]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/swapfile.c
swap: try to scan more free slots even when fragmented
[thirdparty/linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 /*
225 * swap allocation tell device that a cluster of swap can now be discarded,
226 * to allow the swap device to optimize its wear-levelling.
227 */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 struct swap_extent *se = offset_to_swap_extent(si, start_page);
232
233 while (nr_pages) {
234 pgoff_t offset = start_page - se->start_page;
235 sector_t start_block = se->start_block + offset;
236 sector_t nr_blocks = se->nr_pages - offset;
237
238 if (nr_blocks > nr_pages)
239 nr_blocks = nr_pages;
240 start_page += nr_blocks;
241 nr_pages -= nr_blocks;
242
243 start_block <<= PAGE_SHIFT - 9;
244 nr_blocks <<= PAGE_SHIFT - 9;
245 if (blkdev_issue_discard(si->bdev, start_block,
246 nr_blocks, GFP_NOIO, 0))
247 break;
248
249 se = next_se(se);
250 }
251 }
252
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
255
256 #define swap_entry_size(size) (size)
257 #else
258 #define SWAPFILE_CLUSTER 256
259
260 /*
261 * Define swap_entry_size() as constant to let compiler to optimize
262 * out some code if !CONFIG_THP_SWAP
263 */
264 #define swap_entry_size(size) 1
265 #endif
266 #define LATENCY_LIMIT 256
267
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 unsigned int flag)
270 {
271 info->flags = flag;
272 }
273
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 return info->data;
277 }
278
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 unsigned int c)
281 {
282 info->data = c;
283 }
284
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 unsigned int c, unsigned int f)
287 {
288 info->flags = f;
289 info->data = c;
290 }
291
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 return info->data;
295 }
296
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 unsigned int n)
299 {
300 info->data = n;
301 }
302
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 unsigned int n, unsigned int f)
305 {
306 info->flags = f;
307 info->data = n;
308 }
309
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 return info->flags & CLUSTER_FLAG_FREE;
313 }
314
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 info->flags = CLUSTER_FLAG_NEXT_NULL;
323 info->data = 0;
324 }
325
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 if (IS_ENABLED(CONFIG_THP_SWAP))
329 return info->flags & CLUSTER_FLAG_HUGE;
330 return false;
331 }
332
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 unsigned long offset)
340 {
341 struct swap_cluster_info *ci;
342
343 ci = si->cluster_info;
344 if (ci) {
345 ci += offset / SWAPFILE_CLUSTER;
346 spin_lock(&ci->lock);
347 }
348 return ci;
349 }
350
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 if (ci)
354 spin_unlock(&ci->lock);
355 }
356
357 /*
358 * Determine the locking method in use for this device. Return
359 * swap_cluster_info if SSD-style cluster-based locking is in place.
360 */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 struct swap_info_struct *si, unsigned long offset)
363 {
364 struct swap_cluster_info *ci;
365
366 /* Try to use fine-grained SSD-style locking if available: */
367 ci = lock_cluster(si, offset);
368 /* Otherwise, fall back to traditional, coarse locking: */
369 if (!ci)
370 spin_lock(&si->lock);
371
372 return ci;
373 }
374
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 struct swap_cluster_info *ci)
377 {
378 if (ci)
379 unlock_cluster(ci);
380 else
381 spin_unlock(&si->lock);
382 }
383
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 return cluster_is_null(&list->head);
387 }
388
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 return cluster_next(&list->head);
392 }
393
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 cluster_set_null(&list->head);
397 cluster_set_null(&list->tail);
398 }
399
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 struct swap_cluster_info *ci,
402 unsigned int idx)
403 {
404 if (cluster_list_empty(list)) {
405 cluster_set_next_flag(&list->head, idx, 0);
406 cluster_set_next_flag(&list->tail, idx, 0);
407 } else {
408 struct swap_cluster_info *ci_tail;
409 unsigned int tail = cluster_next(&list->tail);
410
411 /*
412 * Nested cluster lock, but both cluster locks are
413 * only acquired when we held swap_info_struct->lock
414 */
415 ci_tail = ci + tail;
416 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 cluster_set_next(ci_tail, idx);
418 spin_unlock(&ci_tail->lock);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 }
421 }
422
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 struct swap_cluster_info *ci)
425 {
426 unsigned int idx;
427
428 idx = cluster_next(&list->head);
429 if (cluster_next(&list->tail) == idx) {
430 cluster_set_null(&list->head);
431 cluster_set_null(&list->tail);
432 } else
433 cluster_set_next_flag(&list->head,
434 cluster_next(&ci[idx]), 0);
435
436 return idx;
437 }
438
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 unsigned int idx)
442 {
443 /*
444 * If scan_swap_map() can't find a free cluster, it will check
445 * si->swap_map directly. To make sure the discarding cluster isn't
446 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 * will be cleared after discard
448 */
449 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451
452 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453
454 schedule_work(&si->discard_work);
455 }
456
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 struct swap_cluster_info *ci = si->cluster_info;
460
461 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464
465 /*
466 * Doing discard actually. After a cluster discard is finished, the cluster
467 * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 struct swap_cluster_info *info, *ci;
472 unsigned int idx;
473
474 info = si->cluster_info;
475
476 while (!cluster_list_empty(&si->discard_clusters)) {
477 idx = cluster_list_del_first(&si->discard_clusters, info);
478 spin_unlock(&si->lock);
479
480 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 SWAPFILE_CLUSTER);
482
483 spin_lock(&si->lock);
484 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 __free_cluster(si, idx);
486 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 0, SWAPFILE_CLUSTER);
488 unlock_cluster(ci);
489 }
490 }
491
492 static void swap_discard_work(struct work_struct *work)
493 {
494 struct swap_info_struct *si;
495
496 si = container_of(work, struct swap_info_struct, discard_work);
497
498 spin_lock(&si->lock);
499 swap_do_scheduled_discard(si);
500 spin_unlock(&si->lock);
501 }
502
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 struct swap_cluster_info *ci = si->cluster_info;
506
507 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 cluster_list_del_first(&si->free_clusters, ci);
509 cluster_set_count_flag(ci + idx, 0, 0);
510 }
511
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 struct swap_cluster_info *ci = si->cluster_info + idx;
515
516 VM_BUG_ON(cluster_count(ci) != 0);
517 /*
518 * If the swap is discardable, prepare discard the cluster
519 * instead of free it immediately. The cluster will be freed
520 * after discard.
521 */
522 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 swap_cluster_schedule_discard(si, idx);
525 return;
526 }
527
528 __free_cluster(si, idx);
529 }
530
531 /*
532 * The cluster corresponding to page_nr will be used. The cluster will be
533 * removed from free cluster list and its usage counter will be increased.
534 */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539
540 if (!cluster_info)
541 return;
542 if (cluster_is_free(&cluster_info[idx]))
543 alloc_cluster(p, idx);
544
545 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 cluster_set_count(&cluster_info[idx],
547 cluster_count(&cluster_info[idx]) + 1);
548 }
549
550 /*
551 * The cluster corresponding to page_nr decreases one usage. If the usage
552 * counter becomes 0, which means no page in the cluster is in using, we can
553 * optionally discard the cluster and add it to free cluster list.
554 */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559
560 if (!cluster_info)
561 return;
562
563 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 cluster_set_count(&cluster_info[idx],
565 cluster_count(&cluster_info[idx]) - 1);
566
567 if (cluster_count(&cluster_info[idx]) == 0)
568 free_cluster(p, idx);
569 }
570
571 /*
572 * It's possible scan_swap_map() uses a free cluster in the middle of free
573 * cluster list. Avoiding such abuse to avoid list corruption.
574 */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 unsigned long offset)
578 {
579 struct percpu_cluster *percpu_cluster;
580 bool conflict;
581
582 offset /= SWAPFILE_CLUSTER;
583 conflict = !cluster_list_empty(&si->free_clusters) &&
584 offset != cluster_list_first(&si->free_clusters) &&
585 cluster_is_free(&si->cluster_info[offset]);
586
587 if (!conflict)
588 return false;
589
590 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 cluster_set_null(&percpu_cluster->index);
592 return true;
593 }
594
595 /*
596 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597 * might involve allocating a new cluster for current CPU too.
598 */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 unsigned long *offset, unsigned long *scan_base)
601 {
602 struct percpu_cluster *cluster;
603 struct swap_cluster_info *ci;
604 unsigned long tmp, max;
605
606 new_cluster:
607 cluster = this_cpu_ptr(si->percpu_cluster);
608 if (cluster_is_null(&cluster->index)) {
609 if (!cluster_list_empty(&si->free_clusters)) {
610 cluster->index = si->free_clusters.head;
611 cluster->next = cluster_next(&cluster->index) *
612 SWAPFILE_CLUSTER;
613 } else if (!cluster_list_empty(&si->discard_clusters)) {
614 /*
615 * we don't have free cluster but have some clusters in
616 * discarding, do discard now and reclaim them
617 */
618 swap_do_scheduled_discard(si);
619 *scan_base = *offset = si->cluster_next;
620 goto new_cluster;
621 } else
622 return false;
623 }
624
625 /*
626 * Other CPUs can use our cluster if they can't find a free cluster,
627 * check if there is still free entry in the cluster
628 */
629 tmp = cluster->next;
630 max = min_t(unsigned long, si->max,
631 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
632 if (tmp < max) {
633 ci = lock_cluster(si, tmp);
634 while (tmp < max) {
635 if (!si->swap_map[tmp])
636 break;
637 tmp++;
638 }
639 unlock_cluster(ci);
640 }
641 if (tmp >= max) {
642 cluster_set_null(&cluster->index);
643 goto new_cluster;
644 }
645 cluster->next = tmp + 1;
646 *offset = tmp;
647 *scan_base = tmp;
648 return true;
649 }
650
651 static void __del_from_avail_list(struct swap_info_struct *p)
652 {
653 int nid;
654
655 for_each_node(nid)
656 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
657 }
658
659 static void del_from_avail_list(struct swap_info_struct *p)
660 {
661 spin_lock(&swap_avail_lock);
662 __del_from_avail_list(p);
663 spin_unlock(&swap_avail_lock);
664 }
665
666 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
667 unsigned int nr_entries)
668 {
669 unsigned int end = offset + nr_entries - 1;
670
671 if (offset == si->lowest_bit)
672 si->lowest_bit += nr_entries;
673 if (end == si->highest_bit)
674 si->highest_bit -= nr_entries;
675 si->inuse_pages += nr_entries;
676 if (si->inuse_pages == si->pages) {
677 si->lowest_bit = si->max;
678 si->highest_bit = 0;
679 del_from_avail_list(si);
680 }
681 }
682
683 static void add_to_avail_list(struct swap_info_struct *p)
684 {
685 int nid;
686
687 spin_lock(&swap_avail_lock);
688 for_each_node(nid) {
689 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
690 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
691 }
692 spin_unlock(&swap_avail_lock);
693 }
694
695 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
696 unsigned int nr_entries)
697 {
698 unsigned long end = offset + nr_entries - 1;
699 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
700
701 if (offset < si->lowest_bit)
702 si->lowest_bit = offset;
703 if (end > si->highest_bit) {
704 bool was_full = !si->highest_bit;
705
706 si->highest_bit = end;
707 if (was_full && (si->flags & SWP_WRITEOK))
708 add_to_avail_list(si);
709 }
710 atomic_long_add(nr_entries, &nr_swap_pages);
711 si->inuse_pages -= nr_entries;
712 if (si->flags & SWP_BLKDEV)
713 swap_slot_free_notify =
714 si->bdev->bd_disk->fops->swap_slot_free_notify;
715 else
716 swap_slot_free_notify = NULL;
717 while (offset <= end) {
718 frontswap_invalidate_page(si->type, offset);
719 if (swap_slot_free_notify)
720 swap_slot_free_notify(si->bdev, offset);
721 offset++;
722 }
723 }
724
725 static int scan_swap_map_slots(struct swap_info_struct *si,
726 unsigned char usage, int nr,
727 swp_entry_t slots[])
728 {
729 struct swap_cluster_info *ci;
730 unsigned long offset;
731 unsigned long scan_base;
732 unsigned long last_in_cluster = 0;
733 int latency_ration = LATENCY_LIMIT;
734 int n_ret = 0;
735 bool scanned_many = false;
736
737 /*
738 * We try to cluster swap pages by allocating them sequentially
739 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
740 * way, however, we resort to first-free allocation, starting
741 * a new cluster. This prevents us from scattering swap pages
742 * all over the entire swap partition, so that we reduce
743 * overall disk seek times between swap pages. -- sct
744 * But we do now try to find an empty cluster. -Andrea
745 * And we let swap pages go all over an SSD partition. Hugh
746 */
747
748 si->flags += SWP_SCANNING;
749 scan_base = offset = si->cluster_next;
750
751 /* SSD algorithm */
752 if (si->cluster_info) {
753 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
754 goto scan;
755 } else if (unlikely(!si->cluster_nr--)) {
756 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
757 si->cluster_nr = SWAPFILE_CLUSTER - 1;
758 goto checks;
759 }
760
761 spin_unlock(&si->lock);
762
763 /*
764 * If seek is expensive, start searching for new cluster from
765 * start of partition, to minimize the span of allocated swap.
