 inode = mapping->host;
3159
3160 error = claim_swapfile(p, inode);
3161 if (unlikely(error))
3162 goto bad_swap;
3163
3164 inode_lock(inode);
3165 if (IS_SWAPFILE(inode)) {
3166 error = -EBUSY;
3167 goto bad_swap_unlock_inode;
3168 }
3169
3170 /*
3171 * Read the swap header.
3172 */
3173 if (!mapping->a_ops->readpage) {
3174 error = -EINVAL;
3175 goto bad_swap_unlock_inode;
3176 }
3177 page = read_mapping_page(mapping, 0, swap_file);
3178 if (IS_ERR(page)) {
3179 error = PTR_ERR(page);
3180 goto bad_swap_unlock_inode;
3181 }
3182 swap_header = kmap(page);
3183
3184 maxpages = read_swap_header(p, swap_header, inode);
3185 if (unlikely(!maxpages)) {
3186 error = -EINVAL;
3187 goto bad_swap_unlock_inode;
3188 }
3189
3190 /* OK, set up the swap map and apply the bad block list */
3191 swap_map = vzalloc(maxpages);
3192 if (!swap_map) {
3193 error = -ENOMEM;
3194 goto bad_swap_unlock_inode;
3195 }
3196
3197 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3198 p->flags |= SWP_STABLE_WRITES;
3199
3200 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3201 p->flags |= SWP_SYNCHRONOUS_IO;
3202
3203 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3204 int cpu;
3205 unsigned long ci, nr_cluster;
3206
3207 p->flags |= SWP_SOLIDSTATE;
3208 /*
3209 * select a random position to start with to help wear leveling
3210 * SSD
3211 */
3212 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3213 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3214
3215 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3216 GFP_KERNEL);
3217 if (!cluster_info) {
3218 error = -ENOMEM;
3219 goto bad_swap_unlock_inode;
3220 }
3221
3222 for (ci = 0; ci < nr_cluster; ci++)
3223 spin_lock_init(&((cluster_info + ci)->lock));
3224
3225 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3226 if (!p->percpu_cluster) {
3227 error = -ENOMEM;
3228 goto bad_swap_unlock_inode;
3229 }
3230 for_each_possible_cpu(cpu) {
3231 struct percpu_cluster *cluster;
3232 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3233 cluster_set_null(&cluster->index);
3234 }
3235 } else {
3236 atomic_inc(&nr_rotate_swap);
3237 inced_nr_rotate_swap = true;
3238 }
3239
3240 error = swap_cgroup_swapon(p->type, maxpages);
3241 if (error)
3242 goto bad_swap_unlock_inode;
3243
3244 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3245 cluster_info, maxpages, &span);
3246 if (unlikely(nr_extents < 0)) {
3247 error = nr_extents;
3248 goto bad_swap_unlock_inode;
3249 }
3250 /* frontswap enabled? set up bit-per-page map for frontswap */
3251 if (IS_ENABLED(CONFIG_FRONTSWAP))
3252 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3253 sizeof(long),
3254 GFP_KERNEL);
3255
3256 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3257 /*
3258 * When discard is enabled for swap with no particular
3259 * policy flagged, we set all swap discard flags here in
3260 * order to sustain backward compatibility with older
3261 * swapon(8) releases.
3262 */
3263 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3264 SWP_PAGE_DISCARD);
3265
3266 /*
3267 * By flagging sys_swapon, a sysadmin can tell us to
3268 * either do single-time area discards only, or to just
3269 * perform discards for released swap page-clusters.
3270 * Now it's time to adjust the p->flags accordingly.
3271 */
3272 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3273 p->flags &= ~SWP_PAGE_DISCARD;
3274 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3275 p->flags &= ~SWP_AREA_DISCARD;
3276
3277 /* issue a swapon-time discard if it's still required */
3278 if (p->flags & SWP_AREA_DISCARD) {
3279 int err = discard_swap(p);
3280 if (unlikely(err))
3281 pr_err("swapon: discard_swap(%p): %d\n",
3282 p, err);
3283 }
3284 }
3285
3286 error = init_swap_address_space(p->type, maxpages);
3287 if (error)
3288 goto bad_swap_unlock_inode;
3289
3290 /*
3291 * Flush any pending IO and dirty mappings before we start using this
3292 * swap device.
