]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swapfile.c
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 #include <linux/suspend.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap.h"
50
51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52 unsigned char);
53 static void free_swap_count_continuations(struct swap_info_struct *);
54
55 static DEFINE_SPINLOCK(swap_lock);
56 static unsigned int nr_swapfiles;
57 atomic_long_t nr_swap_pages;
58 /*
59 * Some modules use swappable objects and may try to swap them out under
60 * memory pressure (via the shrinker). Before doing so, they may wish to
61 * check to see if any swap space is available.
62 */
63 EXPORT_SYMBOL_GPL(nr_swap_pages);
64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
65 long total_swap_pages;
66 static int least_priority = -1;
67 unsigned long swapfile_maximum_size;
68 #ifdef CONFIG_MIGRATION
69 bool swap_migration_ad_supported;
70 #endif /* CONFIG_MIGRATION */
71
72 static const char Bad_file[] = "Bad swap file entry ";
73 static const char Unused_file[] = "Unused swap file entry ";
74 static const char Bad_offset[] = "Bad swap offset entry ";
75 static const char Unused_offset[] = "Unused swap offset entry ";
76
77 /*
78 * all active swap_info_structs
79 * protected with swap_lock, and ordered by priority.
80 */
81 static PLIST_HEAD(swap_active_head);
82
83 /*
84 * all available (active, not full) swap_info_structs
85 * protected with swap_avail_lock, ordered by priority.
86 * This is used by folio_alloc_swap() instead of swap_active_head
87 * because swap_active_head includes all swap_info_structs,
88 * but folio_alloc_swap() doesn't need to look at full ones.
89 * This uses its own lock instead of swap_lock because when a
90 * swap_info_struct changes between not-full/full, it needs to
91 * add/remove itself to/from this list, but the swap_info_struct->lock
92 * is held and the locking order requires swap_lock to be taken
93 * before any swap_info_struct->lock.
94 */
95 static struct plist_head *swap_avail_heads;
96 static DEFINE_SPINLOCK(swap_avail_lock);
97
98 struct swap_info_struct *swap_info[MAX_SWAPFILES];
99
100 static DEFINE_MUTEX(swapon_mutex);
101
102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
103 /* Activity counter to indicate that a swapon or swapoff has occurred */
104 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105
106 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107
108 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 {
110 if (type >= MAX_SWAPFILES)
111 return NULL;
112
113 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
114 }
115
116 static inline unsigned char swap_count(unsigned char ent)
117 {
118 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
119 }
120
121 /* Reclaim the swap entry anyway if possible */
122 #define TTRS_ANYWAY 0x1
123 /*
124 * Reclaim the swap entry if there are no more mappings of the
125 * corresponding page
126 */
127 #define TTRS_UNMAPPED 0x2
128 /* Reclaim the swap entry if swap is getting full*/
129 #define TTRS_FULL 0x4
130
131 /* returns 1 if swap entry is freed */
132 static int __try_to_reclaim_swap(struct swap_info_struct *si,
133 unsigned long offset, unsigned long flags)
134 {
135 swp_entry_t entry = swp_entry(si->type, offset);
136 struct folio *folio;
137 int ret = 0;
138
139 folio = filemap_get_folio(swap_address_space(entry), offset);
140 if (IS_ERR(folio))
141 return 0;
142 /*
143 * When this function is called from scan_swap_map_slots() and it's
144 * called by vmscan.c at reclaiming folios. So we hold a folio lock
145 * here. We have to use trylock for avoiding deadlock. This is a special
146 * case and you should use folio_free_swap() with explicit folio_lock()
147 * in usual operations.
148 */
149 if (folio_trylock(folio)) {
150 if ((flags & TTRS_ANYWAY) ||
151 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
152 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
153 ret = folio_free_swap(folio);
154 folio_unlock(folio);
155 }
156 folio_put(folio);
157 return ret;
158 }
159
160 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 {
162 struct rb_node *rb = rb_first(&sis->swap_extent_root);
163 return rb_entry(rb, struct swap_extent, rb_node);
164 }
165
166 static inline struct swap_extent *next_se(struct swap_extent *se)
167 {
168 struct rb_node *rb = rb_next(&se->rb_node);
169 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
170 }
171
172 /*
173 * swapon tell device that all the old swap contents can be discarded,
174 * to allow the swap device to optimize its wear-levelling.
175 */
176 static int discard_swap(struct swap_info_struct *si)
177 {
178 struct swap_extent *se;
179 sector_t start_block;
180 sector_t nr_blocks;
181 int err = 0;
182
183 /* Do not discard the swap header page! */
184 se = first_se(si);
185 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
186 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187 if (nr_blocks) {
188 err = blkdev_issue_discard(si->bdev, start_block,
189 nr_blocks, GFP_KERNEL);
190 if (err)
191 return err;
192 cond_resched();
193 }
194
195 for (se = next_se(se); se; se = next_se(se)) {
196 start_block = se->start_block << (PAGE_SHIFT - 9);
197 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198
199 err = blkdev_issue_discard(si->bdev, start_block,
200 nr_blocks, GFP_KERNEL);
201 if (err)
202 break;
203
204 cond_resched();
205 }
206 return err; /* That will often be -EOPNOTSUPP */
207 }
208
209 static struct swap_extent *
210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 {
212 struct swap_extent *se;
213 struct rb_node *rb;
214
215 rb = sis->swap_extent_root.rb_node;
216 while (rb) {
217 se = rb_entry(rb, struct swap_extent, rb_node);
218 if (offset < se->start_page)
219 rb = rb->rb_left;
220 else if (offset >= se->start_page + se->nr_pages)
221 rb = rb->rb_right;
222 else
223 return se;
224 }
225 /* It *must* be present */
226 BUG();
227 }
228
229 sector_t swap_page_sector(struct page *page)
230 {
231 struct swap_info_struct *sis = page_swap_info(page);
232 struct swap_extent *se;
233 sector_t sector;
234 pgoff_t offset;
235
236 offset = __page_file_index(page);
237 se = offset_to_swap_extent(sis, offset);
238 sector = se->start_block + (offset - se->start_page);
239 return sector << (PAGE_SHIFT - 9);
240 }
241
242 /*
243 * swap allocation tell device that a cluster of swap can now be discarded,
244 * to allow the swap device to optimize its wear-levelling.
245 */
246 static void discard_swap_cluster(struct swap_info_struct *si,
247 pgoff_t start_page, pgoff_t nr_pages)
248 {
249 struct swap_extent *se = offset_to_swap_extent(si, start_page);
250
251 while (nr_pages) {
252 pgoff_t offset = start_page - se->start_page;
253 sector_t start_block = se->start_block + offset;
254 sector_t nr_blocks = se->nr_pages - offset;
255
256 if (nr_blocks > nr_pages)
257 nr_blocks = nr_pages;
258 start_page += nr_blocks;
259 nr_pages -= nr_blocks;
260
261 start_block <<= PAGE_SHIFT - 9;
262 nr_blocks <<= PAGE_SHIFT - 9;
263 if (blkdev_issue_discard(si->bdev, start_block,
264 nr_blocks, GFP_NOIO))
265 break;
266
267 se = next_se(se);
268 }
269 }
270
271 #ifdef CONFIG_THP_SWAP
272 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
273
274 #define swap_entry_size(size) (size)
275 #else
276 #define SWAPFILE_CLUSTER 256
277
278 /*
279 * Define swap_entry_size() as constant to let compiler to optimize
280 * out some code if !CONFIG_THP_SWAP
281 */
282 #define swap_entry_size(size) 1
283 #endif
284 #define LATENCY_LIMIT 256
285
286 static inline void cluster_set_flag(struct swap_cluster_info *info,
287 unsigned int flag)
288 {
289 info->flags = flag;
290 }
291
292 static inline unsigned int cluster_count(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_count(struct swap_cluster_info *info,
298 unsigned int c)
299 {
300 info->data = c;
301 }
302
303 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
304 unsigned int c, unsigned int f)
305 {
306 info->flags = f;
307 info->data = c;
308 }
309
310 static inline unsigned int cluster_next(struct swap_cluster_info *info)
311 {
312 return info->data;
313 }
314
315 static inline void cluster_set_next(struct swap_cluster_info *info,
316 unsigned int n)
317 {
318 info->data = n;
319 }
320
321 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
322 unsigned int n, unsigned int f)
323 {
324 info->flags = f;
325 info->data = n;
326 }
327
328 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_FREE;
331 }
332
333 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 {
335 return info->flags & CLUSTER_FLAG_NEXT_NULL;
336 }
337
338 static inline void cluster_set_null(struct swap_cluster_info *info)
339 {
340 info->flags = CLUSTER_FLAG_NEXT_NULL;
341 info->data = 0;
342 }
343
344 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 {
346 if (IS_ENABLED(CONFIG_THP_SWAP))
347 return info->flags & CLUSTER_FLAG_HUGE;
348 return false;
349 }
350
351 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 {
353 info->flags &= ~CLUSTER_FLAG_HUGE;
354 }
355
356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
357 unsigned long offset)
358 {
359 struct swap_cluster_info *ci;
360
361 ci = si->cluster_info;
362 if (ci) {
363 ci += offset / SWAPFILE_CLUSTER;
364 spin_lock(&ci->lock);
365 }
366 return ci;
367 }
368
369 static inline void unlock_cluster(struct swap_cluster_info *ci)
370 {
371 if (ci)
372 spin_unlock(&ci->lock);
373 }
374
375 /*
376 * Determine the locking method in use for this device. Return
377 * swap_cluster_info if SSD-style cluster-based locking is in place.
378 */
379 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
380 struct swap_info_struct *si, unsigned long offset)
381 {
382 struct swap_cluster_info *ci;
383
384 /* Try to use fine-grained SSD-style locking if available: */
385 ci = lock_cluster(si, offset);
386 /* Otherwise, fall back to traditional, coarse locking: */
387 if (!ci)
388 spin_lock(&si->lock);
389
390 return ci;
391 }
392
393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
394 struct swap_cluster_info *ci)
395 {
396 if (ci)
397 unlock_cluster(ci);
398 else
399 spin_unlock(&si->lock);
400 }
401
402 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 {
404 return cluster_is_null(&list->head);
405 }
406
407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 {
409 return cluster_next(&list->head);
410 }
411
412 static void cluster_list_init(struct swap_cluster_list *list)
413 {
414 cluster_set_null(&list->head);
415 cluster_set_null(&list->tail);
416 }
417
418 static void cluster_list_add_tail(struct swap_cluster_list *list,
419 struct swap_cluster_info *ci,
420 unsigned int idx)
421 {
422 if (cluster_list_empty(list)) {
423 cluster_set_next_flag(&list->head, idx, 0);
424 cluster_set_next_flag(&list->tail, idx, 0);
425 } else {
426 struct swap_cluster_info *ci_tail;
427 unsigned int tail = cluster_next(&list->tail);
428
429 /*
430 * Nested cluster lock, but both cluster locks are
431 * only acquired when we held swap_info_struct->lock
432 */
433 ci_tail = ci + tail;
434 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
435 cluster_set_next(ci_tail, idx);
436 spin_unlock(&ci_tail->lock);
437 cluster_set_next_flag(&list->tail, idx, 0);
438 }
439 }
440
441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
442 struct swap_cluster_info *ci)
443 {
444 unsigned int idx;
445
446 idx = cluster_next(&list->head);
447 if (cluster_next(&list->tail) == idx) {
448 cluster_set_null(&list->head);
449 cluster_set_null(&list->tail);
450 } else
451 cluster_set_next_flag(&list->head,
452 cluster_next(&ci[idx]), 0);
453
454 return idx;
455 }
456
457 /* Add a cluster to discard list and schedule it to do discard */
458 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
459 unsigned int idx)
460 {
461 /*
462 * If scan_swap_map_slots() can't find a free cluster, it will check
463 * si->swap_map directly. To make sure the discarding cluster isn't
464 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
465 * It will be cleared after discard
466 */
467 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
468 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469
470 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471
472 schedule_work(&si->discard_work);
473 }
474
475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 {
477 struct swap_cluster_info *ci = si->cluster_info;
478
479 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
480 cluster_list_add_tail(&si->free_clusters, ci, idx);
481 }
482
483 /*
484 * Doing discard actually. After a cluster discard is finished, the cluster
485 * will be added to free cluster list. caller should hold si->lock.
486 */
487 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 {
489 struct swap_cluster_info *info, *ci;
490 unsigned int idx;
491
492 info = si->cluster_info;
493
494 while (!cluster_list_empty(&si->discard_clusters)) {
495 idx = cluster_list_del_first(&si->discard_clusters, info);
496 spin_unlock(&si->lock);
497
498 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
499 SWAPFILE_CLUSTER);
500
501 spin_lock(&si->lock);
502 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
503 __free_cluster(si, idx);
504 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
505 0, SWAPFILE_CLUSTER);
506 unlock_cluster(ci);
507 }
508 }
509
510 static void swap_discard_work(struct work_struct *work)
511 {
512 struct swap_info_struct *si;
513
514 si = container_of(work, struct swap_info_struct, discard_work);
515
516 spin_lock(&si->lock);
517 swap_do_scheduled_discard(si);
518 spin_unlock(&si->lock);
519 }
520
521 static void swap_users_ref_free(struct percpu_ref *ref)
522 {
523 struct swap_info_struct *si;
524
525 si = container_of(ref, struct swap_info_struct, users);
526 complete(&si->comp);
527 }
528
529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 {
531 struct swap_cluster_info *ci = si->cluster_info;
532
533 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
534 cluster_list_del_first(&si->free_clusters, ci);
535 cluster_set_count_flag(ci + idx, 0, 0);
536 }
537
538 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 {
540 struct swap_cluster_info *ci = si->cluster_info + idx;
541
542 VM_BUG_ON(cluster_count(ci) != 0);
543 /*
544 * If the swap is discardable, prepare discard the cluster
545 * instead of free it immediately. The cluster will be freed
546 * after discard.
