]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swapfile.c
mm/swapfile.c: omit a duplicate code by compare tmp and max first
[thirdparty/linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 unsigned long tmp, max;
605
606 new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
613 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 /*
615 * we don't have free cluster but have some clusters in
616 * discarding, do discard now and reclaim them
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = *offset = si->cluster_next;
620 goto new_cluster;
621 } else
622 return false;
623 }
624
625 /*
626 * Other CPUs can use our cluster if they can't find a free cluster,
627 * check if there is still free entry in the cluster
628 */
629 tmp = cluster->next;
630 max = min_t(unsigned long, si->max,
631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 if (tmp < max) {
633 ci = lock_cluster(si, tmp);
634 while (tmp < max) {
635 if (!si->swap_map[tmp])
636 break;
637 tmp++;
638 }
639 unlock_cluster(ci);
640 }
641 if (tmp >= max) {
642 cluster_set_null(&cluster->index);
643 goto new_cluster;
644 }
645 cluster->next = tmp + 1;
646 *offset = tmp;
647 *scan_base = tmp;
648 return true;
649 }
650
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 int nid;
654
655 for_each_node(nid)
656 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 spin_lock(&swap_avail_lock);
662 __del_from_avail_list(p);
663 spin_unlock(&swap_avail_lock);
664 }
665
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 unsigned int nr_entries)
668 {
669 unsigned int end = offset + nr_entries - 1;
670
671 if (offset == si->lowest_bit)
672 si->lowest_bit += nr_entries;
673 if (end == si->highest_bit)
674 si->highest_bit -= nr_entries;
675 si->inuse_pages += nr_entries;
676 if (si->inuse_pages == si->pages) {
677 si->lowest_bit = si->max;
678 si->highest_bit = 0;
679 del_from_avail_list(si);
680 }
681 }
682
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 int nid;
686
687 spin_lock(&swap_avail_lock);
688 for_each_node(nid) {
689 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 }
692 spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 unsigned int nr_entries)
697 {
698 unsigned long end = offset + nr_entries - 1;
699 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
700
701 if (offset < si->lowest_bit)
702 si->lowest_bit = offset;
703 if (end > si->highest_bit) {
704 bool was_full = !si->highest_bit;
705
706 si->highest_bit = end;
707 if (was_full && (si->flags & SWP_WRITEOK))
708 add_to_avail_list(si);
709 }
710 atomic_long_add(nr_entries, &nr_swap_pages);
711 si->inuse_pages -= nr_entries;
712 if (si->flags & SWP_BLKDEV)
713 swap_slot_free_notify =
714 si->bdev->bd_disk->fops->swap_slot_free_notify;
715 else
716 swap_slot_free_notify = NULL;
717 while (offset <= end) {
718 frontswap_invalidate_page(si->type, offset);
719 if (swap_slot_free_notify)
720 swap_slot_free_notify(si->bdev, offset);
721 offset++;
722 }
723 }
724
725 static int scan_swap_map_slots(struct swap_info_struct *si,
726 unsigned char usage, int nr,
727 swp_entry_t slots[])
728 {
729 struct swap_cluster_info *ci;
730 unsigned long offset;
731 unsigned long scan_base;
732 unsigned long last_in_cluster = 0;
733 int latency_ration = LATENCY_LIMIT;
734 int n_ret = 0;
735
736 /*
737 * We try to cluster swap pages by allocating them sequentially
738 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
739 * way, however, we resort to first-free allocation, starting
740 * a new cluster. This prevents us from scattering swap pages
741 * all over the entire swap partition, so that we reduce
742 * overall disk seek times between swap pages. -- sct
743 * But we do now try to find an empty cluster. -Andrea
744 * And we let swap pages go all over an SSD partition. Hugh
745 */
746
747 si->flags += SWP_SCANNING;
748 scan_base = offset = si->cluster_next;
749
750 /* SSD algorithm */
751 if (si->cluster_info) {
752 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
753 goto scan;
754 } else if (unlikely(!si->cluster_nr--)) {
755 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
756 si->cluster_nr = SWAPFILE_CLUSTER - 1;
757 goto checks;
758 }
759
760 spin_unlock(&si->lock);
761
762 /*
763 * If seek is expensive, start searching for new cluster from
764 * start of partition, to minimize the span of allocated swap.
765 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
766 * case, just handled by scan_swap_map_try_ssd_cluster() above.
767 */
768 scan_base = offset = si->lowest_bit;
769 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
770
771 /* Locate the first empty (unaligned) cluster */
772 for (; last_in_cluster <= si->highest_bit; offset++) {
773 if (si->swap_map[offset])
774 last_in_cluster = offset + SWAPFILE_CLUSTER;
775 else if (offset == last_in_cluster) {
776 spin_lock(&si->lock);
777 offset -= SWAPFILE_CLUSTER - 1;
778 si->cluster_next = offset;
779 si->cluster_nr = SWAPFILE_CLUSTER - 1;
780 goto checks;
781 }
782 if (unlikely(--latency_ration < 0)) {
783 cond_resched();
784 latency_ration = LATENCY_LIMIT;
785 }
786 }
787
788 offset = scan_base;
789 spin_lock(&si->lock);
790 si->cluster_nr = SWAPFILE_CLUSTER - 1;
791 }
792
793 checks:
794 if (si->cluster_info) {
795 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
796 /* take a break if we already got some slots */
797 if (n_ret)
798 goto done;
799 if (!scan_swap_map_try_ssd_cluster(si, &offset,
800 &scan_base))
801 goto scan;
802 }
803 }
804 if (!(si->flags & SWP_WRITEOK))
805 goto no_page;
806 if (!si->highest_bit)
807 goto no_page;
808 if (offset > si->highest_bit)
809 scan_base = offset = si->lowest_bit;
810
811 ci = lock_cluster(si, offset);
812 /* reuse swap entry of cache-only swap if not busy. */
813 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
814 int swap_was_freed;
815 unlock_cluster(ci);
816 spin_unlock(&si->lock);
817 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
818 spin_lock(&si->lock);
819 /* entry was freed successfully, try to use this again */
820 if (swap_was_freed)
821 goto checks;
822 goto scan; /* check next one */
823 }
824
825 if (si->swap_map[offset]) {
826 unlock_cluster(ci);
827 if (!n_ret)
828 goto scan;
829 else
830 goto done;
831 }
832 si->swap_map[offset] = usage;
833 inc_cluster_info_page(si, si->cluster_info, offset);
834 unlock_cluster(ci);
835
836 swap_range_alloc(si, offset, 1);
837 si->cluster_next = offset + 1;
838 slots[n_ret++] = swp_entry(si->type, offset);
839
840 /* got enough slots or reach max slots? */
841 if ((n_ret == nr) || (offset >= si->highest_bit))
842 goto done;
843
844 /* search for next available slot */
845
846 /* time to take a break? */
847 if (unlikely(--latency_ration < 0)) {
848 if (n_ret)
849 goto done;
850 spin_unlock(&si->lock);
851 cond_resched();
852 spin_lock(&si->lock);
853 latency_ration = LATENCY_LIMIT;
854 }
855
856 /* try to get more slots in cluster */
857 if (si->cluster_info) {
858 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
859 goto checks;
860 } else if (si->cluster_nr && !si->swap_map[++offset]) {
861 /* non-ssd case, still more slots in cluster? */
862 --si->cluster_nr;
863 goto checks;
864 }
865
866 done:
867 si->flags -= SWP_SCANNING;
868 return n_ret;
869
870 scan:
871 spin_unlock(&si->lock);
872 while (++offset <= si->highest_bit) {
873 if (!si->swap_map[offset]) {
874 spin_lock(&si->lock);
875 goto checks;
876 }
877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 spin_lock(&si->lock);
879 goto checks;
880 }
881 if (unlikely(--latency_ration < 0)) {
882 cond_resched();
883 latency_ration = LATENCY_LIMIT;
884 }
885 }
886 offset = si->lowest_bit;
887 while (offset < scan_base) {
888 if (!si->swap_map[offset]) {
889 spin_lock(&si->lock);
890 goto checks;
891 }
892 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
893 spin_lock(&si->lock);
894 goto checks;
895 }
896 if (unlikely(--latency_ration < 0)) {
897 cond_resched();
898 latency_ration = LATENCY_LIMIT;
899 }
900 offset++;
901 }
902 spin_lock(&si->lock);
903
904 no_page:
905 si->flags -= SWP_SCANNING;
906 return n_ret;
907 }
908
909 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
910 {
911 unsigned long idx;
912 struct swap_cluster_info *ci;
913 unsigned long offset, i;
914 unsigned char *map;
915
916 /*
917 * Should not even be attempting cluster allocations when huge
918 * page swap is disabled. Warn and fail the allocation.
919 */
920 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
921 VM_WARN_ON_ONCE(1);
922 return 0;
923 }
924
925 if (cluster_list_empty(&si->free_clusters))
926 return 0;
927
928 idx = cluster_list_first(&si->free_clusters);
929 offset = idx * SWAPFILE_CLUSTER;
930 ci = lock_cluster(si, offset);
931 alloc_cluster(si, idx);
932 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
933
934 map = si->swap_map + offset;
935 for (i = 0; i < SWAPFILE_CLUSTER; i++)
936 map[i] = SWAP_HAS_CACHE;
937 unlock_cluster(ci);
938 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
939 *slot = swp_entry(si->type, offset);
940
941 return 1;
942 }
943
944 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
945 {
946 unsigned long offset = idx * SWAPFILE_CLUSTER;
947 struct swap_cluster_info *ci;
948
949 ci = lock_cluster(si, offset);
950 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
951 cluster_set_count_flag(ci, 0, 0);
952 free_cluster(si, idx);
953 unlock_cluster(ci);
954 swap_range_free(si, offset, SWAPFILE_CLUSTER);
955 }
956
957 static unsigned long scan_swap_map(struct swap_info_struct *si,
958 unsigned char usage)
959 {
960 swp_entry_t entry;
961 int n_ret;
962
963 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
964
965 if (n_ret)
966 return swp_offset(entry);
967 else
968 return 0;
969
970 }
971
972 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
973 {
974 unsigned long size = swap_entry_size(entry_size);
975 struct swap_info_struct *si, *next;
976 long avail_pgs;
977 int n_ret = 0;
978 int node;
979
980 /* Only single cluster request supported */
981 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
982
983 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
984 if (avail_pgs <= 0)
985 goto noswap;
986
987 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
988
989 atomic_long_sub(n_goal * size, &nr_swap_pages);
990
991 spin_lock(&swap_avail_lock);
992
993 start_over:
994 node = numa_node_id();
995 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
996 /* requeue si to after same-priority siblings */
997 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
998 spin_unlock(&swap_avail_lock);
999 spin_lock(&si->lock);
1000 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1001 spin_lock(&swap_avail_lock);
1002 if (plist_node_empty(&si->avail_lists[node])) {
1003 spin_unlock(&si->lock);
1004 goto nextsi;
1005 }
1006 WARN(!si->highest_bit,
1007 "swap_info %d in list but !highest_bit\n",
1008 si->type);
1009 WARN(!(si->flags & SWP_WRITEOK),
1010 "swap_info %d in list but !SWP_WRITEOK\n",
1011 si->type);
1012 __del_from_avail_list(si);
1013 spin_unlock(&si->lock);
1014 goto nextsi;
1015 }
1016 if (size == SWAPFILE_CLUSTER) {
1017 if (!(si->flags & SWP_FS))
1018 n_ret = swap_alloc_cluster(si, swp_entries);
1019 } else
1020 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1021 n_goal, swp_entries);
1022 spin_unlock(&si->lock);
1023 if (n_ret || size == SWAPFILE_CLUSTER)
1024 goto check_out;
1025 pr_debug("scan_swap_map of si %d failed to find offset\n",
1026 si->type);
1027
1028 spin_lock(&swap_avail_lock);
1029 nextsi:
1030 /*
1031 * if we got here, it's likely that si was almost full before,
1032 * and since scan_swap_map() can drop the si->lock, multiple
1033 * callers probably all tried to get a page from the same si
1034 * and it filled up before we could get one; or, the si filled
1035 * up between us dropping swap_avail_lock and taking si->lock.
