]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/vmalloc.c
dt-bindings: arm: tegra: ahb: Convert to json-schema
[thirdparty/linux.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48
49 #include "internal.h"
50 #include "pgalloc-track.h"
51
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55 static int __init set_nohugeiomap(char *str)
56 {
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67
68 static int __init set_nohugevmalloc(char *str)
69 {
70 vmap_allow_huge = false;
71 return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
78 bool is_vmalloc_addr(const void *x)
79 {
80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85
86 struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 pte_t *pte;
98 u64 pfn;
99 unsigned long size = PAGE_SIZE;
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(ptep_get(pte)));
107
108 #ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118 #endif
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124 }
125
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129 {
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149 }
150
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174 }
175
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179 {
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199 }
200
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225 }
226
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230 {
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250 }
251
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276 }
277
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281 {
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305 }
306
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
309 {
310 int err;
311
312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 ioremap_max_page_shift);
314 flush_cache_vmap(addr, end);
315 if (!err)
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
318 return err;
319 }
320
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
323 {
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
331 *mask |= PGTBL_PTE_MODIFIED;
332 }
333
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
336 {
337 pmd_t *pmd;
338 unsigned long next;
339 int cleared;
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
350 continue;
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
353 vunmap_pte_range(pmd, addr, next, mask);
354
355 cond_resched();
356 } while (pmd++, addr = next, addr != end);
357 }
358
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
361 {
362 pud_t *pud;
363 unsigned long next;
364 int cleared;
365
366 pud = pud_offset(p4d, addr);
367 do {
368 next = pud_addr_end(addr, end);
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
375 continue;
376 if (pud_none_or_clear_bad(pud))
377 continue;
378 vunmap_pmd_range(pud, addr, next, mask);
379 } while (pud++, addr = next, addr != end);
380 }
381
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
384 {
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
391
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
394 *mask |= PGTBL_P4D_MODIFIED;
395
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
398 vunmap_pud_range(p4d, addr, next, mask);
399 } while (p4d++, addr = next, addr != end);
400 }
401
402 /*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
405 *
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
411 *
412 * This is an internal function only. Do not use outside mm/.
413 */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 unsigned long next;
417 pgd_t *pgd;
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
423 do {
424 next = pgd_addr_end(addr, end);
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
429 vunmap_p4d_range(pgd, addr, next, &mask);
430 } while (pgd++, addr = next, addr != end);
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
434 }
435
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440 }
441
442 /**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456 }
457
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
461 {
462 pte_t *pte;
463
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
469 pte = pte_alloc_kernel_track(pmd, addr, mask);
470 if (!pte)
471 return -ENOMEM;
472 do {
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(ptep_get(pte))))
476 return -EBUSY;
477 if (WARN_ON(!page))
478 return -ENOMEM;
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 (*nr)++;
484 } while (pte++, addr += PAGE_SIZE, addr != end);
485 *mask |= PGTBL_PTE_MODIFIED;
486 return 0;
487 }
488
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
492 {
493 pmd_t *pmd;
494 unsigned long next;
495
496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505 }
506
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
510 {
511 pud_t *pud;
512 unsigned long next;
513
514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523 }
524
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
528 {
529 p4d_t *p4d;
530 unsigned long next;
531
532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541 }
542
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
545 {
546 unsigned long start = addr;
547 pgd_t *pgd;
548 unsigned long next;
549 int err = 0;
550 int nr = 0;
551 pgtbl_mod_mask mask = 0;
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
555 do {
556 next = pgd_addr_end(addr, end);
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 if (err)
561 return err;
562 } while (pgd++, addr = next, addr != end);
563
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
567 return 0;
568 }
569
570 /*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 page_to_phys(pages[i]), prot,
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603 }
604
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615
616 /**
617 * vmap_pages_range - map pages to a kernel virtual address
618 * @addr: start of the VM area to map
619 * @end: end of the VM area to map (non-inclusive)
620 * @prot: page protection flags to use
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 int err;
632
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
636 }
637
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 /*
641 * ARM, x86-64 and sparc64 put modules in a special place,
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649 #endif
650 return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653
654 /*
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
658 */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 unsigned long addr = (unsigned long) vmalloc_addr;
662 struct page *page = NULL;
663 pgd_t *pgd = pgd_offset_k(addr);
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
668
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674
675 if (pgd_none(*pgd))
676 return NULL;
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
689
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
696 return NULL;
697
698 pmd = pmd_offset(pud, addr);
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 return NULL;
705
706 ptep = pte_offset_kernel(pmd, addr);
707 pte = ptep_get(ptep);
708 if (pte_present(pte))
709 page = pte_page(pte);
710
711 return page;
712 }
713 EXPORT_SYMBOL(vmalloc_to_page);
714
715 /*
716 * Map a vmalloc()-space virtual address to the physical page frame number.
717 */
718 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
719 {
720 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
721 }
722 EXPORT_SYMBOL(vmalloc_to_pfn);
723
724
725 /*** Global kva allocator ***/
726
727 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
728 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
729
730
731 static DEFINE_SPINLOCK(vmap_area_lock);
732 static DEFINE_SPINLOCK(free_vmap_area_lock);
733 /* Export for kexec only */
734 LIST_HEAD(vmap_area_list);
735 static struct rb_root vmap_area_root = RB_ROOT;
736 static bool vmap_initialized __read_mostly;
737
738 static struct rb_root purge_vmap_area_root = RB_ROOT;
739 static LIST_HEAD(purge_vmap_area_list);
740 static DEFINE_SPINLOCK(purge_vmap_area_lock);
741
742 /*
743 * This kmem_cache is used for vmap_area objects. Instead of
744 * allocating from slab we reuse an object from this cache to
745 * make things faster. Especially in "no edge" splitting of
746 * free block.
747 */
748 static struct kmem_cache *vmap_area_cachep;
749
750 /*
751 * This linked list is used in pair with free_vmap_area_root.
752 * It gives O(1) access to prev/next to perform fast coalescing.
753 */
754 static LIST_HEAD(free_vmap_area_list);
755
756 /*
757 * This augment red-black tree represents the free vmap space.
758 * All vmap_area objects in this tree are sorted by va->va_start
759 * address. It is used for allocation and merging when a vmap
760 * object is released.
761 *
762 * Each vmap_area node contains a maximum available free block
763 * of its sub-tree, right or left. Therefore it is possible to
764 * find a lowest match of free area.
765 */
766 static struct rb_root free_vmap_area_root = RB_ROOT;
767
768 /*
769 * Preload a CPU with one object for "no edge" split case. The
770 * aim is to get rid of allocations from the atomic context, thus
771 * to use more permissive allocation masks.
772 */
773 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
774
775 static __always_inline unsigned long
776 va_size(struct vmap_area *va)
777 {
778 return (va->va_end - va->va_start);
779 }
780
781 static __always_inline unsigned long
782 get_subtree_max_size(struct rb_node *node)
783 {
784 struct vmap_area *va;
785
786 va = rb_entry_safe(node, struct vmap_area, rb_node);
787 return va ? va->subtree_max_size : 0;
788 }
789
790 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
791 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
792
793 static void reclaim_and_purge_vmap_areas(void);
794 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
795 static void drain_vmap_area_work(struct work_struct *work);
796 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
797
798 static atomic_long_t nr_vmalloc_pages;
799
800 unsigned long vmalloc_nr_pages(void)
801 {
802 return atomic_long_read(&nr_vmalloc_pages);
803 }
804
805 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
806 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
807 {
808 struct vmap_area *va = NULL;
809 struct rb_node *n = vmap_area_root.rb_node;
810
811 addr = (unsigned long)kasan_reset_tag((void *)addr);
812
813 while (n) {
814 struct vmap_area *tmp;
815
816 tmp = rb_entry(n, struct vmap_area, rb_node);
817 if (tmp->va_end > addr) {
818 va = tmp;
819 if (tmp->va_start <= addr)
820 break;
821
822 n = n->rb_left;
823 } else
824 n = n->rb_right;
825 }
826
827 return va;
828 }
829
830 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
831 {
832 struct rb_node *n = root->rb_node;
833
834 addr = (unsigned long)kasan_reset_tag((void *)addr);
835
836 while (n) {
837 struct vmap_area *va;
838
839 va = rb_entry(n, struct vmap_area, rb_node);
840 if (addr < va->va_start)
841 n = n->rb_left;
842 else if (addr >= va->va_end)
843 n = n->rb_right;
844 else
845 return va;
846 }
847
848 return NULL;
849 }
850
851 /*
852 * This function returns back addresses of parent node
853 * and its left or right link for further processing.
854 *
855 * Otherwise NULL is returned. In that case all further
856 * steps regarding inserting of conflicting overlap range
857 * have to be declined and actually considered as a bug.
858 */
859 static __always_inline struct rb_node **
860 find_va_links(struct vmap_area *va,
861 struct rb_root *root, struct rb_node *from,
862 struct rb_node **parent)
863 {
864 struct vmap_area *tmp_va;
865 struct rb_node **link;
866
867 if (root) {
868 link = &root->rb_node;
869 if (unlikely(!*link)) {
870 *parent = NULL;
871 return link;
872 }
873 } else {
874 link = &from;
875 }
876
877 /*
878 * Go to the bottom of the tree. When we hit the last point
879 * we end up with parent rb_node and correct direction, i name
880 * it link, where the new va->rb_node will be attached to.
881 */
882 do {
883 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
884
885 /*
886 * During the traversal we also do some sanity check.
887 * Trigger the BUG() if there are sides(left/right)
888 * or full overlaps.
889 */
890 if (va->va_end <= tmp_va->va_start)
891 link = &(*link)->rb_left;
892 else if (va->va_start >= tmp_va->va_end)
893 link = &(*link)->rb_right;
894 else {
895 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
896 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
897
898 return NULL;
899 }
900 } while (*link);
901
902 *parent = &tmp_va->rb_node;
903 return link;
904 }
905
906 static __always_inline struct list_head *
907 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
908 {
909 struct list_head *list;
910
911 if (unlikely(!parent))
912 /*
913 * The red-black tree where we try to find VA neighbors
914 * before merging or inserting is empty, i.e. it means
915 * there is no free vmap space. Normally it does not
916 * happen but we handle this case anyway.
917 */
918 return NULL;
919
920 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
921 return (&parent->rb_right == link ? list->next : list);
922 }
923
924 static __always_inline void
925 __link_va(struct vmap_area *va, struct rb_root *root,
926 struct rb_node *parent, struct rb_node **link,
927 struct list_head *head, bool augment)
928 {
929 /*
930 * VA is still not in the list, but we can
931 * identify its future previous list_head node.
932 */
933 if (likely(parent)) {
934 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
935 if (&parent->rb_right != link)
936 head = head->prev;
937 }
938
939 /* Insert to the rb-tree */
940 rb_link_node(&va->rb_node, parent, link);
941 if (augment) {
942 /*
943 * Some explanation here. Just perform simple insertion
944 * to the tree. We do not set va->subtree_max_size to
945 * its current size before calling rb_insert_augmented().
946 * It is because we populate the tree from the bottom
947 * to parent levels when the node _is_ in the tree.
948 *
949 * Therefore we set subtree_max_size to zero after insertion,
950 * to let __augment_tree_propagate_from() puts everything to
951 * the correct order later on.
952 */
953 rb_insert_augmented(&va->rb_node,
954 root, &free_vmap_area_rb_augment_cb);
955 va->subtree_max_size = 0;
956 } else {
957 rb_insert_color(&va->rb_node, root);
958 }
959
960 /* Address-sort this list */
961 list_add(&va->list, head);
962 }
963
964 static __always_inline void
965 link_va(struct vmap_area *va, struct rb_root *root,
966 struct rb_node *parent, struct rb_node **link,
967 struct list_head *head)
968 {
969 __link_va(va, root, parent, link, head, false);
970 }
971
972 static __always_inline void
973 link_va_augment(struct vmap_area *va, struct rb_root *root,
974 struct rb_node *parent, struct rb_node **link,
975 struct list_head *head)
976 {
977 __link_va(va, root, parent, link, head, true);
978 }
979
980 static __always_inline void
981 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
982 {
983 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
984 return;
985
986 if (augment)
987 rb_erase_augmented(&va->rb_node,
988 root, &free_vmap_area_rb_augment_cb);
989 else
990 rb_erase(&va->rb_node, root);
991
992 list_del_init(&va->list);
993 RB_CLEAR_NODE(&va->rb_node);
994 }
995
996 static __always_inline void
997 unlink_va(struct vmap_area *va, struct rb_root *root)
998 {
999 __unlink_va(va, root, false);
1000 }
1001
1002 static __always_inline void
1003 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1004 {
1005 __unlink_va(va, root, true);
1006 }
1007
1008 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1009 /*
1010 * Gets called when remove the node and rotate.
1011 */
1012 static __always_inline unsigned long
1013 compute_subtree_max_size(struct vmap_area *va)
1014 {
1015 return max3(va_size(va),
1016 get_subtree_max_size(va->rb_node.rb_left),
1017 get_subtree_max_size(va->rb_node.rb_right));
1018 }
1019
1020 static void
1021 augment_tree_propagate_check(void)
1022 {
1023 struct vmap_area *va;
1024 unsigned long computed_size;
1025
1026 list_for_each_entry(va, &free_vmap_area_list, list) {
1027 computed_size = compute_subtree_max_size(va);
1028 if (computed_size != va->subtree_max_size)
1029 pr_emerg("tree is corrupted: %lu, %lu\n",
1030 va_size(va), va->subtree_max_size);
1031 }
1032 }
1033 #endif
1034
1035 /*
1036 * This function populates subtree_max_size from bottom to upper
1037 * levels starting from VA point. The propagation must be done
1038 * when VA size is modified by changing its va_start/va_end. Or
1039 * in case of newly inserting of VA to the tree.
1040 *
1041 * It means that __augment_tree_propagate_from() must be called:
1042 * - After VA has been inserted to the tree(free path);
1043 * - After VA has been shrunk(allocation path);
1044 * - After VA has been increased(merging path).
1045 *
1046 * Please note that, it does not mean that upper parent nodes
1047 * and their subtree_max_size are recalculated all the time up
1048 * to the root node.
1049 *
1050 * 4--8
1051 * /\
1052 * / \
1053 * / \
1054 * 2--2 8--8
1055 *
1056 * For example if we modify the node 4, shrinking it to 2, then
1057 * no any modification is required. If we shrink the node 2 to 1
1058 * its subtree_max_size is updated only, and set to 1. If we shrink
1059 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1060 * node becomes 4--6.
