]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/vmalloc.c
Merge tag 'staging-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[thirdparty/linux.git] / mm / vmalloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48
49 #include "internal.h"
50 #include "pgalloc-track.h"
51
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55 static int __init set_nohugeiomap(char *str)
56 {
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67
68 static int __init set_nohugevmalloc(char *str)
69 {
70 vmap_allow_huge = false;
71 return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
78 bool is_vmalloc_addr(const void *x)
79 {
80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85
86 struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 pte_t *pte;
98 u64 pfn;
99 unsigned long size = PAGE_SIZE;
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(*pte));
107
108 #ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118 #endif
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124 }
125
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129 {
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149 }
150
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174 }
175
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179 {
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199 }
200
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225 }
226
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230 {
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250 }
251
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276 }
277
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281 {
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305 }
306
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
309 {
310 int err;
311
312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 ioremap_max_page_shift);
314 flush_cache_vmap(addr, end);
315 if (!err)
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
318 return err;
319 }
320
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
323 {
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
331 *mask |= PGTBL_PTE_MODIFIED;
332 }
333
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
336 {
337 pmd_t *pmd;
338 unsigned long next;
339 int cleared;
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
350 continue;
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
353 vunmap_pte_range(pmd, addr, next, mask);
354
355 cond_resched();
356 } while (pmd++, addr = next, addr != end);
357 }
358
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
361 {
362 pud_t *pud;
363 unsigned long next;
364 int cleared;
365
366 pud = pud_offset(p4d, addr);
367 do {
368 next = pud_addr_end(addr, end);
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
375 continue;
376 if (pud_none_or_clear_bad(pud))
377 continue;
378 vunmap_pmd_range(pud, addr, next, mask);
379 } while (pud++, addr = next, addr != end);
380 }
381
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
384 {
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
391
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
394 *mask |= PGTBL_P4D_MODIFIED;
395
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
398 vunmap_pud_range(p4d, addr, next, mask);
399 } while (p4d++, addr = next, addr != end);
400 }
401
402 /*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
405 *
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
411 *
412 * This is an internal function only. Do not use outside mm/.
413 */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 unsigned long next;
417 pgd_t *pgd;
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
423 do {
424 next = pgd_addr_end(addr, end);
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
429 vunmap_p4d_range(pgd, addr, next, &mask);
430 } while (pgd++, addr = next, addr != end);
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
434 }
435
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440 }
441
442 /**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456 }
457
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
461 {
462 pte_t *pte;
463
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
469 pte = pte_alloc_kernel_track(pmd, addr, mask);
470 if (!pte)
471 return -ENOMEM;
472 do {
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(*pte)))
476 return -EBUSY;
477 if (WARN_ON(!page))
478 return -ENOMEM;
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 (*nr)++;
484 } while (pte++, addr += PAGE_SIZE, addr != end);
485 *mask |= PGTBL_PTE_MODIFIED;
486 return 0;
487 }
488
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
492 {
493 pmd_t *pmd;
494 unsigned long next;
495
496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505 }
506
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
510 {
511 pud_t *pud;
512 unsigned long next;
513
514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523 }
524
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
528 {
529 p4d_t *p4d;
530 unsigned long next;
531
532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541 }
542
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
545 {
546 unsigned long start = addr;
547 pgd_t *pgd;
548 unsigned long next;
549 int err = 0;
550 int nr = 0;
551 pgtbl_mod_mask mask = 0;
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
555 do {
556 next = pgd_addr_end(addr, end);
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 if (err)
561 return err;
562 } while (pgd++, addr = next, addr != end);
563
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
567 return 0;
568 }
569
570 /*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 page_to_phys(pages[i]), prot,
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603 }
604
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615
616 /**
617 * vmap_pages_range - map pages to a kernel virtual address
618 * @addr: start of the VM area to map
619 * @end: end of the VM area to map (non-inclusive)
620 * @prot: page protection flags to use
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 int err;
632
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
636 }
637
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 /*
641 * ARM, x86-64 and sparc64 put modules in a special place,
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649 #endif
650 return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653
654 /*
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
658 */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 unsigned long addr = (unsigned long) vmalloc_addr;
662 struct page *page = NULL;
663 pgd_t *pgd = pgd_offset_k(addr);
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
668
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674
675 if (pgd_none(*pgd))
676 return NULL;
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
689
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
696 return NULL;
697
698 pmd = pmd_offset(pud, addr);
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 return NULL;
705
706 ptep = pte_offset_map(pmd, addr);
707 pte = *ptep;
708 if (pte_present(pte))
709 page = pte_page(pte);
710 pte_unmap(ptep);
711
712 return page;
713 }
714 EXPORT_SYMBOL(vmalloc_to_page);
715
716 /*
717 * Map a vmalloc()-space virtual address to the physical page frame number.
718 */
719 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
720 {
721 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
722 }
723 EXPORT_SYMBOL(vmalloc_to_pfn);
724
725
726 /*** Global kva allocator ***/
727
728 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
729 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
730
731
732 static DEFINE_SPINLOCK(vmap_area_lock);
733 static DEFINE_SPINLOCK(free_vmap_area_lock);
734 /* Export for kexec only */
735 LIST_HEAD(vmap_area_list);
736 static struct rb_root vmap_area_root = RB_ROOT;
737 static bool vmap_initialized __read_mostly;
738
739 static struct rb_root purge_vmap_area_root = RB_ROOT;
740 static LIST_HEAD(purge_vmap_area_list);
741 static DEFINE_SPINLOCK(purge_vmap_area_lock);
742
743 /*
744 * This kmem_cache is used for vmap_area objects. Instead of
745 * allocating from slab we reuse an object from this cache to
746 * make things faster. Especially in "no edge" splitting of
747 * free block.
748 */
749 static struct kmem_cache *vmap_area_cachep;
750
751 /*
752 * This linked list is used in pair with free_vmap_area_root.
753 * It gives O(1) access to prev/next to perform fast coalescing.
754 */
755 static LIST_HEAD(free_vmap_area_list);
756
757 /*
758 * This augment red-black tree represents the free vmap space.
759 * All vmap_area objects in this tree are sorted by va->va_start
760 * address. It is used for allocation and merging when a vmap
761 * object is released.
762 *
763 * Each vmap_area node contains a maximum available free block
764 * of its sub-tree, right or left. Therefore it is possible to
765 * find a lowest match of free area.
766 */
767 static struct rb_root free_vmap_area_root = RB_ROOT;
768
769 /*
770 * Preload a CPU with one object for "no edge" split case. The
771 * aim is to get rid of allocations from the atomic context, thus
772 * to use more permissive allocation masks.
773 */
774 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775
776 static __always_inline unsigned long
777 va_size(struct vmap_area *va)
778 {
779 return (va->va_end - va->va_start);
780 }
781
782 static __always_inline unsigned long
783 get_subtree_max_size(struct rb_node *node)
784 {
785 struct vmap_area *va;
786
787 va = rb_entry_safe(node, struct vmap_area, rb_node);
788 return va ? va->subtree_max_size : 0;
789 }
790
791 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
793
794 static void purge_vmap_area_lazy(void);
795 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
796 static void drain_vmap_area_work(struct work_struct *work);
797 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
798
799 static atomic_long_t nr_vmalloc_pages;
800
801 unsigned long vmalloc_nr_pages(void)
802 {
803 return atomic_long_read(&nr_vmalloc_pages);
804 }
805
806 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
807 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808 {
809 struct vmap_area *va = NULL;
810 struct rb_node *n = vmap_area_root.rb_node;
811
812 addr = (unsigned long)kasan_reset_tag((void *)addr);
813
814 while (n) {
815 struct vmap_area *tmp;
816
817 tmp = rb_entry(n, struct vmap_area, rb_node);
818 if (tmp->va_end > addr) {
819 va = tmp;
820 if (tmp->va_start <= addr)
821 break;
822
823 n = n->rb_left;
824 } else
825 n = n->rb_right;
826 }
827
828 return va;
829 }
830
831 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
832 {
833 struct rb_node *n = root->rb_node;
834
835 addr = (unsigned long)kasan_reset_tag((void *)addr);
836
837 while (n) {
838 struct vmap_area *va;
839
840 va = rb_entry(n, struct vmap_area, rb_node);
841 if (addr < va->va_start)
842 n = n->rb_left;
843 else if (addr >= va->va_end)
844 n = n->rb_right;
845 else
846 return va;
847 }
848
849 return NULL;
850 }
851
852 /*
853 * This function returns back addresses of parent node
854 * and its left or right link for further processing.
855 *
856 * Otherwise NULL is returned. In that case all further
857 * steps regarding inserting of conflicting overlap range
858 * have to be declined and actually considered as a bug.
859 */
860 static __always_inline struct rb_node **
861 find_va_links(struct vmap_area *va,
862 struct rb_root *root, struct rb_node *from,
863 struct rb_node **parent)
864 {
865 struct vmap_area *tmp_va;
866 struct rb_node **link;
867
868 if (root) {
869 link = &root->rb_node;
870 if (unlikely(!*link)) {
871 *parent = NULL;
872 return link;
873 }
874 } else {
875 link = &from;
876 }
877
878 /*
879 * Go to the bottom of the tree. When we hit the last point
880 * we end up with parent rb_node and correct direction, i name
881 * it link, where the new va->rb_node will be attached to.
882 */
883 do {
884 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
885
886 /*
887 * During the traversal we also do some sanity check.
888 * Trigger the BUG() if there are sides(left/right)
889 * or full overlaps.
890 */
891 if (va->va_end <= tmp_va->va_start)
892 link = &(*link)->rb_left;
893 else if (va->va_start >= tmp_va->va_end)
894 link = &(*link)->rb_right;
895 else {
896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898
899 return NULL;
900 }
901 } while (*link);
902
903 *parent = &tmp_va->rb_node;
904 return link;
905 }
906
907 static __always_inline struct list_head *
908 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909 {
910 struct list_head *list;
911
912 if (unlikely(!parent))
913 /*
914 * The red-black tree where we try to find VA neighbors
915 * before merging or inserting is empty, i.e. it means
916 * there is no free vmap space. Normally it does not
917 * happen but we handle this case anyway.
918 */
919 return NULL;
920
921 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 return (&parent->rb_right == link ? list->next : list);
923 }
924
925 static __always_inline void
926 __link_va(struct vmap_area *va, struct rb_root *root,
927 struct rb_node *parent, struct rb_node **link,
928 struct list_head *head, bool augment)
929 {
930 /*
931 * VA is still not in the list, but we can
932 * identify its future previous list_head node.
933 */
934 if (likely(parent)) {
935 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 if (&parent->rb_right != link)
937 head = head->prev;
938 }
939
940 /* Insert to the rb-tree */
941 rb_link_node(&va->rb_node, parent, link);
942 if (augment) {
943 /*
944 * Some explanation here. Just perform simple insertion
945 * to the tree. We do not set va->subtree_max_size to
946 * its current size before calling rb_insert_augmented().
947 * It is because we populate the tree from the bottom
948 * to parent levels when the node _is_ in the tree.
949 *
950 * Therefore we set subtree_max_size to zero after insertion,
951 * to let __augment_tree_propagate_from() puts everything to
952 * the correct order later on.
953 */
954 rb_insert_augmented(&va->rb_node,
955 root, &free_vmap_area_rb_augment_cb);
956 va->subtree_max_size = 0;
957 } else {
958 rb_insert_color(&va->rb_node, root);
959 }
960
961 /* Address-sort this list */
962 list_add(&va->list, head);
963 }
964
965 static __always_inline void
966 link_va(struct vmap_area *va, struct rb_root *root,
967 struct rb_node *parent, struct rb_node **link,
968 struct list_head *head)
969 {
970 __link_va(va, root, parent, link, head, false);
971 }
972
973 static __always_inline void
974 link_va_augment(struct vmap_area *va, struct rb_root *root,
975 struct rb_node *parent, struct rb_node **link,
976 struct list_head *head)
977 {
978 __link_va(va, root, parent, link, head, true);
979 }
980
981 static __always_inline void
982 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
983 {
984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 return;
986
987 if (augment)
988 rb_erase_augmented(&va->rb_node,
989 root, &free_vmap_area_rb_augment_cb);
990 else
991 rb_erase(&va->rb_node, root);
992
993 list_del_init(&va->list);
994 RB_CLEAR_NODE(&va->rb_node);
995 }
996
997 static __always_inline void
998 unlink_va(struct vmap_area *va, struct rb_root *root)
999 {
1000 __unlink_va(va, root, false);
1001 }
1002
1003 static __always_inline void
1004 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005 {
1006 __unlink_va(va, root, true);
1007 }
1008
1009 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1010 /*
1011 * Gets called when remove the node and rotate.
1012 */
1013 static __always_inline unsigned long
1014 compute_subtree_max_size(struct vmap_area *va)
1015 {
1016 return max3(va_size(va),
1017 get_subtree_max_size(va->rb_node.rb_left),
1018 get_subtree_max_size(va->rb_node.rb_right));
1019 }
1020
1021 static void
1022 augment_tree_propagate_check(void)
1023 {
1024 struct vmap_area *va;
1025 unsigned long computed_size;
1026
1027 list_for_each_entry(va, &free_vmap_area_list, list) {
1028 computed_size = compute_subtree_max_size(va);
1029 if (computed_size != va->subtree_max_size)
1030 pr_emerg("tree is corrupted: %lu, %lu\n",
1031 va_size(va), va->subtree_max_size);
1032 }
1033 }
1034 #endif
1035
1036 /*
1037 * This function populates subtree_max_size from bottom to upper
1038 * levels starting from VA point. The propagation must be done
1039 * when VA size is modified by changing its va_start/va_end. Or
1040 * in case of newly inserting of VA to the tree.