1036 * Since we dropped the swap_avail_lock, the swap_avail_head
1037 * list may have been modified; so if next is still in the
1038 * swap_avail_head list then try it, otherwise start over
1039 * if we have not gotten any slots.
1040 */
1041 if (plist_node_empty(&next->avail_lists[node]))
1042 goto start_over;
1043 }
1044
1045 spin_unlock(&swap_avail_lock);
1046
1047 check_out:
1048 if (n_ret < n_goal)
1049 atomic_long_add((long)(n_goal - n_ret) * size,
1050 &nr_swap_pages);
1051 noswap:
1052 return n_ret;
1053 }
1054
1055 /* The only caller of this function is now suspend routine */
1056 swp_entry_t get_swap_page_of_type(int type)
1057 {
1058 struct swap_info_struct *si = swap_type_to_swap_info(type);
1059 pgoff_t offset;
1060
1061 if (!si)
1062 goto fail;
1063
1064 spin_lock(&si->lock);
1065 if (si->flags & SWP_WRITEOK) {
1066 atomic_long_dec(&nr_swap_pages);
1067 /* This is called for allocating swap entry, not cache */
1068 offset = scan_swap_map(si, 1);
1069 if (offset) {
1070 spin_unlock(&si->lock);
1071 return swp_entry(type, offset);
1072 }
1073 atomic_long_inc(&nr_swap_pages);
1074 }
1075 spin_unlock(&si->lock);
1076 fail:
1077 return (swp_entry_t) {0};
1078 }
1079
1080 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1081 {
1082 struct swap_info_struct *p;
1083 unsigned long offset;
1084
1085 if (!entry.val)
1086 goto out;
1087 p = swp_swap_info(entry);
1088 if (!p)
1089 goto bad_nofile;
1090 if (!(p->flags & SWP_USED))
1091 goto bad_device;
1092 offset = swp_offset(entry);
1093 if (offset >= p->max)
1094 goto bad_offset;
1095 return p;
1096
1097 bad_offset:
1098 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1099 goto out;
1100 bad_device:
1101 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1102 goto out;
1103 bad_nofile:
1104 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1105 out:
1106 return NULL;
1107 }
1108
1109 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1110 {
1111 struct swap_info_struct *p;
1112
1113 p = __swap_info_get(entry);
1114 if (!p)
1115 goto out;
1116 if (!p->swap_map[swp_offset(entry)])
1117 goto bad_free;
1118 return p;
1119
1120 bad_free:
1121 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1122 goto out;
1123 out:
1124 return NULL;
1125 }
1126
1127 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1128 {
1129 struct swap_info_struct *p;
1130
1131 p = _swap_info_get(entry);
1132 if (p)
1133 spin_lock(&p->lock);
1134 return p;
1135 }
1136
1137 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1138 struct swap_info_struct *q)
1139 {
1140 struct swap_info_struct *p;
1141
1142 p = _swap_info_get(entry);
1143
1144 if (p != q) {
1145 if (q != NULL)
1146 spin_unlock(&q->lock);
1147 if (p != NULL)
1148 spin_lock(&p->lock);
1149 }
1150 return p;
1151 }
1152
1153 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1154 unsigned long offset,
1155 unsigned char usage)
1156 {
1157 unsigned char count;
1158 unsigned char has_cache;
1159
1160 count = p->swap_map[offset];
1161
1162 has_cache = count & SWAP_HAS_CACHE;
1163 count &= ~SWAP_HAS_CACHE;
1164
1165 if (usage == SWAP_HAS_CACHE) {
1166 VM_BUG_ON(!has_cache);
1167 has_cache = 0;
1168 } else if (count == SWAP_MAP_SHMEM) {
1169 /*
1170 * Or we could insist on shmem.c using a special
1171 * swap_shmem_free() and free_shmem_swap_and_cache()...
1172 */
1173 count = 0;
1174 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1175 if (count == COUNT_CONTINUED) {
1176 if (swap_count_continued(p, offset, count))
1177 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1178 else
1179 count = SWAP_MAP_MAX;
1180 } else
1181 count--;
1182 }
1183
1184 usage = count | has_cache;
1185 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1186
1187 return usage;
1188 }
1189
1190 /*
1191 * Check whether swap entry is valid in the swap device. If so,
1192 * return pointer to swap_info_struct, and keep the swap entry valid
1193 * via preventing the swap device from being swapoff, until
1194 * put_swap_device() is called. Otherwise return NULL.
1195 *
1196 * The entirety of the RCU read critical section must come before the
1197 * return from or after the call to synchronize_rcu() in
1198 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1199 * true, the si->map, si->cluster_info, etc. must be valid in the
1200 * critical section.
1201 *
1202 * Notice that swapoff or swapoff+swapon can still happen before the
1203 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1204 * in put_swap_device() if there isn't any other way to prevent
1205 * swapoff, such as page lock, page table lock, etc. The caller must
1206 * be prepared for that. For example, the following situation is
1207 * possible.
1208 *
1209 * CPU1 CPU2
1210 * do_swap_page()
1211 * ... swapoff+swapon
1212 * __read_swap_cache_async()
1213 * swapcache_prepare()
1214 * __swap_duplicate()
1215 * // check swap_map
1216 * // verify PTE not changed
1217 *
1218 * In __swap_duplicate(), the swap_map need to be checked before
1219 * changing partly because the specified swap entry may be for another
1220 * swap device which has been swapoff. And in do_swap_page(), after
1221 * the page is read from the swap device, the PTE is verified not
1222 * changed with the page table locked to check whether the swap device
1223 * has been swapoff or swapoff+swapon.
1224 */
1225 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1226 {
1227 struct swap_info_struct *si;
1228 unsigned long offset;
1229
1230 if (!entry.val)
1231 goto out;
1232 si = swp_swap_info(entry);
1233 if (!si)
1234 goto bad_nofile;
1235
1236 rcu_read_lock();
1237 if (!(si->flags & SWP_VALID))
1238 goto unlock_out;
1239 offset = swp_offset(entry);
1240 if (offset >= si->max)
1241 goto unlock_out;
1242
1243 return si;
1244 bad_nofile:
1245 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1246 out:
1247 return NULL;
1248 unlock_out:
1249 rcu_read_unlock();
1250 return NULL;
1251 }
1252
1253 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1254 swp_entry_t entry, unsigned char usage)
1255 {
1256 struct swap_cluster_info *ci;
1257 unsigned long offset = swp_offset(entry);
1258
1259 ci = lock_cluster_or_swap_info(p, offset);
1260 usage = __swap_entry_free_locked(p, offset, usage);
1261 unlock_cluster_or_swap_info(p, ci);
1262 if (!usage)
1263 free_swap_slot(entry);
1264
1265 return usage;
1266 }
1267
1268 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1269 {
1270 struct swap_cluster_info *ci;
1271 unsigned long offset = swp_offset(entry);
1272 unsigned char count;
1273
1274 ci = lock_cluster(p, offset);
1275 count = p->swap_map[offset];
1276 VM_BUG_ON(count != SWAP_HAS_CACHE);
1277 p->swap_map[offset] = 0;
1278 dec_cluster_info_page(p, p->cluster_info, offset);
1279 unlock_cluster(ci);
1280
1281 mem_cgroup_uncharge_swap(entry, 1);
1282 swap_range_free(p, offset, 1);
1283 }
1284
1285 /*
1286 * Caller has made sure that the swap device corresponding to entry
1287 * is still around or has not been recycled.
1288 */
1289 void swap_free(swp_entry_t entry)
1290 {
1291 struct swap_info_struct *p;
1292
1293 p = _swap_info_get(entry);
1294 if (p)
1295 __swap_entry_free(p, entry, 1);
1296 }
1297
1298 /*
1299 * Called after dropping swapcache to decrease refcnt to swap entries.
1300 */
1301 void put_swap_page(struct page *page, swp_entry_t entry)
1302 {
1303 unsigned long offset = swp_offset(entry);
1304 unsigned long idx = offset / SWAPFILE_CLUSTER;
1305 struct swap_cluster_info *ci;
1306 struct swap_info_struct *si;
1307 unsigned char *map;
1308 unsigned int i, free_entries = 0;
1309 unsigned char val;
1310 int size = swap_entry_size(hpage_nr_pages(page));
1311
1312 si = _swap_info_get(entry);
1313 if (!si)
1314 return;
1315
1316 ci = lock_cluster_or_swap_info(si, offset);
1317 if (size == SWAPFILE_CLUSTER) {
1318 VM_BUG_ON(!cluster_is_huge(ci));
1319 map = si->swap_map + offset;
1320 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1321 val = map[i];
1322 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1323 if (val == SWAP_HAS_CACHE)
1324 free_entries++;
1325 }
1326 cluster_clear_huge(ci);
1327 if (free_entries == SWAPFILE_CLUSTER) {
1328 unlock_cluster_or_swap_info(si, ci);
1329 spin_lock(&si->lock);
1330 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1331 swap_free_cluster(si, idx);
1332 spin_unlock(&si->lock);
1333 return;
1334 }
1335 }
1336 for (i = 0; i < size; i++, entry.val++) {
1337 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1338 unlock_cluster_or_swap_info(si, ci);
1339 free_swap_slot(entry);
1340 if (i == size - 1)
1341 return;
1342 lock_cluster_or_swap_info(si, offset);
1343 }
1344 }
1345 unlock_cluster_or_swap_info(si, ci);
1346 }
1347
1348 #ifdef CONFIG_THP_SWAP
1349 int split_swap_cluster(swp_entry_t entry)
1350 {
1351 struct swap_info_struct *si;
1352 struct swap_cluster_info *ci;
1353 unsigned long offset = swp_offset(entry);
1354
1355 si = _swap_info_get(entry);
1356 if (!si)
1357 return -EBUSY;
1358 ci = lock_cluster(si, offset);
1359 cluster_clear_huge(ci);
1360 unlock_cluster(ci);
1361 return 0;
1362 }
1363 #endif
1364
1365 static int swp_entry_cmp(const void *ent1, const void *ent2)
1366 {
1367 const swp_entry_t *e1 = ent1, *e2 = ent2;
1368
1369 return (int)swp_type(*e1) - (int)swp_type(*e2);
1370 }
1371
1372 void swapcache_free_entries(swp_entry_t *entries, int n)
1373 {
1374 struct swap_info_struct *p, *prev;
1375 int i;
1376
1377 if (n <= 0)
1378 return;
1379
1380 prev = NULL;
1381 p = NULL;
1382
1383 /*
1384 * Sort swap entries by swap device, so each lock is only taken once.
1385 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1386 * so low that it isn't necessary to optimize further.
1387 */
1388 if (nr_swapfiles > 1)
1389 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1390 for (i = 0; i < n; ++i) {
1391 p = swap_info_get_cont(entries[i], prev);
1392 if (p)
1393 swap_entry_free(p, entries[i]);
1394 prev = p;
1395 }
1396 if (p)
1397 spin_unlock(&p->lock);
1398 }
1399
1400 /*
1401 * How many references to page are currently swapped out?
1402 * This does not give an exact answer when swap count is continued,
1403 * but does include the high COUNT_CONTINUED flag to allow for that.