766 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
767 * case, just handled by scan_swap_map_try_ssd_cluster() above.
768 */
769 scan_base = offset = si->lowest_bit;
770 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
771
772 /* Locate the first empty (unaligned) cluster */
773 for (; last_in_cluster <= si->highest_bit; offset++) {
774 if (si->swap_map[offset])
775 last_in_cluster = offset + SWAPFILE_CLUSTER;
776 else if (offset == last_in_cluster) {
777 spin_lock(&si->lock);
778 offset -= SWAPFILE_CLUSTER - 1;
779 si->cluster_next = offset;
780 si->cluster_nr = SWAPFILE_CLUSTER - 1;
781 goto checks;
782 }
783 if (unlikely(--latency_ration < 0)) {
784 cond_resched();
785 latency_ration = LATENCY_LIMIT;
786 }
787 }
788
789 offset = scan_base;
790 spin_lock(&si->lock);
791 si->cluster_nr = SWAPFILE_CLUSTER - 1;
792 }
793
794 checks:
795 if (si->cluster_info) {
796 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
797 /* take a break if we already got some slots */
798 if (n_ret)
799 goto done;
800 if (!scan_swap_map_try_ssd_cluster(si, &offset,
801 &scan_base))
802 goto scan;
803 }
804 }
805 if (!(si->flags & SWP_WRITEOK))
806 goto no_page;
807 if (!si->highest_bit)
808 goto no_page;
809 if (offset > si->highest_bit)
810 scan_base = offset = si->lowest_bit;
811
812 ci = lock_cluster(si, offset);
813 /* reuse swap entry of cache-only swap if not busy. */
814 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
815 int swap_was_freed;
816 unlock_cluster(ci);
817 spin_unlock(&si->lock);
818 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
819 spin_lock(&si->lock);
820 /* entry was freed successfully, try to use this again */
821 if (swap_was_freed)
822 goto checks;
823 goto scan; /* check next one */
824 }
825
826 if (si->swap_map[offset]) {
827 unlock_cluster(ci);
828 if (!n_ret)
829 goto scan;
830 else
831 goto done;
832 }
833 si->swap_map[offset] = usage;
834 inc_cluster_info_page(si, si->cluster_info, offset);
835 unlock_cluster(ci);
836
837 swap_range_alloc(si, offset, 1);
838 si->cluster_next = offset + 1;
839 slots[n_ret++] = swp_entry(si->type, offset);
840
841 /* got enough slots or reach max slots? */
842 if ((n_ret == nr) || (offset >= si->highest_bit))
843 goto done;
844
845 /* search for next available slot */
846
847 /* time to take a break? */
848 if (unlikely(--latency_ration < 0)) {
849 if (n_ret)
850 goto done;
851 spin_unlock(&si->lock);
852 cond_resched();
853 spin_lock(&si->lock);
854 latency_ration = LATENCY_LIMIT;
855 }
856
857 /* try to get more slots in cluster */
858 if (si->cluster_info) {
859 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
860 goto checks;
861 } else if (si->cluster_nr && !si->swap_map[++offset]) {
862 /* non-ssd case, still more slots in cluster? */
863 --si->cluster_nr;
864 goto checks;
865 }
866
867 /*
868 * Even if there's no free clusters available (fragmented),
869 * try to scan a little more quickly with lock held unless we
870 * have scanned too many slots already.
871 */
872 if (!scanned_many) {
873 unsigned long scan_limit;
874
875 if (offset < scan_base)
876 scan_limit = scan_base;
877 else
878 scan_limit = si->highest_bit;
879 for (; offset <= scan_limit && --latency_ration > 0;
880 offset++) {
881 if (!si->swap_map[offset])
882 goto checks;
883 }
884 }
885
886 done:
887 si->flags -= SWP_SCANNING;
888 return n_ret;
889
890 scan:
891 spin_unlock(&si->lock);
892 while (++offset <= si->highest_bit) {
893 if (!si->swap_map[offset]) {
894 spin_lock(&si->lock);
895 goto checks;
896 }
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 spin_lock(&si->lock);
899 goto checks;
900 }
901 if (unlikely(--latency_ration < 0)) {
902 cond_resched();
903 latency_ration = LATENCY_LIMIT;
904 scanned_many = true;
905 }
906 }
907 offset = si->lowest_bit;
908 while (offset < scan_base) {
909 if (!si->swap_map[offset]) {
910 spin_lock(&si->lock);
911 goto checks;
912 }
913 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
914 spin_lock(&si->lock);
915 goto checks;
916 }
917 if (unlikely(--latency_ration < 0)) {
918 cond_resched();
919 latency_ration = LATENCY_LIMIT;
920 scanned_many = true;
921 }
922 offset++;
923 }
924 spin_lock(&si->lock);
925
926 no_page:
927 si->flags -= SWP_SCANNING;
928 return n_ret;
929 }
930
931 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
932 {
933 unsigned long idx;
934 struct swap_cluster_info *ci;
935 unsigned long offset, i;
936 unsigned char *map;
937
938 /*
939 * Should not even be attempting cluster allocations when huge
940 * page swap is disabled. Warn and fail the allocation.
941 */
942 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
943 VM_WARN_ON_ONCE(1);
944 return 0;
945 }
946
947 if (cluster_list_empty(&si->free_clusters))
948 return 0;
949
950 idx = cluster_list_first(&si->free_clusters);
951 offset = idx * SWAPFILE_CLUSTER;
952 ci = lock_cluster(si, offset);
953 alloc_cluster(si, idx);
954 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
955
956 map = si->swap_map + offset;
957 for (i = 0; i < SWAPFILE_CLUSTER; i++)
958 map[i] = SWAP_HAS_CACHE;
959 unlock_cluster(ci);
960 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
961 *slot = swp_entry(si->type, offset);
962
963 return 1;
964 }
965
966 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
967 {
968 unsigned long offset = idx * SWAPFILE_CLUSTER;
969 struct swap_cluster_info *ci;
970
971 ci = lock_cluster(si, offset);
972 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
973 cluster_set_count_flag(ci, 0, 0);
974 free_cluster(si, idx);
975 unlock_cluster(ci);
976 swap_range_free(si, offset, SWAPFILE_CLUSTER);
977 }
978
979 static unsigned long scan_swap_map(struct swap_info_struct *si,
980 unsigned char usage)
981 {
982 swp_entry_t entry;
983 int n_ret;
984
985 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
986
987 if (n_ret)
988 return swp_offset(entry);
989 else
990 return 0;
991
992 }
993
994 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
995 {
996 unsigned long size = swap_entry_size(entry_size);
997 struct swap_info_struct *si, *next;
998 long avail_pgs;
999 int n_ret = 0;
1000 int node;
1001
1002 /* Only single cluster request supported */
1003 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1004
1005 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1006 if (avail_pgs <= 0)
1007 goto noswap;
1008
1009 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1010
1011 atomic_long_sub(n_goal * size, &nr_swap_pages);
1012
1013 spin_lock(&swap_avail_lock);
1014
1015 start_over:
1016 node = numa_node_id();
1017 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1018 /* requeue si to after same-priority siblings */
1019 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1020 spin_unlock(&swap_avail_lock);
1021 spin_lock(&si->lock);
1022 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1023 spin_lock(&swap_avail_lock);
1024 if (plist_node_empty(&si->avail_lists[node])) {
1025 spin_unlock(&si->lock);
1026 goto nextsi;
1027 }
1028 WARN(!si->highest_bit,
1029 "swap_info %d in list but !highest_bit\n",
1030 si->type);
1031 WARN(!(si->flags & SWP_WRITEOK),
1032 "swap_info %d in list but !SWP_WRITEOK\n",
1033 si->type);
1034 __del_from_avail_list(si);
1035 spin_unlock(&si->lock);
1036 goto nextsi;
1037 }
1038 if (size == SWAPFILE_CLUSTER) {
1039 if (!(si->flags & SWP_FS))
1040 n_ret = swap_alloc_cluster(si, swp_entries);
1041 } else
1042 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1043 n_goal, swp_entries);
1044 spin_unlock(&si->lock);
1045 if (n_ret || size == SWAPFILE_CLUSTER)
1046 goto check_out;
1047 pr_debug("scan_swap_map of si %d failed to find offset\n",
1048 si->type);
1049
1050 spin_lock(&swap_avail_lock);
1051 nextsi:
1052 /*
1053 * if we got here, it's likely that si was almost full before,
1054 * and since scan_swap_map() can drop the si->lock, multiple
1055 * callers probably all tried to get a page from the same si
1056 * and it filled up before we could get one; or, the si filled
1057 * up between us dropping swap_avail_lock and taking si->lock.
1058 * Since we dropped the swap_avail_lock, the swap_avail_head
1059 * list may have been modified; so if next is still in the
1060 * swap_avail_head list then try it, otherwise start over
1061 * if we have not gotten any slots.
1062 */
1063 if (plist_node_empty(&next->avail_lists[node]))
1064 goto start_over;
1065 }
1066
1067 spin_unlock(&swap_avail_lock);
1068
1069 check_out:
1070 if (n_ret < n_goal)
1071 atomic_long_add((long)(n_goal - n_ret) * size,
1072 &nr_swap_pages);
1073 noswap:
1074 return n_ret;
1075 }
1076
1077 /* The only caller of this function is now suspend routine */
1078 swp_entry_t get_swap_page_of_type(int type)
1079 {
1080 struct swap_info_struct *si = swap_type_to_swap_info(type);
1081 pgoff_t offset;
1082
1083 if (!si)
1084 goto fail;
1085
1086 spin_lock(&si->lock);
1087 if (si->flags & SWP_WRITEOK) {
1088 atomic_long_dec(&nr_swap_pages);
1089 /* This is called for allocating swap entry, not cache */
1090 offset = scan_swap_map(si, 1);
1091 if (offset) {
1092 spin_unlock(&si->lock);
1093 return swp_entry(type, offset);
1094 }
1095 atomic_long_inc(&nr_swap_pages);
1096 }
1097 spin_unlock(&si->lock);
1098 fail:
1099 return (swp_entry_t) {0};
1100 }
1101
1102 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1103 {
1104 struct swap_info_struct *p;
1105 unsigned long offset;
1106
1107 if (!entry.val)
1108 goto out;
1109 p = swp_swap_info(entry);
1110 if (!p)
1111 goto bad_nofile;
1112 if (!(p->flags & SWP_USED))
1113 goto bad_device;
1114 offset = swp_offset(entry);
1115 if (offset >= p->max)
1116 goto bad_offset;
1117 return p;
1118
1119 bad_offset:
1120 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1121 goto out;
1122 bad_device:
1123 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1124 goto out;
1125 bad_nofile:
1126 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1127 out:
1128 return NULL;
1129 }
1130
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 struct swap_info_struct *p;
1134
1135 p = __swap_info_get(entry);
1136 if (!p)
1137 goto out;
1138 if (!p->swap_map[swp_offset(entry)])
1139 goto bad_free;
1140 return p;
1141
1142 bad_free:
1143 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1144 goto out;
1145 out:
1146 return NULL;
1147 }
1148
1149 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1150 {
1151 struct swap_info_struct *p;
1152
1153 p = _swap_info_get(entry);
1154 if (p)
1155 spin_lock(&p->lock);
1156 return p;
1157 }
1158
1159 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1160 struct swap_info_struct *q)
1161 {
1162 struct swap_info_struct *p;
1163
1164 p = _swap_info_get(entry);
1165
1166 if (p != q) {
1167 if (q != NULL)
1168 spin_unlock(&q->lock);
1169 if (p != NULL)
1170 spin_lock(&p->lock);
1171 }
1172 return p;
1173 }
1174
1175 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1176 unsigned long offset,
1177 unsigned char usage)
1178 {
1179 unsigned char count;
1180 unsigned char has_cache;
1181
1182 count = p->swap_map[offset];
1183
1184 has_cache = count & SWAP_HAS_CACHE;
1185 count &= ~SWAP_HAS_CACHE;
1186
1187 if (usage == SWAP_HAS_CACHE) {
1188 VM_BUG_ON(!has_cache);
1189 has_cache = 0;
1190 } else if (count == SWAP_MAP_SHMEM) {
1191 /*
1192 * Or we could insist on shmem.c using a special
1193 * swap_shmem_free() and free_shmem_swap_and_cache()...
1194 */
1195 count = 0;
1196 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1197 if (count == COUNT_CONTINUED) {
1198 if (swap_count_continued(p, offset, count))
1199 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1200 else
1201 count = SWAP_MAP_MAX;
1202 } else
1203 count--;
1204 }
1205
1206 usage = count | has_cache;
1207 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1208
1209 return usage;
1210 }
1211
1212 /*
1213 * Check whether swap entry is valid in the swap device. If so,
1214 * return pointer to swap_info_struct, and keep the swap entry valid
1215 * via preventing the swap device from being swapoff, until
1216 * put_swap_device() is called. Otherwise return NULL.