1041 *
1042 * It means that __augment_tree_propagate_from() must be called:
1043 * - After VA has been inserted to the tree(free path);
1044 * - After VA has been shrunk(allocation path);
1045 * - After VA has been increased(merging path).
1046 *
1047 * Please note that, it does not mean that upper parent nodes
1048 * and their subtree_max_size are recalculated all the time up
1049 * to the root node.
1050 *
1051 * 4--8
1052 * /\
1053 * / \
1054 * / \
1055 * 2--2 8--8
1056 *
1057 * For example if we modify the node 4, shrinking it to 2, then
1058 * no any modification is required. If we shrink the node 2 to 1
1059 * its subtree_max_size is updated only, and set to 1. If we shrink
1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061 * node becomes 4--6.
1062 */
1063 static __always_inline void
1064 augment_tree_propagate_from(struct vmap_area *va)
1065 {
1066 /*
1067 * Populate the tree from bottom towards the root until
1068 * the calculated maximum available size of checked node
1069 * is equal to its current one.
1070 */
1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1072
1073 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1074 augment_tree_propagate_check();
1075 #endif
1076 }
1077
1078 static void
1079 insert_vmap_area(struct vmap_area *va,
1080 struct rb_root *root, struct list_head *head)
1081 {
1082 struct rb_node **link;
1083 struct rb_node *parent;
1084
1085 link = find_va_links(va, root, NULL, &parent);
1086 if (link)
1087 link_va(va, root, parent, link, head);
1088 }
1089
1090 static void
1091 insert_vmap_area_augment(struct vmap_area *va,
1092 struct rb_node *from, struct rb_root *root,
1093 struct list_head *head)
1094 {
1095 struct rb_node **link;
1096 struct rb_node *parent;
1097
1098 if (from)
1099 link = find_va_links(va, NULL, from, &parent);
1100 else
1101 link = find_va_links(va, root, NULL, &parent);
1102
1103 if (link) {
1104 link_va_augment(va, root, parent, link, head);
1105 augment_tree_propagate_from(va);
1106 }
1107 }
1108
1109 /*
1110 * Merge de-allocated chunk of VA memory with previous
1111 * and next free blocks. If coalesce is not done a new
1112 * free area is inserted. If VA has been merged, it is
1113 * freed.
1114 *
1115 * Please note, it can return NULL in case of overlap
1116 * ranges, followed by WARN() report. Despite it is a
1117 * buggy behaviour, a system can be alive and keep
1118 * ongoing.
1119 */
1120 static __always_inline struct vmap_area *
1121 __merge_or_add_vmap_area(struct vmap_area *va,
1122 struct rb_root *root, struct list_head *head, bool augment)
1123 {
1124 struct vmap_area *sibling;
1125 struct list_head *next;
1126 struct rb_node **link;
1127 struct rb_node *parent;
1128 bool merged = false;
1129
1130 /*
1131 * Find a place in the tree where VA potentially will be
1132 * inserted, unless it is merged with its sibling/siblings.
1133 */
1134 link = find_va_links(va, root, NULL, &parent);
1135 if (!link)
1136 return NULL;
1137
1138 /*
1139 * Get next node of VA to check if merging can be done.
1140 */
1141 next = get_va_next_sibling(parent, link);
1142 if (unlikely(next == NULL))
1143 goto insert;
1144
1145 /*
1146 * start end
1147 * | |
1148 * |<------VA------>|<-----Next----->|
1149 * | |
1150 * start end
1151 */
1152 if (next != head) {
1153 sibling = list_entry(next, struct vmap_area, list);
1154 if (sibling->va_start == va->va_end) {
1155 sibling->va_start = va->va_start;
1156
1157 /* Free vmap_area object. */
1158 kmem_cache_free(vmap_area_cachep, va);
1159
1160 /* Point to the new merged area. */
1161 va = sibling;
1162 merged = true;
1163 }
1164 }
1165
1166 /*
1167 * start end
1168 * | |
1169 * |<-----Prev----->|<------VA------>|
1170 * | |
1171 * start end
1172 */
1173 if (next->prev != head) {
1174 sibling = list_entry(next->prev, struct vmap_area, list);
1175 if (sibling->va_end == va->va_start) {
1176 /*
1177 * If both neighbors are coalesced, it is important
1178 * to unlink the "next" node first, followed by merging
1179 * with "previous" one. Otherwise the tree might not be
1180 * fully populated if a sibling's augmented value is
1181 * "normalized" because of rotation operations.
1182 */
1183 if (merged)
1184 __unlink_va(va, root, augment);
1185
1186 sibling->va_end = va->va_end;
1187
1188 /* Free vmap_area object. */
1189 kmem_cache_free(vmap_area_cachep, va);
1190
1191 /* Point to the new merged area. */
1192 va = sibling;
1193 merged = true;
1194 }
1195 }
1196
1197 insert:
1198 if (!merged)
1199 __link_va(va, root, parent, link, head, augment);
1200
1201 return va;
1202 }
1203
1204 static __always_inline struct vmap_area *
1205 merge_or_add_vmap_area(struct vmap_area *va,
1206 struct rb_root *root, struct list_head *head)
1207 {
1208 return __merge_or_add_vmap_area(va, root, head, false);
1209 }
1210
1211 static __always_inline struct vmap_area *
1212 merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214 {
1215 va = __merge_or_add_vmap_area(va, root, head, true);
1216 if (va)
1217 augment_tree_propagate_from(va);
1218
1219 return va;
1220 }
1221
1222 static __always_inline bool
1223 is_within_this_va(struct vmap_area *va, unsigned long size,
1224 unsigned long align, unsigned long vstart)
1225 {
1226 unsigned long nva_start_addr;
1227
1228 if (va->va_start > vstart)
1229 nva_start_addr = ALIGN(va->va_start, align);
1230 else
1231 nva_start_addr = ALIGN(vstart, align);
1232
1233 /* Can be overflowed due to big size or alignment. */
1234 if (nva_start_addr + size < nva_start_addr ||
1235 nva_start_addr < vstart)
1236 return false;
1237
1238 return (nva_start_addr + size <= va->va_end);
1239 }
1240
1241 /*
1242 * Find the first free block(lowest start address) in the tree,
1243 * that will accomplish the request corresponding to passing
1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245 * a search length is adjusted to account for worst case alignment
1246 * overhead.
1247 */
1248 static __always_inline struct vmap_area *
1249 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 unsigned long align, unsigned long vstart, bool adjust_search_size)
1251 {
1252 struct vmap_area *va;
1253 struct rb_node *node;
1254 unsigned long length;
1255
1256 /* Start from the root. */
1257 node = root->rb_node;
1258
1259 /* Adjust the search size for alignment overhead. */
1260 length = adjust_search_size ? size + align - 1 : size;
1261
1262 while (node) {
1263 va = rb_entry(node, struct vmap_area, rb_node);
1264
1265 if (get_subtree_max_size(node->rb_left) >= length &&
1266 vstart < va->va_start) {
1267 node = node->rb_left;
1268 } else {
1269 if (is_within_this_va(va, size, align, vstart))
1270 return va;
1271
1272 /*
1273 * Does not make sense to go deeper towards the right
1274 * sub-tree if it does not have a free block that is
1275 * equal or bigger to the requested search length.
1276 */
1277 if (get_subtree_max_size(node->rb_right) >= length) {
1278 node = node->rb_right;
1279 continue;
1280 }
1281
1282 /*
1283 * OK. We roll back and find the first right sub-tree,
1284 * that will satisfy the search criteria. It can happen
1285 * due to "vstart" restriction or an alignment overhead
1286 * that is bigger then PAGE_SIZE.
1287 */
1288 while ((node = rb_parent(node))) {
1289 va = rb_entry(node, struct vmap_area, rb_node);
1290 if (is_within_this_va(va, size, align, vstart))
1291 return va;
1292
1293 if (get_subtree_max_size(node->rb_right) >= length &&
1294 vstart <= va->va_start) {
1295 /*
1296 * Shift the vstart forward. Please note, we update it with
1297 * parent's start address adding "1" because we do not want
1298 * to enter same sub-tree after it has already been checked
1299 * and no suitable free block found there.
1300 */
1301 vstart = va->va_start + 1;
1302 node = node->rb_right;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 return NULL;
1310 }
1311
1312 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313 #include <linux/random.h>
1314
1315 static struct vmap_area *
1316 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1317 unsigned long align, unsigned long vstart)
1318 {
1319 struct vmap_area *va;
1320
1321 list_for_each_entry(va, head, list) {
1322 if (!is_within_this_va(va, size, align, vstart))
1323 continue;
1324
1325 return va;
1326 }
1327
1328 return NULL;
1329 }
1330
1331 static void
1332 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 unsigned long size, unsigned long align)
1334 {
1335 struct vmap_area *va_1, *va_2;
1336 unsigned long vstart;
1337 unsigned int rnd;
1338
1339 get_random_bytes(&rnd, sizeof(rnd));
1340 vstart = VMALLOC_START + rnd;
1341
1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1344
1345 if (va_1 != va_2)
1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 va_1, va_2, vstart);
1348 }
1349 #endif
1350
1351 enum fit_type {
1352 NOTHING_FIT = 0,
1353 FL_FIT_TYPE = 1, /* full fit */
1354 LE_FIT_TYPE = 2, /* left edge fit */
1355 RE_FIT_TYPE = 3, /* right edge fit */
1356 NE_FIT_TYPE = 4 /* no edge fit */
1357 };
1358
1359 static __always_inline enum fit_type
1360 classify_va_fit_type(struct vmap_area *va,
1361 unsigned long nva_start_addr, unsigned long size)
1362 {
1363 enum fit_type type;
1364
1365 /* Check if it is within VA. */
1366 if (nva_start_addr < va->va_start ||
1367 nva_start_addr + size > va->va_end)
1368 return NOTHING_FIT;
1369
1370 /* Now classify. */
1371 if (va->va_start == nva_start_addr) {
1372 if (va->va_end == nva_start_addr + size)
1373 type = FL_FIT_TYPE;
1374 else
1375 type = LE_FIT_TYPE;
1376 } else if (va->va_end == nva_start_addr + size) {
1377 type = RE_FIT_TYPE;
1378 } else {
1379 type = NE_FIT_TYPE;
1380 }
1381
1382 return type;
1383 }
1384
1385 static __always_inline int
1386 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 struct vmap_area *va, unsigned long nva_start_addr,
1388 unsigned long size)
1389 {
1390 struct vmap_area *lva = NULL;
1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1392
1393 if (type == FL_FIT_TYPE) {
1394 /*
1395 * No need to split VA, it fully fits.
1396 *
1397 * | |
1398 * V NVA V
1399 * |---------------|
1400 */
1401 unlink_va_augment(va, root);
1402 kmem_cache_free(vmap_area_cachep, va);
1403 } else if (type == LE_FIT_TYPE) {
1404 /*
1405 * Split left edge of fit VA.
1406 *
1407 * | |
1408 * V NVA V R
1409 * |-------|-------|
1410 */
1411 va->va_start += size;
1412 } else if (type == RE_FIT_TYPE) {
1413 /*
1414 * Split right edge of fit VA.
1415 *
1416 * | |
1417 * L V NVA V
1418 * |-------|-------|
1419 */
1420 va->va_end = nva_start_addr;
1421 } else if (type == NE_FIT_TYPE) {
1422 /*
1423 * Split no edge of fit VA.
1424 *
1425 * | |
1426 * L V NVA V R
1427 * |---|-------|---|
1428 */
1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 if (unlikely(!lva)) {
1431 /*
1432 * For percpu allocator we do not do any pre-allocation
1433 * and leave it as it is. The reason is it most likely
1434 * never ends up with NE_FIT_TYPE splitting. In case of
1435 * percpu allocations offsets and sizes are aligned to
1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 * are its main fitting cases.
1438 *
1439 * There are a few exceptions though, as an example it is
1440 * a first allocation (early boot up) when we have "one"
1441 * big free space that has to be split.
1442 *
1443 * Also we can hit this path in case of regular "vmap"
1444 * allocations, if "this" current CPU was not preloaded.
1445 * See the comment in alloc_vmap_area() why. If so, then
1446 * GFP_NOWAIT is used instead to get an extra object for
1447 * split purpose. That is rare and most time does not
1448 * occur.
1449 *
1450 * What happens if an allocation gets failed. Basically,
1451 * an "overflow" path is triggered to purge lazily freed
1452 * areas to free some memory, then, the "retry" path is
1453 * triggered to repeat one more time. See more details
1454 * in alloc_vmap_area() function.
1455 */
1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 if (!lva)
1458 return -1;
1459 }
1460
1461 /*
1462 * Build the remainder.
1463 */
1464 lva->va_start = va->va_start;
1465 lva->va_end = nva_start_addr;
1466
1467 /*
1468 * Shrink this VA to remaining size.
1469 */
1470 va->va_start = nva_start_addr + size;
1471 } else {
1472 return -1;
1473 }
1474
1475 if (type != FL_FIT_TYPE) {
1476 augment_tree_propagate_from(va);
1477
1478 if (lva) /* type == NE_FIT_TYPE */
1479 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1480 }
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Returns a start address of the newly allocated area, if success.
1487 * Otherwise a vend is returned that indicates failure.
1488 */
1489 static __always_inline unsigned long
1490 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 unsigned long size, unsigned long align,
1492 unsigned long vstart, unsigned long vend)
1493 {
1494 bool adjust_search_size = true;
1495 unsigned long nva_start_addr;
1496 struct vmap_area *va;
1497 int ret;
1498
1499 /*
1500 * Do not adjust when:
1501 * a) align <= PAGE_SIZE, because it does not make any sense.
