]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/vmalloc.c
Merge tag 'efi-next-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
[thirdparty/linux.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48
49 #include "internal.h"
50 #include "pgalloc-track.h"
51
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55 static int __init set_nohugeiomap(char *str)
56 {
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67
68 static int __init set_nohugevmalloc(char *str)
69 {
70 vmap_allow_huge = false;
71 return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
78 bool is_vmalloc_addr(const void *x)
79 {
80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85
86 struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 pte_t *pte;
98 u64 pfn;
99 unsigned long size = PAGE_SIZE;
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(*pte));
107
108 #ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118 #endif
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124 }
125
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129 {
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149 }
150
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174 }
175
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179 {
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199 }
200
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225 }
226
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230 {
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250 }
251
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276 }
277
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281 {
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305 }
306
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
309 {
310 int err;
311
312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 ioremap_max_page_shift);
314 flush_cache_vmap(addr, end);
315 if (!err)
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
318 return err;
319 }
320
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
323 {
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
331 *mask |= PGTBL_PTE_MODIFIED;
332 }
333
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
336 {
337 pmd_t *pmd;
338 unsigned long next;
339 int cleared;
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
350 continue;
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
353 vunmap_pte_range(pmd, addr, next, mask);
354
355 cond_resched();
356 } while (pmd++, addr = next, addr != end);
357 }
358
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
361 {
362 pud_t *pud;
363 unsigned long next;
364 int cleared;
365
366 pud = pud_offset(p4d, addr);
367 do {
368 next = pud_addr_end(addr, end);
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
375 continue;
376 if (pud_none_or_clear_bad(pud))
377 continue;
378 vunmap_pmd_range(pud, addr, next, mask);
379 } while (pud++, addr = next, addr != end);
380 }
381
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
384 {
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
391
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
394 *mask |= PGTBL_P4D_MODIFIED;
395
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
398 vunmap_pud_range(p4d, addr, next, mask);
399 } while (p4d++, addr = next, addr != end);
400 }
401
402 /*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
405 *
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
411 *
412 * This is an internal function only. Do not use outside mm/.
413 */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 unsigned long next;
417 pgd_t *pgd;
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
423 do {
424 next = pgd_addr_end(addr, end);
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
429 vunmap_p4d_range(pgd, addr, next, &mask);
430 } while (pgd++, addr = next, addr != end);
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
434 }
435
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440 }
441
442 /**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456 }
457
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
461 {
462 pte_t *pte;
463
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
469 pte = pte_alloc_kernel_track(pmd, addr, mask);
470 if (!pte)
471 return -ENOMEM;
472 do {
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(*pte)))
476 return -EBUSY;
477 if (WARN_ON(!page))
478 return -ENOMEM;
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 (*nr)++;
484 } while (pte++, addr += PAGE_SIZE, addr != end);
485 *mask |= PGTBL_PTE_MODIFIED;
486 return 0;
487 }
488
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
492 {
493 pmd_t *pmd;
494 unsigned long next;
495
496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505 }
506
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
510 {
511 pud_t *pud;
512 unsigned long next;
513
514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523 }
524
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
528 {
529 p4d_t *p4d;
530 unsigned long next;
531
532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541 }
542
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
545 {
546 unsigned long start = addr;
547 pgd_t *pgd;
548 unsigned long next;
549 int err = 0;
550 int nr = 0;
551 pgtbl_mod_mask mask = 0;
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
555 do {
556 next = pgd_addr_end(addr, end);
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 if (err)
561 return err;
562 } while (pgd++, addr = next, addr != end);
563
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
567 return 0;
568 }
569
570 /*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 page_to_phys(pages[i]), prot,
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603 }
604
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615
616 /**
617 * vmap_pages_range - map pages to a kernel virtual address
618 * @addr: start of the VM area to map
619 * @end: end of the VM area to map (non-inclusive)
620 * @prot: page protection flags to use
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 int err;
632
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
636 }
637
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 /*
641 * ARM, x86-64 and sparc64 put modules in a special place,
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649 #endif
650 return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653
654 /*
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
658 */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 unsigned long addr = (unsigned long) vmalloc_addr;
662 struct page *page = NULL;
663 pgd_t *pgd = pgd_offset_k(addr);
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
668
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674
675 if (pgd_none(*pgd))
676 return NULL;
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
689
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
696 return NULL;
697
698 pmd = pmd_offset(pud, addr);
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 return NULL;
705
706 ptep = pte_offset_map(pmd, addr);
707 pte = *ptep;
708 if (pte_present(pte))
709 page = pte_page(pte);
710 pte_unmap(ptep);
711
712 return page;
713 }
714 EXPORT_SYMBOL(vmalloc_to_page);
715
716 /*
717 * Map a vmalloc()-space virtual address to the physical page frame number.
718 */
719 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
720 {
721 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
722 }
723 EXPORT_SYMBOL(vmalloc_to_pfn);
724
725
726 /*** Global kva allocator ***/
727
728 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
729 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
730
731
732 static DEFINE_SPINLOCK(vmap_area_lock);
733 static DEFINE_SPINLOCK(free_vmap_area_lock);
734 /* Export for kexec only */
735 LIST_HEAD(vmap_area_list);
736 static struct rb_root vmap_area_root = RB_ROOT;
737 static bool vmap_initialized __read_mostly;
738
739 static struct rb_root purge_vmap_area_root = RB_ROOT;
740 static LIST_HEAD(purge_vmap_area_list);
741 static DEFINE_SPINLOCK(purge_vmap_area_lock);
742
743 /*
744 * This kmem_cache is used for vmap_area objects. Instead of
745 * allocating from slab we reuse an object from this cache to
746 * make things faster. Especially in "no edge" splitting of
747 * free block.
748 */
749 static struct kmem_cache *vmap_area_cachep;
750
751 /*
752 * This linked list is used in pair with free_vmap_area_root.
753 * It gives O(1) access to prev/next to perform fast coalescing.
754 */
755 static LIST_HEAD(free_vmap_area_list);
756
757 /*
758 * This augment red-black tree represents the free vmap space.
759 * All vmap_area objects in this tree are sorted by va->va_start
760 * address. It is used for allocation and merging when a vmap
761 * object is released.
762 *
763 * Each vmap_area node contains a maximum available free block
764 * of its sub-tree, right or left. Therefore it is possible to
765 * find a lowest match of free area.
766 */
767 static struct rb_root free_vmap_area_root = RB_ROOT;
768
769 /*
770 * Preload a CPU with one object for "no edge" split case. The
771 * aim is to get rid of allocations from the atomic context, thus
772 * to use more permissive allocation masks.
773 */
774 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775
776 static __always_inline unsigned long
777 va_size(struct vmap_area *va)
778 {
779 return (va->va_end - va->va_start);
780 }
781
782 static __always_inline unsigned long
783 get_subtree_max_size(struct rb_node *node)
784 {
785 struct vmap_area *va;
786
787 va = rb_entry_safe(node, struct vmap_area, rb_node);
788 return va ? va->subtree_max_size : 0;
789 }
790
791 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
793
794 static void purge_vmap_area_lazy(void);
795 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
796 static void drain_vmap_area_work(struct work_struct *work);
797 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
798
799 static atomic_long_t nr_vmalloc_pages;
800
801 unsigned long vmalloc_nr_pages(void)
802 {
803 return atomic_long_read(&nr_vmalloc_pages);
804 }
805
806 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
807 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808 {
809 struct vmap_area *va = NULL;
810 struct rb_node *n = vmap_area_root.rb_node;
811
812 addr = (unsigned long)kasan_reset_tag((void *)addr);
813
814 while (n) {
815 struct vmap_area *tmp;
816
817 tmp = rb_entry(n, struct vmap_area, rb_node);
818 if (tmp->va_end > addr) {
819 va = tmp;
820 if (tmp->va_start <= addr)
821 break;
822
823 n = n->rb_left;
824 } else
825 n = n->rb_right;
826 }
827
828 return va;
829 }
830
831 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
832 {
833 struct rb_node *n = root->rb_node;
834
835 addr = (unsigned long)kasan_reset_tag((void *)addr);
836
837 while (n) {
838 struct vmap_area *va;
839
840 va = rb_entry(n, struct vmap_area, rb_node);
841 if (addr < va->va_start)
842 n = n->rb_left;
843 else if (addr >= va->va_end)
844 n = n->rb_right;
845 else
846 return va;
847 }
848
849 return NULL;
850 }
851
852 /*
853 * This function returns back addresses of parent node
854 * and its left or right link for further processing.
855 *
856 * Otherwise NULL is returned. In that case all further
857 * steps regarding inserting of conflicting overlap range
858 * have to be declined and actually considered as a bug.
859 */
860 static __always_inline struct rb_node **
861 find_va_links(struct vmap_area *va,
862 struct rb_root *root, struct rb_node *from,
863 struct rb_node **parent)
864 {
865 struct vmap_area *tmp_va;
866 struct rb_node **link;
867
868 if (root) {
869 link = &root->rb_node;
870 if (unlikely(!*link)) {
871 *parent = NULL;
872 return link;
873 }
874 } else {
875 link = &from;
876 }
877
878 /*
879 * Go to the bottom of the tree. When we hit the last point
880 * we end up with parent rb_node and correct direction, i name
881 * it link, where the new va->rb_node will be attached to.
882 */
883 do {
884 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
885
886 /*
887 * During the traversal we also do some sanity check.
888 * Trigger the BUG() if there are sides(left/right)
889 * or full overlaps.
890 */
891 if (va->va_end <= tmp_va->va_start)
892 link = &(*link)->rb_left;
893 else if (va->va_start >= tmp_va->va_end)
894 link = &(*link)->rb_right;
895 else {
896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898
899 return NULL;
900 }
901 } while (*link);
902
903 *parent = &tmp_va->rb_node;
904 return link;
905 }
906
907 static __always_inline struct list_head *
908 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909 {
910 struct list_head *list;
911
912 if (unlikely(!parent))
913 /*
914 * The red-black tree where we try to find VA neighbors
915 * before merging or inserting is empty, i.e. it means
916 * there is no free vmap space. Normally it does not
917 * happen but we handle this case anyway.
918 */
919 return NULL;
920
921 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 return (&parent->rb_right == link ? list->next : list);
923 }
924
925 static __always_inline void
926 __link_va(struct vmap_area *va, struct rb_root *root,
927 struct rb_node *parent, struct rb_node **link,
928 struct list_head *head, bool augment)
929 {
930 /*
931 * VA is still not in the list, but we can
932 * identify its future previous list_head node.
933 */
934 if (likely(parent)) {
935 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 if (&parent->rb_right != link)
937 head = head->prev;
938 }
939
940 /* Insert to the rb-tree */
941 rb_link_node(&va->rb_node, parent, link);
942 if (augment) {
943 /*
944 * Some explanation here. Just perform simple insertion
945 * to the tree. We do not set va->subtree_max_size to
946 * its current size before calling rb_insert_augmented().
947 * It is because we populate the tree from the bottom
948 * to parent levels when the node _is_ in the tree.
949 *
950 * Therefore we set subtree_max_size to zero after insertion,
951 * to let __augment_tree_propagate_from() puts everything to
952 * the correct order later on.
953 */
954 rb_insert_augmented(&va->rb_node,
955 root, &free_vmap_area_rb_augment_cb);
956 va->subtree_max_size = 0;
957 } else {
958 rb_insert_color(&va->rb_node, root);
959 }
960
961 /* Address-sort this list */
962 list_add(&va->list, head);
963 }
964
965 static __always_inline void
966 link_va(struct vmap_area *va, struct rb_root *root,
967 struct rb_node *parent, struct rb_node **link,
968 struct list_head *head)
969 {
970 __link_va(va, root, parent, link, head, false);
971 }
972
973 static __always_inline void
974 link_va_augment(struct vmap_area *va, struct rb_root *root,
975 struct rb_node *parent, struct rb_node **link,
976 struct list_head *head)
977 {
978 __link_va(va, root, parent, link, head, true);
979 }
980
981 static __always_inline void
982 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
983 {
984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 return;
986
987 if (augment)
988 rb_erase_augmented(&va->rb_node,
989 root, &free_vmap_area_rb_augment_cb);
990 else
991 rb_erase(&va->rb_node, root);
992
993 list_del_init(&va->list);
994 RB_CLEAR_NODE(&va->rb_node);
995 }
996
997 static __always_inline void
998 unlink_va(struct vmap_area *va, struct rb_root *root)
999 {
1000 __unlink_va(va, root, false);
1001 }
1002
1003 static __always_inline void
1004 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005 {
1006 __unlink_va(va, root, true);
1007 }
1008
1009 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1010 /*
1011 * Gets called when remove the node and rotate.
1012 */
1013 static __always_inline unsigned long
1014 compute_subtree_max_size(struct vmap_area *va)
1015 {
1016 return max3(va_size(va),
1017 get_subtree_max_size(va->rb_node.rb_left),
1018 get_subtree_max_size(va->rb_node.rb_right));
1019 }
1020
1021 static void
1022 augment_tree_propagate_check(void)
1023 {
1024 struct vmap_area *va;
1025 unsigned long computed_size;
1026
1027 list_for_each_entry(va, &free_vmap_area_list, list) {
1028 computed_size = compute_subtree_max_size(va);
1029 if (computed_size != va->subtree_max_size)
1030 pr_emerg("tree is corrupted: %lu, %lu\n",
1031 va_size(va), va->subtree_max_size);
1032 }
1033 }
1034 #endif
1035
1036 /*
1037 * This function populates subtree_max_size from bottom to upper
1038 * levels starting from VA point. The propagation must be done
1039 * when VA size is modified by changing its va_start/va_end. Or
1040 * in case of newly inserting of VA to the tree.
1041 *
1042 * It means that __augment_tree_propagate_from() must be called:
1043 * - After VA has been inserted to the tree(free path);
1044 * - After VA has been shrunk(allocation path);
1045 * - After VA has been increased(merging path).
1046 *
1047 * Please note that, it does not mean that upper parent nodes
1048 * and their subtree_max_size are recalculated all the time up
1049 * to the root node.