1404 */
1405 int page_swapcount(struct page *page)
1406 {
1407 int count = 0;
1408 struct swap_info_struct *p;
1409 struct swap_cluster_info *ci;
1410 swp_entry_t entry;
1411 unsigned long offset;
1412
1413 entry.val = page_private(page);
1414 p = _swap_info_get(entry);
1415 if (p) {
1416 offset = swp_offset(entry);
1417 ci = lock_cluster_or_swap_info(p, offset);
1418 count = swap_count(p->swap_map[offset]);
1419 unlock_cluster_or_swap_info(p, ci);
1420 }
1421 return count;
1422 }
1423
1424 int __swap_count(swp_entry_t entry)
1425 {
1426 struct swap_info_struct *si;
1427 pgoff_t offset = swp_offset(entry);
1428 int count = 0;
1429
1430 si = get_swap_device(entry);
1431 if (si) {
1432 count = swap_count(si->swap_map[offset]);
1433 put_swap_device(si);
1434 }
1435 return count;
1436 }
1437
1438 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1439 {
1440 int count = 0;
1441 pgoff_t offset = swp_offset(entry);
1442 struct swap_cluster_info *ci;
1443
1444 ci = lock_cluster_or_swap_info(si, offset);
1445 count = swap_count(si->swap_map[offset]);
1446 unlock_cluster_or_swap_info(si, ci);
1447 return count;
1448 }
1449
1450 /*
1451 * How many references to @entry are currently swapped out?
1452 * This does not give an exact answer when swap count is continued,
1453 * but does include the high COUNT_CONTINUED flag to allow for that.
1454 */
1455 int __swp_swapcount(swp_entry_t entry)
1456 {
1457 int count = 0;
1458 struct swap_info_struct *si;
1459
1460 si = get_swap_device(entry);
1461 if (si) {
1462 count = swap_swapcount(si, entry);
1463 put_swap_device(si);
1464 }
1465 return count;
1466 }
1467
1468 /*
1469 * How many references to @entry are currently swapped out?
1470 * This considers COUNT_CONTINUED so it returns exact answer.
1471 */
1472 int swp_swapcount(swp_entry_t entry)
1473 {
1474 int count, tmp_count, n;
1475 struct swap_info_struct *p;
1476 struct swap_cluster_info *ci;
1477 struct page *page;
1478 pgoff_t offset;
1479 unsigned char *map;
1480
1481 p = _swap_info_get(entry);
1482 if (!p)
1483 return 0;
1484
1485 offset = swp_offset(entry);
1486
1487 ci = lock_cluster_or_swap_info(p, offset);
1488
1489 count = swap_count(p->swap_map[offset]);
1490 if (!(count & COUNT_CONTINUED))
1491 goto out;
1492
1493 count &= ~COUNT_CONTINUED;
1494 n = SWAP_MAP_MAX + 1;
1495
1496 page = vmalloc_to_page(p->swap_map + offset);
1497 offset &= ~PAGE_MASK;
1498 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1499
1500 do {
1501 page = list_next_entry(page, lru);
1502 map = kmap_atomic(page);
1503 tmp_count = map[offset];
1504 kunmap_atomic(map);
1505
1506 count += (tmp_count & ~COUNT_CONTINUED) * n;
1507 n *= (SWAP_CONT_MAX + 1);
1508 } while (tmp_count & COUNT_CONTINUED);
1509 out:
1510 unlock_cluster_or_swap_info(p, ci);
1511 return count;
1512 }
1513
1514 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1515 swp_entry_t entry)
1516 {
1517 struct swap_cluster_info *ci;
1518 unsigned char *map = si->swap_map;
1519 unsigned long roffset = swp_offset(entry);
1520 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1521 int i;
1522 bool ret = false;
1523
1524 ci = lock_cluster_or_swap_info(si, offset);
1525 if (!ci || !cluster_is_huge(ci)) {
1526 if (swap_count(map[roffset]))
1527 ret = true;
1528 goto unlock_out;
1529 }
1530 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1531 if (swap_count(map[offset + i])) {
1532 ret = true;
1533 break;
1534 }
1535 }
1536 unlock_out:
1537 unlock_cluster_or_swap_info(si, ci);
1538 return ret;
1539 }
1540
1541 static bool page_swapped(struct page *page)
1542 {
1543 swp_entry_t entry;
1544 struct swap_info_struct *si;
1545
1546 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1547 return page_swapcount(page) != 0;
1548
1549 page = compound_head(page);
1550 entry.val = page_private(page);
1551 si = _swap_info_get(entry);
1552 if (si)
1553 return swap_page_trans_huge_swapped(si, entry);
1554 return false;
1555 }
1556
1557 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1558 int *total_swapcount)
1559 {
1560 int i, map_swapcount, _total_mapcount, _total_swapcount;
1561 unsigned long offset = 0;
1562 struct swap_info_struct *si;
1563 struct swap_cluster_info *ci = NULL;
1564 unsigned char *map = NULL;
1565 int mapcount, swapcount = 0;
1566
1567 /* hugetlbfs shouldn't call it */
1568 VM_BUG_ON_PAGE(PageHuge(page), page);
1569
1570 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1571 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1572 if (PageSwapCache(page))
1573 swapcount = page_swapcount(page);
1574 if (total_swapcount)
1575 *total_swapcount = swapcount;
1576 return mapcount + swapcount;
1577 }
1578
1579 page = compound_head(page);
1580
1581 _total_mapcount = _total_swapcount = map_swapcount = 0;
1582 if (PageSwapCache(page)) {
1583 swp_entry_t entry;
1584
1585 entry.val = page_private(page);
1586 si = _swap_info_get(entry);
1587 if (si) {
1588 map = si->swap_map;
1589 offset = swp_offset(entry);
1590 }
1591 }
1592 if (map)
1593 ci = lock_cluster(si, offset);
1594 for (i = 0; i < HPAGE_PMD_NR; i++) {
1595 mapcount = atomic_read(&page[i]._mapcount) + 1;
1596 _total_mapcount += mapcount;
1597 if (map) {
1598 swapcount = swap_count(map[offset + i]);
1599 _total_swapcount += swapcount;
1600 }
1601 map_swapcount = max(map_swapcount, mapcount + swapcount);
1602 }
1603 unlock_cluster(ci);
1604 if (PageDoubleMap(page)) {
1605 map_swapcount -= 1;
1606 _total_mapcount -= HPAGE_PMD_NR;
1607 }
1608 mapcount = compound_mapcount(page);
1609 map_swapcount += mapcount;
1610 _total_mapcount += mapcount;
1611 if (total_mapcount)
1612 *total_mapcount = _total_mapcount;
1613 if (total_swapcount)
1614 *total_swapcount = _total_swapcount;
1615
1616 return map_swapcount;
1617 }
1618
1619 /*
1620 * We can write to an anon page without COW if there are no other references
1621 * to it. And as a side-effect, free up its swap: because the old content
1622 * on disk will never be read, and seeking back there to write new content
1623 * later would only waste time away from clustering.
1624 *
1625 * NOTE: total_map_swapcount should not be relied upon by the caller if
1626 * reuse_swap_page() returns false, but it may be always overwritten
1627 * (see the other implementation for CONFIG_SWAP=n).
1628 */
1629 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1630 {
1631 int count, total_mapcount, total_swapcount;
1632
1633 VM_BUG_ON_PAGE(!PageLocked(page), page);
1634 if (unlikely(PageKsm(page)))
1635 return false;
1636 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1637 &total_swapcount);
1638 if (total_map_swapcount)
1639 *total_map_swapcount = total_mapcount + total_swapcount;
1640 if (count == 1 && PageSwapCache(page) &&
1641 (likely(!PageTransCompound(page)) ||
1642 /* The remaining swap count will be freed soon */
1643 total_swapcount == page_swapcount(page))) {
1644 if (!PageWriteback(page)) {
1645 page = compound_head(page);
1646 delete_from_swap_cache(page);
1647 SetPageDirty(page);
1648 } else {
1649 swp_entry_t entry;
1650 struct swap_info_struct *p;
1651
1652 entry.val = page_private(page);
1653 p = swap_info_get(entry);
1654 if (p->flags & SWP_STABLE_WRITES) {
1655 spin_unlock(&p->lock);
1656 return false;
1657 }
1658 spin_unlock(&p->lock);
1659 }
1660 }
1661
1662 return count <= 1;
1663 }
1664
1665 /*
1666 * If swap is getting full, or if there are no more mappings of this page,
1667 * then try_to_free_swap is called to free its swap space.
1668 */
1669 int try_to_free_swap(struct page *page)
1670 {
1671 VM_BUG_ON_PAGE(!PageLocked(page), page);
1672
1673 if (!PageSwapCache(page))
1674 return 0;
1675 if (PageWriteback(page))
1676 return 0;
1677 if (page_swapped(page))
1678 return 0;
1679
1680 /*
1681 * Once hibernation has begun to create its image of memory,
1682 * there's a danger that one of the calls to try_to_free_swap()
1683 * - most probably a call from __try_to_reclaim_swap() while
1684 * hibernation is allocating its own swap pages for the image,
1685 * but conceivably even a call from memory reclaim - will free
1686 * the swap from a page which has already been recorded in the
1687 * image as a clean swapcache page, and then reuse its swap for
1688 * another page of the image. On waking from hibernation, the
1689 * original page might be freed under memory pressure, then
1690 * later read back in from swap, now with the wrong data.
1691 *
1692 * Hibernation suspends storage while it is writing the image
1693 * to disk so check that here.
1694 */
1695 if (pm_suspended_storage())
1696 return 0;
1697
1698 page = compound_head(page);
1699 delete_from_swap_cache(page);
1700 SetPageDirty(page);
1701 return 1;
1702 }
1703
1704 /*
1705 * Free the swap entry like above, but also try to
1706 * free the page cache entry if it is the last user.
1707 */
1708 int free_swap_and_cache(swp_entry_t entry)
1709 {
1710 struct swap_info_struct *p;
1711 unsigned char count;
1712
1713 if (non_swap_entry(entry))
1714 return 1;
1715
1716 p = _swap_info_get(entry);
1717 if (p) {
1718 count = __swap_entry_free(p, entry, 1);
1719 if (count == SWAP_HAS_CACHE &&
1720 !swap_page_trans_huge_swapped(p, entry))
1721 __try_to_reclaim_swap(p, swp_offset(entry),
1722 TTRS_UNMAPPED | TTRS_FULL);
1723 }
1724 return p != NULL;
1725 }
1726
1727 #ifdef CONFIG_HIBERNATION
1728 /*
1729 * Find the swap type that corresponds to given device (if any).
1730 *
1731 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1732 * from 0, in which the swap header is expected to be located.
1733 *
1734 * This is needed for the suspend to disk (aka swsusp).
1735 */
1736 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1737 {
1738 struct block_device *bdev = NULL;
1739 int type;
1740
1741 if (device)
1742 bdev = bdget(device);
1743
1744 spin_lock(&swap_lock);
1745 for (type = 0; type < nr_swapfiles; type++) {
1746 struct swap_info_struct *sis = swap_info[type];
1747
1748 if (!(sis->flags & SWP_WRITEOK))
1749 continue;
1750
1751 if (!bdev) {
1752 if (bdev_p)
1753 *bdev_p = bdgrab(sis->bdev);
1754
1755 spin_unlock(&swap_lock);
1756 return type;
1757 }
1758 if (bdev == sis->bdev) {
1759 struct swap_extent *se = first_se(sis);
1760
1761 if (se->start_block == offset) {
1762 if (bdev_p)
1763 *bdev_p = bdgrab(sis->bdev);
1764
1765 spin_unlock(&swap_lock);
1766 bdput(bdev);
1767 return type;
1768 }
1769 }
1770 }
1771 spin_unlock(&swap_lock);
1772 if (bdev)
1773 bdput(bdev);
1774
1775 return -ENODEV;
1776 }
1777
1778 /*
1779 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1780 * corresponding to given index in swap_info (swap type).
