]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/vmscan.c
SMB3: Add support for multidialect negotiate (SMB2.1 and later)
[thirdparty/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
107
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
118 };
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149 * From 0 .. 100. Higher means more swappy.
150 */
151 int vm_swappiness = 60;
152 /*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156 unsigned long vm_total_pages;
157
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 return !sc->target_mem_cgroup;
165 }
166
167 /**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 return true;
201 }
202 #endif
203
204 /*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220 }
221
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234
235 return nr;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 shrinkctl->nr_scanned = nr_to_scan;
397 ret = shrinker->scan_objects(shrinker, shrinkctl);
398 if (ret == SHRINK_STOP)
399 break;
400 freed += ret;
401
402 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
403 total_scan -= shrinkctl->nr_scanned;
404 scanned += shrinkctl->nr_scanned;
405
406 cond_resched();
407 }
408
409 if (next_deferred >= scanned)
410 next_deferred -= scanned;
411 else
412 next_deferred = 0;
413 /*
414 * move the unused scan count back into the shrinker in a
415 * manner that handles concurrent updates. If we exhausted the
416 * scan, there is no need to do an update.
417 */
418 if (next_deferred > 0)
419 new_nr = atomic_long_add_return(next_deferred,
420 &shrinker->nr_deferred[nid]);
421 else
422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423
424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 return freed;
426 }
427
428 /**
429 * shrink_slab - shrink slab caches
430 * @gfp_mask: allocation context
431 * @nid: node whose slab caches to target
432 * @memcg: memory cgroup whose slab caches to target
433 * @nr_scanned: pressure numerator
434 * @nr_eligible: pressure denominator
435 *
436 * Call the shrink functions to age shrinkable caches.
437 *
438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439 * unaware shrinkers will receive a node id of 0 instead.
440 *
441 * @memcg specifies the memory cgroup to target. If it is not NULL,
442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 * objects from the memory cgroup specified. Otherwise, only unaware
444 * shrinkers are called.
445 *
446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447 * the available objects should be scanned. Page reclaim for example
448 * passes the number of pages scanned and the number of pages on the
449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450 * when it encountered mapped pages. The ratio is further biased by
451 * the ->seeks setting of the shrink function, which indicates the
452 * cost to recreate an object relative to that of an LRU page.
453 *
454 * Returns the number of reclaimed slab objects.
455 */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 struct mem_cgroup *memcg,
458 unsigned long nr_scanned,
459 unsigned long nr_eligible)
460 {
461 struct shrinker *shrinker;
462 unsigned long freed = 0;
463
464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 return 0;
466
467 if (nr_scanned == 0)
468 nr_scanned = SWAP_CLUSTER_MAX;
469
470 if (!down_read_trylock(&shrinker_rwsem)) {
471 /*
472 * If we would return 0, our callers would understand that we
473 * have nothing else to shrink and give up trying. By returning
474 * 1 we keep it going and assume we'll be able to shrink next
475 * time.
476 */
477 freed = 1;
478 goto out;
479 }
480
481 list_for_each_entry(shrinker, &shrinker_list, list) {
482 struct shrink_control sc = {
483 .gfp_mask = gfp_mask,
484 .nid = nid,
485 .memcg = memcg,
486 };
487
488 /*
489 * If kernel memory accounting is disabled, we ignore
490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 * passing NULL for memcg.
492 */
493 if (memcg_kmem_enabled() &&
494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 continue;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 sc.nid = 0;
499
500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 }
502
503 up_read(&shrinker_rwsem);
504 out:
505 cond_resched();
506 return freed;
507 }
508
509 void drop_slab_node(int nid)
510 {
511 unsigned long freed;
512
513 do {
514 struct mem_cgroup *memcg = NULL;
515
516 freed = 0;
517 do {
518 freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 1000, 1000);
520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 } while (freed > 10);
522 }
523
524 void drop_slab(void)
525 {
526 int nid;
527
528 for_each_online_node(nid)
529 drop_slab_node(nid);
530 }
531
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 /*
535 * A freeable page cache page is referenced only by the caller
536 * that isolated the page, the page cache radix tree and
537 * optional buffer heads at page->private.
538 */
539 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
540 HPAGE_PMD_NR : 1;
541 return page_count(page) - page_has_private(page) == 1 + radix_pins;
542 }
543
544 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
545 {
546 if (current->flags & PF_SWAPWRITE)
547 return 1;
548 if (!inode_write_congested(inode))
549 return 1;
550 if (inode_to_bdi(inode) == current->backing_dev_info)
551 return 1;
552 return 0;
553 }
554
555 /*
556 * We detected a synchronous write error writing a page out. Probably
557 * -ENOSPC. We need to propagate that into the address_space for a subsequent
558 * fsync(), msync() or close().
559 *
560 * The tricky part is that after writepage we cannot touch the mapping: nothing
561 * prevents it from being freed up. But we have a ref on the page and once
562 * that page is locked, the mapping is pinned.
563 *
564 * We're allowed to run sleeping lock_page() here because we know the caller has
565 * __GFP_FS.
566 */
567 static void handle_write_error(struct address_space *mapping,
568 struct page *page, int error)
569 {
570 lock_page(page);
571 if (page_mapping(page) == mapping)
572 mapping_set_error(mapping, error);
573 unlock_page(page);
574 }
575
576 /* possible outcome of pageout() */
577 typedef enum {
578 /* failed to write page out, page is locked */
579 PAGE_KEEP,
580 /* move page to the active list, page is locked */
581 PAGE_ACTIVATE,
582 /* page has been sent to the disk successfully, page is unlocked */
583 PAGE_SUCCESS,
584 /* page is clean and locked */
585 PAGE_CLEAN,
586 } pageout_t;
587
588 /*
589 * pageout is called by shrink_page_list() for each dirty page.
590 * Calls ->writepage().
591 */
592 static pageout_t pageout(struct page *page, struct address_space *mapping,
593 struct scan_control *sc)
594 {
595 /*
596 * If the page is dirty, only perform writeback if that write
597 * will be non-blocking. To prevent this allocation from being
598 * stalled by pagecache activity. But note that there may be
599 * stalls if we need to run get_block(). We could test
600 * PagePrivate for that.
601 *
602 * If this process is currently in __generic_file_write_iter() against
603 * this page's queue, we can perform writeback even if that
604 * will block.
605 *
606 * If the page is swapcache, write it back even if that would
607 * block, for some throttling. This happens by accident, because
608 * swap_backing_dev_info is bust: it doesn't reflect the
609 * congestion state of the swapdevs. Easy to fix, if needed.
610 */
611 if (!is_page_cache_freeable(page))
612 return PAGE_KEEP;
613 if (!mapping) {
614 /*
615 * Some data journaling orphaned pages can have
616 * page->mapping == NULL while being dirty with clean buffers.
617 */
618 if (page_has_private(page)) {
619 if (try_to_free_buffers(page)) {
620 ClearPageDirty(page);
621 pr_info("%s: orphaned page\n", __func__);
622 return PAGE_CLEAN;
623 }
624 }
625 return PAGE_KEEP;
626 }
627 if (mapping->a_ops->writepage == NULL)
628 return PAGE_ACTIVATE;
629 if (!may_write_to_inode(mapping->host, sc))
630 return PAGE_KEEP;
631
632 if (clear_page_dirty_for_io(page)) {
633 int res;
634 struct writeback_control wbc = {
635 .sync_mode = WB_SYNC_NONE,
636 .nr_to_write = SWAP_CLUSTER_MAX,
637 .range_start = 0,
638 .range_end = LLONG_MAX,
639 .for_reclaim = 1,
640 };
641
642 SetPageReclaim(page);
643 res = mapping->a_ops->writepage(page, &wbc);
644 if (res < 0)
645 handle_write_error(mapping, page, res);
646 if (res == AOP_WRITEPAGE_ACTIVATE) {
647 ClearPageReclaim(page);
648 return PAGE_ACTIVATE;
649 }
650
651 if (!PageWriteback(page)) {
652 /* synchronous write or broken a_ops? */
653 ClearPageReclaim(page);
654 }
655 trace_mm_vmscan_writepage(page);
656 inc_node_page_state(page, NR_VMSCAN_WRITE);
657 return PAGE_SUCCESS;
658 }
659
660 return PAGE_CLEAN;
661 }
662
663 /*
664 * Same as remove_mapping, but if the page is removed from the mapping, it
665 * gets returned with a refcount of 0.
666 */
667 static int __remove_mapping(struct address_space *mapping, struct page *page,
668 bool reclaimed)
669 {
670 unsigned long flags;
671 int refcount;
672
673 BUG_ON(!PageLocked(page));
674 BUG_ON(mapping != page_mapping(page));
675
676 spin_lock_irqsave(&mapping->tree_lock, flags);
677 /*
678 * The non racy check for a busy page.
679 *
680 * Must be careful with the order of the tests. When someone has
681 * a ref to the page, it may be possible that they dirty it then
682 * drop the reference. So if PageDirty is tested before page_count
683 * here, then the following race may occur:
684 *
685 * get_user_pages(&page);
686 * [user mapping goes away]
687 * write_to(page);
688 * !PageDirty(page) [good]
689 * SetPageDirty(page);
690 * put_page(page);
691 * !page_count(page) [good, discard it]
692 *
693 * [oops, our write_to data is lost]
694 *
695 * Reversing the order of the tests ensures such a situation cannot
696 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
697 * load is not satisfied before that of page->_refcount.
698 *
699 * Note that if SetPageDirty is always performed via set_page_dirty,
700 * and thus under tree_lock, then this ordering is not required.
701 */
702 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
703 refcount = 1 + HPAGE_PMD_NR;
704 else
705 refcount = 2;
706 if (!page_ref_freeze(page, refcount))
707 goto cannot_free;
708 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
709 if (unlikely(PageDirty(page))) {
710 page_ref_unfreeze(page, refcount);
711 goto cannot_free;
712 }
713
714 if (PageSwapCache(page)) {
715 swp_entry_t swap = { .val = page_private(page) };
716 mem_cgroup_swapout(page, swap);
717 __delete_from_swap_cache(page);
718 spin_unlock_irqrestore(&mapping->tree_lock, flags);
719 put_swap_page(page, swap);
720 } else {
721 void (*freepage)(struct page *);
722 void *shadow = NULL;
723
724 freepage = mapping->a_ops->freepage;
725 /*
726 * Remember a shadow entry for reclaimed file cache in
727 * order to detect refaults, thus thrashing, later on.
728 *
729 * But don't store shadows in an address space that is
730 * already exiting. This is not just an optizimation,
731 * inode reclaim needs to empty out the radix tree or
732 * the nodes are lost. Don't plant shadows behind its
733 * back.
734 *
735 * We also don't store shadows for DAX mappings because the
736 * only page cache pages found in these are zero pages
737 * covering holes, and because we don't want to mix DAX
738 * exceptional entries and shadow exceptional entries in the
739 * same page_tree.
740 */
741 if (reclaimed && page_is_file_cache(page) &&
742 !mapping_exiting(mapping) && !dax_mapping(mapping))
743 shadow = workingset_eviction(mapping, page);
744 __delete_from_page_cache(page, shadow);
745 spin_unlock_irqrestore(&mapping->tree_lock, flags);
746
747 if (freepage != NULL)
748 freepage(page);
749 }
750
751 return 1;
752
753 cannot_free:
754 spin_unlock_irqrestore(&mapping->tree_lock, flags);
755 return 0;
756 }
757
758 /*
759 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
760 * someone else has a ref on the page, abort and return 0. If it was
761 * successfully detached, return 1. Assumes the caller has a single ref on
762 * this page.
763 */
764 int remove_mapping(struct address_space *mapping, struct page *page)
765 {
766 if (__remove_mapping(mapping, page, false)) {
767 /*
768 * Unfreezing the refcount with 1 rather than 2 effectively
769 * drops the pagecache ref for us without requiring another
770 * atomic operation.
771 */
772 page_ref_unfreeze(page, 1);
773 return 1;
774 }
775 return 0;
776 }
777
778 /**
779 * putback_lru_page - put previously isolated page onto appropriate LRU list
780 * @page: page to be put back to appropriate lru list
781 *
782 * Add previously isolated @page to appropriate LRU list.
783 * Page may still be unevictable for other reasons.
784 *
785 * lru_lock must not be held, interrupts must be enabled.
786 */
787 void putback_lru_page(struct page *page)
788 {
789 bool is_unevictable;
790 int was_unevictable = PageUnevictable(page);
791
792 VM_BUG_ON_PAGE(PageLRU(page), page);
793
794 redo:
795 ClearPageUnevictable(page);
796
797 if (page_evictable(page)) {
798 /*
799 * For evictable pages, we can use the cache.
800 * In event of a race, worst case is we end up with an
801 * unevictable page on [in]active list.
802 * We know how to handle that.
803 */
804 is_unevictable = false;
805 lru_cache_add(page);
806 } else {
807 /*
808 * Put unevictable pages directly on zone's unevictable
809 * list.
810 */
811 is_unevictable = true;
812 add_page_to_unevictable_list(page);
813 /*
814 * When racing with an mlock or AS_UNEVICTABLE clearing
815 * (page is unlocked) make sure that if the other thread
816 * does not observe our setting of PG_lru and fails
817 * isolation/check_move_unevictable_pages,
818 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
819 * the page back to the evictable list.
820 *
821 * The other side is TestClearPageMlocked() or shmem_lock().
822 */
823 smp_mb();
824 }
825
826 /*
827 * page's status can change while we move it among lru. If an evictable
828 * page is on unevictable list, it never be freed. To avoid that,
829 * check after we added it to the list, again.
830 */
831 if (is_unevictable && page_evictable(page)) {
832 if (!isolate_lru_page(page)) {
833 put_page(page);
834 goto redo;
835 }
836 /* This means someone else dropped this page from LRU
837 * So, it will be freed or putback to LRU again. There is
838 * nothing to do here.