1050 *
1051 * 4--8
1052 * /\
1053 * / \
1054 * / \
1055 * 2--2 8--8
1056 *
1057 * For example if we modify the node 4, shrinking it to 2, then
1058 * no any modification is required. If we shrink the node 2 to 1
1059 * its subtree_max_size is updated only, and set to 1. If we shrink
1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061 * node becomes 4--6.
1062 */
1063 static __always_inline void
1064 augment_tree_propagate_from(struct vmap_area *va)
1065 {
1066 /*
1067 * Populate the tree from bottom towards the root until
1068 * the calculated maximum available size of checked node
1069 * is equal to its current one.
1070 */
1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1072
1073 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1074 augment_tree_propagate_check();
1075 #endif
1076 }
1077
1078 static void
1079 insert_vmap_area(struct vmap_area *va,
1080 struct rb_root *root, struct list_head *head)
1081 {
1082 struct rb_node **link;
1083 struct rb_node *parent;
1084
1085 link = find_va_links(va, root, NULL, &parent);
1086 if (link)
1087 link_va(va, root, parent, link, head);
1088 }
1089
1090 static void
1091 insert_vmap_area_augment(struct vmap_area *va,
1092 struct rb_node *from, struct rb_root *root,
1093 struct list_head *head)
1094 {
1095 struct rb_node **link;
1096 struct rb_node *parent;
1097
1098 if (from)
1099 link = find_va_links(va, NULL, from, &parent);
1100 else
1101 link = find_va_links(va, root, NULL, &parent);
1102
1103 if (link) {
1104 link_va_augment(va, root, parent, link, head);
1105 augment_tree_propagate_from(va);
1106 }
1107 }
1108
1109 /*
1110 * Merge de-allocated chunk of VA memory with previous
1111 * and next free blocks. If coalesce is not done a new
1112 * free area is inserted. If VA has been merged, it is
1113 * freed.
1114 *
1115 * Please note, it can return NULL in case of overlap
1116 * ranges, followed by WARN() report. Despite it is a
1117 * buggy behaviour, a system can be alive and keep
1118 * ongoing.
1119 */
1120 static __always_inline struct vmap_area *
1121 __merge_or_add_vmap_area(struct vmap_area *va,
1122 struct rb_root *root, struct list_head *head, bool augment)
1123 {
1124 struct vmap_area *sibling;
1125 struct list_head *next;
1126 struct rb_node **link;
1127 struct rb_node *parent;
1128 bool merged = false;
1129
1130 /*
1131 * Find a place in the tree where VA potentially will be
1132 * inserted, unless it is merged with its sibling/siblings.
1133 */
1134 link = find_va_links(va, root, NULL, &parent);
1135 if (!link)
1136 return NULL;
1137
1138 /*
1139 * Get next node of VA to check if merging can be done.
1140 */
1141 next = get_va_next_sibling(parent, link);
1142 if (unlikely(next == NULL))
1143 goto insert;
1144
1145 /*
1146 * start end
1147 * | |
1148 * |<------VA------>|<-----Next----->|
1149 * | |
1150 * start end
1151 */
1152 if (next != head) {
1153 sibling = list_entry(next, struct vmap_area, list);
1154 if (sibling->va_start == va->va_end) {
1155 sibling->va_start = va->va_start;
1156
1157 /* Free vmap_area object. */
1158 kmem_cache_free(vmap_area_cachep, va);
1159
1160 /* Point to the new merged area. */
1161 va = sibling;
1162 merged = true;
1163 }
1164 }
1165
1166 /*
1167 * start end
1168 * | |
1169 * |<-----Prev----->|<------VA------>|
1170 * | |
1171 * start end
1172 */
1173 if (next->prev != head) {
1174 sibling = list_entry(next->prev, struct vmap_area, list);
1175 if (sibling->va_end == va->va_start) {
1176 /*
1177 * If both neighbors are coalesced, it is important
1178 * to unlink the "next" node first, followed by merging
1179 * with "previous" one. Otherwise the tree might not be
1180 * fully populated if a sibling's augmented value is
1181 * "normalized" because of rotation operations.
1182 */
1183 if (merged)
1184 __unlink_va(va, root, augment);
1185
1186 sibling->va_end = va->va_end;
1187
1188 /* Free vmap_area object. */
1189 kmem_cache_free(vmap_area_cachep, va);
1190
1191 /* Point to the new merged area. */
1192 va = sibling;
1193 merged = true;
1194 }
1195 }
1196
1197 insert:
1198 if (!merged)
1199 __link_va(va, root, parent, link, head, augment);
1200
1201 return va;
1202 }
1203
1204 static __always_inline struct vmap_area *
1205 merge_or_add_vmap_area(struct vmap_area *va,
1206 struct rb_root *root, struct list_head *head)
1207 {
1208 return __merge_or_add_vmap_area(va, root, head, false);
1209 }
1210
1211 static __always_inline struct vmap_area *
1212 merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214 {
1215 va = __merge_or_add_vmap_area(va, root, head, true);
1216 if (va)
1217 augment_tree_propagate_from(va);
1218
1219 return va;
1220 }
1221
1222 static __always_inline bool
1223 is_within_this_va(struct vmap_area *va, unsigned long size,
1224 unsigned long align, unsigned long vstart)
1225 {
1226 unsigned long nva_start_addr;
1227
1228 if (va->va_start > vstart)
1229 nva_start_addr = ALIGN(va->va_start, align);
1230 else
1231 nva_start_addr = ALIGN(vstart, align);
1232
1233 /* Can be overflowed due to big size or alignment. */
1234 if (nva_start_addr + size < nva_start_addr ||
1235 nva_start_addr < vstart)
1236 return false;
1237
1238 return (nva_start_addr + size <= va->va_end);
1239 }
1240
1241 /*
1242 * Find the first free block(lowest start address) in the tree,
1243 * that will accomplish the request corresponding to passing
1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245 * a search length is adjusted to account for worst case alignment
1246 * overhead.
1247 */
1248 static __always_inline struct vmap_area *
1249 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 unsigned long align, unsigned long vstart, bool adjust_search_size)
1251 {
1252 struct vmap_area *va;
1253 struct rb_node *node;
1254 unsigned long length;
1255
1256 /* Start from the root. */
1257 node = root->rb_node;
1258
1259 /* Adjust the search size for alignment overhead. */
1260 length = adjust_search_size ? size + align - 1 : size;
1261
1262 while (node) {
1263 va = rb_entry(node, struct vmap_area, rb_node);
1264
1265 if (get_subtree_max_size(node->rb_left) >= length &&
1266 vstart < va->va_start) {
1267 node = node->rb_left;
1268 } else {
1269 if (is_within_this_va(va, size, align, vstart))
1270 return va;
1271
1272 /*
1273 * Does not make sense to go deeper towards the right
1274 * sub-tree if it does not have a free block that is
1275 * equal or bigger to the requested search length.
1276 */
1277 if (get_subtree_max_size(node->rb_right) >= length) {
1278 node = node->rb_right;
1279 continue;
1280 }
1281
1282 /*
1283 * OK. We roll back and find the first right sub-tree,
1284 * that will satisfy the search criteria. It can happen
1285 * due to "vstart" restriction or an alignment overhead
1286 * that is bigger then PAGE_SIZE.
1287 */
1288 while ((node = rb_parent(node))) {
1289 va = rb_entry(node, struct vmap_area, rb_node);
1290 if (is_within_this_va(va, size, align, vstart))
1291 return va;
1292
1293 if (get_subtree_max_size(node->rb_right) >= length &&
1294 vstart <= va->va_start) {
1295 /*
1296 * Shift the vstart forward. Please note, we update it with
1297 * parent's start address adding "1" because we do not want
1298 * to enter same sub-tree after it has already been checked
1299 * and no suitable free block found there.
1300 */
1301 vstart = va->va_start + 1;
1302 node = node->rb_right;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 return NULL;
1310 }
1311
1312 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313 #include <linux/random.h>
1314
1315 static struct vmap_area *
1316 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1317 unsigned long align, unsigned long vstart)
1318 {
1319 struct vmap_area *va;
1320
1321 list_for_each_entry(va, head, list) {
1322 if (!is_within_this_va(va, size, align, vstart))
1323 continue;
1324
1325 return va;
1326 }
1327
1328 return NULL;
1329 }
1330
1331 static void
1332 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 unsigned long size, unsigned long align)
1334 {
1335 struct vmap_area *va_1, *va_2;
1336 unsigned long vstart;
1337 unsigned int rnd;
1338
1339 get_random_bytes(&rnd, sizeof(rnd));
1340 vstart = VMALLOC_START + rnd;
1341
1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1344
1345 if (va_1 != va_2)
1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 va_1, va_2, vstart);
1348 }
1349 #endif
1350
1351 enum fit_type {
1352 NOTHING_FIT = 0,
1353 FL_FIT_TYPE = 1, /* full fit */
1354 LE_FIT_TYPE = 2, /* left edge fit */
1355 RE_FIT_TYPE = 3, /* right edge fit */
1356 NE_FIT_TYPE = 4 /* no edge fit */
1357 };
1358
1359 static __always_inline enum fit_type
1360 classify_va_fit_type(struct vmap_area *va,
1361 unsigned long nva_start_addr, unsigned long size)
1362 {
1363 enum fit_type type;
1364
1365 /* Check if it is within VA. */
1366 if (nva_start_addr < va->va_start ||
1367 nva_start_addr + size > va->va_end)
1368 return NOTHING_FIT;
1369
1370 /* Now classify. */
1371 if (va->va_start == nva_start_addr) {
1372 if (va->va_end == nva_start_addr + size)
1373 type = FL_FIT_TYPE;
1374 else
1375 type = LE_FIT_TYPE;
1376 } else if (va->va_end == nva_start_addr + size) {
1377 type = RE_FIT_TYPE;
1378 } else {
1379 type = NE_FIT_TYPE;
1380 }
1381
1382 return type;
1383 }
1384
1385 static __always_inline int
1386 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 struct vmap_area *va, unsigned long nva_start_addr,
1388 unsigned long size)
1389 {
1390 struct vmap_area *lva = NULL;
1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1392
1393 if (type == FL_FIT_TYPE) {
1394 /*
1395 * No need to split VA, it fully fits.
1396 *
1397 * | |
1398 * V NVA V
1399 * |---------------|
1400 */
1401 unlink_va_augment(va, root);
1402 kmem_cache_free(vmap_area_cachep, va);
1403 } else if (type == LE_FIT_TYPE) {
1404 /*
1405 * Split left edge of fit VA.
1406 *
1407 * | |
1408 * V NVA V R
1409 * |-------|-------|
1410 */
1411 va->va_start += size;
1412 } else if (type == RE_FIT_TYPE) {
1413 /*
1414 * Split right edge of fit VA.
1415 *
1416 * | |
1417 * L V NVA V
1418 * |-------|-------|
1419 */
1420 va->va_end = nva_start_addr;
1421 } else if (type == NE_FIT_TYPE) {
1422 /*
1423 * Split no edge of fit VA.
1424 *
1425 * | |
1426 * L V NVA V R
1427 * |---|-------|---|
1428 */
1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 if (unlikely(!lva)) {
1431 /*
1432 * For percpu allocator we do not do any pre-allocation
1433 * and leave it as it is. The reason is it most likely
1434 * never ends up with NE_FIT_TYPE splitting. In case of
1435 * percpu allocations offsets and sizes are aligned to
1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 * are its main fitting cases.
1438 *
1439 * There are a few exceptions though, as an example it is
1440 * a first allocation (early boot up) when we have "one"
1441 * big free space that has to be split.
1442 *
1443 * Also we can hit this path in case of regular "vmap"
1444 * allocations, if "this" current CPU was not preloaded.
1445 * See the comment in alloc_vmap_area() why. If so, then
1446 * GFP_NOWAIT is used instead to get an extra object for
1447 * split purpose. That is rare and most time does not
1448 * occur.
1449 *
1450 * What happens if an allocation gets failed. Basically,
1451 * an "overflow" path is triggered to purge lazily freed
1452 * areas to free some memory, then, the "retry" path is
1453 * triggered to repeat one more time. See more details
1454 * in alloc_vmap_area() function.
1455 */
1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 if (!lva)
1458 return -1;
1459 }
1460
1461 /*
1462 * Build the remainder.
1463 */
1464 lva->va_start = va->va_start;
1465 lva->va_end = nva_start_addr;
1466
1467 /*
1468 * Shrink this VA to remaining size.
1469 */
1470 va->va_start = nva_start_addr + size;
1471 } else {
1472 return -1;
1473 }
1474
1475 if (type != FL_FIT_TYPE) {
1476 augment_tree_propagate_from(va);
1477
1478 if (lva) /* type == NE_FIT_TYPE */
1479 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1480 }
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Returns a start address of the newly allocated area, if success.
1487 * Otherwise a vend is returned that indicates failure.
1488 */
1489 static __always_inline unsigned long
1490 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 unsigned long size, unsigned long align,
1492 unsigned long vstart, unsigned long vend)
1493 {
1494 bool adjust_search_size = true;
1495 unsigned long nva_start_addr;
1496 struct vmap_area *va;
1497 int ret;
1498
1499 /*
1500 * Do not adjust when:
1501 * a) align <= PAGE_SIZE, because it does not make any sense.
1502 * All blocks(their start addresses) are at least PAGE_SIZE
1503 * aligned anyway;
1504 * b) a short range where a requested size corresponds to exactly
1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 * With adjusted search length an allocation would not succeed.
1507 */
1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 adjust_search_size = false;
1510
1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1512 if (unlikely(!va))
1513 return vend;
1514
1515 if (va->va_start > vstart)
1516 nva_start_addr = ALIGN(va->va_start, align);
1517 else
1518 nva_start_addr = ALIGN(vstart, align);
1519
1520 /* Check the "vend" restriction. */
1521 if (nva_start_addr + size > vend)
1522 return vend;
1523
1524 /* Update the free vmap_area. */
1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1526 if (WARN_ON_ONCE(ret))
1527 return vend;
1528
1529 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1530 find_vmap_lowest_match_check(root, head, size, align);
1531 #endif
1532
1533 return nva_start_addr;
1534 }
1535
1536 /*
1537 * Free a region of KVA allocated by alloc_vmap_area
1538 */
1539 static void free_vmap_area(struct vmap_area *va)
1540 {
1541 /*
1542 * Remove from the busy tree/list.