1061 */
1062 static __always_inline void
1063 augment_tree_propagate_from(struct vmap_area *va)
1064 {
1065 /*
1066 * Populate the tree from bottom towards the root until
1067 * the calculated maximum available size of checked node
1068 * is equal to its current one.
1069 */
1070 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1071
1072 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1073 augment_tree_propagate_check();
1074 #endif
1075 }
1076
1077 static void
1078 insert_vmap_area(struct vmap_area *va,
1079 struct rb_root *root, struct list_head *head)
1080 {
1081 struct rb_node **link;
1082 struct rb_node *parent;
1083
1084 link = find_va_links(va, root, NULL, &parent);
1085 if (link)
1086 link_va(va, root, parent, link, head);
1087 }
1088
1089 static void
1090 insert_vmap_area_augment(struct vmap_area *va,
1091 struct rb_node *from, struct rb_root *root,
1092 struct list_head *head)
1093 {
1094 struct rb_node **link;
1095 struct rb_node *parent;
1096
1097 if (from)
1098 link = find_va_links(va, NULL, from, &parent);
1099 else
1100 link = find_va_links(va, root, NULL, &parent);
1101
1102 if (link) {
1103 link_va_augment(va, root, parent, link, head);
1104 augment_tree_propagate_from(va);
1105 }
1106 }
1107
1108 /*
1109 * Merge de-allocated chunk of VA memory with previous
1110 * and next free blocks. If coalesce is not done a new
1111 * free area is inserted. If VA has been merged, it is
1112 * freed.
1113 *
1114 * Please note, it can return NULL in case of overlap
1115 * ranges, followed by WARN() report. Despite it is a
1116 * buggy behaviour, a system can be alive and keep
1117 * ongoing.
1118 */
1119 static __always_inline struct vmap_area *
1120 __merge_or_add_vmap_area(struct vmap_area *va,
1121 struct rb_root *root, struct list_head *head, bool augment)
1122 {
1123 struct vmap_area *sibling;
1124 struct list_head *next;
1125 struct rb_node **link;
1126 struct rb_node *parent;
1127 bool merged = false;
1128
1129 /*
1130 * Find a place in the tree where VA potentially will be
1131 * inserted, unless it is merged with its sibling/siblings.
1132 */
1133 link = find_va_links(va, root, NULL, &parent);
1134 if (!link)
1135 return NULL;
1136
1137 /*
1138 * Get next node of VA to check if merging can be done.
1139 */
1140 next = get_va_next_sibling(parent, link);
1141 if (unlikely(next == NULL))
1142 goto insert;
1143
1144 /*
1145 * start end
1146 * | |
1147 * |<------VA------>|<-----Next----->|
1148 * | |
1149 * start end
1150 */
1151 if (next != head) {
1152 sibling = list_entry(next, struct vmap_area, list);
1153 if (sibling->va_start == va->va_end) {
1154 sibling->va_start = va->va_start;
1155
1156 /* Free vmap_area object. */
1157 kmem_cache_free(vmap_area_cachep, va);
1158
1159 /* Point to the new merged area. */
1160 va = sibling;
1161 merged = true;
1162 }
1163 }
1164
1165 /*
1166 * start end
1167 * | |
1168 * |<-----Prev----->|<------VA------>|
1169 * | |
1170 * start end
1171 */
1172 if (next->prev != head) {
1173 sibling = list_entry(next->prev, struct vmap_area, list);
1174 if (sibling->va_end == va->va_start) {
1175 /*
1176 * If both neighbors are coalesced, it is important
1177 * to unlink the "next" node first, followed by merging
1178 * with "previous" one. Otherwise the tree might not be
1179 * fully populated if a sibling's augmented value is
1180 * "normalized" because of rotation operations.
1181 */
1182 if (merged)
1183 __unlink_va(va, root, augment);
1184
1185 sibling->va_end = va->va_end;
1186
1187 /* Free vmap_area object. */
1188 kmem_cache_free(vmap_area_cachep, va);
1189
1190 /* Point to the new merged area. */
1191 va = sibling;
1192 merged = true;
1193 }
1194 }
1195
1196 insert:
1197 if (!merged)
1198 __link_va(va, root, parent, link, head, augment);
1199
1200 return va;
1201 }
1202
1203 static __always_inline struct vmap_area *
1204 merge_or_add_vmap_area(struct vmap_area *va,
1205 struct rb_root *root, struct list_head *head)
1206 {
1207 return __merge_or_add_vmap_area(va, root, head, false);
1208 }
1209
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area_augment(struct vmap_area *va,
1212 struct rb_root *root, struct list_head *head)
1213 {
1214 va = __merge_or_add_vmap_area(va, root, head, true);
1215 if (va)
1216 augment_tree_propagate_from(va);
1217
1218 return va;
1219 }
1220
1221 static __always_inline bool
1222 is_within_this_va(struct vmap_area *va, unsigned long size,
1223 unsigned long align, unsigned long vstart)
1224 {
1225 unsigned long nva_start_addr;
1226
1227 if (va->va_start > vstart)
1228 nva_start_addr = ALIGN(va->va_start, align);
1229 else
1230 nva_start_addr = ALIGN(vstart, align);
1231
1232 /* Can be overflowed due to big size or alignment. */
1233 if (nva_start_addr + size < nva_start_addr ||
1234 nva_start_addr < vstart)
1235 return false;
1236
1237 return (nva_start_addr + size <= va->va_end);
1238 }
1239
1240 /*
1241 * Find the first free block(lowest start address) in the tree,
1242 * that will accomplish the request corresponding to passing
1243 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1244 * a search length is adjusted to account for worst case alignment
1245 * overhead.
1246 */
1247 static __always_inline struct vmap_area *
1248 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1249 unsigned long align, unsigned long vstart, bool adjust_search_size)
1250 {
1251 struct vmap_area *va;
1252 struct rb_node *node;
1253 unsigned long length;
1254
1255 /* Start from the root. */
1256 node = root->rb_node;
1257
1258 /* Adjust the search size for alignment overhead. */
1259 length = adjust_search_size ? size + align - 1 : size;
1260
1261 while (node) {
1262 va = rb_entry(node, struct vmap_area, rb_node);
1263
1264 if (get_subtree_max_size(node->rb_left) >= length &&
1265 vstart < va->va_start) {
1266 node = node->rb_left;
1267 } else {
1268 if (is_within_this_va(va, size, align, vstart))
1269 return va;
1270
1271 /*
1272 * Does not make sense to go deeper towards the right
1273 * sub-tree if it does not have a free block that is
1274 * equal or bigger to the requested search length.
1275 */
1276 if (get_subtree_max_size(node->rb_right) >= length) {
1277 node = node->rb_right;
1278 continue;
1279 }
1280
1281 /*
1282 * OK. We roll back and find the first right sub-tree,
1283 * that will satisfy the search criteria. It can happen
1284 * due to "vstart" restriction or an alignment overhead
1285 * that is bigger then PAGE_SIZE.
1286 */
1287 while ((node = rb_parent(node))) {
1288 va = rb_entry(node, struct vmap_area, rb_node);
1289 if (is_within_this_va(va, size, align, vstart))
1290 return va;
1291
1292 if (get_subtree_max_size(node->rb_right) >= length &&
1293 vstart <= va->va_start) {
1294 /*
1295 * Shift the vstart forward. Please note, we update it with
1296 * parent's start address adding "1" because we do not want
1297 * to enter same sub-tree after it has already been checked
1298 * and no suitable free block found there.
1299 */
1300 vstart = va->va_start + 1;
1301 node = node->rb_right;
1302 break;
1303 }
1304 }
1305 }
1306 }
1307
1308 return NULL;
1309 }
1310
1311 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1312 #include <linux/random.h>
1313
1314 static struct vmap_area *
1315 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1316 unsigned long align, unsigned long vstart)
1317 {
1318 struct vmap_area *va;
1319
1320 list_for_each_entry(va, head, list) {
1321 if (!is_within_this_va(va, size, align, vstart))
1322 continue;
1323
1324 return va;
1325 }
1326
1327 return NULL;
1328 }
1329
1330 static void
1331 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1332 unsigned long size, unsigned long align)
1333 {
1334 struct vmap_area *va_1, *va_2;
1335 unsigned long vstart;
1336 unsigned int rnd;
1337
1338 get_random_bytes(&rnd, sizeof(rnd));
1339 vstart = VMALLOC_START + rnd;
1340
1341 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1342 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1343
1344 if (va_1 != va_2)
1345 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1346 va_1, va_2, vstart);
1347 }
1348 #endif
1349
1350 enum fit_type {
1351 NOTHING_FIT = 0,
1352 FL_FIT_TYPE = 1, /* full fit */
1353 LE_FIT_TYPE = 2, /* left edge fit */
1354 RE_FIT_TYPE = 3, /* right edge fit */
1355 NE_FIT_TYPE = 4 /* no edge fit */
1356 };
1357
1358 static __always_inline enum fit_type
1359 classify_va_fit_type(struct vmap_area *va,
1360 unsigned long nva_start_addr, unsigned long size)
1361 {
1362 enum fit_type type;
1363
1364 /* Check if it is within VA. */
1365 if (nva_start_addr < va->va_start ||
1366 nva_start_addr + size > va->va_end)
1367 return NOTHING_FIT;
1368
1369 /* Now classify. */
1370 if (va->va_start == nva_start_addr) {
1371 if (va->va_end == nva_start_addr + size)
1372 type = FL_FIT_TYPE;
1373 else
1374 type = LE_FIT_TYPE;
1375 } else if (va->va_end == nva_start_addr + size) {
1376 type = RE_FIT_TYPE;
1377 } else {
1378 type = NE_FIT_TYPE;
1379 }
1380
1381 return type;
1382 }
1383
1384 static __always_inline int
1385 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1386 struct vmap_area *va, unsigned long nva_start_addr,
1387 unsigned long size)
1388 {
1389 struct vmap_area *lva = NULL;
1390 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1391
1392 if (type == FL_FIT_TYPE) {
1393 /*
1394 * No need to split VA, it fully fits.
1395 *
1396 * | |
1397 * V NVA V
1398 * |---------------|
1399 */
1400 unlink_va_augment(va, root);
1401 kmem_cache_free(vmap_area_cachep, va);
1402 } else if (type == LE_FIT_TYPE) {
1403 /*
1404 * Split left edge of fit VA.
1405 *
1406 * | |
1407 * V NVA V R
1408 * |-------|-------|
1409 */
1410 va->va_start += size;
1411 } else if (type == RE_FIT_TYPE) {
1412 /*
1413 * Split right edge of fit VA.
1414 *
1415 * | |
1416 * L V NVA V
1417 * |-------|-------|
1418 */
1419 va->va_end = nva_start_addr;
1420 } else if (type == NE_FIT_TYPE) {
1421 /*
1422 * Split no edge of fit VA.
1423 *
1424 * | |
1425 * L V NVA V R
1426 * |---|-------|---|
1427 */
1428 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1429 if (unlikely(!lva)) {
1430 /*
1431 * For percpu allocator we do not do any pre-allocation
1432 * and leave it as it is. The reason is it most likely
1433 * never ends up with NE_FIT_TYPE splitting. In case of
1434 * percpu allocations offsets and sizes are aligned to
1435 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1436 * are its main fitting cases.
1437 *
1438 * There are a few exceptions though, as an example it is
1439 * a first allocation (early boot up) when we have "one"
1440 * big free space that has to be split.
1441 *
1442 * Also we can hit this path in case of regular "vmap"
1443 * allocations, if "this" current CPU was not preloaded.
1444 * See the comment in alloc_vmap_area() why. If so, then
1445 * GFP_NOWAIT is used instead to get an extra object for
1446 * split purpose. That is rare and most time does not
1447 * occur.
1448 *
1449 * What happens if an allocation gets failed. Basically,
1450 * an "overflow" path is triggered to purge lazily freed
1451 * areas to free some memory, then, the "retry" path is
1452 * triggered to repeat one more time. See more details
1453 * in alloc_vmap_area() function.
1454 */
1455 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1456 if (!lva)
1457 return -1;
1458 }
1459
1460 /*
1461 * Build the remainder.
1462 */
1463 lva->va_start = va->va_start;
1464 lva->va_end = nva_start_addr;
1465
1466 /*
1467 * Shrink this VA to remaining size.
1468 */
1469 va->va_start = nva_start_addr + size;
1470 } else {
1471 return -1;
1472 }
1473
1474 if (type != FL_FIT_TYPE) {
1475 augment_tree_propagate_from(va);
1476
1477 if (lva) /* type == NE_FIT_TYPE */
1478 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1479 }
1480
1481 return 0;
1482 }
1483
1484 /*
1485 * Returns a start address of the newly allocated area, if success.
1486 * Otherwise a vend is returned that indicates failure.
1487 */
1488 static __always_inline unsigned long
1489 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1490 unsigned long size, unsigned long align,
1491 unsigned long vstart, unsigned long vend)
1492 {
1493 bool adjust_search_size = true;
1494 unsigned long nva_start_addr;
1495 struct vmap_area *va;
1496 int ret;
1497
1498 /*
1499 * Do not adjust when:
1500 * a) align <= PAGE_SIZE, because it does not make any sense.
1501 * All blocks(their start addresses) are at least PAGE_SIZE
1502 * aligned anyway;
1503 * b) a short range where a requested size corresponds to exactly
1504 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1505 * With adjusted search length an allocation would not succeed.
1506 */
1507 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1508 adjust_search_size = false;
1509
1510 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1511 if (unlikely(!va))
1512 return vend;
1513
1514 if (va->va_start > vstart)
1515 nva_start_addr = ALIGN(va->va_start, align);
1516 else
1517 nva_start_addr = ALIGN(vstart, align);
1518
1519 /* Check the "vend" restriction. */
1520 if (nva_start_addr + size > vend)
1521 return vend;
1522
1523 /* Update the free vmap_area. */
1524 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1525 if (WARN_ON_ONCE(ret))
1526 return vend;
1527
1528 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1529 find_vmap_lowest_match_check(root, head, size, align);
1530 #endif
1531
1532 return nva_start_addr;
1533 }
1534
1535 /*
1536 * Free a region of KVA allocated by alloc_vmap_area
1537 */
1538 static void free_vmap_area(struct vmap_area *va)
1539 {
1540 /*
1541 * Remove from the busy tree/list.
