]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/truncate.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / truncate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h> /* grr. try_to_release_page */
23 #include <linux/shmem_fs.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26
27 /*
28 * Regular page slots are stabilized by the page lock even without the tree
29 * itself locked. These unlocked entries need verification under the tree
30 * lock.
31 */
32 static inline void __clear_shadow_entry(struct address_space *mapping,
33 pgoff_t index, void *entry)
34 {
35 XA_STATE(xas, &mapping->i_pages, index);
36
37 xas_set_update(&xas, workingset_update_node);
38 if (xas_load(&xas) != entry)
39 return;
40 xas_store(&xas, NULL);
41 }
42
43 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
44 void *entry)
45 {
46 spin_lock(&mapping->host->i_lock);
47 xa_lock_irq(&mapping->i_pages);
48 __clear_shadow_entry(mapping, index, entry);
49 xa_unlock_irq(&mapping->i_pages);
50 if (mapping_shrinkable(mapping))
51 inode_add_lru(mapping->host);
52 spin_unlock(&mapping->host->i_lock);
53 }
54
55 /*
56 * Unconditionally remove exceptional entries. Usually called from truncate
57 * path. Note that the folio_batch may be altered by this function by removing
58 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
59 */
60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 int i, j;
64 bool dax;
65
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
69
70 for (j = 0; j < folio_batch_count(fbatch); j++)
71 if (xa_is_value(fbatch->folios[j]))
72 break;
73
74 if (j == folio_batch_count(fbatch))
75 return;
76
77 dax = dax_mapping(mapping);
78 if (!dax) {
79 spin_lock(&mapping->host->i_lock);
80 xa_lock_irq(&mapping->i_pages);
81 }
82
83 for (i = j; i < folio_batch_count(fbatch); i++) {
84 struct folio *folio = fbatch->folios[i];
85 pgoff_t index = indices[i];
86
87 if (!xa_is_value(folio)) {
88 fbatch->folios[j++] = folio;
89 continue;
90 }
91
92 if (unlikely(dax)) {
93 dax_delete_mapping_entry(mapping, index);
94 continue;
95 }
96
97 __clear_shadow_entry(mapping, index, folio);
98 }
99
100 if (!dax) {
101 xa_unlock_irq(&mapping->i_pages);
102 if (mapping_shrinkable(mapping))
103 inode_add_lru(mapping->host);
104 spin_unlock(&mapping->host->i_lock);
105 }
106 fbatch->nr = j;
107 }
108
109 /*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
112 */
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 pgoff_t index, void *entry)
115 {
116 /* Handled by shmem itself, or for DAX we do nothing. */
117 if (shmem_mapping(mapping) || dax_mapping(mapping))
118 return 1;
119 clear_shadow_entry(mapping, index, entry);
120 return 1;
121 }
122
123 /*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 pgoff_t index, void *entry)
129 {
130 /* Handled by shmem itself */
131 if (shmem_mapping(mapping))
132 return 1;
133 if (dax_mapping(mapping))
134 return dax_invalidate_mapping_entry_sync(mapping, index);
135 clear_shadow_entry(mapping, index, entry);
136 return 1;
137 }
138
139 /**
140 * folio_invalidate - Invalidate part or all of a folio.
141 * @folio: The folio which is affected.
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * folio_invalidate() is called when all or part of the folio has become
146 * invalidated by a truncate operation.
147 *
148 * folio_invalidate() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point. Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
155 {
156 const struct address_space_operations *aops = folio->mapping->a_ops;
157
158 if (aops->invalidate_folio)
159 aops->invalidate_folio(folio, offset, length);
160 }
161 EXPORT_SYMBOL_GPL(folio_invalidate);
162
163 /*
164 * If truncate cannot remove the fs-private metadata from the page, the page
165 * becomes orphaned. It will be left on the LRU and may even be mapped into
166 * user pagetables if we're racing with filemap_fault().