839 */
840 }
841
842 if (was_unevictable && !is_unevictable)
843 count_vm_event(UNEVICTABLE_PGRESCUED);
844 else if (!was_unevictable && is_unevictable)
845 count_vm_event(UNEVICTABLE_PGCULLED);
846
847 put_page(page); /* drop ref from isolate */
848 }
849
850 enum page_references {
851 PAGEREF_RECLAIM,
852 PAGEREF_RECLAIM_CLEAN,
853 PAGEREF_KEEP,
854 PAGEREF_ACTIVATE,
855 };
856
857 static enum page_references page_check_references(struct page *page,
858 struct scan_control *sc)
859 {
860 int referenced_ptes, referenced_page;
861 unsigned long vm_flags;
862
863 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
864 &vm_flags);
865 referenced_page = TestClearPageReferenced(page);
866
867 /*
868 * Mlock lost the isolation race with us. Let try_to_unmap()
869 * move the page to the unevictable list.
870 */
871 if (vm_flags & VM_LOCKED)
872 return PAGEREF_RECLAIM;
873
874 if (referenced_ptes) {
875 if (PageSwapBacked(page))
876 return PAGEREF_ACTIVATE;
877 /*
878 * All mapped pages start out with page table
879 * references from the instantiating fault, so we need
880 * to look twice if a mapped file page is used more
881 * than once.
882 *
883 * Mark it and spare it for another trip around the
884 * inactive list. Another page table reference will
885 * lead to its activation.
886 *
887 * Note: the mark is set for activated pages as well
888 * so that recently deactivated but used pages are
889 * quickly recovered.
890 */
891 SetPageReferenced(page);
892
893 if (referenced_page || referenced_ptes > 1)
894 return PAGEREF_ACTIVATE;
895
896 /*
897 * Activate file-backed executable pages after first usage.
898 */
899 if (vm_flags & VM_EXEC)
900 return PAGEREF_ACTIVATE;
901
902 return PAGEREF_KEEP;
903 }
904
905 /* Reclaim if clean, defer dirty pages to writeback */
906 if (referenced_page && !PageSwapBacked(page))
907 return PAGEREF_RECLAIM_CLEAN;
908
909 return PAGEREF_RECLAIM;
910 }
911
912 /* Check if a page is dirty or under writeback */
913 static void page_check_dirty_writeback(struct page *page,
914 bool *dirty, bool *writeback)
915 {
916 struct address_space *mapping;
917
918 /*
919 * Anonymous pages are not handled by flushers and must be written
920 * from reclaim context. Do not stall reclaim based on them
921 */
922 if (!page_is_file_cache(page) ||
923 (PageAnon(page) && !PageSwapBacked(page))) {
924 *dirty = false;
925 *writeback = false;
926 return;
927 }
928
929 /* By default assume that the page flags are accurate */
930 *dirty = PageDirty(page);
931 *writeback = PageWriteback(page);
932
933 /* Verify dirty/writeback state if the filesystem supports it */
934 if (!page_has_private(page))
935 return;
936
937 mapping = page_mapping(page);
938 if (mapping && mapping->a_ops->is_dirty_writeback)
939 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
940 }
941
942 struct reclaim_stat {
943 unsigned nr_dirty;
944 unsigned nr_unqueued_dirty;
945 unsigned nr_congested;
946 unsigned nr_writeback;
947 unsigned nr_immediate;
948 unsigned nr_activate;
949 unsigned nr_ref_keep;
950 unsigned nr_unmap_fail;
951 };
952
953 /*
954 * shrink_page_list() returns the number of reclaimed pages
955 */
956 static unsigned long shrink_page_list(struct list_head *page_list,
957 struct pglist_data *pgdat,
958 struct scan_control *sc,
959 enum ttu_flags ttu_flags,
960 struct reclaim_stat *stat,
961 bool force_reclaim)
962 {
963 LIST_HEAD(ret_pages);
964 LIST_HEAD(free_pages);
965 int pgactivate = 0;
966 unsigned nr_unqueued_dirty = 0;
967 unsigned nr_dirty = 0;
968 unsigned nr_congested = 0;
969 unsigned nr_reclaimed = 0;
970 unsigned nr_writeback = 0;
971 unsigned nr_immediate = 0;
972 unsigned nr_ref_keep = 0;
973 unsigned nr_unmap_fail = 0;
974
975 cond_resched();
976
977 while (!list_empty(page_list)) {
978 struct address_space *mapping;
979 struct page *page;
980 int may_enter_fs;
981 enum page_references references = PAGEREF_RECLAIM_CLEAN;
982 bool dirty, writeback;
983
984 cond_resched();
985
986 page = lru_to_page(page_list);
987 list_del(&page->lru);
988
989 if (!trylock_page(page))
990 goto keep;
991
992 VM_BUG_ON_PAGE(PageActive(page), page);
993
994 sc->nr_scanned++;
995
996 if (unlikely(!page_evictable(page)))
997 goto activate_locked;
998
999 if (!sc->may_unmap && page_mapped(page))
1000 goto keep_locked;
1001
1002 /* Double the slab pressure for mapped and swapcache pages */
1003 if ((page_mapped(page) || PageSwapCache(page)) &&
1004 !(PageAnon(page) && !PageSwapBacked(page)))
1005 sc->nr_scanned++;
1006
1007 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1008 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1009
1010 /*
1011 * The number of dirty pages determines if a zone is marked
1012 * reclaim_congested which affects wait_iff_congested. kswapd
1013 * will stall and start writing pages if the tail of the LRU
1014 * is all dirty unqueued pages.
1015 */
1016 page_check_dirty_writeback(page, &dirty, &writeback);
1017 if (dirty || writeback)
1018 nr_dirty++;
1019
1020 if (dirty && !writeback)
1021 nr_unqueued_dirty++;
1022
1023 /*
1024 * Treat this page as congested if the underlying BDI is or if
1025 * pages are cycling through the LRU so quickly that the
1026 * pages marked for immediate reclaim are making it to the
1027 * end of the LRU a second time.
1028 */
1029 mapping = page_mapping(page);
1030 if (((dirty || writeback) && mapping &&
1031 inode_write_congested(mapping->host)) ||
1032 (writeback && PageReclaim(page)))
1033 nr_congested++;
1034
1035 /*
1036 * If a page at the tail of the LRU is under writeback, there
1037 * are three cases to consider.
1038 *
1039 * 1) If reclaim is encountering an excessive number of pages
1040 * under writeback and this page is both under writeback and
1041 * PageReclaim then it indicates that pages are being queued
1042 * for IO but are being recycled through the LRU before the
1043 * IO can complete. Waiting on the page itself risks an
1044 * indefinite stall if it is impossible to writeback the
1045 * page due to IO error or disconnected storage so instead
1046 * note that the LRU is being scanned too quickly and the
1047 * caller can stall after page list has been processed.
1048 *
1049 * 2) Global or new memcg reclaim encounters a page that is
1050 * not marked for immediate reclaim, or the caller does not
1051 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1052 * not to fs). In this case mark the page for immediate
1053 * reclaim and continue scanning.
1054 *
1055 * Require may_enter_fs because we would wait on fs, which
1056 * may not have submitted IO yet. And the loop driver might
1057 * enter reclaim, and deadlock if it waits on a page for
1058 * which it is needed to do the write (loop masks off
1059 * __GFP_IO|__GFP_FS for this reason); but more thought
1060 * would probably show more reasons.
1061 *
1062 * 3) Legacy memcg encounters a page that is already marked
1063 * PageReclaim. memcg does not have any dirty pages
1064 * throttling so we could easily OOM just because too many
1065 * pages are in writeback and there is nothing else to
1066 * reclaim. Wait for the writeback to complete.
1067 *
1068 * In cases 1) and 2) we activate the pages to get them out of
1069 * the way while we continue scanning for clean pages on the
1070 * inactive list and refilling from the active list. The
1071 * observation here is that waiting for disk writes is more
1072 * expensive than potentially causing reloads down the line.
1073 * Since they're marked for immediate reclaim, they won't put
1074 * memory pressure on the cache working set any longer than it
1075 * takes to write them to disk.
1076 */
1077 if (PageWriteback(page)) {
1078 /* Case 1 above */
1079 if (current_is_kswapd() &&
1080 PageReclaim(page) &&
1081 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1082 nr_immediate++;
1083 goto activate_locked;
1084
1085 /* Case 2 above */
1086 } else if (sane_reclaim(sc) ||
1087 !PageReclaim(page) || !may_enter_fs) {
1088 /*
1089 * This is slightly racy - end_page_writeback()
1090 * might have just cleared PageReclaim, then
1091 * setting PageReclaim here end up interpreted
1092 * as PageReadahead - but that does not matter
1093 * enough to care. What we do want is for this
1094 * page to have PageReclaim set next time memcg
1095 * reclaim reaches the tests above, so it will
1096 * then wait_on_page_writeback() to avoid OOM;
1097 * and it's also appropriate in global reclaim.
1098 */
1099 SetPageReclaim(page);
1100 nr_writeback++;
1101 goto activate_locked;
1102
1103 /* Case 3 above */
1104 } else {
1105 unlock_page(page);
1106 wait_on_page_writeback(page);
1107 /* then go back and try same page again */
1108 list_add_tail(&page->lru, page_list);
1109 continue;
1110 }
1111 }
1112
1113 if (!force_reclaim)
1114 references = page_check_references(page, sc);
1115
1116 switch (references) {
1117 case PAGEREF_ACTIVATE:
1118 goto activate_locked;
1119 case PAGEREF_KEEP:
1120 nr_ref_keep++;
1121 goto keep_locked;
1122 case PAGEREF_RECLAIM:
1123 case PAGEREF_RECLAIM_CLEAN:
1124 ; /* try to reclaim the page below */
1125 }
1126
1127 /*
1128 * Anonymous process memory has backing store?
1129 * Try to allocate it some swap space here.
1130 * Lazyfree page could be freed directly
1131 */
1132 if (PageAnon(page) && PageSwapBacked(page)) {
1133 if (!PageSwapCache(page)) {
1134 if (!(sc->gfp_mask & __GFP_IO))
1135 goto keep_locked;
1136 if (PageTransHuge(page)) {
1137 /* cannot split THP, skip it */
1138 if (!can_split_huge_page(page, NULL))
1139 goto activate_locked;
1140 /*
1141 * Split pages without a PMD map right
1142 * away. Chances are some or all of the
1143 * tail pages can be freed without IO.
1144 */
1145 if (!compound_mapcount(page) &&
1146 split_huge_page_to_list(page,
1147 page_list))
1148 goto activate_locked;
1149 }
1150 if (!add_to_swap(page)) {
1151 if (!PageTransHuge(page))
1152 goto activate_locked;
1153 /* Fallback to swap normal pages */
1154 if (split_huge_page_to_list(page,
1155 page_list))
1156 goto activate_locked;
1157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1158 count_vm_event(THP_SWPOUT_FALLBACK);
1159 #endif
1160 if (!add_to_swap(page))
1161 goto activate_locked;
1162 }
1163
1164 may_enter_fs = 1;
1165
1166 /* Adding to swap updated mapping */
1167 mapping = page_mapping(page);
1168 }
1169 } else if (unlikely(PageTransHuge(page))) {
1170 /* Split file THP */
1171 if (split_huge_page_to_list(page, page_list))
1172 goto keep_locked;
1173 }
1174
1175 /*
1176 * The page is mapped into the page tables of one or more
1177 * processes. Try to unmap it here.
1178 */
1179 if (page_mapped(page)) {
1180 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1181
1182 if (unlikely(PageTransHuge(page)))
1183 flags |= TTU_SPLIT_HUGE_PMD;
1184 if (!try_to_unmap(page, flags)) {
1185 nr_unmap_fail++;
1186 goto activate_locked;
1187 }
1188 }
1189
1190 if (PageDirty(page)) {
1191 /*
1192 * Only kswapd can writeback filesystem pages
1193 * to avoid risk of stack overflow. But avoid
1194 * injecting inefficient single-page IO into
1195 * flusher writeback as much as possible: only
1196 * write pages when we've encountered many
1197 * dirty pages, and when we've already scanned
1198 * the rest of the LRU for clean pages and see
1199 * the same dirty pages again (PageReclaim).
1200 */
1201 if (page_is_file_cache(page) &&
1202 (!current_is_kswapd() || !PageReclaim(page) ||
1203 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1204 /*
1205 * Immediately reclaim when written back.
1206 * Similar in principal to deactivate_page()
1207 * except we already have the page isolated
1208 * and know it's dirty
1209 */
1210 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1211 SetPageReclaim(page);
1212
1213 goto activate_locked;
1214 }
1215
1216 if (references == PAGEREF_RECLAIM_CLEAN)
1217 goto keep_locked;
1218 if (!may_enter_fs)
1219 goto keep_locked;
1220 if (!sc->may_writepage)
1221 goto keep_locked;
1222
1223 /*
1224 * Page is dirty. Flush the TLB if a writable entry
1225 * potentially exists to avoid CPU writes after IO
1226 * starts and then write it out here.
1227 */
1228 try_to_unmap_flush_dirty();
1229 switch (pageout(page, mapping, sc)) {
1230 case PAGE_KEEP:
1231 goto keep_locked;
1232 case PAGE_ACTIVATE:
1233 goto activate_locked;
1234 case PAGE_SUCCESS:
1235 if (PageWriteback(page))
1236 goto keep;
1237 if (PageDirty(page))
1238 goto keep;
1239
1240 /*
1241 * A synchronous write - probably a ramdisk. Go
1242 * ahead and try to reclaim the page.
1243 */
1244 if (!trylock_page(page))
1245 goto keep;
1246 if (PageDirty(page) || PageWriteback(page))
1247 goto keep_locked;
1248 mapping = page_mapping(page);
1249 case PAGE_CLEAN:
1250 ; /* try to free the page below */
1251 }
1252 }
1253
1254 /*
1255 * If the page has buffers, try to free the buffer mappings
1256 * associated with this page. If we succeed we try to free
1257 * the page as well.
1258 *
1259 * We do this even if the page is PageDirty().
1260 * try_to_release_page() does not perform I/O, but it is
1261 * possible for a page to have PageDirty set, but it is actually
1262 * clean (all its buffers are clean). This happens if the
1263 * buffers were written out directly, with submit_bh(). ext3
1264 * will do this, as well as the blockdev mapping.