1542 */
1543 spin_lock(&vmap_area_lock);
1544 unlink_va(va, &vmap_area_root);
1545 spin_unlock(&vmap_area_lock);
1546
1547 /*
1548 * Insert/Merge it back to the free tree/list.
1549 */
1550 spin_lock(&free_vmap_area_lock);
1551 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1552 spin_unlock(&free_vmap_area_lock);
1553 }
1554
1555 static inline void
1556 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1557 {
1558 struct vmap_area *va = NULL;
1559
1560 /*
1561 * Preload this CPU with one extra vmap_area object. It is used
1562 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1563 * a CPU that does an allocation is preloaded.
1564 *
1565 * We do it in non-atomic context, thus it allows us to use more
1566 * permissive allocation masks to be more stable under low memory
1567 * condition and high memory pressure.
1568 */
1569 if (!this_cpu_read(ne_fit_preload_node))
1570 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1571
1572 spin_lock(lock);
1573
1574 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1575 kmem_cache_free(vmap_area_cachep, va);
1576 }
1577
1578 /*
1579 * Allocate a region of KVA of the specified size and alignment, within the
1580 * vstart and vend.
1581 */
1582 static struct vmap_area *alloc_vmap_area(unsigned long size,
1583 unsigned long align,
1584 unsigned long vstart, unsigned long vend,
1585 int node, gfp_t gfp_mask,
1586 unsigned long va_flags)
1587 {
1588 struct vmap_area *va;
1589 unsigned long freed;
1590 unsigned long addr;
1591 int purged = 0;
1592 int ret;
1593
1594 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1595 return ERR_PTR(-EINVAL);
1596
1597 if (unlikely(!vmap_initialized))
1598 return ERR_PTR(-EBUSY);
1599
1600 might_sleep();
1601 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1602
1603 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1604 if (unlikely(!va))
1605 return ERR_PTR(-ENOMEM);
1606
1607 /*
1608 * Only scan the relevant parts containing pointers to other objects
1609 * to avoid false negatives.
1610 */
1611 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1612
1613 retry:
1614 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1615 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1616 size, align, vstart, vend);
1617 spin_unlock(&free_vmap_area_lock);
1618
1619 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1620
1621 /*
1622 * If an allocation fails, the "vend" address is
1623 * returned. Therefore trigger the overflow path.
1624 */
1625 if (unlikely(addr == vend))
1626 goto overflow;
1627
1628 va->va_start = addr;
1629 va->va_end = addr + size;
1630 va->vm = NULL;
1631 va->flags = va_flags;
1632
1633 spin_lock(&vmap_area_lock);
1634 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1635 spin_unlock(&vmap_area_lock);
1636
1637 BUG_ON(!IS_ALIGNED(va->va_start, align));
1638 BUG_ON(va->va_start < vstart);
1639 BUG_ON(va->va_end > vend);
1640
1641 ret = kasan_populate_vmalloc(addr, size);
1642 if (ret) {
1643 free_vmap_area(va);
1644 return ERR_PTR(ret);
1645 }
1646
1647 return va;
1648
1649 overflow:
1650 if (!purged) {
1651 reclaim_and_purge_vmap_areas();
1652 purged = 1;
1653 goto retry;
1654 }
1655
1656 freed = 0;
1657 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1658
1659 if (freed > 0) {
1660 purged = 0;
1661 goto retry;
1662 }
1663
1664 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1665 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1666 size);
1667
1668 kmem_cache_free(vmap_area_cachep, va);
1669 return ERR_PTR(-EBUSY);
1670 }
1671
1672 int register_vmap_purge_notifier(struct notifier_block *nb)
1673 {
1674 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1675 }
1676 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1677
1678 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1679 {
1680 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1681 }
1682 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1683
1684 /*
1685 * lazy_max_pages is the maximum amount of virtual address space we gather up
1686 * before attempting to purge with a TLB flush.
1687 *
1688 * There is a tradeoff here: a larger number will cover more kernel page tables
1689 * and take slightly longer to purge, but it will linearly reduce the number of
1690 * global TLB flushes that must be performed. It would seem natural to scale
1691 * this number up linearly with the number of CPUs (because vmapping activity
1692 * could also scale linearly with the number of CPUs), however it is likely
1693 * that in practice, workloads might be constrained in other ways that mean
1694 * vmap activity will not scale linearly with CPUs. Also, I want to be
1695 * conservative and not introduce a big latency on huge systems, so go with
1696 * a less aggressive log scale. It will still be an improvement over the old
1697 * code, and it will be simple to change the scale factor if we find that it
1698 * becomes a problem on bigger systems.
1699 */
1700 static unsigned long lazy_max_pages(void)
1701 {
1702 unsigned int log;
1703
1704 log = fls(num_online_cpus());
1705
1706 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1707 }
1708
1709 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1710
1711 /*
1712 * Serialize vmap purging. There is no actual critical section protected
1713 * by this lock, but we want to avoid concurrent calls for performance
1714 * reasons and to make the pcpu_get_vm_areas more deterministic.
1715 */
1716 static DEFINE_MUTEX(vmap_purge_lock);
1717
1718 /* for per-CPU blocks */
1719 static void purge_fragmented_blocks_allcpus(void);
1720
1721 /*
1722 * Purges all lazily-freed vmap areas.
1723 */
1724 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1725 {
1726 unsigned long resched_threshold;
1727 unsigned int num_purged_areas = 0;
1728 struct list_head local_purge_list;
1729 struct vmap_area *va, *n_va;
1730
1731 lockdep_assert_held(&vmap_purge_lock);
1732
1733 spin_lock(&purge_vmap_area_lock);
1734 purge_vmap_area_root = RB_ROOT;
1735 list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736 spin_unlock(&purge_vmap_area_lock);
1737
1738 if (unlikely(list_empty(&local_purge_list)))
1739 goto out;
1740
1741 start = min(start,
1742 list_first_entry(&local_purge_list,
1743 struct vmap_area, list)->va_start);
1744
1745 end = max(end,
1746 list_last_entry(&local_purge_list,
1747 struct vmap_area, list)->va_end);
1748
1749 flush_tlb_kernel_range(start, end);
1750 resched_threshold = lazy_max_pages() << 1;
1751
1752 spin_lock(&free_vmap_area_lock);
1753 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755 unsigned long orig_start = va->va_start;
1756 unsigned long orig_end = va->va_end;
1757
1758 /*
1759 * Finally insert or merge lazily-freed area. It is
1760 * detached and there is no need to "unlink" it from
1761 * anything.
1762 */
1763 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764 &free_vmap_area_list);
1765
1766 if (!va)
1767 continue;
1768
1769 if (is_vmalloc_or_module_addr((void *)orig_start))
1770 kasan_release_vmalloc(orig_start, orig_end,
1771 va->va_start, va->va_end);
1772
1773 atomic_long_sub(nr, &vmap_lazy_nr);
1774 num_purged_areas++;
1775
1776 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1777 cond_resched_lock(&free_vmap_area_lock);
1778 }
1779 spin_unlock(&free_vmap_area_lock);
1780
1781 out:
1782 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1783 return num_purged_areas > 0;
1784 }
1785
1786 /*
1787 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1788 */
1789 static void reclaim_and_purge_vmap_areas(void)
1790
1791 {
1792 mutex_lock(&vmap_purge_lock);
1793 purge_fragmented_blocks_allcpus();
1794 __purge_vmap_area_lazy(ULONG_MAX, 0);
1795 mutex_unlock(&vmap_purge_lock);
1796 }
1797
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 unsigned long nr_lazy;
1801
1802 do {
1803 mutex_lock(&vmap_purge_lock);
1804 __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 mutex_unlock(&vmap_purge_lock);
1806
1807 /* Recheck if further work is required. */
1808 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 } while (nr_lazy > lazy_max_pages());
1810 }
1811
1812 /*
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
1816 */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 unsigned long nr_lazy_max = lazy_max_pages();
1820 unsigned long va_start = va->va_start;
1821 unsigned long nr_lazy;
1822
1823 if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 return;
1825
1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 PAGE_SHIFT, &vmap_lazy_nr);
1828
1829 /*
1830 * Merge or place it to the purge tree/list.
1831 */
1832 spin_lock(&purge_vmap_area_lock);
1833 merge_or_add_vmap_area(va,
1834 &purge_vmap_area_root, &purge_vmap_area_list);
1835 spin_unlock(&purge_vmap_area_lock);
1836
1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
1839 /* After this point, we may free va at any time */
1840 if (unlikely(nr_lazy > nr_lazy_max))
1841 schedule_work(&drain_vmap_work);
1842 }
1843
1844 /*
1845 * Free and unmap a vmap area
1846 */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 flush_cache_vunmap(va->va_start, va->va_end);
1850 vunmap_range_noflush(va->va_start, va->va_end);
1851 if (debug_pagealloc_enabled_static())
1852 flush_tlb_kernel_range(va->va_start, va->va_end);
1853
1854 free_vmap_area_noflush(va);
1855 }
1856
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 struct vmap_area *va;
1860
1861 spin_lock(&vmap_area_lock);
1862 va = __find_vmap_area(addr, &vmap_area_root);
1863 spin_unlock(&vmap_area_lock);
1864
1865 return va;
1866 }
1867
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 struct vmap_area *va;
1871
1872 spin_lock(&vmap_area_lock);
1873 va = __find_vmap_area(addr, &vmap_area_root);
1874 if (va)
1875 unlink_va(va, &vmap_area_root);
1876 spin_unlock(&vmap_area_lock);
1877
1878 return va;
1879 }
1880
1881 /*** Per cpu kva allocator ***/
1882
1883 /*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887 /*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE (128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1896 #endif
1897
1898 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS \
1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908
1909 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910
1911 /*
1912 * Purge threshold to prevent overeager purging of fragmented blocks for
1913 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1914 */
1915 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
1916
1917 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1918 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1919 #define VMAP_FLAGS_MASK 0x3
1920
1921 struct vmap_block_queue {
1922 spinlock_t lock;
1923 struct list_head free;
1924
1925 /*
1926 * An xarray requires an extra memory dynamically to
1927 * be allocated. If it is an issue, we can use rb-tree
1928 * instead.
1929 */
1930 struct xarray vmap_blocks;
1931 };
1932
1933 struct vmap_block {
1934 spinlock_t lock;
1935 struct vmap_area *va;
1936 unsigned long free, dirty;
1937 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1938 unsigned long dirty_min, dirty_max; /*< dirty range */
1939 struct list_head free_list;
1940 struct rcu_head rcu_head;
1941 struct list_head purge;
1942 };
1943
1944 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1945 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1946
1947 /*
1948 * In order to fast access to any "vmap_block" associated with a
1949 * specific address, we use a hash.
1950 *
1951 * A per-cpu vmap_block_queue is used in both ways, to serialize
1952 * an access to free block chains among CPUs(alloc path) and it
1953 * also acts as a vmap_block hash(alloc/free paths). It means we
1954 * overload it, since we already have the per-cpu array which is
1955 * used as a hash table. When used as a hash a 'cpu' passed to
1956 * per_cpu() is not actually a CPU but rather a hash index.
1957 *
1958 * A hash function is addr_to_vb_xa() which hashes any address
1959 * to a specific index(in a hash) it belongs to. This then uses a
1960 * per_cpu() macro to access an array with generated index.
1961 *
1962 * An example:
1963 *
1964 * CPU_1 CPU_2 CPU_0
1965 * | | |
1966 * V V V
1967 * 0 10 20 30 40 50 60
1968 * |------|------|------|------|------|------|...<vmap address space>
1969 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1970 *
1971 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1972 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1973 *
1974 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1975 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1976 *
1977 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1978 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1979 *
1980 * This technique almost always avoids lock contention on insert/remove,
1981 * however xarray spinlocks protect against any contention that remains.
1982 */
1983 static struct xarray *
1984 addr_to_vb_xa(unsigned long addr)
1985 {
1986 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1987
1988 return &per_cpu(vmap_block_queue, index).vmap_blocks;
1989 }
1990
1991 /*
1992 * We should probably have a fallback mechanism to allocate virtual memory
1993 * out of partially filled vmap blocks. However vmap block sizing should be
1994 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1995 * big problem.