1543 */
1544 spin_lock(&vmap_area_lock);
1545 unlink_va(va, &vmap_area_root);
1546 spin_unlock(&vmap_area_lock);
1547
1548 /*
1549 * Insert/Merge it back to the free tree/list.
1550 */
1551 spin_lock(&free_vmap_area_lock);
1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1553 spin_unlock(&free_vmap_area_lock);
1554 }
1555
1556 static inline void
1557 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558 {
1559 struct vmap_area *va = NULL;
1560
1561 /*
1562 * Preload this CPU with one extra vmap_area object. It is used
1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 * a CPU that does an allocation is preloaded.
1565 *
1566 * We do it in non-atomic context, thus it allows us to use more
1567 * permissive allocation masks to be more stable under low memory
1568 * condition and high memory pressure.
1569 */
1570 if (!this_cpu_read(ne_fit_preload_node))
1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572
1573 spin_lock(lock);
1574
1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 kmem_cache_free(vmap_area_cachep, va);
1577 }
1578
1579 /*
1580 * Allocate a region of KVA of the specified size and alignment, within the
1581 * vstart and vend.
1582 */
1583 static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 unsigned long align,
1585 unsigned long vstart, unsigned long vend,
1586 int node, gfp_t gfp_mask,
1587 unsigned long va_flags)
1588 {
1589 struct vmap_area *va;
1590 unsigned long freed;
1591 unsigned long addr;
1592 int purged = 0;
1593 int ret;
1594
1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 return ERR_PTR(-EINVAL);
1597
1598 if (unlikely(!vmap_initialized))
1599 return ERR_PTR(-EBUSY);
1600
1601 might_sleep();
1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1603
1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1605 if (unlikely(!va))
1606 return ERR_PTR(-ENOMEM);
1607
1608 /*
1609 * Only scan the relevant parts containing pointers to other objects
1610 * to avoid false negatives.
1611 */
1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1613
1614 retry:
1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 size, align, vstart, vend);
1618 spin_unlock(&free_vmap_area_lock);
1619
1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621
1622 /*
1623 * If an allocation fails, the "vend" address is
1624 * returned. Therefore trigger the overflow path.
1625 */
1626 if (unlikely(addr == vend))
1627 goto overflow;
1628
1629 va->va_start = addr;
1630 va->va_end = addr + size;
1631 va->vm = NULL;
1632 va->flags = va_flags;
1633
1634 spin_lock(&vmap_area_lock);
1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1636 spin_unlock(&vmap_area_lock);
1637
1638 BUG_ON(!IS_ALIGNED(va->va_start, align));
1639 BUG_ON(va->va_start < vstart);
1640 BUG_ON(va->va_end > vend);
1641
1642 ret = kasan_populate_vmalloc(addr, size);
1643 if (ret) {
1644 free_vmap_area(va);
1645 return ERR_PTR(ret);
1646 }
1647
1648 return va;
1649
1650 overflow:
1651 if (!purged) {
1652 purge_vmap_area_lazy();
1653 purged = 1;
1654 goto retry;
1655 }
1656
1657 freed = 0;
1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659
1660 if (freed > 0) {
1661 purged = 0;
1662 goto retry;
1663 }
1664
1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 size);
1668
1669 kmem_cache_free(vmap_area_cachep, va);
1670 return ERR_PTR(-EBUSY);
1671 }
1672
1673 int register_vmap_purge_notifier(struct notifier_block *nb)
1674 {
1675 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676 }
1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678
1679 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680 {
1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682 }
1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684
1685 /*
1686 * lazy_max_pages is the maximum amount of virtual address space we gather up
1687 * before attempting to purge with a TLB flush.
1688 *
1689 * There is a tradeoff here: a larger number will cover more kernel page tables
1690 * and take slightly longer to purge, but it will linearly reduce the number of
1691 * global TLB flushes that must be performed. It would seem natural to scale
1692 * this number up linearly with the number of CPUs (because vmapping activity
1693 * could also scale linearly with the number of CPUs), however it is likely
1694 * that in practice, workloads might be constrained in other ways that mean
1695 * vmap activity will not scale linearly with CPUs. Also, I want to be
1696 * conservative and not introduce a big latency on huge systems, so go with
1697 * a less aggressive log scale. It will still be an improvement over the old
1698 * code, and it will be simple to change the scale factor if we find that it
1699 * becomes a problem on bigger systems.
1700 */
1701 static unsigned long lazy_max_pages(void)
1702 {
1703 unsigned int log;
1704
1705 log = fls(num_online_cpus());
1706
1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708 }
1709
1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1711
1712 /*
1713 * Serialize vmap purging. There is no actual critical section protected
1714 * by this lock, but we want to avoid concurrent calls for performance
1715 * reasons and to make the pcpu_get_vm_areas more deterministic.
1716 */
1717 static DEFINE_MUTEX(vmap_purge_lock);
1718
1719 /* for per-CPU blocks */
1720 static void purge_fragmented_blocks_allcpus(void);
1721
1722 /*
1723 * Purges all lazily-freed vmap areas.
1724 */
1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1726 {
1727 unsigned long resched_threshold;
1728 unsigned int num_purged_areas = 0;
1729 struct list_head local_purge_list;
1730 struct vmap_area *va, *n_va;
1731
1732 lockdep_assert_held(&vmap_purge_lock);
1733
1734 spin_lock(&purge_vmap_area_lock);
1735 purge_vmap_area_root = RB_ROOT;
1736 list_replace_init(&purge_vmap_area_list, &local_purge_list);
1737 spin_unlock(&purge_vmap_area_lock);
1738
1739 if (unlikely(list_empty(&local_purge_list)))
1740 goto out;
1741
1742 start = min(start,
1743 list_first_entry(&local_purge_list,
1744 struct vmap_area, list)->va_start);
1745
1746 end = max(end,
1747 list_last_entry(&local_purge_list,
1748 struct vmap_area, list)->va_end);
1749
1750 flush_tlb_kernel_range(start, end);
1751 resched_threshold = lazy_max_pages() << 1;
1752
1753 spin_lock(&free_vmap_area_lock);
1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1756 unsigned long orig_start = va->va_start;
1757 unsigned long orig_end = va->va_end;
1758
1759 /*
1760 * Finally insert or merge lazily-freed area. It is
1761 * detached and there is no need to "unlink" it from
1762 * anything.
1763 */
1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 &free_vmap_area_list);
1766
1767 if (!va)
1768 continue;
1769
1770 if (is_vmalloc_or_module_addr((void *)orig_start))
1771 kasan_release_vmalloc(orig_start, orig_end,
1772 va->va_start, va->va_end);
1773
1774 atomic_long_sub(nr, &vmap_lazy_nr);
1775 num_purged_areas++;
1776
1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1778 cond_resched_lock(&free_vmap_area_lock);
1779 }
1780 spin_unlock(&free_vmap_area_lock);
1781
1782 out:
1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 return num_purged_areas > 0;
1785 }
1786
1787 /*
1788 * Kick off a purge of the outstanding lazy areas.
1789 */
1790 static void purge_vmap_area_lazy(void)
1791 {
1792 mutex_lock(&vmap_purge_lock);
1793 purge_fragmented_blocks_allcpus();
1794 __purge_vmap_area_lazy(ULONG_MAX, 0);
1795 mutex_unlock(&vmap_purge_lock);
1796 }
1797
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 unsigned long nr_lazy;
1801
1802 do {
1803 mutex_lock(&vmap_purge_lock);
1804 __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 mutex_unlock(&vmap_purge_lock);
1806
1807 /* Recheck if further work is required. */
1808 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 } while (nr_lazy > lazy_max_pages());
1810 }
1811
1812 /*
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
1816 */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 unsigned long nr_lazy_max = lazy_max_pages();
1820 unsigned long va_start = va->va_start;
1821 unsigned long nr_lazy;
1822
1823 if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 return;
1825
1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 PAGE_SHIFT, &vmap_lazy_nr);
1828
1829 /*
1830 * Merge or place it to the purge tree/list.
1831 */
1832 spin_lock(&purge_vmap_area_lock);
1833 merge_or_add_vmap_area(va,
1834 &purge_vmap_area_root, &purge_vmap_area_list);
1835 spin_unlock(&purge_vmap_area_lock);
1836
1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
1839 /* After this point, we may free va at any time */
1840 if (unlikely(nr_lazy > nr_lazy_max))
1841 schedule_work(&drain_vmap_work);
1842 }
1843
1844 /*
1845 * Free and unmap a vmap area
1846 */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 flush_cache_vunmap(va->va_start, va->va_end);
1850 vunmap_range_noflush(va->va_start, va->va_end);
1851 if (debug_pagealloc_enabled_static())
1852 flush_tlb_kernel_range(va->va_start, va->va_end);
1853
1854 free_vmap_area_noflush(va);
1855 }
1856
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 struct vmap_area *va;
1860
1861 spin_lock(&vmap_area_lock);
1862 va = __find_vmap_area(addr, &vmap_area_root);
1863 spin_unlock(&vmap_area_lock);
1864
1865 return va;
1866 }
1867
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 struct vmap_area *va;
1871
1872 spin_lock(&vmap_area_lock);
1873 va = __find_vmap_area(addr, &vmap_area_root);
1874 if (va)
1875 unlink_va(va, &vmap_area_root);
1876 spin_unlock(&vmap_area_lock);
1877
1878 return va;
1879 }
1880
1881 /*** Per cpu kva allocator ***/
1882
1883 /*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887 /*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE (128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1896 #endif
1897
1898 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS \
1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908
1909 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910
1911 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1912 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1913 #define VMAP_FLAGS_MASK 0x3
1914
1915 struct vmap_block_queue {
1916 spinlock_t lock;
1917 struct list_head free;
1918
1919 /*
1920 * An xarray requires an extra memory dynamically to
1921 * be allocated. If it is an issue, we can use rb-tree
1922 * instead.
1923 */
1924 struct xarray vmap_blocks;
1925 };
1926
1927 struct vmap_block {
1928 spinlock_t lock;
1929 struct vmap_area *va;
1930 unsigned long free, dirty;
1931 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1932 unsigned long dirty_min, dirty_max; /*< dirty range */
1933 struct list_head free_list;
1934 struct rcu_head rcu_head;
1935 struct list_head purge;
1936 };
1937
1938 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1939 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1940
1941 /*
1942 * In order to fast access to any "vmap_block" associated with a
1943 * specific address, we use a hash.
1944 *
1945 * A per-cpu vmap_block_queue is used in both ways, to serialize
1946 * an access to free block chains among CPUs(alloc path) and it
1947 * also acts as a vmap_block hash(alloc/free paths). It means we
1948 * overload it, since we already have the per-cpu array which is
1949 * used as a hash table. When used as a hash a 'cpu' passed to
1950 * per_cpu() is not actually a CPU but rather a hash index.
1951 *
1952 * A hash function is addr_to_vb_xa() which hashes any address
1953 * to a specific index(in a hash) it belongs to. This then uses a
1954 * per_cpu() macro to access an array with generated index.
1955 *
1956 * An example:
1957 *
1958 * CPU_1 CPU_2 CPU_0
1959 * | | |
1960 * V V V
1961 * 0 10 20 30 40 50 60
1962 * |------|------|------|------|------|------|...<vmap address space>
1963 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1964 *
1965 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1966 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1967 *
1968 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1969 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1970 *
1971 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1972 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1973 *
1974 * This technique almost always avoids lock contention on insert/remove,
1975 * however xarray spinlocks protect against any contention that remains.
1976 */
1977 static struct xarray *
1978 addr_to_vb_xa(unsigned long addr)
1979 {
1980 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1981
1982 return &per_cpu(vmap_block_queue, index).vmap_blocks;
1983 }
1984
1985 /*
1986 * We should probably have a fallback mechanism to allocate virtual memory
1987 * out of partially filled vmap blocks. However vmap block sizing should be
1988 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1989 * big problem.