1781 */
1782 sector_t swapdev_block(int type, pgoff_t offset)
1783 {
1784 struct block_device *bdev;
1785 struct swap_info_struct *si = swap_type_to_swap_info(type);
1786
1787 if (!si || !(si->flags & SWP_WRITEOK))
1788 return 0;
1789 return map_swap_entry(swp_entry(type, offset), &bdev);
1790 }
1791
1792 /*
1793 * Return either the total number of swap pages of given type, or the number
1794 * of free pages of that type (depending on @free)
1795 *
1796 * This is needed for software suspend
1797 */
1798 unsigned int count_swap_pages(int type, int free)
1799 {
1800 unsigned int n = 0;
1801
1802 spin_lock(&swap_lock);
1803 if ((unsigned int)type < nr_swapfiles) {
1804 struct swap_info_struct *sis = swap_info[type];
1805
1806 spin_lock(&sis->lock);
1807 if (sis->flags & SWP_WRITEOK) {
1808 n = sis->pages;
1809 if (free)
1810 n -= sis->inuse_pages;
1811 }
1812 spin_unlock(&sis->lock);
1813 }
1814 spin_unlock(&swap_lock);
1815 return n;
1816 }
1817 #endif /* CONFIG_HIBERNATION */
1818
1819 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1820 {
1821 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1822 }
1823
1824 /*
1825 * No need to decide whether this PTE shares the swap entry with others,
1826 * just let do_wp_page work it out if a write is requested later - to
1827 * force COW, vm_page_prot omits write permission from any private vma.
1828 */
1829 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1830 unsigned long addr, swp_entry_t entry, struct page *page)
1831 {
1832 struct page *swapcache;
1833 struct mem_cgroup *memcg;
1834 spinlock_t *ptl;
1835 pte_t *pte;
1836 int ret = 1;
1837
1838 swapcache = page;
1839 page = ksm_might_need_to_copy(page, vma, addr);
1840 if (unlikely(!page))
1841 return -ENOMEM;
1842
1843 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1844 &memcg, false)) {
1845 ret = -ENOMEM;
1846 goto out_nolock;
1847 }
1848
1849 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1850 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1851 mem_cgroup_cancel_charge(page, memcg, false);
1852 ret = 0;
1853 goto out;
1854 }
1855
1856 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1857 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1858 get_page(page);
1859 set_pte_at(vma->vm_mm, addr, pte,
1860 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1861 if (page == swapcache) {
1862 page_add_anon_rmap(page, vma, addr, false);
1863 mem_cgroup_commit_charge(page, memcg, true, false);
1864 } else { /* ksm created a completely new copy */
1865 page_add_new_anon_rmap(page, vma, addr, false);
1866 mem_cgroup_commit_charge(page, memcg, false, false);
1867 lru_cache_add_active_or_unevictable(page, vma);
1868 }
1869 swap_free(entry);
1870 /*
1871 * Move the page to the active list so it is not
1872 * immediately swapped out again after swapon.
1873 */
1874 activate_page(page);
1875 out:
1876 pte_unmap_unlock(pte, ptl);
1877 out_nolock:
1878 if (page != swapcache) {
1879 unlock_page(page);
1880 put_page(page);
1881 }
1882 return ret;
1883 }
1884
1885 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1886 unsigned long addr, unsigned long end,
1887 unsigned int type, bool frontswap,
1888 unsigned long *fs_pages_to_unuse)
1889 {
1890 struct page *page;
1891 swp_entry_t entry;
1892 pte_t *pte;
1893 struct swap_info_struct *si;
1894 unsigned long offset;
1895 int ret = 0;
1896 volatile unsigned char *swap_map;
1897
1898 si = swap_info[type];
1899 pte = pte_offset_map(pmd, addr);
1900 do {
1901 struct vm_fault vmf;
1902
1903 if (!is_swap_pte(*pte))
1904 continue;
1905
1906 entry = pte_to_swp_entry(*pte);
1907 if (swp_type(entry) != type)
1908 continue;
1909
1910 offset = swp_offset(entry);
1911 if (frontswap && !frontswap_test(si, offset))
1912 continue;
1913
1914 pte_unmap(pte);
1915 swap_map = &si->swap_map[offset];
1916 page = lookup_swap_cache(entry, vma, addr);
1917 if (!page) {
1918 vmf.vma = vma;
1919 vmf.address = addr;
1920 vmf.pmd = pmd;
1921 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1922 &vmf);
1923 }
1924 if (!page) {
1925 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1926 goto try_next;
1927 return -ENOMEM;
1928 }
1929
1930 lock_page(page);
1931 wait_on_page_writeback(page);
1932 ret = unuse_pte(vma, pmd, addr, entry, page);
1933 if (ret < 0) {
1934 unlock_page(page);
1935 put_page(page);
1936 goto out;
1937 }
1938
1939 try_to_free_swap(page);
1940 unlock_page(page);
1941 put_page(page);
1942
1943 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1944 ret = FRONTSWAP_PAGES_UNUSED;
1945 goto out;
1946 }
1947 try_next:
1948 pte = pte_offset_map(pmd, addr);
1949 } while (pte++, addr += PAGE_SIZE, addr != end);
1950 pte_unmap(pte - 1);
1951
1952 ret = 0;
1953 out:
1954 return ret;
1955 }
1956
1957 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1958 unsigned long addr, unsigned long end,
1959 unsigned int type, bool frontswap,
1960 unsigned long *fs_pages_to_unuse)
1961 {
1962 pmd_t *pmd;
1963 unsigned long next;
1964 int ret;
1965
1966 pmd = pmd_offset(pud, addr);
1967 do {
1968 cond_resched();
1969 next = pmd_addr_end(addr, end);
1970 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1971 continue;
1972 ret = unuse_pte_range(vma, pmd, addr, next, type,
1973 frontswap, fs_pages_to_unuse);
1974 if (ret)
1975 return ret;
1976 } while (pmd++, addr = next, addr != end);
1977 return 0;
1978 }
1979
1980 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1981 unsigned long addr, unsigned long end,
1982 unsigned int type, bool frontswap,
1983 unsigned long *fs_pages_to_unuse)
1984 {
1985 pud_t *pud;
1986 unsigned long next;
1987 int ret;
1988
1989 pud = pud_offset(p4d, addr);
1990 do {
1991 next = pud_addr_end(addr, end);
1992 if (pud_none_or_clear_bad(pud))
1993 continue;
1994 ret = unuse_pmd_range(vma, pud, addr, next, type,
1995 frontswap, fs_pages_to_unuse);
1996 if (ret)
1997 return ret;
1998 } while (pud++, addr = next, addr != end);
1999 return 0;
2000 }
2001
2002 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2003 unsigned long addr, unsigned long end,
2004 unsigned int type, bool frontswap,
2005 unsigned long *fs_pages_to_unuse)
2006 {
2007 p4d_t *p4d;
2008 unsigned long next;
2009 int ret;
2010
2011 p4d = p4d_offset(pgd, addr);
2012 do {
2013 next = p4d_addr_end(addr, end);
2014 if (p4d_none_or_clear_bad(p4d))
2015 continue;
2016 ret = unuse_pud_range(vma, p4d, addr, next, type,
2017 frontswap, fs_pages_to_unuse);
2018 if (ret)
2019 return ret;
2020 } while (p4d++, addr = next, addr != end);
2021 return 0;
2022 }
2023
2024 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2025 bool frontswap, unsigned long *fs_pages_to_unuse)
2026 {
2027 pgd_t *pgd;
2028 unsigned long addr, end, next;
2029 int ret;
2030
2031 addr = vma->vm_start;
2032 end = vma->vm_end;
2033
2034 pgd = pgd_offset(vma->vm_mm, addr);
2035 do {
2036 next = pgd_addr_end(addr, end);
2037 if (pgd_none_or_clear_bad(pgd))
2038 continue;
2039 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2040 frontswap, fs_pages_to_unuse);
2041 if (ret)
2042 return ret;
2043 } while (pgd++, addr = next, addr != end);
2044 return 0;
2045 }
2046
2047 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2048 bool frontswap, unsigned long *fs_pages_to_unuse)
2049 {
2050 struct vm_area_struct *vma;
2051 int ret = 0;
2052
2053 down_read(&mm->mmap_sem);
2054 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2055 if (vma->anon_vma) {
2056 ret = unuse_vma(vma, type, frontswap,
2057 fs_pages_to_unuse);
2058 if (ret)
2059 break;
2060 }
2061 cond_resched();
2062 }
2063 up_read(&mm->mmap_sem);
2064 return ret;
2065 }
2066
2067 /*
2068 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2069 * from current position to next entry still in use. Return 0
2070 * if there are no inuse entries after prev till end of the map.
2071 */
2072 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2073 unsigned int prev, bool frontswap)
2074 {
2075 unsigned int i;
2076 unsigned char count;
2077
2078 /*
2079 * No need for swap_lock here: we're just looking
2080 * for whether an entry is in use, not modifying it; false
2081 * hits are okay, and sys_swapoff() has already prevented new
2082 * allocations from this area (while holding swap_lock).
2083 */
2084 for (i = prev + 1; i < si->max; i++) {
2085 count = READ_ONCE(si->swap_map[i]);
2086 if (count && swap_count(count) != SWAP_MAP_BAD)
2087 if (!frontswap || frontswap_test(si, i))
2088 break;
2089 if ((i % LATENCY_LIMIT) == 0)
2090 cond_resched();
2091 }
2092
2093 if (i == si->max)
2094 i = 0;
2095
2096 return i;
2097 }
2098
2099 /*
2100 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2101 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2102 */
2103 int try_to_unuse(unsigned int type, bool frontswap,
2104 unsigned long pages_to_unuse)
2105 {
2106 struct mm_struct *prev_mm;
2107 struct mm_struct *mm;
2108 struct list_head *p;
2109 int retval = 0;
2110 struct swap_info_struct *si = swap_info[type];
2111 struct page *page;
2112 swp_entry_t entry;
2113 unsigned int i;
2114
2115 if (!READ_ONCE(si->inuse_pages))
2116 return 0;
2117
2118 if (!frontswap)
2119 pages_to_unuse = 0;
2120
2121 retry:
2122 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2123 if (retval)
2124 goto out;
2125
2126 prev_mm = &init_mm;
2127 mmget(prev_mm);
2128
2129 spin_lock(&mmlist_lock);
2130 p = &init_mm.mmlist;
2131 while (READ_ONCE(si->inuse_pages) &&
2132 !signal_pending(current) &&
2133 (p = p->next) != &init_mm.mmlist) {
2134
2135 mm = list_entry(p, struct mm_struct, mmlist);
2136 if (!mmget_not_zero(mm))
2137 continue;
2138 spin_unlock(&mmlist_lock);
2139 mmput(prev_mm);
2140 prev_mm = mm;
2141 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2142
2143 if (retval) {
2144 mmput(prev_mm);
2145 goto out;
2146 }
2147
2148 /*
2149 * Make sure that we aren't completely killing
2150 * interactive performance.
2151 */
2152 cond_resched();
2153 spin_lock(&mmlist_lock);
2154 }
2155 spin_unlock(&mmlist_lock);
2156
2157 mmput(prev_mm);
2158
2159 i = 0;
2160 while (READ_ONCE(si->inuse_pages) &&
2161 !signal_pending(current) &&
2162 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2163
2164 entry = swp_entry(type, i);
2165 page = find_get_page(swap_address_space(entry), i);
2166 if (!page)
2167 continue;
2168
2169 /*
2170 * It is conceivable that a racing task removed this page from
2171 * swap cache just before we acquired the page lock. The page
2172 * might even be back in swap cache on another swap area. But
2173 * that is okay, try_to_free_swap() only removes stale pages.
2174 */
2175 lock_page(page);
2176 wait_on_page_writeback(page);
2177 try_to_free_swap(page);
2178 unlock_page(page);
2179 put_page(page);
2180
2181 /*
2182 * For frontswap, we just need to unuse pages_to_unuse, if
2183 * it was specified. Need not check frontswap again here as
2184 * we already zeroed out pages_to_unuse if not frontswap.
2185 */
2186 if (pages_to_unuse && --pages_to_unuse == 0)
2187 goto out;
2188 }
2189
2190 /*
2191 * Lets check again to see if there are still swap entries in the map.
2192 * If yes, we would need to do retry the unuse logic again.
2193 * Under global memory pressure, swap entries can be reinserted back
2194 * into process space after the mmlist loop above passes over them.
2195 *
2196 * Limit the number of retries? No: when mmget_not_zero() above fails,
2197 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2198 * at its own independent pace; and even shmem_writepage() could have
2199 * been preempted after get_swap_page(), temporarily hiding that swap.