1502 * All blocks(their start addresses) are at least PAGE_SIZE
1503 * aligned anyway;
1504 * b) a short range where a requested size corresponds to exactly
1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 * With adjusted search length an allocation would not succeed.
1507 */
1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 adjust_search_size = false;
1510
1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1512 if (unlikely(!va))
1513 return vend;
1514
1515 if (va->va_start > vstart)
1516 nva_start_addr = ALIGN(va->va_start, align);
1517 else
1518 nva_start_addr = ALIGN(vstart, align);
1519
1520 /* Check the "vend" restriction. */
1521 if (nva_start_addr + size > vend)
1522 return vend;
1523
1524 /* Update the free vmap_area. */
1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1526 if (WARN_ON_ONCE(ret))
1527 return vend;
1528
1529 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1530 find_vmap_lowest_match_check(root, head, size, align);
1531 #endif
1532
1533 return nva_start_addr;
1534 }
1535
1536 /*
1537 * Free a region of KVA allocated by alloc_vmap_area
1538 */
1539 static void free_vmap_area(struct vmap_area *va)
1540 {
1541 /*
1542 * Remove from the busy tree/list.
1543 */
1544 spin_lock(&vmap_area_lock);
1545 unlink_va(va, &vmap_area_root);
1546 spin_unlock(&vmap_area_lock);
1547
1548 /*
1549 * Insert/Merge it back to the free tree/list.
1550 */
1551 spin_lock(&free_vmap_area_lock);
1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1553 spin_unlock(&free_vmap_area_lock);
1554 }
1555
1556 static inline void
1557 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558 {
1559 struct vmap_area *va = NULL;
1560
1561 /*
1562 * Preload this CPU with one extra vmap_area object. It is used
1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 * a CPU that does an allocation is preloaded.
1565 *
1566 * We do it in non-atomic context, thus it allows us to use more
1567 * permissive allocation masks to be more stable under low memory
1568 * condition and high memory pressure.
1569 */
1570 if (!this_cpu_read(ne_fit_preload_node))
1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572
1573 spin_lock(lock);
1574
1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 kmem_cache_free(vmap_area_cachep, va);
1577 }
1578
1579 /*
1580 * Allocate a region of KVA of the specified size and alignment, within the
1581 * vstart and vend.
1582 */
1583 static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 unsigned long align,
1585 unsigned long vstart, unsigned long vend,
1586 int node, gfp_t gfp_mask,
1587 unsigned long va_flags)
1588 {
1589 struct vmap_area *va;
1590 unsigned long freed;
1591 unsigned long addr;
1592 int purged = 0;
1593 int ret;
1594
1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 return ERR_PTR(-EINVAL);
1597
1598 if (unlikely(!vmap_initialized))
1599 return ERR_PTR(-EBUSY);
1600
1601 might_sleep();
1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1603
1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1605 if (unlikely(!va))
1606 return ERR_PTR(-ENOMEM);
1607
1608 /*
1609 * Only scan the relevant parts containing pointers to other objects
1610 * to avoid false negatives.
1611 */
1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1613
1614 retry:
1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 size, align, vstart, vend);
1618 spin_unlock(&free_vmap_area_lock);
1619
1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621
1622 /*
1623 * If an allocation fails, the "vend" address is
1624 * returned. Therefore trigger the overflow path.
1625 */
1626 if (unlikely(addr == vend))
1627 goto overflow;
1628
1629 va->va_start = addr;
1630 va->va_end = addr + size;
1631 va->vm = NULL;
1632 va->flags = va_flags;
1633
1634 spin_lock(&vmap_area_lock);
1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1636 spin_unlock(&vmap_area_lock);
1637
1638 BUG_ON(!IS_ALIGNED(va->va_start, align));
1639 BUG_ON(va->va_start < vstart);
1640 BUG_ON(va->va_end > vend);
1641
1642 ret = kasan_populate_vmalloc(addr, size);
1643 if (ret) {
1644 free_vmap_area(va);
1645 return ERR_PTR(ret);
1646 }
1647
1648 return va;
1649
1650 overflow:
1651 if (!purged) {
1652 purge_vmap_area_lazy();
1653 purged = 1;
1654 goto retry;
1655 }
1656
1657 freed = 0;
1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659
1660 if (freed > 0) {
1661 purged = 0;
1662 goto retry;
1663 }
1664
1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 size);
1668
1669 kmem_cache_free(vmap_area_cachep, va);
1670 return ERR_PTR(-EBUSY);
1671 }
1672
1673 int register_vmap_purge_notifier(struct notifier_block *nb)
1674 {
1675 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676 }
1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678
1679 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680 {
1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682 }
1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684
1685 /*
1686 * lazy_max_pages is the maximum amount of virtual address space we gather up
1687 * before attempting to purge with a TLB flush.
1688 *
1689 * There is a tradeoff here: a larger number will cover more kernel page tables
1690 * and take slightly longer to purge, but it will linearly reduce the number of
1691 * global TLB flushes that must be performed. It would seem natural to scale
1692 * this number up linearly with the number of CPUs (because vmapping activity
1693 * could also scale linearly with the number of CPUs), however it is likely
1694 * that in practice, workloads might be constrained in other ways that mean
1695 * vmap activity will not scale linearly with CPUs. Also, I want to be
1696 * conservative and not introduce a big latency on huge systems, so go with
1697 * a less aggressive log scale. It will still be an improvement over the old
1698 * code, and it will be simple to change the scale factor if we find that it
1699 * becomes a problem on bigger systems.
1700 */
1701 static unsigned long lazy_max_pages(void)
1702 {
1703 unsigned int log;
1704
1705 log = fls(num_online_cpus());
1706
1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708 }
1709
1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1711
1712 /*
1713 * Serialize vmap purging. There is no actual critical section protected
1714 * by this lock, but we want to avoid concurrent calls for performance
1715 * reasons and to make the pcpu_get_vm_areas more deterministic.
1716 */
1717 static DEFINE_MUTEX(vmap_purge_lock);
1718
1719 /* for per-CPU blocks */
1720 static void purge_fragmented_blocks_allcpus(void);
1721
1722 /*
1723 * Purges all lazily-freed vmap areas.
1724 */
1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1726 {
1727 unsigned long resched_threshold;
1728 unsigned int num_purged_areas = 0;
1729 struct list_head local_purge_list;
1730 struct vmap_area *va, *n_va;
1731
1732 lockdep_assert_held(&vmap_purge_lock);
1733
1734 spin_lock(&purge_vmap_area_lock);
1735 purge_vmap_area_root = RB_ROOT;
1736 list_replace_init(&purge_vmap_area_list, &local_purge_list);
1737 spin_unlock(&purge_vmap_area_lock);
1738
1739 if (unlikely(list_empty(&local_purge_list)))
1740 goto out;
1741
1742 start = min(start,
1743 list_first_entry(&local_purge_list,
1744 struct vmap_area, list)->va_start);
1745
1746 end = max(end,
1747 list_last_entry(&local_purge_list,
1748 struct vmap_area, list)->va_end);
1749
1750 flush_tlb_kernel_range(start, end);
1751 resched_threshold = lazy_max_pages() << 1;
1752
1753 spin_lock(&free_vmap_area_lock);
1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1756 unsigned long orig_start = va->va_start;
1757 unsigned long orig_end = va->va_end;
1758
1759 /*
1760 * Finally insert or merge lazily-freed area. It is
1761 * detached and there is no need to "unlink" it from
1762 * anything.
1763 */
1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 &free_vmap_area_list);
1766
1767 if (!va)
1768 continue;
1769
1770 if (is_vmalloc_or_module_addr((void *)orig_start))
1771 kasan_release_vmalloc(orig_start, orig_end,
1772 va->va_start, va->va_end);
1773
1774 atomic_long_sub(nr, &vmap_lazy_nr);
1775 num_purged_areas++;
1776
1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1778 cond_resched_lock(&free_vmap_area_lock);
1779 }
1780 spin_unlock(&free_vmap_area_lock);
1781
1782 out:
1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 return num_purged_areas > 0;
1785 }
1786
1787 /*
1788 * Kick off a purge of the outstanding lazy areas.
1789 */
1790 static void purge_vmap_area_lazy(void)
1791 {
1792 mutex_lock(&vmap_purge_lock);
1793 purge_fragmented_blocks_allcpus();
1794 __purge_vmap_area_lazy(ULONG_MAX, 0);
1795 mutex_unlock(&vmap_purge_lock);
1796 }
1797
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 unsigned long nr_lazy;
1801
1802 do {
1803 mutex_lock(&vmap_purge_lock);
1804 __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 mutex_unlock(&vmap_purge_lock);
1806
1807 /* Recheck if further work is required. */
1808 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 } while (nr_lazy > lazy_max_pages());
1810 }
1811
1812 /*
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
1816 */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 unsigned long nr_lazy_max = lazy_max_pages();
1820 unsigned long va_start = va->va_start;
1821 unsigned long nr_lazy;
1822
1823 if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 return;
1825
1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 PAGE_SHIFT, &vmap_lazy_nr);
1828
1829 /*
1830 * Merge or place it to the purge tree/list.
1831 */
1832 spin_lock(&purge_vmap_area_lock);
1833 merge_or_add_vmap_area(va,
1834 &purge_vmap_area_root, &purge_vmap_area_list);
1835 spin_unlock(&purge_vmap_area_lock);
1836
1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
1839 /* After this point, we may free va at any time */
1840 if (unlikely(nr_lazy > nr_lazy_max))
1841 schedule_work(&drain_vmap_work);
1842 }
1843
1844 /*
1845 * Free and unmap a vmap area
1846 */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 flush_cache_vunmap(va->va_start, va->va_end);
1850 vunmap_range_noflush(va->va_start, va->va_end);
1851 if (debug_pagealloc_enabled_static())
1852 flush_tlb_kernel_range(va->va_start, va->va_end);
1853
1854 free_vmap_area_noflush(va);
1855 }
1856
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 struct vmap_area *va;
1860
1861 spin_lock(&vmap_area_lock);
1862 va = __find_vmap_area(addr, &vmap_area_root);
1863 spin_unlock(&vmap_area_lock);
1864
1865 return va;
1866 }
1867
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 struct vmap_area *va;
1871
1872 spin_lock(&vmap_area_lock);
1873 va = __find_vmap_area(addr, &vmap_area_root);
1874 if (va)
1875 unlink_va(va, &vmap_area_root);
1876 spin_unlock(&vmap_area_lock);
1877
1878 return va;
1879 }
1880
1881 /*** Per cpu kva allocator ***/
1882
1883 /*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887 /*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE (128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1896 #endif
1897
1898 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS \
1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908
1909 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910
1911 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1912 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1913 #define VMAP_FLAGS_MASK 0x3
1914
1915 struct vmap_block_queue {
1916 spinlock_t lock;
1917 struct list_head free;
1918 };
1919
1920 struct vmap_block {
1921 spinlock_t lock;
1922 struct vmap_area *va;
1923 unsigned long free, dirty;
1924 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1925 unsigned long dirty_min, dirty_max; /*< dirty range */
1926 struct list_head free_list;
1927 struct rcu_head rcu_head;
1928 struct list_head purge;
1929 };
1930
1931 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1933
1934 /*
1935 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1936 * in the free path. Could get rid of this if we change the API to return a
1937 * "cookie" from alloc, to be passed to free. But no big deal yet.
1938 */
1939 static DEFINE_XARRAY(vmap_blocks);
1940
1941 /*
1942 * We should probably have a fallback mechanism to allocate virtual memory
1943 * out of partially filled vmap blocks. However vmap block sizing should be
1944 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1945 * big problem.