3293 */
3294 inode->i_flags |= S_SWAPFILE;
3295 error = inode_drain_writes(inode);
3296 if (error) {
3297 inode->i_flags &= ~S_SWAPFILE;
3298 goto bad_swap_unlock_inode;
3299 }
3300
3301 mutex_lock(&swapon_mutex);
3302 prio = -1;
3303 if (swap_flags & SWAP_FLAG_PREFER)
3304 prio =
3305 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3306 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3307
3308 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3309 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3310 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3311 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3312 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3313 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3314 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3315 (frontswap_map) ? "FS" : "");
3316
3317 mutex_unlock(&swapon_mutex);
3318 atomic_inc(&proc_poll_event);
3319 wake_up_interruptible(&proc_poll_wait);
3320
3321 error = 0;
3322 goto out;
3323 bad_swap_unlock_inode:
3324 inode_unlock(inode);
3325 bad_swap:
3326 free_percpu(p->percpu_cluster);
3327 p->percpu_cluster = NULL;
3328 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3329 set_blocksize(p->bdev, p->old_block_size);
3330 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3331 }
3332 inode = NULL;
3333 destroy_swap_extents(p);
3334 swap_cgroup_swapoff(p->type);
3335 spin_lock(&swap_lock);
3336 p->swap_file = NULL;
3337 p->flags = 0;
3338 spin_unlock(&swap_lock);
3339 vfree(swap_map);
3340 kvfree(cluster_info);
3341 kvfree(frontswap_map);
3342 if (inced_nr_rotate_swap)
3343 atomic_dec(&nr_rotate_swap);
3344 if (swap_file)
3345 filp_close(swap_file, NULL);
3346 out:
3347 if (page && !IS_ERR(page)) {
3348 kunmap(page);
3349 put_page(page);
3350 }
3351 if (name)
3352 putname(name);
3353 if (inode)
3354 inode_unlock(inode);
3355 if (!error)
3356 enable_swap_slots_cache();
3357 return error;
3358 }
3359
3360 void si_swapinfo(struct sysinfo *val)
3361 {
3362 unsigned int type;
3363 unsigned long nr_to_be_unused = 0;
3364
3365 spin_lock(&swap_lock);
3366 for (type = 0; type < nr_swapfiles; type++) {
3367 struct swap_info_struct *si = swap_info[type];
3368
3369 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3370 nr_to_be_unused += si->inuse_pages;
3371 }
3372 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3373 val->totalswap = total_swap_pages + nr_to_be_unused;
3374 spin_unlock(&swap_lock);
3375 }
3376
3377 /*
3378 * Verify that a swap entry is valid and increment its swap map count.
3379 *
3380 * Returns error code in following case.
3381 * - success -> 0
3382 * - swp_entry is invalid -> EINVAL
3383 * - swp_entry is migration entry -> EINVAL
3384 * - swap-cache reference is requested but there is already one. -> EEXIST
3385 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3386 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3387 */
3388 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3389 {
3390 struct swap_info_struct *p;
3391 struct swap_cluster_info *ci;
3392 unsigned long offset;
3393 unsigned char count;
3394 unsigned char has_cache;
3395 int err = -EINVAL;
3396
3397 p = get_swap_device(entry);
3398 if (!p)
3399 goto out;
3400
3401 offset = swp_offset(entry);
3402 ci = lock_cluster_or_swap_info(p, offset);
3403
3404 count = p->swap_map[offset];
3405
3406 /*
3407 * swapin_readahead() doesn't check if a swap entry is valid, so the
3408 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3409 */
3410 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3411 err = -ENOENT;
3412 goto unlock_out;
3413 }
3414
3415 has_cache = count & SWAP_HAS_CACHE;
3416 count &= ~SWAP_HAS_CACHE;
3417 err = 0;
3418
3419 if (usage == SWAP_HAS_CACHE) {
3420
3421 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3422 if (!has_cache && count)
3423 has_cache = SWAP_HAS_CACHE;
3424 else if (has_cache) /* someone else added cache */
3425 err = -EEXIST;
3426 else /* no users remaining */
3427 err = -ENOENT;
3428
3429 } else if (count || has_cache) {
3430
3431 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3432 count += usage;
3433 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3434 err = -EINVAL;
3435 else if (swap_count_continued(p, offset, count))
3436 count = COUNT_CONTINUED;
3437 else
3438 err = -ENOMEM;
3439 } else
3440 err = -ENOENT; /* unused swap entry */
3441
3442 p->swap_map[offset] = count | has_cache;
3443
3444 unlock_out:
3445 unlock_cluster_or_swap_info(p, ci);
3446 out:
3447 if (p)
3448 put_swap_device(p);
3449 return err;
3450 }
3451
3452 /*
3453 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3454 * (in which case its reference count is never incremented).
3455 */
3456 void swap_shmem_alloc(swp_entry_t entry)
3457 {
3458 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3459 }
3460
3461 /*
3462 * Increase reference count of swap entry by 1.
3463 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3464 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3465 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3466 * might occur if a page table entry has got corrupted.
3467 */
3468 int swap_duplicate(swp_entry_t entry)
3469 {
3470 int err = 0;
3471
3472 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3473 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3474 return err;
3475 }
3476
3477 /*
3478 * @entry: swap entry for which we allocate swap cache.