1265 * try_to_release_page() will discover that cleanness and will
1266 * drop the buffers and mark the page clean - it can be freed.
1267 *
1268 * Rarely, pages can have buffers and no ->mapping. These are
1269 * the pages which were not successfully invalidated in
1270 * truncate_complete_page(). We try to drop those buffers here
1271 * and if that worked, and the page is no longer mapped into
1272 * process address space (page_count == 1) it can be freed.
1273 * Otherwise, leave the page on the LRU so it is swappable.
1274 */
1275 if (page_has_private(page)) {
1276 if (!try_to_release_page(page, sc->gfp_mask))
1277 goto activate_locked;
1278 if (!mapping && page_count(page) == 1) {
1279 unlock_page(page);
1280 if (put_page_testzero(page))
1281 goto free_it;
1282 else {
1283 /*
1284 * rare race with speculative reference.
1285 * the speculative reference will free
1286 * this page shortly, so we may
1287 * increment nr_reclaimed here (and
1288 * leave it off the LRU).
1289 */
1290 nr_reclaimed++;
1291 continue;
1292 }
1293 }
1294 }
1295
1296 if (PageAnon(page) && !PageSwapBacked(page)) {
1297 /* follow __remove_mapping for reference */
1298 if (!page_ref_freeze(page, 1))
1299 goto keep_locked;
1300 if (PageDirty(page)) {
1301 page_ref_unfreeze(page, 1);
1302 goto keep_locked;
1303 }
1304
1305 count_vm_event(PGLAZYFREED);
1306 count_memcg_page_event(page, PGLAZYFREED);
1307 } else if (!mapping || !__remove_mapping(mapping, page, true))
1308 goto keep_locked;
1309 /*
1310 * At this point, we have no other references and there is
1311 * no way to pick any more up (removed from LRU, removed
1312 * from pagecache). Can use non-atomic bitops now (and
1313 * we obviously don't have to worry about waking up a process
1314 * waiting on the page lock, because there are no references.
1315 */
1316 __ClearPageLocked(page);
1317 free_it:
1318 nr_reclaimed++;
1319
1320 /*
1321 * Is there need to periodically free_page_list? It would
1322 * appear not as the counts should be low
1323 */
1324 if (unlikely(PageTransHuge(page))) {
1325 mem_cgroup_uncharge(page);
1326 (*get_compound_page_dtor(page))(page);
1327 } else
1328 list_add(&page->lru, &free_pages);
1329 continue;
1330
1331 activate_locked:
1332 /* Not a candidate for swapping, so reclaim swap space. */
1333 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1334 PageMlocked(page)))
1335 try_to_free_swap(page);
1336 VM_BUG_ON_PAGE(PageActive(page), page);
1337 if (!PageMlocked(page)) {
1338 SetPageActive(page);
1339 pgactivate++;
1340 count_memcg_page_event(page, PGACTIVATE);
1341 }
1342 keep_locked:
1343 unlock_page(page);
1344 keep:
1345 list_add(&page->lru, &ret_pages);
1346 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1347 }
1348
1349 mem_cgroup_uncharge_list(&free_pages);
1350 try_to_unmap_flush();
1351 free_hot_cold_page_list(&free_pages, true);
1352
1353 list_splice(&ret_pages, page_list);
1354 count_vm_events(PGACTIVATE, pgactivate);
1355
1356 if (stat) {
1357 stat->nr_dirty = nr_dirty;
1358 stat->nr_congested = nr_congested;
1359 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1360 stat->nr_writeback = nr_writeback;
1361 stat->nr_immediate = nr_immediate;
1362 stat->nr_activate = pgactivate;
1363 stat->nr_ref_keep = nr_ref_keep;
1364 stat->nr_unmap_fail = nr_unmap_fail;
1365 }
1366 return nr_reclaimed;
1367 }
1368
1369 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1370 struct list_head *page_list)
1371 {
1372 struct scan_control sc = {
1373 .gfp_mask = GFP_KERNEL,
1374 .priority = DEF_PRIORITY,
1375 .may_unmap = 1,
1376 };
1377 unsigned long ret;
1378 struct page *page, *next;
1379 LIST_HEAD(clean_pages);
1380
1381 list_for_each_entry_safe(page, next, page_list, lru) {
1382 if (page_is_file_cache(page) && !PageDirty(page) &&
1383 !__PageMovable(page)) {
1384 ClearPageActive(page);
1385 list_move(&page->lru, &clean_pages);
1386 }
1387 }
1388
1389 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1390 TTU_IGNORE_ACCESS, NULL, true);
1391 list_splice(&clean_pages, page_list);
1392 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1393 return ret;
1394 }
1395
1396 /*
1397 * Attempt to remove the specified page from its LRU. Only take this page
1398 * if it is of the appropriate PageActive status. Pages which are being
1399 * freed elsewhere are also ignored.
1400 *
1401 * page: page to consider
1402 * mode: one of the LRU isolation modes defined above
1403 *
1404 * returns 0 on success, -ve errno on failure.
1405 */
1406 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1407 {
1408 int ret = -EINVAL;
1409
1410 /* Only take pages on the LRU. */
1411 if (!PageLRU(page))
1412 return ret;
1413
1414 /* Compaction should not handle unevictable pages but CMA can do so */
1415 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1416 return ret;
1417
1418 ret = -EBUSY;
1419
1420 /*
1421 * To minimise LRU disruption, the caller can indicate that it only
1422 * wants to isolate pages it will be able to operate on without
1423 * blocking - clean pages for the most part.
1424 *
1425 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1426 * that it is possible to migrate without blocking
1427 */
1428 if (mode & ISOLATE_ASYNC_MIGRATE) {
1429 /* All the caller can do on PageWriteback is block */
1430 if (PageWriteback(page))
1431 return ret;
1432
1433 if (PageDirty(page)) {
1434 struct address_space *mapping;
1435
1436 /*
1437 * Only pages without mappings or that have a
1438 * ->migratepage callback are possible to migrate
1439 * without blocking
1440 */
1441 mapping = page_mapping(page);
1442 if (mapping && !mapping->a_ops->migratepage)
1443 return ret;
1444 }
1445 }
1446
1447 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1448 return ret;
1449
1450 if (likely(get_page_unless_zero(page))) {
1451 /*
1452 * Be careful not to clear PageLRU until after we're
1453 * sure the page is not being freed elsewhere -- the
1454 * page release code relies on it.
1455 */
1456 ClearPageLRU(page);
1457 ret = 0;
1458 }
1459
1460 return ret;
1461 }
1462
1463
1464 /*
1465 * Update LRU sizes after isolating pages. The LRU size updates must
1466 * be complete before mem_cgroup_update_lru_size due to a santity check.
1467 */
1468 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1469 enum lru_list lru, unsigned long *nr_zone_taken)
1470 {
1471 int zid;
1472
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 if (!nr_zone_taken[zid])
1475 continue;
1476
1477 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1478 #ifdef CONFIG_MEMCG
1479 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1480 #endif
1481 }
1482
1483 }
1484
1485 /*
1486 * zone_lru_lock is heavily contended. Some of the functions that
1487 * shrink the lists perform better by taking out a batch of pages
1488 * and working on them outside the LRU lock.
1489 *
1490 * For pagecache intensive workloads, this function is the hottest
1491 * spot in the kernel (apart from copy_*_user functions).
1492 *
1493 * Appropriate locks must be held before calling this function.
1494 *
1495 * @nr_to_scan: The number of eligible pages to look through on the list.
1496 * @lruvec: The LRU vector to pull pages from.
1497 * @dst: The temp list to put pages on to.
1498 * @nr_scanned: The number of pages that were scanned.
1499 * @sc: The scan_control struct for this reclaim session
1500 * @mode: One of the LRU isolation modes
1501 * @lru: LRU list id for isolating
1502 *
1503 * returns how many pages were moved onto *@dst.
1504 */
1505 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1506 struct lruvec *lruvec, struct list_head *dst,
1507 unsigned long *nr_scanned, struct scan_control *sc,
1508 isolate_mode_t mode, enum lru_list lru)
1509 {
1510 struct list_head *src = &lruvec->lists[lru];
1511 unsigned long nr_taken = 0;
1512 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1513 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1514 unsigned long skipped = 0;
1515 unsigned long scan, total_scan, nr_pages;
1516 LIST_HEAD(pages_skipped);
1517
1518 scan = 0;
1519 for (total_scan = 0;
1520 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1521 total_scan++) {
1522 struct page *page;
1523
1524 page = lru_to_page(src);
1525 prefetchw_prev_lru_page(page, src, flags);
1526
1527 VM_BUG_ON_PAGE(!PageLRU(page), page);
1528
1529 if (page_zonenum(page) > sc->reclaim_idx) {
1530 list_move(&page->lru, &pages_skipped);
1531 nr_skipped[page_zonenum(page)]++;
1532 continue;
1533 }
1534
1535 /*
1536 * Do not count skipped pages because that makes the function
1537 * return with no isolated pages if the LRU mostly contains
1538 * ineligible pages. This causes the VM to not reclaim any
1539 * pages, triggering a premature OOM.
1540 */
1541 scan++;
1542 switch (__isolate_lru_page(page, mode)) {
1543 case 0:
1544 nr_pages = hpage_nr_pages(page);
1545 nr_taken += nr_pages;
1546 nr_zone_taken[page_zonenum(page)] += nr_pages;
1547 list_move(&page->lru, dst);
1548 break;
1549
1550 case -EBUSY:
1551 /* else it is being freed elsewhere */
1552 list_move(&page->lru, src);
1553 continue;
1554
1555 default:
1556 BUG();
1557 }
1558 }
1559
1560 /*
1561 * Splice any skipped pages to the start of the LRU list. Note that
1562 * this disrupts the LRU order when reclaiming for lower zones but
1563 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1564 * scanning would soon rescan the same pages to skip and put the
1565 * system at risk of premature OOM.
1566 */
1567 if (!list_empty(&pages_skipped)) {
1568 int zid;
1569
1570 list_splice(&pages_skipped, src);
1571 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1572 if (!nr_skipped[zid])
1573 continue;
1574
1575 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1576 skipped += nr_skipped[zid];
1577 }
1578 }
1579 *nr_scanned = total_scan;
1580 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1581 total_scan, skipped, nr_taken, mode, lru);
1582 update_lru_sizes(lruvec, lru, nr_zone_taken);
1583 return nr_taken;
1584 }
1585
1586 /**
1587 * isolate_lru_page - tries to isolate a page from its LRU list
1588 * @page: page to isolate from its LRU list
1589 *
1590 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1591 * vmstat statistic corresponding to whatever LRU list the page was on.
1592 *
1593 * Returns 0 if the page was removed from an LRU list.
1594 * Returns -EBUSY if the page was not on an LRU list.
1595 *
1596 * The returned page will have PageLRU() cleared. If it was found on
1597 * the active list, it will have PageActive set. If it was found on
1598 * the unevictable list, it will have the PageUnevictable bit set. That flag
1599 * may need to be cleared by the caller before letting the page go.
1600 *
1601 * The vmstat statistic corresponding to the list on which the page was
1602 * found will be decremented.
1603 *
1604 * Restrictions:
1605 * (1) Must be called with an elevated refcount on the page. This is a
1606 * fundamentnal difference from isolate_lru_pages (which is called
1607 * without a stable reference).
1608 * (2) the lru_lock must not be held.
1609 * (3) interrupts must be enabled.
1610 */
1611 int isolate_lru_page(struct page *page)
1612 {
1613 int ret = -EBUSY;
1614
1615 VM_BUG_ON_PAGE(!page_count(page), page);
1616 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1617
1618 if (PageLRU(page)) {
1619 struct zone *zone = page_zone(page);
1620 struct lruvec *lruvec;
1621
1622 spin_lock_irq(zone_lru_lock(zone));
1623 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1624 if (PageLRU(page)) {
1625 int lru = page_lru(page);
1626 get_page(page);
1627 ClearPageLRU(page);
1628 del_page_from_lru_list(page, lruvec, lru);
1629 ret = 0;
1630 }
1631 spin_unlock_irq(zone_lru_lock(zone));
1632 }
1633 return ret;
1634 }
1635
1636 /*
1637 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1638 * then get resheduled. When there are massive number of tasks doing page
1639 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1640 * the LRU list will go small and be scanned faster than necessary, leading to
1641 * unnecessary swapping, thrashing and OOM.
1642 */
1643 static int too_many_isolated(struct pglist_data *pgdat, int file,
1644 struct scan_control *sc)
1645 {
1646 unsigned long inactive, isolated;
1647
1648 if (current_is_kswapd())
1649 return 0;
1650
1651 if (!sane_reclaim(sc))
1652 return 0;
1653
1654 if (file) {
1655 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1656 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1657 } else {
1658 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1659 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1660 }
1661
1662 /*
1663 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1664 * won't get blocked by normal direct-reclaimers, forming a circular
1665 * deadlock.
1666 */
1667 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1668 inactive >>= 3;
1669
1670 return isolated > inactive;
1671 }
1672
1673 static noinline_for_stack void
1674 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1675 {
1676 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1677 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1678 LIST_HEAD(pages_to_free);
1679
1680 /*
1681 * Put back any unfreeable pages.
1682 */
1683 while (!list_empty(page_list)) {
1684 struct page *page = lru_to_page(page_list);
1685 int lru;
1686
1687 VM_BUG_ON_PAGE(PageLRU(page), page);
1688 list_del(&page->lru);
1689 if (unlikely(!page_evictable(page))) {
1690 spin_unlock_irq(&pgdat->lru_lock);
1691 putback_lru_page(page);
1692 spin_lock_irq(&pgdat->lru_lock);
1693 continue;
1694 }
1695
1696 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1697
1698 SetPageLRU(page);
1699 lru = page_lru(page);
1700 add_page_to_lru_list(page, lruvec, lru);
1701
1702 if (is_active_lru(lru)) {
1703 int file = is_file_lru(lru);
1704 int numpages = hpage_nr_pages(page);
1705 reclaim_stat->recent_rotated[file] += numpages;
1706 }
1707 if (put_page_testzero(page)) {
1708 __ClearPageLRU(page);
1709 __ClearPageActive(page);
1710 del_page_from_lru_list(page, lruvec, lru);
1711
1712 if (unlikely(PageCompound(page))) {
1713 spin_unlock_irq(&pgdat->lru_lock);
1714 mem_cgroup_uncharge(page);
1715 (*get_compound_page_dtor(page))(page);
1716 spin_lock_irq(&pgdat->lru_lock);
1717 } else
1718 list_add(&page->lru, &pages_to_free);
1719 }
1720 }
1721
1722 /*
1723 * To save our caller's stack, now use input list for pages to free.
