]> git.ipfire.org Git - people/ms/linux.git/blob - mm/util.c
Merge tag 'powerpc-5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[people/ms/linux.git] / mm / util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30 #include "swap.h"
31
32 /**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38 void kfree_const(const void *x)
39 {
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44
45 /**
46 * kstrdup - allocate space for and copy an existing string
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
51 */
52 char *kstrdup(const char *s, gfp_t gfp)
53 {
54 size_t len;
55 char *buf;
56
57 if (!s)
58 return NULL;
59
60 len = strlen(s) + 1;
61 buf = kmalloc_track_caller(len, gfp);
62 if (buf)
63 memcpy(buf, s, len);
64 return buf;
65 }
66 EXPORT_SYMBOL(kstrdup);
67
68 /**
69 * kstrdup_const - conditionally duplicate an existing const string
70 * @s: the string to duplicate
71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72 *
73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74 * must not be passed to krealloc().
75 *
76 * Return: source string if it is in .rodata section otherwise
77 * fallback to kstrdup.
78 */
79 const char *kstrdup_const(const char *s, gfp_t gfp)
80 {
81 if (is_kernel_rodata((unsigned long)s))
82 return s;
83
84 return kstrdup(s, gfp);
85 }
86 EXPORT_SYMBOL(kstrdup_const);
87
88 /**
89 * kstrndup - allocate space for and copy an existing string
90 * @s: the string to duplicate
91 * @max: read at most @max chars from @s
92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
93 *
94 * Note: Use kmemdup_nul() instead if the size is known exactly.
95 *
96 * Return: newly allocated copy of @s or %NULL in case of error
97 */
98 char *kstrndup(const char *s, size_t max, gfp_t gfp)
99 {
100 size_t len;
101 char *buf;
102
103 if (!s)
104 return NULL;
105
106 len = strnlen(s, max);
107 buf = kmalloc_track_caller(len+1, gfp);
108 if (buf) {
109 memcpy(buf, s, len);
110 buf[len] = '\0';
111 }
112 return buf;
113 }
114 EXPORT_SYMBOL(kstrndup);
115
116 /**
117 * kmemdup - duplicate region of memory
118 *
119 * @src: memory region to duplicate
120 * @len: memory region length
121 * @gfp: GFP mask to use
122 *
123 * Return: newly allocated copy of @src or %NULL in case of error
124 */
125 void *kmemdup(const void *src, size_t len, gfp_t gfp)
126 {
127 void *p;
128
129 p = kmalloc_track_caller(len, gfp);
130 if (p)
131 memcpy(p, src, len);
132 return p;
133 }
134 EXPORT_SYMBOL(kmemdup);
135
136 /**
137 * kmemdup_nul - Create a NUL-terminated string from unterminated data
138 * @s: The data to stringify
139 * @len: The size of the data
140 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
141 *
142 * Return: newly allocated copy of @s with NUL-termination or %NULL in
143 * case of error
144 */
145 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146 {
147 char *buf;
148
149 if (!s)
150 return NULL;
151
152 buf = kmalloc_track_caller(len + 1, gfp);
153 if (buf) {
154 memcpy(buf, s, len);
155 buf[len] = '\0';
156 }
157 return buf;
158 }
159 EXPORT_SYMBOL(kmemdup_nul);
160
161 /**
162 * memdup_user - duplicate memory region from user space
163 *
164 * @src: source address in user space
165 * @len: number of bytes to copy
166 *
167 * Return: an ERR_PTR() on failure. Result is physically
168 * contiguous, to be freed by kfree().
169 */
170 void *memdup_user(const void __user *src, size_t len)
171 {
172 void *p;
173
174 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
175 if (!p)
176 return ERR_PTR(-ENOMEM);
177
178 if (copy_from_user(p, src, len)) {
179 kfree(p);
180 return ERR_PTR(-EFAULT);
181 }
182
183 return p;
184 }
185 EXPORT_SYMBOL(memdup_user);
186
187 /**
188 * vmemdup_user - duplicate memory region from user space
189 *
190 * @src: source address in user space
191 * @len: number of bytes to copy
192 *
193 * Return: an ERR_PTR() on failure. Result may be not
194 * physically contiguous. Use kvfree() to free.