2200 * It's easy and robust (though cpu-intensive) just to keep retrying.
2201 */
2202 if (READ_ONCE(si->inuse_pages)) {
2203 if (!signal_pending(current))
2204 goto retry;
2205 retval = -EINTR;
2206 }
2207 out:
2208 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2209 }
2210
2211 /*
2212 * After a successful try_to_unuse, if no swap is now in use, we know
2213 * we can empty the mmlist. swap_lock must be held on entry and exit.
2214 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2215 * added to the mmlist just after page_duplicate - before would be racy.
2216 */
2217 static void drain_mmlist(void)
2218 {
2219 struct list_head *p, *next;
2220 unsigned int type;
2221
2222 for (type = 0; type < nr_swapfiles; type++)
2223 if (swap_info[type]->inuse_pages)
2224 return;
2225 spin_lock(&mmlist_lock);
2226 list_for_each_safe(p, next, &init_mm.mmlist)
2227 list_del_init(p);
2228 spin_unlock(&mmlist_lock);
2229 }
2230
2231 /*
2232 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2233 * corresponds to page offset for the specified swap entry.
2234 * Note that the type of this function is sector_t, but it returns page offset
2235 * into the bdev, not sector offset.
2236 */
2237 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2238 {
2239 struct swap_info_struct *sis;
2240 struct swap_extent *se;
2241 pgoff_t offset;
2242
2243 sis = swp_swap_info(entry);
2244 *bdev = sis->bdev;
2245
2246 offset = swp_offset(entry);
2247 se = offset_to_swap_extent(sis, offset);
2248 return se->start_block + (offset - se->start_page);
2249 }
2250
2251 /*
2252 * Returns the page offset into bdev for the specified page's swap entry.
2253 */
2254 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2255 {
2256 swp_entry_t entry;
2257 entry.val = page_private(page);
2258 return map_swap_entry(entry, bdev);
2259 }
2260
2261 /*
2262 * Free all of a swapdev's extent information
2263 */
2264 static void destroy_swap_extents(struct swap_info_struct *sis)
2265 {
2266 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2267 struct rb_node *rb = sis->swap_extent_root.rb_node;
2268 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2269
2270 rb_erase(rb, &sis->swap_extent_root);
2271 kfree(se);
2272 }
2273
2274 if (sis->flags & SWP_ACTIVATED) {
2275 struct file *swap_file = sis->swap_file;
2276 struct address_space *mapping = swap_file->f_mapping;
2277
2278 sis->flags &= ~SWP_ACTIVATED;
2279 if (mapping->a_ops->swap_deactivate)
2280 mapping->a_ops->swap_deactivate(swap_file);
2281 }
2282 }
2283
2284 /*
2285 * Add a block range (and the corresponding page range) into this swapdev's
2286 * extent tree.
2287 *
2288 * This function rather assumes that it is called in ascending page order.
2289 */
2290 int
2291 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2292 unsigned long nr_pages, sector_t start_block)
2293 {
2294 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2295 struct swap_extent *se;
2296 struct swap_extent *new_se;
2297
2298 /*
2299 * place the new node at the right most since the
2300 * function is called in ascending page order.
2301 */
2302 while (*link) {
2303 parent = *link;
2304 link = &parent->rb_right;
2305 }
2306
2307 if (parent) {
2308 se = rb_entry(parent, struct swap_extent, rb_node);
2309 BUG_ON(se->start_page + se->nr_pages != start_page);
2310 if (se->start_block + se->nr_pages == start_block) {
2311 /* Merge it */
2312 se->nr_pages += nr_pages;
2313 return 0;
2314 }
2315 }
2316
2317 /* No merge, insert a new extent. */
2318 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2319 if (new_se == NULL)
2320 return -ENOMEM;
2321 new_se->start_page = start_page;
2322 new_se->nr_pages = nr_pages;
2323 new_se->start_block = start_block;
2324
2325 rb_link_node(&new_se->rb_node, parent, link);
2326 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2327 return 1;
2328 }
2329 EXPORT_SYMBOL_GPL(add_swap_extent);
2330
2331 /*
2332 * A `swap extent' is a simple thing which maps a contiguous range of pages
2333 * onto a contiguous range of disk blocks. An ordered list of swap extents
2334 * is built at swapon time and is then used at swap_writepage/swap_readpage
2335 * time for locating where on disk a page belongs.
2336 *
2337 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2338 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2339 * swap files identically.
2340 *
2341 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2342 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2343 * swapfiles are handled *identically* after swapon time.
2344 *
2345 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2346 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2347 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2348 * requirements, they are simply tossed out - we will never use those blocks
2349 * for swapping.
2350 *
2351 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2352 * prevents users from writing to the swap device, which will corrupt memory.
2353 *
2354 * The amount of disk space which a single swap extent represents varies.
2355 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2356 * extents in the list. To avoid much list walking, we cache the previous
2357 * search location in `curr_swap_extent', and start new searches from there.
2358 * This is extremely effective. The average number of iterations in
2359 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2360 */
2361 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2362 {
2363 struct file *swap_file = sis->swap_file;
2364 struct address_space *mapping = swap_file->f_mapping;
2365 struct inode *inode = mapping->host;
2366 int ret;
2367
2368 if (S_ISBLK(inode->i_mode)) {
2369 ret = add_swap_extent(sis, 0, sis->max, 0);
2370 *span = sis->pages;
2371 return ret;
2372 }
2373
2374 if (mapping->a_ops->swap_activate) {
2375 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2376 if (ret >= 0)
2377 sis->flags |= SWP_ACTIVATED;
2378 if (!ret) {
2379 sis->flags |= SWP_FS;
2380 ret = add_swap_extent(sis, 0, sis->max, 0);
2381 *span = sis->pages;
2382 }
2383 return ret;
2384 }
2385
2386 return generic_swapfile_activate(sis, swap_file, span);
2387 }
2388
2389 static int swap_node(struct swap_info_struct *p)
2390 {
2391 struct block_device *bdev;
2392
2393 if (p->bdev)
2394 bdev = p->bdev;
2395 else
2396 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2397
2398 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2399 }
2400
2401 static void setup_swap_info(struct swap_info_struct *p, int prio,
2402 unsigned char *swap_map,
2403 struct swap_cluster_info *cluster_info)
2404 {
2405 int i;
2406
2407 if (prio >= 0)
2408 p->prio = prio;
2409 else
2410 p->prio = --least_priority;
2411 /*
2412 * the plist prio is negated because plist ordering is
2413 * low-to-high, while swap ordering is high-to-low
2414 */
2415 p->list.prio = -p->prio;
2416 for_each_node(i) {
2417 if (p->prio >= 0)
2418 p->avail_lists[i].prio = -p->prio;
2419 else {
2420 if (swap_node(p) == i)
2421 p->avail_lists[i].prio = 1;
2422 else
2423 p->avail_lists[i].prio = -p->prio;
2424 }
2425 }
2426 p->swap_map = swap_map;
2427 p->cluster_info = cluster_info;
2428 }
2429
2430 static void _enable_swap_info(struct swap_info_struct *p)
2431 {
2432 p->flags |= SWP_WRITEOK | SWP_VALID;
2433 atomic_long_add(p->pages, &nr_swap_pages);
2434 total_swap_pages += p->pages;
2435
2436 assert_spin_locked(&swap_lock);
2437 /*
2438 * both lists are plists, and thus priority ordered.
2439 * swap_active_head needs to be priority ordered for swapoff(),
2440 * which on removal of any swap_info_struct with an auto-assigned
2441 * (i.e. negative) priority increments the auto-assigned priority
2442 * of any lower-priority swap_info_structs.
2443 * swap_avail_head needs to be priority ordered for get_swap_page(),
2444 * which allocates swap pages from the highest available priority
2445 * swap_info_struct.
2446 */
2447 plist_add(&p->list, &swap_active_head);
2448 add_to_avail_list(p);
2449 }
2450
2451 static void enable_swap_info(struct swap_info_struct *p, int prio,
2452 unsigned char *swap_map,
2453 struct swap_cluster_info *cluster_info,
2454 unsigned long *frontswap_map)
2455 {
2456 frontswap_init(p->type, frontswap_map);
2457 spin_lock(&swap_lock);
2458 spin_lock(&p->lock);
2459 setup_swap_info(p, prio, swap_map, cluster_info);
2460 spin_unlock(&p->lock);
2461 spin_unlock(&swap_lock);
2462 /*
2463 * Guarantee swap_map, cluster_info, etc. fields are valid
2464 * between get/put_swap_device() if SWP_VALID bit is set
2465 */
2466 synchronize_rcu();
2467 spin_lock(&swap_lock);
2468 spin_lock(&p->lock);
2469 _enable_swap_info(p);
2470 spin_unlock(&p->lock);
2471 spin_unlock(&swap_lock);
2472 }
2473
2474 static void reinsert_swap_info(struct swap_info_struct *p)
2475 {
2476 spin_lock(&swap_lock);
2477 spin_lock(&p->lock);
2478 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2479 _enable_swap_info(p);
2480 spin_unlock(&p->lock);
2481 spin_unlock(&swap_lock);
2482 }
2483
2484 bool has_usable_swap(void)
2485 {
2486 bool ret = true;
2487
2488 spin_lock(&swap_lock);
2489 if (plist_head_empty(&swap_active_head))
2490 ret = false;
2491 spin_unlock(&swap_lock);
2492 return ret;
2493 }
2494
2495 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2496 {
2497 struct swap_info_struct *p = NULL;
2498 unsigned char *swap_map;
2499 struct swap_cluster_info *cluster_info;
2500 unsigned long *frontswap_map;
2501 struct file *swap_file, *victim;
2502 struct address_space *mapping;
2503 struct inode *inode;
2504 struct filename *pathname;
2505 int err, found = 0;
2506 unsigned int old_block_size;
2507
2508 if (!capable(CAP_SYS_ADMIN))
2509 return -EPERM;
2510
2511 BUG_ON(!current->mm);
2512
2513 pathname = getname(specialfile);
2514 if (IS_ERR(pathname))
2515 return PTR_ERR(pathname);
2516
2517 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2518 err = PTR_ERR(victim);
2519 if (IS_ERR(victim))
2520 goto out;
2521
2522 mapping = victim->f_mapping;
2523 spin_lock(&swap_lock);
2524 plist_for_each_entry(p, &swap_active_head, list) {
2525 if (p->flags & SWP_WRITEOK) {
2526 if (p->swap_file->f_mapping == mapping) {
2527 found = 1;
2528 break;
2529 }
2530 }
2531 }
2532 if (!found) {
2533 err = -EINVAL;
2534 spin_unlock(&swap_lock);
2535 goto out_dput;
2536 }
2537 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2538 vm_unacct_memory(p->pages);
2539 else {
2540 err = -ENOMEM;
2541 spin_unlock(&swap_lock);
2542 goto out_dput;
2543 }
2544 del_from_avail_list(p);
2545 spin_lock(&p->lock);
2546 if (p->prio < 0) {
2547 struct swap_info_struct *si = p;
2548 int nid;
2549
2550 plist_for_each_entry_continue(si, &swap_active_head, list) {
2551 si->prio++;
2552 si->list.prio--;
2553 for_each_node(nid) {
2554 if (si->avail_lists[nid].prio != 1)
2555 si->avail_lists[nid].prio--;
2556 }
2557 }
2558 least_priority++;
2559 }
2560 plist_del(&p->list, &swap_active_head);
2561 atomic_long_sub(p->pages, &nr_swap_pages);
2562 total_swap_pages -= p->pages;
2563 p->flags &= ~SWP_WRITEOK;
2564 spin_unlock(&p->lock);
2565 spin_unlock(&swap_lock);
2566
2567 disable_swap_slots_cache_lock();
2568
2569 set_current_oom_origin();
2570 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2571 clear_current_oom_origin();
2572
2573 if (err) {
2574 /* re-insert swap space back into swap_list */
2575 reinsert_swap_info(p);
2576 reenable_swap_slots_cache_unlock();
2577 goto out_dput;
2578 }
2579
2580 reenable_swap_slots_cache_unlock();
2581
2582 spin_lock(&swap_lock);
2583 spin_lock(&p->lock);
2584 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2585 spin_unlock(&p->lock);
2586 spin_unlock(&swap_lock);
2587 /*
2588 * wait for swap operations protected by get/put_swap_device()
2589 * to complete
2590 */
2591 synchronize_rcu();
2592
2593 flush_work(&p->discard_work);
2594
2595 destroy_swap_extents(p);
2596 if (p->flags & SWP_CONTINUED)
2597 free_swap_count_continuations(p);
2598
2599 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2600 atomic_dec(&nr_rotate_swap);
2601
2602 mutex_lock(&swapon_mutex);
2603 spin_lock(&swap_lock);
2604 spin_lock(&p->lock);
2605 drain_mmlist();
2606
2607 /* wait for anyone still in scan_swap_map */
2608 p->highest_bit = 0; /* cuts scans short */
2609 while (p->flags >= SWP_SCANNING) {
2610 spin_unlock(&p->lock);
2611 spin_unlock(&swap_lock);
2612 schedule_timeout_uninterruptible(1);
2613 spin_lock(&swap_lock);
2614 spin_lock(&p->lock);
2615 }
2616
2617 swap_file = p->swap_file;
2618 old_block_size = p->old_block_size;
2619 p->swap_file = NULL;
2620 p->max = 0;
2621 swap_map = p->swap_map;
2622 p->swap_map = NULL;
2623 cluster_info = p->cluster_info;
2624 p->cluster_info = NULL;
2625 frontswap_map = frontswap_map_get(p);
2626 spin_unlock(&p->lock);
2627 spin_unlock(&swap_lock);
2628 frontswap_invalidate_area(p->type);
2629 frontswap_map_set(p, NULL);
2630 mutex_unlock(&swapon_mutex);
2631 free_percpu(p->percpu_cluster);
2632 p->percpu_cluster = NULL;
2633 vfree(swap_map);
2634 kvfree(cluster_info);
2635 kvfree(frontswap_map);
2636 /* Destroy swap account information */
2637 swap_cgroup_swapoff(p->type);
2638 exit_swap_address_space(p->type);
2639
2640 inode = mapping->host;
2641 if (S_ISBLK(inode->i_mode)) {
2642 struct block_device *bdev = I_BDEV(inode);
2643
2644 set_blocksize(bdev, old_block_size);
2645 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2646 }
2647
2648 inode_lock(inode);
2649 inode->i_flags &= ~S_SWAPFILE;
2650 inode_unlock(inode);
2651 filp_close(swap_file, NULL);
2652
2653 /*
2654 * Clear the SWP_USED flag after all resources are freed so that swapon
2655 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2656 * not hold p->lock after we cleared its SWP_WRITEOK.