1946 */
1947
1948 static unsigned long addr_to_vb_idx(unsigned long addr)
1949 {
1950 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 addr /= VMAP_BLOCK_SIZE;
1952 return addr;
1953 }
1954
1955 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1956 {
1957 unsigned long addr;
1958
1959 addr = va_start + (pages_off << PAGE_SHIFT);
1960 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 return (void *)addr;
1962 }
1963
1964 /**
1965 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967 * @order: how many 2^order pages should be occupied in newly allocated block
1968 * @gfp_mask: flags for the page level allocator
1969 *
1970 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1971 */
1972 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1973 {
1974 struct vmap_block_queue *vbq;
1975 struct vmap_block *vb;
1976 struct vmap_area *va;
1977 unsigned long vb_idx;
1978 int node, err;
1979 void *vaddr;
1980
1981 node = numa_node_id();
1982
1983 vb = kmalloc_node(sizeof(struct vmap_block),
1984 gfp_mask & GFP_RECLAIM_MASK, node);
1985 if (unlikely(!vb))
1986 return ERR_PTR(-ENOMEM);
1987
1988 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 VMALLOC_START, VMALLOC_END,
1990 node, gfp_mask,
1991 VMAP_RAM|VMAP_BLOCK);
1992 if (IS_ERR(va)) {
1993 kfree(vb);
1994 return ERR_CAST(va);
1995 }
1996
1997 vaddr = vmap_block_vaddr(va->va_start, 0);
1998 spin_lock_init(&vb->lock);
1999 vb->va = va;
2000 /* At least something should be left free */
2001 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2002 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2003 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2004 vb->dirty = 0;
2005 vb->dirty_min = VMAP_BBMAP_BITS;
2006 vb->dirty_max = 0;
2007 bitmap_set(vb->used_map, 0, (1UL << order));
2008 INIT_LIST_HEAD(&vb->free_list);
2009
2010 vb_idx = addr_to_vb_idx(va->va_start);
2011 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2012 if (err) {
2013 kfree(vb);
2014 free_vmap_area(va);
2015 return ERR_PTR(err);
2016 }
2017
2018 vbq = raw_cpu_ptr(&vmap_block_queue);
2019 spin_lock(&vbq->lock);
2020 list_add_tail_rcu(&vb->free_list, &vbq->free);
2021 spin_unlock(&vbq->lock);
2022
2023 return vaddr;
2024 }
2025
2026 static void free_vmap_block(struct vmap_block *vb)
2027 {
2028 struct vmap_block *tmp;
2029
2030 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2031 BUG_ON(tmp != vb);
2032
2033 spin_lock(&vmap_area_lock);
2034 unlink_va(vb->va, &vmap_area_root);
2035 spin_unlock(&vmap_area_lock);
2036
2037 free_vmap_area_noflush(vb->va);
2038 kfree_rcu(vb, rcu_head);
2039 }
2040
2041 static void purge_fragmented_blocks(int cpu)
2042 {
2043 LIST_HEAD(purge);
2044 struct vmap_block *vb;
2045 struct vmap_block *n_vb;
2046 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2047
2048 rcu_read_lock();
2049 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2050
2051 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2052 continue;
2053
2054 spin_lock(&vb->lock);
2055 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2056 vb->free = 0; /* prevent further allocs after releasing lock */
2057 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2058 vb->dirty_min = 0;
2059 vb->dirty_max = VMAP_BBMAP_BITS;
2060 spin_lock(&vbq->lock);
2061 list_del_rcu(&vb->free_list);
2062 spin_unlock(&vbq->lock);
2063 spin_unlock(&vb->lock);
2064 list_add_tail(&vb->purge, &purge);
2065 } else
2066 spin_unlock(&vb->lock);
2067 }
2068 rcu_read_unlock();
2069
2070 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2071 list_del(&vb->purge);
2072 free_vmap_block(vb);
2073 }
2074 }
2075
2076 static void purge_fragmented_blocks_allcpus(void)
2077 {
2078 int cpu;
2079
2080 for_each_possible_cpu(cpu)
2081 purge_fragmented_blocks(cpu);
2082 }
2083
2084 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2085 {
2086 struct vmap_block_queue *vbq;
2087 struct vmap_block *vb;
2088 void *vaddr = NULL;
2089 unsigned int order;
2090
2091 BUG_ON(offset_in_page(size));
2092 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2093 if (WARN_ON(size == 0)) {
2094 /*
2095 * Allocating 0 bytes isn't what caller wants since
2096 * get_order(0) returns funny result. Just warn and terminate
2097 * early.
2098 */
2099 return NULL;
2100 }
2101 order = get_order(size);
2102
2103 rcu_read_lock();
2104 vbq = raw_cpu_ptr(&vmap_block_queue);
2105 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2106 unsigned long pages_off;
2107
2108 spin_lock(&vb->lock);
2109 if (vb->free < (1UL << order)) {
2110 spin_unlock(&vb->lock);
2111 continue;
2112 }
2113
2114 pages_off = VMAP_BBMAP_BITS - vb->free;
2115 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2116 vb->free -= 1UL << order;
2117 bitmap_set(vb->used_map, pages_off, (1UL << order));
2118 if (vb->free == 0) {
2119 spin_lock(&vbq->lock);
2120 list_del_rcu(&vb->free_list);
2121 spin_unlock(&vbq->lock);
2122 }
2123
2124 spin_unlock(&vb->lock);
2125 break;
2126 }
2127
2128 rcu_read_unlock();
2129
2130 /* Allocate new block if nothing was found */
2131 if (!vaddr)
2132 vaddr = new_vmap_block(order, gfp_mask);
2133
2134 return vaddr;
2135 }
2136
2137 static void vb_free(unsigned long addr, unsigned long size)
2138 {
2139 unsigned long offset;
2140 unsigned int order;
2141 struct vmap_block *vb;
2142
2143 BUG_ON(offset_in_page(size));
2144 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2145
2146 flush_cache_vunmap(addr, addr + size);
2147
2148 order = get_order(size);
2149 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2150 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2151 spin_lock(&vb->lock);
2152 bitmap_clear(vb->used_map, offset, (1UL << order));
2153 spin_unlock(&vb->lock);
2154
2155 vunmap_range_noflush(addr, addr + size);
2156
2157 if (debug_pagealloc_enabled_static())
2158 flush_tlb_kernel_range(addr, addr + size);
2159
2160 spin_lock(&vb->lock);
2161
2162 /* Expand dirty range */
2163 vb->dirty_min = min(vb->dirty_min, offset);
2164 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2165
2166 vb->dirty += 1UL << order;
2167 if (vb->dirty == VMAP_BBMAP_BITS) {
2168 BUG_ON(vb->free);
2169 spin_unlock(&vb->lock);
2170 free_vmap_block(vb);
2171 } else
2172 spin_unlock(&vb->lock);
2173 }
2174
2175 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2176 {
2177 int cpu;
2178
2179 if (unlikely(!vmap_initialized))
2180 return;
2181
2182 might_sleep();
2183
2184 for_each_possible_cpu(cpu) {
2185 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2186 struct vmap_block *vb;
2187
2188 rcu_read_lock();
2189 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2190 spin_lock(&vb->lock);
2191 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2192 unsigned long va_start = vb->va->va_start;
2193 unsigned long s, e;
2194
2195 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2196 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2197
2198 start = min(s, start);
2199 end = max(e, end);
2200
2201 flush = 1;
2202 }
2203 spin_unlock(&vb->lock);
2204 }
2205 rcu_read_unlock();
2206 }
2207
2208 mutex_lock(&vmap_purge_lock);
2209 purge_fragmented_blocks_allcpus();
2210 if (!__purge_vmap_area_lazy(start, end) && flush)
2211 flush_tlb_kernel_range(start, end);
2212 mutex_unlock(&vmap_purge_lock);
2213 }
2214
2215 /**
2216 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2217 *
2218 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2219 * to amortize TLB flushing overheads. What this means is that any page you
2220 * have now, may, in a former life, have been mapped into kernel virtual
2221 * address by the vmap layer and so there might be some CPUs with TLB entries
2222 * still referencing that page (additional to the regular 1:1 kernel mapping).
2223 *
2224 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2225 * be sure that none of the pages we have control over will have any aliases
2226 * from the vmap layer.
2227 */
2228 void vm_unmap_aliases(void)
2229 {
2230 unsigned long start = ULONG_MAX, end = 0;
2231 int flush = 0;
2232
2233 _vm_unmap_aliases(start, end, flush);
2234 }
2235 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2236
2237 /**
2238 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2239 * @mem: the pointer returned by vm_map_ram
2240 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2241 */
2242 void vm_unmap_ram(const void *mem, unsigned int count)
2243 {
2244 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2245 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2246 struct vmap_area *va;
2247
2248 might_sleep();
2249 BUG_ON(!addr);
2250 BUG_ON(addr < VMALLOC_START);
2251 BUG_ON(addr > VMALLOC_END);
2252 BUG_ON(!PAGE_ALIGNED(addr));
2253
2254 kasan_poison_vmalloc(mem, size);
2255
2256 if (likely(count <= VMAP_MAX_ALLOC)) {
2257 debug_check_no_locks_freed(mem, size);
2258 vb_free(addr, size);
2259 return;
2260 }
2261
2262 va = find_unlink_vmap_area(addr);
2263 if (WARN_ON_ONCE(!va))
2264 return;
2265
2266 debug_check_no_locks_freed((void *)va->va_start,
2267 (va->va_end - va->va_start));
2268 free_unmap_vmap_area(va);
2269 }
2270 EXPORT_SYMBOL(vm_unmap_ram);
2271
2272 /**
2273 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2274 * @pages: an array of pointers to the pages to be mapped
2275 * @count: number of pages
2276 * @node: prefer to allocate data structures on this node
2277 *
2278 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2279 * faster than vmap so it's good. But if you mix long-life and short-life
2280 * objects with vm_map_ram(), it could consume lots of address space through
2281 * fragmentation (especially on a 32bit machine). You could see failures in
2282 * the end. Please use this function for short-lived objects.
2283 *
2284 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2285 */
2286 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2287 {
2288 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2289 unsigned long addr;
2290 void *mem;
2291
2292 if (likely(count <= VMAP_MAX_ALLOC)) {
2293 mem = vb_alloc(size, GFP_KERNEL);
2294 if (IS_ERR(mem))
2295 return NULL;
2296 addr = (unsigned long)mem;
2297 } else {
2298 struct vmap_area *va;
2299 va = alloc_vmap_area(size, PAGE_SIZE,
2300 VMALLOC_START, VMALLOC_END,
2301 node, GFP_KERNEL, VMAP_RAM);
2302 if (IS_ERR(va))
2303 return NULL;
2304
2305 addr = va->va_start;
2306 mem = (void *)addr;
2307 }
2308
2309 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2310 pages, PAGE_SHIFT) < 0) {
2311 vm_unmap_ram(mem, count);
2312 return NULL;
2313 }
2314
2315 /*
2316 * Mark the pages as accessible, now that they are mapped.
2317 * With hardware tag-based KASAN, marking is skipped for
2318 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2319 */
2320 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2321
2322 return mem;
2323 }
2324 EXPORT_SYMBOL(vm_map_ram);
2325
2326 static struct vm_struct *vmlist __initdata;
2327
2328 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2329 {
2330 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2331 return vm->page_order;
2332 #else
2333 return 0;
2334 #endif
2335 }
2336
2337 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2338 {
2339 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2340 vm->page_order = order;
2341 #else
2342 BUG_ON(order != 0);
2343 #endif
2344 }
2345
2346 /**
2347 * vm_area_add_early - add vmap area early during boot
2348 * @vm: vm_struct to add
2349 *
2350 * This function is used to add fixed kernel vm area to vmlist before
2351 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2352 * should contain proper values and the other fields should be zero.
2353 *
2354 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2355 */
2356 void __init vm_area_add_early(struct vm_struct *vm)
2357 {
2358 struct vm_struct *tmp, **p;
2359
2360 BUG_ON(vmap_initialized);
2361 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2362 if (tmp->addr >= vm->addr) {
2363 BUG_ON(tmp->addr < vm->addr + vm->size);
2364 break;
2365 } else
2366 BUG_ON(tmp->addr + tmp->size > vm->addr);
2367 }
2368 vm->next = *p;
2369 *p = vm;
2370 }
2371
2372 /**
2373 * vm_area_register_early - register vmap area early during boot
2374 * @vm: vm_struct to register
2375 * @align: requested alignment
2376 *
2377 * This function is used to register kernel vm area before
2378 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2379 * proper values on entry and other fields should be zero. On return,
2380 * vm->addr contains the allocated address.
2381 *
2382 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2383 */
2384 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2385 {
2386 unsigned long addr = ALIGN(VMALLOC_START, align);
2387 struct vm_struct *cur, **p;
2388
2389 BUG_ON(vmap_initialized);
2390
2391 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2392 if ((unsigned long)cur->addr - addr >= vm->size)
2393 break;
2394 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2395 }
2396
2397 BUG_ON(addr > VMALLOC_END - vm->size);
2398 vm->addr = (void *)addr;
2399 vm->next = *p;
2400 *p = vm;
2401 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2402 }
2403
2404 static void vmap_init_free_space(void)
2405 {
2406 unsigned long vmap_start = 1;
2407 const unsigned long vmap_end = ULONG_MAX;
2408 struct vmap_area *busy, *free;
2409
2410 /*
2411 * B F B B B F
2412 * -|-----|.....|-----|-----|-----|.....|-
2413 * | The KVA space |
2414 * |<--------------------------------->|
2415 */
2416 list_for_each_entry(busy, &vmap_area_list, list) {
2417 if (busy->va_start - vmap_start > 0) {
2418 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2419 if (!WARN_ON_ONCE(!free)) {
2420 free->va_start = vmap_start;
2421 free->va_end = busy->va_start;
2422
2423 insert_vmap_area_augment(free, NULL,
2424 &free_vmap_area_root,
2425 &free_vmap_area_list);
2426 }
2427 }
2428
2429 vmap_start = busy->va_end;
2430 }
2431
2432 if (vmap_end - vmap_start > 0) {
2433 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2434 if (!WARN_ON_ONCE(!free)) {
2435 free->va_start = vmap_start;
2436 free->va_end = vmap_end;
2437
2438 insert_vmap_area_augment(free, NULL,
2439 &free_vmap_area_root,
2440 &free_vmap_area_list);
2441 }
2442 }
2443 }
2444
2445 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2446 struct vmap_area *va, unsigned long flags, const void *caller)
2447 {
2448 vm->flags = flags;
2449 vm->addr = (void *)va->va_start;
2450 vm->size = va->va_end - va->va_start;
2451 vm->caller = caller;
2452 va->vm = vm;
2453 }
2454
2455 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2456 unsigned long flags, const void *caller)
2457 {
2458 spin_lock(&vmap_area_lock);
2459 setup_vmalloc_vm_locked(vm, va, flags, caller);
2460 spin_unlock(&vmap_area_lock);
2461 }
2462
2463 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2464 {
2465 /*
2466 * Before removing VM_UNINITIALIZED,
2467 * we should make sure that vm has proper values.
2468 * Pair with smp_rmb() in show_numa_info().