167 *
168 * We need to bail out if page->mapping is no longer equal to the original
169 * mapping. This happens a) when the VM reclaimed the page while we waited on
170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
172 */
173 static void truncate_cleanup_folio(struct folio *folio)
174 {
175 if (folio_mapped(folio))
176 unmap_mapping_folio(folio);
177
178 if (folio_has_private(folio))
179 folio_invalidate(folio, 0, folio_size(folio));
180
181 /*
182 * Some filesystems seem to re-dirty the page even after
183 * the VM has canceled the dirty bit (eg ext3 journaling).
184 * Hence dirty accounting check is placed after invalidation.
185 */
186 folio_cancel_dirty(folio);
187 folio_clear_mappedtodisk(folio);
188 }
189
190 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
191 {
192 if (folio->mapping != mapping)
193 return -EIO;
194
195 truncate_cleanup_folio(folio);
196 filemap_remove_folio(folio);
197 return 0;
198 }
199
200 /*
201 * Handle partial folios. The folio may be entirely within the
202 * range if a split has raced with us. If not, we zero the part of the
203 * folio that's within the [start, end] range, and then split the folio if
204 * it's large. split_page_range() will discard pages which now lie beyond
205 * i_size, and we rely on the caller to discard pages which lie within a
206 * newly created hole.
207 *
208 * Returns false if splitting failed so the caller can avoid
209 * discarding the entire folio which is stubbornly unsplit.
210 */
211 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
212 {
213 loff_t pos = folio_pos(folio);
214 unsigned int offset, length;
215
216 if (pos < start)
217 offset = start - pos;
218 else
219 offset = 0;
220 length = folio_size(folio);
221 if (pos + length <= (u64)end)
222 length = length - offset;
223 else
224 length = end + 1 - pos - offset;
225
226 folio_wait_writeback(folio);
227 if (length == folio_size(folio)) {
228 truncate_inode_folio(folio->mapping, folio);
229 return true;
230 }
231
232 /*
233 * We may be zeroing pages we're about to discard, but it avoids
234 * doing a complex calculation here, and then doing the zeroing
235 * anyway if the page split fails.
236 */
237 folio_zero_range(folio, offset, length);
238
239 if (folio_has_private(folio))
240 folio_invalidate(folio, offset, length);
241 if (!folio_test_large(folio))
242 return true;
243 if (split_folio(folio) == 0)
244 return true;
245 if (folio_test_dirty(folio))
246 return false;
247 truncate_inode_folio(folio->mapping, folio);
248 return true;
249 }
250
251 /*
252 * Used to get rid of pages on hardware memory corruption.
253 */
254 int generic_error_remove_page(struct address_space *mapping, struct page *page)
255 {
256 VM_BUG_ON_PAGE(PageTail(page), page);
257
258 if (!mapping)
259 return -EINVAL;
260 /*
261 * Only punch for normal data pages for now.
262 * Handling other types like directories would need more auditing.
263 */
264 if (!S_ISREG(mapping->host->i_mode))
265 return -EIO;
266 return truncate_inode_folio(mapping, page_folio(page));
267 }
268 EXPORT_SYMBOL(generic_error_remove_page);
269
270 static long mapping_evict_folio(struct address_space *mapping,
271 struct folio *folio)
272 {
273 if (folio_test_dirty(folio) || folio_test_writeback(folio))
274 return 0;
275 /* The refcount will be elevated if any page in the folio is mapped */
276 if (folio_ref_count(folio) >
277 folio_nr_pages(folio) + folio_has_private(folio) + 1)
278 return 0;
279 if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
280 return 0;
281
282 return remove_mapping(mapping, folio);
283 }
284
285 /**
286 * invalidate_inode_page() - Remove an unused page from the pagecache.
287 * @page: The page to remove.
288 *
289 * Safely invalidate one page from its pagecache mapping.
290 * It only drops clean, unused pages.
291 *
292 * Context: Page must be locked.
293 * Return: The number of pages successfully removed.