1996 */
1997
1998 static unsigned long addr_to_vb_idx(unsigned long addr)
1999 {
2000 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2001 addr /= VMAP_BLOCK_SIZE;
2002 return addr;
2003 }
2004
2005 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2006 {
2007 unsigned long addr;
2008
2009 addr = va_start + (pages_off << PAGE_SHIFT);
2010 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2011 return (void *)addr;
2012 }
2013
2014 /**
2015 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2016 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2017 * @order: how many 2^order pages should be occupied in newly allocated block
2018 * @gfp_mask: flags for the page level allocator
2019 *
2020 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2021 */
2022 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2023 {
2024 struct vmap_block_queue *vbq;
2025 struct vmap_block *vb;
2026 struct vmap_area *va;
2027 struct xarray *xa;
2028 unsigned long vb_idx;
2029 int node, err;
2030 void *vaddr;
2031
2032 node = numa_node_id();
2033
2034 vb = kmalloc_node(sizeof(struct vmap_block),
2035 gfp_mask & GFP_RECLAIM_MASK, node);
2036 if (unlikely(!vb))
2037 return ERR_PTR(-ENOMEM);
2038
2039 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2040 VMALLOC_START, VMALLOC_END,
2041 node, gfp_mask,
2042 VMAP_RAM|VMAP_BLOCK);
2043 if (IS_ERR(va)) {
2044 kfree(vb);
2045 return ERR_CAST(va);
2046 }
2047
2048 vaddr = vmap_block_vaddr(va->va_start, 0);
2049 spin_lock_init(&vb->lock);
2050 vb->va = va;
2051 /* At least something should be left free */
2052 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2053 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2054 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2055 vb->dirty = 0;
2056 vb->dirty_min = VMAP_BBMAP_BITS;
2057 vb->dirty_max = 0;
2058 bitmap_set(vb->used_map, 0, (1UL << order));
2059 INIT_LIST_HEAD(&vb->free_list);
2060
2061 xa = addr_to_vb_xa(va->va_start);
2062 vb_idx = addr_to_vb_idx(va->va_start);
2063 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2064 if (err) {
2065 kfree(vb);
2066 free_vmap_area(va);
2067 return ERR_PTR(err);
2068 }
2069
2070 vbq = raw_cpu_ptr(&vmap_block_queue);
2071 spin_lock(&vbq->lock);
2072 list_add_tail_rcu(&vb->free_list, &vbq->free);
2073 spin_unlock(&vbq->lock);
2074
2075 return vaddr;
2076 }
2077
2078 static void free_vmap_block(struct vmap_block *vb)
2079 {
2080 struct vmap_block *tmp;
2081 struct xarray *xa;
2082
2083 xa = addr_to_vb_xa(vb->va->va_start);
2084 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2085 BUG_ON(tmp != vb);
2086
2087 spin_lock(&vmap_area_lock);
2088 unlink_va(vb->va, &vmap_area_root);
2089 spin_unlock(&vmap_area_lock);
2090
2091 free_vmap_area_noflush(vb->va);
2092 kfree_rcu(vb, rcu_head);
2093 }
2094
2095 static bool purge_fragmented_block(struct vmap_block *vb,
2096 struct vmap_block_queue *vbq, struct list_head *purge_list,
2097 bool force_purge)
2098 {
2099 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2100 vb->dirty == VMAP_BBMAP_BITS)
2101 return false;
2102
2103 /* Don't overeagerly purge usable blocks unless requested */
2104 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2105 return false;
2106
2107 /* prevent further allocs after releasing lock */
2108 WRITE_ONCE(vb->free, 0);
2109 /* prevent purging it again */
2110 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2111 vb->dirty_min = 0;
2112 vb->dirty_max = VMAP_BBMAP_BITS;
2113 spin_lock(&vbq->lock);
2114 list_del_rcu(&vb->free_list);
2115 spin_unlock(&vbq->lock);
2116 list_add_tail(&vb->purge, purge_list);
2117 return true;
2118 }
2119
2120 static void free_purged_blocks(struct list_head *purge_list)
2121 {
2122 struct vmap_block *vb, *n_vb;
2123
2124 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2125 list_del(&vb->purge);
2126 free_vmap_block(vb);
2127 }
2128 }
2129
2130 static void purge_fragmented_blocks(int cpu)
2131 {
2132 LIST_HEAD(purge);
2133 struct vmap_block *vb;
2134 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2135
2136 rcu_read_lock();
2137 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2138 unsigned long free = READ_ONCE(vb->free);
2139 unsigned long dirty = READ_ONCE(vb->dirty);
2140
2141 if (free + dirty != VMAP_BBMAP_BITS ||
2142 dirty == VMAP_BBMAP_BITS)
2143 continue;
2144
2145 spin_lock(&vb->lock);
2146 purge_fragmented_block(vb, vbq, &purge, true);
2147 spin_unlock(&vb->lock);
2148 }
2149 rcu_read_unlock();
2150 free_purged_blocks(&purge);
2151 }
2152
2153 static void purge_fragmented_blocks_allcpus(void)
2154 {
2155 int cpu;
2156
2157 for_each_possible_cpu(cpu)
2158 purge_fragmented_blocks(cpu);
2159 }
2160
2161 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2162 {
2163 struct vmap_block_queue *vbq;
2164 struct vmap_block *vb;
2165 void *vaddr = NULL;
2166 unsigned int order;
2167
2168 BUG_ON(offset_in_page(size));
2169 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2170 if (WARN_ON(size == 0)) {
2171 /*
2172 * Allocating 0 bytes isn't what caller wants since
2173 * get_order(0) returns funny result. Just warn and terminate
2174 * early.
2175 */
2176 return NULL;
2177 }
2178 order = get_order(size);
2179
2180 rcu_read_lock();
2181 vbq = raw_cpu_ptr(&vmap_block_queue);
2182 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183 unsigned long pages_off;
2184
2185 if (READ_ONCE(vb->free) < (1UL << order))
2186 continue;
2187
2188 spin_lock(&vb->lock);
2189 if (vb->free < (1UL << order)) {
2190 spin_unlock(&vb->lock);
2191 continue;
2192 }
2193
2194 pages_off = VMAP_BBMAP_BITS - vb->free;
2195 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2196 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2197 bitmap_set(vb->used_map, pages_off, (1UL << order));
2198 if (vb->free == 0) {
2199 spin_lock(&vbq->lock);
2200 list_del_rcu(&vb->free_list);
2201 spin_unlock(&vbq->lock);
2202 }
2203
2204 spin_unlock(&vb->lock);
2205 break;
2206 }
2207
2208 rcu_read_unlock();
2209
2210 /* Allocate new block if nothing was found */
2211 if (!vaddr)
2212 vaddr = new_vmap_block(order, gfp_mask);
2213
2214 return vaddr;
2215 }
2216
2217 static void vb_free(unsigned long addr, unsigned long size)
2218 {
2219 unsigned long offset;
2220 unsigned int order;
2221 struct vmap_block *vb;
2222 struct xarray *xa;
2223
2224 BUG_ON(offset_in_page(size));
2225 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2226
2227 flush_cache_vunmap(addr, addr + size);
2228
2229 order = get_order(size);
2230 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2231
2232 xa = addr_to_vb_xa(addr);
2233 vb = xa_load(xa, addr_to_vb_idx(addr));
2234
2235 spin_lock(&vb->lock);
2236 bitmap_clear(vb->used_map, offset, (1UL << order));
2237 spin_unlock(&vb->lock);
2238
2239 vunmap_range_noflush(addr, addr + size);
2240
2241 if (debug_pagealloc_enabled_static())
2242 flush_tlb_kernel_range(addr, addr + size);
2243
2244 spin_lock(&vb->lock);
2245
2246 /* Expand the not yet TLB flushed dirty range */
2247 vb->dirty_min = min(vb->dirty_min, offset);
2248 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2249
2250 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2251 if (vb->dirty == VMAP_BBMAP_BITS) {
2252 BUG_ON(vb->free);
2253 spin_unlock(&vb->lock);
2254 free_vmap_block(vb);
2255 } else
2256 spin_unlock(&vb->lock);
2257 }
2258
2259 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2260 {
2261 LIST_HEAD(purge_list);
2262 int cpu;
2263
2264 if (unlikely(!vmap_initialized))
2265 return;
2266
2267 mutex_lock(&vmap_purge_lock);
2268
2269 for_each_possible_cpu(cpu) {
2270 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2271 struct vmap_block *vb;
2272 unsigned long idx;
2273
2274 rcu_read_lock();
2275 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2276 spin_lock(&vb->lock);
2277
2278 /*
2279 * Try to purge a fragmented block first. If it's
2280 * not purgeable, check whether there is dirty
2281 * space to be flushed.
2282 */
2283 if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2284 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2285 unsigned long va_start = vb->va->va_start;
2286 unsigned long s, e;
2287
2288 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2289 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2290
2291 start = min(s, start);
2292 end = max(e, end);
2293
2294 /* Prevent that this is flushed again */
2295 vb->dirty_min = VMAP_BBMAP_BITS;
2296 vb->dirty_max = 0;
2297
2298 flush = 1;
2299 }
2300 spin_unlock(&vb->lock);
2301 }
2302 rcu_read_unlock();
2303 }
2304 free_purged_blocks(&purge_list);
2305
2306 if (!__purge_vmap_area_lazy(start, end) && flush)
2307 flush_tlb_kernel_range(start, end);
2308 mutex_unlock(&vmap_purge_lock);
2309 }
2310
2311 /**
2312 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2313 *
2314 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2315 * to amortize TLB flushing overheads. What this means is that any page you
2316 * have now, may, in a former life, have been mapped into kernel virtual
2317 * address by the vmap layer and so there might be some CPUs with TLB entries
2318 * still referencing that page (additional to the regular 1:1 kernel mapping).
2319 *
2320 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2321 * be sure that none of the pages we have control over will have any aliases
2322 * from the vmap layer.
2323 */
2324 void vm_unmap_aliases(void)
2325 {
2326 unsigned long start = ULONG_MAX, end = 0;
2327 int flush = 0;
2328
2329 _vm_unmap_aliases(start, end, flush);
2330 }
2331 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2332
2333 /**
2334 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2335 * @mem: the pointer returned by vm_map_ram
2336 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2337 */
2338 void vm_unmap_ram(const void *mem, unsigned int count)
2339 {
2340 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2342 struct vmap_area *va;
2343
2344 might_sleep();
2345 BUG_ON(!addr);
2346 BUG_ON(addr < VMALLOC_START);
2347 BUG_ON(addr > VMALLOC_END);
2348 BUG_ON(!PAGE_ALIGNED(addr));
2349
2350 kasan_poison_vmalloc(mem, size);
2351
2352 if (likely(count <= VMAP_MAX_ALLOC)) {
2353 debug_check_no_locks_freed(mem, size);
2354 vb_free(addr, size);
2355 return;
2356 }
2357
2358 va = find_unlink_vmap_area(addr);
2359 if (WARN_ON_ONCE(!va))
2360 return;
2361
2362 debug_check_no_locks_freed((void *)va->va_start,
2363 (va->va_end - va->va_start));
2364 free_unmap_vmap_area(va);
2365 }
2366 EXPORT_SYMBOL(vm_unmap_ram);
2367
2368 /**
2369 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2370 * @pages: an array of pointers to the pages to be mapped
2371 * @count: number of pages
2372 * @node: prefer to allocate data structures on this node
2373 *
2374 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2375 * faster than vmap so it's good. But if you mix long-life and short-life
2376 * objects with vm_map_ram(), it could consume lots of address space through
2377 * fragmentation (especially on a 32bit machine). You could see failures in
2378 * the end. Please use this function for short-lived objects.
2379 *
2380 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2381 */
2382 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2383 {
2384 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2385 unsigned long addr;
2386 void *mem;
2387
2388 if (likely(count <= VMAP_MAX_ALLOC)) {
2389 mem = vb_alloc(size, GFP_KERNEL);
2390 if (IS_ERR(mem))
2391 return NULL;
2392 addr = (unsigned long)mem;
2393 } else {
2394 struct vmap_area *va;
2395 va = alloc_vmap_area(size, PAGE_SIZE,
2396 VMALLOC_START, VMALLOC_END,
2397 node, GFP_KERNEL, VMAP_RAM);
2398 if (IS_ERR(va))
2399 return NULL;
2400
2401 addr = va->va_start;
2402 mem = (void *)addr;
2403 }
2404
2405 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2406 pages, PAGE_SHIFT) < 0) {
2407 vm_unmap_ram(mem, count);
2408 return NULL;
2409 }
2410
2411 /*
2412 * Mark the pages as accessible, now that they are mapped.
2413 * With hardware tag-based KASAN, marking is skipped for
2414 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2415 */
2416 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2417
2418 return mem;
2419 }
2420 EXPORT_SYMBOL(vm_map_ram);
2421
2422 static struct vm_struct *vmlist __initdata;
2423
2424 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2425 {
2426 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2427 return vm->page_order;
2428 #else
2429 return 0;
2430 #endif
2431 }
2432
2433 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2434 {
2435 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2436 vm->page_order = order;
2437 #else
2438 BUG_ON(order != 0);
2439 #endif
2440 }
2441
2442 /**
2443 * vm_area_add_early - add vmap area early during boot
2444 * @vm: vm_struct to add
2445 *
2446 * This function is used to add fixed kernel vm area to vmlist before
2447 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2448 * should contain proper values and the other fields should be zero.
2449 *
2450 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2451 */
2452 void __init vm_area_add_early(struct vm_struct *vm)
2453 {
2454 struct vm_struct *tmp, **p;
2455
2456 BUG_ON(vmap_initialized);
2457 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2458 if (tmp->addr >= vm->addr) {
2459 BUG_ON(tmp->addr < vm->addr + vm->size);
2460 break;
2461 } else
2462 BUG_ON(tmp->addr + tmp->size > vm->addr);
2463 }
2464 vm->next = *p;
2465 *p = vm;
2466 }
2467
2468 /**
2469 * vm_area_register_early - register vmap area early during boot
2470 * @vm: vm_struct to register
2471 * @align: requested alignment
2472 *
2473 * This function is used to register kernel vm area before
2474 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2475 * proper values on entry and other fields should be zero. On return,
2476 * vm->addr contains the allocated address.
2477 *
2478 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2479 */
2480 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2481 {
2482 unsigned long addr = ALIGN(VMALLOC_START, align);
2483 struct vm_struct *cur, **p;
2484
2485 BUG_ON(vmap_initialized);
2486
2487 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2488 if ((unsigned long)cur->addr - addr >= vm->size)
2489 break;
2490 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2491 }
2492
2493 BUG_ON(addr > VMALLOC_END - vm->size);
2494 vm->addr = (void *)addr;
2495 vm->next = *p;
2496 *p = vm;
2497 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2498 }
2499
2500 static void vmap_init_free_space(void)
2501 {
2502 unsigned long vmap_start = 1;
2503 const unsigned long vmap_end = ULONG_MAX;
2504 struct vmap_area *busy, *free;
2505
2506 /*
2507 * B F B B B F
2508 * -|-----|.....|-----|-----|-----|.....|-
2509 * | The KVA space |
2510 * |<--------------------------------->|
2511 */
2512 list_for_each_entry(busy, &vmap_area_list, list) {
2513 if (busy->va_start - vmap_start > 0) {
2514 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2515 if (!WARN_ON_ONCE(!free)) {
2516 free->va_start = vmap_start;
2517 free->va_end = busy->va_start;
2518
2519 insert_vmap_area_augment(free, NULL,
2520 &free_vmap_area_root,
2521 &free_vmap_area_list);
2522 }
2523 }
2524
2525 vmap_start = busy->va_end;
2526 }
2527
2528 if (vmap_end - vmap_start > 0) {
2529 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2530 if (!WARN_ON_ONCE(!free)) {
2531 free->va_start = vmap_start;
2532 free->va_end = vmap_end;
2533
2534 insert_vmap_area_augment(free, NULL,
2535 &free_vmap_area_root,
2536 &free_vmap_area_list);
2537 }
2538 }
2539 }
2540
2541 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2542 struct vmap_area *va, unsigned long flags, const void *caller)
2543 {
2544 vm->flags = flags;
2545 vm->addr = (void *)va->va_start;
2546 vm->size = va->va_end - va->va_start;
2547 vm->caller = caller;
2548 va->vm = vm;
2549 }
2550
2551 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2552 unsigned long flags, const void *caller)
2553 {
2554 spin_lock(&vmap_area_lock);
2555 setup_vmalloc_vm_locked(vm, va, flags, caller);
2556 spin_unlock(&vmap_area_lock);
2557 }
2558
2559 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2560 {
2561 /*
2562 * Before removing VM_UNINITIALIZED,
2563 * we should make sure that vm has proper values.