2469 */
2470 smp_wmb();
2471 vm->flags &= ~VM_UNINITIALIZED;
2472 }
2473
2474 static struct vm_struct *__get_vm_area_node(unsigned long size,
2475 unsigned long align, unsigned long shift, unsigned long flags,
2476 unsigned long start, unsigned long end, int node,
2477 gfp_t gfp_mask, const void *caller)
2478 {
2479 struct vmap_area *va;
2480 struct vm_struct *area;
2481 unsigned long requested_size = size;
2482
2483 BUG_ON(in_interrupt());
2484 size = ALIGN(size, 1ul << shift);
2485 if (unlikely(!size))
2486 return NULL;
2487
2488 if (flags & VM_IOREMAP)
2489 align = 1ul << clamp_t(int, get_count_order_long(size),
2490 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2491
2492 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2493 if (unlikely(!area))
2494 return NULL;
2495
2496 if (!(flags & VM_NO_GUARD))
2497 size += PAGE_SIZE;
2498
2499 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2500 if (IS_ERR(va)) {
2501 kfree(area);
2502 return NULL;
2503 }
2504
2505 setup_vmalloc_vm(area, va, flags, caller);
2506
2507 /*
2508 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2509 * best-effort approach, as they can be mapped outside of vmalloc code.
2510 * For VM_ALLOC mappings, the pages are marked as accessible after
2511 * getting mapped in __vmalloc_node_range().
2512 * With hardware tag-based KASAN, marking is skipped for
2513 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2514 */
2515 if (!(flags & VM_ALLOC))
2516 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2517 KASAN_VMALLOC_PROT_NORMAL);
2518
2519 return area;
2520 }
2521
2522 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2523 unsigned long start, unsigned long end,
2524 const void *caller)
2525 {
2526 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2527 NUMA_NO_NODE, GFP_KERNEL, caller);
2528 }
2529
2530 /**
2531 * get_vm_area - reserve a contiguous kernel virtual area
2532 * @size: size of the area
2533 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2534 *
2535 * Search an area of @size in the kernel virtual mapping area,
2536 * and reserved it for out purposes. Returns the area descriptor
2537 * on success or %NULL on failure.
2538 *
2539 * Return: the area descriptor on success or %NULL on failure.
2540 */
2541 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2542 {
2543 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2544 VMALLOC_START, VMALLOC_END,
2545 NUMA_NO_NODE, GFP_KERNEL,
2546 __builtin_return_address(0));
2547 }
2548
2549 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2550 const void *caller)
2551 {
2552 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2553 VMALLOC_START, VMALLOC_END,
2554 NUMA_NO_NODE, GFP_KERNEL, caller);
2555 }
2556
2557 /**
2558 * find_vm_area - find a continuous kernel virtual area
2559 * @addr: base address
2560 *
2561 * Search for the kernel VM area starting at @addr, and return it.
2562 * It is up to the caller to do all required locking to keep the returned
2563 * pointer valid.
2564 *
2565 * Return: the area descriptor on success or %NULL on failure.
2566 */
2567 struct vm_struct *find_vm_area(const void *addr)
2568 {
2569 struct vmap_area *va;
2570
2571 va = find_vmap_area((unsigned long)addr);
2572 if (!va)
2573 return NULL;
2574
2575 return va->vm;
2576 }
2577
2578 /**
2579 * remove_vm_area - find and remove a continuous kernel virtual area
2580 * @addr: base address
2581 *
2582 * Search for the kernel VM area starting at @addr, and remove it.
2583 * This function returns the found VM area, but using it is NOT safe
2584 * on SMP machines, except for its size or flags.
2585 *
2586 * Return: the area descriptor on success or %NULL on failure.
2587 */
2588 struct vm_struct *remove_vm_area(const void *addr)
2589 {
2590 struct vmap_area *va;
2591 struct vm_struct *vm;
2592
2593 might_sleep();
2594
2595 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2596 addr))
2597 return NULL;
2598
2599 va = find_unlink_vmap_area((unsigned long)addr);
2600 if (!va || !va->vm)
2601 return NULL;
2602 vm = va->vm;
2603
2604 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2605 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2606 kasan_free_module_shadow(vm);
2607 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2608
2609 free_unmap_vmap_area(va);
2610 return vm;
2611 }
2612
2613 static inline void set_area_direct_map(const struct vm_struct *area,
2614 int (*set_direct_map)(struct page *page))
2615 {
2616 int i;
2617
2618 /* HUGE_VMALLOC passes small pages to set_direct_map */
2619 for (i = 0; i < area->nr_pages; i++)
2620 if (page_address(area->pages[i]))
2621 set_direct_map(area->pages[i]);
2622 }
2623
2624 /*
2625 * Flush the vm mapping and reset the direct map.
2626 */
2627 static void vm_reset_perms(struct vm_struct *area)
2628 {
2629 unsigned long start = ULONG_MAX, end = 0;
2630 unsigned int page_order = vm_area_page_order(area);
2631 int flush_dmap = 0;
2632 int i;
2633
2634 /*
2635 * Find the start and end range of the direct mappings to make sure that
2636 * the vm_unmap_aliases() flush includes the direct map.
2637 */
2638 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2639 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2640
2641 if (addr) {
2642 unsigned long page_size;
2643
2644 page_size = PAGE_SIZE << page_order;
2645 start = min(addr, start);
2646 end = max(addr + page_size, end);
2647 flush_dmap = 1;
2648 }
2649 }
2650
2651 /*
2652 * Set direct map to something invalid so that it won't be cached if
2653 * there are any accesses after the TLB flush, then flush the TLB and
2654 * reset the direct map permissions to the default.
2655 */
2656 set_area_direct_map(area, set_direct_map_invalid_noflush);
2657 _vm_unmap_aliases(start, end, flush_dmap);
2658 set_area_direct_map(area, set_direct_map_default_noflush);
2659 }
2660
2661 static void delayed_vfree_work(struct work_struct *w)
2662 {
2663 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2664 struct llist_node *t, *llnode;
2665
2666 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2667 vfree(llnode);
2668 }
2669
2670 /**
2671 * vfree_atomic - release memory allocated by vmalloc()
2672 * @addr: memory base address
2673 *
2674 * This one is just like vfree() but can be called in any atomic context
2675 * except NMIs.
2676 */
2677 void vfree_atomic(const void *addr)
2678 {
2679 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2680
2681 BUG_ON(in_nmi());
2682 kmemleak_free(addr);
2683
2684 /*
2685 * Use raw_cpu_ptr() because this can be called from preemptible
2686 * context. Preemption is absolutely fine here, because the llist_add()
2687 * implementation is lockless, so it works even if we are adding to
2688 * another cpu's list. schedule_work() should be fine with this too.
2689 */
2690 if (addr && llist_add((struct llist_node *)addr, &p->list))
2691 schedule_work(&p->wq);
2692 }
2693
2694 /**
2695 * vfree - Release memory allocated by vmalloc()
2696 * @addr: Memory base address
2697 *
2698 * Free the virtually continuous memory area starting at @addr, as obtained
2699 * from one of the vmalloc() family of APIs. This will usually also free the
2700 * physical memory underlying the virtual allocation, but that memory is
2701 * reference counted, so it will not be freed until the last user goes away.
2702 *
2703 * If @addr is NULL, no operation is performed.
2704 *
2705 * Context:
2706 * May sleep if called *not* from interrupt context.
2707 * Must not be called in NMI context (strictly speaking, it could be
2708 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2709 * conventions for vfree() arch-dependent would be a really bad idea).
2710 */
2711 void vfree(const void *addr)
2712 {
2713 struct vm_struct *vm;
2714 int i;
2715
2716 if (unlikely(in_interrupt())) {
2717 vfree_atomic(addr);
2718 return;
2719 }
2720
2721 BUG_ON(in_nmi());
2722 kmemleak_free(addr);
2723 might_sleep();
2724
2725 if (!addr)
2726 return;
2727
2728 vm = remove_vm_area(addr);
2729 if (unlikely(!vm)) {
2730 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2731 addr);
2732 return;
2733 }
2734
2735 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2736 vm_reset_perms(vm);
2737 for (i = 0; i < vm->nr_pages; i++) {
2738 struct page *page = vm->pages[i];
2739
2740 BUG_ON(!page);
2741 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2742 /*
2743 * High-order allocs for huge vmallocs are split, so
2744 * can be freed as an array of order-0 allocations
2745 */
2746 __free_pages(page, 0);
2747 cond_resched();
2748 }
2749 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2750 kvfree(vm->pages);
2751 kfree(vm);
2752 }
2753 EXPORT_SYMBOL(vfree);
2754
2755 /**
2756 * vunmap - release virtual mapping obtained by vmap()
2757 * @addr: memory base address
2758 *
2759 * Free the virtually contiguous memory area starting at @addr,
2760 * which was created from the page array passed to vmap().
2761 *
2762 * Must not be called in interrupt context.
2763 */
2764 void vunmap(const void *addr)
2765 {
2766 struct vm_struct *vm;
2767
2768 BUG_ON(in_interrupt());
2769 might_sleep();
2770
2771 if (!addr)
2772 return;
2773 vm = remove_vm_area(addr);
2774 if (unlikely(!vm)) {
2775 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2776 addr);
2777 return;
2778 }
2779 kfree(vm);
2780 }
2781 EXPORT_SYMBOL(vunmap);
2782
2783 /**
2784 * vmap - map an array of pages into virtually contiguous space
2785 * @pages: array of page pointers
2786 * @count: number of pages to map
2787 * @flags: vm_area->flags
2788 * @prot: page protection for the mapping
2789 *
2790 * Maps @count pages from @pages into contiguous kernel virtual space.
2791 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2792 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2793 * are transferred from the caller to vmap(), and will be freed / dropped when
2794 * vfree() is called on the return value.
2795 *
2796 * Return: the address of the area or %NULL on failure
2797 */
2798 void *vmap(struct page **pages, unsigned int count,
2799 unsigned long flags, pgprot_t prot)
2800 {
2801 struct vm_struct *area;
2802 unsigned long addr;
2803 unsigned long size; /* In bytes */
2804
2805 might_sleep();
2806
2807 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2808 return NULL;
2809
2810 /*
2811 * Your top guard is someone else's bottom guard. Not having a top
2812 * guard compromises someone else's mappings too.
2813 */
2814 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2815 flags &= ~VM_NO_GUARD;
2816
2817 if (count > totalram_pages())
2818 return NULL;
2819
2820 size = (unsigned long)count << PAGE_SHIFT;
2821 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2822 if (!area)
2823 return NULL;
2824
2825 addr = (unsigned long)area->addr;
2826 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2827 pages, PAGE_SHIFT) < 0) {
2828 vunmap(area->addr);
2829 return NULL;
2830 }
2831
2832 if (flags & VM_MAP_PUT_PAGES) {
2833 area->pages = pages;
2834 area->nr_pages = count;
2835 }
2836 return area->addr;
2837 }
2838 EXPORT_SYMBOL(vmap);
2839
2840 #ifdef CONFIG_VMAP_PFN
2841 struct vmap_pfn_data {
2842 unsigned long *pfns;
2843 pgprot_t prot;
2844 unsigned int idx;
2845 };
2846
2847 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2848 {
2849 struct vmap_pfn_data *data = private;
2850
2851 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2852 return -EINVAL;
2853 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2854 return 0;
2855 }
2856
2857 /**
2858 * vmap_pfn - map an array of PFNs into virtually contiguous space
2859 * @pfns: array of PFNs
2860 * @count: number of pages to map
2861 * @prot: page protection for the mapping
2862 *
2863 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2864 * the start address of the mapping.
2865 */
2866 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2867 {
2868 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2869 struct vm_struct *area;
2870
2871 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2872 __builtin_return_address(0));
2873 if (!area)
2874 return NULL;
2875 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2876 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2877 free_vm_area(area);
2878 return NULL;
2879 }
2880 return area->addr;
2881 }
2882 EXPORT_SYMBOL_GPL(vmap_pfn);
2883 #endif /* CONFIG_VMAP_PFN */
2884
2885 static inline unsigned int
2886 vm_area_alloc_pages(gfp_t gfp, int nid,
2887 unsigned int order, unsigned int nr_pages, struct page **pages)
2888 {
2889 unsigned int nr_allocated = 0;
2890 gfp_t alloc_gfp = gfp;
2891 bool nofail = false;
2892 struct page *page;
2893 int i;
2894
2895 /*
2896 * For order-0 pages we make use of bulk allocator, if
2897 * the page array is partly or not at all populated due
2898 * to fails, fallback to a single page allocator that is
2899 * more permissive.
2900 */
2901 if (!order) {
2902 /* bulk allocator doesn't support nofail req. officially */
2903 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2904
2905 while (nr_allocated < nr_pages) {
2906 unsigned int nr, nr_pages_request;
2907
2908 /*
2909 * A maximum allowed request is hard-coded and is 100
2910 * pages per call. That is done in order to prevent a
2911 * long preemption off scenario in the bulk-allocator
2912 * so the range is [1:100].
2913 */
2914 nr_pages_request = min(100U, nr_pages - nr_allocated);
2915
2916 /* memory allocation should consider mempolicy, we can't
2917 * wrongly use nearest node when nid == NUMA_NO_NODE,
2918 * otherwise memory may be allocated in only one node,
2919 * but mempolicy wants to alloc memory by interleaving.
2920 */
2921 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2922 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2923 nr_pages_request,
2924 pages + nr_allocated);
2925
2926 else
2927 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2928 nr_pages_request,
2929 pages + nr_allocated);
2930
2931 nr_allocated += nr;
2932 cond_resched();
2933
2934 /*
2935 * If zero or pages were obtained partly,
2936 * fallback to a single page allocator.
2937 */
2938 if (nr != nr_pages_request)
2939 break;
2940 }
2941 } else if (gfp & __GFP_NOFAIL) {
2942 /*
2943 * Higher order nofail allocations are really expensive and
2944 * potentially dangerous (pre-mature OOM, disruptive reclaim
2945 * and compaction etc.