294 */
295 long invalidate_inode_page(struct page *page)
296 {
297 struct folio *folio = page_folio(page);
298 struct address_space *mapping = folio_mapping(folio);
299
300 /* The page may have been truncated before it was locked */
301 if (!mapping)
302 return 0;
303 return mapping_evict_folio(mapping, folio);
304 }
305
306 /**
307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
308 * @mapping: mapping to truncate
309 * @lstart: offset from which to truncate
310 * @lend: offset to which to truncate (inclusive)
311 *
312 * Truncate the page cache, removing the pages that are between
313 * specified offsets (and zeroing out partial pages
314 * if lstart or lend + 1 is not page aligned).
315 *
316 * Truncate takes two passes - the first pass is nonblocking. It will not
317 * block on page locks and it will not block on writeback. The second pass
318 * will wait. This is to prevent as much IO as possible in the affected region.
319 * The first pass will remove most pages, so the search cost of the second pass
320 * is low.
321 *
322 * We pass down the cache-hot hint to the page freeing code. Even if the
323 * mapping is large, it is probably the case that the final pages are the most
324 * recently touched, and freeing happens in ascending file offset order.
325 *
326 * Note that since ->invalidate_folio() accepts range to invalidate
327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
328 * page aligned properly.
329 */
330 void truncate_inode_pages_range(struct address_space *mapping,
331 loff_t lstart, loff_t lend)
332 {
333 pgoff_t start; /* inclusive */
334 pgoff_t end; /* exclusive */
335 struct folio_batch fbatch;
336 pgoff_t indices[PAGEVEC_SIZE];
337 pgoff_t index;
338 int i;
339 struct folio *folio;
340 bool same_folio;
341
342 if (mapping_empty(mapping))
343 return;
344
345 /*
346 * 'start' and 'end' always covers the range of pages to be fully
347 * truncated. Partial pages are covered with 'partial_start' at the
348 * start of the range and 'partial_end' at the end of the range.
349 * Note that 'end' is exclusive while 'lend' is inclusive.
350 */
351 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
352 if (lend == -1)
353 /*
354 * lend == -1 indicates end-of-file so we have to set 'end'
355 * to the highest possible pgoff_t and since the type is
356 * unsigned we're using -1.
357 */
358 end = -1;
359 else
360 end = (lend + 1) >> PAGE_SHIFT;
361
362 folio_batch_init(&fbatch);
363 index = start;
364 while (index < end && find_lock_entries(mapping, index, end - 1,
365 &fbatch, indices)) {
366 index = indices[folio_batch_count(&fbatch) - 1] + 1;
367 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
368 for (i = 0; i < folio_batch_count(&fbatch); i++)
369 truncate_cleanup_folio(fbatch.folios[i]);
370 delete_from_page_cache_batch(mapping, &fbatch);
371 for (i = 0; i < folio_batch_count(&fbatch); i++)
372 folio_unlock(fbatch.folios[i]);
373 folio_batch_release(&fbatch);
374 cond_resched();
375 }
376
377 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
378 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
379 if (folio) {
380 same_folio = lend < folio_pos(folio) + folio_size(folio);
381 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
382 start = folio->index + folio_nr_pages(folio);
383 if (same_folio)
384 end = folio->index;
385 }
386 folio_unlock(folio);
387 folio_put(folio);
388 folio = NULL;
389 }
390
391 if (!same_folio)
392 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
393 FGP_LOCK, 0);
394 if (folio) {
395 if (!truncate_inode_partial_folio(folio, lstart, lend))
396 end = folio->index;
397 folio_unlock(folio);
398 folio_put(folio);
399 }
400
401 index = start;
402 while (index < end) {
403 cond_resched();
404 if (!find_get_entries(mapping, index, end - 1, &fbatch,
405 indices)) {
406 /* If all gone from start onwards, we're done */
407 if (index == start)
408 break;
409 /* Otherwise restart to make sure all gone */
410 index = start;
411 continue;
412 }
413
414 for (i = 0; i < folio_batch_count(&fbatch); i++) {
415 struct folio *folio = fbatch.folios[i];
416
417 /* We rely upon deletion not changing page->index */
418 index = indices[i];
419
420 if (xa_is_value(folio))
421 continue;
422
423 folio_lock(folio);
424 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
425 folio_wait_writeback(folio);
426 truncate_inode_folio(mapping, folio);
427 folio_unlock(folio);
428 index = folio_index(folio) + folio_nr_pages(folio) - 1;
429 }
430 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
431 folio_batch_release(&fbatch);
432 index++;
433 }
434 }
435 EXPORT_SYMBOL(truncate_inode_pages_range);
436
437 /**
438 * truncate_inode_pages - truncate *all* the pages from an offset
439 * @mapping: mapping to truncate
440 * @lstart: offset from which to truncate
441 *
442 * Called under (and serialised by) inode->i_rwsem and
443 * mapping->invalidate_lock.