2657 */
2658 spin_lock(&swap_lock);
2659 p->flags = 0;
2660 spin_unlock(&swap_lock);
2661
2662 err = 0;
2663 atomic_inc(&proc_poll_event);
2664 wake_up_interruptible(&proc_poll_wait);
2665
2666 out_dput:
2667 filp_close(victim, NULL);
2668 out:
2669 putname(pathname);
2670 return err;
2671 }
2672
2673 #ifdef CONFIG_PROC_FS
2674 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2675 {
2676 struct seq_file *seq = file->private_data;
2677
2678 poll_wait(file, &proc_poll_wait, wait);
2679
2680 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2681 seq->poll_event = atomic_read(&proc_poll_event);
2682 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2683 }
2684
2685 return EPOLLIN | EPOLLRDNORM;
2686 }
2687
2688 /* iterator */
2689 static void *swap_start(struct seq_file *swap, loff_t *pos)
2690 {
2691 struct swap_info_struct *si;
2692 int type;
2693 loff_t l = *pos;
2694
2695 mutex_lock(&swapon_mutex);
2696
2697 if (!l)
2698 return SEQ_START_TOKEN;
2699
2700 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2701 if (!(si->flags & SWP_USED) || !si->swap_map)
2702 continue;
2703 if (!--l)
2704 return si;
2705 }
2706
2707 return NULL;
2708 }
2709
2710 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2711 {
2712 struct swap_info_struct *si = v;
2713 int type;
2714
2715 if (v == SEQ_START_TOKEN)
2716 type = 0;
2717 else
2718 type = si->type + 1;
2719
2720 ++(*pos);
2721 for (; (si = swap_type_to_swap_info(type)); type++) {
2722 if (!(si->flags & SWP_USED) || !si->swap_map)
2723 continue;
2724 return si;
2725 }
2726
2727 return NULL;
2728 }
2729
2730 static void swap_stop(struct seq_file *swap, void *v)
2731 {
2732 mutex_unlock(&swapon_mutex);
2733 }
2734
2735 static int swap_show(struct seq_file *swap, void *v)
2736 {
2737 struct swap_info_struct *si = v;
2738 struct file *file;
2739 int len;
2740
2741 if (si == SEQ_START_TOKEN) {
2742 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2743 return 0;
2744 }
2745
2746 file = si->swap_file;
2747 len = seq_file_path(swap, file, " \t\n\\");
2748 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2749 len < 40 ? 40 - len : 1, " ",
2750 S_ISBLK(file_inode(file)->i_mode) ?
2751 "partition" : "file\t",
2752 si->pages << (PAGE_SHIFT - 10),
2753 si->inuse_pages << (PAGE_SHIFT - 10),
2754 si->prio);
2755 return 0;
2756 }
2757
2758 static const struct seq_operations swaps_op = {
2759 .start = swap_start,
2760 .next = swap_next,
2761 .stop = swap_stop,
2762 .show = swap_show
2763 };
2764
2765 static int swaps_open(struct inode *inode, struct file *file)
2766 {
2767 struct seq_file *seq;
2768 int ret;
2769
2770 ret = seq_open(file, &swaps_op);
2771 if (ret)
2772 return ret;
2773
2774 seq = file->private_data;
2775 seq->poll_event = atomic_read(&proc_poll_event);
2776 return 0;
2777 }
2778
2779 static const struct proc_ops swaps_proc_ops = {
2780 .proc_flags = PROC_ENTRY_PERMANENT,
2781 .proc_open = swaps_open,
2782 .proc_read = seq_read,
2783 .proc_lseek = seq_lseek,
2784 .proc_release = seq_release,
2785 .proc_poll = swaps_poll,
2786 };
2787
2788 static int __init procswaps_init(void)
2789 {
2790 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2791 return 0;
2792 }
2793 __initcall(procswaps_init);
2794 #endif /* CONFIG_PROC_FS */
2795
2796 #ifdef MAX_SWAPFILES_CHECK
2797 static int __init max_swapfiles_check(void)
2798 {
2799 MAX_SWAPFILES_CHECK();
2800 return 0;
2801 }
2802 late_initcall(max_swapfiles_check);
2803 #endif
2804
2805 static struct swap_info_struct *alloc_swap_info(void)
2806 {
2807 struct swap_info_struct *p;
2808 unsigned int type;
2809 int i;
2810
2811 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2812 if (!p)
2813 return ERR_PTR(-ENOMEM);
2814
2815 spin_lock(&swap_lock);
2816 for (type = 0; type < nr_swapfiles; type++) {
2817 if (!(swap_info[type]->flags & SWP_USED))
2818 break;
2819 }
2820 if (type >= MAX_SWAPFILES) {
2821 spin_unlock(&swap_lock);
2822 kvfree(p);
2823 return ERR_PTR(-EPERM);
2824 }
2825 if (type >= nr_swapfiles) {
2826 p->type = type;
2827 WRITE_ONCE(swap_info[type], p);
2828 /*
2829 * Write swap_info[type] before nr_swapfiles, in case a
2830 * racing procfs swap_start() or swap_next() is reading them.
2831 * (We never shrink nr_swapfiles, we never free this entry.)
2832 */
2833 smp_wmb();
2834 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2835 } else {
2836 kvfree(p);
2837 p = swap_info[type];
2838 /*
2839 * Do not memset this entry: a racing procfs swap_next()
2840 * would be relying on p->type to remain valid.
2841 */
2842 }
2843 p->swap_extent_root = RB_ROOT;
2844 plist_node_init(&p->list, 0);
2845 for_each_node(i)
2846 plist_node_init(&p->avail_lists[i], 0);
2847 p->flags = SWP_USED;
2848 spin_unlock(&swap_lock);
2849 spin_lock_init(&p->lock);
2850 spin_lock_init(&p->cont_lock);
2851
2852 return p;
2853 }
2854
2855 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2856 {
2857 int error;
2858
2859 if (S_ISBLK(inode->i_mode)) {
2860 p->bdev = bdgrab(I_BDEV(inode));
2861 error = blkdev_get(p->bdev,
2862 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2863 if (error < 0) {
2864 p->bdev = NULL;
2865 return error;
2866 }
2867 p->old_block_size = block_size(p->bdev);
2868 error = set_blocksize(p->bdev, PAGE_SIZE);
2869 if (error < 0)
2870 return error;
2871 /*
2872 * Zoned block devices contain zones that have a sequential
2873 * write only restriction. Hence zoned block devices are not
2874 * suitable for swapping. Disallow them here.
2875 */
2876 if (blk_queue_is_zoned(p->bdev->bd_queue))
2877 return -EINVAL;
2878 p->flags |= SWP_BLKDEV;
2879 } else if (S_ISREG(inode->i_mode)) {
2880 p->bdev = inode->i_sb->s_bdev;
2881 }
2882
2883 return 0;
2884 }
2885
2886
2887 /*
2888 * Find out how many pages are allowed for a single swap device. There
2889 * are two limiting factors:
2890 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2891 * 2) the number of bits in the swap pte, as defined by the different
2892 * architectures.
2893 *
2894 * In order to find the largest possible bit mask, a swap entry with
2895 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2896 * decoded to a swp_entry_t again, and finally the swap offset is
2897 * extracted.
2898 *
2899 * This will mask all the bits from the initial ~0UL mask that can't
2900 * be encoded in either the swp_entry_t or the architecture definition
2901 * of a swap pte.