2946 */
2947 alloc_gfp &= ~__GFP_NOFAIL;
2948 nofail = true;
2949 }
2950
2951 /* High-order pages or fallback path if "bulk" fails. */
2952 while (nr_allocated < nr_pages) {
2953 if (fatal_signal_pending(current))
2954 break;
2955
2956 if (nid == NUMA_NO_NODE)
2957 page = alloc_pages(alloc_gfp, order);
2958 else
2959 page = alloc_pages_node(nid, alloc_gfp, order);
2960 if (unlikely(!page)) {
2961 if (!nofail)
2962 break;
2963
2964 /* fall back to the zero order allocations */
2965 alloc_gfp |= __GFP_NOFAIL;
2966 order = 0;
2967 continue;
2968 }
2969
2970 /*
2971 * Higher order allocations must be able to be treated as
2972 * indepdenent small pages by callers (as they can with
2973 * small-page vmallocs). Some drivers do their own refcounting
2974 * on vmalloc_to_page() pages, some use page->mapping,
2975 * page->lru, etc.
2976 */
2977 if (order)
2978 split_page(page, order);
2979
2980 /*
2981 * Careful, we allocate and map page-order pages, but
2982 * tracking is done per PAGE_SIZE page so as to keep the
2983 * vm_struct APIs independent of the physical/mapped size.
2984 */
2985 for (i = 0; i < (1U << order); i++)
2986 pages[nr_allocated + i] = page + i;
2987
2988 cond_resched();
2989 nr_allocated += 1U << order;
2990 }
2991
2992 return nr_allocated;
2993 }
2994
2995 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2996 pgprot_t prot, unsigned int page_shift,
2997 int node)
2998 {
2999 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3000 bool nofail = gfp_mask & __GFP_NOFAIL;
3001 unsigned long addr = (unsigned long)area->addr;
3002 unsigned long size = get_vm_area_size(area);
3003 unsigned long array_size;
3004 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3005 unsigned int page_order;
3006 unsigned int flags;
3007 int ret;
3008
3009 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3010
3011 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3012 gfp_mask |= __GFP_HIGHMEM;
3013
3014 /* Please note that the recursion is strictly bounded. */
3015 if (array_size > PAGE_SIZE) {
3016 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3017 area->caller);
3018 } else {
3019 area->pages = kmalloc_node(array_size, nested_gfp, node);
3020 }
3021
3022 if (!area->pages) {
3023 warn_alloc(gfp_mask, NULL,
3024 "vmalloc error: size %lu, failed to allocated page array size %lu",
3025 nr_small_pages * PAGE_SIZE, array_size);
3026 free_vm_area(area);
3027 return NULL;
3028 }
3029
3030 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3031 page_order = vm_area_page_order(area);
3032
3033 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3034 node, page_order, nr_small_pages, area->pages);
3035
3036 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3037 if (gfp_mask & __GFP_ACCOUNT) {
3038 int i;
3039
3040 for (i = 0; i < area->nr_pages; i++)
3041 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3042 }
3043
3044 /*
3045 * If not enough pages were obtained to accomplish an
3046 * allocation request, free them via vfree() if any.
3047 */
3048 if (area->nr_pages != nr_small_pages) {
3049 /* vm_area_alloc_pages() can also fail due to a fatal signal */
3050 if (!fatal_signal_pending(current))
3051 warn_alloc(gfp_mask, NULL,
3052 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3053 area->nr_pages * PAGE_SIZE, page_order);
3054 goto fail;
3055 }
3056
3057 /*
3058 * page tables allocations ignore external gfp mask, enforce it
3059 * by the scope API
3060 */
3061 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3062 flags = memalloc_nofs_save();
3063 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3064 flags = memalloc_noio_save();
3065
3066 do {
3067 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3068 page_shift);
3069 if (nofail && (ret < 0))
3070 schedule_timeout_uninterruptible(1);
3071 } while (nofail && (ret < 0));
3072
3073 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3074 memalloc_nofs_restore(flags);
3075 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3076 memalloc_noio_restore(flags);
3077
3078 if (ret < 0) {
3079 warn_alloc(gfp_mask, NULL,
3080 "vmalloc error: size %lu, failed to map pages",
3081 area->nr_pages * PAGE_SIZE);
3082 goto fail;
3083 }
3084
3085 return area->addr;
3086
3087 fail:
3088 vfree(area->addr);
3089 return NULL;
3090 }
3091
3092 /**
3093 * __vmalloc_node_range - allocate virtually contiguous memory
3094 * @size: allocation size
3095 * @align: desired alignment
3096 * @start: vm area range start
3097 * @end: vm area range end
3098 * @gfp_mask: flags for the page level allocator
3099 * @prot: protection mask for the allocated pages
3100 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3101 * @node: node to use for allocation or NUMA_NO_NODE
3102 * @caller: caller's return address
3103 *
3104 * Allocate enough pages to cover @size from the page level
3105 * allocator with @gfp_mask flags. Please note that the full set of gfp
3106 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3107 * supported.
3108 * Zone modifiers are not supported. From the reclaim modifiers
3109 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3110 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3111 * __GFP_RETRY_MAYFAIL are not supported).
3112 *
3113 * __GFP_NOWARN can be used to suppress failures messages.
3114 *
3115 * Map them into contiguous kernel virtual space, using a pagetable
3116 * protection of @prot.
3117 *
3118 * Return: the address of the area or %NULL on failure
3119 */
3120 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3121 unsigned long start, unsigned long end, gfp_t gfp_mask,
3122 pgprot_t prot, unsigned long vm_flags, int node,
3123 const void *caller)
3124 {
3125 struct vm_struct *area;
3126 void *ret;
3127 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3128 unsigned long real_size = size;
3129 unsigned long real_align = align;
3130 unsigned int shift = PAGE_SHIFT;
3131
3132 if (WARN_ON_ONCE(!size))
3133 return NULL;
3134
3135 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3136 warn_alloc(gfp_mask, NULL,
3137 "vmalloc error: size %lu, exceeds total pages",
3138 real_size);
3139 return NULL;
3140 }
3141
3142 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3143 unsigned long size_per_node;
3144
3145 /*
3146 * Try huge pages. Only try for PAGE_KERNEL allocations,
3147 * others like modules don't yet expect huge pages in
3148 * their allocations due to apply_to_page_range not
3149 * supporting them.
3150 */
3151
3152 size_per_node = size;
3153 if (node == NUMA_NO_NODE)
3154 size_per_node /= num_online_nodes();
3155 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3156 shift = PMD_SHIFT;
3157 else
3158 shift = arch_vmap_pte_supported_shift(size_per_node);
3159
3160 align = max(real_align, 1UL << shift);
3161 size = ALIGN(real_size, 1UL << shift);
3162 }
3163
3164 again:
3165 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3166 VM_UNINITIALIZED | vm_flags, start, end, node,
3167 gfp_mask, caller);
3168 if (!area) {
3169 bool nofail = gfp_mask & __GFP_NOFAIL;
3170 warn_alloc(gfp_mask, NULL,
3171 "vmalloc error: size %lu, vm_struct allocation failed%s",
3172 real_size, (nofail) ? ". Retrying." : "");
3173 if (nofail) {
3174 schedule_timeout_uninterruptible(1);
3175 goto again;
3176 }
3177 goto fail;
3178 }
3179
3180 /*
3181 * Prepare arguments for __vmalloc_area_node() and
3182 * kasan_unpoison_vmalloc().
3183 */
3184 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3185 if (kasan_hw_tags_enabled()) {
3186 /*
3187 * Modify protection bits to allow tagging.
3188 * This must be done before mapping.
3189 */
3190 prot = arch_vmap_pgprot_tagged(prot);
3191
3192 /*
3193 * Skip page_alloc poisoning and zeroing for physical
3194 * pages backing VM_ALLOC mapping. Memory is instead
3195 * poisoned and zeroed by kasan_unpoison_vmalloc().
3196 */
3197 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3198 }
3199
3200 /* Take note that the mapping is PAGE_KERNEL. */
3201 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3202 }
3203
3204 /* Allocate physical pages and map them into vmalloc space. */
3205 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3206 if (!ret)
3207 goto fail;
3208
3209 /*
3210 * Mark the pages as accessible, now that they are mapped.
3211 * The condition for setting KASAN_VMALLOC_INIT should complement the
3212 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3213 * to make sure that memory is initialized under the same conditions.
3214 * Tag-based KASAN modes only assign tags to normal non-executable
3215 * allocations, see __kasan_unpoison_vmalloc().
3216 */
3217 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3218 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3219 (gfp_mask & __GFP_SKIP_ZERO))
3220 kasan_flags |= KASAN_VMALLOC_INIT;
3221 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3222 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3223
3224 /*
3225 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3226 * flag. It means that vm_struct is not fully initialized.
3227 * Now, it is fully initialized, so remove this flag here.
3228 */
3229 clear_vm_uninitialized_flag(area);
3230
3231 size = PAGE_ALIGN(size);
3232 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3233 kmemleak_vmalloc(area, size, gfp_mask);
3234
3235 return area->addr;
3236
3237 fail:
3238 if (shift > PAGE_SHIFT) {
3239 shift = PAGE_SHIFT;
3240 align = real_align;
3241 size = real_size;
3242 goto again;
3243 }
3244
3245 return NULL;
3246 }
3247
3248 /**
3249 * __vmalloc_node - allocate virtually contiguous memory
3250 * @size: allocation size
3251 * @align: desired alignment
3252 * @gfp_mask: flags for the page level allocator
3253 * @node: node to use for allocation or NUMA_NO_NODE
3254 * @caller: caller's return address
3255 *
3256 * Allocate enough pages to cover @size from the page level allocator with
3257 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3258 *
3259 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3260 * and __GFP_NOFAIL are not supported
3261 *
3262 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3263 * with mm people.
3264 *
3265 * Return: pointer to the allocated memory or %NULL on error
3266 */
3267 void *__vmalloc_node(unsigned long size, unsigned long align,
3268 gfp_t gfp_mask, int node, const void *caller)
3269 {
3270 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3271 gfp_mask, PAGE_KERNEL, 0, node, caller);
3272 }
3273 /*
3274 * This is only for performance analysis of vmalloc and stress purpose.
3275 * It is required by vmalloc test module, therefore do not use it other
3276 * than that.
3277 */
3278 #ifdef CONFIG_TEST_VMALLOC_MODULE
3279 EXPORT_SYMBOL_GPL(__vmalloc_node);
3280 #endif
3281
3282 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3283 {
3284 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3285 __builtin_return_address(0));
3286 }
3287 EXPORT_SYMBOL(__vmalloc);
3288
3289 /**
3290 * vmalloc - allocate virtually contiguous memory
3291 * @size: allocation size
3292 *
3293 * Allocate enough pages to cover @size from the page level
3294 * allocator and map them into contiguous kernel virtual space.
3295 *
3296 * For tight control over page level allocator and protection flags
3297 * use __vmalloc() instead.
3298 *
3299 * Return: pointer to the allocated memory or %NULL on error
3300 */
3301 void *vmalloc(unsigned long size)
3302 {
3303 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3304 __builtin_return_address(0));
3305 }
3306 EXPORT_SYMBOL(vmalloc);
3307
3308 /**
3309 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3310 * @size: allocation size
3311 * @gfp_mask: flags for the page level allocator
3312 *
3313 * Allocate enough pages to cover @size from the page level
3314 * allocator and map them into contiguous kernel virtual space.
3315 * If @size is greater than or equal to PMD_SIZE, allow using
3316 * huge pages for the memory
3317 *
3318 * Return: pointer to the allocated memory or %NULL on error
3319 */
3320 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3321 {
3322 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3323 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3324 NUMA_NO_NODE, __builtin_return_address(0));
3325 }
3326 EXPORT_SYMBOL_GPL(vmalloc_huge);
3327
3328 /**
3329 * vzalloc - allocate virtually contiguous memory with zero fill
3330 * @size: allocation size
3331 *
3332 * Allocate enough pages to cover @size from the page level
3333 * allocator and map them into contiguous kernel virtual space.
3334 * The memory allocated is set to zero.
3335 *
3336 * For tight control over page level allocator and protection flags
3337 * use __vmalloc() instead.
3338 *
3339 * Return: pointer to the allocated memory or %NULL on error
3340 */
3341 void *vzalloc(unsigned long size)
3342 {
3343 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3344 __builtin_return_address(0));
3345 }
3346 EXPORT_SYMBOL(vzalloc);
3347
3348 /**
3349 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3350 * @size: allocation size
3351 *
3352 * The resulting memory area is zeroed so it can be mapped to userspace
3353 * without leaking data.
3354 *
3355 * Return: pointer to the allocated memory or %NULL on error
3356 */
3357 void *vmalloc_user(unsigned long size)
3358 {
3359 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3360 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3361 VM_USERMAP, NUMA_NO_NODE,
3362 __builtin_return_address(0));
3363 }
3364 EXPORT_SYMBOL(vmalloc_user);
3365
3366 /**
3367 * vmalloc_node - allocate memory on a specific node
3368 * @size: allocation size
3369 * @node: numa node
3370 *
3371 * Allocate enough pages to cover @size from the page level
3372 * allocator and map them into contiguous kernel virtual space.
3373 *
3374 * For tight control over page level allocator and protection flags
3375 * use __vmalloc() instead.
3376 *
3377 * Return: pointer to the allocated memory or %NULL on error
3378 */
3379 void *vmalloc_node(unsigned long size, int node)
3380 {
3381 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3382 __builtin_return_address(0));
3383 }
3384 EXPORT_SYMBOL(vmalloc_node);
3385
3386 /**
3387 * vzalloc_node - allocate memory on a specific node with zero fill
3388 * @size: allocation size
3389 * @node: numa node
3390 *
3391 * Allocate enough pages to cover @size from the page level
3392 * allocator and map them into contiguous kernel virtual space.
3393 * The memory allocated is set to zero.
