]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/vmscan.c
mm: kswapd: use the order that kswapd was reclaiming at for sleeping_prematurely()
[thirdparty/kernel/stable.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47
48 #include <linux/swapops.h>
49
50 #include "internal.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/vmscan.h>
54
55 /*
56 * reclaim_mode determines how the inactive list is shrunk
57 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
58 * RECLAIM_MODE_ASYNC: Do not block
59 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
60 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
61 * page from the LRU and reclaim all pages within a
62 * naturally aligned range
63 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
64 * order-0 pages and then compact the zone
65 */
66 typedef unsigned __bitwise__ reclaim_mode_t;
67 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
68 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
69 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
70 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
71 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
72
73 struct scan_control {
74 /* Incremented by the number of inactive pages that were scanned */
75 unsigned long nr_scanned;
76
77 /* Number of pages freed so far during a call to shrink_zones() */
78 unsigned long nr_reclaimed;
79
80 /* How many pages shrink_list() should reclaim */
81 unsigned long nr_to_reclaim;
82
83 unsigned long hibernation_mode;
84
85 /* This context's GFP mask */
86 gfp_t gfp_mask;
87
88 int may_writepage;
89
90 /* Can mapped pages be reclaimed? */
91 int may_unmap;
92
93 /* Can pages be swapped as part of reclaim? */
94 int may_swap;
95
96 int swappiness;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147 * From 0 .. 100. Higher means more swappy.
148 */
149 int vm_swappiness = 60;
150 long vm_total_pages; /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163 {
164 if (!scanning_global_lru(sc))
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167 return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
172 {
173 if (!scanning_global_lru(sc))
174 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
175
176 return zone_page_state(zone, NR_LRU_BASE + lru);
177 }
178
179
180 /*
181 * Add a shrinker callback to be called from the vm
182 */
183 void register_shrinker(struct shrinker *shrinker)
184 {
185 shrinker->nr = 0;
186 down_write(&shrinker_rwsem);
187 list_add_tail(&shrinker->list, &shrinker_list);
188 up_write(&shrinker_rwsem);
189 }
190 EXPORT_SYMBOL(register_shrinker);
191
192 /*
193 * Remove one
194 */
195 void unregister_shrinker(struct shrinker *shrinker)
196 {
197 down_write(&shrinker_rwsem);
198 list_del(&shrinker->list);
199 up_write(&shrinker_rwsem);
200 }
201 EXPORT_SYMBOL(unregister_shrinker);
202
203 #define SHRINK_BATCH 128
204 /*
205 * Call the shrink functions to age shrinkable caches
206 *
207 * Here we assume it costs one seek to replace a lru page and that it also
208 * takes a seek to recreate a cache object. With this in mind we age equal
209 * percentages of the lru and ageable caches. This should balance the seeks
210 * generated by these structures.
211 *
212 * If the vm encountered mapped pages on the LRU it increase the pressure on
213 * slab to avoid swapping.
214 *
215 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
216 *
217 * `lru_pages' represents the number of on-LRU pages in all the zones which
218 * are eligible for the caller's allocation attempt. It is used for balancing
219 * slab reclaim versus page reclaim.
220 *
221 * Returns the number of slab objects which we shrunk.
222 */
223 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
224 unsigned long lru_pages)
225 {
226 struct shrinker *shrinker;
227 unsigned long ret = 0;
228
229 if (scanned == 0)
230 scanned = SWAP_CLUSTER_MAX;
231
232 if (!down_read_trylock(&shrinker_rwsem))
233 return 1; /* Assume we'll be able to shrink next time */
234
235 list_for_each_entry(shrinker, &shrinker_list, list) {
236 unsigned long long delta;
237 unsigned long total_scan;
238 unsigned long max_pass;
239
240 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
241 delta = (4 * scanned) / shrinker->seeks;
242 delta *= max_pass;
243 do_div(delta, lru_pages + 1);
244 shrinker->nr += delta;
245 if (shrinker->nr < 0) {
246 printk(KERN_ERR "shrink_slab: %pF negative objects to "
247 "delete nr=%ld\n",
248 shrinker->shrink, shrinker->nr);
249 shrinker->nr = max_pass;
250 }
251
252 /*
253 * Avoid risking looping forever due to too large nr value:
254 * never try to free more than twice the estimate number of
255 * freeable entries.
256 */
257 if (shrinker->nr > max_pass * 2)
258 shrinker->nr = max_pass * 2;
259
260 total_scan = shrinker->nr;
261 shrinker->nr = 0;
262
263 while (total_scan >= SHRINK_BATCH) {
264 long this_scan = SHRINK_BATCH;
265 int shrink_ret;
266 int nr_before;
267
268 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
269 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
270 gfp_mask);
271 if (shrink_ret == -1)
272 break;
273 if (shrink_ret < nr_before)
274 ret += nr_before - shrink_ret;
275 count_vm_events(SLABS_SCANNED, this_scan);
276 total_scan -= this_scan;
277
278 cond_resched();
279 }
280
281 shrinker->nr += total_scan;
282 }
283 up_read(&shrinker_rwsem);
284 return ret;
285 }
286
287 static void set_reclaim_mode(int priority, struct scan_control *sc,
288 bool sync)
289 {
290 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
291
292 /*
293 * Initially assume we are entering either lumpy reclaim or
294 * reclaim/compaction.Depending on the order, we will either set the
295 * sync mode or just reclaim order-0 pages later.