195 */
196 void *vmemdup_user(const void __user *src, size_t len)
197 {
198 void *p;
199
200 p = kvmalloc(len, GFP_USER);
201 if (!p)
202 return ERR_PTR(-ENOMEM);
203
204 if (copy_from_user(p, src, len)) {
205 kvfree(p);
206 return ERR_PTR(-EFAULT);
207 }
208
209 return p;
210 }
211 EXPORT_SYMBOL(vmemdup_user);
212
213 /**
214 * strndup_user - duplicate an existing string from user space
215 * @s: The string to duplicate
216 * @n: Maximum number of bytes to copy, including the trailing NUL.
217 *
218 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
219 */
220 char *strndup_user(const char __user *s, long n)
221 {
222 char *p;
223 long length;
224
225 length = strnlen_user(s, n);
226
227 if (!length)
228 return ERR_PTR(-EFAULT);
229
230 if (length > n)
231 return ERR_PTR(-EINVAL);
232
233 p = memdup_user(s, length);
234
235 if (IS_ERR(p))
236 return p;
237
238 p[length - 1] = '\0';
239
240 return p;
241 }
242 EXPORT_SYMBOL(strndup_user);
243
244 /**
245 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246 *
247 * @src: source address in user space
248 * @len: number of bytes to copy
249 *
250 * Return: an ERR_PTR() on failure.
251 */
252 void *memdup_user_nul(const void __user *src, size_t len)
253 {
254 char *p;
255
256 /*
257 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 * cause pagefault, which makes it pointless to use GFP_NOFS
259 * or GFP_ATOMIC.
260 */
261 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 if (!p)
263 return ERR_PTR(-ENOMEM);
264
265 if (copy_from_user(p, src, len)) {
266 kfree(p);
267 return ERR_PTR(-EFAULT);
268 }
269 p[len] = '\0';
270
271 return p;
272 }
273 EXPORT_SYMBOL(memdup_user_nul);
274
275 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
276 struct vm_area_struct *prev)
277 {
278 struct vm_area_struct *next;
279
280 vma->vm_prev = prev;
281 if (prev) {
282 next = prev->vm_next;
283 prev->vm_next = vma;
284 } else {
285 next = mm->mmap;
286 mm->mmap = vma;
287 }
288 vma->vm_next = next;
289 if (next)
290 next->vm_prev = vma;
291 }
292
293 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
294 {
295 struct vm_area_struct *prev, *next;
296
297 next = vma->vm_next;
298 prev = vma->vm_prev;
299 if (prev)
300 prev->vm_next = next;
301 else
302 mm->mmap = next;
303 if (next)
304 next->vm_prev = prev;
305 }
306
307 /* Check if the vma is being used as a stack by this task */
308 int vma_is_stack_for_current(struct vm_area_struct *vma)
309 {
310 struct task_struct * __maybe_unused t = current;
311
312 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
313 }
314
315 /*
316 * Change backing file, only valid to use during initial VMA setup.
317 */
318 void vma_set_file(struct vm_area_struct *vma, struct file *file)
319 {
320 /* Changing an anonymous vma with this is illegal */
321 get_file(file);
322 swap(vma->vm_file, file);
323 fput(file);
324 }
325 EXPORT_SYMBOL(vma_set_file);
326
327 #ifndef STACK_RND_MASK
328 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
329 #endif
330
331 unsigned long randomize_stack_top(unsigned long stack_top)
332 {
333 unsigned long random_variable = 0;
334
335 if (current->flags & PF_RANDOMIZE) {
336 random_variable = get_random_long();
337 random_variable &= STACK_RND_MASK;
338 random_variable <<= PAGE_SHIFT;
339 }
340 #ifdef CONFIG_STACK_GROWSUP
341 return PAGE_ALIGN(stack_top) + random_variable;
342 #else
343 return PAGE_ALIGN(stack_top) - random_variable;
344 #endif
345 }
346
347 /**
348 * randomize_page - Generate a random, page aligned address
349 * @start: The smallest acceptable address the caller will take.
350 * @range: The size of the area, starting at @start, within which the
351 * random address must fall.
352 *
353 * If @start + @range would overflow, @range is capped.
354 *
355 * NOTE: Historical use of randomize_range, which this replaces, presumed that
356 * @start was already page aligned. We now align it regardless.