444 *
445 * Note: When this function returns, there can be a page in the process of
446 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
447 * mapping->nrpages can be non-zero when this function returns even after
448 * truncation of the whole mapping.
449 */
450 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
451 {
452 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
453 }
454 EXPORT_SYMBOL(truncate_inode_pages);
455
456 /**
457 * truncate_inode_pages_final - truncate *all* pages before inode dies
458 * @mapping: mapping to truncate
459 *
460 * Called under (and serialized by) inode->i_rwsem.
461 *
462 * Filesystems have to use this in the .evict_inode path to inform the
463 * VM that this is the final truncate and the inode is going away.
464 */
465 void truncate_inode_pages_final(struct address_space *mapping)
466 {
467 /*
468 * Page reclaim can not participate in regular inode lifetime
469 * management (can't call iput()) and thus can race with the
470 * inode teardown. Tell it when the address space is exiting,
471 * so that it does not install eviction information after the
472 * final truncate has begun.
473 */
474 mapping_set_exiting(mapping);
475
476 if (!mapping_empty(mapping)) {
477 /*
478 * As truncation uses a lockless tree lookup, cycle
479 * the tree lock to make sure any ongoing tree
480 * modification that does not see AS_EXITING is
481 * completed before starting the final truncate.
482 */
483 xa_lock_irq(&mapping->i_pages);
484 xa_unlock_irq(&mapping->i_pages);
485 }
486
487 truncate_inode_pages(mapping, 0);
488 }
489 EXPORT_SYMBOL(truncate_inode_pages_final);
490
491 /**
492 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
493 * @mapping: the address_space which holds the pages to invalidate
494 * @start: the offset 'from' which to invalidate
495 * @end: the offset 'to' which to invalidate (inclusive)
496 * @nr_pagevec: invalidate failed page number for caller
497 *
498 * This helper is similar to invalidate_mapping_pages(), except that it accounts
499 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
500 * will be used by the caller.
501 */
502 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
503 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
504 {
505 pgoff_t indices[PAGEVEC_SIZE];
506 struct folio_batch fbatch;
507 pgoff_t index = start;
508 unsigned long ret;
509 unsigned long count = 0;
510 int i;
511
512 folio_batch_init(&fbatch);
513 while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
514 for (i = 0; i < folio_batch_count(&fbatch); i++) {
515 struct folio *folio = fbatch.folios[i];
516
517 /* We rely upon deletion not changing folio->index */
518 index = indices[i];
519
520 if (xa_is_value(folio)) {
521 count += invalidate_exceptional_entry(mapping,
522 index,
523 folio);
524 continue;
525 }
526 index += folio_nr_pages(folio) - 1;
527
528 ret = mapping_evict_folio(mapping, folio);
529 folio_unlock(folio);
530 /*
531 * Invalidation is a hint that the folio is no longer
532 * of interest and try to speed up its reclaim.