547 */
548 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
549 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
550 swap_cluster_schedule_discard(si, idx);
551 return;
552 }
553
554 __free_cluster(si, idx);
555 }
556
557 /*
558 * The cluster corresponding to page_nr will be used. The cluster will be
559 * removed from free cluster list and its usage counter will be increased.
560 */
561 static void inc_cluster_info_page(struct swap_info_struct *p,
562 struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 {
564 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565
566 if (!cluster_info)
567 return;
568 if (cluster_is_free(&cluster_info[idx]))
569 alloc_cluster(p, idx);
570
571 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
572 cluster_set_count(&cluster_info[idx],
573 cluster_count(&cluster_info[idx]) + 1);
574 }
575
576 /*
577 * The cluster corresponding to page_nr decreases one usage. If the usage
578 * counter becomes 0, which means no page in the cluster is in using, we can
579 * optionally discard the cluster and add it to free cluster list.
580 */
581 static void dec_cluster_info_page(struct swap_info_struct *p,
582 struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 {
584 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
585
586 if (!cluster_info)
587 return;
588
589 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
590 cluster_set_count(&cluster_info[idx],
591 cluster_count(&cluster_info[idx]) - 1);
592
593 if (cluster_count(&cluster_info[idx]) == 0)
594 free_cluster(p, idx);
595 }
596
597 /*
598 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
599 * cluster list. Avoiding such abuse to avoid list corruption.
600 */
601 static bool
602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
603 unsigned long offset)
604 {
605 struct percpu_cluster *percpu_cluster;
606 bool conflict;
607
608 offset /= SWAPFILE_CLUSTER;
609 conflict = !cluster_list_empty(&si->free_clusters) &&
610 offset != cluster_list_first(&si->free_clusters) &&
611 cluster_is_free(&si->cluster_info[offset]);
612
613 if (!conflict)
614 return false;
615
616 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
617 cluster_set_null(&percpu_cluster->index);
618 return true;
619 }
620
621 /*
622 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
623 * might involve allocating a new cluster for current CPU too.
624 */
625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
626 unsigned long *offset, unsigned long *scan_base)
627 {
628 struct percpu_cluster *cluster;
629 struct swap_cluster_info *ci;
630 unsigned long tmp, max;
631
632 new_cluster:
633 cluster = this_cpu_ptr(si->percpu_cluster);
634 if (cluster_is_null(&cluster->index)) {
635 if (!cluster_list_empty(&si->free_clusters)) {
636 cluster->index = si->free_clusters.head;
637 cluster->next = cluster_next(&cluster->index) *
638 SWAPFILE_CLUSTER;
639 } else if (!cluster_list_empty(&si->discard_clusters)) {
640 /*
641 * we don't have free cluster but have some clusters in
642 * discarding, do discard now and reclaim them, then
643 * reread cluster_next_cpu since we dropped si->lock
644 */
645 swap_do_scheduled_discard(si);
646 *scan_base = this_cpu_read(*si->cluster_next_cpu);
647 *offset = *scan_base;
648 goto new_cluster;
649 } else
650 return false;
651 }
652
653 /*
654 * Other CPUs can use our cluster if they can't find a free cluster,
655 * check if there is still free entry in the cluster
656 */
657 tmp = cluster->next;
658 max = min_t(unsigned long, si->max,
659 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660 if (tmp < max) {
661 ci = lock_cluster(si, tmp);
662 while (tmp < max) {
663 if (!si->swap_map[tmp])
664 break;
665 tmp++;
666 }
667 unlock_cluster(ci);
668 }
669 if (tmp >= max) {
670 cluster_set_null(&cluster->index);
671 goto new_cluster;
672 }
673 cluster->next = tmp + 1;
674 *offset = tmp;
675 *scan_base = tmp;
676 return true;
677 }
678
679 static void __del_from_avail_list(struct swap_info_struct *p)
680 {
681 int nid;
682
683 assert_spin_locked(&p->lock);
684 for_each_node(nid)
685 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 }
687
688 static void del_from_avail_list(struct swap_info_struct *p)
689 {
690 spin_lock(&swap_avail_lock);
691 __del_from_avail_list(p);
692 spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
696 unsigned int nr_entries)
697 {
698 unsigned int end = offset + nr_entries - 1;
699
700 if (offset == si->lowest_bit)
701 si->lowest_bit += nr_entries;
702 if (end == si->highest_bit)
703 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
704 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
705 if (si->inuse_pages == si->pages) {
706 si->lowest_bit = si->max;
707 si->highest_bit = 0;
708 del_from_avail_list(si);
709 }
710 }
711
712 static void add_to_avail_list(struct swap_info_struct *p)
713 {
714 int nid;
715
716 spin_lock(&swap_avail_lock);
717 for_each_node(nid) {
718 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 }
721 spin_unlock(&swap_avail_lock);
722 }
723
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 unsigned int nr_entries)
726 {
727 unsigned long begin = offset;
728 unsigned long end = offset + nr_entries - 1;
729 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730
731 if (offset < si->lowest_bit)
732 si->lowest_bit = offset;
733 if (end > si->highest_bit) {
734 bool was_full = !si->highest_bit;
735
736 WRITE_ONCE(si->highest_bit, end);
737 if (was_full && (si->flags & SWP_WRITEOK))
738 add_to_avail_list(si);
739 }
740 atomic_long_add(nr_entries, &nr_swap_pages);
741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742 if (si->flags & SWP_BLKDEV)
743 swap_slot_free_notify =
744 si->bdev->bd_disk->fops->swap_slot_free_notify;
745 else
746 swap_slot_free_notify = NULL;
747 while (offset <= end) {
748 arch_swap_invalidate_page(si->type, offset);
749 frontswap_invalidate_page(si->type, offset);
750 if (swap_slot_free_notify)
751 swap_slot_free_notify(si->bdev, offset);
752 offset++;
753 }
754 clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759 unsigned long prev;
760
761 if (!(si->flags & SWP_SOLIDSTATE)) {
762 si->cluster_next = next;
763 return;
764 }
765
766 prev = this_cpu_read(*si->cluster_next_cpu);
767 /*
768 * Cross the swap address space size aligned trunk, choose
769 * another trunk randomly to avoid lock contention on swap
770 * address space if possible.
771 */
772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774 /* No free swap slots available */
775 if (si->highest_bit <= si->lowest_bit)
776 return;
777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779 next = max_t(unsigned int, next, si->lowest_bit);
780 }
781 this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785 unsigned long offset)
786 {
787 if (data_race(!si->swap_map[offset])) {
788 spin_lock(&si->lock);
789 return true;
790 }
791
792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793 spin_lock(&si->lock);
794 return true;
795 }
796
797 return false;
798 }
799
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801 unsigned char usage, int nr,
802 swp_entry_t slots[])
803 {
804 struct swap_cluster_info *ci;
805 unsigned long offset;
806 unsigned long scan_base;
807 unsigned long last_in_cluster = 0;
808 int latency_ration = LATENCY_LIMIT;
809 int n_ret = 0;
810 bool scanned_many = false;
811
812 /*
813 * We try to cluster swap pages by allocating them sequentially
814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
815 * way, however, we resort to first-free allocation, starting
816 * a new cluster. This prevents us from scattering swap pages
817 * all over the entire swap partition, so that we reduce
818 * overall disk seek times between swap pages. -- sct
819 * But we do now try to find an empty cluster. -Andrea
820 * And we let swap pages go all over an SSD partition. Hugh
821 */
822
823 si->flags += SWP_SCANNING;
824 /*
825 * Use percpu scan base for SSD to reduce lock contention on
826 * cluster and swap cache. For HDD, sequential access is more
827 * important.
828 */
829 if (si->flags & SWP_SOLIDSTATE)
830 scan_base = this_cpu_read(*si->cluster_next_cpu);
831 else
832 scan_base = si->cluster_next;
833 offset = scan_base;
834
835 /* SSD algorithm */
836 if (si->cluster_info) {
837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 goto scan;
839 } else if (unlikely(!si->cluster_nr--)) {
840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 goto checks;
843 }
844
845 spin_unlock(&si->lock);
846
847 /*
848 * If seek is expensive, start searching for new cluster from
849 * start of partition, to minimize the span of allocated swap.
850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 */
853 scan_base = offset = si->lowest_bit;
854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856 /* Locate the first empty (unaligned) cluster */
857 for (; last_in_cluster <= si->highest_bit; offset++) {
858 if (si->swap_map[offset])
859 last_in_cluster = offset + SWAPFILE_CLUSTER;
860 else if (offset == last_in_cluster) {
861 spin_lock(&si->lock);
862 offset -= SWAPFILE_CLUSTER - 1;
863 si->cluster_next = offset;
864 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865 goto checks;
866 }
867 if (unlikely(--latency_ration < 0)) {
868 cond_resched();
869 latency_ration = LATENCY_LIMIT;
870 }
871 }
872
873 offset = scan_base;
874 spin_lock(&si->lock);
875 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876 }
877
878 checks:
879 if (si->cluster_info) {
880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881 /* take a break if we already got some slots */
882 if (n_ret)
883 goto done;
884 if (!scan_swap_map_try_ssd_cluster(si, &offset,
885 &scan_base))
886 goto scan;
887 }
888 }
889 if (!(si->flags & SWP_WRITEOK))
890 goto no_page;
891 if (!si->highest_bit)
892 goto no_page;
893 if (offset > si->highest_bit)
894 scan_base = offset = si->lowest_bit;
895
896 ci = lock_cluster(si, offset);
897 /* reuse swap entry of cache-only swap if not busy. */
898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899 int swap_was_freed;
900 unlock_cluster(ci);
901 spin_unlock(&si->lock);
902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903 spin_lock(&si->lock);
904 /* entry was freed successfully, try to use this again */
905 if (swap_was_freed)
906 goto checks;
907 goto scan; /* check next one */
908 }
909
910 if (si->swap_map[offset]) {
911 unlock_cluster(ci);
912 if (!n_ret)
913 goto scan;
914 else
915 goto done;
916 }
917 WRITE_ONCE(si->swap_map[offset], usage);
918 inc_cluster_info_page(si, si->cluster_info, offset);
919 unlock_cluster(ci);
920
921 swap_range_alloc(si, offset, 1);
922 slots[n_ret++] = swp_entry(si->type, offset);
923
924 /* got enough slots or reach max slots? */
925 if ((n_ret == nr) || (offset >= si->highest_bit))
926 goto done;
927
928 /* search for next available slot */
929
930 /* time to take a break? */
931 if (unlikely(--latency_ration < 0)) {
932 if (n_ret)
933 goto done;
934 spin_unlock(&si->lock);
935 cond_resched();
936 spin_lock(&si->lock);
937 latency_ration = LATENCY_LIMIT;
938 }
939
940 /* try to get more slots in cluster */
941 if (si->cluster_info) {
942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 goto checks;
944 } else if (si->cluster_nr && !si->swap_map[++offset]) {
945 /* non-ssd case, still more slots in cluster? */
946 --si->cluster_nr;
947 goto checks;
948 }
949
950 /*
951 * Even if there's no free clusters available (fragmented),
952 * try to scan a little more quickly with lock held unless we
953 * have scanned too many slots already.
954 */
955 if (!scanned_many) {
956 unsigned long scan_limit;
957
958 if (offset < scan_base)
959 scan_limit = scan_base;
960 else
961 scan_limit = si->highest_bit;
962 for (; offset <= scan_limit && --latency_ration > 0;
963 offset++) {
964 if (!si->swap_map[offset])
965 goto checks;
966 }
967 }
968
969 done:
970 set_cluster_next(si, offset + 1);
971 si->flags -= SWP_SCANNING;
972 return n_ret;
973
974 scan:
975 spin_unlock(&si->lock);
976 while (++offset <= READ_ONCE(si->highest_bit)) {
977 if (unlikely(--latency_ration < 0)) {
978 cond_resched();
979 latency_ration = LATENCY_LIMIT;
980 scanned_many = true;
981 }
982 if (swap_offset_available_and_locked(si, offset))
983 goto checks;
984 }
985 offset = si->lowest_bit;
986 while (offset < scan_base) {
987 if (unlikely(--latency_ration < 0)) {
988 cond_resched();
989 latency_ration = LATENCY_LIMIT;
990 scanned_many = true;
991 }
992 if (swap_offset_available_and_locked(si, offset))
993 goto checks;
994 offset++;
995 }
996 spin_lock(&si->lock);
997
998 no_page:
999 si->flags -= SWP_SCANNING;
1000 return n_ret;
1001 }
1002
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005 unsigned long idx;
1006 struct swap_cluster_info *ci;
1007 unsigned long offset;
1008
1009 /*
1010 * Should not even be attempting cluster allocations when huge
1011 * page swap is disabled. Warn and fail the allocation.