357 *
358 * Return: A page aligned address within [start, start + range). On error,
359 * @start is returned.
360 */
361 unsigned long randomize_page(unsigned long start, unsigned long range)
362 {
363 if (!PAGE_ALIGNED(start)) {
364 range -= PAGE_ALIGN(start) - start;
365 start = PAGE_ALIGN(start);
366 }
367
368 if (start > ULONG_MAX - range)
369 range = ULONG_MAX - start;
370
371 range >>= PAGE_SHIFT;
372
373 if (range == 0)
374 return start;
375
376 return start + (get_random_long() % range << PAGE_SHIFT);
377 }
378
379 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
380 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
381 {
382 /* Is the current task 32bit ? */
383 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
384 return randomize_page(mm->brk, SZ_32M);
385
386 return randomize_page(mm->brk, SZ_1G);
387 }
388
389 unsigned long arch_mmap_rnd(void)
390 {
391 unsigned long rnd;
392
393 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
394 if (is_compat_task())
395 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
396 else
397 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
398 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
399
400 return rnd << PAGE_SHIFT;
401 }
402
403 static int mmap_is_legacy(struct rlimit *rlim_stack)
404 {
405 if (current->personality & ADDR_COMPAT_LAYOUT)
406 return 1;
407
408 if (rlim_stack->rlim_cur == RLIM_INFINITY)
409 return 1;
410
411 return sysctl_legacy_va_layout;
412 }
413
414 /*
415 * Leave enough space between the mmap area and the stack to honour ulimit in
416 * the face of randomisation.
417 */
418 #define MIN_GAP (SZ_128M)
419 #define MAX_GAP (STACK_TOP / 6 * 5)
420
421 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
422 {
423 unsigned long gap = rlim_stack->rlim_cur;
424 unsigned long pad = stack_guard_gap;
425
426 /* Account for stack randomization if necessary */
427 if (current->flags & PF_RANDOMIZE)
428 pad += (STACK_RND_MASK << PAGE_SHIFT);
429
430 /* Values close to RLIM_INFINITY can overflow. */
431 if (gap + pad > gap)
432 gap += pad;
433
434 if (gap < MIN_GAP)
435 gap = MIN_GAP;
436 else if (gap > MAX_GAP)
437 gap = MAX_GAP;
438
439 return PAGE_ALIGN(STACK_TOP - gap - rnd);
440 }
441
442 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
443 {
444 unsigned long random_factor = 0UL;
445
446 if (current->flags & PF_RANDOMIZE)
447 random_factor = arch_mmap_rnd();
448
449 if (mmap_is_legacy(rlim_stack)) {
450 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
451 mm->get_unmapped_area = arch_get_unmapped_area;
452 } else {
453 mm->mmap_base = mmap_base(random_factor, rlim_stack);
454 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
455 }
456 }
457 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
458 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
459 {
460 mm->mmap_base = TASK_UNMAPPED_BASE;
461 mm->get_unmapped_area = arch_get_unmapped_area;
462 }
463 #endif
464
465 /**
466 * __account_locked_vm - account locked pages to an mm's locked_vm
467 * @mm: mm to account against
468 * @pages: number of pages to account
469 * @inc: %true if @pages should be considered positive, %false if not
470 * @task: task used to check RLIMIT_MEMLOCK
471 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
472 *
473 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
474 * that mmap_lock is held as writer.