1217 *
1218 * The entirety of the RCU read critical section must come before the
1219 * return from or after the call to synchronize_rcu() in
1220 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1221 * true, the si->map, si->cluster_info, etc. must be valid in the
1222 * critical section.
1223 *
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1226 * in put_swap_device() if there isn't any other way to prevent
1227 * swapoff, such as page lock, page table lock, etc. The caller must
1228 * be prepared for that. For example, the following situation is
1229 * possible.
1230 *
1231 * CPU1 CPU2
1232 * do_swap_page()
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1237 * // check swap_map
1238 * // verify PTE not changed
1239 *
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1246 */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1251
1252 if (!entry.val)
1253 goto out;
1254 si = swp_swap_info(entry);
1255 if (!si)
1256 goto bad_nofile;
1257
1258 rcu_read_lock();
1259 if (!(si->flags & SWP_VALID))
1260 goto unlock_out;
1261 offset = swp_offset(entry);
1262 if (offset >= si->max)
1263 goto unlock_out;
1264
1265 return si;
1266 bad_nofile:
1267 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1268 out:
1269 return NULL;
1270 unlock_out:
1271 rcu_read_unlock();
1272 return NULL;
1273 }
1274
1275 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1276 swp_entry_t entry, unsigned char usage)
1277 {
1278 struct swap_cluster_info *ci;
1279 unsigned long offset = swp_offset(entry);
1280
1281 ci = lock_cluster_or_swap_info(p, offset);
1282 usage = __swap_entry_free_locked(p, offset, usage);
1283 unlock_cluster_or_swap_info(p, ci);
1284 if (!usage)
1285 free_swap_slot(entry);
1286
1287 return usage;
1288 }
1289
1290 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1291 {
1292 struct swap_cluster_info *ci;
1293 unsigned long offset = swp_offset(entry);
1294 unsigned char count;
1295
1296 ci = lock_cluster(p, offset);
1297 count = p->swap_map[offset];
1298 VM_BUG_ON(count != SWAP_HAS_CACHE);
1299 p->swap_map[offset] = 0;
1300 dec_cluster_info_page(p, p->cluster_info, offset);
1301 unlock_cluster(ci);
1302
1303 mem_cgroup_uncharge_swap(entry, 1);
1304 swap_range_free(p, offset, 1);
1305 }
1306
1307 /*
1308 * Caller has made sure that the swap device corresponding to entry
1309 * is still around or has not been recycled.
1310 */
1311 void swap_free(swp_entry_t entry)
1312 {
1313 struct swap_info_struct *p;
1314
1315 p = _swap_info_get(entry);
1316 if (p)
1317 __swap_entry_free(p, entry, 1);
1318 }
1319
1320 /*
1321 * Called after dropping swapcache to decrease refcnt to swap entries.
1322 */
1323 void put_swap_page(struct page *page, swp_entry_t entry)
1324 {
1325 unsigned long offset = swp_offset(entry);
1326 unsigned long idx = offset / SWAPFILE_CLUSTER;
1327 struct swap_cluster_info *ci;
1328 struct swap_info_struct *si;
1329 unsigned char *map;
1330 unsigned int i, free_entries = 0;
1331 unsigned char val;
1332 int size = swap_entry_size(hpage_nr_pages(page));
1333
1334 si = _swap_info_get(entry);
1335 if (!si)
1336 return;
1337
1338 ci = lock_cluster_or_swap_info(si, offset);
1339 if (size == SWAPFILE_CLUSTER) {
1340 VM_BUG_ON(!cluster_is_huge(ci));
1341 map = si->swap_map + offset;
1342 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1343 val = map[i];
1344 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1345 if (val == SWAP_HAS_CACHE)
1346 free_entries++;
1347 }
1348 cluster_clear_huge(ci);
1349 if (free_entries == SWAPFILE_CLUSTER) {
1350 unlock_cluster_or_swap_info(si, ci);
1351 spin_lock(&si->lock);
1352 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1353 swap_free_cluster(si, idx);
1354 spin_unlock(&si->lock);
1355 return;
1356 }
1357 }
1358 for (i = 0; i < size; i++, entry.val++) {
1359 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1360 unlock_cluster_or_swap_info(si, ci);
1361 free_swap_slot(entry);
1362 if (i == size - 1)
1363 return;
1364 lock_cluster_or_swap_info(si, offset);
1365 }
1366 }
1367 unlock_cluster_or_swap_info(si, ci);
1368 }
1369
1370 #ifdef CONFIG_THP_SWAP
1371 int split_swap_cluster(swp_entry_t entry)
1372 {
1373 struct swap_info_struct *si;
1374 struct swap_cluster_info *ci;
1375 unsigned long offset = swp_offset(entry);
1376
1377 si = _swap_info_get(entry);
1378 if (!si)
1379 return -EBUSY;
1380 ci = lock_cluster(si, offset);
1381 cluster_clear_huge(ci);
1382 unlock_cluster(ci);
1383 return 0;
1384 }
1385 #endif
1386
1387 static int swp_entry_cmp(const void *ent1, const void *ent2)
1388 {
1389 const swp_entry_t *e1 = ent1, *e2 = ent2;
1390
1391 return (int)swp_type(*e1) - (int)swp_type(*e2);
1392 }
1393
1394 void swapcache_free_entries(swp_entry_t *entries, int n)
1395 {
1396 struct swap_info_struct *p, *prev;
1397 int i;
1398
1399 if (n <= 0)
1400 return;
1401
1402 prev = NULL;
1403 p = NULL;
1404
1405 /*
1406 * Sort swap entries by swap device, so each lock is only taken once.
1407 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1408 * so low that it isn't necessary to optimize further.
1409 */
1410 if (nr_swapfiles > 1)
1411 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1412 for (i = 0; i < n; ++i) {
1413 p = swap_info_get_cont(entries[i], prev);
1414 if (p)
1415 swap_entry_free(p, entries[i]);
1416 prev = p;
1417 }
1418 if (p)
1419 spin_unlock(&p->lock);
1420 }
1421
1422 /*
1423 * How many references to page are currently swapped out?
1424 * This does not give an exact answer when swap count is continued,
1425 * but does include the high COUNT_CONTINUED flag to allow for that.
1426 */
1427 int page_swapcount(struct page *page)
1428 {
1429 int count = 0;
1430 struct swap_info_struct *p;
1431 struct swap_cluster_info *ci;
1432 swp_entry_t entry;
1433 unsigned long offset;
1434
1435 entry.val = page_private(page);
1436 p = _swap_info_get(entry);
1437 if (p) {
1438 offset = swp_offset(entry);
1439 ci = lock_cluster_or_swap_info(p, offset);
1440 count = swap_count(p->swap_map[offset]);
1441 unlock_cluster_or_swap_info(p, ci);
1442 }
1443 return count;
1444 }
1445
1446 int __swap_count(swp_entry_t entry)
1447 {
1448 struct swap_info_struct *si;
1449 pgoff_t offset = swp_offset(entry);
1450 int count = 0;
1451
1452 si = get_swap_device(entry);
1453 if (si) {
1454 count = swap_count(si->swap_map[offset]);
1455 put_swap_device(si);
1456 }
1457 return count;
1458 }
1459
1460 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1461 {
1462 int count = 0;
1463 pgoff_t offset = swp_offset(entry);
1464 struct swap_cluster_info *ci;
1465
1466 ci = lock_cluster_or_swap_info(si, offset);
1467 count = swap_count(si->swap_map[offset]);
1468 unlock_cluster_or_swap_info(si, ci);
1469 return count;
1470 }
1471
1472 /*
1473 * How many references to @entry are currently swapped out?
1474 * This does not give an exact answer when swap count is continued,
1475 * but does include the high COUNT_CONTINUED flag to allow for that.
1476 */
1477 int __swp_swapcount(swp_entry_t entry)
1478 {
1479 int count = 0;
1480 struct swap_info_struct *si;
1481
1482 si = get_swap_device(entry);
1483 if (si) {
1484 count = swap_swapcount(si, entry);
1485 put_swap_device(si);
1486 }
1487 return count;
1488 }
1489
1490 /*
1491 * How many references to @entry are currently swapped out?
1492 * This considers COUNT_CONTINUED so it returns exact answer.
1493 */
1494 int swp_swapcount(swp_entry_t entry)
1495 {
1496 int count, tmp_count, n;
1497 struct swap_info_struct *p;
1498 struct swap_cluster_info *ci;
1499 struct page *page;
1500 pgoff_t offset;
1501 unsigned char *map;
1502
1503 p = _swap_info_get(entry);
1504 if (!p)
1505 return 0;
1506
1507 offset = swp_offset(entry);
1508
1509 ci = lock_cluster_or_swap_info(p, offset);
1510
1511 count = swap_count(p->swap_map[offset]);
1512 if (!(count & COUNT_CONTINUED))
1513 goto out;
1514
1515 count &= ~COUNT_CONTINUED;
1516 n = SWAP_MAP_MAX + 1;
1517
1518 page = vmalloc_to_page(p->swap_map + offset);
1519 offset &= ~PAGE_MASK;
1520 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1521
1522 do {
1523 page = list_next_entry(page, lru);
1524 map = kmap_atomic(page);
1525 tmp_count = map[offset];
1526 kunmap_atomic(map);
1527
1528 count += (tmp_count & ~COUNT_CONTINUED) * n;
1529 n *= (SWAP_CONT_MAX + 1);
1530 } while (tmp_count & COUNT_CONTINUED);
1531 out:
1532 unlock_cluster_or_swap_info(p, ci);
1533 return count;
1534 }
1535
1536 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1537 swp_entry_t entry)
1538 {
1539 struct swap_cluster_info *ci;
1540 unsigned char *map = si->swap_map;
1541 unsigned long roffset = swp_offset(entry);
1542 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1543 int i;
1544 bool ret = false;
1545
1546 ci = lock_cluster_or_swap_info(si, offset);
1547 if (!ci || !cluster_is_huge(ci)) {
1548 if (swap_count(map[roffset]))
1549 ret = true;
1550 goto unlock_out;
1551 }
1552 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1553 if (swap_count(map[offset + i])) {
1554 ret = true;
1555 break;
1556 }
1557 }
1558 unlock_out:
1559 unlock_cluster_or_swap_info(si, ci);
1560 return ret;
1561 }
1562
1563 static bool page_swapped(struct page *page)
1564 {
1565 swp_entry_t entry;
1566 struct swap_info_struct *si;
1567
1568 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1569 return page_swapcount(page) != 0;
1570
1571 page = compound_head(page);
1572 entry.val = page_private(page);
1573 si = _swap_info_get(entry);
1574 if (si)
1575 return swap_page_trans_huge_swapped(si, entry);
1576 return false;
1577 }
1578
1579 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1580 int *total_swapcount)
1581 {
1582 int i, map_swapcount, _total_mapcount, _total_swapcount;
1583 unsigned long offset = 0;
1584 struct swap_info_struct *si;
1585 struct swap_cluster_info *ci = NULL;
1586 unsigned char *map = NULL;
1587 int mapcount, swapcount = 0;
1588
1589 /* hugetlbfs shouldn't call it */
1590 VM_BUG_ON_PAGE(PageHuge(page), page);
1591
1592 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1593 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1594 if (PageSwapCache(page))
1595 swapcount = page_swapcount(page);
1596 if (total_swapcount)
1597 *total_swapcount = swapcount;
1598 return mapcount + swapcount;
1599 }
1600
1601 page = compound_head(page);
1602
1603 _total_mapcount = _total_swapcount = map_swapcount = 0;
1604 if (PageSwapCache(page)) {
1605 swp_entry_t entry;
1606
1607 entry.val = page_private(page);
1608 si = _swap_info_get(entry);
1609 if (si) {
1610 map = si->swap_map;
1611 offset = swp_offset(entry);
1612 }
1613 }
1614 if (map)
1615 ci = lock_cluster(si, offset);
1616 for (i = 0; i < HPAGE_PMD_NR; i++) {
1617 mapcount = atomic_read(&page[i]._mapcount) + 1;
1618 _total_mapcount += mapcount;
1619 if (map) {
1620 swapcount = swap_count(map[offset + i]);
1621 _total_swapcount += swapcount;
1622 }
1623 map_swapcount = max(map_swapcount, mapcount + swapcount);
1624 }
1625 unlock_cluster(ci);
1626 if (PageDoubleMap(page)) {
1627 map_swapcount -= 1;
1628 _total_mapcount -= HPAGE_PMD_NR;
1629 }
1630 mapcount = compound_mapcount(page);
1631 map_swapcount += mapcount;
1632 _total_mapcount += mapcount;
1633 if (total_mapcount)
1634 *total_mapcount = _total_mapcount;
1635 if (total_swapcount)
1636 *total_swapcount = _total_swapcount;
1637
1638 return map_swapcount;
1639 }
1640
1641 /*
1642 * We can write to an anon page without COW if there are no other references
1643 * to it. And as a side-effect, free up its swap: because the old content
1644 * on disk will never be read, and seeking back there to write new content
1645 * later would only waste time away from clustering.