1012 */
1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014 VM_WARN_ON_ONCE(1);
1015 return 0;
1016 }
1017
1018 if (cluster_list_empty(&si->free_clusters))
1019 return 0;
1020
1021 idx = cluster_list_first(&si->free_clusters);
1022 offset = idx * SWAPFILE_CLUSTER;
1023 ci = lock_cluster(si, offset);
1024 alloc_cluster(si, idx);
1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 unlock_cluster(ci);
1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030 *slot = swp_entry(si->type, offset);
1031
1032 return 1;
1033 }
1034
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037 unsigned long offset = idx * SWAPFILE_CLUSTER;
1038 struct swap_cluster_info *ci;
1039
1040 ci = lock_cluster(si, offset);
1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042 cluster_set_count_flag(ci, 0, 0);
1043 free_cluster(si, idx);
1044 unlock_cluster(ci);
1045 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050 unsigned long size = swap_entry_size(entry_size);
1051 struct swap_info_struct *si, *next;
1052 long avail_pgs;
1053 int n_ret = 0;
1054 int node;
1055
1056 /* Only single cluster request supported */
1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059 spin_lock(&swap_avail_lock);
1060
1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062 if (avail_pgs <= 0) {
1063 spin_unlock(&swap_avail_lock);
1064 goto noswap;
1065 }
1066
1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069 atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072 node = numa_node_id();
1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074 /* requeue si to after same-priority siblings */
1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076 spin_unlock(&swap_avail_lock);
1077 spin_lock(&si->lock);
1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079 spin_lock(&swap_avail_lock);
1080 if (plist_node_empty(&si->avail_lists[node])) {
1081 spin_unlock(&si->lock);
1082 goto nextsi;
1083 }
1084 WARN(!si->highest_bit,
1085 "swap_info %d in list but !highest_bit\n",
1086 si->type);
1087 WARN(!(si->flags & SWP_WRITEOK),
1088 "swap_info %d in list but !SWP_WRITEOK\n",
1089 si->type);
1090 __del_from_avail_list(si);
1091 spin_unlock(&si->lock);
1092 goto nextsi;
1093 }
1094 if (size == SWAPFILE_CLUSTER) {
1095 if (si->flags & SWP_BLKDEV)
1096 n_ret = swap_alloc_cluster(si, swp_entries);
1097 } else
1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099 n_goal, swp_entries);
1100 spin_unlock(&si->lock);
1101 if (n_ret || size == SWAPFILE_CLUSTER)
1102 goto check_out;
1103 cond_resched();
1104
1105 spin_lock(&swap_avail_lock);
1106 nextsi:
1107 /*
1108 * if we got here, it's likely that si was almost full before,
1109 * and since scan_swap_map_slots() can drop the si->lock,
1110 * multiple callers probably all tried to get a page from the
1111 * same si and it filled up before we could get one; or, the si
1112 * filled up between us dropping swap_avail_lock and taking
1113 * si->lock. Since we dropped the swap_avail_lock, the
1114 * swap_avail_head list may have been modified; so if next is
1115 * still in the swap_avail_head list then try it, otherwise
1116 * start over if we have not gotten any slots.
1117 */
1118 if (plist_node_empty(&next->avail_lists[node]))
1119 goto start_over;
1120 }
1121
1122 spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125 if (n_ret < n_goal)
1126 atomic_long_add((long)(n_goal - n_ret) * size,
1127 &nr_swap_pages);
1128 noswap:
1129 return n_ret;
1130 }
1131
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134 struct swap_info_struct *p;
1135 unsigned long offset;
1136
1137 if (!entry.val)
1138 goto out;
1139 p = swp_swap_info(entry);
1140 if (!p)
1141 goto bad_nofile;
1142 if (data_race(!(p->flags & SWP_USED)))
1143 goto bad_device;
1144 offset = swp_offset(entry);
1145 if (offset >= p->max)
1146 goto bad_offset;
1147 if (data_race(!p->swap_map[swp_offset(entry)]))
1148 goto bad_free;
1149 return p;
1150
1151 bad_free:
1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 goto out;
1154 bad_offset:
1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156 goto out;
1157 bad_device:
1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159 goto out;
1160 bad_nofile:
1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163 return NULL;
1164 }
1165
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 struct swap_info_struct *q)
1168 {
1169 struct swap_info_struct *p;
1170
1171 p = _swap_info_get(entry);
1172
1173 if (p != q) {
1174 if (q != NULL)
1175 spin_unlock(&q->lock);
1176 if (p != NULL)
1177 spin_lock(&p->lock);
1178 }
1179 return p;
1180 }
1181
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 unsigned long offset,
1184 unsigned char usage)
1185 {
1186 unsigned char count;
1187 unsigned char has_cache;
1188
1189 count = p->swap_map[offset];
1190
1191 has_cache = count & SWAP_HAS_CACHE;
1192 count &= ~SWAP_HAS_CACHE;
1193
1194 if (usage == SWAP_HAS_CACHE) {
1195 VM_BUG_ON(!has_cache);
1196 has_cache = 0;
1197 } else if (count == SWAP_MAP_SHMEM) {
1198 /*
1199 * Or we could insist on shmem.c using a special
1200 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 */
1202 count = 0;
1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 if (count == COUNT_CONTINUED) {
1205 if (swap_count_continued(p, offset, count))
1206 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 else
1208 count = SWAP_MAP_MAX;
1209 } else
1210 count--;
1211 }
1212
1213 usage = count | has_cache;
1214 if (usage)
1215 WRITE_ONCE(p->swap_map[offset], usage);
1216 else
1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219 return usage;
1220 }
1221
1222 /*
1223 * When we get a swap entry, if there aren't some other ways to
1224 * prevent swapoff, such as the folio in swap cache is locked, page
1225 * table lock is held, etc., the swap entry may become invalid because
1226 * of swapoff. Then, we need to enclose all swap related functions
1227 * with get_swap_device() and put_swap_device(), unless the swap
1228 * functions call get/put_swap_device() by themselves.
1229 *
1230 * Check whether swap entry is valid in the swap device. If so,
1231 * return pointer to swap_info_struct, and keep the swap entry valid
1232 * via preventing the swap device from being swapoff, until
1233 * put_swap_device() is called. Otherwise return NULL.
1234 *
1235 * Notice that swapoff or swapoff+swapon can still happen before the
1236 * percpu_ref_tryget_live() in get_swap_device() or after the
1237 * percpu_ref_put() in put_swap_device() if there isn't any other way
1238 * to prevent swapoff. The caller must be prepared for that. For
1239 * example, the following situation is possible.
1240 *
1241 * CPU1 CPU2
1242 * do_swap_page()
1243 * ... swapoff+swapon
1244 * __read_swap_cache_async()
1245 * swapcache_prepare()
1246 * __swap_duplicate()
1247 * // check swap_map
1248 * // verify PTE not changed
1249 *
1250 * In __swap_duplicate(), the swap_map need to be checked before
1251 * changing partly because the specified swap entry may be for another
1252 * swap device which has been swapoff. And in do_swap_page(), after
1253 * the page is read from the swap device, the PTE is verified not
1254 * changed with the page table locked to check whether the swap device
1255 * has been swapoff or swapoff+swapon.
1256 */
1257 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258 {
1259 struct swap_info_struct *si;
1260 unsigned long offset;
1261
1262 if (!entry.val)
1263 goto out;
1264 si = swp_swap_info(entry);
1265 if (!si)
1266 goto bad_nofile;
1267 if (!percpu_ref_tryget_live(&si->users))
1268 goto out;
1269 /*
1270 * Guarantee the si->users are checked before accessing other
1271 * fields of swap_info_struct.
1272 *
1273 * Paired with the spin_unlock() after setup_swap_info() in
1274 * enable_swap_info().
1275 */
1276 smp_rmb();
1277 offset = swp_offset(entry);
1278 if (offset >= si->max)
1279 goto put_out;
1280
1281 return si;
1282 bad_nofile:
1283 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284 out:
1285 return NULL;
1286 put_out:
1287 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288 percpu_ref_put(&si->users);
1289 return NULL;
1290 }
1291
1292 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293 swp_entry_t entry)
1294 {
1295 struct swap_cluster_info *ci;
1296 unsigned long offset = swp_offset(entry);
1297 unsigned char usage;
1298
1299 ci = lock_cluster_or_swap_info(p, offset);
1300 usage = __swap_entry_free_locked(p, offset, 1);
1301 unlock_cluster_or_swap_info(p, ci);
1302 if (!usage)
1303 free_swap_slot(entry);
1304
1305 return usage;
1306 }
1307
1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309 {
1310 struct swap_cluster_info *ci;
1311 unsigned long offset = swp_offset(entry);
1312 unsigned char count;
1313
1314 ci = lock_cluster(p, offset);
1315 count = p->swap_map[offset];
1316 VM_BUG_ON(count != SWAP_HAS_CACHE);
1317 p->swap_map[offset] = 0;
1318 dec_cluster_info_page(p, p->cluster_info, offset);
1319 unlock_cluster(ci);
1320
1321 mem_cgroup_uncharge_swap(entry, 1);
1322 swap_range_free(p, offset, 1);
1323 }
1324
1325 /*
1326 * Caller has made sure that the swap device corresponding to entry
1327 * is still around or has not been recycled.
1328 */
1329 void swap_free(swp_entry_t entry)
1330 {
1331 struct swap_info_struct *p;
1332
1333 p = _swap_info_get(entry);
1334 if (p)
1335 __swap_entry_free(p, entry);
1336 }
1337
1338 /*
1339 * Called after dropping swapcache to decrease refcnt to swap entries.
1340 */
1341 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342 {
1343 unsigned long offset = swp_offset(entry);
1344 unsigned long idx = offset / SWAPFILE_CLUSTER;
1345 struct swap_cluster_info *ci;
1346 struct swap_info_struct *si;
1347 unsigned char *map;
1348 unsigned int i, free_entries = 0;
1349 unsigned char val;
1350 int size = swap_entry_size(folio_nr_pages(folio));
1351
1352 si = _swap_info_get(entry);
1353 if (!si)
1354 return;
1355
1356 ci = lock_cluster_or_swap_info(si, offset);
1357 if (size == SWAPFILE_CLUSTER) {
1358 VM_BUG_ON(!cluster_is_huge(ci));
1359 map = si->swap_map + offset;
1360 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361 val = map[i];
1362 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363 if (val == SWAP_HAS_CACHE)
1364 free_entries++;
1365 }
1366 cluster_clear_huge(ci);
1367 if (free_entries == SWAPFILE_CLUSTER) {
1368 unlock_cluster_or_swap_info(si, ci);
1369 spin_lock(&si->lock);
1370 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371 swap_free_cluster(si, idx);
1372 spin_unlock(&si->lock);
1373 return;
1374 }
1375 }
1376 for (i = 0; i < size; i++, entry.val++) {
1377 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378 unlock_cluster_or_swap_info(si, ci);
1379 free_swap_slot(entry);
1380 if (i == size - 1)
1381 return;
1382 lock_cluster_or_swap_info(si, offset);
1383 }
1384 }
1385 unlock_cluster_or_swap_info(si, ci);
1386 }
1387
1388 #ifdef CONFIG_THP_SWAP
1389 int split_swap_cluster(swp_entry_t entry)
1390 {
1391 struct swap_info_struct *si;
1392 struct swap_cluster_info *ci;
1393 unsigned long offset = swp_offset(entry);
1394
1395 si = _swap_info_get(entry);
1396 if (!si)
1397 return -EBUSY;
1398 ci = lock_cluster(si, offset);
1399 cluster_clear_huge(ci);
1400 unlock_cluster(ci);
1401 return 0;
1402 }
1403 #endif
1404
1405 static int swp_entry_cmp(const void *ent1, const void *ent2)
1406 {
1407 const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409 return (int)swp_type(*e1) - (int)swp_type(*e2);
1410 }
1411
1412 void swapcache_free_entries(swp_entry_t *entries, int n)
1413 {
1414 struct swap_info_struct *p, *prev;
1415 int i;
1416
1417 if (n <= 0)
1418 return;
1419
1420 prev = NULL;
1421 p = NULL;
1422
1423 /*
1424 * Sort swap entries by swap device, so each lock is only taken once.
1425 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426 * so low that it isn't necessary to optimize further.
1427 */
1428 if (nr_swapfiles > 1)
1429 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430 for (i = 0; i < n; ++i) {
1431 p = swap_info_get_cont(entries[i], prev);
1432 if (p)
1433 swap_entry_free(p, entries[i]);
1434 prev = p;
1435 }
1436 if (p)
1437 spin_unlock(&p->lock);
1438 }
1439
1440 int __swap_count(swp_entry_t entry)
1441 {
1442 struct swap_info_struct *si = swp_swap_info(entry);
1443 pgoff_t offset = swp_offset(entry);
1444
1445 return swap_count(si->swap_map[offset]);
1446 }
1447
1448 /*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454 {
1455 pgoff_t offset = swp_offset(entry);
1456 struct swap_cluster_info *ci;
1457 int count;
1458
1459 ci = lock_cluster_or_swap_info(si, offset);
1460 count = swap_count(si->swap_map[offset]);
1461 unlock_cluster_or_swap_info(si, ci);
1462 return count;
1463 }
1464
1465 /*
1466 * How many references to @entry are currently swapped out?
1467 * This considers COUNT_CONTINUED so it returns exact answer.