475 *
476 * Return:
477 * * 0 on success
478 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
479 */
480 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
481 struct task_struct *task, bool bypass_rlim)
482 {
483 unsigned long locked_vm, limit;
484 int ret = 0;
485
486 mmap_assert_write_locked(mm);
487
488 locked_vm = mm->locked_vm;
489 if (inc) {
490 if (!bypass_rlim) {
491 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
492 if (locked_vm + pages > limit)
493 ret = -ENOMEM;
494 }
495 if (!ret)
496 mm->locked_vm = locked_vm + pages;
497 } else {
498 WARN_ON_ONCE(pages > locked_vm);
499 mm->locked_vm = locked_vm - pages;
500 }
501
502 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
503 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
504 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
505 ret ? " - exceeded" : "");
506
507 return ret;
508 }
509 EXPORT_SYMBOL_GPL(__account_locked_vm);
510
511 /**
512 * account_locked_vm - account locked pages to an mm's locked_vm
513 * @mm: mm to account against, may be NULL
514 * @pages: number of pages to account
515 * @inc: %true if @pages should be considered positive, %false if not
516 *
517 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
518 *
519 * Return:
520 * * 0 on success, or if mm is NULL
521 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
522 */
523 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
524 {
525 int ret;
526
527 if (pages == 0 || !mm)
528 return 0;
529
530 mmap_write_lock(mm);
531 ret = __account_locked_vm(mm, pages, inc, current,
532 capable(CAP_IPC_LOCK));
533 mmap_write_unlock(mm);
534
535 return ret;
536 }
537 EXPORT_SYMBOL_GPL(account_locked_vm);
538
539 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
540 unsigned long len, unsigned long prot,
541 unsigned long flag, unsigned long pgoff)
542 {
543 unsigned long ret;
544 struct mm_struct *mm = current->mm;
545 unsigned long populate;
546 LIST_HEAD(uf);
547
548 ret = security_mmap_file(file, prot, flag);
549 if (!ret) {
550 if (mmap_write_lock_killable(mm))
551 return -EINTR;
552 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
553 &uf);
554 mmap_write_unlock(mm);
555 userfaultfd_unmap_complete(mm, &uf);
556 if (populate)
557 mm_populate(ret, populate);
558 }
559 return ret;
560 }
561
562 unsigned long vm_mmap(struct file *file, unsigned long addr,
563 unsigned long len, unsigned long prot,
564 unsigned long flag, unsigned long offset)
565 {
566 if (unlikely(offset + PAGE_ALIGN(len) < offset))
567 return -EINVAL;
568 if (unlikely(offset_in_page(offset)))
569 return -EINVAL;
570
571 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
572 }
573 EXPORT_SYMBOL(vm_mmap);
574
575 /**
576 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
577 * failure, fall back to non-contiguous (vmalloc) allocation.
578 * @size: size of the request.
579 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
580 * @node: numa node to allocate from
581 *
582 * Uses kmalloc to get the memory but if the allocation fails then falls back
583 * to the vmalloc allocator. Use kvfree for freeing the memory.
584 *
585 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
586 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
587 * preferable to the vmalloc fallback, due to visible performance drawbacks.
588 *
589 * Return: pointer to the allocated memory of %NULL in case of failure
590 */
591 void *kvmalloc_node(size_t size, gfp_t flags, int node)
592 {
593 gfp_t kmalloc_flags = flags;
594 void *ret;
595
596 /*
597 * We want to attempt a large physically contiguous block first because
598 * it is less likely to fragment multiple larger blocks and therefore
599 * contribute to a long term fragmentation less than vmalloc fallback.
600 * However make sure that larger requests are not too disruptive - no
601 * OOM killer and no allocation failure warnings as we have a fallback.
602 */
603 if (size > PAGE_SIZE) {
604 kmalloc_flags |= __GFP_NOWARN;
605
606 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
607 kmalloc_flags |= __GFP_NORETRY;
608
609 /* nofail semantic is implemented by the vmalloc fallback */
610 kmalloc_flags &= ~__GFP_NOFAIL;
611 }
612
613 ret = kmalloc_node(size, kmalloc_flags, node);
614
615 /*
616 * It doesn't really make sense to fallback to vmalloc for sub page
617 * requests
618 */
619 if (ret || size <= PAGE_SIZE)
620 return ret;
621
622 /* Don't even allow crazy sizes */
623 if (unlikely(size > INT_MAX)) {
624 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
625 return NULL;
626 }
627
628 /*
629 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
630 * since the callers already cannot assume anything
631 * about the resulting pointer, and cannot play
632 * protection games.
633 */
634 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
635 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
636 node, __builtin_return_address(0));
637 }
638 EXPORT_SYMBOL(kvmalloc_node);
639
640 /**
641 * kvfree() - Free memory.
642 * @addr: Pointer to allocated memory.
643 *
644 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
645 * It is slightly more efficient to use kfree() or vfree() if you are certain
646 * that you know which one to use.
647 *
648 * Context: Either preemptible task context or not-NMI interrupt.