3479 *
3480 * Called when allocating swap cache for existing swap entry,
3481 * This can return error codes. Returns 0 at success.
3482 * -EEXIST means there is a swap cache.
3483 * Note: return code is different from swap_duplicate().
3484 */
3485 int swapcache_prepare(swp_entry_t entry)
3486 {
3487 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3488 }
3489
3490 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3491 {
3492 return swap_type_to_swap_info(swp_type(entry));
3493 }
3494
3495 struct swap_info_struct *page_swap_info(struct page *page)
3496 {
3497 swp_entry_t entry = { .val = page_private(page) };
3498 return swp_swap_info(entry);
3499 }
3500
3501 /*
3502 * out-of-line __page_file_ methods to avoid include hell.
3503 */
3504 struct address_space *__page_file_mapping(struct page *page)
3505 {
3506 return page_swap_info(page)->swap_file->f_mapping;
3507 }
3508 EXPORT_SYMBOL_GPL(__page_file_mapping);
3509
3510 pgoff_t __page_file_index(struct page *page)
3511 {
3512 swp_entry_t swap = { .val = page_private(page) };
3513 return swp_offset(swap);
3514 }
3515 EXPORT_SYMBOL_GPL(__page_file_index);
3516
3517 /*
3518 * add_swap_count_continuation - called when a swap count is duplicated
3519 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3520 * page of the original vmalloc'ed swap_map, to hold the continuation count
3521 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3522 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3523 *
3524 * These continuation pages are seldom referenced: the common paths all work
3525 * on the original swap_map, only referring to a continuation page when the
3526 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3527 *
3528 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3529 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3530 * can be called after dropping locks.
3531 */
3532 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3533 {
3534 struct swap_info_struct *si;
3535 struct swap_cluster_info *ci;
3536 struct page *head;
3537 struct page *page;
3538 struct page *list_page;
3539 pgoff_t offset;
3540 unsigned char count;
3541 int ret = 0;
3542
3543 /*
3544 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3545 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3546 */
3547 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3548
3549 si = get_swap_device(entry);
3550 if (!si) {
3551 /*
3552 * An acceptable race has occurred since the failing
3553 * __swap_duplicate(): the swap device may be swapoff
3554 */
3555 goto outer;
3556 }
3557 spin_lock(&si->lock);
3558
3559 offset = swp_offset(entry);
3560
3561 ci = lock_cluster(si, offset);
3562
3563 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3564
3565 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3566 /*
3567 * The higher the swap count, the more likely it is that tasks
3568 * will race to add swap count continuation: we need to avoid
3569 * over-provisioning.
3570 */
3571 goto out;
3572 }
3573
3574 if (!page) {
3575 ret = -ENOMEM;
3576 goto out;
3577 }
3578
3579 /*
3580 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3581 * no architecture is using highmem pages for kernel page tables: so it
3582 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3583 */
3584 head = vmalloc_to_page(si->swap_map + offset);
3585 offset &= ~PAGE_MASK;
3586
3587 spin_lock(&si->cont_lock);
3588 /*
3589 * Page allocation does not initialize the page's lru field,
3590 * but it does always reset its private field.
3591 */
3592 if (!page_private(head)) {
3593 BUG_ON(count & COUNT_CONTINUED);
3594 INIT_LIST_HEAD(&head->lru);
3595 set_page_private(head, SWP_CONTINUED);
3596 si->flags |= SWP_CONTINUED;
3597 }
3598
3599 list_for_each_entry(list_page, &head->lru, lru) {
3600 unsigned char *map;
3601
3602 /*
3603 * If the previous map said no continuation, but we've found
3604 * a continuation page, free our allocation and use this one.
3605 */
3606 if (!(count & COUNT_CONTINUED))
3607 goto out_unlock_cont;
3608
3609 map = kmap_atomic(list_page) + offset;
3610 count = *map;
3611 kunmap_atomic(map);
3612
3613 /*
3614 * If this continuation count now has some space in it,
3615 * free our allocation and use this one.
3616 */
3617 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3618 goto out_unlock_cont;
3619 }
3620
3621 list_add_tail(&page->lru, &head->lru);
3622 page = NULL; /* now it's attached, don't free it */
3623 out_unlock_cont:
3624 spin_unlock(&si->cont_lock);
3625 out:
3626 unlock_cluster(ci);
3627 spin_unlock(&si->lock);
3628 put_swap_device(si);
3629 outer:
3630 if (page)
3631 __free_page(page);
3632 return ret;
3633 }
3634
3635 /*
3636 * swap_count_continued - when the original swap_map count is incremented
3637 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3638 * into, carry if so, or else fail until a new continuation page is allocated;
3639 * when the original swap_map count is decremented from 0 with continuation,
3640 * borrow from the continuation and report whether it still holds more.