1724 */
1725 list_splice(&pages_to_free, page_list);
1726 }
1727
1728 /*
1729 * If a kernel thread (such as nfsd for loop-back mounts) services
1730 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1731 * In that case we should only throttle if the backing device it is
1732 * writing to is congested. In other cases it is safe to throttle.
1733 */
1734 static int current_may_throttle(void)
1735 {
1736 return !(current->flags & PF_LESS_THROTTLE) ||
1737 current->backing_dev_info == NULL ||
1738 bdi_write_congested(current->backing_dev_info);
1739 }
1740
1741 /*
1742 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1743 * of reclaimed pages
1744 */
1745 static noinline_for_stack unsigned long
1746 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1747 struct scan_control *sc, enum lru_list lru)
1748 {
1749 LIST_HEAD(page_list);
1750 unsigned long nr_scanned;
1751 unsigned long nr_reclaimed = 0;
1752 unsigned long nr_taken;
1753 struct reclaim_stat stat = {};
1754 isolate_mode_t isolate_mode = 0;
1755 int file = is_file_lru(lru);
1756 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1757 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1758 bool stalled = false;
1759
1760 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1761 if (stalled)
1762 return 0;
1763
1764 /* wait a bit for the reclaimer. */
1765 msleep(100);
1766 stalled = true;
1767
1768 /* We are about to die and free our memory. Return now. */
1769 if (fatal_signal_pending(current))
1770 return SWAP_CLUSTER_MAX;
1771 }
1772
1773 lru_add_drain();
1774
1775 if (!sc->may_unmap)
1776 isolate_mode |= ISOLATE_UNMAPPED;
1777
1778 spin_lock_irq(&pgdat->lru_lock);
1779
1780 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1781 &nr_scanned, sc, isolate_mode, lru);
1782
1783 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1784 reclaim_stat->recent_scanned[file] += nr_taken;
1785
1786 if (current_is_kswapd()) {
1787 if (global_reclaim(sc))
1788 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1789 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1790 nr_scanned);
1791 } else {
1792 if (global_reclaim(sc))
1793 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1794 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1795 nr_scanned);
1796 }
1797 spin_unlock_irq(&pgdat->lru_lock);
1798
1799 if (nr_taken == 0)
1800 return 0;
1801
1802 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1803 &stat, false);
1804
1805 spin_lock_irq(&pgdat->lru_lock);
1806
1807 if (current_is_kswapd()) {
1808 if (global_reclaim(sc))
1809 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1810 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1811 nr_reclaimed);
1812 } else {
1813 if (global_reclaim(sc))
1814 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1815 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1816 nr_reclaimed);
1817 }
1818
1819 putback_inactive_pages(lruvec, &page_list);
1820
1821 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1822
1823 spin_unlock_irq(&pgdat->lru_lock);
1824
1825 mem_cgroup_uncharge_list(&page_list);
1826 free_hot_cold_page_list(&page_list, true);
1827
1828 /*
1829 * If reclaim is isolating dirty pages under writeback, it implies
1830 * that the long-lived page allocation rate is exceeding the page
1831 * laundering rate. Either the global limits are not being effective
1832 * at throttling processes due to the page distribution throughout
1833 * zones or there is heavy usage of a slow backing device. The
1834 * only option is to throttle from reclaim context which is not ideal
1835 * as there is no guarantee the dirtying process is throttled in the
1836 * same way balance_dirty_pages() manages.
1837 *
1838 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1839 * of pages under pages flagged for immediate reclaim and stall if any
1840 * are encountered in the nr_immediate check below.
1841 */
1842 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1843 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1844
1845 /*
1846 * Legacy memcg will stall in page writeback so avoid forcibly
1847 * stalling here.
1848 */
1849 if (sane_reclaim(sc)) {
1850 /*
1851 * Tag a zone as congested if all the dirty pages scanned were
1852 * backed by a congested BDI and wait_iff_congested will stall.
1853 */
1854 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1855 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1856
1857 /*
1858 * If dirty pages are scanned that are not queued for IO, it
1859 * implies that flushers are not doing their job. This can
1860 * happen when memory pressure pushes dirty pages to the end of
1861 * the LRU before the dirty limits are breached and the dirty
1862 * data has expired. It can also happen when the proportion of
1863 * dirty pages grows not through writes but through memory
1864 * pressure reclaiming all the clean cache. And in some cases,
1865 * the flushers simply cannot keep up with the allocation
1866 * rate. Nudge the flusher threads in case they are asleep, but
1867 * also allow kswapd to start writing pages during reclaim.
1868 */
1869 if (stat.nr_unqueued_dirty == nr_taken) {
1870 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1871 set_bit(PGDAT_DIRTY, &pgdat->flags);
1872 }
1873
1874 /*
1875 * If kswapd scans pages marked marked for immediate
1876 * reclaim and under writeback (nr_immediate), it implies
1877 * that pages are cycling through the LRU faster than
1878 * they are written so also forcibly stall.
1879 */
1880 if (stat.nr_immediate && current_may_throttle())
1881 congestion_wait(BLK_RW_ASYNC, HZ/10);
1882 }
1883
1884 /*
1885 * Stall direct reclaim for IO completions if underlying BDIs or zone
1886 * is congested. Allow kswapd to continue until it starts encountering
1887 * unqueued dirty pages or cycling through the LRU too quickly.
1888 */
1889 if (!sc->hibernation_mode && !current_is_kswapd() &&
1890 current_may_throttle())
1891 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1892
1893 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1894 nr_scanned, nr_reclaimed,
1895 stat.nr_dirty, stat.nr_writeback,
1896 stat.nr_congested, stat.nr_immediate,
1897 stat.nr_activate, stat.nr_ref_keep,
1898 stat.nr_unmap_fail,
1899 sc->priority, file);
1900 return nr_reclaimed;
1901 }
1902
1903 /*
1904 * This moves pages from the active list to the inactive list.
1905 *
1906 * We move them the other way if the page is referenced by one or more
1907 * processes, from rmap.
1908 *
1909 * If the pages are mostly unmapped, the processing is fast and it is
1910 * appropriate to hold zone_lru_lock across the whole operation. But if
1911 * the pages are mapped, the processing is slow (page_referenced()) so we
1912 * should drop zone_lru_lock around each page. It's impossible to balance
1913 * this, so instead we remove the pages from the LRU while processing them.
1914 * It is safe to rely on PG_active against the non-LRU pages in here because
1915 * nobody will play with that bit on a non-LRU page.
1916 *
1917 * The downside is that we have to touch page->_refcount against each page.
1918 * But we had to alter page->flags anyway.
1919 *
1920 * Returns the number of pages moved to the given lru.
1921 */
1922
1923 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1924 struct list_head *list,
1925 struct list_head *pages_to_free,
1926 enum lru_list lru)
1927 {
1928 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1929 struct page *page;
1930 int nr_pages;
1931 int nr_moved = 0;
1932
1933 while (!list_empty(list)) {
1934 page = lru_to_page(list);
1935 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1936
1937 VM_BUG_ON_PAGE(PageLRU(page), page);
1938 SetPageLRU(page);
1939
1940 nr_pages = hpage_nr_pages(page);
1941 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1942 list_move(&page->lru, &lruvec->lists[lru]);
1943
1944 if (put_page_testzero(page)) {
1945 __ClearPageLRU(page);
1946 __ClearPageActive(page);
1947 del_page_from_lru_list(page, lruvec, lru);
1948
1949 if (unlikely(PageCompound(page))) {
1950 spin_unlock_irq(&pgdat->lru_lock);
1951 mem_cgroup_uncharge(page);
1952 (*get_compound_page_dtor(page))(page);
1953 spin_lock_irq(&pgdat->lru_lock);
1954 } else
1955 list_add(&page->lru, pages_to_free);
1956 } else {
1957 nr_moved += nr_pages;
1958 }
1959 }
1960
1961 if (!is_active_lru(lru)) {
1962 __count_vm_events(PGDEACTIVATE, nr_moved);
1963 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1964 nr_moved);
1965 }
1966
1967 return nr_moved;
1968 }
1969
1970 static void shrink_active_list(unsigned long nr_to_scan,
1971 struct lruvec *lruvec,
1972 struct scan_control *sc,
1973 enum lru_list lru)
1974 {
1975 unsigned long nr_taken;
1976 unsigned long nr_scanned;
1977 unsigned long vm_flags;
1978 LIST_HEAD(l_hold); /* The pages which were snipped off */
1979 LIST_HEAD(l_active);
1980 LIST_HEAD(l_inactive);
1981 struct page *page;
1982 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1983 unsigned nr_deactivate, nr_activate;
1984 unsigned nr_rotated = 0;
1985 isolate_mode_t isolate_mode = 0;
1986 int file = is_file_lru(lru);
1987 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1988
1989 lru_add_drain();
1990
1991 if (!sc->may_unmap)
1992 isolate_mode |= ISOLATE_UNMAPPED;
1993
1994 spin_lock_irq(&pgdat->lru_lock);
1995
1996 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1997 &nr_scanned, sc, isolate_mode, lru);
1998
1999 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2000 reclaim_stat->recent_scanned[file] += nr_taken;
2001
2002 __count_vm_events(PGREFILL, nr_scanned);
2003 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2004
2005 spin_unlock_irq(&pgdat->lru_lock);
2006
2007 while (!list_empty(&l_hold)) {
2008 cond_resched();
2009 page = lru_to_page(&l_hold);
2010 list_del(&page->lru);
2011
2012 if (unlikely(!page_evictable(page))) {
2013 putback_lru_page(page);
2014 continue;
2015 }
2016
2017 if (unlikely(buffer_heads_over_limit)) {
2018 if (page_has_private(page) && trylock_page(page)) {
2019 if (page_has_private(page))
2020 try_to_release_page(page, 0);
2021 unlock_page(page);
2022 }
2023 }
2024
2025 if (page_referenced(page, 0, sc->target_mem_cgroup,
2026 &vm_flags)) {
2027 nr_rotated += hpage_nr_pages(page);
2028 /*
2029 * Identify referenced, file-backed active pages and
2030 * give them one more trip around the active list. So
2031 * that executable code get better chances to stay in
2032 * memory under moderate memory pressure. Anon pages
2033 * are not likely to be evicted by use-once streaming
2034 * IO, plus JVM can create lots of anon VM_EXEC pages,
2035 * so we ignore them here.
2036 */
2037 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2038 list_add(&page->lru, &l_active);
2039 continue;
2040 }
2041 }
2042
2043 ClearPageActive(page); /* we are de-activating */
2044 list_add(&page->lru, &l_inactive);
2045 }
2046
2047 /*
2048 * Move pages back to the lru list.
2049 */
2050 spin_lock_irq(&pgdat->lru_lock);
2051 /*
2052 * Count referenced pages from currently used mappings as rotated,
2053 * even though only some of them are actually re-activated. This
2054 * helps balance scan pressure between file and anonymous pages in
2055 * get_scan_count.
2056 */
2057 reclaim_stat->recent_rotated[file] += nr_rotated;
2058
2059 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2060 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2061 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2062 spin_unlock_irq(&pgdat->lru_lock);
2063
2064 mem_cgroup_uncharge_list(&l_hold);
2065 free_hot_cold_page_list(&l_hold, true);
2066 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2067 nr_deactivate, nr_rotated, sc->priority, file);
2068 }
2069
2070 /*
2071 * The inactive anon list should be small enough that the VM never has
2072 * to do too much work.
2073 *
2074 * The inactive file list should be small enough to leave most memory
2075 * to the established workingset on the scan-resistant active list,
2076 * but large enough to avoid thrashing the aggregate readahead window.
2077 *
2078 * Both inactive lists should also be large enough that each inactive
2079 * page has a chance to be referenced again before it is reclaimed.
2080 *
2081 * If that fails and refaulting is observed, the inactive list grows.
2082 *
2083 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2084 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2085 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2086 *
2087 * total target max
2088 * memory ratio inactive
2089 * -------------------------------------
2090 * 10MB 1 5MB
2091 * 100MB 1 50MB
2092 * 1GB 3 250MB
2093 * 10GB 10 0.9GB
2094 * 100GB 31 3GB
2095 * 1TB 101 10GB
2096 * 10TB 320 32GB
2097 */
2098 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2099 struct mem_cgroup *memcg,
2100 struct scan_control *sc, bool actual_reclaim)
2101 {
2102 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2103 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2104 enum lru_list inactive_lru = file * LRU_FILE;
2105 unsigned long inactive, active;
2106 unsigned long inactive_ratio;
2107 unsigned long refaults;
2108 unsigned long gb;
2109
2110 /*
2111 * If we don't have swap space, anonymous page deactivation
2112 * is pointless.
2113 */
2114 if (!file && !total_swap_pages)
2115 return false;
2116
2117 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2118 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2119
2120 if (memcg)
2121 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2122 else
2123 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2124
2125 /*
2126 * When refaults are being observed, it means a new workingset
2127 * is being established. Disable active list protection to get
2128 * rid of the stale workingset quickly.
2129 */
2130 if (file && actual_reclaim && lruvec->refaults != refaults) {
2131 inactive_ratio = 0;
2132 } else {
2133 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2134 if (gb)
2135 inactive_ratio = int_sqrt(10 * gb);
2136 else
2137 inactive_ratio = 1;
2138 }
2139
2140 if (actual_reclaim)
2141 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2142 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2143 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2144 inactive_ratio, file);
2145
2146 return inactive * inactive_ratio < active;
2147 }
2148
2149 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2150 struct lruvec *lruvec, struct mem_cgroup *memcg,
2151 struct scan_control *sc)
2152 {
2153 if (is_active_lru(lru)) {
2154 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2155 memcg, sc, true))
2156 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2157 return 0;
2158 }
2159
2160 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2161 }
2162
2163 enum scan_balance {
2164 SCAN_EQUAL,
2165 SCAN_FRACT,
2166 SCAN_ANON,
2167 SCAN_FILE,
2168 };
2169
2170 /*
2171 * Determine how aggressively the anon and file LRU lists should be
2172 * scanned. The relative value of each set of LRU lists is determined
2173 * by looking at the fraction of the pages scanned we did rotate back
2174 * onto the active list instead of evict.