1990 */
1991
1992 static unsigned long addr_to_vb_idx(unsigned long addr)
1993 {
1994 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1995 addr /= VMAP_BLOCK_SIZE;
1996 return addr;
1997 }
1998
1999 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2000 {
2001 unsigned long addr;
2002
2003 addr = va_start + (pages_off << PAGE_SHIFT);
2004 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2005 return (void *)addr;
2006 }
2007
2008 /**
2009 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2010 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2011 * @order: how many 2^order pages should be occupied in newly allocated block
2012 * @gfp_mask: flags for the page level allocator
2013 *
2014 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2015 */
2016 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2017 {
2018 struct vmap_block_queue *vbq;
2019 struct vmap_block *vb;
2020 struct vmap_area *va;
2021 struct xarray *xa;
2022 unsigned long vb_idx;
2023 int node, err;
2024 void *vaddr;
2025
2026 node = numa_node_id();
2027
2028 vb = kmalloc_node(sizeof(struct vmap_block),
2029 gfp_mask & GFP_RECLAIM_MASK, node);
2030 if (unlikely(!vb))
2031 return ERR_PTR(-ENOMEM);
2032
2033 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2034 VMALLOC_START, VMALLOC_END,
2035 node, gfp_mask,
2036 VMAP_RAM|VMAP_BLOCK);
2037 if (IS_ERR(va)) {
2038 kfree(vb);
2039 return ERR_CAST(va);
2040 }
2041
2042 vaddr = vmap_block_vaddr(va->va_start, 0);
2043 spin_lock_init(&vb->lock);
2044 vb->va = va;
2045 /* At least something should be left free */
2046 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2047 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2048 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2049 vb->dirty = 0;
2050 vb->dirty_min = VMAP_BBMAP_BITS;
2051 vb->dirty_max = 0;
2052 bitmap_set(vb->used_map, 0, (1UL << order));
2053 INIT_LIST_HEAD(&vb->free_list);
2054
2055 xa = addr_to_vb_xa(va->va_start);
2056 vb_idx = addr_to_vb_idx(va->va_start);
2057 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2058 if (err) {
2059 kfree(vb);
2060 free_vmap_area(va);
2061 return ERR_PTR(err);
2062 }
2063
2064 vbq = raw_cpu_ptr(&vmap_block_queue);
2065 spin_lock(&vbq->lock);
2066 list_add_tail_rcu(&vb->free_list, &vbq->free);
2067 spin_unlock(&vbq->lock);
2068
2069 return vaddr;
2070 }
2071
2072 static void free_vmap_block(struct vmap_block *vb)
2073 {
2074 struct vmap_block *tmp;
2075 struct xarray *xa;
2076
2077 xa = addr_to_vb_xa(vb->va->va_start);
2078 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2079 BUG_ON(tmp != vb);
2080
2081 spin_lock(&vmap_area_lock);
2082 unlink_va(vb->va, &vmap_area_root);
2083 spin_unlock(&vmap_area_lock);
2084
2085 free_vmap_area_noflush(vb->va);
2086 kfree_rcu(vb, rcu_head);
2087 }
2088
2089 static void purge_fragmented_blocks(int cpu)
2090 {
2091 LIST_HEAD(purge);
2092 struct vmap_block *vb;
2093 struct vmap_block *n_vb;
2094 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2098
2099 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2100 continue;
2101
2102 spin_lock(&vb->lock);
2103 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2104 vb->free = 0; /* prevent further allocs after releasing lock */
2105 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2106 vb->dirty_min = 0;
2107 vb->dirty_max = VMAP_BBMAP_BITS;
2108 spin_lock(&vbq->lock);
2109 list_del_rcu(&vb->free_list);
2110 spin_unlock(&vbq->lock);
2111 spin_unlock(&vb->lock);
2112 list_add_tail(&vb->purge, &purge);
2113 } else
2114 spin_unlock(&vb->lock);
2115 }
2116 rcu_read_unlock();
2117
2118 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2119 list_del(&vb->purge);
2120 free_vmap_block(vb);
2121 }
2122 }
2123
2124 static void purge_fragmented_blocks_allcpus(void)
2125 {
2126 int cpu;
2127
2128 for_each_possible_cpu(cpu)
2129 purge_fragmented_blocks(cpu);
2130 }
2131
2132 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2133 {
2134 struct vmap_block_queue *vbq;
2135 struct vmap_block *vb;
2136 void *vaddr = NULL;
2137 unsigned int order;
2138
2139 BUG_ON(offset_in_page(size));
2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2141 if (WARN_ON(size == 0)) {
2142 /*
2143 * Allocating 0 bytes isn't what caller wants since
2144 * get_order(0) returns funny result. Just warn and terminate
2145 * early.
2146 */
2147 return NULL;
2148 }
2149 order = get_order(size);
2150
2151 rcu_read_lock();
2152 vbq = raw_cpu_ptr(&vmap_block_queue);
2153 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2154 unsigned long pages_off;
2155
2156 spin_lock(&vb->lock);
2157 if (vb->free < (1UL << order)) {
2158 spin_unlock(&vb->lock);
2159 continue;
2160 }
2161
2162 pages_off = VMAP_BBMAP_BITS - vb->free;
2163 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2164 vb->free -= 1UL << order;
2165 bitmap_set(vb->used_map, pages_off, (1UL << order));
2166 if (vb->free == 0) {
2167 spin_lock(&vbq->lock);
2168 list_del_rcu(&vb->free_list);
2169 spin_unlock(&vbq->lock);
2170 }
2171
2172 spin_unlock(&vb->lock);
2173 break;
2174 }
2175
2176 rcu_read_unlock();
2177
2178 /* Allocate new block if nothing was found */
2179 if (!vaddr)
2180 vaddr = new_vmap_block(order, gfp_mask);
2181
2182 return vaddr;
2183 }
2184
2185 static void vb_free(unsigned long addr, unsigned long size)
2186 {
2187 unsigned long offset;
2188 unsigned int order;
2189 struct vmap_block *vb;
2190 struct xarray *xa;
2191
2192 BUG_ON(offset_in_page(size));
2193 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2194
2195 flush_cache_vunmap(addr, addr + size);
2196
2197 order = get_order(size);
2198 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2199
2200 xa = addr_to_vb_xa(addr);
2201 vb = xa_load(xa, addr_to_vb_idx(addr));
2202
2203 spin_lock(&vb->lock);
2204 bitmap_clear(vb->used_map, offset, (1UL << order));
2205 spin_unlock(&vb->lock);
2206
2207 vunmap_range_noflush(addr, addr + size);
2208
2209 if (debug_pagealloc_enabled_static())
2210 flush_tlb_kernel_range(addr, addr + size);
2211
2212 spin_lock(&vb->lock);
2213
2214 /* Expand dirty range */
2215 vb->dirty_min = min(vb->dirty_min, offset);
2216 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2217
2218 vb->dirty += 1UL << order;
2219 if (vb->dirty == VMAP_BBMAP_BITS) {
2220 BUG_ON(vb->free);
2221 spin_unlock(&vb->lock);
2222 free_vmap_block(vb);
2223 } else
2224 spin_unlock(&vb->lock);
2225 }
2226
2227 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2228 {
2229 int cpu;
2230
2231 if (unlikely(!vmap_initialized))
2232 return;
2233
2234 might_sleep();
2235
2236 for_each_possible_cpu(cpu) {
2237 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2238 struct vmap_block *vb;
2239
2240 rcu_read_lock();
2241 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2242 spin_lock(&vb->lock);
2243 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2244 unsigned long va_start = vb->va->va_start;
2245 unsigned long s, e;
2246
2247 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2248 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2249
2250 start = min(s, start);
2251 end = max(e, end);
2252
2253 flush = 1;
2254 }
2255 spin_unlock(&vb->lock);
2256 }
2257 rcu_read_unlock();
2258 }
2259
2260 mutex_lock(&vmap_purge_lock);
2261 purge_fragmented_blocks_allcpus();
2262 if (!__purge_vmap_area_lazy(start, end) && flush)
2263 flush_tlb_kernel_range(start, end);
2264 mutex_unlock(&vmap_purge_lock);
2265 }
2266
2267 /**
2268 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2269 *
2270 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2271 * to amortize TLB flushing overheads. What this means is that any page you
2272 * have now, may, in a former life, have been mapped into kernel virtual
2273 * address by the vmap layer and so there might be some CPUs with TLB entries
2274 * still referencing that page (additional to the regular 1:1 kernel mapping).
2275 *
2276 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2277 * be sure that none of the pages we have control over will have any aliases
2278 * from the vmap layer.
2279 */
2280 void vm_unmap_aliases(void)
2281 {
2282 unsigned long start = ULONG_MAX, end = 0;
2283 int flush = 0;
2284
2285 _vm_unmap_aliases(start, end, flush);
2286 }
2287 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2288
2289 /**
2290 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2291 * @mem: the pointer returned by vm_map_ram
2292 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2293 */
2294 void vm_unmap_ram(const void *mem, unsigned int count)
2295 {
2296 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2297 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2298 struct vmap_area *va;
2299
2300 might_sleep();
2301 BUG_ON(!addr);
2302 BUG_ON(addr < VMALLOC_START);
2303 BUG_ON(addr > VMALLOC_END);
2304 BUG_ON(!PAGE_ALIGNED(addr));
2305
2306 kasan_poison_vmalloc(mem, size);
2307
2308 if (likely(count <= VMAP_MAX_ALLOC)) {
2309 debug_check_no_locks_freed(mem, size);
2310 vb_free(addr, size);
2311 return;
2312 }
2313
2314 va = find_unlink_vmap_area(addr);
2315 if (WARN_ON_ONCE(!va))
2316 return;
2317
2318 debug_check_no_locks_freed((void *)va->va_start,
2319 (va->va_end - va->va_start));
2320 free_unmap_vmap_area(va);
2321 }
2322 EXPORT_SYMBOL(vm_unmap_ram);
2323
2324 /**
2325 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2326 * @pages: an array of pointers to the pages to be mapped
2327 * @count: number of pages
2328 * @node: prefer to allocate data structures on this node
2329 *
2330 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2331 * faster than vmap so it's good. But if you mix long-life and short-life
2332 * objects with vm_map_ram(), it could consume lots of address space through
2333 * fragmentation (especially on a 32bit machine). You could see failures in
2334 * the end. Please use this function for short-lived objects.
2335 *
2336 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2337 */
2338 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2339 {
2340 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341 unsigned long addr;
2342 void *mem;
2343
2344 if (likely(count <= VMAP_MAX_ALLOC)) {
2345 mem = vb_alloc(size, GFP_KERNEL);
2346 if (IS_ERR(mem))
2347 return NULL;
2348 addr = (unsigned long)mem;
2349 } else {
2350 struct vmap_area *va;
2351 va = alloc_vmap_area(size, PAGE_SIZE,
2352 VMALLOC_START, VMALLOC_END,
2353 node, GFP_KERNEL, VMAP_RAM);
2354 if (IS_ERR(va))
2355 return NULL;
2356
2357 addr = va->va_start;
2358 mem = (void *)addr;
2359 }
2360
2361 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2362 pages, PAGE_SHIFT) < 0) {
2363 vm_unmap_ram(mem, count);
2364 return NULL;
2365 }
2366
2367 /*
2368 * Mark the pages as accessible, now that they are mapped.
2369 * With hardware tag-based KASAN, marking is skipped for
2370 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2371 */
2372 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2373
2374 return mem;
2375 }
2376 EXPORT_SYMBOL(vm_map_ram);
2377
2378 static struct vm_struct *vmlist __initdata;
2379
2380 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2381 {
2382 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2383 return vm->page_order;
2384 #else
2385 return 0;
2386 #endif
2387 }
2388
2389 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2390 {
2391 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2392 vm->page_order = order;
2393 #else
2394 BUG_ON(order != 0);
2395 #endif
2396 }
2397
2398 /**
2399 * vm_area_add_early - add vmap area early during boot
2400 * @vm: vm_struct to add
2401 *
2402 * This function is used to add fixed kernel vm area to vmlist before
2403 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2404 * should contain proper values and the other fields should be zero.
2405 *
2406 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2407 */
2408 void __init vm_area_add_early(struct vm_struct *vm)
2409 {
2410 struct vm_struct *tmp, **p;
2411
2412 BUG_ON(vmap_initialized);
2413 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2414 if (tmp->addr >= vm->addr) {
2415 BUG_ON(tmp->addr < vm->addr + vm->size);
2416 break;
2417 } else
2418 BUG_ON(tmp->addr + tmp->size > vm->addr);
2419 }
2420 vm->next = *p;
2421 *p = vm;
2422 }
2423
2424 /**
2425 * vm_area_register_early - register vmap area early during boot
2426 * @vm: vm_struct to register
2427 * @align: requested alignment
2428 *
2429 * This function is used to register kernel vm area before
2430 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2431 * proper values on entry and other fields should be zero. On return,
2432 * vm->addr contains the allocated address.
2433 *
2434 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2435 */
2436 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2437 {
2438 unsigned long addr = ALIGN(VMALLOC_START, align);
2439 struct vm_struct *cur, **p;
2440
2441 BUG_ON(vmap_initialized);
2442
2443 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2444 if ((unsigned long)cur->addr - addr >= vm->size)
2445 break;
2446 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2447 }
2448
2449 BUG_ON(addr > VMALLOC_END - vm->size);
2450 vm->addr = (void *)addr;
2451 vm->next = *p;
2452 *p = vm;
2453 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2454 }
2455
2456 static void vmap_init_free_space(void)
2457 {
2458 unsigned long vmap_start = 1;
2459 const unsigned long vmap_end = ULONG_MAX;
2460 struct vmap_area *busy, *free;
2461
2462 /*
2463 * B F B B B F
2464 * -|-----|.....|-----|-----|-----|.....|-
2465 * | The KVA space |
2466 * |<--------------------------------->|
2467 */
2468 list_for_each_entry(busy, &vmap_area_list, list) {
2469 if (busy->va_start - vmap_start > 0) {
2470 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2471 if (!WARN_ON_ONCE(!free)) {
2472 free->va_start = vmap_start;
2473 free->va_end = busy->va_start;
2474
2475 insert_vmap_area_augment(free, NULL,
2476 &free_vmap_area_root,
2477 &free_vmap_area_list);
2478 }
2479 }
2480
2481 vmap_start = busy->va_end;
2482 }
2483
2484 if (vmap_end - vmap_start > 0) {
2485 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2486 if (!WARN_ON_ONCE(!free)) {
2487 free->va_start = vmap_start;
2488 free->va_end = vmap_end;
2489
2490 insert_vmap_area_augment(free, NULL,
2491 &free_vmap_area_root,
2492 &free_vmap_area_list);
2493 }
2494 }
2495 }
2496
2497 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2498 struct vmap_area *va, unsigned long flags, const void *caller)
2499 {
2500 vm->flags = flags;
2501 vm->addr = (void *)va->va_start;
2502 vm->size = va->va_end - va->va_start;
2503 vm->caller = caller;
2504 va->vm = vm;
2505 }
2506
2507 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2508 unsigned long flags, const void *caller)
2509 {
2510 spin_lock(&vmap_area_lock);
2511 setup_vmalloc_vm_locked(vm, va, flags, caller);
2512 spin_unlock(&vmap_area_lock);
2513 }
2514
2515 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2516 {
2517 /*
2518 * Before removing VM_UNINITIALIZED,
2519 * we should make sure that vm has proper values.
2520 * Pair with smp_rmb() in show_numa_info().