2564 * Pair with smp_rmb() in show_numa_info().
2565 */
2566 smp_wmb();
2567 vm->flags &= ~VM_UNINITIALIZED;
2568 }
2569
2570 static struct vm_struct *__get_vm_area_node(unsigned long size,
2571 unsigned long align, unsigned long shift, unsigned long flags,
2572 unsigned long start, unsigned long end, int node,
2573 gfp_t gfp_mask, const void *caller)
2574 {
2575 struct vmap_area *va;
2576 struct vm_struct *area;
2577 unsigned long requested_size = size;
2578
2579 BUG_ON(in_interrupt());
2580 size = ALIGN(size, 1ul << shift);
2581 if (unlikely(!size))
2582 return NULL;
2583
2584 if (flags & VM_IOREMAP)
2585 align = 1ul << clamp_t(int, get_count_order_long(size),
2586 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2587
2588 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2589 if (unlikely(!area))
2590 return NULL;
2591
2592 if (!(flags & VM_NO_GUARD))
2593 size += PAGE_SIZE;
2594
2595 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2596 if (IS_ERR(va)) {
2597 kfree(area);
2598 return NULL;
2599 }
2600
2601 setup_vmalloc_vm(area, va, flags, caller);
2602
2603 /*
2604 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2605 * best-effort approach, as they can be mapped outside of vmalloc code.
2606 * For VM_ALLOC mappings, the pages are marked as accessible after
2607 * getting mapped in __vmalloc_node_range().
2608 * With hardware tag-based KASAN, marking is skipped for
2609 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2610 */
2611 if (!(flags & VM_ALLOC))
2612 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2613 KASAN_VMALLOC_PROT_NORMAL);
2614
2615 return area;
2616 }
2617
2618 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2619 unsigned long start, unsigned long end,
2620 const void *caller)
2621 {
2622 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2623 NUMA_NO_NODE, GFP_KERNEL, caller);
2624 }
2625
2626 /**
2627 * get_vm_area - reserve a contiguous kernel virtual area
2628 * @size: size of the area
2629 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2630 *
2631 * Search an area of @size in the kernel virtual mapping area,
2632 * and reserved it for out purposes. Returns the area descriptor
2633 * on success or %NULL on failure.
2634 *
2635 * Return: the area descriptor on success or %NULL on failure.
2636 */
2637 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2638 {
2639 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2640 VMALLOC_START, VMALLOC_END,
2641 NUMA_NO_NODE, GFP_KERNEL,
2642 __builtin_return_address(0));
2643 }
2644
2645 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2646 const void *caller)
2647 {
2648 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2649 VMALLOC_START, VMALLOC_END,
2650 NUMA_NO_NODE, GFP_KERNEL, caller);
2651 }
2652
2653 /**
2654 * find_vm_area - find a continuous kernel virtual area
2655 * @addr: base address
2656 *
2657 * Search for the kernel VM area starting at @addr, and return it.
2658 * It is up to the caller to do all required locking to keep the returned
2659 * pointer valid.
2660 *
2661 * Return: the area descriptor on success or %NULL on failure.
2662 */
2663 struct vm_struct *find_vm_area(const void *addr)
2664 {
2665 struct vmap_area *va;
2666
2667 va = find_vmap_area((unsigned long)addr);
2668 if (!va)
2669 return NULL;
2670
2671 return va->vm;
2672 }
2673
2674 /**
2675 * remove_vm_area - find and remove a continuous kernel virtual area
2676 * @addr: base address
2677 *
2678 * Search for the kernel VM area starting at @addr, and remove it.
2679 * This function returns the found VM area, but using it is NOT safe
2680 * on SMP machines, except for its size or flags.
2681 *
2682 * Return: the area descriptor on success or %NULL on failure.
2683 */
2684 struct vm_struct *remove_vm_area(const void *addr)
2685 {
2686 struct vmap_area *va;
2687 struct vm_struct *vm;
2688
2689 might_sleep();
2690
2691 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2692 addr))
2693 return NULL;
2694
2695 va = find_unlink_vmap_area((unsigned long)addr);
2696 if (!va || !va->vm)
2697 return NULL;
2698 vm = va->vm;
2699
2700 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2701 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2702 kasan_free_module_shadow(vm);
2703 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2704
2705 free_unmap_vmap_area(va);
2706 return vm;
2707 }
2708
2709 static inline void set_area_direct_map(const struct vm_struct *area,
2710 int (*set_direct_map)(struct page *page))
2711 {
2712 int i;
2713
2714 /* HUGE_VMALLOC passes small pages to set_direct_map */
2715 for (i = 0; i < area->nr_pages; i++)
2716 if (page_address(area->pages[i]))
2717 set_direct_map(area->pages[i]);
2718 }
2719
2720 /*
2721 * Flush the vm mapping and reset the direct map.
2722 */
2723 static void vm_reset_perms(struct vm_struct *area)
2724 {
2725 unsigned long start = ULONG_MAX, end = 0;
2726 unsigned int page_order = vm_area_page_order(area);
2727 int flush_dmap = 0;
2728 int i;
2729
2730 /*
2731 * Find the start and end range of the direct mappings to make sure that
2732 * the vm_unmap_aliases() flush includes the direct map.
2733 */
2734 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2735 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2736
2737 if (addr) {
2738 unsigned long page_size;
2739
2740 page_size = PAGE_SIZE << page_order;
2741 start = min(addr, start);
2742 end = max(addr + page_size, end);
2743 flush_dmap = 1;
2744 }
2745 }
2746
2747 /*
2748 * Set direct map to something invalid so that it won't be cached if
2749 * there are any accesses after the TLB flush, then flush the TLB and
2750 * reset the direct map permissions to the default.
2751 */
2752 set_area_direct_map(area, set_direct_map_invalid_noflush);
2753 _vm_unmap_aliases(start, end, flush_dmap);
2754 set_area_direct_map(area, set_direct_map_default_noflush);
2755 }
2756
2757 static void delayed_vfree_work(struct work_struct *w)
2758 {
2759 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2760 struct llist_node *t, *llnode;
2761
2762 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2763 vfree(llnode);
2764 }
2765
2766 /**
2767 * vfree_atomic - release memory allocated by vmalloc()
2768 * @addr: memory base address
2769 *
2770 * This one is just like vfree() but can be called in any atomic context
2771 * except NMIs.
2772 */
2773 void vfree_atomic(const void *addr)
2774 {
2775 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2776
2777 BUG_ON(in_nmi());
2778 kmemleak_free(addr);
2779
2780 /*
2781 * Use raw_cpu_ptr() because this can be called from preemptible
2782 * context. Preemption is absolutely fine here, because the llist_add()
2783 * implementation is lockless, so it works even if we are adding to
2784 * another cpu's list. schedule_work() should be fine with this too.
2785 */
2786 if (addr && llist_add((struct llist_node *)addr, &p->list))
2787 schedule_work(&p->wq);
2788 }
2789
2790 /**
2791 * vfree - Release memory allocated by vmalloc()
2792 * @addr: Memory base address
2793 *
2794 * Free the virtually continuous memory area starting at @addr, as obtained
2795 * from one of the vmalloc() family of APIs. This will usually also free the
2796 * physical memory underlying the virtual allocation, but that memory is
2797 * reference counted, so it will not be freed until the last user goes away.
2798 *
2799 * If @addr is NULL, no operation is performed.
2800 *
2801 * Context:
2802 * May sleep if called *not* from interrupt context.
2803 * Must not be called in NMI context (strictly speaking, it could be
2804 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2805 * conventions for vfree() arch-dependent would be a really bad idea).
2806 */
2807 void vfree(const void *addr)
2808 {
2809 struct vm_struct *vm;
2810 int i;
2811
2812 if (unlikely(in_interrupt())) {
2813 vfree_atomic(addr);
2814 return;
2815 }
2816
2817 BUG_ON(in_nmi());
2818 kmemleak_free(addr);
2819 might_sleep();
2820
2821 if (!addr)
2822 return;
2823
2824 vm = remove_vm_area(addr);
2825 if (unlikely(!vm)) {
2826 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2827 addr);
2828 return;
2829 }
2830
2831 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2832 vm_reset_perms(vm);
2833 for (i = 0; i < vm->nr_pages; i++) {
2834 struct page *page = vm->pages[i];
2835
2836 BUG_ON(!page);
2837 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2838 /*
2839 * High-order allocs for huge vmallocs are split, so
2840 * can be freed as an array of order-0 allocations
2841 */
2842 __free_page(page);
2843 cond_resched();
2844 }
2845 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2846 kvfree(vm->pages);
2847 kfree(vm);
2848 }
2849 EXPORT_SYMBOL(vfree);
2850
2851 /**
2852 * vunmap - release virtual mapping obtained by vmap()
2853 * @addr: memory base address
2854 *
2855 * Free the virtually contiguous memory area starting at @addr,
2856 * which was created from the page array passed to vmap().
2857 *
2858 * Must not be called in interrupt context.
2859 */
2860 void vunmap(const void *addr)
2861 {
2862 struct vm_struct *vm;
2863
2864 BUG_ON(in_interrupt());
2865 might_sleep();
2866
2867 if (!addr)
2868 return;
2869 vm = remove_vm_area(addr);
2870 if (unlikely(!vm)) {
2871 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2872 addr);
2873 return;
2874 }
2875 kfree(vm);
2876 }
2877 EXPORT_SYMBOL(vunmap);
2878
2879 /**
2880 * vmap - map an array of pages into virtually contiguous space
2881 * @pages: array of page pointers
2882 * @count: number of pages to map
2883 * @flags: vm_area->flags
2884 * @prot: page protection for the mapping
2885 *
2886 * Maps @count pages from @pages into contiguous kernel virtual space.
2887 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2888 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2889 * are transferred from the caller to vmap(), and will be freed / dropped when
2890 * vfree() is called on the return value.
2891 *
2892 * Return: the address of the area or %NULL on failure
2893 */
2894 void *vmap(struct page **pages, unsigned int count,
2895 unsigned long flags, pgprot_t prot)
2896 {
2897 struct vm_struct *area;
2898 unsigned long addr;
2899 unsigned long size; /* In bytes */
2900
2901 might_sleep();
2902
2903 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2904 return NULL;
2905
2906 /*
2907 * Your top guard is someone else's bottom guard. Not having a top
2908 * guard compromises someone else's mappings too.
2909 */
2910 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2911 flags &= ~VM_NO_GUARD;
2912
2913 if (count > totalram_pages())
2914 return NULL;
2915
2916 size = (unsigned long)count << PAGE_SHIFT;
2917 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2918 if (!area)
2919 return NULL;
2920
2921 addr = (unsigned long)area->addr;
2922 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2923 pages, PAGE_SHIFT) < 0) {
2924 vunmap(area->addr);
2925 return NULL;
2926 }
2927
2928 if (flags & VM_MAP_PUT_PAGES) {
2929 area->pages = pages;
2930 area->nr_pages = count;
2931 }
2932 return area->addr;
2933 }
2934 EXPORT_SYMBOL(vmap);
2935
2936 #ifdef CONFIG_VMAP_PFN
2937 struct vmap_pfn_data {
2938 unsigned long *pfns;
2939 pgprot_t prot;
2940 unsigned int idx;
2941 };
2942
2943 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2944 {
2945 struct vmap_pfn_data *data = private;
2946 unsigned long pfn = data->pfns[data->idx];
2947 pte_t ptent;
2948
2949 if (WARN_ON_ONCE(pfn_valid(pfn)))
2950 return -EINVAL;
2951
2952 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2953 set_pte_at(&init_mm, addr, pte, ptent);
2954
2955 data->idx++;
2956 return 0;
2957 }
2958
2959 /**
2960 * vmap_pfn - map an array of PFNs into virtually contiguous space
2961 * @pfns: array of PFNs
2962 * @count: number of pages to map
2963 * @prot: page protection for the mapping
2964 *
2965 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2966 * the start address of the mapping.
2967 */
2968 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2969 {
2970 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2971 struct vm_struct *area;
2972
2973 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2974 __builtin_return_address(0));
2975 if (!area)
2976 return NULL;
2977 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2978 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2979 free_vm_area(area);
2980 return NULL;
2981 }
2982 return area->addr;
2983 }
2984 EXPORT_SYMBOL_GPL(vmap_pfn);
2985 #endif /* CONFIG_VMAP_PFN */
2986
2987 static inline unsigned int
2988 vm_area_alloc_pages(gfp_t gfp, int nid,
2989 unsigned int order, unsigned int nr_pages, struct page **pages)
2990 {
2991 unsigned int nr_allocated = 0;
2992 gfp_t alloc_gfp = gfp;
2993 bool nofail = false;
2994 struct page *page;
2995 int i;
2996
2997 /*
2998 * For order-0 pages we make use of bulk allocator, if
2999 * the page array is partly or not at all populated due
3000 * to fails, fallback to a single page allocator that is
3001 * more permissive.
3002 */
3003 if (!order) {
3004 /* bulk allocator doesn't support nofail req. officially */
3005 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3006
3007 while (nr_allocated < nr_pages) {
3008 unsigned int nr, nr_pages_request;
3009
3010 /*
3011 * A maximum allowed request is hard-coded and is 100
3012 * pages per call. That is done in order to prevent a
3013 * long preemption off scenario in the bulk-allocator
3014 * so the range is [1:100].
3015 */
3016 nr_pages_request = min(100U, nr_pages - nr_allocated);
3017
3018 /* memory allocation should consider mempolicy, we can't
3019 * wrongly use nearest node when nid == NUMA_NO_NODE,
3020 * otherwise memory may be allocated in only one node,
3021 * but mempolicy wants to alloc memory by interleaving.
3022 */
3023 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3024 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3025 nr_pages_request,
3026 pages + nr_allocated);
3027
3028 else
3029 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3030 nr_pages_request,
3031 pages + nr_allocated);
3032
3033 nr_allocated += nr;
3034 cond_resched();
3035
3036 /*
3037 * If zero or pages were obtained partly,
3038 * fallback to a single page allocator.
3039 */
3040 if (nr != nr_pages_request)
3041 break;
3042 }
3043 } else if (gfp & __GFP_NOFAIL) {
3044 /*
3045 * Higher order nofail allocations are really expensive and
3046 * potentially dangerous (pre-mature OOM, disruptive reclaim
3047 * and compaction etc.