2902 */
2903 unsigned long generic_max_swapfile_size(void)
2904 {
2905 return swp_offset(pte_to_swp_entry(
2906 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2907 }
2908
2909 /* Can be overridden by an architecture for additional checks. */
2910 __weak unsigned long max_swapfile_size(void)
2911 {
2912 return generic_max_swapfile_size();
2913 }
2914
2915 static unsigned long read_swap_header(struct swap_info_struct *p,
2916 union swap_header *swap_header,
2917 struct inode *inode)
2918 {
2919 int i;
2920 unsigned long maxpages;
2921 unsigned long swapfilepages;
2922 unsigned long last_page;
2923
2924 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2925 pr_err("Unable to find swap-space signature\n");
2926 return 0;
2927 }
2928
2929 /* swap partition endianess hack... */
2930 if (swab32(swap_header->info.version) == 1) {
2931 swab32s(&swap_header->info.version);
2932 swab32s(&swap_header->info.last_page);
2933 swab32s(&swap_header->info.nr_badpages);
2934 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2935 return 0;
2936 for (i = 0; i < swap_header->info.nr_badpages; i++)
2937 swab32s(&swap_header->info.badpages[i]);
2938 }
2939 /* Check the swap header's sub-version */
2940 if (swap_header->info.version != 1) {
2941 pr_warn("Unable to handle swap header version %d\n",
2942 swap_header->info.version);
2943 return 0;
2944 }
2945
2946 p->lowest_bit = 1;
2947 p->cluster_next = 1;
2948 p->cluster_nr = 0;
2949
2950 maxpages = max_swapfile_size();
2951 last_page = swap_header->info.last_page;
2952 if (!last_page) {
2953 pr_warn("Empty swap-file\n");
2954 return 0;
2955 }
2956 if (last_page > maxpages) {
2957 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2958 maxpages << (PAGE_SHIFT - 10),
2959 last_page << (PAGE_SHIFT - 10));
2960 }
2961 if (maxpages > last_page) {
2962 maxpages = last_page + 1;
2963 /* p->max is an unsigned int: don't overflow it */
2964 if ((unsigned int)maxpages == 0)
2965 maxpages = UINT_MAX;
2966 }
2967 p->highest_bit = maxpages - 1;
2968
2969 if (!maxpages)
2970 return 0;
2971 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2972 if (swapfilepages && maxpages > swapfilepages) {
2973 pr_warn("Swap area shorter than signature indicates\n");
2974 return 0;
2975 }
2976 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2977 return 0;
2978 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2979 return 0;
2980
2981 return maxpages;
2982 }
2983
2984 #define SWAP_CLUSTER_INFO_COLS \
2985 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2986 #define SWAP_CLUSTER_SPACE_COLS \
2987 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2988 #define SWAP_CLUSTER_COLS \
2989 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2990
2991 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2992 union swap_header *swap_header,
2993 unsigned char *swap_map,
2994 struct swap_cluster_info *cluster_info,
2995 unsigned long maxpages,
2996 sector_t *span)
2997 {
2998 unsigned int j, k;
2999 unsigned int nr_good_pages;
3000 int nr_extents;
3001 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3002 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3003 unsigned long i, idx;
3004
3005 nr_good_pages = maxpages - 1; /* omit header page */
3006
3007 cluster_list_init(&p->free_clusters);
3008 cluster_list_init(&p->discard_clusters);
3009
3010 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3011 unsigned int page_nr = swap_header->info.badpages[i];
3012 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3013 return -EINVAL;
3014 if (page_nr < maxpages) {
3015 swap_map[page_nr] = SWAP_MAP_BAD;
3016 nr_good_pages--;
3017 /*
3018 * Haven't marked the cluster free yet, no list
3019 * operation involved
3020 */
3021 inc_cluster_info_page(p, cluster_info, page_nr);
3022 }
3023 }
3024
3025 /* Haven't marked the cluster free yet, no list operation involved */
3026 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3027 inc_cluster_info_page(p, cluster_info, i);
3028
3029 if (nr_good_pages) {
3030 swap_map[0] = SWAP_MAP_BAD;
3031 /*
3032 * Not mark the cluster free yet, no list
3033 * operation involved
3034 */
3035 inc_cluster_info_page(p, cluster_info, 0);
3036 p->max = maxpages;
3037 p->pages = nr_good_pages;
3038 nr_extents = setup_swap_extents(p, span);
3039 if (nr_extents < 0)
3040 return nr_extents;
3041 nr_good_pages = p->pages;
3042 }
3043 if (!nr_good_pages) {
3044 pr_warn("Empty swap-file\n");
3045 return -EINVAL;
3046 }
3047
3048 if (!cluster_info)
3049 return nr_extents;
3050
3051
3052 /*
3053 * Reduce false cache line sharing between cluster_info and
3054 * sharing same address space.
3055 */
3056 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3057 j = (k + col) % SWAP_CLUSTER_COLS;
3058 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3059 idx = i * SWAP_CLUSTER_COLS + j;
3060 if (idx >= nr_clusters)
3061 continue;
3062 if (cluster_count(&cluster_info[idx]))
3063 continue;
3064 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3065 cluster_list_add_tail(&p->free_clusters, cluster_info,
3066 idx);
3067 }
3068 }
3069 return nr_extents;
3070 }
3071
3072 /*
3073 * Helper to sys_swapon determining if a given swap
3074 * backing device queue supports DISCARD operations.
3075 */
3076 static bool swap_discardable(struct swap_info_struct *si)
3077 {
3078 struct request_queue *q = bdev_get_queue(si->bdev);
3079
3080 if (!q || !blk_queue_discard(q))
3081 return false;
3082
3083 return true;
3084 }
3085
3086 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3087 {
3088 struct swap_info_struct *p;
3089 struct filename *name;
3090 struct file *swap_file = NULL;
3091 struct address_space *mapping;
3092 int prio;
3093 int error;
3094 union swap_header *swap_header;
3095 int nr_extents;
3096 sector_t span;
3097 unsigned long maxpages;
3098 unsigned char *swap_map = NULL;
3099 struct swap_cluster_info *cluster_info = NULL;
3100 unsigned long *frontswap_map = NULL;
3101 struct page *page = NULL;
3102 struct inode *inode = NULL;
3103 bool inced_nr_rotate_swap = false;
3104
3105 if (swap_flags & ~SWAP_FLAGS_VALID)
3106 return -EINVAL;
3107
3108 if (!capable(CAP_SYS_ADMIN))
3109 return -EPERM;
3110
3111 if (!swap_avail_heads)
3112 return -ENOMEM;
3113
3114 p = alloc_swap_info();
3115 if (IS_ERR(p))
3116 return PTR_ERR(p);
3117
3118 INIT_WORK(&p->discard_work, swap_discard_work);
3119
3120 name = getname(specialfile);
3121 if (IS_ERR(name)) {
3122 error = PTR_ERR(name);
3123 name = NULL;
3124 goto bad_swap;
3125 }
3126 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3127 if (IS_ERR(swap_file)) {
3128 error = PTR_ERR(swap_file);
3129 swap_file = NULL;
3130 goto bad_swap;
3131 }
3132
3133 p->swap_file = swap_file;
3134 mapping = swap_file->f_mapping;
3135 inode = mapping->host;
3136
3137 error = claim_swapfile(p, inode);
3138 if (unlikely(error))
3139 goto bad_swap;
3140
3141 inode_lock(inode);
3142 if (IS_SWAPFILE(inode)) {
3143 error = -EBUSY;
3144 goto bad_swap_unlock_inode;
3145 }
3146
3147 /*
3148 * Read the swap header.
3149 */
3150 if (!mapping->a_ops->readpage) {
3151 error = -EINVAL;
3152 goto bad_swap_unlock_inode;
3153 }
3154 page = read_mapping_page(mapping, 0, swap_file);
3155 if (IS_ERR(page)) {
3156 error = PTR_ERR(page);
3157 goto bad_swap_unlock_inode;
3158 }
3159 swap_header = kmap(page);
3160
3161 maxpages = read_swap_header(p, swap_header, inode);
3162 if (unlikely(!maxpages)) {
3163 error = -EINVAL;
3164 goto bad_swap_unlock_inode;
3165 }
3166
3167 /* OK, set up the swap map and apply the bad block list */
3168 swap_map = vzalloc(maxpages);
3169 if (!swap_map) {
3170 error = -ENOMEM;
3171 goto bad_swap_unlock_inode;
3172 }
3173
3174 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3175 p->flags |= SWP_STABLE_WRITES;
3176
3177 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3178 p->flags |= SWP_SYNCHRONOUS_IO;
3179
3180 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3181 int cpu;
3182 unsigned long ci, nr_cluster;
3183
3184 p->flags |= SWP_SOLIDSTATE;
3185 /*
3186 * select a random position to start with to help wear leveling
3187 * SSD
3188 */
3189 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3190 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3191
3192 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3193 GFP_KERNEL);
3194 if (!cluster_info) {
3195 error = -ENOMEM;
3196 goto bad_swap_unlock_inode;
3197 }
3198
3199 for (ci = 0; ci < nr_cluster; ci++)
3200 spin_lock_init(&((cluster_info + ci)->lock));
3201
3202 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3203 if (!p->percpu_cluster) {
3204 error = -ENOMEM;
3205 goto bad_swap_unlock_inode;
3206 }
3207 for_each_possible_cpu(cpu) {
3208 struct percpu_cluster *cluster;
3209 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3210 cluster_set_null(&cluster->index);
3211 }
3212 } else {
3213 atomic_inc(&nr_rotate_swap);
3214 inced_nr_rotate_swap = true;
3215 }
3216
3217 error = swap_cgroup_swapon(p->type, maxpages);
3218 if (error)
3219 goto bad_swap_unlock_inode;
3220
3221 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3222 cluster_info, maxpages, &span);
3223 if (unlikely(nr_extents < 0)) {
3224 error = nr_extents;
3225 goto bad_swap_unlock_inode;
3226 }
3227 /* frontswap enabled? set up bit-per-page map for frontswap */
3228 if (IS_ENABLED(CONFIG_FRONTSWAP))
3229 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3230 sizeof(long),
3231 GFP_KERNEL);
3232
3233 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3234 /*
3235 * When discard is enabled for swap with no particular
3236 * policy flagged, we set all swap discard flags here in
3237 * order to sustain backward compatibility with older
3238 * swapon(8) releases.
3239 */
3240 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3241 SWP_PAGE_DISCARD);
3242
3243 /*
3244 * By flagging sys_swapon, a sysadmin can tell us to
3245 * either do single-time area discards only, or to just
3246 * perform discards for released swap page-clusters.
3247 * Now it's time to adjust the p->flags accordingly.
3248 */
3249 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3250 p->flags &= ~SWP_PAGE_DISCARD;
3251 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3252 p->flags &= ~SWP_AREA_DISCARD;
3253
3254 /* issue a swapon-time discard if it's still required */
3255 if (p->flags & SWP_AREA_DISCARD) {
3256 int err = discard_swap(p);
3257 if (unlikely(err))
3258 pr_err("swapon: discard_swap(%p): %d\n",
3259 p, err);
3260 }
3261 }
3262
3263 error = init_swap_address_space(p->type, maxpages);
3264 if (error)
3265 goto bad_swap_unlock_inode;
3266
3267 /*
3268 * Flush any pending IO and dirty mappings before we start using this
3269 * swap device.
3270 */
3271 inode->i_flags |= S_SWAPFILE;
3272 error = inode_drain_writes(inode);
3273 if (error) {
3274 inode->i_flags &= ~S_SWAPFILE;
3275 goto bad_swap_unlock_inode;
3276 }
3277
3278 mutex_lock(&swapon_mutex);
3279 prio = -1;
3280 if (swap_flags & SWAP_FLAG_PREFER)
3281 prio =
3282 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3283 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3284
3285 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3286 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3287 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3288 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3289 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3290 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3291 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3292 (frontswap_map) ? "FS" : "");
3293
3294 mutex_unlock(&swapon_mutex);
3295 atomic_inc(&proc_poll_event);
3296 wake_up_interruptible(&proc_poll_wait);
3297
3298 error = 0;
3299 goto out;
3300 bad_swap_unlock_inode:
3301 inode_unlock(inode);
3302 bad_swap:
3303 free_percpu(p->percpu_cluster);
3304 p->percpu_cluster = NULL;
3305 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3306 set_blocksize(p->bdev, p->old_block_size);
3307 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3308 }
3309 inode = NULL;
3310 destroy_swap_extents(p);
3311 swap_cgroup_swapoff(p->type);
3312 spin_lock(&swap_lock);
3313 p->swap_file = NULL;
3314 p->flags = 0;
3315 spin_unlock(&swap_lock);
3316 vfree(swap_map);
3317 kvfree(cluster_info);
3318 kvfree(frontswap_map);
3319 if (inced_nr_rotate_swap)
3320 atomic_dec(&nr_rotate_swap);
3321 if (swap_file)
3322 filp_close(swap_file, NULL);
3323 out:
3324 if (page && !IS_ERR(page)) {
3325 kunmap(page);
3326 put_page(page);
3327 }
3328 if (name)
3329 putname(name);
3330 if (inode)
3331 inode_unlock(inode);
3332 if (!error)
3333 enable_swap_slots_cache();
3334 return error;
3335 }
3336
3337 void si_swapinfo(struct sysinfo *val)
3338 {
3339 unsigned int type;
3340 unsigned long nr_to_be_unused = 0;
3341
3342 spin_lock(&swap_lock);
3343 for (type = 0; type < nr_swapfiles; type++) {
3344 struct swap_info_struct *si = swap_info[type];
3345
3346 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3347 nr_to_be_unused += si->inuse_pages;
3348 }
3349 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3350 val->totalswap = total_swap_pages + nr_to_be_unused;
3351 spin_unlock(&swap_lock);
3352 }
3353
3354 /*
3355 * Verify that a swap entry is valid and increment its swap map count.