2521 */
2522 smp_wmb();
2523 vm->flags &= ~VM_UNINITIALIZED;
2524 }
2525
2526 static struct vm_struct *__get_vm_area_node(unsigned long size,
2527 unsigned long align, unsigned long shift, unsigned long flags,
2528 unsigned long start, unsigned long end, int node,
2529 gfp_t gfp_mask, const void *caller)
2530 {
2531 struct vmap_area *va;
2532 struct vm_struct *area;
2533 unsigned long requested_size = size;
2534
2535 BUG_ON(in_interrupt());
2536 size = ALIGN(size, 1ul << shift);
2537 if (unlikely(!size))
2538 return NULL;
2539
2540 if (flags & VM_IOREMAP)
2541 align = 1ul << clamp_t(int, get_count_order_long(size),
2542 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2543
2544 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2545 if (unlikely(!area))
2546 return NULL;
2547
2548 if (!(flags & VM_NO_GUARD))
2549 size += PAGE_SIZE;
2550
2551 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2552 if (IS_ERR(va)) {
2553 kfree(area);
2554 return NULL;
2555 }
2556
2557 setup_vmalloc_vm(area, va, flags, caller);
2558
2559 /*
2560 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2561 * best-effort approach, as they can be mapped outside of vmalloc code.
2562 * For VM_ALLOC mappings, the pages are marked as accessible after
2563 * getting mapped in __vmalloc_node_range().
2564 * With hardware tag-based KASAN, marking is skipped for
2565 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2566 */
2567 if (!(flags & VM_ALLOC))
2568 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2569 KASAN_VMALLOC_PROT_NORMAL);
2570
2571 return area;
2572 }
2573
2574 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2575 unsigned long start, unsigned long end,
2576 const void *caller)
2577 {
2578 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2579 NUMA_NO_NODE, GFP_KERNEL, caller);
2580 }
2581
2582 /**
2583 * get_vm_area - reserve a contiguous kernel virtual area
2584 * @size: size of the area
2585 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2586 *
2587 * Search an area of @size in the kernel virtual mapping area,
2588 * and reserved it for out purposes. Returns the area descriptor
2589 * on success or %NULL on failure.
2590 *
2591 * Return: the area descriptor on success or %NULL on failure.
2592 */
2593 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2594 {
2595 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2596 VMALLOC_START, VMALLOC_END,
2597 NUMA_NO_NODE, GFP_KERNEL,
2598 __builtin_return_address(0));
2599 }
2600
2601 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2602 const void *caller)
2603 {
2604 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2605 VMALLOC_START, VMALLOC_END,
2606 NUMA_NO_NODE, GFP_KERNEL, caller);
2607 }
2608
2609 /**
2610 * find_vm_area - find a continuous kernel virtual area
2611 * @addr: base address
2612 *
2613 * Search for the kernel VM area starting at @addr, and return it.
2614 * It is up to the caller to do all required locking to keep the returned
2615 * pointer valid.
2616 *
2617 * Return: the area descriptor on success or %NULL on failure.
2618 */
2619 struct vm_struct *find_vm_area(const void *addr)
2620 {
2621 struct vmap_area *va;
2622
2623 va = find_vmap_area((unsigned long)addr);
2624 if (!va)
2625 return NULL;
2626
2627 return va->vm;
2628 }
2629
2630 /**
2631 * remove_vm_area - find and remove a continuous kernel virtual area
2632 * @addr: base address
2633 *
2634 * Search for the kernel VM area starting at @addr, and remove it.
2635 * This function returns the found VM area, but using it is NOT safe
2636 * on SMP machines, except for its size or flags.
2637 *
2638 * Return: the area descriptor on success or %NULL on failure.
2639 */
2640 struct vm_struct *remove_vm_area(const void *addr)
2641 {
2642 struct vmap_area *va;
2643 struct vm_struct *vm;
2644
2645 might_sleep();
2646
2647 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2648 addr))
2649 return NULL;
2650
2651 va = find_unlink_vmap_area((unsigned long)addr);
2652 if (!va || !va->vm)
2653 return NULL;
2654 vm = va->vm;
2655
2656 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2657 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2658 kasan_free_module_shadow(vm);
2659 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2660
2661 free_unmap_vmap_area(va);
2662 return vm;
2663 }
2664
2665 static inline void set_area_direct_map(const struct vm_struct *area,
2666 int (*set_direct_map)(struct page *page))
2667 {
2668 int i;
2669
2670 /* HUGE_VMALLOC passes small pages to set_direct_map */
2671 for (i = 0; i < area->nr_pages; i++)
2672 if (page_address(area->pages[i]))
2673 set_direct_map(area->pages[i]);
2674 }
2675
2676 /*
2677 * Flush the vm mapping and reset the direct map.
2678 */
2679 static void vm_reset_perms(struct vm_struct *area)
2680 {
2681 unsigned long start = ULONG_MAX, end = 0;
2682 unsigned int page_order = vm_area_page_order(area);
2683 int flush_dmap = 0;
2684 int i;
2685
2686 /*
2687 * Find the start and end range of the direct mappings to make sure that
2688 * the vm_unmap_aliases() flush includes the direct map.
2689 */
2690 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2691 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2692
2693 if (addr) {
2694 unsigned long page_size;
2695
2696 page_size = PAGE_SIZE << page_order;
2697 start = min(addr, start);
2698 end = max(addr + page_size, end);
2699 flush_dmap = 1;
2700 }
2701 }
2702
2703 /*
2704 * Set direct map to something invalid so that it won't be cached if
2705 * there are any accesses after the TLB flush, then flush the TLB and
2706 * reset the direct map permissions to the default.
2707 */
2708 set_area_direct_map(area, set_direct_map_invalid_noflush);
2709 _vm_unmap_aliases(start, end, flush_dmap);
2710 set_area_direct_map(area, set_direct_map_default_noflush);
2711 }
2712
2713 static void delayed_vfree_work(struct work_struct *w)
2714 {
2715 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2716 struct llist_node *t, *llnode;
2717
2718 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2719 vfree(llnode);
2720 }
2721
2722 /**
2723 * vfree_atomic - release memory allocated by vmalloc()
2724 * @addr: memory base address
2725 *
2726 * This one is just like vfree() but can be called in any atomic context
2727 * except NMIs.
2728 */
2729 void vfree_atomic(const void *addr)
2730 {
2731 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2732
2733 BUG_ON(in_nmi());
2734 kmemleak_free(addr);
2735
2736 /*
2737 * Use raw_cpu_ptr() because this can be called from preemptible
2738 * context. Preemption is absolutely fine here, because the llist_add()
2739 * implementation is lockless, so it works even if we are adding to
2740 * another cpu's list. schedule_work() should be fine with this too.
2741 */
2742 if (addr && llist_add((struct llist_node *)addr, &p->list))
2743 schedule_work(&p->wq);
2744 }
2745
2746 /**
2747 * vfree - Release memory allocated by vmalloc()
2748 * @addr: Memory base address
2749 *
2750 * Free the virtually continuous memory area starting at @addr, as obtained
2751 * from one of the vmalloc() family of APIs. This will usually also free the
2752 * physical memory underlying the virtual allocation, but that memory is
2753 * reference counted, so it will not be freed until the last user goes away.
2754 *
2755 * If @addr is NULL, no operation is performed.
2756 *
2757 * Context:
2758 * May sleep if called *not* from interrupt context.
2759 * Must not be called in NMI context (strictly speaking, it could be
2760 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2761 * conventions for vfree() arch-dependent would be a really bad idea).
2762 */
2763 void vfree(const void *addr)
2764 {
2765 struct vm_struct *vm;
2766 int i;
2767
2768 if (unlikely(in_interrupt())) {
2769 vfree_atomic(addr);
2770 return;
2771 }
2772
2773 BUG_ON(in_nmi());
2774 kmemleak_free(addr);
2775 might_sleep();
2776
2777 if (!addr)
2778 return;
2779
2780 vm = remove_vm_area(addr);
2781 if (unlikely(!vm)) {
2782 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2783 addr);
2784 return;
2785 }
2786
2787 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2788 vm_reset_perms(vm);
2789 for (i = 0; i < vm->nr_pages; i++) {
2790 struct page *page = vm->pages[i];
2791
2792 BUG_ON(!page);
2793 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2794 /*
2795 * High-order allocs for huge vmallocs are split, so
2796 * can be freed as an array of order-0 allocations
2797 */
2798 __free_page(page);
2799 cond_resched();
2800 }
2801 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2802 kvfree(vm->pages);
2803 kfree(vm);
2804 }
2805 EXPORT_SYMBOL(vfree);
2806
2807 /**
2808 * vunmap - release virtual mapping obtained by vmap()
2809 * @addr: memory base address
2810 *
2811 * Free the virtually contiguous memory area starting at @addr,
2812 * which was created from the page array passed to vmap().
2813 *
2814 * Must not be called in interrupt context.
2815 */
2816 void vunmap(const void *addr)
2817 {
2818 struct vm_struct *vm;
2819
2820 BUG_ON(in_interrupt());
2821 might_sleep();
2822
2823 if (!addr)
2824 return;
2825 vm = remove_vm_area(addr);
2826 if (unlikely(!vm)) {
2827 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2828 addr);
2829 return;
2830 }
2831 kfree(vm);
2832 }
2833 EXPORT_SYMBOL(vunmap);
2834
2835 /**
2836 * vmap - map an array of pages into virtually contiguous space
2837 * @pages: array of page pointers
2838 * @count: number of pages to map
2839 * @flags: vm_area->flags
2840 * @prot: page protection for the mapping
2841 *
2842 * Maps @count pages from @pages into contiguous kernel virtual space.
2843 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2844 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2845 * are transferred from the caller to vmap(), and will be freed / dropped when
2846 * vfree() is called on the return value.
2847 *
2848 * Return: the address of the area or %NULL on failure
2849 */
2850 void *vmap(struct page **pages, unsigned int count,
2851 unsigned long flags, pgprot_t prot)
2852 {
2853 struct vm_struct *area;
2854 unsigned long addr;
2855 unsigned long size; /* In bytes */
2856
2857 might_sleep();
2858
2859 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2860 return NULL;
2861
2862 /*
2863 * Your top guard is someone else's bottom guard. Not having a top
2864 * guard compromises someone else's mappings too.
2865 */
2866 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2867 flags &= ~VM_NO_GUARD;
2868
2869 if (count > totalram_pages())
2870 return NULL;
2871
2872 size = (unsigned long)count << PAGE_SHIFT;
2873 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2874 if (!area)
2875 return NULL;
2876
2877 addr = (unsigned long)area->addr;
2878 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2879 pages, PAGE_SHIFT) < 0) {
2880 vunmap(area->addr);
2881 return NULL;
2882 }
2883
2884 if (flags & VM_MAP_PUT_PAGES) {
2885 area->pages = pages;
2886 area->nr_pages = count;
2887 }
2888 return area->addr;
2889 }
2890 EXPORT_SYMBOL(vmap);
2891
2892 #ifdef CONFIG_VMAP_PFN
2893 struct vmap_pfn_data {
2894 unsigned long *pfns;
2895 pgprot_t prot;
2896 unsigned int idx;
2897 };
2898
2899 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2900 {
2901 struct vmap_pfn_data *data = private;
2902
2903 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2904 return -EINVAL;
2905 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2906 return 0;
2907 }
2908
2909 /**
2910 * vmap_pfn - map an array of PFNs into virtually contiguous space
2911 * @pfns: array of PFNs
2912 * @count: number of pages to map
2913 * @prot: page protection for the mapping
2914 *
2915 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2916 * the start address of the mapping.
2917 */
2918 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2919 {
2920 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2921 struct vm_struct *area;
2922
2923 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2924 __builtin_return_address(0));
2925 if (!area)
2926 return NULL;
2927 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2928 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2929 free_vm_area(area);
2930 return NULL;
2931 }
2932 return area->addr;
2933 }
2934 EXPORT_SYMBOL_GPL(vmap_pfn);
2935 #endif /* CONFIG_VMAP_PFN */
2936
2937 static inline unsigned int
2938 vm_area_alloc_pages(gfp_t gfp, int nid,
2939 unsigned int order, unsigned int nr_pages, struct page **pages)
2940 {
2941 unsigned int nr_allocated = 0;
2942 gfp_t alloc_gfp = gfp;
2943 bool nofail = false;
2944 struct page *page;
2945 int i;
2946
2947 /*
2948 * For order-0 pages we make use of bulk allocator, if
2949 * the page array is partly or not at all populated due
2950 * to fails, fallback to a single page allocator that is
2951 * more permissive.
2952 */
2953 if (!order) {
2954 /* bulk allocator doesn't support nofail req. officially */
2955 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2956
2957 while (nr_allocated < nr_pages) {
2958 unsigned int nr, nr_pages_request;
2959
2960 /*
2961 * A maximum allowed request is hard-coded and is 100
2962 * pages per call. That is done in order to prevent a
2963 * long preemption off scenario in the bulk-allocator
2964 * so the range is [1:100].
2965 */
2966 nr_pages_request = min(100U, nr_pages - nr_allocated);
2967
2968 /* memory allocation should consider mempolicy, we can't
2969 * wrongly use nearest node when nid == NUMA_NO_NODE,
2970 * otherwise memory may be allocated in only one node,
2971 * but mempolicy wants to alloc memory by interleaving.
2972 */
2973 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2974 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2975 nr_pages_request,
2976 pages + nr_allocated);
2977
2978 else
2979 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2980 nr_pages_request,
2981 pages + nr_allocated);
2982
2983 nr_allocated += nr;
2984 cond_resched();
2985
2986 /*
2987 * If zero or pages were obtained partly,
2988 * fallback to a single page allocator.
2989 */
2990 if (nr != nr_pages_request)
2991 break;
2992 }
2993 } else if (gfp & __GFP_NOFAIL) {
2994 /*
2995 * Higher order nofail allocations are really expensive and
2996 * potentially dangerous (pre-mature OOM, disruptive reclaim
2997 * and compaction etc.
2998 */
2999 alloc_gfp &= ~__GFP_NOFAIL;
3000 nofail = true;
3001 }
3002
3003 /* High-order pages or fallback path if "bulk" fails. */
3004 while (nr_allocated < nr_pages) {
3005 if (fatal_signal_pending(current))
3006 break;
3007
3008 if (nid == NUMA_NO_NODE)
3009 page = alloc_pages(alloc_gfp, order);
3010 else
3011 page = alloc_pages_node(nid, alloc_gfp, order);
3012 if (unlikely(!page)) {
3013 if (!nofail)
3014 break;
3015
3016 /* fall back to the zero order allocations */
3017 alloc_gfp |= __GFP_NOFAIL;
3018 order = 0;
3019 continue;
3020 }
3021
3022 /*
3023 * Higher order allocations must be able to be treated as
3024 * indepdenent small pages by callers (as they can with
3025 * small-page vmallocs). Some drivers do their own refcounting
3026 * on vmalloc_to_page() pages, some use page->mapping,
3027 * page->lru, etc.