3048 */
3049 alloc_gfp &= ~__GFP_NOFAIL;
3050 nofail = true;
3051 }
3052
3053 /* High-order pages or fallback path if "bulk" fails. */
3054 while (nr_allocated < nr_pages) {
3055 if (fatal_signal_pending(current))
3056 break;
3057
3058 if (nid == NUMA_NO_NODE)
3059 page = alloc_pages(alloc_gfp, order);
3060 else
3061 page = alloc_pages_node(nid, alloc_gfp, order);
3062 if (unlikely(!page)) {
3063 if (!nofail)
3064 break;
3065
3066 /* fall back to the zero order allocations */
3067 alloc_gfp |= __GFP_NOFAIL;
3068 order = 0;
3069 continue;
3070 }
3071
3072 /*
3073 * Higher order allocations must be able to be treated as
3074 * indepdenent small pages by callers (as they can with
3075 * small-page vmallocs). Some drivers do their own refcounting
3076 * on vmalloc_to_page() pages, some use page->mapping,
3077 * page->lru, etc.
3078 */
3079 if (order)
3080 split_page(page, order);
3081
3082 /*
3083 * Careful, we allocate and map page-order pages, but
3084 * tracking is done per PAGE_SIZE page so as to keep the
3085 * vm_struct APIs independent of the physical/mapped size.
3086 */
3087 for (i = 0; i < (1U << order); i++)
3088 pages[nr_allocated + i] = page + i;
3089
3090 cond_resched();
3091 nr_allocated += 1U << order;
3092 }
3093
3094 return nr_allocated;
3095 }
3096
3097 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3098 pgprot_t prot, unsigned int page_shift,
3099 int node)
3100 {
3101 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3102 bool nofail = gfp_mask & __GFP_NOFAIL;
3103 unsigned long addr = (unsigned long)area->addr;
3104 unsigned long size = get_vm_area_size(area);
3105 unsigned long array_size;
3106 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3107 unsigned int page_order;
3108 unsigned int flags;
3109 int ret;
3110
3111 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3112
3113 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3114 gfp_mask |= __GFP_HIGHMEM;
3115
3116 /* Please note that the recursion is strictly bounded. */
3117 if (array_size > PAGE_SIZE) {
3118 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3119 area->caller);
3120 } else {
3121 area->pages = kmalloc_node(array_size, nested_gfp, node);
3122 }
3123
3124 if (!area->pages) {
3125 warn_alloc(gfp_mask, NULL,
3126 "vmalloc error: size %lu, failed to allocated page array size %lu",
3127 nr_small_pages * PAGE_SIZE, array_size);
3128 free_vm_area(area);
3129 return NULL;
3130 }
3131
3132 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3133 page_order = vm_area_page_order(area);
3134
3135 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3136 node, page_order, nr_small_pages, area->pages);
3137
3138 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3139 if (gfp_mask & __GFP_ACCOUNT) {
3140 int i;
3141
3142 for (i = 0; i < area->nr_pages; i++)
3143 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3144 }
3145
3146 /*
3147 * If not enough pages were obtained to accomplish an
3148 * allocation request, free them via vfree() if any.
3149 */
3150 if (area->nr_pages != nr_small_pages) {
3151 /*
3152 * vm_area_alloc_pages() can fail due to insufficient memory but
3153 * also:-
3154 *
3155 * - a pending fatal signal
3156 * - insufficient huge page-order pages
3157 *
3158 * Since we always retry allocations at order-0 in the huge page
3159 * case a warning for either is spurious.
3160 */
3161 if (!fatal_signal_pending(current) && page_order == 0)
3162 warn_alloc(gfp_mask, NULL,
3163 "vmalloc error: size %lu, failed to allocate pages",
3164 area->nr_pages * PAGE_SIZE);
3165 goto fail;
3166 }
3167
3168 /*
3169 * page tables allocations ignore external gfp mask, enforce it
3170 * by the scope API
3171 */
3172 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3173 flags = memalloc_nofs_save();
3174 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3175 flags = memalloc_noio_save();
3176
3177 do {
3178 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3179 page_shift);
3180 if (nofail && (ret < 0))
3181 schedule_timeout_uninterruptible(1);
3182 } while (nofail && (ret < 0));
3183
3184 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3185 memalloc_nofs_restore(flags);
3186 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3187 memalloc_noio_restore(flags);
3188
3189 if (ret < 0) {
3190 warn_alloc(gfp_mask, NULL,
3191 "vmalloc error: size %lu, failed to map pages",
3192 area->nr_pages * PAGE_SIZE);
3193 goto fail;
3194 }
3195
3196 return area->addr;
3197
3198 fail:
3199 vfree(area->addr);
3200 return NULL;
3201 }
3202
3203 /**
3204 * __vmalloc_node_range - allocate virtually contiguous memory
3205 * @size: allocation size
3206 * @align: desired alignment
3207 * @start: vm area range start
3208 * @end: vm area range end
3209 * @gfp_mask: flags for the page level allocator
3210 * @prot: protection mask for the allocated pages
3211 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3212 * @node: node to use for allocation or NUMA_NO_NODE
3213 * @caller: caller's return address
3214 *
3215 * Allocate enough pages to cover @size from the page level
3216 * allocator with @gfp_mask flags. Please note that the full set of gfp
3217 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3218 * supported.
3219 * Zone modifiers are not supported. From the reclaim modifiers
3220 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3221 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3222 * __GFP_RETRY_MAYFAIL are not supported).
3223 *
3224 * __GFP_NOWARN can be used to suppress failures messages.
3225 *
3226 * Map them into contiguous kernel virtual space, using a pagetable
3227 * protection of @prot.
3228 *
3229 * Return: the address of the area or %NULL on failure
3230 */
3231 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3232 unsigned long start, unsigned long end, gfp_t gfp_mask,
3233 pgprot_t prot, unsigned long vm_flags, int node,
3234 const void *caller)
3235 {
3236 struct vm_struct *area;
3237 void *ret;
3238 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3239 unsigned long real_size = size;
3240 unsigned long real_align = align;
3241 unsigned int shift = PAGE_SHIFT;
3242
3243 if (WARN_ON_ONCE(!size))
3244 return NULL;
3245
3246 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3247 warn_alloc(gfp_mask, NULL,
3248 "vmalloc error: size %lu, exceeds total pages",
3249 real_size);
3250 return NULL;
3251 }
3252
3253 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3254 unsigned long size_per_node;
3255
3256 /*
3257 * Try huge pages. Only try for PAGE_KERNEL allocations,
3258 * others like modules don't yet expect huge pages in
3259 * their allocations due to apply_to_page_range not
3260 * supporting them.
3261 */
3262
3263 size_per_node = size;
3264 if (node == NUMA_NO_NODE)
3265 size_per_node /= num_online_nodes();
3266 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3267 shift = PMD_SHIFT;
3268 else
3269 shift = arch_vmap_pte_supported_shift(size_per_node);
3270
3271 align = max(real_align, 1UL << shift);
3272 size = ALIGN(real_size, 1UL << shift);
3273 }
3274
3275 again:
3276 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3277 VM_UNINITIALIZED | vm_flags, start, end, node,
3278 gfp_mask, caller);
3279 if (!area) {
3280 bool nofail = gfp_mask & __GFP_NOFAIL;
3281 warn_alloc(gfp_mask, NULL,
3282 "vmalloc error: size %lu, vm_struct allocation failed%s",
3283 real_size, (nofail) ? ". Retrying." : "");
3284 if (nofail) {
3285 schedule_timeout_uninterruptible(1);
3286 goto again;
3287 }
3288 goto fail;
3289 }
3290
3291 /*
3292 * Prepare arguments for __vmalloc_area_node() and
3293 * kasan_unpoison_vmalloc().
3294 */
3295 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3296 if (kasan_hw_tags_enabled()) {
3297 /*
3298 * Modify protection bits to allow tagging.
3299 * This must be done before mapping.
3300 */
3301 prot = arch_vmap_pgprot_tagged(prot);
3302
3303 /*
3304 * Skip page_alloc poisoning and zeroing for physical
3305 * pages backing VM_ALLOC mapping. Memory is instead
3306 * poisoned and zeroed by kasan_unpoison_vmalloc().
3307 */
3308 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3309 }
3310
3311 /* Take note that the mapping is PAGE_KERNEL. */
3312 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3313 }
3314
3315 /* Allocate physical pages and map them into vmalloc space. */
3316 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3317 if (!ret)
3318 goto fail;
3319
3320 /*
3321 * Mark the pages as accessible, now that they are mapped.
3322 * The condition for setting KASAN_VMALLOC_INIT should complement the
3323 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3324 * to make sure that memory is initialized under the same conditions.
3325 * Tag-based KASAN modes only assign tags to normal non-executable
3326 * allocations, see __kasan_unpoison_vmalloc().
3327 */
3328 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3329 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3330 (gfp_mask & __GFP_SKIP_ZERO))
3331 kasan_flags |= KASAN_VMALLOC_INIT;
3332 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3333 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3334
3335 /*
3336 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3337 * flag. It means that vm_struct is not fully initialized.
3338 * Now, it is fully initialized, so remove this flag here.
3339 */
3340 clear_vm_uninitialized_flag(area);
3341
3342 size = PAGE_ALIGN(size);
3343 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3344 kmemleak_vmalloc(area, size, gfp_mask);
3345
3346 return area->addr;
3347
3348 fail:
3349 if (shift > PAGE_SHIFT) {
3350 shift = PAGE_SHIFT;
3351 align = real_align;
3352 size = real_size;
3353 goto again;
3354 }
3355
3356 return NULL;
3357 }
3358
3359 /**
3360 * __vmalloc_node - allocate virtually contiguous memory
3361 * @size: allocation size
3362 * @align: desired alignment
3363 * @gfp_mask: flags for the page level allocator
3364 * @node: node to use for allocation or NUMA_NO_NODE
3365 * @caller: caller's return address
3366 *
3367 * Allocate enough pages to cover @size from the page level allocator with
3368 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3369 *
3370 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3371 * and __GFP_NOFAIL are not supported
3372 *
3373 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3374 * with mm people.
3375 *
3376 * Return: pointer to the allocated memory or %NULL on error
3377 */
3378 void *__vmalloc_node(unsigned long size, unsigned long align,
3379 gfp_t gfp_mask, int node, const void *caller)
3380 {
3381 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3382 gfp_mask, PAGE_KERNEL, 0, node, caller);
3383 }
3384 /*
3385 * This is only for performance analysis of vmalloc and stress purpose.
3386 * It is required by vmalloc test module, therefore do not use it other
3387 * than that.
3388 */
3389 #ifdef CONFIG_TEST_VMALLOC_MODULE
3390 EXPORT_SYMBOL_GPL(__vmalloc_node);
3391 #endif
3392
3393 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3394 {
3395 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3396 __builtin_return_address(0));
3397 }
3398 EXPORT_SYMBOL(__vmalloc);
3399
3400 /**
3401 * vmalloc - allocate virtually contiguous memory
3402 * @size: allocation size
3403 *
3404 * Allocate enough pages to cover @size from the page level
3405 * allocator and map them into contiguous kernel virtual space.
3406 *
3407 * For tight control over page level allocator and protection flags
3408 * use __vmalloc() instead.
3409 *
3410 * Return: pointer to the allocated memory or %NULL on error
3411 */
3412 void *vmalloc(unsigned long size)
3413 {
3414 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3415 __builtin_return_address(0));
3416 }
3417 EXPORT_SYMBOL(vmalloc);
3418
3419 /**
3420 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3421 * @size: allocation size
3422 * @gfp_mask: flags for the page level allocator
3423 *
3424 * Allocate enough pages to cover @size from the page level
3425 * allocator and map them into contiguous kernel virtual space.
3426 * If @size is greater than or equal to PMD_SIZE, allow using
3427 * huge pages for the memory
3428 *
3429 * Return: pointer to the allocated memory or %NULL on error
3430 */
3431 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3432 {
3433 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3434 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3435 NUMA_NO_NODE, __builtin_return_address(0));
3436 }
3437 EXPORT_SYMBOL_GPL(vmalloc_huge);
3438
3439 /**
3440 * vzalloc - allocate virtually contiguous memory with zero fill
3441 * @size: allocation size
3442 *
3443 * Allocate enough pages to cover @size from the page level
3444 * allocator and map them into contiguous kernel virtual space.
3445 * The memory allocated is set to zero.
3446 *
3447 * For tight control over page level allocator and protection flags
3448 * use __vmalloc() instead.
3449 *
3450 * Return: pointer to the allocated memory or %NULL on error
3451 */
3452 void *vzalloc(unsigned long size)
3453 {
3454 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3455 __builtin_return_address(0));
3456 }
3457 EXPORT_SYMBOL(vzalloc);
3458
3459 /**
3460 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3461 * @size: allocation size
3462 *
3463 * The resulting memory area is zeroed so it can be mapped to userspace
3464 * without leaking data.
3465 *
3466 * Return: pointer to the allocated memory or %NULL on error
3467 */
3468 void *vmalloc_user(unsigned long size)
3469 {
3470 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3471 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3472 VM_USERMAP, NUMA_NO_NODE,
3473 __builtin_return_address(0));
3474 }
3475 EXPORT_SYMBOL(vmalloc_user);
3476
3477 /**
3478 * vmalloc_node - allocate memory on a specific node
3479 * @size: allocation size
3480 * @node: numa node
3481 *
3482 * Allocate enough pages to cover @size from the page level
3483 * allocator and map them into contiguous kernel virtual space.
3484 *
3485 * For tight control over page level allocator and protection flags
3486 * use __vmalloc() instead.
3487 *
3488 * Return: pointer to the allocated memory or %NULL on error
3489 */
3490 void *vmalloc_node(unsigned long size, int node)
3491 {
3492 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3493 __builtin_return_address(0));
3494 }
3495 EXPORT_SYMBOL(vmalloc_node);
3496
3497 /**
3498 * vzalloc_node - allocate memory on a specific node with zero fill
3499 * @size: allocation size
3500 * @node: numa node
3501 *
3502 * Allocate enough pages to cover @size from the page level
3503 * allocator and map them into contiguous kernel virtual space.
3504 * The memory allocated is set to zero.