533 */
534 if (!ret) {
535 deactivate_file_folio(folio);
536 /* It is likely on the pagevec of a remote CPU */
537 if (nr_pagevec)
538 (*nr_pagevec)++;
539 }
540 count += ret;
541 }
542 folio_batch_remove_exceptionals(&fbatch);
543 folio_batch_release(&fbatch);
544 cond_resched();
545 index++;
546 }
547 return count;
548 }
549
550 /**
551 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
552 * @mapping: the address_space which holds the cache to invalidate
553 * @start: the offset 'from' which to invalidate
554 * @end: the offset 'to' which to invalidate (inclusive)
555 *
556 * This function removes pages that are clean, unmapped and unlocked,
557 * as well as shadow entries. It will not block on IO activity.
558 *
559 * If you want to remove all the pages of one inode, regardless of
560 * their use and writeback state, use truncate_inode_pages().
561 *
562 * Return: the number of the cache entries that were invalidated
563 */
564 unsigned long invalidate_mapping_pages(struct address_space *mapping,
565 pgoff_t start, pgoff_t end)
566 {
567 return invalidate_mapping_pagevec(mapping, start, end, NULL);
568 }
569 EXPORT_SYMBOL(invalidate_mapping_pages);
570
571 /*
572 * This is like invalidate_inode_page(), except it ignores the page's
573 * refcount. We do this because invalidate_inode_pages2() needs stronger
574 * invalidation guarantees, and cannot afford to leave pages behind because
575 * shrink_page_list() has a temp ref on them, or because they're transiently
576 * sitting in the lru_cache_add() pagevecs.
577 */
578 static int invalidate_complete_folio2(struct address_space *mapping,
579 struct folio *folio)
580 {
581 if (folio->mapping != mapping)
582 return 0;
583
584 if (folio_has_private(folio) &&
585 !filemap_release_folio(folio, GFP_KERNEL))
586 return 0;
587
588 spin_lock(&mapping->host->i_lock);
589 xa_lock_irq(&mapping->i_pages);
590 if (folio_test_dirty(folio))
591 goto failed;
592
593 BUG_ON(folio_has_private(folio));
594 __filemap_remove_folio(folio, NULL);
595 xa_unlock_irq(&mapping->i_pages);
596 if (mapping_shrinkable(mapping))
597 inode_add_lru(mapping->host);
598 spin_unlock(&mapping->host->i_lock);
599
600 filemap_free_folio(mapping, folio);
601 return 1;
602 failed:
603 xa_unlock_irq(&mapping->i_pages);
604 spin_unlock(&mapping->host->i_lock);
605 return 0;
606 }
607
608 static int folio_launder(struct address_space *mapping, struct folio *folio)
609 {
610 if (!folio_test_dirty(folio))
611 return 0;
612 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
613 return 0;
614 return mapping->a_ops->launder_folio(folio);
615 }
616
617 /**
618 * invalidate_inode_pages2_range - remove range of pages from an address_space
619 * @mapping: the address_space
620 * @start: the page offset 'from' which to invalidate
621 * @end: the page offset 'to' which to invalidate (inclusive)
622 *
623 * Any pages which are found to be mapped into pagetables are unmapped prior to
624 * invalidation.
625 *
626 * Return: -EBUSY if any pages could not be invalidated.
627 */
628 int invalidate_inode_pages2_range(struct address_space *mapping,
629 pgoff_t start, pgoff_t end)
630 {
631 pgoff_t indices[PAGEVEC_SIZE];
632 struct folio_batch fbatch;
633 pgoff_t index;
634 int i;
635 int ret = 0;
636 int ret2 = 0;
637 int did_range_unmap = 0;
638
639 if (mapping_empty(mapping))
640 return 0;
641
642 folio_batch_init(&fbatch);
643 index = start;
644 while (find_get_entries(mapping, index, end, &fbatch, indices)) {
645 for (i = 0; i < folio_batch_count(&fbatch); i++) {
646 struct folio *folio = fbatch.folios[i];
647
648 /* We rely upon deletion not changing folio->index */
649 index = indices[i];
650
651 if (xa_is_value(folio)) {
652 if (!invalidate_exceptional_entry2(mapping,
653 index, folio))
654 ret = -EBUSY;
655 continue;
656 }
657
658 if (!did_range_unmap && folio_mapped(folio)) {
659 /*
660 * If folio is mapped, before taking its lock,
661 * zap the rest of the file in one hit.