2175 *
2176 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2177 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2178 */
2179 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2180 struct scan_control *sc, unsigned long *nr,
2181 unsigned long *lru_pages)
2182 {
2183 int swappiness = mem_cgroup_swappiness(memcg);
2184 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2185 u64 fraction[2];
2186 u64 denominator = 0; /* gcc */
2187 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2188 unsigned long anon_prio, file_prio;
2189 enum scan_balance scan_balance;
2190 unsigned long anon, file;
2191 unsigned long ap, fp;
2192 enum lru_list lru;
2193
2194 /* If we have no swap space, do not bother scanning anon pages. */
2195 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2196 scan_balance = SCAN_FILE;
2197 goto out;
2198 }
2199
2200 /*
2201 * Global reclaim will swap to prevent OOM even with no
2202 * swappiness, but memcg users want to use this knob to
2203 * disable swapping for individual groups completely when
2204 * using the memory controller's swap limit feature would be
2205 * too expensive.
2206 */
2207 if (!global_reclaim(sc) && !swappiness) {
2208 scan_balance = SCAN_FILE;
2209 goto out;
2210 }
2211
2212 /*
2213 * Do not apply any pressure balancing cleverness when the
2214 * system is close to OOM, scan both anon and file equally
2215 * (unless the swappiness setting disagrees with swapping).
2216 */
2217 if (!sc->priority && swappiness) {
2218 scan_balance = SCAN_EQUAL;
2219 goto out;
2220 }
2221
2222 /*
2223 * Prevent the reclaimer from falling into the cache trap: as
2224 * cache pages start out inactive, every cache fault will tip
2225 * the scan balance towards the file LRU. And as the file LRU
2226 * shrinks, so does the window for rotation from references.
2227 * This means we have a runaway feedback loop where a tiny
2228 * thrashing file LRU becomes infinitely more attractive than
2229 * anon pages. Try to detect this based on file LRU size.
2230 */
2231 if (global_reclaim(sc)) {
2232 unsigned long pgdatfile;
2233 unsigned long pgdatfree;
2234 int z;
2235 unsigned long total_high_wmark = 0;
2236
2237 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2238 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2239 node_page_state(pgdat, NR_INACTIVE_FILE);
2240
2241 for (z = 0; z < MAX_NR_ZONES; z++) {
2242 struct zone *zone = &pgdat->node_zones[z];
2243 if (!managed_zone(zone))
2244 continue;
2245
2246 total_high_wmark += high_wmark_pages(zone);
2247 }
2248
2249 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2250 /*
2251 * Force SCAN_ANON if there are enough inactive
2252 * anonymous pages on the LRU in eligible zones.
2253 * Otherwise, the small LRU gets thrashed.
2254 */
2255 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2256 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2257 >> sc->priority) {
2258 scan_balance = SCAN_ANON;
2259 goto out;
2260 }
2261 }
2262 }
2263
2264 /*
2265 * If there is enough inactive page cache, i.e. if the size of the
2266 * inactive list is greater than that of the active list *and* the
2267 * inactive list actually has some pages to scan on this priority, we
2268 * do not reclaim anything from the anonymous working set right now.
2269 * Without the second condition we could end up never scanning an
2270 * lruvec even if it has plenty of old anonymous pages unless the
2271 * system is under heavy pressure.
2272 */
2273 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2274 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2275 scan_balance = SCAN_FILE;
2276 goto out;
2277 }
2278
2279 scan_balance = SCAN_FRACT;
2280
2281 /*
2282 * With swappiness at 100, anonymous and file have the same priority.
2283 * This scanning priority is essentially the inverse of IO cost.
2284 */
2285 anon_prio = swappiness;
2286 file_prio = 200 - anon_prio;
2287
2288 /*
2289 * OK, so we have swap space and a fair amount of page cache
2290 * pages. We use the recently rotated / recently scanned
2291 * ratios to determine how valuable each cache is.
2292 *
2293 * Because workloads change over time (and to avoid overflow)
2294 * we keep these statistics as a floating average, which ends
2295 * up weighing recent references more than old ones.
2296 *
2297 * anon in [0], file in [1]
2298 */
2299
2300 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2301 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2302 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2303 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2304
2305 spin_lock_irq(&pgdat->lru_lock);
2306 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2307 reclaim_stat->recent_scanned[0] /= 2;
2308 reclaim_stat->recent_rotated[0] /= 2;
2309 }
2310
2311 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2312 reclaim_stat->recent_scanned[1] /= 2;
2313 reclaim_stat->recent_rotated[1] /= 2;
2314 }
2315
2316 /*
2317 * The amount of pressure on anon vs file pages is inversely
2318 * proportional to the fraction of recently scanned pages on
2319 * each list that were recently referenced and in active use.
2320 */
2321 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2322 ap /= reclaim_stat->recent_rotated[0] + 1;
2323
2324 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2325 fp /= reclaim_stat->recent_rotated[1] + 1;
2326 spin_unlock_irq(&pgdat->lru_lock);
2327
2328 fraction[0] = ap;
2329 fraction[1] = fp;
2330 denominator = ap + fp + 1;
2331 out:
2332 *lru_pages = 0;
2333 for_each_evictable_lru(lru) {
2334 int file = is_file_lru(lru);
2335 unsigned long size;
2336 unsigned long scan;
2337
2338 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2339 scan = size >> sc->priority;
2340 /*
2341 * If the cgroup's already been deleted, make sure to
2342 * scrape out the remaining cache.
2343 */
2344 if (!scan && !mem_cgroup_online(memcg))
2345 scan = min(size, SWAP_CLUSTER_MAX);
2346
2347 switch (scan_balance) {
2348 case SCAN_EQUAL:
2349 /* Scan lists relative to size */
2350 break;
2351 case SCAN_FRACT:
2352 /*
2353 * Scan types proportional to swappiness and
2354 * their relative recent reclaim efficiency.
2355 */
2356 scan = div64_u64(scan * fraction[file],
2357 denominator);
2358 break;
2359 case SCAN_FILE:
2360 case SCAN_ANON:
2361 /* Scan one type exclusively */
2362 if ((scan_balance == SCAN_FILE) != file) {
2363 size = 0;
2364 scan = 0;
2365 }
2366 break;
2367 default:
2368 /* Look ma, no brain */
2369 BUG();
2370 }
2371
2372 *lru_pages += size;
2373 nr[lru] = scan;
2374 }
2375 }
2376
2377 /*
2378 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2379 */
2380 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2381 struct scan_control *sc, unsigned long *lru_pages)
2382 {
2383 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2384 unsigned long nr[NR_LRU_LISTS];
2385 unsigned long targets[NR_LRU_LISTS];
2386 unsigned long nr_to_scan;
2387 enum lru_list lru;
2388 unsigned long nr_reclaimed = 0;
2389 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2390 struct blk_plug plug;
2391 bool scan_adjusted;
2392
2393 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2394
2395 /* Record the original scan target for proportional adjustments later */
2396 memcpy(targets, nr, sizeof(nr));
2397
2398 /*
2399 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2400 * event that can occur when there is little memory pressure e.g.
2401 * multiple streaming readers/writers. Hence, we do not abort scanning
2402 * when the requested number of pages are reclaimed when scanning at
2403 * DEF_PRIORITY on the assumption that the fact we are direct
2404 * reclaiming implies that kswapd is not keeping up and it is best to
2405 * do a batch of work at once. For memcg reclaim one check is made to
2406 * abort proportional reclaim if either the file or anon lru has already
2407 * dropped to zero at the first pass.
2408 */
2409 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2410 sc->priority == DEF_PRIORITY);
2411
2412 blk_start_plug(&plug);
2413 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2414 nr[LRU_INACTIVE_FILE]) {
2415 unsigned long nr_anon, nr_file, percentage;
2416 unsigned long nr_scanned;
2417
2418 for_each_evictable_lru(lru) {
2419 if (nr[lru]) {
2420 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2421 nr[lru] -= nr_to_scan;
2422
2423 nr_reclaimed += shrink_list(lru, nr_to_scan,
2424 lruvec, memcg, sc);
2425 }
2426 }
2427
2428 cond_resched();
2429
2430 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2431 continue;
2432
2433 /*
2434 * For kswapd and memcg, reclaim at least the number of pages
2435 * requested. Ensure that the anon and file LRUs are scanned
2436 * proportionally what was requested by get_scan_count(). We
2437 * stop reclaiming one LRU and reduce the amount scanning
2438 * proportional to the original scan target.
2439 */
2440 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2441 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2442
2443 /*
2444 * It's just vindictive to attack the larger once the smaller
2445 * has gone to zero. And given the way we stop scanning the
2446 * smaller below, this makes sure that we only make one nudge
2447 * towards proportionality once we've got nr_to_reclaim.
2448 */
2449 if (!nr_file || !nr_anon)
2450 break;
2451
2452 if (nr_file > nr_anon) {
2453 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2454 targets[LRU_ACTIVE_ANON] + 1;
2455 lru = LRU_BASE;
2456 percentage = nr_anon * 100 / scan_target;
2457 } else {
2458 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2459 targets[LRU_ACTIVE_FILE] + 1;
2460 lru = LRU_FILE;
2461 percentage = nr_file * 100 / scan_target;
2462 }
2463
2464 /* Stop scanning the smaller of the LRU */
2465 nr[lru] = 0;
2466 nr[lru + LRU_ACTIVE] = 0;
2467
2468 /*
2469 * Recalculate the other LRU scan count based on its original
2470 * scan target and the percentage scanning already complete
2471 */
2472 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2473 nr_scanned = targets[lru] - nr[lru];
2474 nr[lru] = targets[lru] * (100 - percentage) / 100;
2475 nr[lru] -= min(nr[lru], nr_scanned);
2476
2477 lru += LRU_ACTIVE;
2478 nr_scanned = targets[lru] - nr[lru];
2479 nr[lru] = targets[lru] * (100 - percentage) / 100;
2480 nr[lru] -= min(nr[lru], nr_scanned);
2481
2482 scan_adjusted = true;
2483 }
2484 blk_finish_plug(&plug);
2485 sc->nr_reclaimed += nr_reclaimed;
2486
2487 /*
2488 * Even if we did not try to evict anon pages at all, we want to
2489 * rebalance the anon lru active/inactive ratio.
2490 */
2491 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2492 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2493 sc, LRU_ACTIVE_ANON);
2494 }
2495
2496 /* Use reclaim/compaction for costly allocs or under memory pressure */
2497 static bool in_reclaim_compaction(struct scan_control *sc)
2498 {
2499 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2500 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2501 sc->priority < DEF_PRIORITY - 2))
2502 return true;
2503
2504 return false;
2505 }
2506
2507 /*
2508 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2509 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2510 * true if more pages should be reclaimed such that when the page allocator
2511 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2512 * It will give up earlier than that if there is difficulty reclaiming pages.
2513 */
2514 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2515 unsigned long nr_reclaimed,
2516 unsigned long nr_scanned,
2517 struct scan_control *sc)
2518 {
2519 unsigned long pages_for_compaction;
2520 unsigned long inactive_lru_pages;
2521 int z;
2522
2523 /* If not in reclaim/compaction mode, stop */
2524 if (!in_reclaim_compaction(sc))
2525 return false;
2526
2527 /* Consider stopping depending on scan and reclaim activity */
2528 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2529 /*
2530 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2531 * full LRU list has been scanned and we are still failing
2532 * to reclaim pages. This full LRU scan is potentially
2533 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2534 */
2535 if (!nr_reclaimed && !nr_scanned)
2536 return false;
2537 } else {
2538 /*
2539 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2540 * fail without consequence, stop if we failed to reclaim
2541 * any pages from the last SWAP_CLUSTER_MAX number of
2542 * pages that were scanned. This will return to the
2543 * caller faster at the risk reclaim/compaction and
2544 * the resulting allocation attempt fails
2545 */
2546 if (!nr_reclaimed)
2547 return false;
2548 }
2549
2550 /*
2551 * If we have not reclaimed enough pages for compaction and the
2552 * inactive lists are large enough, continue reclaiming
2553 */
2554 pages_for_compaction = compact_gap(sc->order);
2555 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2556 if (get_nr_swap_pages() > 0)
2557 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2558 if (sc->nr_reclaimed < pages_for_compaction &&
2559 inactive_lru_pages > pages_for_compaction)
2560 return true;
2561
2562 /* If compaction would go ahead or the allocation would succeed, stop */
2563 for (z = 0; z <= sc->reclaim_idx; z++) {
2564 struct zone *zone = &pgdat->node_zones[z];
2565 if (!managed_zone(zone))
2566 continue;
2567
2568 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2569 case COMPACT_SUCCESS:
2570 case COMPACT_CONTINUE:
2571 return false;
2572 default:
2573 /* check next zone */
2574 ;
2575 }
2576 }
2577 return true;
2578 }
2579
2580 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2581 {
2582 struct reclaim_state *reclaim_state = current->reclaim_state;
2583 unsigned long nr_reclaimed, nr_scanned;
2584 bool reclaimable = false;
2585
2586 do {
2587 struct mem_cgroup *root = sc->target_mem_cgroup;
2588 struct mem_cgroup_reclaim_cookie reclaim = {
2589 .pgdat = pgdat,
2590 .priority = sc->priority,
2591 };
2592 unsigned long node_lru_pages = 0;
2593 struct mem_cgroup *memcg;
2594
2595 nr_reclaimed = sc->nr_reclaimed;
2596 nr_scanned = sc->nr_scanned;
2597
2598 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2599 do {
2600 unsigned long lru_pages;
2601 unsigned long reclaimed;
2602 unsigned long scanned;
2603
2604 if (mem_cgroup_low(root, memcg)) {
2605 if (!sc->memcg_low_reclaim) {
2606 sc->memcg_low_skipped = 1;
2607 continue;
2608 }
2609 mem_cgroup_event(memcg, MEMCG_LOW);
2610 }
2611
2612 reclaimed = sc->nr_reclaimed;
2613 scanned = sc->nr_scanned;
2614
2615 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2616 node_lru_pages += lru_pages;
2617
2618 if (memcg)
2619 shrink_slab(sc->gfp_mask, pgdat->node_id,
2620 memcg, sc->nr_scanned - scanned,
2621 lru_pages);
2622
2623 /* Record the group's reclaim efficiency */
2624 vmpressure(sc->gfp_mask, memcg, false,
2625 sc->nr_scanned - scanned,
2626 sc->nr_reclaimed - reclaimed);
2627
2628 /*
2629 * Direct reclaim and kswapd have to scan all memory
2630 * cgroups to fulfill the overall scan target for the
2631 * node.