3505 *
3506 * Return: pointer to the allocated memory or %NULL on error
3507 */
3508 void *vzalloc_node(unsigned long size, int node)
3509 {
3510 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3511 __builtin_return_address(0));
3512 }
3513 EXPORT_SYMBOL(vzalloc_node);
3514
3515 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3516 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3517 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3518 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3519 #else
3520 /*
3521 * 64b systems should always have either DMA or DMA32 zones. For others
3522 * GFP_DMA32 should do the right thing and use the normal zone.
3523 */
3524 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3525 #endif
3526
3527 /**
3528 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3529 * @size: allocation size
3530 *
3531 * Allocate enough 32bit PA addressable pages to cover @size from the
3532 * page level allocator and map them into contiguous kernel virtual space.
3533 *
3534 * Return: pointer to the allocated memory or %NULL on error
3535 */
3536 void *vmalloc_32(unsigned long size)
3537 {
3538 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3539 __builtin_return_address(0));
3540 }
3541 EXPORT_SYMBOL(vmalloc_32);
3542
3543 /**
3544 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3545 * @size: allocation size
3546 *
3547 * The resulting memory area is 32bit addressable and zeroed so it can be
3548 * mapped to userspace without leaking data.
3549 *
3550 * Return: pointer to the allocated memory or %NULL on error
3551 */
3552 void *vmalloc_32_user(unsigned long size)
3553 {
3554 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3555 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3556 VM_USERMAP, NUMA_NO_NODE,
3557 __builtin_return_address(0));
3558 }
3559 EXPORT_SYMBOL(vmalloc_32_user);
3560
3561 /*
3562 * Atomically zero bytes in the iterator.
3563 *
3564 * Returns the number of zeroed bytes.
3565 */
3566 static size_t zero_iter(struct iov_iter *iter, size_t count)
3567 {
3568 size_t remains = count;
3569
3570 while (remains > 0) {
3571 size_t num, copied;
3572
3573 num = min_t(size_t, remains, PAGE_SIZE);
3574 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3575 remains -= copied;
3576
3577 if (copied < num)
3578 break;
3579 }
3580
3581 return count - remains;
3582 }
3583
3584 /*
3585 * small helper routine, copy contents to iter from addr.
3586 * If the page is not present, fill zero.
3587 *
3588 * Returns the number of copied bytes.
3589 */
3590 static size_t aligned_vread_iter(struct iov_iter *iter,
3591 const char *addr, size_t count)
3592 {
3593 size_t remains = count;
3594 struct page *page;
3595
3596 while (remains > 0) {
3597 unsigned long offset, length;
3598 size_t copied = 0;
3599
3600 offset = offset_in_page(addr);
3601 length = PAGE_SIZE - offset;
3602 if (length > remains)
3603 length = remains;
3604 page = vmalloc_to_page(addr);
3605 /*
3606 * To do safe access to this _mapped_ area, we need lock. But
3607 * adding lock here means that we need to add overhead of
3608 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3609 * used. Instead of that, we'll use an local mapping via
3610 * copy_page_to_iter_nofault() and accept a small overhead in
3611 * this access function.
3612 */
3613 if (page)
3614 copied = copy_page_to_iter_nofault(page, offset,
3615 length, iter);
3616 else
3617 copied = zero_iter(iter, length);
3618
3619 addr += copied;
3620 remains -= copied;
3621
3622 if (copied != length)
3623 break;
3624 }
3625
3626 return count - remains;
3627 }
3628
3629 /*
3630 * Read from a vm_map_ram region of memory.
3631 *
3632 * Returns the number of copied bytes.
3633 */
3634 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3635 size_t count, unsigned long flags)
3636 {
3637 char *start;
3638 struct vmap_block *vb;
3639 struct xarray *xa;
3640 unsigned long offset;
3641 unsigned int rs, re;
3642 size_t remains, n;
3643
3644 /*
3645 * If it's area created by vm_map_ram() interface directly, but
3646 * not further subdividing and delegating management to vmap_block,
3647 * handle it here.
3648 */
3649 if (!(flags & VMAP_BLOCK))
3650 return aligned_vread_iter(iter, addr, count);
3651
3652 remains = count;
3653
3654 /*
3655 * Area is split into regions and tracked with vmap_block, read out
3656 * each region and zero fill the hole between regions.
3657 */
3658 xa = addr_to_vb_xa((unsigned long) addr);
3659 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3660 if (!vb)
3661 goto finished_zero;
3662
3663 spin_lock(&vb->lock);
3664 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3665 spin_unlock(&vb->lock);
3666 goto finished_zero;
3667 }
3668
3669 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3670 size_t copied;
3671
3672 if (remains == 0)
3673 goto finished;
3674
3675 start = vmap_block_vaddr(vb->va->va_start, rs);
3676
3677 if (addr < start) {
3678 size_t to_zero = min_t(size_t, start - addr, remains);
3679 size_t zeroed = zero_iter(iter, to_zero);
3680
3681 addr += zeroed;
3682 remains -= zeroed;
3683
3684 if (remains == 0 || zeroed != to_zero)
3685 goto finished;
3686 }
3687
3688 /*it could start reading from the middle of used region*/
3689 offset = offset_in_page(addr);
3690 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3691 if (n > remains)
3692 n = remains;
3693
3694 copied = aligned_vread_iter(iter, start + offset, n);
3695
3696 addr += copied;
3697 remains -= copied;
3698
3699 if (copied != n)
3700 goto finished;
3701 }
3702
3703 spin_unlock(&vb->lock);
3704
3705 finished_zero:
3706 /* zero-fill the left dirty or free regions */
3707 return count - remains + zero_iter(iter, remains);
3708 finished:
3709 /* We couldn't copy/zero everything */
3710 spin_unlock(&vb->lock);
3711 return count - remains;
3712 }
3713
3714 /**
3715 * vread_iter() - read vmalloc area in a safe way to an iterator.
3716 * @iter: the iterator to which data should be written.
3717 * @addr: vm address.
3718 * @count: number of bytes to be read.
3719 *
3720 * This function checks that addr is a valid vmalloc'ed area, and
3721 * copy data from that area to a given buffer. If the given memory range
3722 * of [addr...addr+count) includes some valid address, data is copied to
3723 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3724 * IOREMAP area is treated as memory hole and no copy is done.
3725 *
3726 * If [addr...addr+count) doesn't includes any intersects with alive
3727 * vm_struct area, returns 0. @buf should be kernel's buffer.
3728 *
3729 * Note: In usual ops, vread() is never necessary because the caller
3730 * should know vmalloc() area is valid and can use memcpy().
3731 * This is for routines which have to access vmalloc area without
3732 * any information, as /proc/kcore.
3733 *
3734 * Return: number of bytes for which addr and buf should be increased
3735 * (same number as @count) or %0 if [addr...addr+count) doesn't
3736 * include any intersection with valid vmalloc area
3737 */
3738 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3739 {
3740 struct vmap_area *va;
3741 struct vm_struct *vm;
3742 char *vaddr;
3743 size_t n, size, flags, remains;
3744
3745 addr = kasan_reset_tag(addr);
3746
3747 /* Don't allow overflow */
3748 if ((unsigned long) addr + count < count)
3749 count = -(unsigned long) addr;
3750
3751 remains = count;
3752
3753 spin_lock(&vmap_area_lock);
3754 va = find_vmap_area_exceed_addr((unsigned long)addr);
3755 if (!va)
3756 goto finished_zero;
3757
3758 /* no intersects with alive vmap_area */
3759 if ((unsigned long)addr + remains <= va->va_start)
3760 goto finished_zero;
3761
3762 list_for_each_entry_from(va, &vmap_area_list, list) {
3763 size_t copied;
3764
3765 if (remains == 0)
3766 goto finished;
3767
3768 vm = va->vm;
3769 flags = va->flags & VMAP_FLAGS_MASK;
3770 /*
3771 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3772 * be set together with VMAP_RAM.
3773 */
3774 WARN_ON(flags == VMAP_BLOCK);
3775
3776 if (!vm && !flags)
3777 continue;
3778
3779 if (vm && (vm->flags & VM_UNINITIALIZED))
3780 continue;
3781
3782 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3783 smp_rmb();
3784
3785 vaddr = (char *) va->va_start;
3786 size = vm ? get_vm_area_size(vm) : va_size(va);
3787
3788 if (addr >= vaddr + size)
3789 continue;
3790
3791 if (addr < vaddr) {
3792 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3793 size_t zeroed = zero_iter(iter, to_zero);
3794
3795 addr += zeroed;
3796 remains -= zeroed;
3797
3798 if (remains == 0 || zeroed != to_zero)
3799 goto finished;
3800 }
3801
3802 n = vaddr + size - addr;
3803 if (n > remains)
3804 n = remains;
3805
3806 if (flags & VMAP_RAM)
3807 copied = vmap_ram_vread_iter(iter, addr, n, flags);
3808 else if (!(vm->flags & VM_IOREMAP))
3809 copied = aligned_vread_iter(iter, addr, n);
3810 else /* IOREMAP area is treated as memory hole */
3811 copied = zero_iter(iter, n);
3812
3813 addr += copied;
3814 remains -= copied;
3815
3816 if (copied != n)
3817 goto finished;
3818 }
3819
3820 finished_zero:
3821 spin_unlock(&vmap_area_lock);
3822 /* zero-fill memory holes */
3823 return count - remains + zero_iter(iter, remains);
3824 finished:
3825 /* Nothing remains, or We couldn't copy/zero everything. */
3826 spin_unlock(&vmap_area_lock);
3827
3828 return count - remains;
3829 }
3830
3831 /**
3832 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3833 * @vma: vma to cover
3834 * @uaddr: target user address to start at
3835 * @kaddr: virtual address of vmalloc kernel memory
3836 * @pgoff: offset from @kaddr to start at
3837 * @size: size of map area
3838 *
3839 * Returns: 0 for success, -Exxx on failure
3840 *
3841 * This function checks that @kaddr is a valid vmalloc'ed area,
3842 * and that it is big enough to cover the range starting at
3843 * @uaddr in @vma. Will return failure if that criteria isn't
3844 * met.
3845 *
3846 * Similar to remap_pfn_range() (see mm/memory.c)
3847 */
3848 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3849 void *kaddr, unsigned long pgoff,
3850 unsigned long size)
3851 {
3852 struct vm_struct *area;
3853 unsigned long off;
3854 unsigned long end_index;
3855
3856 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3857 return -EINVAL;
3858
3859 size = PAGE_ALIGN(size);
3860
3861 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3862 return -EINVAL;
3863
3864 area = find_vm_area(kaddr);
3865 if (!area)
3866 return -EINVAL;
3867
3868 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3869 return -EINVAL;
3870
3871 if (check_add_overflow(size, off, &end_index) ||
3872 end_index > get_vm_area_size(area))
3873 return -EINVAL;
3874 kaddr += off;
3875
3876 do {
3877 struct page *page = vmalloc_to_page(kaddr);
3878 int ret;
3879
3880 ret = vm_insert_page(vma, uaddr, page);
3881 if (ret)
3882 return ret;
3883
3884 uaddr += PAGE_SIZE;
3885 kaddr += PAGE_SIZE;
3886 size -= PAGE_SIZE;
3887 } while (size > 0);
3888
3889 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3890
3891 return 0;
3892 }
3893
3894 /**
3895 * remap_vmalloc_range - map vmalloc pages to userspace
3896 * @vma: vma to cover (map full range of vma)
3897 * @addr: vmalloc memory
3898 * @pgoff: number of pages into addr before first page to map
3899 *
3900 * Returns: 0 for success, -Exxx on failure
3901 *
3902 * This function checks that addr is a valid vmalloc'ed area, and
3903 * that it is big enough to cover the vma. Will return failure if
3904 * that criteria isn't met.
3905 *
3906 * Similar to remap_pfn_range() (see mm/memory.c)
3907 */
3908 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3909 unsigned long pgoff)
3910 {
3911 return remap_vmalloc_range_partial(vma, vma->vm_start,
3912 addr, pgoff,
3913 vma->vm_end - vma->vm_start);
3914 }
3915 EXPORT_SYMBOL(remap_vmalloc_range);
3916
3917 void free_vm_area(struct vm_struct *area)
3918 {
3919 struct vm_struct *ret;
3920 ret = remove_vm_area(area->addr);
3921 BUG_ON(ret != area);
3922 kfree(area);
3923 }
3924 EXPORT_SYMBOL_GPL(free_vm_area);
3925
3926 #ifdef CONFIG_SMP
3927 static struct vmap_area *node_to_va(struct rb_node *n)
3928 {
3929 return rb_entry_safe(n, struct vmap_area, rb_node);
3930 }
3931
3932 /**
3933 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3934 * @addr: target address
3935 *
3936 * Returns: vmap_area if it is found. If there is no such area
3937 * the first highest(reverse order) vmap_area is returned
3938 * i.e. va->va_start < addr && va->va_end < addr or NULL
3939 * if there are no any areas before @addr.
3940 */
3941 static struct vmap_area *
3942 pvm_find_va_enclose_addr(unsigned long addr)
3943 {
3944 struct vmap_area *va, *tmp;
3945 struct rb_node *n;
3946
3947 n = free_vmap_area_root.rb_node;
3948 va = NULL;
3949
3950 while (n) {
3951 tmp = rb_entry(n, struct vmap_area, rb_node);
3952 if (tmp->va_start <= addr) {
3953 va = tmp;
3954 if (tmp->va_end >= addr)
3955 break;
3956
3957 n = n->rb_right;
3958 } else {
3959 n = n->rb_left;
3960 }
3961 }
3962
3963 return va;
3964 }
3965
3966 /**
3967 * pvm_determine_end_from_reverse - find the highest aligned address
3968 * of free block below VMALLOC_END
3969 * @va:
3970 * in - the VA we start the search(reverse order);
3971 * out - the VA with the highest aligned end address.
3972 * @align: alignment for required highest address
3973 *
3974 * Returns: determined end address within vmap_area
3975 */
3976 static unsigned long
3977 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3978 {
3979 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3980 unsigned long addr;
3981
3982 if (likely(*va)) {
3983 list_for_each_entry_from_reverse((*va),
3984 &free_vmap_area_list, list) {
3985 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3986 if ((*va)->va_start < addr)
3987 return addr;
3988 }
3989 }
3990
3991 return 0;
3992 }
3993
3994 /**
3995 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3996 * @offsets: array containing offset of each area
3997 * @sizes: array containing size of each area
3998 * @nr_vms: the number of areas to allocate
3999 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4000 *
4001 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4002 * vm_structs on success, %NULL on failure
4003 *
4004 * Percpu allocator wants to use congruent vm areas so that it can
4005 * maintain the offsets among percpu areas. This function allocates
4006 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4007 * be scattered pretty far, distance between two areas easily going up
4008 * to gigabytes. To avoid interacting with regular vmallocs, these
4009 * areas are allocated from top.