3028 */
3029 if (order)
3030 split_page(page, order);
3031
3032 /*
3033 * Careful, we allocate and map page-order pages, but
3034 * tracking is done per PAGE_SIZE page so as to keep the
3035 * vm_struct APIs independent of the physical/mapped size.
3036 */
3037 for (i = 0; i < (1U << order); i++)
3038 pages[nr_allocated + i] = page + i;
3039
3040 cond_resched();
3041 nr_allocated += 1U << order;
3042 }
3043
3044 return nr_allocated;
3045 }
3046
3047 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3048 pgprot_t prot, unsigned int page_shift,
3049 int node)
3050 {
3051 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3052 bool nofail = gfp_mask & __GFP_NOFAIL;
3053 unsigned long addr = (unsigned long)area->addr;
3054 unsigned long size = get_vm_area_size(area);
3055 unsigned long array_size;
3056 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3057 unsigned int page_order;
3058 unsigned int flags;
3059 int ret;
3060
3061 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3062
3063 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3064 gfp_mask |= __GFP_HIGHMEM;
3065
3066 /* Please note that the recursion is strictly bounded. */
3067 if (array_size > PAGE_SIZE) {
3068 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3069 area->caller);
3070 } else {
3071 area->pages = kmalloc_node(array_size, nested_gfp, node);
3072 }
3073
3074 if (!area->pages) {
3075 warn_alloc(gfp_mask, NULL,
3076 "vmalloc error: size %lu, failed to allocated page array size %lu",
3077 nr_small_pages * PAGE_SIZE, array_size);
3078 free_vm_area(area);
3079 return NULL;
3080 }
3081
3082 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3083 page_order = vm_area_page_order(area);
3084
3085 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3086 node, page_order, nr_small_pages, area->pages);
3087
3088 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3089 if (gfp_mask & __GFP_ACCOUNT) {
3090 int i;
3091
3092 for (i = 0; i < area->nr_pages; i++)
3093 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3094 }
3095
3096 /*
3097 * If not enough pages were obtained to accomplish an
3098 * allocation request, free them via vfree() if any.
3099 */
3100 if (area->nr_pages != nr_small_pages) {
3101 /* vm_area_alloc_pages() can also fail due to a fatal signal */
3102 if (!fatal_signal_pending(current))
3103 warn_alloc(gfp_mask, NULL,
3104 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3105 area->nr_pages * PAGE_SIZE, page_order);
3106 goto fail;
3107 }
3108
3109 /*
3110 * page tables allocations ignore external gfp mask, enforce it
3111 * by the scope API
3112 */
3113 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3114 flags = memalloc_nofs_save();
3115 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3116 flags = memalloc_noio_save();
3117
3118 do {
3119 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3120 page_shift);
3121 if (nofail && (ret < 0))
3122 schedule_timeout_uninterruptible(1);
3123 } while (nofail && (ret < 0));
3124
3125 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3126 memalloc_nofs_restore(flags);
3127 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3128 memalloc_noio_restore(flags);
3129
3130 if (ret < 0) {
3131 warn_alloc(gfp_mask, NULL,
3132 "vmalloc error: size %lu, failed to map pages",
3133 area->nr_pages * PAGE_SIZE);
3134 goto fail;
3135 }
3136
3137 return area->addr;
3138
3139 fail:
3140 vfree(area->addr);
3141 return NULL;
3142 }
3143
3144 /**
3145 * __vmalloc_node_range - allocate virtually contiguous memory
3146 * @size: allocation size
3147 * @align: desired alignment
3148 * @start: vm area range start
3149 * @end: vm area range end
3150 * @gfp_mask: flags for the page level allocator
3151 * @prot: protection mask for the allocated pages
3152 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3153 * @node: node to use for allocation or NUMA_NO_NODE
3154 * @caller: caller's return address
3155 *
3156 * Allocate enough pages to cover @size from the page level
3157 * allocator with @gfp_mask flags. Please note that the full set of gfp
3158 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3159 * supported.
3160 * Zone modifiers are not supported. From the reclaim modifiers
3161 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3162 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3163 * __GFP_RETRY_MAYFAIL are not supported).
3164 *
3165 * __GFP_NOWARN can be used to suppress failures messages.
3166 *
3167 * Map them into contiguous kernel virtual space, using a pagetable
3168 * protection of @prot.
3169 *
3170 * Return: the address of the area or %NULL on failure
3171 */
3172 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3173 unsigned long start, unsigned long end, gfp_t gfp_mask,
3174 pgprot_t prot, unsigned long vm_flags, int node,
3175 const void *caller)
3176 {
3177 struct vm_struct *area;
3178 void *ret;
3179 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3180 unsigned long real_size = size;
3181 unsigned long real_align = align;
3182 unsigned int shift = PAGE_SHIFT;
3183
3184 if (WARN_ON_ONCE(!size))
3185 return NULL;
3186
3187 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3188 warn_alloc(gfp_mask, NULL,
3189 "vmalloc error: size %lu, exceeds total pages",
3190 real_size);
3191 return NULL;
3192 }
3193
3194 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3195 unsigned long size_per_node;
3196
3197 /*
3198 * Try huge pages. Only try for PAGE_KERNEL allocations,
3199 * others like modules don't yet expect huge pages in
3200 * their allocations due to apply_to_page_range not
3201 * supporting them.
3202 */
3203
3204 size_per_node = size;
3205 if (node == NUMA_NO_NODE)
3206 size_per_node /= num_online_nodes();
3207 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3208 shift = PMD_SHIFT;
3209 else
3210 shift = arch_vmap_pte_supported_shift(size_per_node);
3211
3212 align = max(real_align, 1UL << shift);
3213 size = ALIGN(real_size, 1UL << shift);
3214 }
3215
3216 again:
3217 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3218 VM_UNINITIALIZED | vm_flags, start, end, node,
3219 gfp_mask, caller);
3220 if (!area) {
3221 bool nofail = gfp_mask & __GFP_NOFAIL;
3222 warn_alloc(gfp_mask, NULL,
3223 "vmalloc error: size %lu, vm_struct allocation failed%s",
3224 real_size, (nofail) ? ". Retrying." : "");
3225 if (nofail) {
3226 schedule_timeout_uninterruptible(1);
3227 goto again;
3228 }
3229 goto fail;
3230 }
3231
3232 /*
3233 * Prepare arguments for __vmalloc_area_node() and
3234 * kasan_unpoison_vmalloc().
3235 */
3236 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3237 if (kasan_hw_tags_enabled()) {
3238 /*
3239 * Modify protection bits to allow tagging.
3240 * This must be done before mapping.
3241 */
3242 prot = arch_vmap_pgprot_tagged(prot);
3243
3244 /*
3245 * Skip page_alloc poisoning and zeroing for physical
3246 * pages backing VM_ALLOC mapping. Memory is instead
3247 * poisoned and zeroed by kasan_unpoison_vmalloc().
3248 */
3249 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3250 }
3251
3252 /* Take note that the mapping is PAGE_KERNEL. */
3253 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3254 }
3255
3256 /* Allocate physical pages and map them into vmalloc space. */
3257 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3258 if (!ret)
3259 goto fail;
3260
3261 /*
3262 * Mark the pages as accessible, now that they are mapped.
3263 * The condition for setting KASAN_VMALLOC_INIT should complement the
3264 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3265 * to make sure that memory is initialized under the same conditions.
3266 * Tag-based KASAN modes only assign tags to normal non-executable
3267 * allocations, see __kasan_unpoison_vmalloc().
3268 */
3269 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3270 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3271 (gfp_mask & __GFP_SKIP_ZERO))
3272 kasan_flags |= KASAN_VMALLOC_INIT;
3273 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3274 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3275
3276 /*
3277 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3278 * flag. It means that vm_struct is not fully initialized.
3279 * Now, it is fully initialized, so remove this flag here.
3280 */
3281 clear_vm_uninitialized_flag(area);
3282
3283 size = PAGE_ALIGN(size);
3284 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3285 kmemleak_vmalloc(area, size, gfp_mask);
3286
3287 return area->addr;
3288
3289 fail:
3290 if (shift > PAGE_SHIFT) {
3291 shift = PAGE_SHIFT;
3292 align = real_align;
3293 size = real_size;
3294 goto again;
3295 }
3296
3297 return NULL;
3298 }
3299
3300 /**
3301 * __vmalloc_node - allocate virtually contiguous memory
3302 * @size: allocation size
3303 * @align: desired alignment
3304 * @gfp_mask: flags for the page level allocator
3305 * @node: node to use for allocation or NUMA_NO_NODE
3306 * @caller: caller's return address
3307 *
3308 * Allocate enough pages to cover @size from the page level allocator with
3309 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3310 *
3311 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3312 * and __GFP_NOFAIL are not supported
3313 *
3314 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3315 * with mm people.
3316 *
3317 * Return: pointer to the allocated memory or %NULL on error
3318 */
3319 void *__vmalloc_node(unsigned long size, unsigned long align,
3320 gfp_t gfp_mask, int node, const void *caller)
3321 {
3322 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3323 gfp_mask, PAGE_KERNEL, 0, node, caller);
3324 }
3325 /*
3326 * This is only for performance analysis of vmalloc and stress purpose.
3327 * It is required by vmalloc test module, therefore do not use it other
3328 * than that.
3329 */
3330 #ifdef CONFIG_TEST_VMALLOC_MODULE
3331 EXPORT_SYMBOL_GPL(__vmalloc_node);
3332 #endif
3333
3334 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3335 {
3336 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3337 __builtin_return_address(0));
3338 }
3339 EXPORT_SYMBOL(__vmalloc);
3340
3341 /**
3342 * vmalloc - allocate virtually contiguous memory
3343 * @size: allocation size
3344 *
3345 * Allocate enough pages to cover @size from the page level
3346 * allocator and map them into contiguous kernel virtual space.
3347 *
3348 * For tight control over page level allocator and protection flags
3349 * use __vmalloc() instead.
3350 *
3351 * Return: pointer to the allocated memory or %NULL on error
3352 */
3353 void *vmalloc(unsigned long size)
3354 {
3355 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3356 __builtin_return_address(0));
3357 }
3358 EXPORT_SYMBOL(vmalloc);
3359
3360 /**
3361 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3362 * @size: allocation size
3363 * @gfp_mask: flags for the page level allocator
3364 *
3365 * Allocate enough pages to cover @size from the page level
3366 * allocator and map them into contiguous kernel virtual space.
3367 * If @size is greater than or equal to PMD_SIZE, allow using
3368 * huge pages for the memory
3369 *
3370 * Return: pointer to the allocated memory or %NULL on error
3371 */
3372 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3373 {
3374 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3375 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3376 NUMA_NO_NODE, __builtin_return_address(0));
3377 }
3378 EXPORT_SYMBOL_GPL(vmalloc_huge);
3379
3380 /**
3381 * vzalloc - allocate virtually contiguous memory with zero fill
3382 * @size: allocation size
3383 *
3384 * Allocate enough pages to cover @size from the page level
3385 * allocator and map them into contiguous kernel virtual space.
3386 * The memory allocated is set to zero.
3387 *
3388 * For tight control over page level allocator and protection flags
3389 * use __vmalloc() instead.
3390 *
3391 * Return: pointer to the allocated memory or %NULL on error
3392 */
3393 void *vzalloc(unsigned long size)
3394 {
3395 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3396 __builtin_return_address(0));
3397 }
3398 EXPORT_SYMBOL(vzalloc);
3399
3400 /**
3401 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3402 * @size: allocation size
3403 *
3404 * The resulting memory area is zeroed so it can be mapped to userspace
3405 * without leaking data.
3406 *
3407 * Return: pointer to the allocated memory or %NULL on error
3408 */
3409 void *vmalloc_user(unsigned long size)
3410 {
3411 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3412 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3413 VM_USERMAP, NUMA_NO_NODE,
3414 __builtin_return_address(0));
3415 }
3416 EXPORT_SYMBOL(vmalloc_user);
3417
3418 /**
3419 * vmalloc_node - allocate memory on a specific node
3420 * @size: allocation size
3421 * @node: numa node
3422 *
3423 * Allocate enough pages to cover @size from the page level
3424 * allocator and map them into contiguous kernel virtual space.
3425 *
3426 * For tight control over page level allocator and protection flags
3427 * use __vmalloc() instead.
3428 *
3429 * Return: pointer to the allocated memory or %NULL on error
3430 */
3431 void *vmalloc_node(unsigned long size, int node)
3432 {
3433 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3434 __builtin_return_address(0));
3435 }
3436 EXPORT_SYMBOL(vmalloc_node);
3437
3438 /**
3439 * vzalloc_node - allocate memory on a specific node with zero fill
3440 * @size: allocation size
3441 * @node: numa node
3442 *
3443 * Allocate enough pages to cover @size from the page level
3444 * allocator and map them into contiguous kernel virtual space.
3445 * The memory allocated is set to zero.
3446 *
3447 * Return: pointer to the allocated memory or %NULL on error
3448 */
3449 void *vzalloc_node(unsigned long size, int node)
3450 {
3451 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3452 __builtin_return_address(0));
3453 }
3454 EXPORT_SYMBOL(vzalloc_node);
3455
3456 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3457 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3458 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3459 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3460 #else
3461 /*
3462 * 64b systems should always have either DMA or DMA32 zones. For others
3463 * GFP_DMA32 should do the right thing and use the normal zone.
3464 */
3465 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3466 #endif
3467
3468 /**
3469 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3470 * @size: allocation size
3471 *
3472 * Allocate enough 32bit PA addressable pages to cover @size from the
3473 * page level allocator and map them into contiguous kernel virtual space.