1468 */
1469 int swp_swapcount(swp_entry_t entry)
1470 {
1471 int count, tmp_count, n;
1472 struct swap_info_struct *p;
1473 struct swap_cluster_info *ci;
1474 struct page *page;
1475 pgoff_t offset;
1476 unsigned char *map;
1477
1478 p = _swap_info_get(entry);
1479 if (!p)
1480 return 0;
1481
1482 offset = swp_offset(entry);
1483
1484 ci = lock_cluster_or_swap_info(p, offset);
1485
1486 count = swap_count(p->swap_map[offset]);
1487 if (!(count & COUNT_CONTINUED))
1488 goto out;
1489
1490 count &= ~COUNT_CONTINUED;
1491 n = SWAP_MAP_MAX + 1;
1492
1493 page = vmalloc_to_page(p->swap_map + offset);
1494 offset &= ~PAGE_MASK;
1495 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497 do {
1498 page = list_next_entry(page, lru);
1499 map = kmap_atomic(page);
1500 tmp_count = map[offset];
1501 kunmap_atomic(map);
1502
1503 count += (tmp_count & ~COUNT_CONTINUED) * n;
1504 n *= (SWAP_CONT_MAX + 1);
1505 } while (tmp_count & COUNT_CONTINUED);
1506 out:
1507 unlock_cluster_or_swap_info(p, ci);
1508 return count;
1509 }
1510
1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512 swp_entry_t entry)
1513 {
1514 struct swap_cluster_info *ci;
1515 unsigned char *map = si->swap_map;
1516 unsigned long roffset = swp_offset(entry);
1517 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518 int i;
1519 bool ret = false;
1520
1521 ci = lock_cluster_or_swap_info(si, offset);
1522 if (!ci || !cluster_is_huge(ci)) {
1523 if (swap_count(map[roffset]))
1524 ret = true;
1525 goto unlock_out;
1526 }
1527 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528 if (swap_count(map[offset + i])) {
1529 ret = true;
1530 break;
1531 }
1532 }
1533 unlock_out:
1534 unlock_cluster_or_swap_info(si, ci);
1535 return ret;
1536 }
1537
1538 static bool folio_swapped(struct folio *folio)
1539 {
1540 swp_entry_t entry = folio_swap_entry(folio);
1541 struct swap_info_struct *si = _swap_info_get(entry);
1542
1543 if (!si)
1544 return false;
1545
1546 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547 return swap_swapcount(si, entry) != 0;
1548
1549 return swap_page_trans_huge_swapped(si, entry);
1550 }
1551
1552 /**
1553 * folio_free_swap() - Free the swap space used for this folio.
1554 * @folio: The folio to remove.
1555 *
1556 * If swap is getting full, or if there are no more mappings of this folio,
1557 * then call folio_free_swap to free its swap space.
1558 *
1559 * Return: true if we were able to release the swap space.
1560 */
1561 bool folio_free_swap(struct folio *folio)
1562 {
1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565 if (!folio_test_swapcache(folio))
1566 return false;
1567 if (folio_test_writeback(folio))
1568 return false;
1569 if (folio_swapped(folio))
1570 return false;
1571
1572 /*
1573 * Once hibernation has begun to create its image of memory,
1574 * there's a danger that one of the calls to folio_free_swap()
1575 * - most probably a call from __try_to_reclaim_swap() while
1576 * hibernation is allocating its own swap pages for the image,
1577 * but conceivably even a call from memory reclaim - will free
1578 * the swap from a folio which has already been recorded in the
1579 * image as a clean swapcache folio, and then reuse its swap for
1580 * another page of the image. On waking from hibernation, the
1581 * original folio might be freed under memory pressure, then
1582 * later read back in from swap, now with the wrong data.
1583 *
1584 * Hibernation suspends storage while it is writing the image
1585 * to disk so check that here.
1586 */
1587 if (pm_suspended_storage())
1588 return false;
1589
1590 delete_from_swap_cache(folio);
1591 folio_set_dirty(folio);
1592 return true;
1593 }
1594
1595 /*
1596 * Free the swap entry like above, but also try to
1597 * free the page cache entry if it is the last user.
1598 */
1599 int free_swap_and_cache(swp_entry_t entry)
1600 {
1601 struct swap_info_struct *p;
1602 unsigned char count;
1603
1604 if (non_swap_entry(entry))
1605 return 1;
1606
1607 p = _swap_info_get(entry);
1608 if (p) {
1609 count = __swap_entry_free(p, entry);
1610 if (count == SWAP_HAS_CACHE &&
1611 !swap_page_trans_huge_swapped(p, entry))
1612 __try_to_reclaim_swap(p, swp_offset(entry),
1613 TTRS_UNMAPPED | TTRS_FULL);
1614 }
1615 return p != NULL;
1616 }
1617
1618 #ifdef CONFIG_HIBERNATION
1619
1620 swp_entry_t get_swap_page_of_type(int type)
1621 {
1622 struct swap_info_struct *si = swap_type_to_swap_info(type);
1623 swp_entry_t entry = {0};
1624
1625 if (!si)
1626 goto fail;
1627
1628 /* This is called for allocating swap entry, not cache */
1629 spin_lock(&si->lock);
1630 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631 atomic_long_dec(&nr_swap_pages);
1632 spin_unlock(&si->lock);
1633 fail:
1634 return entry;
1635 }
1636
1637 /*
1638 * Find the swap type that corresponds to given device (if any).
1639 *
1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641 * from 0, in which the swap header is expected to be located.
1642 *
1643 * This is needed for the suspend to disk (aka swsusp).
1644 */
1645 int swap_type_of(dev_t device, sector_t offset)
1646 {
1647 int type;
1648
1649 if (!device)
1650 return -1;
1651
1652 spin_lock(&swap_lock);
1653 for (type = 0; type < nr_swapfiles; type++) {
1654 struct swap_info_struct *sis = swap_info[type];
1655
1656 if (!(sis->flags & SWP_WRITEOK))
1657 continue;
1658
1659 if (device == sis->bdev->bd_dev) {
1660 struct swap_extent *se = first_se(sis);
1661
1662 if (se->start_block == offset) {
1663 spin_unlock(&swap_lock);
1664 return type;
1665 }
1666 }
1667 }
1668 spin_unlock(&swap_lock);
1669 return -ENODEV;
1670 }
1671
1672 int find_first_swap(dev_t *device)
1673 {
1674 int type;
1675
1676 spin_lock(&swap_lock);
1677 for (type = 0; type < nr_swapfiles; type++) {
1678 struct swap_info_struct *sis = swap_info[type];
1679
1680 if (!(sis->flags & SWP_WRITEOK))
1681 continue;
1682 *device = sis->bdev->bd_dev;
1683 spin_unlock(&swap_lock);
1684 return type;
1685 }
1686 spin_unlock(&swap_lock);
1687 return -ENODEV;
1688 }
1689
1690 /*
1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692 * corresponding to given index in swap_info (swap type).
1693 */
1694 sector_t swapdev_block(int type, pgoff_t offset)
1695 {
1696 struct swap_info_struct *si = swap_type_to_swap_info(type);
1697 struct swap_extent *se;
1698
1699 if (!si || !(si->flags & SWP_WRITEOK))
1700 return 0;
1701 se = offset_to_swap_extent(si, offset);
1702 return se->start_block + (offset - se->start_page);
1703 }
1704
1705 /*
1706 * Return either the total number of swap pages of given type, or the number
1707 * of free pages of that type (depending on @free)
1708 *
1709 * This is needed for software suspend
1710 */
1711 unsigned int count_swap_pages(int type, int free)
1712 {
1713 unsigned int n = 0;
1714
1715 spin_lock(&swap_lock);
1716 if ((unsigned int)type < nr_swapfiles) {
1717 struct swap_info_struct *sis = swap_info[type];
1718
1719 spin_lock(&sis->lock);
1720 if (sis->flags & SWP_WRITEOK) {
1721 n = sis->pages;
1722 if (free)
1723 n -= sis->inuse_pages;
1724 }
1725 spin_unlock(&sis->lock);
1726 }
1727 spin_unlock(&swap_lock);
1728 return n;
1729 }
1730 #endif /* CONFIG_HIBERNATION */
1731
1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733 {
1734 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735 }
1736
1737 /*
1738 * No need to decide whether this PTE shares the swap entry with others,
1739 * just let do_wp_page work it out if a write is requested later - to
1740 * force COW, vm_page_prot omits write permission from any private vma.
1741 */
1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743 unsigned long addr, swp_entry_t entry, struct folio *folio)
1744 {
1745 struct page *page = folio_file_page(folio, swp_offset(entry));
1746 struct page *swapcache;
1747 spinlock_t *ptl;
1748 pte_t *pte, new_pte, old_pte;
1749 bool hwpoisoned = PageHWPoison(page);
1750 int ret = 1;
1751
1752 swapcache = page;
1753 page = ksm_might_need_to_copy(page, vma, addr);
1754 if (unlikely(!page))
1755 return -ENOMEM;
1756 else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1757 hwpoisoned = true;
1758
1759 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1760 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1761 swp_entry_to_pte(entry)))) {
1762 ret = 0;
1763 goto out;
1764 }
1765
1766 old_pte = ptep_get(pte);
1767
1768 if (unlikely(hwpoisoned || !PageUptodate(page))) {
1769 swp_entry_t swp_entry;
1770
1771 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1772 if (hwpoisoned) {
1773 swp_entry = make_hwpoison_entry(swapcache);
1774 page = swapcache;
1775 } else {
1776 swp_entry = make_swapin_error_entry();
1777 }
1778 new_pte = swp_entry_to_pte(swp_entry);
1779 ret = 0;
1780 goto setpte;
1781 }
1782
1783 /* See do_swap_page() */
1784 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1785 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1786
1787 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1788 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1789 get_page(page);
1790 if (page == swapcache) {
1791 rmap_t rmap_flags = RMAP_NONE;
1792
1793 /*
1794 * See do_swap_page(): PageWriteback() would be problematic.
1795 * However, we do a wait_on_page_writeback() just before this
1796 * call and have the page locked.
1797 */
1798 VM_BUG_ON_PAGE(PageWriteback(page), page);
1799 if (pte_swp_exclusive(old_pte))
1800 rmap_flags |= RMAP_EXCLUSIVE;
1801
1802 page_add_anon_rmap(page, vma, addr, rmap_flags);
1803 } else { /* ksm created a completely new copy */
1804 page_add_new_anon_rmap(page, vma, addr);
1805 lru_cache_add_inactive_or_unevictable(page, vma);
1806 }
1807 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1808 if (pte_swp_soft_dirty(old_pte))
1809 new_pte = pte_mksoft_dirty(new_pte);
1810 if (pte_swp_uffd_wp(old_pte))
1811 new_pte = pte_mkuffd_wp(new_pte);
1812 setpte:
1813 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1814 swap_free(entry);
1815 out:
1816 if (pte)
1817 pte_unmap_unlock(pte, ptl);
1818 if (page != swapcache) {
1819 unlock_page(page);
1820 put_page(page);
1821 }
1822 return ret;
1823 }
1824
1825 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1826 unsigned long addr, unsigned long end,
1827 unsigned int type)
1828 {
1829 pte_t *pte = NULL;
1830 struct swap_info_struct *si;
1831
1832 si = swap_info[type];
1833 do {
1834 struct folio *folio;
1835 unsigned long offset;
1836 unsigned char swp_count;
1837 swp_entry_t entry;
1838 int ret;
1839 pte_t ptent;
1840
1841 if (!pte++) {
1842 pte = pte_offset_map(pmd, addr);
1843 if (!pte)
1844 break;
1845 }
1846
1847 ptent = ptep_get_lockless(pte);
1848
1849 if (!is_swap_pte(ptent))
1850 continue;
1851
1852 entry = pte_to_swp_entry(ptent);
1853 if (swp_type(entry) != type)
1854 continue;
1855
1856 offset = swp_offset(entry);
1857 pte_unmap(pte);
1858 pte = NULL;
1859
1860 folio = swap_cache_get_folio(entry, vma, addr);
1861 if (!folio) {
1862 struct page *page;
1863 struct vm_fault vmf = {
1864 .vma = vma,
1865 .address = addr,
1866 .real_address = addr,
1867 .pmd = pmd,
1868 };
1869
1870 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1871 &vmf);
1872 if (page)
1873 folio = page_folio(page);
1874 }
1875 if (!folio) {
1876 swp_count = READ_ONCE(si->swap_map[offset]);
1877 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1878 continue;
1879 return -ENOMEM;
1880 }
1881
1882 folio_lock(folio);
1883 folio_wait_writeback(folio);
1884 ret = unuse_pte(vma, pmd, addr, entry, folio);
1885 if (ret < 0) {
1886 folio_unlock(folio);
1887 folio_put(folio);
1888 return ret;
1889 }
1890
1891 folio_free_swap(folio);
1892 folio_unlock(folio);
1893 folio_put(folio);
1894 } while (addr += PAGE_SIZE, addr != end);
1895
1896 if (pte)
1897 pte_unmap(pte);
1898 return 0;
1899 }
1900
1901 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1902 unsigned long addr, unsigned long end,
1903 unsigned int type)
1904 {
1905 pmd_t *pmd;
1906 unsigned long next;
1907 int ret;
1908
1909 pmd = pmd_offset(pud, addr);
1910 do {
1911 cond_resched();
1912 next = pmd_addr_end(addr, end);
1913 ret = unuse_pte_range(vma, pmd, addr, next, type);
1914 if (ret)
1915 return ret;
1916 } while (pmd++, addr = next, addr != end);
1917 return 0;
1918 }
1919
1920 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1921 unsigned long addr, unsigned long end,
1922 unsigned int type)
1923 {
1924 pud_t *pud;
1925 unsigned long next;
1926 int ret;
1927
1928 pud = pud_offset(p4d, addr);
1929 do {
1930 next = pud_addr_end(addr, end);
1931 if (pud_none_or_clear_bad(pud))
1932 continue;
1933 ret = unuse_pmd_range(vma, pud, addr, next, type);
1934 if (ret)
1935 return ret;
1936 } while (pud++, addr = next, addr != end);
1937 return 0;
1938 }
1939
1940 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1941 unsigned long addr, unsigned long end,
1942 unsigned int type)
1943 {
1944 p4d_t *p4d;
1945 unsigned long next;
1946 int ret;
1947
1948 p4d = p4d_offset(pgd, addr);
1949 do {
1950 next = p4d_addr_end(addr, end);
1951 if (p4d_none_or_clear_bad(p4d))
1952 continue;
1953 ret = unuse_pud_range(vma, p4d, addr, next, type);
1954 if (ret)
1955 return ret;
1956 } while (p4d++, addr = next, addr != end);
1957 return 0;
1958 }
1959
1960 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1961 {
1962 pgd_t *pgd;
1963 unsigned long addr, end, next;
1964 int ret;
1965
1966 addr = vma->vm_start;
1967 end = vma->vm_end;
1968
1969 pgd = pgd_offset(vma->vm_mm, addr);
1970 do {
1971 next = pgd_addr_end(addr, end);
1972 if (pgd_none_or_clear_bad(pgd))
1973 continue;
1974 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1975 if (ret)
1976 return ret;
1977 } while (pgd++, addr = next, addr != end);
1978 return 0;
1979 }
1980
1981 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1982 {
1983 struct vm_area_struct *vma;
1984 int ret = 0;
1985 VMA_ITERATOR(vmi, mm, 0);
1986
1987 mmap_read_lock(mm);
1988 for_each_vma(vmi, vma) {
1989 if (vma->anon_vma) {
1990 ret = unuse_vma(vma, type);
1991 if (ret)
1992 break;
1993 }
1994
1995 cond_resched();
1996 }
1997 mmap_read_unlock(mm);
1998 return ret;
1999 }
2000
2001 /*
2002 * Scan swap_map from current position to next entry still in use.