4010 *
4011 * Despite its complicated look, this allocator is rather simple. It
4012 * does everything top-down and scans free blocks from the end looking
4013 * for matching base. While scanning, if any of the areas do not fit the
4014 * base address is pulled down to fit the area. Scanning is repeated till
4015 * all the areas fit and then all necessary data structures are inserted
4016 * and the result is returned.
4017 */
4018 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4019 const size_t *sizes, int nr_vms,
4020 size_t align)
4021 {
4022 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4023 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4024 struct vmap_area **vas, *va;
4025 struct vm_struct **vms;
4026 int area, area2, last_area, term_area;
4027 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4028 bool purged = false;
4029
4030 /* verify parameters and allocate data structures */
4031 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4032 for (last_area = 0, area = 0; area < nr_vms; area++) {
4033 start = offsets[area];
4034 end = start + sizes[area];
4035
4036 /* is everything aligned properly? */
4037 BUG_ON(!IS_ALIGNED(offsets[area], align));
4038 BUG_ON(!IS_ALIGNED(sizes[area], align));
4039
4040 /* detect the area with the highest address */
4041 if (start > offsets[last_area])
4042 last_area = area;
4043
4044 for (area2 = area + 1; area2 < nr_vms; area2++) {
4045 unsigned long start2 = offsets[area2];
4046 unsigned long end2 = start2 + sizes[area2];
4047
4048 BUG_ON(start2 < end && start < end2);
4049 }
4050 }
4051 last_end = offsets[last_area] + sizes[last_area];
4052
4053 if (vmalloc_end - vmalloc_start < last_end) {
4054 WARN_ON(true);
4055 return NULL;
4056 }
4057
4058 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4059 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4060 if (!vas || !vms)
4061 goto err_free2;
4062
4063 for (area = 0; area < nr_vms; area++) {
4064 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4065 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4066 if (!vas[area] || !vms[area])
4067 goto err_free;
4068 }
4069 retry:
4070 spin_lock(&free_vmap_area_lock);
4071
4072 /* start scanning - we scan from the top, begin with the last area */
4073 area = term_area = last_area;
4074 start = offsets[area];
4075 end = start + sizes[area];
4076
4077 va = pvm_find_va_enclose_addr(vmalloc_end);
4078 base = pvm_determine_end_from_reverse(&va, align) - end;
4079
4080 while (true) {
4081 /*
4082 * base might have underflowed, add last_end before
4083 * comparing.
4084 */
4085 if (base + last_end < vmalloc_start + last_end)
4086 goto overflow;
4087
4088 /*
4089 * Fitting base has not been found.
4090 */
4091 if (va == NULL)
4092 goto overflow;
4093
4094 /*
4095 * If required width exceeds current VA block, move
4096 * base downwards and then recheck.
4097 */
4098 if (base + end > va->va_end) {
4099 base = pvm_determine_end_from_reverse(&va, align) - end;
4100 term_area = area;
4101 continue;
4102 }
4103
4104 /*
4105 * If this VA does not fit, move base downwards and recheck.
4106 */
4107 if (base + start < va->va_start) {
4108 va = node_to_va(rb_prev(&va->rb_node));
4109 base = pvm_determine_end_from_reverse(&va, align) - end;
4110 term_area = area;
4111 continue;
4112 }
4113
4114 /*
4115 * This area fits, move on to the previous one. If
4116 * the previous one is the terminal one, we're done.
4117 */
4118 area = (area + nr_vms - 1) % nr_vms;
4119 if (area == term_area)
4120 break;
4121
4122 start = offsets[area];
4123 end = start + sizes[area];
4124 va = pvm_find_va_enclose_addr(base + end);
4125 }
4126
4127 /* we've found a fitting base, insert all va's */
4128 for (area = 0; area < nr_vms; area++) {
4129 int ret;
4130
4131 start = base + offsets[area];
4132 size = sizes[area];
4133
4134 va = pvm_find_va_enclose_addr(start);
4135 if (WARN_ON_ONCE(va == NULL))
4136 /* It is a BUG(), but trigger recovery instead. */
4137 goto recovery;
4138
4139 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4140 &free_vmap_area_list,
4141 va, start, size);
4142 if (WARN_ON_ONCE(unlikely(ret)))
4143 /* It is a BUG(), but trigger recovery instead. */
4144 goto recovery;
4145
4146 /* Allocated area. */
4147 va = vas[area];
4148 va->va_start = start;
4149 va->va_end = start + size;
4150 }
4151
4152 spin_unlock(&free_vmap_area_lock);
4153
4154 /* populate the kasan shadow space */
4155 for (area = 0; area < nr_vms; area++) {
4156 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4157 goto err_free_shadow;
4158 }
4159
4160 /* insert all vm's */
4161 spin_lock(&vmap_area_lock);
4162 for (area = 0; area < nr_vms; area++) {
4163 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4164
4165 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4166 pcpu_get_vm_areas);
4167 }
4168 spin_unlock(&vmap_area_lock);
4169
4170 /*
4171 * Mark allocated areas as accessible. Do it now as a best-effort
4172 * approach, as they can be mapped outside of vmalloc code.
4173 * With hardware tag-based KASAN, marking is skipped for
4174 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4175 */
4176 for (area = 0; area < nr_vms; area++)
4177 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4178 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4179
4180 kfree(vas);
4181 return vms;
4182
4183 recovery:
4184 /*
4185 * Remove previously allocated areas. There is no
4186 * need in removing these areas from the busy tree,
4187 * because they are inserted only on the final step
4188 * and when pcpu_get_vm_areas() is success.
4189 */
4190 while (area--) {
4191 orig_start = vas[area]->va_start;
4192 orig_end = vas[area]->va_end;
4193 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4194 &free_vmap_area_list);
4195 if (va)
4196 kasan_release_vmalloc(orig_start, orig_end,
4197 va->va_start, va->va_end);
4198 vas[area] = NULL;
4199 }
4200
4201 overflow:
4202 spin_unlock(&free_vmap_area_lock);
4203 if (!purged) {
4204 reclaim_and_purge_vmap_areas();
4205 purged = true;
4206
4207 /* Before "retry", check if we recover. */
4208 for (area = 0; area < nr_vms; area++) {
4209 if (vas[area])
4210 continue;
4211
4212 vas[area] = kmem_cache_zalloc(
4213 vmap_area_cachep, GFP_KERNEL);
4214 if (!vas[area])
4215 goto err_free;
4216 }
4217
4218 goto retry;
4219 }
4220
4221 err_free:
4222 for (area = 0; area < nr_vms; area++) {
4223 if (vas[area])
4224 kmem_cache_free(vmap_area_cachep, vas[area]);
4225
4226 kfree(vms[area]);
4227 }
4228 err_free2:
4229 kfree(vas);
4230 kfree(vms);
4231 return NULL;
4232
4233 err_free_shadow:
4234 spin_lock(&free_vmap_area_lock);
4235 /*
4236 * We release all the vmalloc shadows, even the ones for regions that
4237 * hadn't been successfully added. This relies on kasan_release_vmalloc
4238 * being able to tolerate this case.
4239 */
4240 for (area = 0; area < nr_vms; area++) {
4241 orig_start = vas[area]->va_start;
4242 orig_end = vas[area]->va_end;
4243 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4244 &free_vmap_area_list);
4245 if (va)
4246 kasan_release_vmalloc(orig_start, orig_end,
4247 va->va_start, va->va_end);
4248 vas[area] = NULL;
4249 kfree(vms[area]);
4250 }
4251 spin_unlock(&free_vmap_area_lock);
4252 kfree(vas);
4253 kfree(vms);
4254 return NULL;
4255 }
4256
4257 /**
4258 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4259 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4260 * @nr_vms: the number of allocated areas
4261 *
4262 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4263 */
4264 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4265 {
4266 int i;
4267
4268 for (i = 0; i < nr_vms; i++)
4269 free_vm_area(vms[i]);
4270 kfree(vms);
4271 }
4272 #endif /* CONFIG_SMP */
4273
4274 #ifdef CONFIG_PRINTK
4275 bool vmalloc_dump_obj(void *object)
4276 {
4277 struct vm_struct *vm;
4278 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4279
4280 vm = find_vm_area(objp);
4281 if (!vm)
4282 return false;
4283 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4284 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4285 return true;
4286 }
4287 #endif
4288
4289 #ifdef CONFIG_PROC_FS
4290 static void *s_start(struct seq_file *m, loff_t *pos)
4291 __acquires(&vmap_purge_lock)
4292 __acquires(&vmap_area_lock)
4293 {
4294 mutex_lock(&vmap_purge_lock);
4295 spin_lock(&vmap_area_lock);
4296
4297 return seq_list_start(&vmap_area_list, *pos);
4298 }
4299
4300 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4301 {
4302 return seq_list_next(p, &vmap_area_list, pos);
4303 }
4304
4305 static void s_stop(struct seq_file *m, void *p)
4306 __releases(&vmap_area_lock)
4307 __releases(&vmap_purge_lock)
4308 {
4309 spin_unlock(&vmap_area_lock);
4310 mutex_unlock(&vmap_purge_lock);
4311 }
4312
4313 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4314 {
4315 if (IS_ENABLED(CONFIG_NUMA)) {
4316 unsigned int nr, *counters = m->private;
4317 unsigned int step = 1U << vm_area_page_order(v);
4318
4319 if (!counters)
4320 return;
4321
4322 if (v->flags & VM_UNINITIALIZED)
4323 return;
4324 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4325 smp_rmb();
4326
4327 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4328
4329 for (nr = 0; nr < v->nr_pages; nr += step)
4330 counters[page_to_nid(v->pages[nr])] += step;
4331 for_each_node_state(nr, N_HIGH_MEMORY)
4332 if (counters[nr])
4333 seq_printf(m, " N%u=%u", nr, counters[nr]);
4334 }
4335 }
4336
4337 static void show_purge_info(struct seq_file *m)
4338 {
4339 struct vmap_area *va;
4340
4341 spin_lock(&purge_vmap_area_lock);
4342 list_for_each_entry(va, &purge_vmap_area_list, list) {
4343 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4344 (void *)va->va_start, (void *)va->va_end,
4345 va->va_end - va->va_start);
4346 }
4347 spin_unlock(&purge_vmap_area_lock);
4348 }
4349
4350 static int s_show(struct seq_file *m, void *p)
4351 {
4352 struct vmap_area *va;
4353 struct vm_struct *v;
4354
4355 va = list_entry(p, struct vmap_area, list);
4356
4357 if (!va->vm) {
4358 if (va->flags & VMAP_RAM)
4359 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4360 (void *)va->va_start, (void *)va->va_end,
4361 va->va_end - va->va_start);
4362
4363 goto final;
4364 }
4365
4366 v = va->vm;
4367
4368 seq_printf(m, "0x%pK-0x%pK %7ld",
4369 v->addr, v->addr + v->size, v->size);
4370
4371 if (v->caller)
4372 seq_printf(m, " %pS", v->caller);
4373
4374 if (v->nr_pages)
4375 seq_printf(m, " pages=%d", v->nr_pages);
4376
4377 if (v->phys_addr)
4378 seq_printf(m, " phys=%pa", &v->phys_addr);
4379
4380 if (v->flags & VM_IOREMAP)
4381 seq_puts(m, " ioremap");
4382
4383 if (v->flags & VM_ALLOC)
4384 seq_puts(m, " vmalloc");
4385
4386 if (v->flags & VM_MAP)
4387 seq_puts(m, " vmap");
4388
4389 if (v->flags & VM_USERMAP)
4390 seq_puts(m, " user");
4391
4392 if (v->flags & VM_DMA_COHERENT)
4393 seq_puts(m, " dma-coherent");
4394
4395 if (is_vmalloc_addr(v->pages))
4396 seq_puts(m, " vpages");
4397
4398 show_numa_info(m, v);
4399 seq_putc(m, '\n');
4400
4401 /*
4402 * As a final step, dump "unpurged" areas.
4403 */
4404 final:
4405 if (list_is_last(&va->list, &vmap_area_list))
4406 show_purge_info(m);
4407
4408 return 0;
4409 }
4410
4411 static const struct seq_operations vmalloc_op = {
4412 .start = s_start,
4413 .next = s_next,
4414 .stop = s_stop,
4415 .show = s_show,
4416 };
4417
4418 static int __init proc_vmalloc_init(void)
4419 {
4420 if (IS_ENABLED(CONFIG_NUMA))
4421 proc_create_seq_private("vmallocinfo", 0400, NULL,
4422 &vmalloc_op,
4423 nr_node_ids * sizeof(unsigned int), NULL);
4424 else
4425 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4426 return 0;
4427 }
4428 module_init(proc_vmalloc_init);
4429
4430 #endif
4431
4432 void __init vmalloc_init(void)
4433 {
4434 struct vmap_area *va;
4435 struct vm_struct *tmp;
4436 int i;
4437
4438 /*
4439 * Create the cache for vmap_area objects.
4440 */
4441 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4442
4443 for_each_possible_cpu(i) {
4444 struct vmap_block_queue *vbq;
4445 struct vfree_deferred *p;
4446
4447 vbq = &per_cpu(vmap_block_queue, i);
4448 spin_lock_init(&vbq->lock);
4449 INIT_LIST_HEAD(&vbq->free);
4450 p = &per_cpu(vfree_deferred, i);
4451 init_llist_head(&p->list);
4452 INIT_WORK(&p->wq, delayed_vfree_work);
4453 xa_init(&vbq->vmap_blocks);
4454 }
4455
4456 /* Import existing vmlist entries. */
4457 for (tmp = vmlist; tmp; tmp = tmp->next) {
4458 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4459 if (WARN_ON_ONCE(!va))
4460 continue;
4461
4462 va->va_start = (unsigned long)tmp->addr;
4463 va->va_end = va->va_start + tmp->size;
4464 va->vm = tmp;
4465 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4466 }
4467
4468 /*
4469 * Now we can initialize a free vmap space.
4470 */
4471 vmap_init_free_space();
4472 vmap_initialized = true;
4473 }