3474 *
3475 * Return: pointer to the allocated memory or %NULL on error
3476 */
3477 void *vmalloc_32(unsigned long size)
3478 {
3479 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3480 __builtin_return_address(0));
3481 }
3482 EXPORT_SYMBOL(vmalloc_32);
3483
3484 /**
3485 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3486 * @size: allocation size
3487 *
3488 * The resulting memory area is 32bit addressable and zeroed so it can be
3489 * mapped to userspace without leaking data.
3490 *
3491 * Return: pointer to the allocated memory or %NULL on error
3492 */
3493 void *vmalloc_32_user(unsigned long size)
3494 {
3495 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3496 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3497 VM_USERMAP, NUMA_NO_NODE,
3498 __builtin_return_address(0));
3499 }
3500 EXPORT_SYMBOL(vmalloc_32_user);
3501
3502 /*
3503 * Atomically zero bytes in the iterator.
3504 *
3505 * Returns the number of zeroed bytes.
3506 */
3507 static size_t zero_iter(struct iov_iter *iter, size_t count)
3508 {
3509 size_t remains = count;
3510
3511 while (remains > 0) {
3512 size_t num, copied;
3513
3514 num = remains < PAGE_SIZE ? remains : PAGE_SIZE;
3515 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3516 remains -= copied;
3517
3518 if (copied < num)
3519 break;
3520 }
3521
3522 return count - remains;
3523 }
3524
3525 /*
3526 * small helper routine, copy contents to iter from addr.
3527 * If the page is not present, fill zero.
3528 *
3529 * Returns the number of copied bytes.
3530 */
3531 static size_t aligned_vread_iter(struct iov_iter *iter,
3532 const char *addr, size_t count)
3533 {
3534 size_t remains = count;
3535 struct page *page;
3536
3537 while (remains > 0) {
3538 unsigned long offset, length;
3539 size_t copied = 0;
3540
3541 offset = offset_in_page(addr);
3542 length = PAGE_SIZE - offset;
3543 if (length > remains)
3544 length = remains;
3545 page = vmalloc_to_page(addr);
3546 /*
3547 * To do safe access to this _mapped_ area, we need lock. But
3548 * adding lock here means that we need to add overhead of
3549 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3550 * used. Instead of that, we'll use an local mapping via
3551 * copy_page_to_iter_nofault() and accept a small overhead in
3552 * this access function.
3553 */
3554 if (page)
3555 copied = copy_page_to_iter_nofault(page, offset,
3556 length, iter);
3557 else
3558 copied = zero_iter(iter, length);
3559
3560 addr += copied;
3561 remains -= copied;
3562
3563 if (copied != length)
3564 break;
3565 }
3566
3567 return count - remains;
3568 }
3569
3570 /*
3571 * Read from a vm_map_ram region of memory.
3572 *
3573 * Returns the number of copied bytes.
3574 */
3575 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3576 size_t count, unsigned long flags)
3577 {
3578 char *start;
3579 struct vmap_block *vb;
3580 struct xarray *xa;
3581 unsigned long offset;
3582 unsigned int rs, re;
3583 size_t remains, n;
3584
3585 /*
3586 * If it's area created by vm_map_ram() interface directly, but
3587 * not further subdividing and delegating management to vmap_block,
3588 * handle it here.
3589 */
3590 if (!(flags & VMAP_BLOCK))
3591 return aligned_vread_iter(iter, addr, count);
3592
3593 remains = count;
3594
3595 /*
3596 * Area is split into regions and tracked with vmap_block, read out
3597 * each region and zero fill the hole between regions.
3598 */
3599 xa = addr_to_vb_xa((unsigned long) addr);
3600 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3601 if (!vb)
3602 goto finished_zero;
3603
3604 spin_lock(&vb->lock);
3605 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3606 spin_unlock(&vb->lock);
3607 goto finished_zero;
3608 }
3609
3610 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3611 size_t copied;
3612
3613 if (remains == 0)
3614 goto finished;
3615
3616 start = vmap_block_vaddr(vb->va->va_start, rs);
3617
3618 if (addr < start) {
3619 size_t to_zero = min_t(size_t, start - addr, remains);
3620 size_t zeroed = zero_iter(iter, to_zero);
3621
3622 addr += zeroed;
3623 remains -= zeroed;
3624
3625 if (remains == 0 || zeroed != to_zero)
3626 goto finished;
3627 }
3628
3629 /*it could start reading from the middle of used region*/
3630 offset = offset_in_page(addr);
3631 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3632 if (n > remains)
3633 n = remains;
3634
3635 copied = aligned_vread_iter(iter, start + offset, n);
3636
3637 addr += copied;
3638 remains -= copied;
3639
3640 if (copied != n)
3641 goto finished;
3642 }
3643
3644 spin_unlock(&vb->lock);
3645
3646 finished_zero:
3647 /* zero-fill the left dirty or free regions */
3648 return count - remains + zero_iter(iter, remains);
3649 finished:
3650 /* We couldn't copy/zero everything */
3651 spin_unlock(&vb->lock);
3652 return count - remains;
3653 }
3654
3655 /**
3656 * vread_iter() - read vmalloc area in a safe way to an iterator.
3657 * @iter: the iterator to which data should be written.
3658 * @addr: vm address.
3659 * @count: number of bytes to be read.
3660 *
3661 * This function checks that addr is a valid vmalloc'ed area, and
3662 * copy data from that area to a given buffer. If the given memory range
3663 * of [addr...addr+count) includes some valid address, data is copied to
3664 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3665 * IOREMAP area is treated as memory hole and no copy is done.
3666 *
3667 * If [addr...addr+count) doesn't includes any intersects with alive
3668 * vm_struct area, returns 0. @buf should be kernel's buffer.
3669 *
3670 * Note: In usual ops, vread() is never necessary because the caller
3671 * should know vmalloc() area is valid and can use memcpy().
3672 * This is for routines which have to access vmalloc area without
3673 * any information, as /proc/kcore.
3674 *
3675 * Return: number of bytes for which addr and buf should be increased
3676 * (same number as @count) or %0 if [addr...addr+count) doesn't
3677 * include any intersection with valid vmalloc area
3678 */
3679 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3680 {
3681 struct vmap_area *va;
3682 struct vm_struct *vm;
3683 char *vaddr;
3684 size_t n, size, flags, remains;
3685
3686 addr = kasan_reset_tag(addr);
3687
3688 /* Don't allow overflow */
3689 if ((unsigned long) addr + count < count)
3690 count = -(unsigned long) addr;
3691
3692 remains = count;
3693
3694 spin_lock(&vmap_area_lock);
3695 va = find_vmap_area_exceed_addr((unsigned long)addr);
3696 if (!va)
3697 goto finished_zero;
3698
3699 /* no intersects with alive vmap_area */
3700 if ((unsigned long)addr + remains <= va->va_start)
3701 goto finished_zero;
3702
3703 list_for_each_entry_from(va, &vmap_area_list, list) {
3704 size_t copied;
3705
3706 if (remains == 0)
3707 goto finished;
3708
3709 vm = va->vm;
3710 flags = va->flags & VMAP_FLAGS_MASK;
3711 /*
3712 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3713 * be set together with VMAP_RAM.
3714 */
3715 WARN_ON(flags == VMAP_BLOCK);
3716
3717 if (!vm && !flags)
3718 continue;
3719
3720 if (vm && (vm->flags & VM_UNINITIALIZED))
3721 continue;
3722
3723 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3724 smp_rmb();
3725
3726 vaddr = (char *) va->va_start;
3727 size = vm ? get_vm_area_size(vm) : va_size(va);
3728
3729 if (addr >= vaddr + size)
3730 continue;
3731
3732 if (addr < vaddr) {
3733 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3734 size_t zeroed = zero_iter(iter, to_zero);
3735
3736 addr += zeroed;
3737 remains -= zeroed;
3738
3739 if (remains == 0 || zeroed != to_zero)
3740 goto finished;
3741 }
3742
3743 n = vaddr + size - addr;
3744 if (n > remains)
3745 n = remains;
3746
3747 if (flags & VMAP_RAM)
3748 copied = vmap_ram_vread_iter(iter, addr, n, flags);
3749 else if (!(vm->flags & VM_IOREMAP))
3750 copied = aligned_vread_iter(iter, addr, n);
3751 else /* IOREMAP area is treated as memory hole */
3752 copied = zero_iter(iter, n);
3753
3754 addr += copied;
3755 remains -= copied;
3756
3757 if (copied != n)
3758 goto finished;
3759 }
3760
3761 finished_zero:
3762 spin_unlock(&vmap_area_lock);
3763 /* zero-fill memory holes */
3764 return count - remains + zero_iter(iter, remains);
3765 finished:
3766 /* Nothing remains, or We couldn't copy/zero everything. */
3767 spin_unlock(&vmap_area_lock);
3768
3769 return count - remains;
3770 }
3771
3772 /**
3773 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3774 * @vma: vma to cover
3775 * @uaddr: target user address to start at
3776 * @kaddr: virtual address of vmalloc kernel memory
3777 * @pgoff: offset from @kaddr to start at
3778 * @size: size of map area
3779 *
3780 * Returns: 0 for success, -Exxx on failure
3781 *
3782 * This function checks that @kaddr is a valid vmalloc'ed area,
3783 * and that it is big enough to cover the range starting at
3784 * @uaddr in @vma. Will return failure if that criteria isn't
3785 * met.
3786 *
3787 * Similar to remap_pfn_range() (see mm/memory.c)
3788 */
3789 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3790 void *kaddr, unsigned long pgoff,
3791 unsigned long size)
3792 {
3793 struct vm_struct *area;
3794 unsigned long off;
3795 unsigned long end_index;
3796
3797 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3798 return -EINVAL;
3799
3800 size = PAGE_ALIGN(size);
3801
3802 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3803 return -EINVAL;
3804
3805 area = find_vm_area(kaddr);
3806 if (!area)
3807 return -EINVAL;
3808
3809 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3810 return -EINVAL;
3811
3812 if (check_add_overflow(size, off, &end_index) ||
3813 end_index > get_vm_area_size(area))
3814 return -EINVAL;
3815 kaddr += off;
3816
3817 do {
3818 struct page *page = vmalloc_to_page(kaddr);
3819 int ret;
3820
3821 ret = vm_insert_page(vma, uaddr, page);
3822 if (ret)
3823 return ret;
3824
3825 uaddr += PAGE_SIZE;
3826 kaddr += PAGE_SIZE;
3827 size -= PAGE_SIZE;
3828 } while (size > 0);
3829
3830 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3831
3832 return 0;
3833 }
3834
3835 /**
3836 * remap_vmalloc_range - map vmalloc pages to userspace
3837 * @vma: vma to cover (map full range of vma)
3838 * @addr: vmalloc memory
3839 * @pgoff: number of pages into addr before first page to map
3840 *
3841 * Returns: 0 for success, -Exxx on failure
3842 *
3843 * This function checks that addr is a valid vmalloc'ed area, and
3844 * that it is big enough to cover the vma. Will return failure if
3845 * that criteria isn't met.
3846 *
3847 * Similar to remap_pfn_range() (see mm/memory.c)
3848 */
3849 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3850 unsigned long pgoff)
3851 {
3852 return remap_vmalloc_range_partial(vma, vma->vm_start,
3853 addr, pgoff,
3854 vma->vm_end - vma->vm_start);
3855 }
3856 EXPORT_SYMBOL(remap_vmalloc_range);
3857
3858 void free_vm_area(struct vm_struct *area)
3859 {
3860 struct vm_struct *ret;
3861 ret = remove_vm_area(area->addr);
3862 BUG_ON(ret != area);
3863 kfree(area);
3864 }
3865 EXPORT_SYMBOL_GPL(free_vm_area);
3866
3867 #ifdef CONFIG_SMP
3868 static struct vmap_area *node_to_va(struct rb_node *n)
3869 {
3870 return rb_entry_safe(n, struct vmap_area, rb_node);
3871 }
3872
3873 /**
3874 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3875 * @addr: target address
3876 *
3877 * Returns: vmap_area if it is found. If there is no such area
3878 * the first highest(reverse order) vmap_area is returned
3879 * i.e. va->va_start < addr && va->va_end < addr or NULL
3880 * if there are no any areas before @addr.
3881 */
3882 static struct vmap_area *
3883 pvm_find_va_enclose_addr(unsigned long addr)
3884 {
3885 struct vmap_area *va, *tmp;
3886 struct rb_node *n;
3887
3888 n = free_vmap_area_root.rb_node;
3889 va = NULL;
3890
3891 while (n) {
3892 tmp = rb_entry(n, struct vmap_area, rb_node);
3893 if (tmp->va_start <= addr) {
3894 va = tmp;
3895 if (tmp->va_end >= addr)
3896 break;
3897
3898 n = n->rb_right;
3899 } else {
3900 n = n->rb_left;
3901 }
3902 }
3903
3904 return va;
3905 }
3906
3907 /**
3908 * pvm_determine_end_from_reverse - find the highest aligned address
3909 * of free block below VMALLOC_END
3910 * @va:
3911 * in - the VA we start the search(reverse order);
3912 * out - the VA with the highest aligned end address.
3913 * @align: alignment for required highest address
3914 *
3915 * Returns: determined end address within vmap_area
3916 */
3917 static unsigned long
3918 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3919 {
3920 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3921 unsigned long addr;
3922
3923 if (likely(*va)) {
3924 list_for_each_entry_from_reverse((*va),
3925 &free_vmap_area_list, list) {
3926 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3927 if ((*va)->va_start < addr)
3928 return addr;
3929 }
3930 }
3931
3932 return 0;
3933 }
3934
3935 /**
3936 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3937 * @offsets: array containing offset of each area
3938 * @sizes: array containing size of each area
3939 * @nr_vms: the number of areas to allocate
3940 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3941 *
3942 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3943 * vm_structs on success, %NULL on failure
3944 *
3945 * Percpu allocator wants to use congruent vm areas so that it can
3946 * maintain the offsets among percpu areas. This function allocates
3947 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3948 * be scattered pretty far, distance between two areas easily going up
3949 * to gigabytes. To avoid interacting with regular vmallocs, these
3950 * areas are allocated from top.