649 */
650 void kvfree(const void *addr)
651 {
652 if (is_vmalloc_addr(addr))
653 vfree(addr);
654 else
655 kfree(addr);
656 }
657 EXPORT_SYMBOL(kvfree);
658
659 /**
660 * kvfree_sensitive - Free a data object containing sensitive information.
661 * @addr: address of the data object to be freed.
662 * @len: length of the data object.
663 *
664 * Use the special memzero_explicit() function to clear the content of a
665 * kvmalloc'ed object containing sensitive data to make sure that the
666 * compiler won't optimize out the data clearing.
667 */
668 void kvfree_sensitive(const void *addr, size_t len)
669 {
670 if (likely(!ZERO_OR_NULL_PTR(addr))) {
671 memzero_explicit((void *)addr, len);
672 kvfree(addr);
673 }
674 }
675 EXPORT_SYMBOL(kvfree_sensitive);
676
677 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
678 {
679 void *newp;
680
681 if (oldsize >= newsize)
682 return (void *)p;
683 newp = kvmalloc(newsize, flags);
684 if (!newp)
685 return NULL;
686 memcpy(newp, p, oldsize);
687 kvfree(p);
688 return newp;
689 }
690 EXPORT_SYMBOL(kvrealloc);
691
692 /**
693 * __vmalloc_array - allocate memory for a virtually contiguous array.
694 * @n: number of elements.
695 * @size: element size.
696 * @flags: the type of memory to allocate (see kmalloc).
697 */
698 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
699 {
700 size_t bytes;
701
702 if (unlikely(check_mul_overflow(n, size, &bytes)))
703 return NULL;
704 return __vmalloc(bytes, flags);
705 }
706 EXPORT_SYMBOL(__vmalloc_array);
707
708 /**
709 * vmalloc_array - allocate memory for a virtually contiguous array.
710 * @n: number of elements.
711 * @size: element size.
712 */
713 void *vmalloc_array(size_t n, size_t size)
714 {
715 return __vmalloc_array(n, size, GFP_KERNEL);
716 }
717 EXPORT_SYMBOL(vmalloc_array);
718
719 /**
720 * __vcalloc - allocate and zero memory for a virtually contiguous array.
721 * @n: number of elements.
722 * @size: element size.
723 * @flags: the type of memory to allocate (see kmalloc).
724 */
725 void *__vcalloc(size_t n, size_t size, gfp_t flags)
726 {
727 return __vmalloc_array(n, size, flags | __GFP_ZERO);
728 }
729 EXPORT_SYMBOL(__vcalloc);
730
731 /**
732 * vcalloc - allocate and zero memory for a virtually contiguous array.
733 * @n: number of elements.
734 * @size: element size.
735 */
736 void *vcalloc(size_t n, size_t size)
737 {
738 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
739 }
740 EXPORT_SYMBOL(vcalloc);
741
742 /* Neutral page->mapping pointer to address_space or anon_vma or other */
743 void *page_rmapping(struct page *page)
744 {
745 return folio_raw_mapping(page_folio(page));
746 }
747
748 /**
749 * folio_mapped - Is this folio mapped into userspace?
750 * @folio: The folio.
751 *
752 * Return: True if any page in this folio is referenced by user page tables.
753 */
754 bool folio_mapped(struct folio *folio)
755 {
756 long i, nr;
757
758 if (!folio_test_large(folio))
759 return atomic_read(&folio->_mapcount) >= 0;
760 if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
761 return true;
762 if (folio_test_hugetlb(folio))
763 return false;
764
765 nr = folio_nr_pages(folio);
766 for (i = 0; i < nr; i++) {
767 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
768 return true;
769 }
770 return false;
771 }
772 EXPORT_SYMBOL(folio_mapped);
773
774 struct anon_vma *folio_anon_vma(struct folio *folio)
775 {
776 unsigned long mapping = (unsigned long)folio->mapping;
777
778 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
779 return NULL;
780 return (void *)(mapping - PAGE_MAPPING_ANON);
781 }
782
783 /**
784 * folio_mapping - Find the mapping where this folio is stored.
785 * @folio: The folio.
786 *
787 * For folios which are in the page cache, return the mapping that this
788 * page belongs to. Folios in the swap cache return the swap mapping
789 * this page is stored in (which is different from the mapping for the
790 * swap file or swap device where the data is stored).