2632 *
2633 * Limit reclaim, on the other hand, only cares about
2634 * nr_to_reclaim pages to be reclaimed and it will
2635 * retry with decreasing priority if one round over the
2636 * whole hierarchy is not sufficient.
2637 */
2638 if (!global_reclaim(sc) &&
2639 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2640 mem_cgroup_iter_break(root, memcg);
2641 break;
2642 }
2643 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2644
2645 /*
2646 * Shrink the slab caches in the same proportion that
2647 * the eligible LRU pages were scanned.
2648 */
2649 if (global_reclaim(sc))
2650 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2651 sc->nr_scanned - nr_scanned,
2652 node_lru_pages);
2653
2654 if (reclaim_state) {
2655 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2656 reclaim_state->reclaimed_slab = 0;
2657 }
2658
2659 /* Record the subtree's reclaim efficiency */
2660 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2661 sc->nr_scanned - nr_scanned,
2662 sc->nr_reclaimed - nr_reclaimed);
2663
2664 if (sc->nr_reclaimed - nr_reclaimed)
2665 reclaimable = true;
2666
2667 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2668 sc->nr_scanned - nr_scanned, sc));
2669
2670 /*
2671 * Kswapd gives up on balancing particular nodes after too
2672 * many failures to reclaim anything from them and goes to
2673 * sleep. On reclaim progress, reset the failure counter. A
2674 * successful direct reclaim run will revive a dormant kswapd.
2675 */
2676 if (reclaimable)
2677 pgdat->kswapd_failures = 0;
2678
2679 return reclaimable;
2680 }
2681
2682 /*
2683 * Returns true if compaction should go ahead for a costly-order request, or
2684 * the allocation would already succeed without compaction. Return false if we
2685 * should reclaim first.
2686 */
2687 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2688 {
2689 unsigned long watermark;
2690 enum compact_result suitable;
2691
2692 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2693 if (suitable == COMPACT_SUCCESS)
2694 /* Allocation should succeed already. Don't reclaim. */
2695 return true;
2696 if (suitable == COMPACT_SKIPPED)
2697 /* Compaction cannot yet proceed. Do reclaim. */
2698 return false;
2699
2700 /*
2701 * Compaction is already possible, but it takes time to run and there
2702 * are potentially other callers using the pages just freed. So proceed
2703 * with reclaim to make a buffer of free pages available to give
2704 * compaction a reasonable chance of completing and allocating the page.
2705 * Note that we won't actually reclaim the whole buffer in one attempt
2706 * as the target watermark in should_continue_reclaim() is lower. But if
2707 * we are already above the high+gap watermark, don't reclaim at all.
2708 */
2709 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2710
2711 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2712 }
2713
2714 /*
2715 * This is the direct reclaim path, for page-allocating processes. We only
2716 * try to reclaim pages from zones which will satisfy the caller's allocation
2717 * request.
2718 *
2719 * If a zone is deemed to be full of pinned pages then just give it a light
2720 * scan then give up on it.
2721 */
2722 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2723 {
2724 struct zoneref *z;
2725 struct zone *zone;
2726 unsigned long nr_soft_reclaimed;
2727 unsigned long nr_soft_scanned;
2728 gfp_t orig_mask;
2729 pg_data_t *last_pgdat = NULL;
2730
2731 /*
2732 * If the number of buffer_heads in the machine exceeds the maximum
2733 * allowed level, force direct reclaim to scan the highmem zone as
2734 * highmem pages could be pinning lowmem pages storing buffer_heads
2735 */
2736 orig_mask = sc->gfp_mask;
2737 if (buffer_heads_over_limit) {
2738 sc->gfp_mask |= __GFP_HIGHMEM;
2739 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2740 }
2741
2742 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2743 sc->reclaim_idx, sc->nodemask) {
2744 /*
2745 * Take care memory controller reclaiming has small influence
2746 * to global LRU.
2747 */
2748 if (global_reclaim(sc)) {
2749 if (!cpuset_zone_allowed(zone,
2750 GFP_KERNEL | __GFP_HARDWALL))
2751 continue;
2752
2753 /*
2754 * If we already have plenty of memory free for
2755 * compaction in this zone, don't free any more.
2756 * Even though compaction is invoked for any
2757 * non-zero order, only frequent costly order
2758 * reclamation is disruptive enough to become a
2759 * noticeable problem, like transparent huge
2760 * page allocations.
2761 */
2762 if (IS_ENABLED(CONFIG_COMPACTION) &&
2763 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2764 compaction_ready(zone, sc)) {
2765 sc->compaction_ready = true;
2766 continue;
2767 }
2768
2769 /*
2770 * Shrink each node in the zonelist once. If the
2771 * zonelist is ordered by zone (not the default) then a
2772 * node may be shrunk multiple times but in that case
2773 * the user prefers lower zones being preserved.
2774 */
2775 if (zone->zone_pgdat == last_pgdat)
2776 continue;
2777
2778 /*
2779 * This steals pages from memory cgroups over softlimit
2780 * and returns the number of reclaimed pages and
2781 * scanned pages. This works for global memory pressure
2782 * and balancing, not for a memcg's limit.
2783 */
2784 nr_soft_scanned = 0;
2785 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2786 sc->order, sc->gfp_mask,
2787 &nr_soft_scanned);
2788 sc->nr_reclaimed += nr_soft_reclaimed;
2789 sc->nr_scanned += nr_soft_scanned;
2790 /* need some check for avoid more shrink_zone() */
2791 }
2792
2793 /* See comment about same check for global reclaim above */
2794 if (zone->zone_pgdat == last_pgdat)
2795 continue;
2796 last_pgdat = zone->zone_pgdat;
2797 shrink_node(zone->zone_pgdat, sc);
2798 }
2799
2800 /*
2801 * Restore to original mask to avoid the impact on the caller if we
2802 * promoted it to __GFP_HIGHMEM.
2803 */
2804 sc->gfp_mask = orig_mask;
2805 }
2806
2807 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2808 {
2809 struct mem_cgroup *memcg;
2810
2811 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2812 do {
2813 unsigned long refaults;
2814 struct lruvec *lruvec;
2815
2816 if (memcg)
2817 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2818 else
2819 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2820
2821 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2822 lruvec->refaults = refaults;
2823 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2824 }
2825
2826 /*
2827 * This is the main entry point to direct page reclaim.
2828 *
2829 * If a full scan of the inactive list fails to free enough memory then we
2830 * are "out of memory" and something needs to be killed.
2831 *
2832 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2833 * high - the zone may be full of dirty or under-writeback pages, which this
2834 * caller can't do much about. We kick the writeback threads and take explicit
2835 * naps in the hope that some of these pages can be written. But if the
2836 * allocating task holds filesystem locks which prevent writeout this might not
2837 * work, and the allocation attempt will fail.
2838 *
2839 * returns: 0, if no pages reclaimed
2840 * else, the number of pages reclaimed
2841 */
2842 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2843 struct scan_control *sc)
2844 {
2845 int initial_priority = sc->priority;
2846 pg_data_t *last_pgdat;
2847 struct zoneref *z;
2848 struct zone *zone;
2849 retry:
2850 delayacct_freepages_start();
2851
2852 if (global_reclaim(sc))
2853 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2854
2855 do {
2856 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2857 sc->priority);
2858 sc->nr_scanned = 0;
2859 shrink_zones(zonelist, sc);
2860
2861 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2862 break;
2863
2864 if (sc->compaction_ready)
2865 break;
2866
2867 /*
2868 * If we're getting trouble reclaiming, start doing
2869 * writepage even in laptop mode.
2870 */
2871 if (sc->priority < DEF_PRIORITY - 2)
2872 sc->may_writepage = 1;
2873 } while (--sc->priority >= 0);
2874
2875 last_pgdat = NULL;
2876 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2877 sc->nodemask) {
2878 if (zone->zone_pgdat == last_pgdat)
2879 continue;
2880 last_pgdat = zone->zone_pgdat;
2881 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2882 }
2883
2884 delayacct_freepages_end();
2885
2886 if (sc->nr_reclaimed)
2887 return sc->nr_reclaimed;
2888
2889 /* Aborted reclaim to try compaction? don't OOM, then */
2890 if (sc->compaction_ready)
2891 return 1;
2892
2893 /* Untapped cgroup reserves? Don't OOM, retry. */
2894 if (sc->memcg_low_skipped) {
2895 sc->priority = initial_priority;
2896 sc->memcg_low_reclaim = 1;
2897 sc->memcg_low_skipped = 0;
2898 goto retry;
2899 }
2900
2901 return 0;
2902 }
2903
2904 static bool allow_direct_reclaim(pg_data_t *pgdat)
2905 {
2906 struct zone *zone;
2907 unsigned long pfmemalloc_reserve = 0;
2908 unsigned long free_pages = 0;
2909 int i;
2910 bool wmark_ok;
2911
2912 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2913 return true;
2914
2915 for (i = 0; i <= ZONE_NORMAL; i++) {
2916 zone = &pgdat->node_zones[i];
2917 if (!managed_zone(zone))
2918 continue;
2919
2920 if (!zone_reclaimable_pages(zone))
2921 continue;
2922
2923 pfmemalloc_reserve += min_wmark_pages(zone);
2924 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2925 }
2926
2927 /* If there are no reserves (unexpected config) then do not throttle */
2928 if (!pfmemalloc_reserve)
2929 return true;
2930
2931 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2932
2933 /* kswapd must be awake if processes are being throttled */
2934 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2935 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2936 (enum zone_type)ZONE_NORMAL);
2937 wake_up_interruptible(&pgdat->kswapd_wait);
2938 }
2939
2940 return wmark_ok;
2941 }
2942
2943 /*
2944 * Throttle direct reclaimers if backing storage is backed by the network
2945 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2946 * depleted. kswapd will continue to make progress and wake the processes
2947 * when the low watermark is reached.
2948 *
2949 * Returns true if a fatal signal was delivered during throttling. If this
2950 * happens, the page allocator should not consider triggering the OOM killer.
2951 */
2952 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2953 nodemask_t *nodemask)
2954 {
2955 struct zoneref *z;
2956 struct zone *zone;
2957 pg_data_t *pgdat = NULL;
2958
2959 /*
2960 * Kernel threads should not be throttled as they may be indirectly
2961 * responsible for cleaning pages necessary for reclaim to make forward
2962 * progress. kjournald for example may enter direct reclaim while
2963 * committing a transaction where throttling it could forcing other
2964 * processes to block on log_wait_commit().
2965 */
2966 if (current->flags & PF_KTHREAD)
2967 goto out;
2968
2969 /*
2970 * If a fatal signal is pending, this process should not throttle.
2971 * It should return quickly so it can exit and free its memory
2972 */
2973 if (fatal_signal_pending(current))
2974 goto out;
2975
2976 /*
2977 * Check if the pfmemalloc reserves are ok by finding the first node
2978 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2979 * GFP_KERNEL will be required for allocating network buffers when
2980 * swapping over the network so ZONE_HIGHMEM is unusable.
2981 *
2982 * Throttling is based on the first usable node and throttled processes
2983 * wait on a queue until kswapd makes progress and wakes them. There
2984 * is an affinity then between processes waking up and where reclaim
2985 * progress has been made assuming the process wakes on the same node.
2986 * More importantly, processes running on remote nodes will not compete
2987 * for remote pfmemalloc reserves and processes on different nodes
2988 * should make reasonable progress.
2989 */
2990 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2991 gfp_zone(gfp_mask), nodemask) {
2992 if (zone_idx(zone) > ZONE_NORMAL)
2993 continue;
2994
2995 /* Throttle based on the first usable node */
2996 pgdat = zone->zone_pgdat;
2997 if (allow_direct_reclaim(pgdat))
2998 goto out;
2999 break;
3000 }
3001
3002 /* If no zone was usable by the allocation flags then do not throttle */
3003 if (!pgdat)
3004 goto out;
3005
3006 /* Account for the throttling */
3007 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3008
3009 /*
3010 * If the caller cannot enter the filesystem, it's possible that it
3011 * is due to the caller holding an FS lock or performing a journal
3012 * transaction in the case of a filesystem like ext[3|4]. In this case,
3013 * it is not safe to block on pfmemalloc_wait as kswapd could be
3014 * blocked waiting on the same lock. Instead, throttle for up to a
3015 * second before continuing.
3016 */
3017 if (!(gfp_mask & __GFP_FS)) {
3018 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3019 allow_direct_reclaim(pgdat), HZ);
3020
3021 goto check_pending;
3022 }
3023
3024 /* Throttle until kswapd wakes the process */
3025 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3026 allow_direct_reclaim(pgdat));
3027
3028 check_pending:
3029 if (fatal_signal_pending(current))
3030 return true;
3031
3032 out:
3033 return false;
3034 }
3035
3036 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3037 gfp_t gfp_mask, nodemask_t *nodemask)
3038 {
3039 unsigned long nr_reclaimed;
3040 struct scan_control sc = {
3041 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3042 .gfp_mask = current_gfp_context(gfp_mask),
3043 .reclaim_idx = gfp_zone(gfp_mask),
3044 .order = order,
3045 .nodemask = nodemask,
3046 .priority = DEF_PRIORITY,
3047 .may_writepage = !laptop_mode,
3048 .may_unmap = 1,
3049 .may_swap = 1,
3050 };
3051
3052 /*
3053 * Do not enter reclaim if fatal signal was delivered while throttled.