662 */
663 unmap_mapping_pages(mapping, index,
664 (1 + end - index), false);
665 did_range_unmap = 1;
666 }
667
668 folio_lock(folio);
669 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
670 if (folio->mapping != mapping) {
671 folio_unlock(folio);
672 continue;
673 }
674 folio_wait_writeback(folio);
675
676 if (folio_mapped(folio))
677 unmap_mapping_folio(folio);
678 BUG_ON(folio_mapped(folio));
679
680 ret2 = folio_launder(mapping, folio);
681 if (ret2 == 0) {
682 if (!invalidate_complete_folio2(mapping, folio))
683 ret2 = -EBUSY;
684 }
685 if (ret2 < 0)
686 ret = ret2;
687 folio_unlock(folio);
688 }
689 folio_batch_remove_exceptionals(&fbatch);
690 folio_batch_release(&fbatch);
691 cond_resched();
692 index++;
693 }
694 /*
695 * For DAX we invalidate page tables after invalidating page cache. We
696 * could invalidate page tables while invalidating each entry however
697 * that would be expensive. And doing range unmapping before doesn't
698 * work as we have no cheap way to find whether page cache entry didn't
699 * get remapped later.
700 */
701 if (dax_mapping(mapping)) {
702 unmap_mapping_pages(mapping, start, end - start + 1, false);
703 }
704 return ret;
705 }
706 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
707
708 /**
709 * invalidate_inode_pages2 - remove all pages from an address_space
710 * @mapping: the address_space
711 *
712 * Any pages which are found to be mapped into pagetables are unmapped prior to
713 * invalidation.
714 *
715 * Return: -EBUSY if any pages could not be invalidated.
716 */
717 int invalidate_inode_pages2(struct address_space *mapping)
718 {
719 return invalidate_inode_pages2_range(mapping, 0, -1);
720 }
721 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
722
723 /**
724 * truncate_pagecache - unmap and remove pagecache that has been truncated
725 * @inode: inode
726 * @newsize: new file size
727 *
728 * inode's new i_size must already be written before truncate_pagecache
729 * is called.
730 *
731 * This function should typically be called before the filesystem
732 * releases resources associated with the freed range (eg. deallocates
733 * blocks). This way, pagecache will always stay logically coherent
734 * with on-disk format, and the filesystem would not have to deal with
735 * situations such as writepage being called for a page that has already
736 * had its underlying blocks deallocated.
737 */
738 void truncate_pagecache(struct inode *inode, loff_t newsize)
739 {
740 struct address_space *mapping = inode->i_mapping;
741 loff_t holebegin = round_up(newsize, PAGE_SIZE);
742
743 /*
744 * unmap_mapping_range is called twice, first simply for
745 * efficiency so that truncate_inode_pages does fewer
746 * single-page unmaps. However after this first call, and
747 * before truncate_inode_pages finishes, it is possible for
748 * private pages to be COWed, which remain after
749 * truncate_inode_pages finishes, hence the second
750 * unmap_mapping_range call must be made for correctness.
751 */
752 unmap_mapping_range(mapping, holebegin, 0, 1);
753 truncate_inode_pages(mapping, newsize);
754 unmap_mapping_range(mapping, holebegin, 0, 1);
755 }
756 EXPORT_SYMBOL(truncate_pagecache);
757
758 /**
759 * truncate_setsize - update inode and pagecache for a new file size
760 * @inode: inode
761 * @newsize: new file size
762 *
763 * truncate_setsize updates i_size and performs pagecache truncation (if
764 * necessary) to @newsize. It will be typically be called from the filesystem's
765 * setattr function when ATTR_SIZE is passed in.