3394 *
3395 * Return: pointer to the allocated memory or %NULL on error
3396 */
3397 void *vzalloc_node(unsigned long size, int node)
3398 {
3399 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3400 __builtin_return_address(0));
3401 }
3402 EXPORT_SYMBOL(vzalloc_node);
3403
3404 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3405 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3406 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3407 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3408 #else
3409 /*
3410 * 64b systems should always have either DMA or DMA32 zones. For others
3411 * GFP_DMA32 should do the right thing and use the normal zone.
3412 */
3413 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3414 #endif
3415
3416 /**
3417 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3418 * @size: allocation size
3419 *
3420 * Allocate enough 32bit PA addressable pages to cover @size from the
3421 * page level allocator and map them into contiguous kernel virtual space.
3422 *
3423 * Return: pointer to the allocated memory or %NULL on error
3424 */
3425 void *vmalloc_32(unsigned long size)
3426 {
3427 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3428 __builtin_return_address(0));
3429 }
3430 EXPORT_SYMBOL(vmalloc_32);
3431
3432 /**
3433 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3434 * @size: allocation size
3435 *
3436 * The resulting memory area is 32bit addressable and zeroed so it can be
3437 * mapped to userspace without leaking data.
3438 *
3439 * Return: pointer to the allocated memory or %NULL on error
3440 */
3441 void *vmalloc_32_user(unsigned long size)
3442 {
3443 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3444 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3445 VM_USERMAP, NUMA_NO_NODE,
3446 __builtin_return_address(0));
3447 }
3448 EXPORT_SYMBOL(vmalloc_32_user);
3449
3450 /*
3451 * small helper routine , copy contents to buf from addr.
3452 * If the page is not present, fill zero.
3453 */
3454
3455 static int aligned_vread(char *buf, char *addr, unsigned long count)
3456 {
3457 struct page *p;
3458 int copied = 0;
3459
3460 while (count) {
3461 unsigned long offset, length;
3462
3463 offset = offset_in_page(addr);
3464 length = PAGE_SIZE - offset;
3465 if (length > count)
3466 length = count;
3467 p = vmalloc_to_page(addr);
3468 /*
3469 * To do safe access to this _mapped_ area, we need
3470 * lock. But adding lock here means that we need to add
3471 * overhead of vmalloc()/vfree() calls for this _debug_
3472 * interface, rarely used. Instead of that, we'll use
3473 * kmap() and get small overhead in this access function.
3474 */
3475 if (p) {
3476 /* We can expect USER0 is not used -- see vread() */
3477 void *map = kmap_atomic(p);
3478 memcpy(buf, map + offset, length);
3479 kunmap_atomic(map);
3480 } else
3481 memset(buf, 0, length);
3482
3483 addr += length;
3484 buf += length;
3485 copied += length;
3486 count -= length;
3487 }
3488 return copied;
3489 }
3490
3491 static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags)
3492 {
3493 char *start;
3494 struct vmap_block *vb;
3495 unsigned long offset;
3496 unsigned int rs, re, n;
3497
3498 /*
3499 * If it's area created by vm_map_ram() interface directly, but
3500 * not further subdividing and delegating management to vmap_block,
3501 * handle it here.
3502 */
3503 if (!(flags & VMAP_BLOCK)) {
3504 aligned_vread(buf, addr, count);
3505 return;
3506 }
3507
3508 /*
3509 * Area is split into regions and tracked with vmap_block, read out
3510 * each region and zero fill the hole between regions.
3511 */
3512 vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr));
3513 if (!vb)
3514 goto finished;
3515
3516 spin_lock(&vb->lock);
3517 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3518 spin_unlock(&vb->lock);
3519 goto finished;
3520 }
3521 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3522 if (!count)
3523 break;
3524 start = vmap_block_vaddr(vb->va->va_start, rs);
3525 while (addr < start) {
3526 if (count == 0)
3527 goto unlock;
3528 *buf = '\0';
3529 buf++;
3530 addr++;
3531 count--;
3532 }
3533 /*it could start reading from the middle of used region*/
3534 offset = offset_in_page(addr);
3535 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3536 if (n > count)
3537 n = count;
3538 aligned_vread(buf, start+offset, n);
3539
3540 buf += n;
3541 addr += n;
3542 count -= n;
3543 }
3544 unlock:
3545 spin_unlock(&vb->lock);
3546
3547 finished:
3548 /* zero-fill the left dirty or free regions */
3549 if (count)
3550 memset(buf, 0, count);
3551 }
3552
3553 /**
3554 * vread() - read vmalloc area in a safe way.
3555 * @buf: buffer for reading data
3556 * @addr: vm address.
3557 * @count: number of bytes to be read.
3558 *
3559 * This function checks that addr is a valid vmalloc'ed area, and
3560 * copy data from that area to a given buffer. If the given memory range
3561 * of [addr...addr+count) includes some valid address, data is copied to
3562 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3563 * IOREMAP area is treated as memory hole and no copy is done.
3564 *
3565 * If [addr...addr+count) doesn't includes any intersects with alive
3566 * vm_struct area, returns 0. @buf should be kernel's buffer.
3567 *
3568 * Note: In usual ops, vread() is never necessary because the caller
3569 * should know vmalloc() area is valid and can use memcpy().
3570 * This is for routines which have to access vmalloc area without
3571 * any information, as /proc/kcore.
3572 *
3573 * Return: number of bytes for which addr and buf should be increased
3574 * (same number as @count) or %0 if [addr...addr+count) doesn't
3575 * include any intersection with valid vmalloc area
3576 */
3577 long vread(char *buf, char *addr, unsigned long count)
3578 {
3579 struct vmap_area *va;
3580 struct vm_struct *vm;
3581 char *vaddr, *buf_start = buf;
3582 unsigned long buflen = count;
3583 unsigned long n, size, flags;
3584
3585 addr = kasan_reset_tag(addr);
3586
3587 /* Don't allow overflow */
3588 if ((unsigned long) addr + count < count)
3589 count = -(unsigned long) addr;
3590
3591 spin_lock(&vmap_area_lock);
3592 va = find_vmap_area_exceed_addr((unsigned long)addr);
3593 if (!va)
3594 goto finished;
3595
3596 /* no intersects with alive vmap_area */
3597 if ((unsigned long)addr + count <= va->va_start)
3598 goto finished;
3599
3600 list_for_each_entry_from(va, &vmap_area_list, list) {
3601 if (!count)
3602 break;
3603
3604 vm = va->vm;
3605 flags = va->flags & VMAP_FLAGS_MASK;
3606 /*
3607 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3608 * be set together with VMAP_RAM.
3609 */
3610 WARN_ON(flags == VMAP_BLOCK);
3611
3612 if (!vm && !flags)
3613 continue;
3614
3615 if (vm && (vm->flags & VM_UNINITIALIZED))
3616 continue;
3617 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3618 smp_rmb();
3619
3620 vaddr = (char *) va->va_start;
3621 size = vm ? get_vm_area_size(vm) : va_size(va);
3622
3623 if (addr >= vaddr + size)
3624 continue;
3625 while (addr < vaddr) {
3626 if (count == 0)
3627 goto finished;
3628 *buf = '\0';
3629 buf++;
3630 addr++;
3631 count--;
3632 }
3633 n = vaddr + size - addr;
3634 if (n > count)
3635 n = count;
3636
3637 if (flags & VMAP_RAM)
3638 vmap_ram_vread(buf, addr, n, flags);
3639 else if (!(vm->flags & VM_IOREMAP))
3640 aligned_vread(buf, addr, n);
3641 else /* IOREMAP area is treated as memory hole */
3642 memset(buf, 0, n);
3643 buf += n;
3644 addr += n;
3645 count -= n;
3646 }
3647 finished:
3648 spin_unlock(&vmap_area_lock);
3649
3650 if (buf == buf_start)
3651 return 0;
3652 /* zero-fill memory holes */
3653 if (buf != buf_start + buflen)
3654 memset(buf, 0, buflen - (buf - buf_start));
3655
3656 return buflen;
3657 }
3658
3659 /**
3660 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3661 * @vma: vma to cover
3662 * @uaddr: target user address to start at
3663 * @kaddr: virtual address of vmalloc kernel memory
3664 * @pgoff: offset from @kaddr to start at
3665 * @size: size of map area
3666 *
3667 * Returns: 0 for success, -Exxx on failure
3668 *
3669 * This function checks that @kaddr is a valid vmalloc'ed area,
3670 * and that it is big enough to cover the range starting at
3671 * @uaddr in @vma. Will return failure if that criteria isn't
3672 * met.
3673 *
3674 * Similar to remap_pfn_range() (see mm/memory.c)
3675 */
3676 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3677 void *kaddr, unsigned long pgoff,
3678 unsigned long size)
3679 {
3680 struct vm_struct *area;
3681 unsigned long off;
3682 unsigned long end_index;
3683
3684 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3685 return -EINVAL;
3686
3687 size = PAGE_ALIGN(size);
3688
3689 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3690 return -EINVAL;
3691
3692 area = find_vm_area(kaddr);
3693 if (!area)
3694 return -EINVAL;
3695
3696 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3697 return -EINVAL;
3698
3699 if (check_add_overflow(size, off, &end_index) ||
3700 end_index > get_vm_area_size(area))
3701 return -EINVAL;
3702 kaddr += off;
3703
3704 do {
3705 struct page *page = vmalloc_to_page(kaddr);
3706 int ret;
3707
3708 ret = vm_insert_page(vma, uaddr, page);
3709 if (ret)
3710 return ret;
3711
3712 uaddr += PAGE_SIZE;
3713 kaddr += PAGE_SIZE;
3714 size -= PAGE_SIZE;
3715 } while (size > 0);
3716
3717 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3718
3719 return 0;
3720 }
3721
3722 /**
3723 * remap_vmalloc_range - map vmalloc pages to userspace
3724 * @vma: vma to cover (map full range of vma)
3725 * @addr: vmalloc memory
3726 * @pgoff: number of pages into addr before first page to map
3727 *
3728 * Returns: 0 for success, -Exxx on failure
3729 *
3730 * This function checks that addr is a valid vmalloc'ed area, and
3731 * that it is big enough to cover the vma. Will return failure if
3732 * that criteria isn't met.
3733 *
3734 * Similar to remap_pfn_range() (see mm/memory.c)
3735 */
3736 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3737 unsigned long pgoff)
3738 {
3739 return remap_vmalloc_range_partial(vma, vma->vm_start,
3740 addr, pgoff,
3741 vma->vm_end - vma->vm_start);
3742 }
3743 EXPORT_SYMBOL(remap_vmalloc_range);
3744
3745 void free_vm_area(struct vm_struct *area)
3746 {
3747 struct vm_struct *ret;
3748 ret = remove_vm_area(area->addr);
3749 BUG_ON(ret != area);
3750 kfree(area);
3751 }
3752 EXPORT_SYMBOL_GPL(free_vm_area);
3753
3754 #ifdef CONFIG_SMP
3755 static struct vmap_area *node_to_va(struct rb_node *n)
3756 {
3757 return rb_entry_safe(n, struct vmap_area, rb_node);
3758 }
3759
3760 /**
3761 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3762 * @addr: target address
3763 *
3764 * Returns: vmap_area if it is found. If there is no such area
3765 * the first highest(reverse order) vmap_area is returned
3766 * i.e. va->va_start < addr && va->va_end < addr or NULL
3767 * if there are no any areas before @addr.
3768 */
3769 static struct vmap_area *
3770 pvm_find_va_enclose_addr(unsigned long addr)
3771 {
3772 struct vmap_area *va, *tmp;
3773 struct rb_node *n;
3774
3775 n = free_vmap_area_root.rb_node;
3776 va = NULL;
3777
3778 while (n) {
3779 tmp = rb_entry(n, struct vmap_area, rb_node);
3780 if (tmp->va_start <= addr) {
3781 va = tmp;
3782 if (tmp->va_end >= addr)
3783 break;
3784
3785 n = n->rb_right;
3786 } else {
3787 n = n->rb_left;
3788 }
3789 }
3790
3791 return va;
3792 }
3793
3794 /**
3795 * pvm_determine_end_from_reverse - find the highest aligned address
3796 * of free block below VMALLOC_END
3797 * @va:
3798 * in - the VA we start the search(reverse order);
3799 * out - the VA with the highest aligned end address.
3800 * @align: alignment for required highest address
3801 *
3802 * Returns: determined end address within vmap_area
3803 */
3804 static unsigned long
3805 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3806 {
3807 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3808 unsigned long addr;
3809
3810 if (likely(*va)) {
3811 list_for_each_entry_from_reverse((*va),
3812 &free_vmap_area_list, list) {
3813 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3814 if ((*va)->va_start < addr)
3815 return addr;
3816 }
3817 }
3818
3819 return 0;
3820 }
3821
3822 /**
3823 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3824 * @offsets: array containing offset of each area
3825 * @sizes: array containing size of each area
3826 * @nr_vms: the number of areas to allocate
3827 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3828 *
3829 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3830 * vm_structs on success, %NULL on failure
3831 *
3832 * Percpu allocator wants to use congruent vm areas so that it can
3833 * maintain the offsets among percpu areas. This function allocates
3834 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3835 * be scattered pretty far, distance between two areas easily going up
3836 * to gigabytes. To avoid interacting with regular vmallocs, these
3837 * areas are allocated from top.
3838 *
3839 * Despite its complicated look, this allocator is rather simple. It
3840 * does everything top-down and scans free blocks from the end looking
3841 * for matching base. While scanning, if any of the areas do not fit the
3842 * base address is pulled down to fit the area. Scanning is repeated till
3843 * all the areas fit and then all necessary data structures are inserted
3844 * and the result is returned.