1646 *
1647 * NOTE: total_map_swapcount should not be relied upon by the caller if
1648 * reuse_swap_page() returns false, but it may be always overwritten
1649 * (see the other implementation for CONFIG_SWAP=n).
1650 */
1651 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1652 {
1653 int count, total_mapcount, total_swapcount;
1654
1655 VM_BUG_ON_PAGE(!PageLocked(page), page);
1656 if (unlikely(PageKsm(page)))
1657 return false;
1658 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1659 &total_swapcount);
1660 if (total_map_swapcount)
1661 *total_map_swapcount = total_mapcount + total_swapcount;
1662 if (count == 1 && PageSwapCache(page) &&
1663 (likely(!PageTransCompound(page)) ||
1664 /* The remaining swap count will be freed soon */
1665 total_swapcount == page_swapcount(page))) {
1666 if (!PageWriteback(page)) {
1667 page = compound_head(page);
1668 delete_from_swap_cache(page);
1669 SetPageDirty(page);
1670 } else {
1671 swp_entry_t entry;
1672 struct swap_info_struct *p;
1673
1674 entry.val = page_private(page);
1675 p = swap_info_get(entry);
1676 if (p->flags & SWP_STABLE_WRITES) {
1677 spin_unlock(&p->lock);
1678 return false;
1679 }
1680 spin_unlock(&p->lock);
1681 }
1682 }
1683
1684 return count <= 1;
1685 }
1686
1687 /*
1688 * If swap is getting full, or if there are no more mappings of this page,
1689 * then try_to_free_swap is called to free its swap space.
1690 */
1691 int try_to_free_swap(struct page *page)
1692 {
1693 VM_BUG_ON_PAGE(!PageLocked(page), page);
1694
1695 if (!PageSwapCache(page))
1696 return 0;
1697 if (PageWriteback(page))
1698 return 0;
1699 if (page_swapped(page))
1700 return 0;
1701
1702 /*
1703 * Once hibernation has begun to create its image of memory,
1704 * there's a danger that one of the calls to try_to_free_swap()
1705 * - most probably a call from __try_to_reclaim_swap() while
1706 * hibernation is allocating its own swap pages for the image,
1707 * but conceivably even a call from memory reclaim - will free
1708 * the swap from a page which has already been recorded in the
1709 * image as a clean swapcache page, and then reuse its swap for
1710 * another page of the image. On waking from hibernation, the
1711 * original page might be freed under memory pressure, then
1712 * later read back in from swap, now with the wrong data.
1713 *
1714 * Hibernation suspends storage while it is writing the image
1715 * to disk so check that here.
1716 */
1717 if (pm_suspended_storage())
1718 return 0;
1719
1720 page = compound_head(page);
1721 delete_from_swap_cache(page);
1722 SetPageDirty(page);
1723 return 1;
1724 }
1725
1726 /*
1727 * Free the swap entry like above, but also try to
1728 * free the page cache entry if it is the last user.
1729 */
1730 int free_swap_and_cache(swp_entry_t entry)
1731 {
1732 struct swap_info_struct *p;
1733 unsigned char count;
1734
1735 if (non_swap_entry(entry))
1736 return 1;
1737
1738 p = _swap_info_get(entry);
1739 if (p) {
1740 count = __swap_entry_free(p, entry, 1);
1741 if (count == SWAP_HAS_CACHE &&
1742 !swap_page_trans_huge_swapped(p, entry))
1743 __try_to_reclaim_swap(p, swp_offset(entry),
1744 TTRS_UNMAPPED | TTRS_FULL);
1745 }
1746 return p != NULL;
1747 }
1748
1749 #ifdef CONFIG_HIBERNATION
1750 /*
1751 * Find the swap type that corresponds to given device (if any).
1752 *
1753 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1754 * from 0, in which the swap header is expected to be located.
1755 *
1756 * This is needed for the suspend to disk (aka swsusp).
1757 */
1758 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1759 {
1760 struct block_device *bdev = NULL;
1761 int type;
1762
1763 if (device)
1764 bdev = bdget(device);
1765
1766 spin_lock(&swap_lock);
1767 for (type = 0; type < nr_swapfiles; type++) {
1768 struct swap_info_struct *sis = swap_info[type];
1769
1770 if (!(sis->flags & SWP_WRITEOK))
1771 continue;
1772
1773 if (!bdev) {
1774 if (bdev_p)
1775 *bdev_p = bdgrab(sis->bdev);
1776
1777 spin_unlock(&swap_lock);
1778 return type;
1779 }
1780 if (bdev == sis->bdev) {
1781 struct swap_extent *se = first_se(sis);
1782
1783 if (se->start_block == offset) {
1784 if (bdev_p)
1785 *bdev_p = bdgrab(sis->bdev);
1786
1787 spin_unlock(&swap_lock);
1788 bdput(bdev);
1789 return type;
1790 }
1791 }
1792 }
1793 spin_unlock(&swap_lock);
1794 if (bdev)
1795 bdput(bdev);
1796
1797 return -ENODEV;
1798 }
1799
1800 /*
1801 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1802 * corresponding to given index in swap_info (swap type).
1803 */
1804 sector_t swapdev_block(int type, pgoff_t offset)
1805 {
1806 struct block_device *bdev;
1807 struct swap_info_struct *si = swap_type_to_swap_info(type);
1808
1809 if (!si || !(si->flags & SWP_WRITEOK))
1810 return 0;
1811 return map_swap_entry(swp_entry(type, offset), &bdev);
1812 }
1813
1814 /*
1815 * Return either the total number of swap pages of given type, or the number
1816 * of free pages of that type (depending on @free)
1817 *
1818 * This is needed for software suspend
1819 */
1820 unsigned int count_swap_pages(int type, int free)
1821 {
1822 unsigned int n = 0;
1823
1824 spin_lock(&swap_lock);
1825 if ((unsigned int)type < nr_swapfiles) {
1826 struct swap_info_struct *sis = swap_info[type];
1827
1828 spin_lock(&sis->lock);
1829 if (sis->flags & SWP_WRITEOK) {
1830 n = sis->pages;
1831 if (free)
1832 n -= sis->inuse_pages;
1833 }
1834 spin_unlock(&sis->lock);
1835 }
1836 spin_unlock(&swap_lock);
1837 return n;
1838 }
1839 #endif /* CONFIG_HIBERNATION */
1840
1841 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1842 {
1843 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1844 }
1845
1846 /*
1847 * No need to decide whether this PTE shares the swap entry with others,
1848 * just let do_wp_page work it out if a write is requested later - to
1849 * force COW, vm_page_prot omits write permission from any private vma.
1850 */
1851 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1852 unsigned long addr, swp_entry_t entry, struct page *page)
1853 {
1854 struct page *swapcache;
1855 struct mem_cgroup *memcg;
1856 spinlock_t *ptl;
1857 pte_t *pte;
1858 int ret = 1;
1859
1860 swapcache = page;
1861 page = ksm_might_need_to_copy(page, vma, addr);
1862 if (unlikely(!page))
1863 return -ENOMEM;
1864
1865 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1866 &memcg, false)) {
1867 ret = -ENOMEM;
1868 goto out_nolock;
1869 }
1870
1871 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1872 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1873 mem_cgroup_cancel_charge(page, memcg, false);
1874 ret = 0;
1875 goto out;
1876 }
1877
1878 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1879 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1880 get_page(page);
1881 set_pte_at(vma->vm_mm, addr, pte,
1882 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1883 if (page == swapcache) {
1884 page_add_anon_rmap(page, vma, addr, false);
1885 mem_cgroup_commit_charge(page, memcg, true, false);
1886 } else { /* ksm created a completely new copy */
1887 page_add_new_anon_rmap(page, vma, addr, false);
1888 mem_cgroup_commit_charge(page, memcg, false, false);
1889 lru_cache_add_active_or_unevictable(page, vma);
1890 }
1891 swap_free(entry);
1892 /*
1893 * Move the page to the active list so it is not
1894 * immediately swapped out again after swapon.
1895 */
1896 activate_page(page);
1897 out:
1898 pte_unmap_unlock(pte, ptl);
1899 out_nolock:
1900 if (page != swapcache) {
1901 unlock_page(page);
1902 put_page(page);
1903 }
1904 return ret;
1905 }
1906
1907 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1908 unsigned long addr, unsigned long end,
1909 unsigned int type, bool frontswap,
1910 unsigned long *fs_pages_to_unuse)
1911 {
1912 struct page *page;
1913 swp_entry_t entry;
1914 pte_t *pte;
1915 struct swap_info_struct *si;
1916 unsigned long offset;
1917 int ret = 0;
1918 volatile unsigned char *swap_map;
1919
1920 si = swap_info[type];
1921 pte = pte_offset_map(pmd, addr);
1922 do {
1923 struct vm_fault vmf;
1924
1925 if (!is_swap_pte(*pte))
1926 continue;
1927
1928 entry = pte_to_swp_entry(*pte);
1929 if (swp_type(entry) != type)
1930 continue;
1931
1932 offset = swp_offset(entry);
1933 if (frontswap && !frontswap_test(si, offset))
1934 continue;
1935
1936 pte_unmap(pte);
1937 swap_map = &si->swap_map[offset];
1938 page = lookup_swap_cache(entry, vma, addr);
1939 if (!page) {
1940 vmf.vma = vma;
1941 vmf.address = addr;
1942 vmf.pmd = pmd;
1943 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1944 &vmf);
1945 }
1946 if (!page) {
1947 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1948 goto try_next;
1949 return -ENOMEM;
1950 }
1951
1952 lock_page(page);
1953 wait_on_page_writeback(page);
1954 ret = unuse_pte(vma, pmd, addr, entry, page);
1955 if (ret < 0) {
1956 unlock_page(page);
1957 put_page(page);
1958 goto out;
1959 }
1960
1961 try_to_free_swap(page);
1962 unlock_page(page);
1963 put_page(page);
1964
1965 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1966 ret = FRONTSWAP_PAGES_UNUSED;
1967 goto out;
1968 }
1969 try_next:
1970 pte = pte_offset_map(pmd, addr);
1971 } while (pte++, addr += PAGE_SIZE, addr != end);
1972 pte_unmap(pte - 1);
1973
1974 ret = 0;
1975 out:
1976 return ret;
1977 }
1978
1979 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1980 unsigned long addr, unsigned long end,
1981 unsigned int type, bool frontswap,
1982 unsigned long *fs_pages_to_unuse)
1983 {
1984 pmd_t *pmd;
1985 unsigned long next;
1986 int ret;
1987
1988 pmd = pmd_offset(pud, addr);
1989 do {
1990 cond_resched();
1991 next = pmd_addr_end(addr, end);
1992 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1993 continue;
1994 ret = unuse_pte_range(vma, pmd, addr, next, type,
1995 frontswap, fs_pages_to_unuse);
1996 if (ret)
1997 return ret;
1998 } while (pmd++, addr = next, addr != end);
1999 return 0;
2000 }
2001
2002 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2003 unsigned long addr, unsigned long end,
2004 unsigned int type, bool frontswap,
2005 unsigned long *fs_pages_to_unuse)
2006 {
2007 pud_t *pud;
2008 unsigned long next;
2009 int ret;
2010
2011 pud = pud_offset(p4d, addr);
2012 do {
2013 next = pud_addr_end(addr, end);
2014 if (pud_none_or_clear_bad(pud))
2015 continue;
2016 ret = unuse_pmd_range(vma, pud, addr, next, type,
2017 frontswap, fs_pages_to_unuse);
2018 if (ret)
2019 return ret;
2020 } while (pud++, addr = next, addr != end);
2021 return 0;
2022 }
2023
2024 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2025 unsigned long addr, unsigned long end,
2026 unsigned int type, bool frontswap,
2027 unsigned long *fs_pages_to_unuse)
2028 {
2029 p4d_t *p4d;
2030 unsigned long next;
2031 int ret;
2032
2033 p4d = p4d_offset(pgd, addr);
2034 do {
2035 next = p4d_addr_end(addr, end);
2036 if (p4d_none_or_clear_bad(p4d))
2037 continue;
2038 ret = unuse_pud_range(vma, p4d, addr, next, type,
2039 frontswap, fs_pages_to_unuse);
2040 if (ret)
2041 return ret;
2042 } while (p4d++, addr = next, addr != end);
2043 return 0;
2044 }
2045
2046 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2047 bool frontswap, unsigned long *fs_pages_to_unuse)
2048 {
2049 pgd_t *pgd;
2050 unsigned long addr, end, next;
2051 int ret;
2052
2053 addr = vma->vm_start;
2054 end = vma->vm_end;
2055
2056 pgd = pgd_offset(vma->vm_mm, addr);
2057 do {
2058 next = pgd_addr_end(addr, end);
2059 if (pgd_none_or_clear_bad(pgd))
2060 continue;
2061 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2062 frontswap, fs_pages_to_unuse);
2063 if (ret)
2064 return ret;
2065 } while (pgd++, addr = next, addr != end);
2066 return 0;
2067 }
2068
2069 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2070 bool frontswap, unsigned long *fs_pages_to_unuse)
2071 {
2072 struct vm_area_struct *vma;
2073 int ret = 0;
2074
2075 down_read(&mm->mmap_sem);
2076 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2077 if (vma->anon_vma) {
2078 ret = unuse_vma(vma, type, frontswap,
2079 fs_pages_to_unuse);
2080 if (ret)
2081 break;
2082 }
2083 cond_resched();
2084 }
2085 up_read(&mm->mmap_sem);
2086 return ret;
2087 }
2088
2089 /*
2090 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2091 * from current position to next entry still in use. Return 0
2092 * if there are no inuse entries after prev till end of the map.