791 *
792 * You can call this for folios which aren't in the swap cache or page
793 * cache and it will return NULL.
794 */
795 struct address_space *folio_mapping(struct folio *folio)
796 {
797 struct address_space *mapping;
798
799 /* This happens if someone calls flush_dcache_page on slab page */
800 if (unlikely(folio_test_slab(folio)))
801 return NULL;
802
803 if (unlikely(folio_test_swapcache(folio)))
804 return swap_address_space(folio_swap_entry(folio));
805
806 mapping = folio->mapping;
807 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
808 return NULL;
809
810 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
811 }
812 EXPORT_SYMBOL(folio_mapping);
813
814 /* Slow path of page_mapcount() for compound pages */
815 int __page_mapcount(struct page *page)
816 {
817 int ret;
818
819 ret = atomic_read(&page->_mapcount) + 1;
820 /*
821 * For file THP page->_mapcount contains total number of mapping
822 * of the page: no need to look into compound_mapcount.
823 */
824 if (!PageAnon(page) && !PageHuge(page))
825 return ret;
826 page = compound_head(page);
827 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
828 if (PageDoubleMap(page))
829 ret--;
830 return ret;
831 }
832 EXPORT_SYMBOL_GPL(__page_mapcount);
833
834 /**
835 * folio_mapcount() - Calculate the number of mappings of this folio.
836 * @folio: The folio.
837 *
838 * A large folio tracks both how many times the entire folio is mapped,
839 * and how many times each individual page in the folio is mapped.
840 * This function calculates the total number of times the folio is
841 * mapped.
842 *
843 * Return: The number of times this folio is mapped.
844 */
845 int folio_mapcount(struct folio *folio)
846 {
847 int i, compound, nr, ret;
848
849 if (likely(!folio_test_large(folio)))
850 return atomic_read(&folio->_mapcount) + 1;
851
852 compound = folio_entire_mapcount(folio);
853 nr = folio_nr_pages(folio);
854 if (folio_test_hugetlb(folio))
855 return compound;
856 ret = compound;
857 for (i = 0; i < nr; i++)
858 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1;
859 /* File pages has compound_mapcount included in _mapcount */
860 if (!folio_test_anon(folio))
861 return ret - compound * nr;
862 if (folio_test_double_map(folio))
863 ret -= nr;
864 return ret;
865 }
866
867 /**
868 * folio_copy - Copy the contents of one folio to another.
869 * @dst: Folio to copy to.
870 * @src: Folio to copy from.
871 *
872 * The bytes in the folio represented by @src are copied to @dst.
873 * Assumes the caller has validated that @dst is at least as large as @src.
874 * Can be called in atomic context for order-0 folios, but if the folio is
875 * larger, it may sleep.
876 */
877 void folio_copy(struct folio *dst, struct folio *src)
878 {
879 long i = 0;
880 long nr = folio_nr_pages(src);
881
882 for (;;) {
883 copy_highpage(folio_page(dst, i), folio_page(src, i));
884 if (++i == nr)
885 break;
886 cond_resched();
887 }
888 }
889
890 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
891 int sysctl_overcommit_ratio __read_mostly = 50;
892 unsigned long sysctl_overcommit_kbytes __read_mostly;
893 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
894 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
895 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
896
897 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
898 size_t *lenp, loff_t *ppos)
899 {
900 int ret;
901
902 ret = proc_dointvec(table, write, buffer, lenp, ppos);
903 if (ret == 0 && write)
904 sysctl_overcommit_kbytes = 0;
905 return ret;
906 }
907
908 static void sync_overcommit_as(struct work_struct *dummy)
909 {
910 percpu_counter_sync(&vm_committed_as);
911 }
912
913 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
914 size_t *lenp, loff_t *ppos)
915 {
916 struct ctl_table t;
917 int new_policy = -1;
918 int ret;
919
920 /*
921 * The deviation of sync_overcommit_as could be big with loose policy
922 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
923 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
924 * with the strict "NEVER", and to avoid possible race condition (even
925 * though user usually won't too frequently do the switching to policy
926 * OVERCOMMIT_NEVER), the switch is done in the following order:
927 * 1. changing the batch
928 * 2. sync percpu count on each CPU
929 * 3. switch the policy
930 */
931 if (write) {
932 t = *table;
933 t.data = &new_policy;
934 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
935 if (ret || new_policy == -1)
936 return ret;
937
938 mm_compute_batch(new_policy);
939 if (new_policy == OVERCOMMIT_NEVER)
940 schedule_on_each_cpu(sync_overcommit_as);
941 sysctl_overcommit_memory = new_policy;
942 } else {
943 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
944 }
945
946 return ret;
947 }
948
949 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
950 size_t *lenp, loff_t *ppos)
951 {
952 int ret;
953
954 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
955 if (ret == 0 && write)
956 sysctl_overcommit_ratio = 0;
957 return ret;
958 }
959
960 /*
961 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
962 */
963 unsigned long vm_commit_limit(void)
964 {
965 unsigned long allowed;
966
967 if (sysctl_overcommit_kbytes)
968 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
969 else
970 allowed = ((totalram_pages() - hugetlb_total_pages())
971 * sysctl_overcommit_ratio / 100);
972 allowed += total_swap_pages;
973
974 return allowed;
975 }
976
977 /*
978 * Make sure vm_committed_as in one cacheline and not cacheline shared with
979 * other variables. It can be updated by several CPUs frequently.