2003 * Return 0 if there are no inuse entries after prev till end of
2004 * the map.
2005 */
2006 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2007 unsigned int prev)
2008 {
2009 unsigned int i;
2010 unsigned char count;
2011
2012 /*
2013 * No need for swap_lock here: we're just looking
2014 * for whether an entry is in use, not modifying it; false
2015 * hits are okay, and sys_swapoff() has already prevented new
2016 * allocations from this area (while holding swap_lock).
2017 */
2018 for (i = prev + 1; i < si->max; i++) {
2019 count = READ_ONCE(si->swap_map[i]);
2020 if (count && swap_count(count) != SWAP_MAP_BAD)
2021 break;
2022 if ((i % LATENCY_LIMIT) == 0)
2023 cond_resched();
2024 }
2025
2026 if (i == si->max)
2027 i = 0;
2028
2029 return i;
2030 }
2031
2032 static int try_to_unuse(unsigned int type)
2033 {
2034 struct mm_struct *prev_mm;
2035 struct mm_struct *mm;
2036 struct list_head *p;
2037 int retval = 0;
2038 struct swap_info_struct *si = swap_info[type];
2039 struct folio *folio;
2040 swp_entry_t entry;
2041 unsigned int i;
2042
2043 if (!READ_ONCE(si->inuse_pages))
2044 return 0;
2045
2046 retry:
2047 retval = shmem_unuse(type);
2048 if (retval)
2049 return retval;
2050
2051 prev_mm = &init_mm;
2052 mmget(prev_mm);
2053
2054 spin_lock(&mmlist_lock);
2055 p = &init_mm.mmlist;
2056 while (READ_ONCE(si->inuse_pages) &&
2057 !signal_pending(current) &&
2058 (p = p->next) != &init_mm.mmlist) {
2059
2060 mm = list_entry(p, struct mm_struct, mmlist);
2061 if (!mmget_not_zero(mm))
2062 continue;
2063 spin_unlock(&mmlist_lock);
2064 mmput(prev_mm);
2065 prev_mm = mm;
2066 retval = unuse_mm(mm, type);
2067 if (retval) {
2068 mmput(prev_mm);
2069 return retval;
2070 }
2071
2072 /*
2073 * Make sure that we aren't completely killing
2074 * interactive performance.
2075 */
2076 cond_resched();
2077 spin_lock(&mmlist_lock);
2078 }
2079 spin_unlock(&mmlist_lock);
2080
2081 mmput(prev_mm);
2082
2083 i = 0;
2084 while (READ_ONCE(si->inuse_pages) &&
2085 !signal_pending(current) &&
2086 (i = find_next_to_unuse(si, i)) != 0) {
2087
2088 entry = swp_entry(type, i);
2089 folio = filemap_get_folio(swap_address_space(entry), i);
2090 if (IS_ERR(folio))
2091 continue;
2092
2093 /*
2094 * It is conceivable that a racing task removed this folio from
2095 * swap cache just before we acquired the page lock. The folio
2096 * might even be back in swap cache on another swap area. But
2097 * that is okay, folio_free_swap() only removes stale folios.
2098 */
2099 folio_lock(folio);
2100 folio_wait_writeback(folio);
2101 folio_free_swap(folio);
2102 folio_unlock(folio);
2103 folio_put(folio);
2104 }
2105
2106 /*
2107 * Lets check again to see if there are still swap entries in the map.
2108 * If yes, we would need to do retry the unuse logic again.
2109 * Under global memory pressure, swap entries can be reinserted back
2110 * into process space after the mmlist loop above passes over them.
2111 *
2112 * Limit the number of retries? No: when mmget_not_zero()
2113 * above fails, that mm is likely to be freeing swap from
2114 * exit_mmap(), which proceeds at its own independent pace;
2115 * and even shmem_writepage() could have been preempted after
2116 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2117 * and robust (though cpu-intensive) just to keep retrying.
2118 */
2119 if (READ_ONCE(si->inuse_pages)) {
2120 if (!signal_pending(current))
2121 goto retry;
2122 return -EINTR;
2123 }
2124
2125 return 0;
2126 }
2127
2128 /*
2129 * After a successful try_to_unuse, if no swap is now in use, we know
2130 * we can empty the mmlist. swap_lock must be held on entry and exit.
2131 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2132 * added to the mmlist just after page_duplicate - before would be racy.
2133 */
2134 static void drain_mmlist(void)
2135 {
2136 struct list_head *p, *next;
2137 unsigned int type;
2138
2139 for (type = 0; type < nr_swapfiles; type++)
2140 if (swap_info[type]->inuse_pages)
2141 return;
2142 spin_lock(&mmlist_lock);
2143 list_for_each_safe(p, next, &init_mm.mmlist)
2144 list_del_init(p);
2145 spin_unlock(&mmlist_lock);
2146 }
2147
2148 /*
2149 * Free all of a swapdev's extent information
2150 */
2151 static void destroy_swap_extents(struct swap_info_struct *sis)
2152 {
2153 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2154 struct rb_node *rb = sis->swap_extent_root.rb_node;
2155 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2156
2157 rb_erase(rb, &sis->swap_extent_root);
2158 kfree(se);
2159 }
2160
2161 if (sis->flags & SWP_ACTIVATED) {
2162 struct file *swap_file = sis->swap_file;
2163 struct address_space *mapping = swap_file->f_mapping;
2164
2165 sis->flags &= ~SWP_ACTIVATED;
2166 if (mapping->a_ops->swap_deactivate)
2167 mapping->a_ops->swap_deactivate(swap_file);
2168 }
2169 }
2170
2171 /*
2172 * Add a block range (and the corresponding page range) into this swapdev's
2173 * extent tree.
2174 *
2175 * This function rather assumes that it is called in ascending page order.
2176 */
2177 int
2178 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2179 unsigned long nr_pages, sector_t start_block)
2180 {
2181 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2182 struct swap_extent *se;
2183 struct swap_extent *new_se;
2184
2185 /*
2186 * place the new node at the right most since the
2187 * function is called in ascending page order.
2188 */
2189 while (*link) {
2190 parent = *link;
2191 link = &parent->rb_right;
2192 }
2193
2194 if (parent) {
2195 se = rb_entry(parent, struct swap_extent, rb_node);
2196 BUG_ON(se->start_page + se->nr_pages != start_page);
2197 if (se->start_block + se->nr_pages == start_block) {
2198 /* Merge it */
2199 se->nr_pages += nr_pages;
2200 return 0;
2201 }
2202 }
2203
2204 /* No merge, insert a new extent. */
2205 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2206 if (new_se == NULL)
2207 return -ENOMEM;
2208 new_se->start_page = start_page;
2209 new_se->nr_pages = nr_pages;
2210 new_se->start_block = start_block;
2211
2212 rb_link_node(&new_se->rb_node, parent, link);
2213 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2214 return 1;
2215 }
2216 EXPORT_SYMBOL_GPL(add_swap_extent);
2217
2218 /*
2219 * A `swap extent' is a simple thing which maps a contiguous range of pages
2220 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2221 * built at swapon time and is then used at swap_writepage/swap_readpage
2222 * time for locating where on disk a page belongs.
2223 *
2224 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2225 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2226 * swap files identically.
2227 *
2228 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2229 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2230 * swapfiles are handled *identically* after swapon time.
2231 *
2232 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2233 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2234 * blocks are found which do not fall within the PAGE_SIZE alignment
2235 * requirements, they are simply tossed out - we will never use those blocks
2236 * for swapping.
2237 *
2238 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2239 * prevents users from writing to the swap device, which will corrupt memory.
2240 *
2241 * The amount of disk space which a single swap extent represents varies.
2242 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2243 * extents in the rbtree. - akpm.
2244 */
2245 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2246 {
2247 struct file *swap_file = sis->swap_file;
2248 struct address_space *mapping = swap_file->f_mapping;
2249 struct inode *inode = mapping->host;
2250 int ret;
2251
2252 if (S_ISBLK(inode->i_mode)) {
2253 ret = add_swap_extent(sis, 0, sis->max, 0);
2254 *span = sis->pages;
2255 return ret;
2256 }
2257
2258 if (mapping->a_ops->swap_activate) {
2259 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2260 if (ret < 0)
2261 return ret;
2262 sis->flags |= SWP_ACTIVATED;
2263 if ((sis->flags & SWP_FS_OPS) &&
2264 sio_pool_init() != 0) {
2265 destroy_swap_extents(sis);
2266 return -ENOMEM;
2267 }
2268 return ret;
2269 }
2270
2271 return generic_swapfile_activate(sis, swap_file, span);
2272 }
2273
2274 static int swap_node(struct swap_info_struct *p)
2275 {
2276 struct block_device *bdev;
2277
2278 if (p->bdev)
2279 bdev = p->bdev;
2280 else
2281 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2282
2283 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2284 }
2285
2286 static void setup_swap_info(struct swap_info_struct *p, int prio,
2287 unsigned char *swap_map,
2288 struct swap_cluster_info *cluster_info)
2289 {
2290 int i;
2291
2292 if (prio >= 0)
2293 p->prio = prio;
2294 else
2295 p->prio = --least_priority;
2296 /*
2297 * the plist prio is negated because plist ordering is
2298 * low-to-high, while swap ordering is high-to-low
2299 */
2300 p->list.prio = -p->prio;
2301 for_each_node(i) {
2302 if (p->prio >= 0)
2303 p->avail_lists[i].prio = -p->prio;
2304 else {
2305 if (swap_node(p) == i)
2306 p->avail_lists[i].prio = 1;
2307 else
2308 p->avail_lists[i].prio = -p->prio;
2309 }
2310 }
2311 p->swap_map = swap_map;
2312 p->cluster_info = cluster_info;
2313 }
2314
2315 static void _enable_swap_info(struct swap_info_struct *p)
2316 {
2317 p->flags |= SWP_WRITEOK;
2318 atomic_long_add(p->pages, &nr_swap_pages);
2319 total_swap_pages += p->pages;
2320
2321 assert_spin_locked(&swap_lock);
2322 /*
2323 * both lists are plists, and thus priority ordered.
2324 * swap_active_head needs to be priority ordered for swapoff(),
2325 * which on removal of any swap_info_struct with an auto-assigned
2326 * (i.e. negative) priority increments the auto-assigned priority
2327 * of any lower-priority swap_info_structs.
2328 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2329 * which allocates swap pages from the highest available priority
2330 * swap_info_struct.
2331 */
2332 plist_add(&p->list, &swap_active_head);
2333 add_to_avail_list(p);
2334 }
2335
2336 static void enable_swap_info(struct swap_info_struct *p, int prio,
2337 unsigned char *swap_map,
2338 struct swap_cluster_info *cluster_info,
2339 unsigned long *frontswap_map)
2340 {
2341 if (IS_ENABLED(CONFIG_FRONTSWAP))
2342 frontswap_init(p->type, frontswap_map);
2343 spin_lock(&swap_lock);
2344 spin_lock(&p->lock);
2345 setup_swap_info(p, prio, swap_map, cluster_info);
2346 spin_unlock(&p->lock);
2347 spin_unlock(&swap_lock);
2348 /*
2349 * Finished initializing swap device, now it's safe to reference it.