2093 */
2094 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2095 unsigned int prev, bool frontswap)
2096 {
2097 unsigned int i;
2098 unsigned char count;
2099
2100 /*
2101 * No need for swap_lock here: we're just looking
2102 * for whether an entry is in use, not modifying it; false
2103 * hits are okay, and sys_swapoff() has already prevented new
2104 * allocations from this area (while holding swap_lock).
2105 */
2106 for (i = prev + 1; i < si->max; i++) {
2107 count = READ_ONCE(si->swap_map[i]);
2108 if (count && swap_count(count) != SWAP_MAP_BAD)
2109 if (!frontswap || frontswap_test(si, i))
2110 break;
2111 if ((i % LATENCY_LIMIT) == 0)
2112 cond_resched();
2113 }
2114
2115 if (i == si->max)
2116 i = 0;
2117
2118 return i;
2119 }
2120
2121 /*
2122 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2123 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2124 */
2125 int try_to_unuse(unsigned int type, bool frontswap,
2126 unsigned long pages_to_unuse)
2127 {
2128 struct mm_struct *prev_mm;
2129 struct mm_struct *mm;
2130 struct list_head *p;
2131 int retval = 0;
2132 struct swap_info_struct *si = swap_info[type];
2133 struct page *page;
2134 swp_entry_t entry;
2135 unsigned int i;
2136
2137 if (!READ_ONCE(si->inuse_pages))
2138 return 0;
2139
2140 if (!frontswap)
2141 pages_to_unuse = 0;
2142
2143 retry:
2144 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2145 if (retval)
2146 goto out;
2147
2148 prev_mm = &init_mm;
2149 mmget(prev_mm);
2150
2151 spin_lock(&mmlist_lock);
2152 p = &init_mm.mmlist;
2153 while (READ_ONCE(si->inuse_pages) &&
2154 !signal_pending(current) &&
2155 (p = p->next) != &init_mm.mmlist) {
2156
2157 mm = list_entry(p, struct mm_struct, mmlist);
2158 if (!mmget_not_zero(mm))
2159 continue;
2160 spin_unlock(&mmlist_lock);
2161 mmput(prev_mm);
2162 prev_mm = mm;
2163 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2164
2165 if (retval) {
2166 mmput(prev_mm);
2167 goto out;
2168 }
2169
2170 /*
2171 * Make sure that we aren't completely killing
2172 * interactive performance.
2173 */
2174 cond_resched();
2175 spin_lock(&mmlist_lock);
2176 }
2177 spin_unlock(&mmlist_lock);
2178
2179 mmput(prev_mm);
2180
2181 i = 0;
2182 while (READ_ONCE(si->inuse_pages) &&
2183 !signal_pending(current) &&
2184 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2185
2186 entry = swp_entry(type, i);
2187 page = find_get_page(swap_address_space(entry), i);
2188 if (!page)
2189 continue;
2190
2191 /*
2192 * It is conceivable that a racing task removed this page from
2193 * swap cache just before we acquired the page lock. The page
2194 * might even be back in swap cache on another swap area. But
2195 * that is okay, try_to_free_swap() only removes stale pages.
2196 */
2197 lock_page(page);
2198 wait_on_page_writeback(page);
2199 try_to_free_swap(page);
2200 unlock_page(page);
2201 put_page(page);
2202
2203 /*
2204 * For frontswap, we just need to unuse pages_to_unuse, if
2205 * it was specified. Need not check frontswap again here as
2206 * we already zeroed out pages_to_unuse if not frontswap.
2207 */
2208 if (pages_to_unuse && --pages_to_unuse == 0)
2209 goto out;
2210 }
2211
2212 /*
2213 * Lets check again to see if there are still swap entries in the map.
2214 * If yes, we would need to do retry the unuse logic again.
2215 * Under global memory pressure, swap entries can be reinserted back
2216 * into process space after the mmlist loop above passes over them.
2217 *
2218 * Limit the number of retries? No: when mmget_not_zero() above fails,
2219 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2220 * at its own independent pace; and even shmem_writepage() could have
2221 * been preempted after get_swap_page(), temporarily hiding that swap.
2222 * It's easy and robust (though cpu-intensive) just to keep retrying.
2223 */
2224 if (READ_ONCE(si->inuse_pages)) {
2225 if (!signal_pending(current))
2226 goto retry;
2227 retval = -EINTR;
2228 }
2229 out:
2230 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2231 }
2232
2233 /*
2234 * After a successful try_to_unuse, if no swap is now in use, we know
2235 * we can empty the mmlist. swap_lock must be held on entry and exit.
2236 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2237 * added to the mmlist just after page_duplicate - before would be racy.
2238 */
2239 static void drain_mmlist(void)
2240 {
2241 struct list_head *p, *next;
2242 unsigned int type;
2243
2244 for (type = 0; type < nr_swapfiles; type++)
2245 if (swap_info[type]->inuse_pages)
2246 return;
2247 spin_lock(&mmlist_lock);
2248 list_for_each_safe(p, next, &init_mm.mmlist)
2249 list_del_init(p);
2250 spin_unlock(&mmlist_lock);
2251 }
2252
2253 /*
2254 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2255 * corresponds to page offset for the specified swap entry.
2256 * Note that the type of this function is sector_t, but it returns page offset
2257 * into the bdev, not sector offset.
2258 */
2259 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2260 {
2261 struct swap_info_struct *sis;
2262 struct swap_extent *se;
2263 pgoff_t offset;
2264
2265 sis = swp_swap_info(entry);
2266 *bdev = sis->bdev;
2267
2268 offset = swp_offset(entry);
2269 se = offset_to_swap_extent(sis, offset);
2270 return se->start_block + (offset - se->start_page);
2271 }
2272
2273 /*
2274 * Returns the page offset into bdev for the specified page's swap entry.
2275 */
2276 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2277 {
2278 swp_entry_t entry;
2279 entry.val = page_private(page);
2280 return map_swap_entry(entry, bdev);
2281 }
2282
2283 /*
2284 * Free all of a swapdev's extent information
2285 */
2286 static void destroy_swap_extents(struct swap_info_struct *sis)
2287 {
2288 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2289 struct rb_node *rb = sis->swap_extent_root.rb_node;
2290 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2291
2292 rb_erase(rb, &sis->swap_extent_root);
2293 kfree(se);
2294 }
2295
2296 if (sis->flags & SWP_ACTIVATED) {
2297 struct file *swap_file = sis->swap_file;
2298 struct address_space *mapping = swap_file->f_mapping;
2299
2300 sis->flags &= ~SWP_ACTIVATED;
2301 if (mapping->a_ops->swap_deactivate)
2302 mapping->a_ops->swap_deactivate(swap_file);
2303 }
2304 }
2305
2306 /*
2307 * Add a block range (and the corresponding page range) into this swapdev's
2308 * extent tree.
2309 *
2310 * This function rather assumes that it is called in ascending page order.
2311 */
2312 int
2313 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2314 unsigned long nr_pages, sector_t start_block)
2315 {
2316 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2317 struct swap_extent *se;
2318 struct swap_extent *new_se;
2319
2320 /*
2321 * place the new node at the right most since the
2322 * function is called in ascending page order.
2323 */
2324 while (*link) {
2325 parent = *link;
2326 link = &parent->rb_right;
2327 }
2328
2329 if (parent) {
2330 se = rb_entry(parent, struct swap_extent, rb_node);
2331 BUG_ON(se->start_page + se->nr_pages != start_page);
2332 if (se->start_block + se->nr_pages == start_block) {
2333 /* Merge it */
2334 se->nr_pages += nr_pages;
2335 return 0;
2336 }
2337 }
2338
2339 /* No merge, insert a new extent. */
2340 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2341 if (new_se == NULL)
2342 return -ENOMEM;
2343 new_se->start_page = start_page;
2344 new_se->nr_pages = nr_pages;
2345 new_se->start_block = start_block;
2346
2347 rb_link_node(&new_se->rb_node, parent, link);
2348 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2349 return 1;
2350 }
2351 EXPORT_SYMBOL_GPL(add_swap_extent);
2352
2353 /*
2354 * A `swap extent' is a simple thing which maps a contiguous range of pages
2355 * onto a contiguous range of disk blocks. An ordered list of swap extents
2356 * is built at swapon time and is then used at swap_writepage/swap_readpage
2357 * time for locating where on disk a page belongs.
2358 *
2359 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2360 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2361 * swap files identically.
2362 *
2363 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2364 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2365 * swapfiles are handled *identically* after swapon time.
2366 *
2367 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2368 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2369 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2370 * requirements, they are simply tossed out - we will never use those blocks
2371 * for swapping.
2372 *
2373 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2374 * prevents users from writing to the swap device, which will corrupt memory.
2375 *
2376 * The amount of disk space which a single swap extent represents varies.
2377 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2378 * extents in the list. To avoid much list walking, we cache the previous
2379 * search location in `curr_swap_extent', and start new searches from there.
2380 * This is extremely effective. The average number of iterations in
2381 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2382 */
2383 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2384 {
2385 struct file *swap_file = sis->swap_file;
2386 struct address_space *mapping = swap_file->f_mapping;
2387 struct inode *inode = mapping->host;
2388 int ret;
2389
2390 if (S_ISBLK(inode->i_mode)) {
2391 ret = add_swap_extent(sis, 0, sis->max, 0);
2392 *span = sis->pages;
2393 return ret;
2394 }
2395
2396 if (mapping->a_ops->swap_activate) {
2397 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2398 if (ret >= 0)
2399 sis->flags |= SWP_ACTIVATED;
2400 if (!ret) {
2401 sis->flags |= SWP_FS;
2402 ret = add_swap_extent(sis, 0, sis->max, 0);
2403 *span = sis->pages;
2404 }
2405 return ret;
2406 }
2407
2408 return generic_swapfile_activate(sis, swap_file, span);
2409 }
2410
2411 static int swap_node(struct swap_info_struct *p)
2412 {
2413 struct block_device *bdev;
2414
2415 if (p->bdev)
2416 bdev = p->bdev;
2417 else
2418 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2419
2420 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2421 }
2422
2423 static void setup_swap_info(struct swap_info_struct *p, int prio,
2424 unsigned char *swap_map,
2425 struct swap_cluster_info *cluster_info)
2426 {
2427 int i;
2428
2429 if (prio >= 0)
2430 p->prio = prio;
2431 else
2432 p->prio = --least_priority;
2433 /*
2434 * the plist prio is negated because plist ordering is
2435 * low-to-high, while swap ordering is high-to-low
2436 */
2437 p->list.prio = -p->prio;
2438 for_each_node(i) {
2439 if (p->prio >= 0)
2440 p->avail_lists[i].prio = -p->prio;
2441 else {
2442 if (swap_node(p) == i)
2443 p->avail_lists[i].prio = 1;
2444 else
2445 p->avail_lists[i].prio = -p->prio;
2446 }
2447 }
2448 p->swap_map = swap_map;
2449 p->cluster_info = cluster_info;
2450 }
2451
2452 static void _enable_swap_info(struct swap_info_struct *p)
2453 {
2454 p->flags |= SWP_WRITEOK | SWP_VALID;
2455 atomic_long_add(p->pages, &nr_swap_pages);
2456 total_swap_pages += p->pages;
2457
2458 assert_spin_locked(&swap_lock);
2459 /*
2460 * both lists are plists, and thus priority ordered.
2461 * swap_active_head needs to be priority ordered for swapoff(),
2462 * which on removal of any swap_info_struct with an auto-assigned
2463 * (i.e. negative) priority increments the auto-assigned priority
2464 * of any lower-priority swap_info_structs.
2465 * swap_avail_head needs to be priority ordered for get_swap_page(),
2466 * which allocates swap pages from the highest available priority
2467 * swap_info_struct.