980 */
981 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
982
983 /*
984 * The global memory commitment made in the system can be a metric
985 * that can be used to drive ballooning decisions when Linux is hosted
986 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
987 * balancing memory across competing virtual machines that are hosted.
988 * Several metrics drive this policy engine including the guest reported
989 * memory commitment.
990 *
991 * The time cost of this is very low for small platforms, and for big
992 * platform like a 2S/36C/72T Skylake server, in worst case where
993 * vm_committed_as's spinlock is under severe contention, the time cost
994 * could be about 30~40 microseconds.
995 */
996 unsigned long vm_memory_committed(void)
997 {
998 return percpu_counter_sum_positive(&vm_committed_as);
999 }
1000 EXPORT_SYMBOL_GPL(vm_memory_committed);
1001
1002 /*
1003 * Check that a process has enough memory to allocate a new virtual
1004 * mapping. 0 means there is enough memory for the allocation to
1005 * succeed and -ENOMEM implies there is not.
1006 *
1007 * We currently support three overcommit policies, which are set via the
1008 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
1009 *
1010 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1011 * Additional code 2002 Jul 20 by Robert Love.
1012 *
1013 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1014 *
1015 * Note this is a helper function intended to be used by LSMs which
1016 * wish to use this logic.
1017 */
1018 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1019 {
1020 long allowed;
1021
1022 vm_acct_memory(pages);
1023
1024 /*
1025 * Sometimes we want to use more memory than we have
1026 */
1027 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1028 return 0;
1029
1030 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1031 if (pages > totalram_pages() + total_swap_pages)
1032 goto error;
1033 return 0;
1034 }
1035
1036 allowed = vm_commit_limit();
1037 /*
1038 * Reserve some for root
1039 */
1040 if (!cap_sys_admin)
1041 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1042
1043 /*
1044 * Don't let a single process grow so big a user can't recover
1045 */
1046 if (mm) {
1047 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1048
1049 allowed -= min_t(long, mm->total_vm / 32, reserve);
1050 }
1051
1052 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1053 return 0;
1054 error:
1055 vm_unacct_memory(pages);
1056
1057 return -ENOMEM;
1058 }
1059
1060 /**
1061 * get_cmdline() - copy the cmdline value to a buffer.
1062 * @task: the task whose cmdline value to copy.
1063 * @buffer: the buffer to copy to.
1064 * @buflen: the length of the buffer. Larger cmdline values are truncated
1065 * to this length.
1066 *
1067 * Return: the size of the cmdline field copied. Note that the copy does
1068 * not guarantee an ending NULL byte.
1069 */
1070 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1071 {
1072 int res = 0;
1073 unsigned int len;
1074 struct mm_struct *mm = get_task_mm(task);
1075 unsigned long arg_start, arg_end, env_start, env_end;
1076 if (!mm)
1077 goto out;
1078 if (!mm->arg_end)
1079 goto out_mm; /* Shh! No looking before we're done */
1080
1081 spin_lock(&mm->arg_lock);
1082 arg_start = mm->arg_start;
1083 arg_end = mm->arg_end;
1084 env_start = mm->env_start;
1085 env_end = mm->env_end;
1086 spin_unlock(&mm->arg_lock);
1087
1088 len = arg_end - arg_start;
1089
1090 if (len > buflen)
1091 len = buflen;
1092
1093 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1094
1095 /*
1096 * If the nul at the end of args has been overwritten, then
1097 * assume application is using setproctitle(3).