766 *
767 * Must be called with a lock serializing truncates and writes (generally
768 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
769 * specific block truncation has been performed.
770 */
771 void truncate_setsize(struct inode *inode, loff_t newsize)
772 {
773 loff_t oldsize = inode->i_size;
774
775 i_size_write(inode, newsize);
776 if (newsize > oldsize)
777 pagecache_isize_extended(inode, oldsize, newsize);
778 truncate_pagecache(inode, newsize);
779 }
780 EXPORT_SYMBOL(truncate_setsize);
781
782 /**
783 * pagecache_isize_extended - update pagecache after extension of i_size
784 * @inode: inode for which i_size was extended
785 * @from: original inode size
786 * @to: new inode size
787 *
788 * Handle extension of inode size either caused by extending truncate or by
789 * write starting after current i_size. We mark the page straddling current
790 * i_size RO so that page_mkwrite() is called on the nearest write access to
791 * the page. This way filesystem can be sure that page_mkwrite() is called on
792 * the page before user writes to the page via mmap after the i_size has been
793 * changed.
794 *
795 * The function must be called after i_size is updated so that page fault
796 * coming after we unlock the page will already see the new i_size.
797 * The function must be called while we still hold i_rwsem - this not only
798 * makes sure i_size is stable but also that userspace cannot observe new
799 * i_size value before we are prepared to store mmap writes at new inode size.
800 */
801 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
802 {
803 int bsize = i_blocksize(inode);
804 loff_t rounded_from;
805 struct page *page;
806 pgoff_t index;
807
808 WARN_ON(to > inode->i_size);
809
810 if (from >= to || bsize == PAGE_SIZE)
811 return;
812 /* Page straddling @from will not have any hole block created? */
813 rounded_from = round_up(from, bsize);
814 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
815 return;
816
817 index = from >> PAGE_SHIFT;
818 page = find_lock_page(inode->i_mapping, index);
819 /* Page not cached? Nothing to do */
820 if (!page)
821 return;
822 /*
823 * See clear_page_dirty_for_io() for details why set_page_dirty()
824 * is needed.
825 */
826 if (page_mkclean(page))
827 set_page_dirty(page);
828 unlock_page(page);
829 put_page(page);
830 }
831 EXPORT_SYMBOL(pagecache_isize_extended);
832
833 /**
834 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
835 * @inode: inode
836 * @lstart: offset of beginning of hole
837 * @lend: offset of last byte of hole
838 *
839 * This function should typically be called before the filesystem
840 * releases resources associated with the freed range (eg. deallocates
841 * blocks). This way, pagecache will always stay logically coherent
842 * with on-disk format, and the filesystem would not have to deal with
843 * situations such as writepage being called for a page that has already
844 * had its underlying blocks deallocated.
845 */
846 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
847 {
848 struct address_space *mapping = inode->i_mapping;
849 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
850 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
851 /*
852 * This rounding is currently just for example: unmap_mapping_range
853 * expands its hole outwards, whereas we want it to contract the hole
854 * inwards. However, existing callers of truncate_pagecache_range are
855 * doing their own page rounding first. Note that unmap_mapping_range
856 * allows holelen 0 for all, and we allow lend -1 for end of file.
857 */
858
859 /*
860 * Unlike in truncate_pagecache, unmap_mapping_range is called only
861 * once (before truncating pagecache), and without "even_cows" flag:
862 * hole-punching should not remove private COWed pages from the hole.
863 */
864 if ((u64)unmap_end > (u64)unmap_start)
865 unmap_mapping_range(mapping, unmap_start,
866 1 + unmap_end - unmap_start, 0);
867 truncate_inode_pages_range(mapping, lstart, lend);
868 }
869 EXPORT_SYMBOL(truncate_pagecache_range);