2468 */
2469 plist_add(&p->list, &swap_active_head);
2470 add_to_avail_list(p);
2471 }
2472
2473 static void enable_swap_info(struct swap_info_struct *p, int prio,
2474 unsigned char *swap_map,
2475 struct swap_cluster_info *cluster_info,
2476 unsigned long *frontswap_map)
2477 {
2478 frontswap_init(p->type, frontswap_map);
2479 spin_lock(&swap_lock);
2480 spin_lock(&p->lock);
2481 setup_swap_info(p, prio, swap_map, cluster_info);
2482 spin_unlock(&p->lock);
2483 spin_unlock(&swap_lock);
2484 /*
2485 * Guarantee swap_map, cluster_info, etc. fields are valid
2486 * between get/put_swap_device() if SWP_VALID bit is set
2487 */
2488 synchronize_rcu();
2489 spin_lock(&swap_lock);
2490 spin_lock(&p->lock);
2491 _enable_swap_info(p);
2492 spin_unlock(&p->lock);
2493 spin_unlock(&swap_lock);
2494 }
2495
2496 static void reinsert_swap_info(struct swap_info_struct *p)
2497 {
2498 spin_lock(&swap_lock);
2499 spin_lock(&p->lock);
2500 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501 _enable_swap_info(p);
2502 spin_unlock(&p->lock);
2503 spin_unlock(&swap_lock);
2504 }
2505
2506 bool has_usable_swap(void)
2507 {
2508 bool ret = true;
2509
2510 spin_lock(&swap_lock);
2511 if (plist_head_empty(&swap_active_head))
2512 ret = false;
2513 spin_unlock(&swap_lock);
2514 return ret;
2515 }
2516
2517 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2518 {
2519 struct swap_info_struct *p = NULL;
2520 unsigned char *swap_map;
2521 struct swap_cluster_info *cluster_info;
2522 unsigned long *frontswap_map;
2523 struct file *swap_file, *victim;
2524 struct address_space *mapping;
2525 struct inode *inode;
2526 struct filename *pathname;
2527 int err, found = 0;
2528 unsigned int old_block_size;
2529
2530 if (!capable(CAP_SYS_ADMIN))
2531 return -EPERM;
2532
2533 BUG_ON(!current->mm);
2534
2535 pathname = getname(specialfile);
2536 if (IS_ERR(pathname))
2537 return PTR_ERR(pathname);
2538
2539 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2540 err = PTR_ERR(victim);
2541 if (IS_ERR(victim))
2542 goto out;
2543
2544 mapping = victim->f_mapping;
2545 spin_lock(&swap_lock);
2546 plist_for_each_entry(p, &swap_active_head, list) {
2547 if (p->flags & SWP_WRITEOK) {
2548 if (p->swap_file->f_mapping == mapping) {
2549 found = 1;
2550 break;
2551 }
2552 }
2553 }
2554 if (!found) {
2555 err = -EINVAL;
2556 spin_unlock(&swap_lock);
2557 goto out_dput;
2558 }
2559 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2560 vm_unacct_memory(p->pages);
2561 else {
2562 err = -ENOMEM;
2563 spin_unlock(&swap_lock);
2564 goto out_dput;
2565 }
2566 del_from_avail_list(p);
2567 spin_lock(&p->lock);
2568 if (p->prio < 0) {
2569 struct swap_info_struct *si = p;
2570 int nid;
2571
2572 plist_for_each_entry_continue(si, &swap_active_head, list) {
2573 si->prio++;
2574 si->list.prio--;
2575 for_each_node(nid) {
2576 if (si->avail_lists[nid].prio != 1)
2577 si->avail_lists[nid].prio--;
2578 }
2579 }
2580 least_priority++;
2581 }
2582 plist_del(&p->list, &swap_active_head);
2583 atomic_long_sub(p->pages, &nr_swap_pages);
2584 total_swap_pages -= p->pages;
2585 p->flags &= ~SWP_WRITEOK;
2586 spin_unlock(&p->lock);
2587 spin_unlock(&swap_lock);
2588
2589 disable_swap_slots_cache_lock();
2590
2591 set_current_oom_origin();
2592 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2593 clear_current_oom_origin();
2594
2595 if (err) {
2596 /* re-insert swap space back into swap_list */
2597 reinsert_swap_info(p);
2598 reenable_swap_slots_cache_unlock();
2599 goto out_dput;
2600 }
2601
2602 reenable_swap_slots_cache_unlock();
2603
2604 spin_lock(&swap_lock);
2605 spin_lock(&p->lock);
2606 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2607 spin_unlock(&p->lock);
2608 spin_unlock(&swap_lock);
2609 /*
2610 * wait for swap operations protected by get/put_swap_device()
2611 * to complete
2612 */
2613 synchronize_rcu();
2614
2615 flush_work(&p->discard_work);
2616
2617 destroy_swap_extents(p);
2618 if (p->flags & SWP_CONTINUED)
2619 free_swap_count_continuations(p);
2620
2621 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622 atomic_dec(&nr_rotate_swap);
2623
2624 mutex_lock(&swapon_mutex);
2625 spin_lock(&swap_lock);
2626 spin_lock(&p->lock);
2627 drain_mmlist();
2628
2629 /* wait for anyone still in scan_swap_map */
2630 p->highest_bit = 0; /* cuts scans short */
2631 while (p->flags >= SWP_SCANNING) {
2632 spin_unlock(&p->lock);
2633 spin_unlock(&swap_lock);
2634 schedule_timeout_uninterruptible(1);
2635 spin_lock(&swap_lock);
2636 spin_lock(&p->lock);
2637 }
2638
2639 swap_file = p->swap_file;
2640 old_block_size = p->old_block_size;
2641 p->swap_file = NULL;
2642 p->max = 0;
2643 swap_map = p->swap_map;
2644 p->swap_map = NULL;
2645 cluster_info = p->cluster_info;
2646 p->cluster_info = NULL;
2647 frontswap_map = frontswap_map_get(p);
2648 spin_unlock(&p->lock);
2649 spin_unlock(&swap_lock);
2650 frontswap_invalidate_area(p->type);
2651 frontswap_map_set(p, NULL);
2652 mutex_unlock(&swapon_mutex);
2653 free_percpu(p->percpu_cluster);
2654 p->percpu_cluster = NULL;
2655 vfree(swap_map);
2656 kvfree(cluster_info);
2657 kvfree(frontswap_map);
2658 /* Destroy swap account information */
2659 swap_cgroup_swapoff(p->type);
2660 exit_swap_address_space(p->type);
2661
2662 inode = mapping->host;
2663 if (S_ISBLK(inode->i_mode)) {
2664 struct block_device *bdev = I_BDEV(inode);
2665
2666 set_blocksize(bdev, old_block_size);
2667 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2668 }
2669
2670 inode_lock(inode);
2671 inode->i_flags &= ~S_SWAPFILE;
2672 inode_unlock(inode);
2673 filp_close(swap_file, NULL);
2674
2675 /*
2676 * Clear the SWP_USED flag after all resources are freed so that swapon
2677 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2678 * not hold p->lock after we cleared its SWP_WRITEOK.
2679 */
2680 spin_lock(&swap_lock);
2681 p->flags = 0;
2682 spin_unlock(&swap_lock);
2683
2684 err = 0;
2685 atomic_inc(&proc_poll_event);
2686 wake_up_interruptible(&proc_poll_wait);
2687
2688 out_dput:
2689 filp_close(victim, NULL);
2690 out:
2691 putname(pathname);
2692 return err;
2693 }
2694
2695 #ifdef CONFIG_PROC_FS
2696 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2697 {
2698 struct seq_file *seq = file->private_data;
2699
2700 poll_wait(file, &proc_poll_wait, wait);
2701
2702 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2703 seq->poll_event = atomic_read(&proc_poll_event);
2704 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2705 }
2706
2707 return EPOLLIN | EPOLLRDNORM;
2708 }
2709
2710 /* iterator */
2711 static void *swap_start(struct seq_file *swap, loff_t *pos)
2712 {
2713 struct swap_info_struct *si;
2714 int type;
2715 loff_t l = *pos;
2716
2717 mutex_lock(&swapon_mutex);
2718
2719 if (!l)
2720 return SEQ_START_TOKEN;
2721
2722 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2723 if (!(si->flags & SWP_USED) || !si->swap_map)
2724 continue;
2725 if (!--l)
2726 return si;
2727 }
2728
2729 return NULL;
2730 }
2731
2732 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733 {
2734 struct swap_info_struct *si = v;
2735 int type;
2736
2737 if (v == SEQ_START_TOKEN)
2738 type = 0;
2739 else
2740 type = si->type + 1;
2741
2742 ++(*pos);
2743 for (; (si = swap_type_to_swap_info(type)); type++) {
2744 if (!(si->flags & SWP_USED) || !si->swap_map)
2745 continue;
2746 return si;
2747 }
2748
2749 return NULL;
2750 }
2751
2752 static void swap_stop(struct seq_file *swap, void *v)
2753 {
2754 mutex_unlock(&swapon_mutex);
2755 }
2756
2757 static int swap_show(struct seq_file *swap, void *v)
2758 {
2759 struct swap_info_struct *si = v;
2760 struct file *file;
2761 int len;
2762
2763 if (si == SEQ_START_TOKEN) {
2764 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2765 return 0;
2766 }
2767
2768 file = si->swap_file;
2769 len = seq_file_path(swap, file, " \t\n\\");
2770 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2771 len < 40 ? 40 - len : 1, " ",
2772 S_ISBLK(file_inode(file)->i_mode) ?
2773 "partition" : "file\t",
2774 si->pages << (PAGE_SHIFT - 10),
2775 si->inuse_pages << (PAGE_SHIFT - 10),
2776 si->prio);
2777 return 0;
2778 }
2779
2780 static const struct seq_operations swaps_op = {
2781 .start = swap_start,
2782 .next = swap_next,
2783 .stop = swap_stop,
2784 .show = swap_show
2785 };
2786
2787 static int swaps_open(struct inode *inode, struct file *file)
2788 {
2789 struct seq_file *seq;
2790 int ret;
2791
2792 ret = seq_open(file, &swaps_op);
2793 if (ret)
2794 return ret;
2795
2796 seq = file->private_data;
2797 seq->poll_event = atomic_read(&proc_poll_event);
2798 return 0;
2799 }
2800
2801 static const struct proc_ops swaps_proc_ops = {
2802 .proc_flags = PROC_ENTRY_PERMANENT,
2803 .proc_open = swaps_open,
2804 .proc_read = seq_read,
2805 .proc_lseek = seq_lseek,
2806 .proc_release = seq_release,
2807 .proc_poll = swaps_poll,
2808 };
2809
2810 static int __init procswaps_init(void)
2811 {
2812 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2813 return 0;
2814 }
2815 __initcall(procswaps_init);
2816 #endif /* CONFIG_PROC_FS */
2817
2818 #ifdef MAX_SWAPFILES_CHECK
2819 static int __init max_swapfiles_check(void)
2820 {
2821 MAX_SWAPFILES_CHECK();
2822 return 0;
2823 }
2824 late_initcall(max_swapfiles_check);
2825 #endif
2826
2827 static struct swap_info_struct *alloc_swap_info(void)
2828 {
2829 struct swap_info_struct *p;
2830 unsigned int type;
2831 int i;
2832
2833 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2834 if (!p)
2835 return ERR_PTR(-ENOMEM);
2836
2837 spin_lock(&swap_lock);
2838 for (type = 0; type < nr_swapfiles; type++) {
2839 if (!(swap_info[type]->flags & SWP_USED))
2840 break;
2841 }
2842 if (type >= MAX_SWAPFILES) {
2843 spin_unlock(&swap_lock);
2844 kvfree(p);
2845 return ERR_PTR(-EPERM);
2846 }
2847 if (type >= nr_swapfiles) {
2848 p->type = type;
2849 WRITE_ONCE(swap_info[type], p);
2850 /*
2851 * Write swap_info[type] before nr_swapfiles, in case a
2852 * racing procfs swap_start() or swap_next() is reading them.
2853 * (We never shrink nr_swapfiles, we never free this entry.)
2854 */
2855 smp_wmb();
2856 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2857 } else {
2858 kvfree(p);
2859 p = swap_info[type];
2860 /*
2861 * Do not memset this entry: a racing procfs swap_next()
2862 * would be relying on p->type to remain valid.
2863 */
2864 }
2865 p->swap_extent_root = RB_ROOT;
2866 plist_node_init(&p->list, 0);
2867 for_each_node(i)
2868 plist_node_init(&p->avail_lists[i], 0);
2869 p->flags = SWP_USED;
2870 spin_unlock(&swap_lock);
2871 spin_lock_init(&p->lock);
2872 spin_lock_init(&p->cont_lock);
2873
2874 return p;
2875 }
2876
2877 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878 {
2879 int error;
2880
2881 if (S_ISBLK(inode->i_mode)) {
2882 p->bdev = bdgrab(I_BDEV(inode));
2883 error = blkdev_get(p->bdev,
2884 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2885 if (error < 0) {
2886 p->bdev = NULL;
2887 return error;
2888 }
2889 p->old_block_size = block_size(p->bdev);
2890 error = set_blocksize(p->bdev, PAGE_SIZE);
2891 if (error < 0)
2892 return error;
2893 /*
2894 * Zoned block devices contain zones that have a sequential
2895 * write only restriction. Hence zoned block devices are not
2896 * suitable for swapping. Disallow them here.
2897 */
2898 if (blk_queue_is_zoned(p->bdev->bd_queue))
2899 return -EINVAL;
2900 p->flags |= SWP_BLKDEV;
2901 } else if (S_ISREG(inode->i_mode)) {
2902 p->bdev = inode->i_sb->s_bdev;
2903 }
2904
2905 return 0;
2906 }
2907
2908
2909 /*
2910 * Find out how many pages are allowed for a single swap device. There
2911 * are two limiting factors:
2912 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2913 * 2) the number of bits in the swap pte, as defined by the different
2914 * architectures.