2350 */
2351 percpu_ref_resurrect(&p->users);
2352 spin_lock(&swap_lock);
2353 spin_lock(&p->lock);
2354 _enable_swap_info(p);
2355 spin_unlock(&p->lock);
2356 spin_unlock(&swap_lock);
2357 }
2358
2359 static void reinsert_swap_info(struct swap_info_struct *p)
2360 {
2361 spin_lock(&swap_lock);
2362 spin_lock(&p->lock);
2363 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2364 _enable_swap_info(p);
2365 spin_unlock(&p->lock);
2366 spin_unlock(&swap_lock);
2367 }
2368
2369 bool has_usable_swap(void)
2370 {
2371 bool ret = true;
2372
2373 spin_lock(&swap_lock);
2374 if (plist_head_empty(&swap_active_head))
2375 ret = false;
2376 spin_unlock(&swap_lock);
2377 return ret;
2378 }
2379
2380 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2381 {
2382 struct swap_info_struct *p = NULL;
2383 unsigned char *swap_map;
2384 struct swap_cluster_info *cluster_info;
2385 unsigned long *frontswap_map;
2386 struct file *swap_file, *victim;
2387 struct address_space *mapping;
2388 struct inode *inode;
2389 struct filename *pathname;
2390 int err, found = 0;
2391 unsigned int old_block_size;
2392
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2395
2396 BUG_ON(!current->mm);
2397
2398 pathname = getname(specialfile);
2399 if (IS_ERR(pathname))
2400 return PTR_ERR(pathname);
2401
2402 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2403 err = PTR_ERR(victim);
2404 if (IS_ERR(victim))
2405 goto out;
2406
2407 mapping = victim->f_mapping;
2408 spin_lock(&swap_lock);
2409 plist_for_each_entry(p, &swap_active_head, list) {
2410 if (p->flags & SWP_WRITEOK) {
2411 if (p->swap_file->f_mapping == mapping) {
2412 found = 1;
2413 break;
2414 }
2415 }
2416 }
2417 if (!found) {
2418 err = -EINVAL;
2419 spin_unlock(&swap_lock);
2420 goto out_dput;
2421 }
2422 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2423 vm_unacct_memory(p->pages);
2424 else {
2425 err = -ENOMEM;
2426 spin_unlock(&swap_lock);
2427 goto out_dput;
2428 }
2429 spin_lock(&p->lock);
2430 del_from_avail_list(p);
2431 if (p->prio < 0) {
2432 struct swap_info_struct *si = p;
2433 int nid;
2434
2435 plist_for_each_entry_continue(si, &swap_active_head, list) {
2436 si->prio++;
2437 si->list.prio--;
2438 for_each_node(nid) {
2439 if (si->avail_lists[nid].prio != 1)
2440 si->avail_lists[nid].prio--;
2441 }
2442 }
2443 least_priority++;
2444 }
2445 plist_del(&p->list, &swap_active_head);
2446 atomic_long_sub(p->pages, &nr_swap_pages);
2447 total_swap_pages -= p->pages;
2448 p->flags &= ~SWP_WRITEOK;
2449 spin_unlock(&p->lock);
2450 spin_unlock(&swap_lock);
2451
2452 disable_swap_slots_cache_lock();
2453
2454 set_current_oom_origin();
2455 err = try_to_unuse(p->type);
2456 clear_current_oom_origin();
2457
2458 if (err) {
2459 /* re-insert swap space back into swap_list */
2460 reinsert_swap_info(p);
2461 reenable_swap_slots_cache_unlock();
2462 goto out_dput;
2463 }
2464
2465 reenable_swap_slots_cache_unlock();
2466
2467 /*
2468 * Wait for swap operations protected by get/put_swap_device()
2469 * to complete.
2470 *
2471 * We need synchronize_rcu() here to protect the accessing to
2472 * the swap cache data structure.
2473 */
2474 percpu_ref_kill(&p->users);
2475 synchronize_rcu();
2476 wait_for_completion(&p->comp);
2477
2478 flush_work(&p->discard_work);
2479
2480 destroy_swap_extents(p);
2481 if (p->flags & SWP_CONTINUED)
2482 free_swap_count_continuations(p);
2483
2484 if (!p->bdev || !bdev_nonrot(p->bdev))
2485 atomic_dec(&nr_rotate_swap);
2486
2487 mutex_lock(&swapon_mutex);
2488 spin_lock(&swap_lock);
2489 spin_lock(&p->lock);
2490 drain_mmlist();
2491
2492 /* wait for anyone still in scan_swap_map_slots */
2493 p->highest_bit = 0; /* cuts scans short */
2494 while (p->flags >= SWP_SCANNING) {
2495 spin_unlock(&p->lock);
2496 spin_unlock(&swap_lock);
2497 schedule_timeout_uninterruptible(1);
2498 spin_lock(&swap_lock);
2499 spin_lock(&p->lock);
2500 }
2501
2502 swap_file = p->swap_file;
2503 old_block_size = p->old_block_size;
2504 p->swap_file = NULL;
2505 p->max = 0;
2506 swap_map = p->swap_map;
2507 p->swap_map = NULL;
2508 cluster_info = p->cluster_info;
2509 p->cluster_info = NULL;
2510 frontswap_map = frontswap_map_get(p);
2511 spin_unlock(&p->lock);
2512 spin_unlock(&swap_lock);
2513 arch_swap_invalidate_area(p->type);
2514 frontswap_invalidate_area(p->type);
2515 frontswap_map_set(p, NULL);
2516 mutex_unlock(&swapon_mutex);
2517 free_percpu(p->percpu_cluster);
2518 p->percpu_cluster = NULL;
2519 free_percpu(p->cluster_next_cpu);
2520 p->cluster_next_cpu = NULL;
2521 vfree(swap_map);
2522 kvfree(cluster_info);
2523 kvfree(frontswap_map);
2524 /* Destroy swap account information */
2525 swap_cgroup_swapoff(p->type);
2526 exit_swap_address_space(p->type);
2527
2528 inode = mapping->host;
2529 if (S_ISBLK(inode->i_mode)) {
2530 struct block_device *bdev = I_BDEV(inode);
2531
2532 set_blocksize(bdev, old_block_size);
2533 blkdev_put(bdev, p);
2534 }
2535
2536 inode_lock(inode);
2537 inode->i_flags &= ~S_SWAPFILE;
2538 inode_unlock(inode);
2539 filp_close(swap_file, NULL);
2540
2541 /*
2542 * Clear the SWP_USED flag after all resources are freed so that swapon
2543 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2544 * not hold p->lock after we cleared its SWP_WRITEOK.
2545 */
2546 spin_lock(&swap_lock);
2547 p->flags = 0;
2548 spin_unlock(&swap_lock);
2549
2550 err = 0;
2551 atomic_inc(&proc_poll_event);
2552 wake_up_interruptible(&proc_poll_wait);
2553
2554 out_dput:
2555 filp_close(victim, NULL);
2556 out:
2557 putname(pathname);
2558 return err;
2559 }
2560
2561 #ifdef CONFIG_PROC_FS
2562 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2563 {
2564 struct seq_file *seq = file->private_data;
2565
2566 poll_wait(file, &proc_poll_wait, wait);
2567
2568 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2569 seq->poll_event = atomic_read(&proc_poll_event);
2570 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2571 }
2572
2573 return EPOLLIN | EPOLLRDNORM;
2574 }
2575
2576 /* iterator */
2577 static void *swap_start(struct seq_file *swap, loff_t *pos)
2578 {
2579 struct swap_info_struct *si;
2580 int type;
2581 loff_t l = *pos;
2582
2583 mutex_lock(&swapon_mutex);
2584
2585 if (!l)
2586 return SEQ_START_TOKEN;
2587
2588 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2589 if (!(si->flags & SWP_USED) || !si->swap_map)
2590 continue;
2591 if (!--l)
2592 return si;
2593 }
2594
2595 return NULL;
2596 }
2597
2598 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2599 {
2600 struct swap_info_struct *si = v;
2601 int type;
2602
2603 if (v == SEQ_START_TOKEN)
2604 type = 0;
2605 else
2606 type = si->type + 1;
2607
2608 ++(*pos);
2609 for (; (si = swap_type_to_swap_info(type)); type++) {
2610 if (!(si->flags & SWP_USED) || !si->swap_map)
2611 continue;
2612 return si;
2613 }
2614
2615 return NULL;
2616 }
2617
2618 static void swap_stop(struct seq_file *swap, void *v)
2619 {
2620 mutex_unlock(&swapon_mutex);
2621 }
2622
2623 static int swap_show(struct seq_file *swap, void *v)
2624 {
2625 struct swap_info_struct *si = v;
2626 struct file *file;
2627 int len;
2628 unsigned long bytes, inuse;
2629
2630 if (si == SEQ_START_TOKEN) {
2631 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2632 return 0;
2633 }
2634
2635 bytes = si->pages << (PAGE_SHIFT - 10);
2636 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2637
2638 file = si->swap_file;
2639 len = seq_file_path(swap, file, " \t\n\\");
2640 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2641 len < 40 ? 40 - len : 1, " ",
2642 S_ISBLK(file_inode(file)->i_mode) ?
2643 "partition" : "file\t",
2644 bytes, bytes < 10000000 ? "\t" : "",
2645 inuse, inuse < 10000000 ? "\t" : "",
2646 si->prio);
2647 return 0;
2648 }
2649
2650 static const struct seq_operations swaps_op = {
2651 .start = swap_start,
2652 .next = swap_next,
2653 .stop = swap_stop,
2654 .show = swap_show
2655 };
2656
2657 static int swaps_open(struct inode *inode, struct file *file)
2658 {
2659 struct seq_file *seq;
2660 int ret;
2661
2662 ret = seq_open(file, &swaps_op);
2663 if (ret)
2664 return ret;
2665
2666 seq = file->private_data;
2667 seq->poll_event = atomic_read(&proc_poll_event);
2668 return 0;
2669 }
2670
2671 static const struct proc_ops swaps_proc_ops = {
2672 .proc_flags = PROC_ENTRY_PERMANENT,
2673 .proc_open = swaps_open,
2674 .proc_read = seq_read,
2675 .proc_lseek = seq_lseek,
2676 .proc_release = seq_release,
2677 .proc_poll = swaps_poll,
2678 };
2679
2680 static int __init procswaps_init(void)
2681 {
2682 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2683 return 0;
2684 }
2685 __initcall(procswaps_init);
2686 #endif /* CONFIG_PROC_FS */
2687
2688 #ifdef MAX_SWAPFILES_CHECK
2689 static int __init max_swapfiles_check(void)
2690 {
2691 MAX_SWAPFILES_CHECK();
2692 return 0;
2693 }
2694 late_initcall(max_swapfiles_check);
2695 #endif
2696
2697 static struct swap_info_struct *alloc_swap_info(void)
2698 {
2699 struct swap_info_struct *p;
2700 struct swap_info_struct *defer = NULL;
2701 unsigned int type;
2702 int i;
2703
2704 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2705 if (!p)
2706 return ERR_PTR(-ENOMEM);
2707
2708 if (percpu_ref_init(&p->users, swap_users_ref_free,
2709 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2710 kvfree(p);
2711 return ERR_PTR(-ENOMEM);
2712 }
2713
2714 spin_lock(&swap_lock);
2715 for (type = 0; type < nr_swapfiles; type++) {
2716 if (!(swap_info[type]->flags & SWP_USED))
2717 break;
2718 }
2719 if (type >= MAX_SWAPFILES) {
2720 spin_unlock(&swap_lock);
2721 percpu_ref_exit(&p->users);
2722 kvfree(p);
2723 return ERR_PTR(-EPERM);
2724 }
2725 if (type >= nr_swapfiles) {
2726 p->type = type;
2727 /*
2728 * Publish the swap_info_struct after initializing it.
2729 * Note that kvzalloc() above zeroes all its fields.
2730 */
2731 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2732 nr_swapfiles++;
2733 } else {
2734 defer = p;
2735 p = swap_info[type];
2736 /*
2737 * Do not memset this entry: a racing procfs swap_next()
2738 * would be relying on p->type to remain valid.
2739 */
2740 }
2741 p->swap_extent_root = RB_ROOT;
2742 plist_node_init(&p->list, 0);
2743 for_each_node(i)
2744 plist_node_init(&p->avail_lists[i], 0);
2745 p->flags = SWP_USED;
2746 spin_unlock(&swap_lock);
2747 if (defer) {
2748 percpu_ref_exit(&defer->users);
2749 kvfree(defer);
2750 }
2751 spin_lock_init(&p->lock);
2752 spin_lock_init(&p->cont_lock);
2753 init_completion(&p->comp);
2754
2755 return p;
2756 }
2757
2758 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2759 {
2760 int error;
2761
2762 if (S_ISBLK(inode->i_mode)) {
2763 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2764 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2765 if (IS_ERR(p->bdev)) {
2766 error = PTR_ERR(p->bdev);
2767 p->bdev = NULL;
2768 return error;
2769 }
2770 p->old_block_size = block_size(p->bdev);
2771 error = set_blocksize(p->bdev, PAGE_SIZE);
2772 if (error < 0)
2773 return error;
2774 /*
2775 * Zoned block devices contain zones that have a sequential
2776 * write only restriction. Hence zoned block devices are not
2777 * suitable for swapping. Disallow them here.