3641 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3642 * lock.
3643 */
3644 static bool swap_count_continued(struct swap_info_struct *si,
3645 pgoff_t offset, unsigned char count)
3646 {
3647 struct page *head;
3648 struct page *page;
3649 unsigned char *map;
3650 bool ret;
3651
3652 head = vmalloc_to_page(si->swap_map + offset);
3653 if (page_private(head) != SWP_CONTINUED) {
3654 BUG_ON(count & COUNT_CONTINUED);
3655 return false; /* need to add count continuation */
3656 }
3657
3658 spin_lock(&si->cont_lock);
3659 offset &= ~PAGE_MASK;
3660 page = list_next_entry(head, lru);
3661 map = kmap_atomic(page) + offset;
3662
3663 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3664 goto init_map; /* jump over SWAP_CONT_MAX checks */
3665
3666 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3667 /*
3668 * Think of how you add 1 to 999
3669 */
3670 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3671 kunmap_atomic(map);
3672 page = list_next_entry(page, lru);
3673 BUG_ON(page == head);
3674 map = kmap_atomic(page) + offset;
3675 }
3676 if (*map == SWAP_CONT_MAX) {
3677 kunmap_atomic(map);
3678 page = list_next_entry(page, lru);
3679 if (page == head) {
3680 ret = false; /* add count continuation */
3681 goto out;
3682 }
3683 map = kmap_atomic(page) + offset;
3684 init_map: *map = 0; /* we didn't zero the page */
3685 }
3686 *map += 1;
3687 kunmap_atomic(map);
3688 while ((page = list_prev_entry(page, lru)) != head) {
3689 map = kmap_atomic(page) + offset;
3690 *map = COUNT_CONTINUED;
3691 kunmap_atomic(map);
3692 }
3693 ret = true; /* incremented */
3694
3695 } else { /* decrementing */
3696 /*
3697 * Think of how you subtract 1 from 1000
3698 */
3699 BUG_ON(count != COUNT_CONTINUED);
3700 while (*map == COUNT_CONTINUED) {
3701 kunmap_atomic(map);
3702 page = list_next_entry(page, lru);
3703 BUG_ON(page == head);
3704 map = kmap_atomic(page) + offset;
3705 }
3706 BUG_ON(*map == 0);
3707 *map -= 1;
3708 if (*map == 0)
3709 count = 0;
3710 kunmap_atomic(map);
3711 while ((page = list_prev_entry(page, lru)) != head) {
3712 map = kmap_atomic(page) + offset;
3713 *map = SWAP_CONT_MAX | count;
3714 count = COUNT_CONTINUED;
3715 kunmap_atomic(map);
3716 }
3717 ret = count == COUNT_CONTINUED;
3718 }
3719 out:
3720 spin_unlock(&si->cont_lock);
3721 return ret;
3722 }
3723
3724 /*
3725 * free_swap_count_continuations - swapoff free all the continuation pages
3726 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3727 */
3728 static void free_swap_count_continuations(struct swap_info_struct *si)
3729 {
3730 pgoff_t offset;
3731
3732 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3733 struct page *head;
3734 head = vmalloc_to_page(si->swap_map + offset);
3735 if (page_private(head)) {
3736 struct page *page, *next;
3737
3738 list_for_each_entry_safe(page, next, &head->lru, lru) {
3739 list_del(&page->lru);
3740 __free_page(page);
3741 }
3742 }
3743 }
3744 }
3745
3746 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3747 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3748 gfp_t gfp_mask)
3749 {
3750 struct swap_info_struct *si, *next;
3751 if (!(gfp_mask & __GFP_IO) || !memcg)
3752 return;
3753
3754 if (!blk_cgroup_congested())
3755 return;
3756
3757 /*
3758 * We've already scheduled a throttle, avoid taking the global swap
3759 * lock.
3760 */
3761 if (current->throttle_queue)
3762 return;
3763
3764 spin_lock(&swap_avail_lock);
3765 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3766 avail_lists[node]) {
3767 if (si->bdev) {
3768 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3769 true);
3770 break;
3771 }
3772 }
3773 spin_unlock(&swap_avail_lock);
3774 }
3775 #endif
3776
3777 static int __init swapfile_init(void)
3778 {
3779 int nid;
3780
3781 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3782 GFP_KERNEL);
3783 if (!swap_avail_heads) {
3784 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3785 return -ENOMEM;
3786 }
3787
3788 for_each_node(nid)
3789 plist_head_init(&swap_avail_heads[nid]);
3790
3791 return 0;
3792 }
3793 subsys_initcall(swapfile_init);