3054 * 1 is returned so that the page allocator does not OOM kill at this
3055 * point.
3056 */
3057 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3058 return 1;
3059
3060 trace_mm_vmscan_direct_reclaim_begin(order,
3061 sc.may_writepage,
3062 sc.gfp_mask,
3063 sc.reclaim_idx);
3064
3065 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3066
3067 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3068
3069 return nr_reclaimed;
3070 }
3071
3072 #ifdef CONFIG_MEMCG
3073
3074 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3075 gfp_t gfp_mask, bool noswap,
3076 pg_data_t *pgdat,
3077 unsigned long *nr_scanned)
3078 {
3079 struct scan_control sc = {
3080 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3081 .target_mem_cgroup = memcg,
3082 .may_writepage = !laptop_mode,
3083 .may_unmap = 1,
3084 .reclaim_idx = MAX_NR_ZONES - 1,
3085 .may_swap = !noswap,
3086 };
3087 unsigned long lru_pages;
3088
3089 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3090 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3091
3092 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3093 sc.may_writepage,
3094 sc.gfp_mask,
3095 sc.reclaim_idx);
3096
3097 /*
3098 * NOTE: Although we can get the priority field, using it
3099 * here is not a good idea, since it limits the pages we can scan.
3100 * if we don't reclaim here, the shrink_node from balance_pgdat
3101 * will pick up pages from other mem cgroup's as well. We hack
3102 * the priority and make it zero.
3103 */
3104 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3105
3106 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3107
3108 *nr_scanned = sc.nr_scanned;
3109 return sc.nr_reclaimed;
3110 }
3111
3112 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3113 unsigned long nr_pages,
3114 gfp_t gfp_mask,
3115 bool may_swap)
3116 {
3117 struct zonelist *zonelist;
3118 unsigned long nr_reclaimed;
3119 int nid;
3120 unsigned int noreclaim_flag;
3121 struct scan_control sc = {
3122 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3123 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3124 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3125 .reclaim_idx = MAX_NR_ZONES - 1,
3126 .target_mem_cgroup = memcg,
3127 .priority = DEF_PRIORITY,
3128 .may_writepage = !laptop_mode,
3129 .may_unmap = 1,
3130 .may_swap = may_swap,
3131 };
3132
3133 /*
3134 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3135 * take care of from where we get pages. So the node where we start the
3136 * scan does not need to be the current node.
3137 */
3138 nid = mem_cgroup_select_victim_node(memcg);
3139
3140 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3141
3142 trace_mm_vmscan_memcg_reclaim_begin(0,
3143 sc.may_writepage,
3144 sc.gfp_mask,
3145 sc.reclaim_idx);
3146
3147 noreclaim_flag = memalloc_noreclaim_save();
3148 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3149 memalloc_noreclaim_restore(noreclaim_flag);
3150
3151 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3152
3153 return nr_reclaimed;
3154 }
3155 #endif
3156
3157 static void age_active_anon(struct pglist_data *pgdat,
3158 struct scan_control *sc)
3159 {
3160 struct mem_cgroup *memcg;
3161
3162 if (!total_swap_pages)
3163 return;
3164
3165 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3166 do {
3167 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3168
3169 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3170 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3171 sc, LRU_ACTIVE_ANON);
3172
3173 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3174 } while (memcg);
3175 }
3176
3177 /*
3178 * Returns true if there is an eligible zone balanced for the request order
3179 * and classzone_idx
3180 */
3181 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3182 {
3183 int i;
3184 unsigned long mark = -1;
3185 struct zone *zone;
3186
3187 for (i = 0; i <= classzone_idx; i++) {
3188 zone = pgdat->node_zones + i;
3189
3190 if (!managed_zone(zone))
3191 continue;
3192
3193 mark = high_wmark_pages(zone);
3194 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3195 return true;
3196 }
3197
3198 /*
3199 * If a node has no populated zone within classzone_idx, it does not
3200 * need balancing by definition. This can happen if a zone-restricted
3201 * allocation tries to wake a remote kswapd.
3202 */
3203 if (mark == -1)
3204 return true;
3205
3206 return false;
3207 }
3208
3209 /* Clear pgdat state for congested, dirty or under writeback. */
3210 static void clear_pgdat_congested(pg_data_t *pgdat)
3211 {
3212 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3213 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3214 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3215 }
3216
3217 /*
3218 * Prepare kswapd for sleeping. This verifies that there are no processes
3219 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3220 *
3221 * Returns true if kswapd is ready to sleep
3222 */
3223 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3224 {
3225 /*
3226 * The throttled processes are normally woken up in balance_pgdat() as
3227 * soon as allow_direct_reclaim() is true. But there is a potential
3228 * race between when kswapd checks the watermarks and a process gets
3229 * throttled. There is also a potential race if processes get
3230 * throttled, kswapd wakes, a large process exits thereby balancing the
3231 * zones, which causes kswapd to exit balance_pgdat() before reaching
3232 * the wake up checks. If kswapd is going to sleep, no process should
3233 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3234 * the wake up is premature, processes will wake kswapd and get
3235 * throttled again. The difference from wake ups in balance_pgdat() is
3236 * that here we are under prepare_to_wait().
3237 */
3238 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3239 wake_up_all(&pgdat->pfmemalloc_wait);
3240
3241 /* Hopeless node, leave it to direct reclaim */
3242 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3243 return true;
3244
3245 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3246 clear_pgdat_congested(pgdat);
3247 return true;
3248 }
3249
3250 return false;
3251 }
3252
3253 /*
3254 * kswapd shrinks a node of pages that are at or below the highest usable
3255 * zone that is currently unbalanced.
3256 *
3257 * Returns true if kswapd scanned at least the requested number of pages to
3258 * reclaim or if the lack of progress was due to pages under writeback.
3259 * This is used to determine if the scanning priority needs to be raised.
3260 */
3261 static bool kswapd_shrink_node(pg_data_t *pgdat,
3262 struct scan_control *sc)
3263 {
3264 struct zone *zone;
3265 int z;
3266
3267 /* Reclaim a number of pages proportional to the number of zones */
3268 sc->nr_to_reclaim = 0;
3269 for (z = 0; z <= sc->reclaim_idx; z++) {
3270 zone = pgdat->node_zones + z;
3271 if (!managed_zone(zone))
3272 continue;
3273
3274 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3275 }
3276
3277 /*
3278 * Historically care was taken to put equal pressure on all zones but
3279 * now pressure is applied based on node LRU order.
3280 */
3281 shrink_node(pgdat, sc);
3282
3283 /*
3284 * Fragmentation may mean that the system cannot be rebalanced for
3285 * high-order allocations. If twice the allocation size has been
3286 * reclaimed then recheck watermarks only at order-0 to prevent
3287 * excessive reclaim. Assume that a process requested a high-order
3288 * can direct reclaim/compact.
3289 */
3290 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3291 sc->order = 0;
3292
3293 return sc->nr_scanned >= sc->nr_to_reclaim;
3294 }
3295
3296 /*
3297 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3298 * that are eligible for use by the caller until at least one zone is
3299 * balanced.
3300 *
3301 * Returns the order kswapd finished reclaiming at.
3302 *
3303 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3304 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3305 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3306 * or lower is eligible for reclaim until at least one usable zone is
3307 * balanced.
3308 */
3309 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3310 {
3311 int i;
3312 unsigned long nr_soft_reclaimed;
3313 unsigned long nr_soft_scanned;
3314 struct zone *zone;
3315 struct scan_control sc = {
3316 .gfp_mask = GFP_KERNEL,
3317 .order = order,
3318 .priority = DEF_PRIORITY,
3319 .may_writepage = !laptop_mode,
3320 .may_unmap = 1,
3321 .may_swap = 1,
3322 };
3323 count_vm_event(PAGEOUTRUN);
3324
3325 do {
3326 unsigned long nr_reclaimed = sc.nr_reclaimed;
3327 bool raise_priority = true;
3328
3329 sc.reclaim_idx = classzone_idx;
3330
3331 /*
3332 * If the number of buffer_heads exceeds the maximum allowed
3333 * then consider reclaiming from all zones. This has a dual
3334 * purpose -- on 64-bit systems it is expected that
3335 * buffer_heads are stripped during active rotation. On 32-bit
3336 * systems, highmem pages can pin lowmem memory and shrinking
3337 * buffers can relieve lowmem pressure. Reclaim may still not
3338 * go ahead if all eligible zones for the original allocation
3339 * request are balanced to avoid excessive reclaim from kswapd.
3340 */
3341 if (buffer_heads_over_limit) {
3342 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3343 zone = pgdat->node_zones + i;
3344 if (!managed_zone(zone))
3345 continue;
3346
3347 sc.reclaim_idx = i;
3348 break;
3349 }
3350 }
3351
3352 /*
3353 * Only reclaim if there are no eligible zones. Note that
3354 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3355 * have adjusted it.
3356 */
3357 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3358 goto out;
3359
3360 /*
3361 * Do some background aging of the anon list, to give
3362 * pages a chance to be referenced before reclaiming. All
3363 * pages are rotated regardless of classzone as this is
3364 * about consistent aging.
3365 */
3366 age_active_anon(pgdat, &sc);
3367
3368 /*
3369 * If we're getting trouble reclaiming, start doing writepage
3370 * even in laptop mode.
3371 */
3372 if (sc.priority < DEF_PRIORITY - 2)
3373 sc.may_writepage = 1;
3374
3375 /* Call soft limit reclaim before calling shrink_node. */
3376 sc.nr_scanned = 0;
3377 nr_soft_scanned = 0;
3378 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3379 sc.gfp_mask, &nr_soft_scanned);
3380 sc.nr_reclaimed += nr_soft_reclaimed;
3381
3382 /*
3383 * There should be no need to raise the scanning priority if
3384 * enough pages are already being scanned that that high
3385 * watermark would be met at 100% efficiency.
3386 */
3387 if (kswapd_shrink_node(pgdat, &sc))
3388 raise_priority = false;
3389
3390 /*
3391 * If the low watermark is met there is no need for processes
3392 * to be throttled on pfmemalloc_wait as they should not be
3393 * able to safely make forward progress. Wake them
3394 */
3395 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3396 allow_direct_reclaim(pgdat))
3397 wake_up_all(&pgdat->pfmemalloc_wait);
3398
3399 /* Check if kswapd should be suspending */
3400 if (try_to_freeze() || kthread_should_stop())
3401 break;
3402
3403 /*
3404 * Raise priority if scanning rate is too low or there was no
3405 * progress in reclaiming pages
3406 */
3407 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3408 if (raise_priority || !nr_reclaimed)
3409 sc.priority--;
3410 } while (sc.priority >= 1);
3411
3412 if (!sc.nr_reclaimed)
3413 pgdat->kswapd_failures++;
3414
3415 out:
3416 snapshot_refaults(NULL, pgdat);
3417 /*
3418 * Return the order kswapd stopped reclaiming at as
3419 * prepare_kswapd_sleep() takes it into account. If another caller
3420 * entered the allocator slow path while kswapd was awake, order will
3421 * remain at the higher level.
3422 */
3423 return sc.order;
3424 }
3425
3426 /*
3427 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3428 * allocation request woke kswapd for. When kswapd has not woken recently,
3429 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3430 * given classzone and returns it or the highest classzone index kswapd
3431 * was recently woke for.
3432 */
3433 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3434 enum zone_type classzone_idx)
3435 {
3436 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3437 return classzone_idx;
3438
3439 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3440 }
3441
3442 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3443 unsigned int classzone_idx)
3444 {
3445 long remaining = 0;
3446 DEFINE_WAIT(wait);
3447
3448 if (freezing(current) || kthread_should_stop())
3449 return;
3450
3451 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3452
3453 /*
3454 * Try to sleep for a short interval. Note that kcompactd will only be
3455 * woken if it is possible to sleep for a short interval. This is
3456 * deliberate on the assumption that if reclaim cannot keep an
3457 * eligible zone balanced that it's also unlikely that compaction will
3458 * succeed.
3459 */
3460 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3461 /*
3462 * Compaction records what page blocks it recently failed to
3463 * isolate pages from and skips them in the future scanning.
3464 * When kswapd is going to sleep, it is reasonable to assume
3465 * that pages and compaction may succeed so reset the cache.
3466 */
3467 reset_isolation_suitable(pgdat);
3468
3469 /*
3470 * We have freed the memory, now we should compact it to make
3471 * allocation of the requested order possible.
3472 */
3473 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3474
3475 remaining = schedule_timeout(HZ/10);
3476
3477 /*
3478 * If woken prematurely then reset kswapd_classzone_idx and
3479 * order. The values will either be from a wakeup request or
3480 * the previous request that slept prematurely.
3481 */
3482 if (remaining) {
3483 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3484 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3485 }
3486
3487 finish_wait(&pgdat->kswapd_wait, &wait);
3488 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3489 }
3490
3491 /*
3492 * After a short sleep, check if it was a premature sleep. If not, then
3493 * go fully to sleep until explicitly woken up.
3494 */
3495 if (!remaining &&
3496 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3497 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3498
3499 /*
3500 * vmstat counters are not perfectly accurate and the estimated
3501 * value for counters such as NR_FREE_PAGES can deviate from the
3502 * true value by nr_online_cpus * threshold. To avoid the zone
3503 * watermarks being breached while under pressure, we reduce the
3504 * per-cpu vmstat threshold while kswapd is awake and restore
3505 * them before going back to sleep.
3506 */
3507 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3508
3509 if (!kthread_should_stop())
3510 schedule();
3511
3512 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3513 } else {
3514 if (remaining)
3515 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3516 else
3517 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3518 }
3519 finish_wait(&pgdat->kswapd_wait, &wait);
3520 }
3521
3522 /*
3523 * The background pageout daemon, started as a kernel thread
3524 * from the init process.
3525 *
3526 * This basically trickles out pages so that we have _some_
3527 * free memory available even if there is no other activity
3528 * that frees anything up. This is needed for things like routing
3529 * etc, where we otherwise might have all activity going on in
3530 * asynchronous contexts that cannot page things out.