2778 */
2779 if (bdev_is_zoned(p->bdev))
2780 return -EINVAL;
2781 p->flags |= SWP_BLKDEV;
2782 } else if (S_ISREG(inode->i_mode)) {
2783 p->bdev = inode->i_sb->s_bdev;
2784 }
2785
2786 return 0;
2787 }
2788
2789
2790 /*
2791 * Find out how many pages are allowed for a single swap device. There
2792 * are two limiting factors:
2793 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2794 * 2) the number of bits in the swap pte, as defined by the different
2795 * architectures.
2796 *
2797 * In order to find the largest possible bit mask, a swap entry with
2798 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2799 * decoded to a swp_entry_t again, and finally the swap offset is
2800 * extracted.
2801 *
2802 * This will mask all the bits from the initial ~0UL mask that can't
2803 * be encoded in either the swp_entry_t or the architecture definition
2804 * of a swap pte.
2805 */
2806 unsigned long generic_max_swapfile_size(void)
2807 {
2808 return swp_offset(pte_to_swp_entry(
2809 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2810 }
2811
2812 /* Can be overridden by an architecture for additional checks. */
2813 __weak unsigned long arch_max_swapfile_size(void)
2814 {
2815 return generic_max_swapfile_size();
2816 }
2817
2818 static unsigned long read_swap_header(struct swap_info_struct *p,
2819 union swap_header *swap_header,
2820 struct inode *inode)
2821 {
2822 int i;
2823 unsigned long maxpages;
2824 unsigned long swapfilepages;
2825 unsigned long last_page;
2826
2827 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2828 pr_err("Unable to find swap-space signature\n");
2829 return 0;
2830 }
2831
2832 /* swap partition endianness hack... */
2833 if (swab32(swap_header->info.version) == 1) {
2834 swab32s(&swap_header->info.version);
2835 swab32s(&swap_header->info.last_page);
2836 swab32s(&swap_header->info.nr_badpages);
2837 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2838 return 0;
2839 for (i = 0; i < swap_header->info.nr_badpages; i++)
2840 swab32s(&swap_header->info.badpages[i]);
2841 }
2842 /* Check the swap header's sub-version */
2843 if (swap_header->info.version != 1) {
2844 pr_warn("Unable to handle swap header version %d\n",
2845 swap_header->info.version);
2846 return 0;
2847 }
2848
2849 p->lowest_bit = 1;
2850 p->cluster_next = 1;
2851 p->cluster_nr = 0;
2852
2853 maxpages = swapfile_maximum_size;
2854 last_page = swap_header->info.last_page;
2855 if (!last_page) {
2856 pr_warn("Empty swap-file\n");
2857 return 0;
2858 }
2859 if (last_page > maxpages) {
2860 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2861 maxpages << (PAGE_SHIFT - 10),
2862 last_page << (PAGE_SHIFT - 10));
2863 }
2864 if (maxpages > last_page) {
2865 maxpages = last_page + 1;
2866 /* p->max is an unsigned int: don't overflow it */
2867 if ((unsigned int)maxpages == 0)
2868 maxpages = UINT_MAX;
2869 }
2870 p->highest_bit = maxpages - 1;
2871
2872 if (!maxpages)
2873 return 0;
2874 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2875 if (swapfilepages && maxpages > swapfilepages) {
2876 pr_warn("Swap area shorter than signature indicates\n");
2877 return 0;
2878 }
2879 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2880 return 0;
2881 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2882 return 0;
2883
2884 return maxpages;
2885 }
2886
2887 #define SWAP_CLUSTER_INFO_COLS \
2888 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2889 #define SWAP_CLUSTER_SPACE_COLS \
2890 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2891 #define SWAP_CLUSTER_COLS \
2892 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2893
2894 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2895 union swap_header *swap_header,
2896 unsigned char *swap_map,
2897 struct swap_cluster_info *cluster_info,
2898 unsigned long maxpages,
2899 sector_t *span)
2900 {
2901 unsigned int j, k;
2902 unsigned int nr_good_pages;
2903 int nr_extents;
2904 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2905 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2906 unsigned long i, idx;
2907
2908 nr_good_pages = maxpages - 1; /* omit header page */
2909
2910 cluster_list_init(&p->free_clusters);
2911 cluster_list_init(&p->discard_clusters);
2912
2913 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2914 unsigned int page_nr = swap_header->info.badpages[i];
2915 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2916 return -EINVAL;
2917 if (page_nr < maxpages) {
2918 swap_map[page_nr] = SWAP_MAP_BAD;
2919 nr_good_pages--;
2920 /*
2921 * Haven't marked the cluster free yet, no list
2922 * operation involved
2923 */
2924 inc_cluster_info_page(p, cluster_info, page_nr);
2925 }
2926 }
2927
2928 /* Haven't marked the cluster free yet, no list operation involved */
2929 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2930 inc_cluster_info_page(p, cluster_info, i);
2931
2932 if (nr_good_pages) {
2933 swap_map[0] = SWAP_MAP_BAD;
2934 /*
2935 * Not mark the cluster free yet, no list
2936 * operation involved
2937 */
2938 inc_cluster_info_page(p, cluster_info, 0);
2939 p->max = maxpages;
2940 p->pages = nr_good_pages;
2941 nr_extents = setup_swap_extents(p, span);
2942 if (nr_extents < 0)
2943 return nr_extents;
2944 nr_good_pages = p->pages;
2945 }
2946 if (!nr_good_pages) {
2947 pr_warn("Empty swap-file\n");
2948 return -EINVAL;
2949 }
2950
2951 if (!cluster_info)
2952 return nr_extents;
2953
2954
2955 /*
2956 * Reduce false cache line sharing between cluster_info and
2957 * sharing same address space.
2958 */
2959 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2960 j = (k + col) % SWAP_CLUSTER_COLS;
2961 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2962 idx = i * SWAP_CLUSTER_COLS + j;
2963 if (idx >= nr_clusters)
2964 continue;
2965 if (cluster_count(&cluster_info[idx]))
2966 continue;
2967 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2968 cluster_list_add_tail(&p->free_clusters, cluster_info,
2969 idx);
2970 }
2971 }
2972 return nr_extents;
2973 }
2974
2975 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2976 {
2977 struct swap_info_struct *p;
2978 struct filename *name;
2979 struct file *swap_file = NULL;
2980 struct address_space *mapping;
2981 struct dentry *dentry;
2982 int prio;
2983 int error;
2984 union swap_header *swap_header;
2985 int nr_extents;
2986 sector_t span;
2987 unsigned long maxpages;
2988 unsigned char *swap_map = NULL;
2989 struct swap_cluster_info *cluster_info = NULL;
2990 unsigned long *frontswap_map = NULL;
2991 struct page *page = NULL;
2992 struct inode *inode = NULL;
2993 bool inced_nr_rotate_swap = false;
2994
2995 if (swap_flags & ~SWAP_FLAGS_VALID)
2996 return -EINVAL;
2997
2998 if (!capable(CAP_SYS_ADMIN))
2999 return -EPERM;
3000
3001 if (!swap_avail_heads)
3002 return -ENOMEM;
3003
3004 p = alloc_swap_info();
3005 if (IS_ERR(p))
3006 return PTR_ERR(p);
3007
3008 INIT_WORK(&p->discard_work, swap_discard_work);
3009
3010 name = getname(specialfile);
3011 if (IS_ERR(name)) {
3012 error = PTR_ERR(name);
3013 name = NULL;
3014 goto bad_swap;
3015 }
3016 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3017 if (IS_ERR(swap_file)) {
3018 error = PTR_ERR(swap_file);
3019 swap_file = NULL;
3020 goto bad_swap;
3021 }
3022
3023 p->swap_file = swap_file;
3024 mapping = swap_file->f_mapping;
3025 dentry = swap_file->f_path.dentry;
3026 inode = mapping->host;
3027
3028 error = claim_swapfile(p, inode);
3029 if (unlikely(error))
3030 goto bad_swap;
3031
3032 inode_lock(inode);
3033 if (d_unlinked(dentry) || cant_mount(dentry)) {
3034 error = -ENOENT;
3035 goto bad_swap_unlock_inode;
3036 }
3037 if (IS_SWAPFILE(inode)) {
3038 error = -EBUSY;
3039 goto bad_swap_unlock_inode;
3040 }
3041
3042 /*
3043 * Read the swap header.
3044 */
3045 if (!mapping->a_ops->read_folio) {
3046 error = -EINVAL;
3047 goto bad_swap_unlock_inode;
3048 }
3049 page = read_mapping_page(mapping, 0, swap_file);
3050 if (IS_ERR(page)) {
3051 error = PTR_ERR(page);
3052 goto bad_swap_unlock_inode;
3053 }
3054 swap_header = kmap(page);
3055
3056 maxpages = read_swap_header(p, swap_header, inode);
3057 if (unlikely(!maxpages)) {
3058 error = -EINVAL;
3059 goto bad_swap_unlock_inode;
3060 }
3061
3062 /* OK, set up the swap map and apply the bad block list */
3063 swap_map = vzalloc(maxpages);
3064 if (!swap_map) {
3065 error = -ENOMEM;
3066 goto bad_swap_unlock_inode;
3067 }
3068
3069 if (p->bdev && bdev_stable_writes(p->bdev))
3070 p->flags |= SWP_STABLE_WRITES;
3071
3072 if (p->bdev && bdev_synchronous(p->bdev))
3073 p->flags |= SWP_SYNCHRONOUS_IO;
3074
3075 if (p->bdev && bdev_nonrot(p->bdev)) {
3076 int cpu;
3077 unsigned long ci, nr_cluster;
3078
3079 p->flags |= SWP_SOLIDSTATE;
3080 p->cluster_next_cpu = alloc_percpu(unsigned int);
3081 if (!p->cluster_next_cpu) {
3082 error = -ENOMEM;
3083 goto bad_swap_unlock_inode;
3084 }
3085 /*
3086 * select a random position to start with to help wear leveling
3087 * SSD
3088 */
3089 for_each_possible_cpu(cpu) {
3090 per_cpu(*p->cluster_next_cpu, cpu) =
3091 get_random_u32_inclusive(1, p->highest_bit);
3092 }
3093 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3094
3095 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3096 GFP_KERNEL);
3097 if (!cluster_info) {
3098 error = -ENOMEM;
3099 goto bad_swap_unlock_inode;
3100 }
3101
3102 for (ci = 0; ci < nr_cluster; ci++)
3103 spin_lock_init(&((cluster_info + ci)->lock));
3104
3105 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3106 if (!p->percpu_cluster) {
3107 error = -ENOMEM;
3108 goto bad_swap_unlock_inode;
3109 }
3110 for_each_possible_cpu(cpu) {
3111 struct percpu_cluster *cluster;
3112 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3113 cluster_set_null(&cluster->index);
3114 }
3115 } else {
3116 atomic_inc(&nr_rotate_swap);
3117 inced_nr_rotate_swap = true;
3118 }
3119
3120 error = swap_cgroup_swapon(p->type, maxpages);
3121 if (error)
3122 goto bad_swap_unlock_inode;
3123
3124 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3125 cluster_info, maxpages, &span);
3126 if (unlikely(nr_extents < 0)) {
3127 error = nr_extents;
3128 goto bad_swap_unlock_inode;
3129 }
3130 /* frontswap enabled? set up bit-per-page map for frontswap */
3131 if (IS_ENABLED(CONFIG_FRONTSWAP))
3132 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3133 sizeof(long),
3134 GFP_KERNEL);
3135
3136 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3137 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3138 /*
3139 * When discard is enabled for swap with no particular
3140 * policy flagged, we set all swap discard flags here in
3141 * order to sustain backward compatibility with older
3142 * swapon(8) releases.
3143 */
3144 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3145 SWP_PAGE_DISCARD);
3146
3147 /*
3148 * By flagging sys_swapon, a sysadmin can tell us to
3149 * either do single-time area discards only, or to just
3150 * perform discards for released swap page-clusters.
3151 * Now it's time to adjust the p->flags accordingly.
3152 */
3153 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3154 p->flags &= ~SWP_PAGE_DISCARD;
3155 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3156 p->flags &= ~SWP_AREA_DISCARD;
3157
3158 /* issue a swapon-time discard if it's still required */
3159 if (p->flags & SWP_AREA_DISCARD) {
3160 int err = discard_swap(p);
3161 if (unlikely(err))
3162 pr_err("swapon: discard_swap(%p): %d\n",
3163 p, err);
3164 }
3165 }
3166
3167 error = init_swap_address_space(p->type, maxpages);
3168 if (error)
3169 goto bad_swap_unlock_inode;
3170
3171 /*
3172 * Flush any pending IO and dirty mappings before we start using this
3173 * swap device.