2915 *
2916 * In order to find the largest possible bit mask, a swap entry with
2917 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2918 * decoded to a swp_entry_t again, and finally the swap offset is
2919 * extracted.
2920 *
2921 * This will mask all the bits from the initial ~0UL mask that can't
2922 * be encoded in either the swp_entry_t or the architecture definition
2923 * of a swap pte.
2924 */
2925 unsigned long generic_max_swapfile_size(void)
2926 {
2927 return swp_offset(pte_to_swp_entry(
2928 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2929 }
2930
2931 /* Can be overridden by an architecture for additional checks. */
2932 __weak unsigned long max_swapfile_size(void)
2933 {
2934 return generic_max_swapfile_size();
2935 }
2936
2937 static unsigned long read_swap_header(struct swap_info_struct *p,
2938 union swap_header *swap_header,
2939 struct inode *inode)
2940 {
2941 int i;
2942 unsigned long maxpages;
2943 unsigned long swapfilepages;
2944 unsigned long last_page;
2945
2946 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2947 pr_err("Unable to find swap-space signature\n");
2948 return 0;
2949 }
2950
2951 /* swap partition endianess hack... */
2952 if (swab32(swap_header->info.version) == 1) {
2953 swab32s(&swap_header->info.version);
2954 swab32s(&swap_header->info.last_page);
2955 swab32s(&swap_header->info.nr_badpages);
2956 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2957 return 0;
2958 for (i = 0; i < swap_header->info.nr_badpages; i++)
2959 swab32s(&swap_header->info.badpages[i]);
2960 }
2961 /* Check the swap header's sub-version */
2962 if (swap_header->info.version != 1) {
2963 pr_warn("Unable to handle swap header version %d\n",
2964 swap_header->info.version);
2965 return 0;
2966 }
2967
2968 p->lowest_bit = 1;
2969 p->cluster_next = 1;
2970 p->cluster_nr = 0;
2971
2972 maxpages = max_swapfile_size();
2973 last_page = swap_header->info.last_page;
2974 if (!last_page) {
2975 pr_warn("Empty swap-file\n");
2976 return 0;
2977 }
2978 if (last_page > maxpages) {
2979 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2980 maxpages << (PAGE_SHIFT - 10),
2981 last_page << (PAGE_SHIFT - 10));
2982 }
2983 if (maxpages > last_page) {
2984 maxpages = last_page + 1;
2985 /* p->max is an unsigned int: don't overflow it */
2986 if ((unsigned int)maxpages == 0)
2987 maxpages = UINT_MAX;
2988 }
2989 p->highest_bit = maxpages - 1;
2990
2991 if (!maxpages)
2992 return 0;
2993 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2994 if (swapfilepages && maxpages > swapfilepages) {
2995 pr_warn("Swap area shorter than signature indicates\n");
2996 return 0;
2997 }
2998 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2999 return 0;
3000 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3001 return 0;
3002
3003 return maxpages;
3004 }
3005
3006 #define SWAP_CLUSTER_INFO_COLS \
3007 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3008 #define SWAP_CLUSTER_SPACE_COLS \
3009 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3010 #define SWAP_CLUSTER_COLS \
3011 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3012
3013 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3014 union swap_header *swap_header,
3015 unsigned char *swap_map,
3016 struct swap_cluster_info *cluster_info,
3017 unsigned long maxpages,
3018 sector_t *span)
3019 {
3020 unsigned int j, k;
3021 unsigned int nr_good_pages;
3022 int nr_extents;
3023 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3024 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3025 unsigned long i, idx;
3026
3027 nr_good_pages = maxpages - 1; /* omit header page */
3028
3029 cluster_list_init(&p->free_clusters);
3030 cluster_list_init(&p->discard_clusters);
3031
3032 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3033 unsigned int page_nr = swap_header->info.badpages[i];
3034 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3035 return -EINVAL;
3036 if (page_nr < maxpages) {
3037 swap_map[page_nr] = SWAP_MAP_BAD;
3038 nr_good_pages--;
3039 /*
3040 * Haven't marked the cluster free yet, no list
3041 * operation involved
3042 */
3043 inc_cluster_info_page(p, cluster_info, page_nr);
3044 }
3045 }
3046
3047 /* Haven't marked the cluster free yet, no list operation involved */
3048 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3049 inc_cluster_info_page(p, cluster_info, i);
3050
3051 if (nr_good_pages) {
3052 swap_map[0] = SWAP_MAP_BAD;
3053 /*
3054 * Not mark the cluster free yet, no list
3055 * operation involved
3056 */
3057 inc_cluster_info_page(p, cluster_info, 0);
3058 p->max = maxpages;
3059 p->pages = nr_good_pages;
3060 nr_extents = setup_swap_extents(p, span);
3061 if (nr_extents < 0)
3062 return nr_extents;
3063 nr_good_pages = p->pages;
3064 }
3065 if (!nr_good_pages) {
3066 pr_warn("Empty swap-file\n");
3067 return -EINVAL;
3068 }
3069
3070 if (!cluster_info)
3071 return nr_extents;
3072
3073
3074 /*
3075 * Reduce false cache line sharing between cluster_info and
3076 * sharing same address space.
3077 */
3078 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3079 j = (k + col) % SWAP_CLUSTER_COLS;
3080 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3081 idx = i * SWAP_CLUSTER_COLS + j;
3082 if (idx >= nr_clusters)
3083 continue;
3084 if (cluster_count(&cluster_info[idx]))
3085 continue;
3086 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3087 cluster_list_add_tail(&p->free_clusters, cluster_info,
3088 idx);
3089 }
3090 }
3091 return nr_extents;
3092 }
3093
3094 /*
3095 * Helper to sys_swapon determining if a given swap
3096 * backing device queue supports DISCARD operations.
3097 */
3098 static bool swap_discardable(struct swap_info_struct *si)
3099 {
3100 struct request_queue *q = bdev_get_queue(si->bdev);
3101
3102 if (!q || !blk_queue_discard(q))
3103 return false;
3104
3105 return true;
3106 }
3107
3108 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3109 {
3110 struct swap_info_struct *p;
3111 struct filename *name;
3112 struct file *swap_file = NULL;
3113 struct address_space *mapping;
3114 int prio;
3115 int error;
3116 union swap_header *swap_header;
3117 int nr_extents;
3118 sector_t span;
3119 unsigned long maxpages;
3120 unsigned char *swap_map = NULL;
3121 struct swap_cluster_info *cluster_info = NULL;
3122 unsigned long *frontswap_map = NULL;
3123 struct page *page = NULL;
3124 struct inode *inode = NULL;
3125 bool inced_nr_rotate_swap = false;
3126
3127 if (swap_flags & ~SWAP_FLAGS_VALID)
3128 return -EINVAL;
3129
3130 if (!capable(CAP_SYS_ADMIN))
3131 return -EPERM;
3132
3133 if (!swap_avail_heads)
3134 return -ENOMEM;
3135
3136 p = alloc_swap_info();
3137 if (IS_ERR(p))
3138 return PTR_ERR(p);
3139
3140 INIT_WORK(&p->discard_work, swap_discard_work);
3141
3142 name = getname(specialfile);
3143 if (IS_ERR(name)) {
3144 error = PTR_ERR(name);
3145 name = NULL;
3146 goto bad_swap;
3147 }
3148 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3149 if (IS_ERR(swap_file)) {
3150 error = PTR_ERR(swap_file);
3151 swap_file = NULL;
3152 goto bad_swap;
3153 }
3154
3155 p->swap_file = swap_file;
3156 mapping = swap_file->f_mapping;
3157 inode = mapping->host;
3158
3159 error = claim_swapfile(p, inode);
3160 if (unlikely(error))
3161 goto bad_swap;
3162
3163 inode_lock(inode);
3164 if (IS_SWAPFILE(inode)) {
3165 error = -EBUSY;
3166 goto bad_swap_unlock_inode;
3167 }
3168
3169 /*
3170 * Read the swap header.
3171 */
3172 if (!mapping->a_ops->readpage) {
3173 error = -EINVAL;
3174 goto bad_swap_unlock_inode;
3175 }
3176 page = read_mapping_page(mapping, 0, swap_file);
3177 if (IS_ERR(page)) {
3178 error = PTR_ERR(page);
3179 goto bad_swap_unlock_inode;
3180 }
3181 swap_header = kmap(page);
3182
3183 maxpages = read_swap_header(p, swap_header, inode);
3184 if (unlikely(!maxpages)) {
3185 error = -EINVAL;
3186 goto bad_swap_unlock_inode;
3187 }
3188
3189 /* OK, set up the swap map and apply the bad block list */
3190 swap_map = vzalloc(maxpages);
3191 if (!swap_map) {
3192 error = -ENOMEM;
3193 goto bad_swap_unlock_inode;
3194 }
3195
3196 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3197 p->flags |= SWP_STABLE_WRITES;
3198
3199 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3200 p->flags |= SWP_SYNCHRONOUS_IO;
3201
3202 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3203 int cpu;
3204 unsigned long ci, nr_cluster;
3205
3206 p->flags |= SWP_SOLIDSTATE;
3207 /*
3208 * select a random position to start with to help wear leveling
3209 * SSD
3210 */
3211 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3212 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3213
3214 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3215 GFP_KERNEL);
3216 if (!cluster_info) {
3217 error = -ENOMEM;
3218 goto bad_swap_unlock_inode;
3219 }
3220
3221 for (ci = 0; ci < nr_cluster; ci++)
3222 spin_lock_init(&((cluster_info + ci)->lock));
3223
3224 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3225 if (!p->percpu_cluster) {
3226 error = -ENOMEM;
3227 goto bad_swap_unlock_inode;
3228 }
3229 for_each_possible_cpu(cpu) {
3230 struct percpu_cluster *cluster;
3231 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3232 cluster_set_null(&cluster->index);
3233 }
3234 } else {
3235 atomic_inc(&nr_rotate_swap);
3236 inced_nr_rotate_swap = true;
3237 }
3238
3239 error = swap_cgroup_swapon(p->type, maxpages);
3240 if (error)
3241 goto bad_swap_unlock_inode;
3242
3243 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3244 cluster_info, maxpages, &span);
3245 if (unlikely(nr_extents < 0)) {
3246 error = nr_extents;
3247 goto bad_swap_unlock_inode;
3248 }
3249 /* frontswap enabled? set up bit-per-page map for frontswap */
3250 if (IS_ENABLED(CONFIG_FRONTSWAP))
3251 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3252 sizeof(long),
3253 GFP_KERNEL);
3254
3255 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3256 /*
3257 * When discard is enabled for swap with no particular
3258 * policy flagged, we set all swap discard flags here in
3259 * order to sustain backward compatibility with older
3260 * swapon(8) releases.
3261 */
3262 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3263 SWP_PAGE_DISCARD);
3264
3265 /*
3266 * By flagging sys_swapon, a sysadmin can tell us to
3267 * either do single-time area discards only, or to just
3268 * perform discards for released swap page-clusters.
3269 * Now it's time to adjust the p->flags accordingly.
3270 */
3271 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3272 p->flags &= ~SWP_PAGE_DISCARD;
3273 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3274 p->flags &= ~SWP_AREA_DISCARD;
3275
3276 /* issue a swapon-time discard if it's still required */
3277 if (p->flags & SWP_AREA_DISCARD) {
3278 int err = discard_swap(p);
3279 if (unlikely(err))
3280 pr_err("swapon: discard_swap(%p): %d\n",
3281 p, err);
3282 }
3283 }
3284
3285 error = init_swap_address_space(p->type, maxpages);
3286 if (error)
3287 goto bad_swap_unlock_inode;
3288
3289 /*
3290 * Flush any pending IO and dirty mappings before we start using this
3291 * swap device.