3845 */
3846 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3847 const size_t *sizes, int nr_vms,
3848 size_t align)
3849 {
3850 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3851 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3852 struct vmap_area **vas, *va;
3853 struct vm_struct **vms;
3854 int area, area2, last_area, term_area;
3855 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3856 bool purged = false;
3857
3858 /* verify parameters and allocate data structures */
3859 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3860 for (last_area = 0, area = 0; area < nr_vms; area++) {
3861 start = offsets[area];
3862 end = start + sizes[area];
3863
3864 /* is everything aligned properly? */
3865 BUG_ON(!IS_ALIGNED(offsets[area], align));
3866 BUG_ON(!IS_ALIGNED(sizes[area], align));
3867
3868 /* detect the area with the highest address */
3869 if (start > offsets[last_area])
3870 last_area = area;
3871
3872 for (area2 = area + 1; area2 < nr_vms; area2++) {
3873 unsigned long start2 = offsets[area2];
3874 unsigned long end2 = start2 + sizes[area2];
3875
3876 BUG_ON(start2 < end && start < end2);
3877 }
3878 }
3879 last_end = offsets[last_area] + sizes[last_area];
3880
3881 if (vmalloc_end - vmalloc_start < last_end) {
3882 WARN_ON(true);
3883 return NULL;
3884 }
3885
3886 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3887 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3888 if (!vas || !vms)
3889 goto err_free2;
3890
3891 for (area = 0; area < nr_vms; area++) {
3892 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3893 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3894 if (!vas[area] || !vms[area])
3895 goto err_free;
3896 }
3897 retry:
3898 spin_lock(&free_vmap_area_lock);
3899
3900 /* start scanning - we scan from the top, begin with the last area */
3901 area = term_area = last_area;
3902 start = offsets[area];
3903 end = start + sizes[area];
3904
3905 va = pvm_find_va_enclose_addr(vmalloc_end);
3906 base = pvm_determine_end_from_reverse(&va, align) - end;
3907
3908 while (true) {
3909 /*
3910 * base might have underflowed, add last_end before
3911 * comparing.
3912 */
3913 if (base + last_end < vmalloc_start + last_end)
3914 goto overflow;
3915
3916 /*
3917 * Fitting base has not been found.
3918 */
3919 if (va == NULL)
3920 goto overflow;
3921
3922 /*
3923 * If required width exceeds current VA block, move
3924 * base downwards and then recheck.
3925 */
3926 if (base + end > va->va_end) {
3927 base = pvm_determine_end_from_reverse(&va, align) - end;
3928 term_area = area;
3929 continue;
3930 }
3931
3932 /*
3933 * If this VA does not fit, move base downwards and recheck.
3934 */
3935 if (base + start < va->va_start) {
3936 va = node_to_va(rb_prev(&va->rb_node));
3937 base = pvm_determine_end_from_reverse(&va, align) - end;
3938 term_area = area;
3939 continue;
3940 }
3941
3942 /*
3943 * This area fits, move on to the previous one. If
3944 * the previous one is the terminal one, we're done.
3945 */
3946 area = (area + nr_vms - 1) % nr_vms;
3947 if (area == term_area)
3948 break;
3949
3950 start = offsets[area];
3951 end = start + sizes[area];
3952 va = pvm_find_va_enclose_addr(base + end);
3953 }
3954
3955 /* we've found a fitting base, insert all va's */
3956 for (area = 0; area < nr_vms; area++) {
3957 int ret;
3958
3959 start = base + offsets[area];
3960 size = sizes[area];
3961
3962 va = pvm_find_va_enclose_addr(start);
3963 if (WARN_ON_ONCE(va == NULL))
3964 /* It is a BUG(), but trigger recovery instead. */
3965 goto recovery;
3966
3967 ret = adjust_va_to_fit_type(&free_vmap_area_root,
3968 &free_vmap_area_list,
3969 va, start, size);
3970 if (WARN_ON_ONCE(unlikely(ret)))
3971 /* It is a BUG(), but trigger recovery instead. */
3972 goto recovery;
3973
3974 /* Allocated area. */
3975 va = vas[area];
3976 va->va_start = start;
3977 va->va_end = start + size;
3978 }
3979
3980 spin_unlock(&free_vmap_area_lock);
3981
3982 /* populate the kasan shadow space */
3983 for (area = 0; area < nr_vms; area++) {
3984 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3985 goto err_free_shadow;
3986 }
3987
3988 /* insert all vm's */
3989 spin_lock(&vmap_area_lock);
3990 for (area = 0; area < nr_vms; area++) {
3991 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3992
3993 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3994 pcpu_get_vm_areas);
3995 }
3996 spin_unlock(&vmap_area_lock);
3997
3998 /*
3999 * Mark allocated areas as accessible. Do it now as a best-effort
4000 * approach, as they can be mapped outside of vmalloc code.
4001 * With hardware tag-based KASAN, marking is skipped for
4002 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4003 */
4004 for (area = 0; area < nr_vms; area++)
4005 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4006 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4007
4008 kfree(vas);
4009 return vms;
4010
4011 recovery:
4012 /*
4013 * Remove previously allocated areas. There is no
4014 * need in removing these areas from the busy tree,
4015 * because they are inserted only on the final step
4016 * and when pcpu_get_vm_areas() is success.
4017 */
4018 while (area--) {
4019 orig_start = vas[area]->va_start;
4020 orig_end = vas[area]->va_end;
4021 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4022 &free_vmap_area_list);
4023 if (va)
4024 kasan_release_vmalloc(orig_start, orig_end,
4025 va->va_start, va->va_end);
4026 vas[area] = NULL;
4027 }
4028
4029 overflow:
4030 spin_unlock(&free_vmap_area_lock);
4031 if (!purged) {
4032 purge_vmap_area_lazy();
4033 purged = true;
4034
4035 /* Before "retry", check if we recover. */
4036 for (area = 0; area < nr_vms; area++) {
4037 if (vas[area])
4038 continue;
4039
4040 vas[area] = kmem_cache_zalloc(
4041 vmap_area_cachep, GFP_KERNEL);
4042 if (!vas[area])
4043 goto err_free;
4044 }
4045
4046 goto retry;
4047 }
4048
4049 err_free:
4050 for (area = 0; area < nr_vms; area++) {
4051 if (vas[area])
4052 kmem_cache_free(vmap_area_cachep, vas[area]);
4053
4054 kfree(vms[area]);
4055 }
4056 err_free2:
4057 kfree(vas);
4058 kfree(vms);
4059 return NULL;
4060
4061 err_free_shadow:
4062 spin_lock(&free_vmap_area_lock);
4063 /*
4064 * We release all the vmalloc shadows, even the ones for regions that
4065 * hadn't been successfully added. This relies on kasan_release_vmalloc
4066 * being able to tolerate this case.
4067 */
4068 for (area = 0; area < nr_vms; area++) {
4069 orig_start = vas[area]->va_start;
4070 orig_end = vas[area]->va_end;
4071 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4072 &free_vmap_area_list);
4073 if (va)
4074 kasan_release_vmalloc(orig_start, orig_end,
4075 va->va_start, va->va_end);
4076 vas[area] = NULL;
4077 kfree(vms[area]);
4078 }
4079 spin_unlock(&free_vmap_area_lock);
4080 kfree(vas);
4081 kfree(vms);
4082 return NULL;
4083 }
4084
4085 /**
4086 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4087 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4088 * @nr_vms: the number of allocated areas
4089 *
4090 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4091 */
4092 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4093 {
4094 int i;
4095
4096 for (i = 0; i < nr_vms; i++)
4097 free_vm_area(vms[i]);
4098 kfree(vms);
4099 }
4100 #endif /* CONFIG_SMP */
4101
4102 #ifdef CONFIG_PRINTK
4103 bool vmalloc_dump_obj(void *object)
4104 {
4105 struct vm_struct *vm;
4106 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4107
4108 vm = find_vm_area(objp);
4109 if (!vm)
4110 return false;
4111 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4112 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4113 return true;
4114 }
4115 #endif
4116
4117 #ifdef CONFIG_PROC_FS
4118 static void *s_start(struct seq_file *m, loff_t *pos)
4119 __acquires(&vmap_purge_lock)
4120 __acquires(&vmap_area_lock)
4121 {
4122 mutex_lock(&vmap_purge_lock);
4123 spin_lock(&vmap_area_lock);
4124
4125 return seq_list_start(&vmap_area_list, *pos);
4126 }
4127
4128 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4129 {
4130 return seq_list_next(p, &vmap_area_list, pos);
4131 }
4132
4133 static void s_stop(struct seq_file *m, void *p)
4134 __releases(&vmap_area_lock)
4135 __releases(&vmap_purge_lock)
4136 {
4137 spin_unlock(&vmap_area_lock);
4138 mutex_unlock(&vmap_purge_lock);
4139 }
4140
4141 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4142 {
4143 if (IS_ENABLED(CONFIG_NUMA)) {
4144 unsigned int nr, *counters = m->private;
4145 unsigned int step = 1U << vm_area_page_order(v);
4146
4147 if (!counters)
4148 return;
4149
4150 if (v->flags & VM_UNINITIALIZED)
4151 return;
4152 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4153 smp_rmb();
4154
4155 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4156
4157 for (nr = 0; nr < v->nr_pages; nr += step)
4158 counters[page_to_nid(v->pages[nr])] += step;
4159 for_each_node_state(nr, N_HIGH_MEMORY)
4160 if (counters[nr])
4161 seq_printf(m, " N%u=%u", nr, counters[nr]);
4162 }
4163 }
4164
4165 static void show_purge_info(struct seq_file *m)
4166 {
4167 struct vmap_area *va;
4168
4169 spin_lock(&purge_vmap_area_lock);
4170 list_for_each_entry(va, &purge_vmap_area_list, list) {
4171 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4172 (void *)va->va_start, (void *)va->va_end,
4173 va->va_end - va->va_start);
4174 }
4175 spin_unlock(&purge_vmap_area_lock);
4176 }
4177
4178 static int s_show(struct seq_file *m, void *p)
4179 {
4180 struct vmap_area *va;
4181 struct vm_struct *v;
4182
4183 va = list_entry(p, struct vmap_area, list);
4184
4185 if (!va->vm) {
4186 if (va->flags & VMAP_RAM)
4187 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4188 (void *)va->va_start, (void *)va->va_end,
4189 va->va_end - va->va_start);
4190
4191 goto final;
4192 }
4193
4194 v = va->vm;
4195
4196 seq_printf(m, "0x%pK-0x%pK %7ld",
4197 v->addr, v->addr + v->size, v->size);
4198
4199 if (v->caller)
4200 seq_printf(m, " %pS", v->caller);
4201
4202 if (v->nr_pages)
4203 seq_printf(m, " pages=%d", v->nr_pages);
4204
4205 if (v->phys_addr)
4206 seq_printf(m, " phys=%pa", &v->phys_addr);
4207
4208 if (v->flags & VM_IOREMAP)
4209 seq_puts(m, " ioremap");
4210
4211 if (v->flags & VM_ALLOC)
4212 seq_puts(m, " vmalloc");
4213
4214 if (v->flags & VM_MAP)
4215 seq_puts(m, " vmap");
4216
4217 if (v->flags & VM_USERMAP)
4218 seq_puts(m, " user");
4219
4220 if (v->flags & VM_DMA_COHERENT)
4221 seq_puts(m, " dma-coherent");
4222
4223 if (is_vmalloc_addr(v->pages))
4224 seq_puts(m, " vpages");
4225
4226 show_numa_info(m, v);
4227 seq_putc(m, '\n');
4228
4229 /*
4230 * As a final step, dump "unpurged" areas.
4231 */
4232 final:
4233 if (list_is_last(&va->list, &vmap_area_list))
4234 show_purge_info(m);
4235
4236 return 0;
4237 }
4238
4239 static const struct seq_operations vmalloc_op = {
4240 .start = s_start,
4241 .next = s_next,
4242 .stop = s_stop,
4243 .show = s_show,
4244 };
4245
4246 static int __init proc_vmalloc_init(void)
4247 {
4248 if (IS_ENABLED(CONFIG_NUMA))
4249 proc_create_seq_private("vmallocinfo", 0400, NULL,
4250 &vmalloc_op,
4251 nr_node_ids * sizeof(unsigned int), NULL);
4252 else
4253 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4254 return 0;
4255 }
4256 module_init(proc_vmalloc_init);
4257
4258 #endif
4259
4260 void __init vmalloc_init(void)
4261 {
4262 struct vmap_area *va;
4263 struct vm_struct *tmp;
4264 int i;
4265
4266 /*
4267 * Create the cache for vmap_area objects.
4268 */
4269 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4270
4271 for_each_possible_cpu(i) {
4272 struct vmap_block_queue *vbq;
4273 struct vfree_deferred *p;
4274
4275 vbq = &per_cpu(vmap_block_queue, i);
4276 spin_lock_init(&vbq->lock);
4277 INIT_LIST_HEAD(&vbq->free);
4278 p = &per_cpu(vfree_deferred, i);
4279 init_llist_head(&p->list);
4280 INIT_WORK(&p->wq, delayed_vfree_work);
4281 }
4282
4283 /* Import existing vmlist entries. */
4284 for (tmp = vmlist; tmp; tmp = tmp->next) {
4285 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4286 if (WARN_ON_ONCE(!va))
4287 continue;
4288
4289 va->va_start = (unsigned long)tmp->addr;
4290 va->va_end = va->va_start + tmp->size;
4291 va->vm = tmp;
4292 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4293 }
4294
4295 /*
4296 * Now we can initialize a free vmap space.
4297 */
4298 vmap_init_free_space();
4299 vmap_initialized = true;
4300 }