3356 *
3357 * Returns error code in following case.
3358 * - success -> 0
3359 * - swp_entry is invalid -> EINVAL
3360 * - swp_entry is migration entry -> EINVAL
3361 * - swap-cache reference is requested but there is already one. -> EEXIST
3362 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3363 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3364 */
3365 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3366 {
3367 struct swap_info_struct *p;
3368 struct swap_cluster_info *ci;
3369 unsigned long offset;
3370 unsigned char count;
3371 unsigned char has_cache;
3372 int err = -EINVAL;
3373
3374 p = get_swap_device(entry);
3375 if (!p)
3376 goto out;
3377
3378 offset = swp_offset(entry);
3379 ci = lock_cluster_or_swap_info(p, offset);
3380
3381 count = p->swap_map[offset];
3382
3383 /*
3384 * swapin_readahead() doesn't check if a swap entry is valid, so the
3385 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3386 */
3387 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3388 err = -ENOENT;
3389 goto unlock_out;
3390 }
3391
3392 has_cache = count & SWAP_HAS_CACHE;
3393 count &= ~SWAP_HAS_CACHE;
3394 err = 0;
3395
3396 if (usage == SWAP_HAS_CACHE) {
3397
3398 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3399 if (!has_cache && count)
3400 has_cache = SWAP_HAS_CACHE;
3401 else if (has_cache) /* someone else added cache */
3402 err = -EEXIST;
3403 else /* no users remaining */
3404 err = -ENOENT;
3405
3406 } else if (count || has_cache) {
3407
3408 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3409 count += usage;
3410 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3411 err = -EINVAL;
3412 else if (swap_count_continued(p, offset, count))
3413 count = COUNT_CONTINUED;
3414 else
3415 err = -ENOMEM;
3416 } else
3417 err = -ENOENT; /* unused swap entry */
3418
3419 p->swap_map[offset] = count | has_cache;
3420
3421 unlock_out:
3422 unlock_cluster_or_swap_info(p, ci);
3423 out:
3424 if (p)
3425 put_swap_device(p);
3426 return err;
3427 }
3428
3429 /*
3430 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3431 * (in which case its reference count is never incremented).
3432 */
3433 void swap_shmem_alloc(swp_entry_t entry)
3434 {
3435 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3436 }
3437
3438 /*
3439 * Increase reference count of swap entry by 1.
3440 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3441 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3442 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3443 * might occur if a page table entry has got corrupted.
3444 */
3445 int swap_duplicate(swp_entry_t entry)
3446 {
3447 int err = 0;
3448
3449 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3450 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3451 return err;
3452 }
3453
3454 /*
3455 * @entry: swap entry for which we allocate swap cache.
3456 *
3457 * Called when allocating swap cache for existing swap entry,
3458 * This can return error codes. Returns 0 at success.
3459 * -EEXIST means there is a swap cache.
3460 * Note: return code is different from swap_duplicate().
3461 */
3462 int swapcache_prepare(swp_entry_t entry)
3463 {
3464 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3465 }
3466
3467 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3468 {
3469 return swap_type_to_swap_info(swp_type(entry));
3470 }
3471
3472 struct swap_info_struct *page_swap_info(struct page *page)
3473 {
3474 swp_entry_t entry = { .val = page_private(page) };
3475 return swp_swap_info(entry);
3476 }
3477
3478 /*
3479 * out-of-line __page_file_ methods to avoid include hell.
3480 */
3481 struct address_space *__page_file_mapping(struct page *page)
3482 {
3483 return page_swap_info(page)->swap_file->f_mapping;
3484 }
3485 EXPORT_SYMBOL_GPL(__page_file_mapping);
3486
3487 pgoff_t __page_file_index(struct page *page)
3488 {
3489 swp_entry_t swap = { .val = page_private(page) };
3490 return swp_offset(swap);
3491 }
3492 EXPORT_SYMBOL_GPL(__page_file_index);
3493
3494 /*
3495 * add_swap_count_continuation - called when a swap count is duplicated
3496 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3497 * page of the original vmalloc'ed swap_map, to hold the continuation count
3498 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3499 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3500 *
3501 * These continuation pages are seldom referenced: the common paths all work
3502 * on the original swap_map, only referring to a continuation page when the
3503 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3504 *
3505 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3506 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3507 * can be called after dropping locks.
3508 */
3509 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3510 {
3511 struct swap_info_struct *si;
3512 struct swap_cluster_info *ci;
3513 struct page *head;
3514 struct page *page;
3515 struct page *list_page;
3516 pgoff_t offset;
3517 unsigned char count;
3518 int ret = 0;
3519
3520 /*
3521 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3522 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3523 */
3524 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3525
3526 si = get_swap_device(entry);
3527 if (!si) {
3528 /*
3529 * An acceptable race has occurred since the failing
3530 * __swap_duplicate(): the swap device may be swapoff
3531 */
3532 goto outer;
3533 }
3534 spin_lock(&si->lock);
3535
3536 offset = swp_offset(entry);
3537
3538 ci = lock_cluster(si, offset);
3539
3540 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3541
3542 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3543 /*
3544 * The higher the swap count, the more likely it is that tasks
3545 * will race to add swap count continuation: we need to avoid
3546 * over-provisioning.
3547 */
3548 goto out;
3549 }
3550
3551 if (!page) {
3552 ret = -ENOMEM;
3553 goto out;
3554 }
3555
3556 /*
3557 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3558 * no architecture is using highmem pages for kernel page tables: so it
3559 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3560 */
3561 head = vmalloc_to_page(si->swap_map + offset);
3562 offset &= ~PAGE_MASK;
3563
3564 spin_lock(&si->cont_lock);
3565 /*
3566 * Page allocation does not initialize the page's lru field,
3567 * but it does always reset its private field.
3568 */
3569 if (!page_private(head)) {
3570 BUG_ON(count & COUNT_CONTINUED);
3571 INIT_LIST_HEAD(&head->lru);
3572 set_page_private(head, SWP_CONTINUED);
3573 si->flags |= SWP_CONTINUED;
3574 }
3575
3576 list_for_each_entry(list_page, &head->lru, lru) {
3577 unsigned char *map;
3578
3579 /*
3580 * If the previous map said no continuation, but we've found
3581 * a continuation page, free our allocation and use this one.
3582 */
3583 if (!(count & COUNT_CONTINUED))
3584 goto out_unlock_cont;
3585
3586 map = kmap_atomic(list_page) + offset;
3587 count = *map;
3588 kunmap_atomic(map);
3589
3590 /*
3591 * If this continuation count now has some space in it,
3592 * free our allocation and use this one.
3593 */
3594 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3595 goto out_unlock_cont;
3596 }
3597
3598 list_add_tail(&page->lru, &head->lru);
3599 page = NULL; /* now it's attached, don't free it */
3600 out_unlock_cont:
3601 spin_unlock(&si->cont_lock);
3602 out:
3603 unlock_cluster(ci);
3604 spin_unlock(&si->lock);
3605 put_swap_device(si);
3606 outer:
3607 if (page)
3608 __free_page(page);
3609 return ret;
3610 }
3611
3612 /*
3613 * swap_count_continued - when the original swap_map count is incremented
3614 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3615 * into, carry if so, or else fail until a new continuation page is allocated;
3616 * when the original swap_map count is decremented from 0 with continuation,
3617 * borrow from the continuation and report whether it still holds more.
3618 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3619 * lock.
3620 */
3621 static bool swap_count_continued(struct swap_info_struct *si,
3622 pgoff_t offset, unsigned char count)
3623 {
3624 struct page *head;
3625 struct page *page;
3626 unsigned char *map;
3627 bool ret;
3628
3629 head = vmalloc_to_page(si->swap_map + offset);
3630 if (page_private(head) != SWP_CONTINUED) {
3631 BUG_ON(count & COUNT_CONTINUED);
3632 return false; /* need to add count continuation */
3633 }
3634
3635 spin_lock(&si->cont_lock);
3636 offset &= ~PAGE_MASK;
3637 page = list_next_entry(head, lru);
3638 map = kmap_atomic(page) + offset;
3639
3640 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3641 goto init_map; /* jump over SWAP_CONT_MAX checks */
3642
3643 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3644 /*
3645 * Think of how you add 1 to 999
3646 */
3647 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3648 kunmap_atomic(map);
3649 page = list_next_entry(page, lru);
3650 BUG_ON(page == head);
3651 map = kmap_atomic(page) + offset;
3652 }
3653 if (*map == SWAP_CONT_MAX) {
3654 kunmap_atomic(map);
3655 page = list_next_entry(page, lru);
3656 if (page == head) {
3657 ret = false; /* add count continuation */
3658 goto out;
3659 }
3660 map = kmap_atomic(page) + offset;
3661 init_map: *map = 0; /* we didn't zero the page */
3662 }
3663 *map += 1;
3664 kunmap_atomic(map);
3665 while ((page = list_prev_entry(page, lru)) != head) {
3666 map = kmap_atomic(page) + offset;
3667 *map = COUNT_CONTINUED;
3668 kunmap_atomic(map);
3669 }
3670 ret = true; /* incremented */
3671
3672 } else { /* decrementing */
3673 /*
3674 * Think of how you subtract 1 from 1000
3675 */
3676 BUG_ON(count != COUNT_CONTINUED);
3677 while (*map == COUNT_CONTINUED) {
3678 kunmap_atomic(map);
3679 page = list_next_entry(page, lru);
3680 BUG_ON(page == head);
3681 map = kmap_atomic(page) + offset;
3682 }
3683 BUG_ON(*map == 0);
3684 *map -= 1;
3685 if (*map == 0)
3686 count = 0;
3687 kunmap_atomic(map);
3688 while ((page = list_prev_entry(page, lru)) != head) {
3689 map = kmap_atomic(page) + offset;
3690 *map = SWAP_CONT_MAX | count;
3691 count = COUNT_CONTINUED;
3692 kunmap_atomic(map);
3693 }
3694 ret = count == COUNT_CONTINUED;
3695 }
3696 out:
3697 spin_unlock(&si->cont_lock);
3698 return ret;
3699 }
3700
3701 /*
3702 * free_swap_count_continuations - swapoff free all the continuation pages
3703 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3704 */
3705 static void free_swap_count_continuations(struct swap_info_struct *si)
3706 {
3707 pgoff_t offset;
3708
3709 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3710 struct page *head;
3711 head = vmalloc_to_page(si->swap_map + offset);
3712 if (page_private(head)) {
3713 struct page *page, *next;
3714
3715 list_for_each_entry_safe(page, next, &head->lru, lru) {
3716 list_del(&page->lru);
3717 __free_page(page);
3718 }
3719 }
3720 }
3721 }
3722
3723 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3724 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3725 gfp_t gfp_mask)
3726 {
3727 struct swap_info_struct *si, *next;
3728 if (!(gfp_mask & __GFP_IO) || !memcg)
3729 return;
3730
3731 if (!blk_cgroup_congested())
3732 return;
3733
3734 /*
3735 * We've already scheduled a throttle, avoid taking the global swap
3736 * lock.
3737 */
3738 if (current->throttle_queue)
3739 return;
3740
3741 spin_lock(&swap_avail_lock);
3742 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3743 avail_lists[node]) {
3744 if (si->bdev) {
3745 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3746 true);
3747 break;
3748 }
3749 }
3750 spin_unlock(&swap_avail_lock);
3751 }
3752 #endif
3753
3754 static int __init swapfile_init(void)
3755 {
3756 int nid;
3757
3758 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3759 GFP_KERNEL);
3760 if (!swap_avail_heads) {
3761 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3762 return -ENOMEM;
3763 }
3764
3765 for_each_node(nid)
3766 plist_head_init(&swap_avail_heads[nid]);
3767
3768 return 0;
3769 }
3770 subsys_initcall(swapfile_init);