3174 */
3175 inode->i_flags |= S_SWAPFILE;
3176 error = inode_drain_writes(inode);
3177 if (error) {
3178 inode->i_flags &= ~S_SWAPFILE;
3179 goto free_swap_address_space;
3180 }
3181
3182 mutex_lock(&swapon_mutex);
3183 prio = -1;
3184 if (swap_flags & SWAP_FLAG_PREFER)
3185 prio =
3186 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3187 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3188
3189 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3190 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3191 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3192 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3193 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3194 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3195 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3196 (frontswap_map) ? "FS" : "");
3197
3198 mutex_unlock(&swapon_mutex);
3199 atomic_inc(&proc_poll_event);
3200 wake_up_interruptible(&proc_poll_wait);
3201
3202 error = 0;
3203 goto out;
3204 free_swap_address_space:
3205 exit_swap_address_space(p->type);
3206 bad_swap_unlock_inode:
3207 inode_unlock(inode);
3208 bad_swap:
3209 free_percpu(p->percpu_cluster);
3210 p->percpu_cluster = NULL;
3211 free_percpu(p->cluster_next_cpu);
3212 p->cluster_next_cpu = NULL;
3213 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3214 set_blocksize(p->bdev, p->old_block_size);
3215 blkdev_put(p->bdev, p);
3216 }
3217 inode = NULL;
3218 destroy_swap_extents(p);
3219 swap_cgroup_swapoff(p->type);
3220 spin_lock(&swap_lock);
3221 p->swap_file = NULL;
3222 p->flags = 0;
3223 spin_unlock(&swap_lock);
3224 vfree(swap_map);
3225 kvfree(cluster_info);
3226 kvfree(frontswap_map);
3227 if (inced_nr_rotate_swap)
3228 atomic_dec(&nr_rotate_swap);
3229 if (swap_file)
3230 filp_close(swap_file, NULL);
3231 out:
3232 if (page && !IS_ERR(page)) {
3233 kunmap(page);
3234 put_page(page);
3235 }
3236 if (name)
3237 putname(name);
3238 if (inode)
3239 inode_unlock(inode);
3240 if (!error)
3241 enable_swap_slots_cache();
3242 return error;
3243 }
3244
3245 void si_swapinfo(struct sysinfo *val)
3246 {
3247 unsigned int type;
3248 unsigned long nr_to_be_unused = 0;
3249
3250 spin_lock(&swap_lock);
3251 for (type = 0; type < nr_swapfiles; type++) {
3252 struct swap_info_struct *si = swap_info[type];
3253
3254 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3255 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3256 }
3257 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3258 val->totalswap = total_swap_pages + nr_to_be_unused;
3259 spin_unlock(&swap_lock);
3260 }
3261
3262 /*
3263 * Verify that a swap entry is valid and increment its swap map count.
3264 *
3265 * Returns error code in following case.
3266 * - success -> 0
3267 * - swp_entry is invalid -> EINVAL
3268 * - swp_entry is migration entry -> EINVAL
3269 * - swap-cache reference is requested but there is already one. -> EEXIST
3270 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3271 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3272 */
3273 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3274 {
3275 struct swap_info_struct *p;
3276 struct swap_cluster_info *ci;
3277 unsigned long offset;
3278 unsigned char count;
3279 unsigned char has_cache;
3280 int err;
3281
3282 p = swp_swap_info(entry);
3283
3284 offset = swp_offset(entry);
3285 ci = lock_cluster_or_swap_info(p, offset);
3286
3287 count = p->swap_map[offset];
3288
3289 /*
3290 * swapin_readahead() doesn't check if a swap entry is valid, so the
3291 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3292 */
3293 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3294 err = -ENOENT;
3295 goto unlock_out;
3296 }
3297
3298 has_cache = count & SWAP_HAS_CACHE;
3299 count &= ~SWAP_HAS_CACHE;
3300 err = 0;
3301
3302 if (usage == SWAP_HAS_CACHE) {
3303
3304 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3305 if (!has_cache && count)
3306 has_cache = SWAP_HAS_CACHE;
3307 else if (has_cache) /* someone else added cache */
3308 err = -EEXIST;
3309 else /* no users remaining */
3310 err = -ENOENT;
3311
3312 } else if (count || has_cache) {
3313
3314 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3315 count += usage;
3316 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3317 err = -EINVAL;
3318 else if (swap_count_continued(p, offset, count))
3319 count = COUNT_CONTINUED;
3320 else
3321 err = -ENOMEM;
3322 } else
3323 err = -ENOENT; /* unused swap entry */
3324
3325 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3326
3327 unlock_out:
3328 unlock_cluster_or_swap_info(p, ci);
3329 return err;
3330 }
3331
3332 /*
3333 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3334 * (in which case its reference count is never incremented).
3335 */
3336 void swap_shmem_alloc(swp_entry_t entry)
3337 {
3338 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3339 }
3340
3341 /*
3342 * Increase reference count of swap entry by 1.
3343 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3344 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3345 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3346 * might occur if a page table entry has got corrupted.
3347 */
3348 int swap_duplicate(swp_entry_t entry)
3349 {
3350 int err = 0;
3351
3352 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3353 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3354 return err;
3355 }
3356
3357 /*
3358 * @entry: swap entry for which we allocate swap cache.
3359 *
3360 * Called when allocating swap cache for existing swap entry,
3361 * This can return error codes. Returns 0 at success.
3362 * -EEXIST means there is a swap cache.
3363 * Note: return code is different from swap_duplicate().
3364 */
3365 int swapcache_prepare(swp_entry_t entry)
3366 {
3367 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3368 }
3369
3370 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3371 {
3372 return swap_type_to_swap_info(swp_type(entry));
3373 }
3374
3375 struct swap_info_struct *page_swap_info(struct page *page)
3376 {
3377 swp_entry_t entry = { .val = page_private(page) };
3378 return swp_swap_info(entry);
3379 }
3380
3381 /*
3382 * out-of-line methods to avoid include hell.
3383 */
3384 struct address_space *swapcache_mapping(struct folio *folio)
3385 {
3386 return page_swap_info(&folio->page)->swap_file->f_mapping;
3387 }
3388 EXPORT_SYMBOL_GPL(swapcache_mapping);
3389
3390 pgoff_t __page_file_index(struct page *page)
3391 {
3392 swp_entry_t swap = { .val = page_private(page) };
3393 return swp_offset(swap);
3394 }
3395 EXPORT_SYMBOL_GPL(__page_file_index);
3396
3397 /*
3398 * add_swap_count_continuation - called when a swap count is duplicated
3399 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3400 * page of the original vmalloc'ed swap_map, to hold the continuation count
3401 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3402 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3403 *
3404 * These continuation pages are seldom referenced: the common paths all work
3405 * on the original swap_map, only referring to a continuation page when the
3406 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3407 *
3408 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3409 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3410 * can be called after dropping locks.
3411 */
3412 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3413 {
3414 struct swap_info_struct *si;
3415 struct swap_cluster_info *ci;
3416 struct page *head;
3417 struct page *page;
3418 struct page *list_page;
3419 pgoff_t offset;
3420 unsigned char count;
3421 int ret = 0;
3422
3423 /*
3424 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3425 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3426 */
3427 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3428
3429 si = get_swap_device(entry);
3430 if (!si) {
3431 /*
3432 * An acceptable race has occurred since the failing
3433 * __swap_duplicate(): the swap device may be swapoff
3434 */
3435 goto outer;
3436 }
3437 spin_lock(&si->lock);
3438
3439 offset = swp_offset(entry);
3440
3441 ci = lock_cluster(si, offset);
3442
3443 count = swap_count(si->swap_map[offset]);
3444
3445 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3446 /*
3447 * The higher the swap count, the more likely it is that tasks
3448 * will race to add swap count continuation: we need to avoid
3449 * over-provisioning.
3450 */
3451 goto out;
3452 }
3453
3454 if (!page) {
3455 ret = -ENOMEM;
3456 goto out;
3457 }
3458
3459 head = vmalloc_to_page(si->swap_map + offset);
3460 offset &= ~PAGE_MASK;
3461
3462 spin_lock(&si->cont_lock);
3463 /*
3464 * Page allocation does not initialize the page's lru field,
3465 * but it does always reset its private field.
3466 */
3467 if (!page_private(head)) {
3468 BUG_ON(count & COUNT_CONTINUED);
3469 INIT_LIST_HEAD(&head->lru);
3470 set_page_private(head, SWP_CONTINUED);
3471 si->flags |= SWP_CONTINUED;
3472 }
3473
3474 list_for_each_entry(list_page, &head->lru, lru) {
3475 unsigned char *map;
3476
3477 /*
3478 * If the previous map said no continuation, but we've found
3479 * a continuation page, free our allocation and use this one.
3480 */
3481 if (!(count & COUNT_CONTINUED))
3482 goto out_unlock_cont;
3483
3484 map = kmap_atomic(list_page) + offset;
3485 count = *map;
3486 kunmap_atomic(map);
3487
3488 /*
3489 * If this continuation count now has some space in it,
3490 * free our allocation and use this one.
3491 */
3492 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3493 goto out_unlock_cont;
3494 }
3495
3496 list_add_tail(&page->lru, &head->lru);
3497 page = NULL; /* now it's attached, don't free it */
3498 out_unlock_cont:
3499 spin_unlock(&si->cont_lock);
3500 out:
3501 unlock_cluster(ci);
3502 spin_unlock(&si->lock);
3503 put_swap_device(si);
3504 outer:
3505 if (page)
3506 __free_page(page);
3507 return ret;
3508 }
3509
3510 /*
3511 * swap_count_continued - when the original swap_map count is incremented
3512 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3513 * into, carry if so, or else fail until a new continuation page is allocated;
3514 * when the original swap_map count is decremented from 0 with continuation,
3515 * borrow from the continuation and report whether it still holds more.
3516 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3517 * lock.
3518 */
3519 static bool swap_count_continued(struct swap_info_struct *si,
3520 pgoff_t offset, unsigned char count)
3521 {
3522 struct page *head;
3523 struct page *page;
3524 unsigned char *map;
3525 bool ret;
3526
3527 head = vmalloc_to_page(si->swap_map + offset);
3528 if (page_private(head) != SWP_CONTINUED) {
3529 BUG_ON(count & COUNT_CONTINUED);
3530 return false; /* need to add count continuation */
3531 }
3532
3533 spin_lock(&si->cont_lock);
3534 offset &= ~PAGE_MASK;
3535 page = list_next_entry(head, lru);
3536 map = kmap_atomic(page) + offset;
3537
3538 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3539 goto init_map; /* jump over SWAP_CONT_MAX checks */
3540
3541 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3542 /*
3543 * Think of how you add 1 to 999
3544 */
3545 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3546 kunmap_atomic(map);
3547 page = list_next_entry(page, lru);
3548 BUG_ON(page == head);
3549 map = kmap_atomic(page) + offset;
3550 }
3551 if (*map == SWAP_CONT_MAX) {
3552 kunmap_atomic(map);
3553 page = list_next_entry(page, lru);
3554 if (page == head) {
3555 ret = false; /* add count continuation */
3556 goto out;
3557 }
3558 map = kmap_atomic(page) + offset;
3559 init_map: *map = 0; /* we didn't zero the page */
3560 }
3561 *map += 1;
3562 kunmap_atomic(map);
3563 while ((page = list_prev_entry(page, lru)) != head) {
3564 map = kmap_atomic(page) + offset;
3565 *map = COUNT_CONTINUED;
3566 kunmap_atomic(map);
3567 }
3568 ret = true; /* incremented */
3569
3570 } else { /* decrementing */
3571 /*
3572 * Think of how you subtract 1 from 1000
3573 */
3574 BUG_ON(count != COUNT_CONTINUED);
3575 while (*map == COUNT_CONTINUED) {
3576 kunmap_atomic(map);
3577 page = list_next_entry(page, lru);
3578 BUG_ON(page == head);
3579 map = kmap_atomic(page) + offset;
3580 }
3581 BUG_ON(*map == 0);
3582 *map -= 1;
3583 if (*map == 0)
3584 count = 0;
3585 kunmap_atomic(map);
3586 while ((page = list_prev_entry(page, lru)) != head) {
3587 map = kmap_atomic(page) + offset;
3588 *map = SWAP_CONT_MAX | count;
3589 count = COUNT_CONTINUED;
3590 kunmap_atomic(map);
3591 }
3592 ret = count == COUNT_CONTINUED;
3593 }
3594 out:
3595 spin_unlock(&si->cont_lock);
3596 return ret;
3597 }
3598
3599 /*
3600 * free_swap_count_continuations - swapoff free all the continuation pages
3601 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3602 */
3603 static void free_swap_count_continuations(struct swap_info_struct *si)
3604 {
3605 pgoff_t offset;
3606
3607 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3608 struct page *head;
3609 head = vmalloc_to_page(si->swap_map + offset);
3610 if (page_private(head)) {
3611 struct page *page, *next;
3612
3613 list_for_each_entry_safe(page, next, &head->lru, lru) {
3614 list_del(&page->lru);
3615 __free_page(page);
3616 }
3617 }
3618 }
3619 }
3620
3621 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3622 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3623 {
3624 struct swap_info_struct *si, *next;
3625 int nid = folio_nid(folio);
3626
3627 if (!(gfp & __GFP_IO))
3628 return;
3629
3630 if (!blk_cgroup_congested())
3631 return;
3632
3633 /*
3634 * We've already scheduled a throttle, avoid taking the global swap
3635 * lock.
3636 */
3637 if (current->throttle_disk)
3638 return;
3639
3640 spin_lock(&swap_avail_lock);
3641 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3642 avail_lists[nid]) {
3643 if (si->bdev) {
3644 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3645 break;
3646 }
3647 }
3648 spin_unlock(&swap_avail_lock);
3649 }
3650 #endif
3651
3652 static int __init swapfile_init(void)
3653 {
3654 int nid;
3655
3656 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3657 GFP_KERNEL);
3658 if (!swap_avail_heads) {
3659 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3660 return -ENOMEM;
3661 }
3662
3663 for_each_node(nid)
3664 plist_head_init(&swap_avail_heads[nid]);
3665
3666 swapfile_maximum_size = arch_max_swapfile_size();
3667
3668 #ifdef CONFIG_MIGRATION
3669 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3670 swap_migration_ad_supported = true;
3671 #endif /* CONFIG_MIGRATION */
3672
3673 return 0;
3674 }
3675 subsys_initcall(swapfile_init);