1098 */
1099 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1100 len = strnlen(buffer, res);
1101 if (len < res) {
1102 res = len;
1103 } else {
1104 len = env_end - env_start;
1105 if (len > buflen - res)
1106 len = buflen - res;
1107 res += access_process_vm(task, env_start,
1108 buffer+res, len,
1109 FOLL_FORCE);
1110 res = strnlen(buffer, res);
1111 }
1112 }
1113 out_mm:
1114 mmput(mm);
1115 out:
1116 return res;
1117 }
1118
1119 int __weak memcmp_pages(struct page *page1, struct page *page2)
1120 {
1121 char *addr1, *addr2;
1122 int ret;
1123
1124 addr1 = kmap_atomic(page1);
1125 addr2 = kmap_atomic(page2);
1126 ret = memcmp(addr1, addr2, PAGE_SIZE);
1127 kunmap_atomic(addr2);
1128 kunmap_atomic(addr1);
1129 return ret;
1130 }
1131
1132 #ifdef CONFIG_PRINTK
1133 /**
1134 * mem_dump_obj - Print available provenance information
1135 * @object: object for which to find provenance information.
1136 *
1137 * This function uses pr_cont(), so that the caller is expected to have
1138 * printed out whatever preamble is appropriate. The provenance information
1139 * depends on the type of object and on how much debugging is enabled.
1140 * For example, for a slab-cache object, the slab name is printed, and,
1141 * if available, the return address and stack trace from the allocation
1142 * and last free path of that object.
1143 */
1144 void mem_dump_obj(void *object)
1145 {
1146 const char *type;
1147
1148 if (kmem_valid_obj(object)) {
1149 kmem_dump_obj(object);
1150 return;
1151 }
1152
1153 if (vmalloc_dump_obj(object))
1154 return;
1155
1156 if (virt_addr_valid(object))
1157 type = "non-slab/vmalloc memory";
1158 else if (object == NULL)
1159 type = "NULL pointer";
1160 else if (object == ZERO_SIZE_PTR)
1161 type = "zero-size pointer";
1162 else
1163 type = "non-paged memory";
1164
1165 pr_cont(" %s\n", type);
1166 }
1167 EXPORT_SYMBOL_GPL(mem_dump_obj);
1168 #endif
1169
1170 /*
1171 * A driver might set a page logically offline -- PageOffline() -- and
1172 * turn the page inaccessible in the hypervisor; after that, access to page
1173 * content can be fatal.
1174 *
1175 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1176 * pages after checking PageOffline(); however, these PFN walkers can race
1177 * with drivers that set PageOffline().
1178 *
1179 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1180 * synchronize with such drivers, achieving that a page cannot be set
1181 * PageOffline() while frozen.
1182 *
1183 * page_offline_begin()/page_offline_end() is used by drivers that care about
1184 * such races when setting a page PageOffline().
1185 */
1186 static DECLARE_RWSEM(page_offline_rwsem);
1187
1188 void page_offline_freeze(void)
1189 {
1190 down_read(&page_offline_rwsem);
1191 }
1192
1193 void page_offline_thaw(void)
1194 {
1195 up_read(&page_offline_rwsem);
1196 }
1197
1198 void page_offline_begin(void)
1199 {
1200 down_write(&page_offline_rwsem);
1201 }
1202 EXPORT_SYMBOL(page_offline_begin);
1203
1204 void page_offline_end(void)
1205 {
1206 up_write(&page_offline_rwsem);
1207 }
1208 EXPORT_SYMBOL(page_offline_end);
1209
1210 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1211 void flush_dcache_folio(struct folio *folio)
1212 {
1213 long i, nr = folio_nr_pages(folio);
1214
1215 for (i = 0; i < nr; i++)
1216 flush_dcache_page(folio_page(folio, i));
1217 }
1218 EXPORT_SYMBOL(flush_dcache_folio);
1219 #endif