3951 *
3952 * Despite its complicated look, this allocator is rather simple. It
3953 * does everything top-down and scans free blocks from the end looking
3954 * for matching base. While scanning, if any of the areas do not fit the
3955 * base address is pulled down to fit the area. Scanning is repeated till
3956 * all the areas fit and then all necessary data structures are inserted
3957 * and the result is returned.
3958 */
3959 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3960 const size_t *sizes, int nr_vms,
3961 size_t align)
3962 {
3963 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3964 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3965 struct vmap_area **vas, *va;
3966 struct vm_struct **vms;
3967 int area, area2, last_area, term_area;
3968 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3969 bool purged = false;
3970
3971 /* verify parameters and allocate data structures */
3972 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3973 for (last_area = 0, area = 0; area < nr_vms; area++) {
3974 start = offsets[area];
3975 end = start + sizes[area];
3976
3977 /* is everything aligned properly? */
3978 BUG_ON(!IS_ALIGNED(offsets[area], align));
3979 BUG_ON(!IS_ALIGNED(sizes[area], align));
3980
3981 /* detect the area with the highest address */
3982 if (start > offsets[last_area])
3983 last_area = area;
3984
3985 for (area2 = area + 1; area2 < nr_vms; area2++) {
3986 unsigned long start2 = offsets[area2];
3987 unsigned long end2 = start2 + sizes[area2];
3988
3989 BUG_ON(start2 < end && start < end2);
3990 }
3991 }
3992 last_end = offsets[last_area] + sizes[last_area];
3993
3994 if (vmalloc_end - vmalloc_start < last_end) {
3995 WARN_ON(true);
3996 return NULL;
3997 }
3998
3999 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4000 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4001 if (!vas || !vms)
4002 goto err_free2;
4003
4004 for (area = 0; area < nr_vms; area++) {
4005 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4006 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4007 if (!vas[area] || !vms[area])
4008 goto err_free;
4009 }
4010 retry:
4011 spin_lock(&free_vmap_area_lock);
4012
4013 /* start scanning - we scan from the top, begin with the last area */
4014 area = term_area = last_area;
4015 start = offsets[area];
4016 end = start + sizes[area];
4017
4018 va = pvm_find_va_enclose_addr(vmalloc_end);
4019 base = pvm_determine_end_from_reverse(&va, align) - end;
4020
4021 while (true) {
4022 /*
4023 * base might have underflowed, add last_end before
4024 * comparing.
4025 */
4026 if (base + last_end < vmalloc_start + last_end)
4027 goto overflow;
4028
4029 /*
4030 * Fitting base has not been found.
4031 */
4032 if (va == NULL)
4033 goto overflow;
4034
4035 /*
4036 * If required width exceeds current VA block, move
4037 * base downwards and then recheck.
4038 */
4039 if (base + end > va->va_end) {
4040 base = pvm_determine_end_from_reverse(&va, align) - end;
4041 term_area = area;
4042 continue;
4043 }
4044
4045 /*
4046 * If this VA does not fit, move base downwards and recheck.
4047 */
4048 if (base + start < va->va_start) {
4049 va = node_to_va(rb_prev(&va->rb_node));
4050 base = pvm_determine_end_from_reverse(&va, align) - end;
4051 term_area = area;
4052 continue;
4053 }
4054
4055 /*
4056 * This area fits, move on to the previous one. If
4057 * the previous one is the terminal one, we're done.
4058 */
4059 area = (area + nr_vms - 1) % nr_vms;
4060 if (area == term_area)
4061 break;
4062
4063 start = offsets[area];
4064 end = start + sizes[area];
4065 va = pvm_find_va_enclose_addr(base + end);
4066 }
4067
4068 /* we've found a fitting base, insert all va's */
4069 for (area = 0; area < nr_vms; area++) {
4070 int ret;
4071
4072 start = base + offsets[area];
4073 size = sizes[area];
4074
4075 va = pvm_find_va_enclose_addr(start);
4076 if (WARN_ON_ONCE(va == NULL))
4077 /* It is a BUG(), but trigger recovery instead. */
4078 goto recovery;
4079
4080 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4081 &free_vmap_area_list,
4082 va, start, size);
4083 if (WARN_ON_ONCE(unlikely(ret)))
4084 /* It is a BUG(), but trigger recovery instead. */
4085 goto recovery;
4086
4087 /* Allocated area. */
4088 va = vas[area];
4089 va->va_start = start;
4090 va->va_end = start + size;
4091 }
4092
4093 spin_unlock(&free_vmap_area_lock);
4094
4095 /* populate the kasan shadow space */
4096 for (area = 0; area < nr_vms; area++) {
4097 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4098 goto err_free_shadow;
4099 }
4100
4101 /* insert all vm's */
4102 spin_lock(&vmap_area_lock);
4103 for (area = 0; area < nr_vms; area++) {
4104 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4105
4106 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4107 pcpu_get_vm_areas);
4108 }
4109 spin_unlock(&vmap_area_lock);
4110
4111 /*
4112 * Mark allocated areas as accessible. Do it now as a best-effort
4113 * approach, as they can be mapped outside of vmalloc code.
4114 * With hardware tag-based KASAN, marking is skipped for
4115 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4116 */
4117 for (area = 0; area < nr_vms; area++)
4118 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4119 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4120
4121 kfree(vas);
4122 return vms;
4123
4124 recovery:
4125 /*
4126 * Remove previously allocated areas. There is no
4127 * need in removing these areas from the busy tree,
4128 * because they are inserted only on the final step
4129 * and when pcpu_get_vm_areas() is success.
4130 */
4131 while (area--) {
4132 orig_start = vas[area]->va_start;
4133 orig_end = vas[area]->va_end;
4134 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4135 &free_vmap_area_list);
4136 if (va)
4137 kasan_release_vmalloc(orig_start, orig_end,
4138 va->va_start, va->va_end);
4139 vas[area] = NULL;
4140 }
4141
4142 overflow:
4143 spin_unlock(&free_vmap_area_lock);
4144 if (!purged) {
4145 purge_vmap_area_lazy();
4146 purged = true;
4147
4148 /* Before "retry", check if we recover. */
4149 for (area = 0; area < nr_vms; area++) {
4150 if (vas[area])
4151 continue;
4152
4153 vas[area] = kmem_cache_zalloc(
4154 vmap_area_cachep, GFP_KERNEL);
4155 if (!vas[area])
4156 goto err_free;
4157 }
4158
4159 goto retry;
4160 }
4161
4162 err_free:
4163 for (area = 0; area < nr_vms; area++) {
4164 if (vas[area])
4165 kmem_cache_free(vmap_area_cachep, vas[area]);
4166
4167 kfree(vms[area]);
4168 }
4169 err_free2:
4170 kfree(vas);
4171 kfree(vms);
4172 return NULL;
4173
4174 err_free_shadow:
4175 spin_lock(&free_vmap_area_lock);
4176 /*
4177 * We release all the vmalloc shadows, even the ones for regions that
4178 * hadn't been successfully added. This relies on kasan_release_vmalloc
4179 * being able to tolerate this case.
4180 */
4181 for (area = 0; area < nr_vms; area++) {
4182 orig_start = vas[area]->va_start;
4183 orig_end = vas[area]->va_end;
4184 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4185 &free_vmap_area_list);
4186 if (va)
4187 kasan_release_vmalloc(orig_start, orig_end,
4188 va->va_start, va->va_end);
4189 vas[area] = NULL;
4190 kfree(vms[area]);
4191 }
4192 spin_unlock(&free_vmap_area_lock);
4193 kfree(vas);
4194 kfree(vms);
4195 return NULL;
4196 }
4197
4198 /**
4199 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4200 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4201 * @nr_vms: the number of allocated areas
4202 *
4203 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4204 */
4205 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4206 {
4207 int i;
4208
4209 for (i = 0; i < nr_vms; i++)
4210 free_vm_area(vms[i]);
4211 kfree(vms);
4212 }
4213 #endif /* CONFIG_SMP */
4214
4215 #ifdef CONFIG_PRINTK
4216 bool vmalloc_dump_obj(void *object)
4217 {
4218 struct vm_struct *vm;
4219 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4220
4221 vm = find_vm_area(objp);
4222 if (!vm)
4223 return false;
4224 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4225 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4226 return true;
4227 }
4228 #endif
4229
4230 #ifdef CONFIG_PROC_FS
4231 static void *s_start(struct seq_file *m, loff_t *pos)
4232 __acquires(&vmap_purge_lock)
4233 __acquires(&vmap_area_lock)
4234 {
4235 mutex_lock(&vmap_purge_lock);
4236 spin_lock(&vmap_area_lock);
4237
4238 return seq_list_start(&vmap_area_list, *pos);
4239 }
4240
4241 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4242 {
4243 return seq_list_next(p, &vmap_area_list, pos);
4244 }
4245
4246 static void s_stop(struct seq_file *m, void *p)
4247 __releases(&vmap_area_lock)
4248 __releases(&vmap_purge_lock)
4249 {
4250 spin_unlock(&vmap_area_lock);
4251 mutex_unlock(&vmap_purge_lock);
4252 }
4253
4254 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4255 {
4256 if (IS_ENABLED(CONFIG_NUMA)) {
4257 unsigned int nr, *counters = m->private;
4258 unsigned int step = 1U << vm_area_page_order(v);
4259
4260 if (!counters)
4261 return;
4262
4263 if (v->flags & VM_UNINITIALIZED)
4264 return;
4265 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4266 smp_rmb();
4267
4268 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4269
4270 for (nr = 0; nr < v->nr_pages; nr += step)
4271 counters[page_to_nid(v->pages[nr])] += step;
4272 for_each_node_state(nr, N_HIGH_MEMORY)
4273 if (counters[nr])
4274 seq_printf(m, " N%u=%u", nr, counters[nr]);
4275 }
4276 }
4277
4278 static void show_purge_info(struct seq_file *m)
4279 {
4280 struct vmap_area *va;
4281
4282 spin_lock(&purge_vmap_area_lock);
4283 list_for_each_entry(va, &purge_vmap_area_list, list) {
4284 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4285 (void *)va->va_start, (void *)va->va_end,
4286 va->va_end - va->va_start);
4287 }
4288 spin_unlock(&purge_vmap_area_lock);
4289 }
4290
4291 static int s_show(struct seq_file *m, void *p)
4292 {
4293 struct vmap_area *va;
4294 struct vm_struct *v;
4295
4296 va = list_entry(p, struct vmap_area, list);
4297
4298 if (!va->vm) {
4299 if (va->flags & VMAP_RAM)
4300 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4301 (void *)va->va_start, (void *)va->va_end,
4302 va->va_end - va->va_start);
4303
4304 goto final;
4305 }
4306
4307 v = va->vm;
4308
4309 seq_printf(m, "0x%pK-0x%pK %7ld",
4310 v->addr, v->addr + v->size, v->size);
4311
4312 if (v->caller)
4313 seq_printf(m, " %pS", v->caller);
4314
4315 if (v->nr_pages)
4316 seq_printf(m, " pages=%d", v->nr_pages);
4317
4318 if (v->phys_addr)
4319 seq_printf(m, " phys=%pa", &v->phys_addr);
4320
4321 if (v->flags & VM_IOREMAP)
4322 seq_puts(m, " ioremap");
4323
4324 if (v->flags & VM_ALLOC)
4325 seq_puts(m, " vmalloc");
4326
4327 if (v->flags & VM_MAP)
4328 seq_puts(m, " vmap");
4329
4330 if (v->flags & VM_USERMAP)
4331 seq_puts(m, " user");
4332
4333 if (v->flags & VM_DMA_COHERENT)
4334 seq_puts(m, " dma-coherent");
4335
4336 if (is_vmalloc_addr(v->pages))
4337 seq_puts(m, " vpages");
4338
4339 show_numa_info(m, v);
4340 seq_putc(m, '\n');
4341
4342 /*
4343 * As a final step, dump "unpurged" areas.
4344 */
4345 final:
4346 if (list_is_last(&va->list, &vmap_area_list))
4347 show_purge_info(m);
4348
4349 return 0;
4350 }
4351
4352 static const struct seq_operations vmalloc_op = {
4353 .start = s_start,
4354 .next = s_next,
4355 .stop = s_stop,
4356 .show = s_show,
4357 };
4358
4359 static int __init proc_vmalloc_init(void)
4360 {
4361 if (IS_ENABLED(CONFIG_NUMA))
4362 proc_create_seq_private("vmallocinfo", 0400, NULL,
4363 &vmalloc_op,
4364 nr_node_ids * sizeof(unsigned int), NULL);
4365 else
4366 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4367 return 0;
4368 }
4369 module_init(proc_vmalloc_init);
4370
4371 #endif
4372
4373 void __init vmalloc_init(void)
4374 {
4375 struct vmap_area *va;
4376 struct vm_struct *tmp;
4377 int i;
4378
4379 /*
4380 * Create the cache for vmap_area objects.
4381 */
4382 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4383
4384 for_each_possible_cpu(i) {
4385 struct vmap_block_queue *vbq;
4386 struct vfree_deferred *p;
4387
4388 vbq = &per_cpu(vmap_block_queue, i);
4389 spin_lock_init(&vbq->lock);
4390 INIT_LIST_HEAD(&vbq->free);
4391 p = &per_cpu(vfree_deferred, i);
4392 init_llist_head(&p->list);
4393 INIT_WORK(&p->wq, delayed_vfree_work);
4394 xa_init(&vbq->vmap_blocks);
4395 }
4396
4397 /* Import existing vmlist entries. */
4398 for (tmp = vmlist; tmp; tmp = tmp->next) {
4399 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4400 if (WARN_ON_ONCE(!va))
4401 continue;
4402
4403 va->va_start = (unsigned long)tmp->addr;
4404 va->va_end = va->va_start + tmp->size;
4405 va->vm = tmp;
4406 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4407 }
4408
4409 /*
4410 * Now we can initialize a free vmap space.
4411 */
4412 vmap_init_free_space();
4413 vmap_initialized = true;
4414 }