3531 *
3532 * If there are applications that are active memory-allocators
3533 * (most normal use), this basically shouldn't matter.
3534 */
3535 static int kswapd(void *p)
3536 {
3537 unsigned int alloc_order, reclaim_order;
3538 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3539 pg_data_t *pgdat = (pg_data_t*)p;
3540 struct task_struct *tsk = current;
3541
3542 struct reclaim_state reclaim_state = {
3543 .reclaimed_slab = 0,
3544 };
3545 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3546
3547 if (!cpumask_empty(cpumask))
3548 set_cpus_allowed_ptr(tsk, cpumask);
3549 current->reclaim_state = &reclaim_state;
3550
3551 /*
3552 * Tell the memory management that we're a "memory allocator",
3553 * and that if we need more memory we should get access to it
3554 * regardless (see "__alloc_pages()"). "kswapd" should
3555 * never get caught in the normal page freeing logic.
3556 *
3557 * (Kswapd normally doesn't need memory anyway, but sometimes
3558 * you need a small amount of memory in order to be able to
3559 * page out something else, and this flag essentially protects
3560 * us from recursively trying to free more memory as we're
3561 * trying to free the first piece of memory in the first place).
3562 */
3563 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3564 set_freezable();
3565
3566 pgdat->kswapd_order = 0;
3567 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3568 for ( ; ; ) {
3569 bool ret;
3570
3571 alloc_order = reclaim_order = pgdat->kswapd_order;
3572 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3573
3574 kswapd_try_sleep:
3575 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3576 classzone_idx);
3577
3578 /* Read the new order and classzone_idx */
3579 alloc_order = reclaim_order = pgdat->kswapd_order;
3580 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3581 pgdat->kswapd_order = 0;
3582 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3583
3584 ret = try_to_freeze();
3585 if (kthread_should_stop())
3586 break;
3587
3588 /*
3589 * We can speed up thawing tasks if we don't call balance_pgdat
3590 * after returning from the refrigerator
3591 */
3592 if (ret)
3593 continue;
3594
3595 /*
3596 * Reclaim begins at the requested order but if a high-order
3597 * reclaim fails then kswapd falls back to reclaiming for
3598 * order-0. If that happens, kswapd will consider sleeping
3599 * for the order it finished reclaiming at (reclaim_order)
3600 * but kcompactd is woken to compact for the original
3601 * request (alloc_order).
3602 */
3603 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3604 alloc_order);
3605 fs_reclaim_acquire(GFP_KERNEL);
3606 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3607 fs_reclaim_release(GFP_KERNEL);
3608 if (reclaim_order < alloc_order)
3609 goto kswapd_try_sleep;
3610 }
3611
3612 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3613 current->reclaim_state = NULL;
3614
3615 return 0;
3616 }
3617
3618 /*
3619 * A zone is low on free memory, so wake its kswapd task to service it.
3620 */
3621 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3622 {
3623 pg_data_t *pgdat;
3624
3625 if (!managed_zone(zone))
3626 return;
3627
3628 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3629 return;
3630 pgdat = zone->zone_pgdat;
3631 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3632 classzone_idx);
3633 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3634 if (!waitqueue_active(&pgdat->kswapd_wait))
3635 return;
3636
3637 /* Hopeless node, leave it to direct reclaim */
3638 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3639 return;
3640
3641 if (pgdat_balanced(pgdat, order, classzone_idx))
3642 return;
3643
3644 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3645 wake_up_interruptible(&pgdat->kswapd_wait);
3646 }
3647
3648 #ifdef CONFIG_HIBERNATION
3649 /*
3650 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3651 * freed pages.
3652 *
3653 * Rather than trying to age LRUs the aim is to preserve the overall
3654 * LRU order by reclaiming preferentially
3655 * inactive > active > active referenced > active mapped
3656 */
3657 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3658 {
3659 struct reclaim_state reclaim_state;
3660 struct scan_control sc = {
3661 .nr_to_reclaim = nr_to_reclaim,
3662 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3663 .reclaim_idx = MAX_NR_ZONES - 1,
3664 .priority = DEF_PRIORITY,
3665 .may_writepage = 1,
3666 .may_unmap = 1,
3667 .may_swap = 1,
3668 .hibernation_mode = 1,
3669 };
3670 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3671 struct task_struct *p = current;
3672 unsigned long nr_reclaimed;
3673 unsigned int noreclaim_flag;
3674
3675 noreclaim_flag = memalloc_noreclaim_save();
3676 fs_reclaim_acquire(sc.gfp_mask);
3677 reclaim_state.reclaimed_slab = 0;
3678 p->reclaim_state = &reclaim_state;
3679
3680 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3681
3682 p->reclaim_state = NULL;
3683 fs_reclaim_release(sc.gfp_mask);
3684 memalloc_noreclaim_restore(noreclaim_flag);
3685
3686 return nr_reclaimed;
3687 }
3688 #endif /* CONFIG_HIBERNATION */
3689
3690 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3691 not required for correctness. So if the last cpu in a node goes
3692 away, we get changed to run anywhere: as the first one comes back,
3693 restore their cpu bindings. */
3694 static int kswapd_cpu_online(unsigned int cpu)
3695 {
3696 int nid;
3697
3698 for_each_node_state(nid, N_MEMORY) {
3699 pg_data_t *pgdat = NODE_DATA(nid);
3700 const struct cpumask *mask;
3701
3702 mask = cpumask_of_node(pgdat->node_id);
3703
3704 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3705 /* One of our CPUs online: restore mask */
3706 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3707 }
3708 return 0;
3709 }
3710
3711 /*
3712 * This kswapd start function will be called by init and node-hot-add.
3713 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3714 */
3715 int kswapd_run(int nid)
3716 {
3717 pg_data_t *pgdat = NODE_DATA(nid);
3718 int ret = 0;
3719
3720 if (pgdat->kswapd)
3721 return 0;
3722
3723 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3724 if (IS_ERR(pgdat->kswapd)) {
3725 /* failure at boot is fatal */
3726 BUG_ON(system_state < SYSTEM_RUNNING);
3727 pr_err("Failed to start kswapd on node %d\n", nid);
3728 ret = PTR_ERR(pgdat->kswapd);
3729 pgdat->kswapd = NULL;
3730 }
3731 return ret;
3732 }
3733
3734 /*
3735 * Called by memory hotplug when all memory in a node is offlined. Caller must
3736 * hold mem_hotplug_begin/end().
3737 */
3738 void kswapd_stop(int nid)
3739 {
3740 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3741
3742 if (kswapd) {
3743 kthread_stop(kswapd);
3744 NODE_DATA(nid)->kswapd = NULL;
3745 }
3746 }
3747
3748 static int __init kswapd_init(void)
3749 {
3750 int nid, ret;
3751
3752 swap_setup();
3753 for_each_node_state(nid, N_MEMORY)
3754 kswapd_run(nid);
3755 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3756 "mm/vmscan:online", kswapd_cpu_online,
3757 NULL);
3758 WARN_ON(ret < 0);
3759 return 0;
3760 }
3761
3762 module_init(kswapd_init)
3763
3764 #ifdef CONFIG_NUMA
3765 /*
3766 * Node reclaim mode
3767 *
3768 * If non-zero call node_reclaim when the number of free pages falls below
3769 * the watermarks.
3770 */
3771 int node_reclaim_mode __read_mostly;
3772
3773 #define RECLAIM_OFF 0
3774 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3775 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3776 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3777
3778 /*
3779 * Priority for NODE_RECLAIM. This determines the fraction of pages
3780 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3781 * a zone.
3782 */
3783 #define NODE_RECLAIM_PRIORITY 4
3784
3785 /*
3786 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3787 * occur.
3788 */
3789 int sysctl_min_unmapped_ratio = 1;
3790
3791 /*
3792 * If the number of slab pages in a zone grows beyond this percentage then
3793 * slab reclaim needs to occur.
3794 */
3795 int sysctl_min_slab_ratio = 5;
3796
3797 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3798 {
3799 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3800 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3801 node_page_state(pgdat, NR_ACTIVE_FILE);
3802
3803 /*
3804 * It's possible for there to be more file mapped pages than
3805 * accounted for by the pages on the file LRU lists because
3806 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3807 */
3808 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3809 }
3810
3811 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3812 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3813 {
3814 unsigned long nr_pagecache_reclaimable;
3815 unsigned long delta = 0;
3816
3817 /*
3818 * If RECLAIM_UNMAP is set, then all file pages are considered
3819 * potentially reclaimable. Otherwise, we have to worry about
3820 * pages like swapcache and node_unmapped_file_pages() provides
3821 * a better estimate
3822 */
3823 if (node_reclaim_mode & RECLAIM_UNMAP)
3824 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3825 else
3826 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3827
3828 /* If we can't clean pages, remove dirty pages from consideration */
3829 if (!(node_reclaim_mode & RECLAIM_WRITE))
3830 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3831
3832 /* Watch for any possible underflows due to delta */
3833 if (unlikely(delta > nr_pagecache_reclaimable))
3834 delta = nr_pagecache_reclaimable;
3835
3836 return nr_pagecache_reclaimable - delta;
3837 }
3838
3839 /*
3840 * Try to free up some pages from this node through reclaim.
3841 */
3842 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3843 {
3844 /* Minimum pages needed in order to stay on node */
3845 const unsigned long nr_pages = 1 << order;
3846 struct task_struct *p = current;
3847 struct reclaim_state reclaim_state;
3848 unsigned int noreclaim_flag;
3849 struct scan_control sc = {
3850 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3851 .gfp_mask = current_gfp_context(gfp_mask),
3852 .order = order,
3853 .priority = NODE_RECLAIM_PRIORITY,
3854 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3855 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3856 .may_swap = 1,
3857 .reclaim_idx = gfp_zone(gfp_mask),
3858 };
3859
3860 cond_resched();
3861 /*
3862 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3863 * and we also need to be able to write out pages for RECLAIM_WRITE
3864 * and RECLAIM_UNMAP.
3865 */
3866 noreclaim_flag = memalloc_noreclaim_save();
3867 p->flags |= PF_SWAPWRITE;
3868 fs_reclaim_acquire(sc.gfp_mask);
3869 reclaim_state.reclaimed_slab = 0;
3870 p->reclaim_state = &reclaim_state;
3871
3872 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3873 /*
3874 * Free memory by calling shrink zone with increasing
3875 * priorities until we have enough memory freed.
3876 */
3877 do {
3878 shrink_node(pgdat, &sc);
3879 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3880 }
3881
3882 p->reclaim_state = NULL;
3883 fs_reclaim_release(gfp_mask);
3884 current->flags &= ~PF_SWAPWRITE;
3885 memalloc_noreclaim_restore(noreclaim_flag);
3886 return sc.nr_reclaimed >= nr_pages;
3887 }
3888
3889 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3890 {
3891 int ret;
3892
3893 /*
3894 * Node reclaim reclaims unmapped file backed pages and
3895 * slab pages if we are over the defined limits.
3896 *
3897 * A small portion of unmapped file backed pages is needed for
3898 * file I/O otherwise pages read by file I/O will be immediately
3899 * thrown out if the node is overallocated. So we do not reclaim
3900 * if less than a specified percentage of the node is used by
3901 * unmapped file backed pages.
3902 */
3903 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3904 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3905 return NODE_RECLAIM_FULL;
3906
3907 /*
3908 * Do not scan if the allocation should not be delayed.
3909 */
3910 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3911 return NODE_RECLAIM_NOSCAN;
3912
3913 /*
3914 * Only run node reclaim on the local node or on nodes that do not
3915 * have associated processors. This will favor the local processor
3916 * over remote processors and spread off node memory allocations
3917 * as wide as possible.
3918 */
3919 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3920 return NODE_RECLAIM_NOSCAN;
3921
3922 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3923 return NODE_RECLAIM_NOSCAN;
3924
3925 ret = __node_reclaim(pgdat, gfp_mask, order);
3926 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3927
3928 if (!ret)
3929 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3930
3931 return ret;
3932 }
3933 #endif
3934
3935 /*
3936 * page_evictable - test whether a page is evictable
3937 * @page: the page to test
3938 *
3939 * Test whether page is evictable--i.e., should be placed on active/inactive
3940 * lists vs unevictable list.
3941 *
3942 * Reasons page might not be evictable:
3943 * (1) page's mapping marked unevictable
3944 * (2) page is part of an mlocked VMA
3945 *
3946 */
3947 int page_evictable(struct page *page)
3948 {
3949 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3950 }
3951
3952 #ifdef CONFIG_SHMEM
3953 /**
3954 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3955 * @pages: array of pages to check
3956 * @nr_pages: number of pages to check
3957 *
3958 * Checks pages for evictability and moves them to the appropriate lru list.
3959 *
3960 * This function is only used for SysV IPC SHM_UNLOCK.
3961 */
3962 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3963 {
3964 struct lruvec *lruvec;
3965 struct pglist_data *pgdat = NULL;
3966 int pgscanned = 0;
3967 int pgrescued = 0;
3968 int i;
3969
3970 for (i = 0; i < nr_pages; i++) {
3971 struct page *page = pages[i];
3972 struct pglist_data *pagepgdat = page_pgdat(page);
3973
3974 pgscanned++;
3975 if (pagepgdat != pgdat) {
3976 if (pgdat)
3977 spin_unlock_irq(&pgdat->lru_lock);
3978 pgdat = pagepgdat;
3979 spin_lock_irq(&pgdat->lru_lock);
3980 }
3981 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3982
3983 if (!PageLRU(page) || !PageUnevictable(page))
3984 continue;
3985
3986 if (page_evictable(page)) {
3987 enum lru_list lru = page_lru_base_type(page);
3988
3989 VM_BUG_ON_PAGE(PageActive(page), page);
3990 ClearPageUnevictable(page);
3991 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3992 add_page_to_lru_list(page, lruvec, lru);
3993 pgrescued++;
3994 }
3995 }
3996
3997 if (pgdat) {
3998 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3999 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4000 spin_unlock_irq(&pgdat->lru_lock);
4001 }
4002 }
4003 #endif /* CONFIG_SHMEM */