3292 */
3293 inode->i_flags |= S_SWAPFILE;
3294 error = inode_drain_writes(inode);
3295 if (error) {
3296 inode->i_flags &= ~S_SWAPFILE;
3297 goto bad_swap_unlock_inode;
3298 }
3299
3300 mutex_lock(&swapon_mutex);
3301 prio = -1;
3302 if (swap_flags & SWAP_FLAG_PREFER)
3303 prio =
3304 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3305 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3306
3307 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3308 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3309 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3310 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3311 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3312 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3313 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3314 (frontswap_map) ? "FS" : "");
3315
3316 mutex_unlock(&swapon_mutex);
3317 atomic_inc(&proc_poll_event);
3318 wake_up_interruptible(&proc_poll_wait);
3319
3320 error = 0;
3321 goto out;
3322 bad_swap_unlock_inode:
3323 inode_unlock(inode);
3324 bad_swap:
3325 free_percpu(p->percpu_cluster);
3326 p->percpu_cluster = NULL;
3327 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3328 set_blocksize(p->bdev, p->old_block_size);
3329 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3330 }
3331 inode = NULL;
3332 destroy_swap_extents(p);
3333 swap_cgroup_swapoff(p->type);
3334 spin_lock(&swap_lock);
3335 p->swap_file = NULL;
3336 p->flags = 0;
3337 spin_unlock(&swap_lock);
3338 vfree(swap_map);
3339 kvfree(cluster_info);
3340 kvfree(frontswap_map);
3341 if (inced_nr_rotate_swap)
3342 atomic_dec(&nr_rotate_swap);
3343 if (swap_file)
3344 filp_close(swap_file, NULL);
3345 out:
3346 if (page && !IS_ERR(page)) {
3347 kunmap(page);
3348 put_page(page);
3349 }
3350 if (name)
3351 putname(name);
3352 if (inode)
3353 inode_unlock(inode);
3354 if (!error)
3355 enable_swap_slots_cache();
3356 return error;
3357 }
3358
3359 void si_swapinfo(struct sysinfo *val)
3360 {
3361 unsigned int type;
3362 unsigned long nr_to_be_unused = 0;
3363
3364 spin_lock(&swap_lock);
3365 for (type = 0; type < nr_swapfiles; type++) {
3366 struct swap_info_struct *si = swap_info[type];
3367
3368 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3369 nr_to_be_unused += si->inuse_pages;
3370 }
3371 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3372 val->totalswap = total_swap_pages + nr_to_be_unused;
3373 spin_unlock(&swap_lock);
3374 }
3375
3376 /*
3377 * Verify that a swap entry is valid and increment its swap map count.
3378 *
3379 * Returns error code in following case.
3380 * - success -> 0
3381 * - swp_entry is invalid -> EINVAL
3382 * - swp_entry is migration entry -> EINVAL
3383 * - swap-cache reference is requested but there is already one. -> EEXIST
3384 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3385 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3386 */
3387 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3388 {
3389 struct swap_info_struct *p;
3390 struct swap_cluster_info *ci;
3391 unsigned long offset;
3392 unsigned char count;
3393 unsigned char has_cache;
3394 int err = -EINVAL;
3395
3396 p = get_swap_device(entry);
3397 if (!p)
3398 goto out;
3399
3400 offset = swp_offset(entry);
3401 ci = lock_cluster_or_swap_info(p, offset);
3402
3403 count = p->swap_map[offset];
3404
3405 /*
3406 * swapin_readahead() doesn't check if a swap entry is valid, so the
3407 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3408 */
3409 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3410 err = -ENOENT;
3411 goto unlock_out;
3412 }
3413
3414 has_cache = count & SWAP_HAS_CACHE;
3415 count &= ~SWAP_HAS_CACHE;
3416 err = 0;
3417
3418 if (usage == SWAP_HAS_CACHE) {
3419
3420 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3421 if (!has_cache && count)
3422 has_cache = SWAP_HAS_CACHE;
3423 else if (has_cache) /* someone else added cache */
3424 err = -EEXIST;
3425 else /* no users remaining */
3426 err = -ENOENT;
3427
3428 } else if (count || has_cache) {
3429
3430 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3431 count += usage;
3432 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3433 err = -EINVAL;
3434 else if (swap_count_continued(p, offset, count))
3435 count = COUNT_CONTINUED;
3436 else
3437 err = -ENOMEM;
3438 } else
3439 err = -ENOENT; /* unused swap entry */
3440
3441 p->swap_map[offset] = count | has_cache;
3442
3443 unlock_out:
3444 unlock_cluster_or_swap_info(p, ci);
3445 out:
3446 if (p)
3447 put_swap_device(p);
3448 return err;
3449 }
3450
3451 /*
3452 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3453 * (in which case its reference count is never incremented).
3454 */
3455 void swap_shmem_alloc(swp_entry_t entry)
3456 {
3457 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3458 }
3459
3460 /*
3461 * Increase reference count of swap entry by 1.
3462 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3463 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3464 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3465 * might occur if a page table entry has got corrupted.
3466 */
3467 int swap_duplicate(swp_entry_t entry)
3468 {
3469 int err = 0;
3470
3471 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3472 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3473 return err;
3474 }
3475
3476 /*
3477 * @entry: swap entry for which we allocate swap cache.
3478 *
3479 * Called when allocating swap cache for existing swap entry,
3480 * This can return error codes. Returns 0 at success.
3481 * -EEXIST means there is a swap cache.
3482 * Note: return code is different from swap_duplicate().
3483 */
3484 int swapcache_prepare(swp_entry_t entry)
3485 {
3486 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3487 }
3488
3489 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3490 {
3491 return swap_type_to_swap_info(swp_type(entry));
3492 }
3493
3494 struct swap_info_struct *page_swap_info(struct page *page)
3495 {
3496 swp_entry_t entry = { .val = page_private(page) };
3497 return swp_swap_info(entry);
3498 }
3499
3500 /*
3501 * out-of-line __page_file_ methods to avoid include hell.
3502 */
3503 struct address_space *__page_file_mapping(struct page *page)
3504 {
3505 return page_swap_info(page)->swap_file->f_mapping;
3506 }
3507 EXPORT_SYMBOL_GPL(__page_file_mapping);
3508
3509 pgoff_t __page_file_index(struct page *page)
3510 {
3511 swp_entry_t swap = { .val = page_private(page) };
3512 return swp_offset(swap);
3513 }
3514 EXPORT_SYMBOL_GPL(__page_file_index);
3515
3516 /*
3517 * add_swap_count_continuation - called when a swap count is duplicated
3518 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3519 * page of the original vmalloc'ed swap_map, to hold the continuation count
3520 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3521 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3522 *
3523 * These continuation pages are seldom referenced: the common paths all work
3524 * on the original swap_map, only referring to a continuation page when the
3525 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3526 *
3527 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3528 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3529 * can be called after dropping locks.
3530 */
3531 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3532 {
3533 struct swap_info_struct *si;
3534 struct swap_cluster_info *ci;
3535 struct page *head;
3536 struct page *page;
3537 struct page *list_page;
3538 pgoff_t offset;
3539 unsigned char count;
3540 int ret = 0;
3541
3542 /*
3543 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3544 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3545 */
3546 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3547
3548 si = get_swap_device(entry);
3549 if (!si) {
3550 /*
3551 * An acceptable race has occurred since the failing
3552 * __swap_duplicate(): the swap device may be swapoff
3553 */
3554 goto outer;
3555 }
3556 spin_lock(&si->lock);
3557
3558 offset = swp_offset(entry);
3559
3560 ci = lock_cluster(si, offset);
3561
3562 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3563
3564 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3565 /*
3566 * The higher the swap count, the more likely it is that tasks
3567 * will race to add swap count continuation: we need to avoid
3568 * over-provisioning.
3569 */
3570 goto out;
3571 }
3572
3573 if (!page) {
3574 ret = -ENOMEM;
3575 goto out;
3576 }
3577
3578 /*
3579 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3580 * no architecture is using highmem pages for kernel page tables: so it
3581 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3582 */
3583 head = vmalloc_to_page(si->swap_map + offset);
3584 offset &= ~PAGE_MASK;
3585
3586 spin_lock(&si->cont_lock);
3587 /*
3588 * Page allocation does not initialize the page's lru field,
3589 * but it does always reset its private field.
3590 */
3591 if (!page_private(head)) {
3592 BUG_ON(count & COUNT_CONTINUED);
3593 INIT_LIST_HEAD(&head->lru);
3594 set_page_private(head, SWP_CONTINUED);
3595 si->flags |= SWP_CONTINUED;
3596 }
3597
3598 list_for_each_entry(list_page, &head->lru, lru) {
3599 unsigned char *map;
3600
3601 /*
3602 * If the previous map said no continuation, but we've found
3603 * a continuation page, free our allocation and use this one.
3604 */
3605 if (!(count & COUNT_CONTINUED))
3606 goto out_unlock_cont;
3607
3608 map = kmap_atomic(list_page) + offset;
3609 count = *map;
3610 kunmap_atomic(map);
3611
3612 /*
3613 * If this continuation count now has some space in it,
3614 * free our allocation and use this one.
3615 */
3616 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3617 goto out_unlock_cont;
3618 }
3619
3620 list_add_tail(&page->lru, &head->lru);
3621 page = NULL; /* now it's attached, don't free it */
3622 out_unlock_cont:
3623 spin_unlock(&si->cont_lock);
3624 out:
3625 unlock_cluster(ci);
3626 spin_unlock(&si->lock);
3627 put_swap_device(si);
3628 outer:
3629 if (page)
3630 __free_page(page);
3631 return ret;
3632 }
3633
3634 /*
3635 * swap_count_continued - when the original swap_map count is incremented
3636 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3637 * into, carry if so, or else fail until a new continuation page is allocated;
3638 * when the original swap_map count is decremented from 0 with continuation,
3639 * borrow from the continuation and report whether it still holds more.
3640 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3641 * lock.
3642 */
3643 static bool swap_count_continued(struct swap_info_struct *si,
3644 pgoff_t offset, unsigned char count)
3645 {
3646 struct page *head;
3647 struct page *page;
3648 unsigned char *map;
3649 bool ret;
3650
3651 head = vmalloc_to_page(si->swap_map + offset);
3652 if (page_private(head) != SWP_CONTINUED) {
3653 BUG_ON(count & COUNT_CONTINUED);
3654 return false; /* need to add count continuation */
3655 }
3656
3657 spin_lock(&si->cont_lock);
3658 offset &= ~PAGE_MASK;
3659 page = list_next_entry(head, lru);
3660 map = kmap_atomic(page) + offset;
3661
3662 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3663 goto init_map; /* jump over SWAP_CONT_MAX checks */
3664
3665 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3666 /*
3667 * Think of how you add 1 to 999
3668 */
3669 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3670 kunmap_atomic(map);
3671 page = list_next_entry(page, lru);
3672 BUG_ON(page == head);
3673 map = kmap_atomic(page) + offset;
3674 }
3675 if (*map == SWAP_CONT_MAX) {
3676 kunmap_atomic(map);
3677 page = list_next_entry(page, lru);
3678 if (page == head) {
3679 ret = false; /* add count continuation */
3680 goto out;
3681 }
3682 map = kmap_atomic(page) + offset;
3683 init_map: *map = 0; /* we didn't zero the page */
3684 }
3685 *map += 1;
3686 kunmap_atomic(map);
3687 while ((page = list_prev_entry(page, lru)) != head) {
3688 map = kmap_atomic(page) + offset;
3689 *map = COUNT_CONTINUED;
3690 kunmap_atomic(map);
3691 }
3692 ret = true; /* incremented */
3693
3694 } else { /* decrementing */
3695 /*
3696 * Think of how you subtract 1 from 1000
3697 */
3698 BUG_ON(count != COUNT_CONTINUED);
3699 while (*map == COUNT_CONTINUED) {
3700 kunmap_atomic(map);
3701 page = list_next_entry(page, lru);
3702 BUG_ON(page == head);
3703 map = kmap_atomic(page) + offset;
3704 }
3705 BUG_ON(*map == 0);
3706 *map -= 1;
3707 if (*map == 0)
3708 count = 0;
3709 kunmap_atomic(map);
3710 while ((page = list_prev_entry(page, lru)) != head) {
3711 map = kmap_atomic(page) + offset;
3712 *map = SWAP_CONT_MAX | count;
3713 count = COUNT_CONTINUED;
3714 kunmap_atomic(map);
3715 }
3716 ret = count == COUNT_CONTINUED;
3717 }
3718 out:
3719 spin_unlock(&si->cont_lock);
3720 return ret;
3721 }
3722
3723 /*
3724 * free_swap_count_continuations - swapoff free all the continuation pages
3725 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3726 */
3727 static void free_swap_count_continuations(struct swap_info_struct *si)
3728 {
3729 pgoff_t offset;
3730
3731 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3732 struct page *head;
3733 head = vmalloc_to_page(si->swap_map + offset);
3734 if (page_private(head)) {
3735 struct page *page, *next;
3736
3737 list_for_each_entry_safe(page, next, &head->lru, lru) {
3738 list_del(&page->lru);
3739 __free_page(page);
3740 }
3741 }
3742 }
3743 }
3744
3745 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3746 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3747 gfp_t gfp_mask)
3748 {
3749 struct swap_info_struct *si, *next;
3750 if (!(gfp_mask & __GFP_IO) || !memcg)
3751 return;
3752
3753 if (!blk_cgroup_congested())
3754 return;
3755
3756 /*
3757 * We've already scheduled a throttle, avoid taking the global swap
3758 * lock.
3759 */
3760 if (current->throttle_queue)
3761 return;
3762
3763 spin_lock(&swap_avail_lock);
3764 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3765 avail_lists[node]) {
3766 if (si->bdev) {
3767 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3768 true);
3769 break;
3770 }
3771 }
3772 spin_unlock(&swap_avail_lock);
3773 }
3774 #endif
3775
3776 static int __init swapfile_init(void)
3777 {
3778 int nid;
3779
3780 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3781 GFP_KERNEL);
3782 if (!swap_avail_heads) {
3783 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3784 return -ENOMEM;
3785 }
3786
3787 for_each_node(nid)
3788 plist_head_init(&swap_avail_heads[nid]);
3789
3790 return 0;
3791 }
3792 subsys_initcall(swapfile_init);