296 */
297 if (COMPACTION_BUILD)
298 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
299 else
300 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
301
302 /*
303 * Avoid using lumpy reclaim or reclaim/compaction if possible by
304 * restricting when its set to either costly allocations or when
305 * under memory pressure
306 */
307 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
308 sc->reclaim_mode |= syncmode;
309 else if (sc->order && priority < DEF_PRIORITY - 2)
310 sc->reclaim_mode |= syncmode;
311 else
312 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
313 }
314
315 static void reset_reclaim_mode(struct scan_control *sc)
316 {
317 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
318 }
319
320 static inline int is_page_cache_freeable(struct page *page)
321 {
322 /*
323 * A freeable page cache page is referenced only by the caller
324 * that isolated the page, the page cache radix tree and
325 * optional buffer heads at page->private.
326 */
327 return page_count(page) - page_has_private(page) == 2;
328 }
329
330 static int may_write_to_queue(struct backing_dev_info *bdi,
331 struct scan_control *sc)
332 {
333 if (current->flags & PF_SWAPWRITE)
334 return 1;
335 if (!bdi_write_congested(bdi))
336 return 1;
337 if (bdi == current->backing_dev_info)
338 return 1;
339
340 /* lumpy reclaim for hugepage often need a lot of write */
341 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
342 return 1;
343 return 0;
344 }
345
346 /*
347 * We detected a synchronous write error writing a page out. Probably
348 * -ENOSPC. We need to propagate that into the address_space for a subsequent
349 * fsync(), msync() or close().
350 *
351 * The tricky part is that after writepage we cannot touch the mapping: nothing
352 * prevents it from being freed up. But we have a ref on the page and once
353 * that page is locked, the mapping is pinned.
354 *
355 * We're allowed to run sleeping lock_page() here because we know the caller has
356 * __GFP_FS.
357 */
358 static void handle_write_error(struct address_space *mapping,
359 struct page *page, int error)
360 {
361 lock_page_nosync(page);
362 if (page_mapping(page) == mapping)
363 mapping_set_error(mapping, error);
364 unlock_page(page);
365 }
366
367 /* possible outcome of pageout() */
368 typedef enum {
369 /* failed to write page out, page is locked */
370 PAGE_KEEP,
371 /* move page to the active list, page is locked */
372 PAGE_ACTIVATE,
373 /* page has been sent to the disk successfully, page is unlocked */
374 PAGE_SUCCESS,
375 /* page is clean and locked */
376 PAGE_CLEAN,
377 } pageout_t;
378
379 /*
380 * pageout is called by shrink_page_list() for each dirty page.
381 * Calls ->writepage().
382 */
383 static pageout_t pageout(struct page *page, struct address_space *mapping,
384 struct scan_control *sc)
385 {
386 /*
387 * If the page is dirty, only perform writeback if that write
388 * will be non-blocking. To prevent this allocation from being
389 * stalled by pagecache activity. But note that there may be
390 * stalls if we need to run get_block(). We could test
391 * PagePrivate for that.
392 *
393 * If this process is currently in __generic_file_aio_write() against
394 * this page's queue, we can perform writeback even if that
395 * will block.
396 *
397 * If the page is swapcache, write it back even if that would
398 * block, for some throttling. This happens by accident, because
399 * swap_backing_dev_info is bust: it doesn't reflect the
400 * congestion state of the swapdevs. Easy to fix, if needed.
401 */
402 if (!is_page_cache_freeable(page))
403 return PAGE_KEEP;
404 if (!mapping) {
405 /*
406 * Some data journaling orphaned pages can have
407 * page->mapping == NULL while being dirty with clean buffers.
408 */
409 if (page_has_private(page)) {
410 if (try_to_free_buffers(page)) {
411 ClearPageDirty(page);
412 printk("%s: orphaned page\n", __func__);
413 return PAGE_CLEAN;
414 }
415 }
416 return PAGE_KEEP;
417 }
418 if (mapping->a_ops->writepage == NULL)
419 return PAGE_ACTIVATE;
420 if (!may_write_to_queue(mapping->backing_dev_info, sc))
421 return PAGE_KEEP;
422
423 if (clear_page_dirty_for_io(page)) {
424 int res;
425 struct writeback_control wbc = {
426 .sync_mode = WB_SYNC_NONE,
427 .nr_to_write = SWAP_CLUSTER_MAX,
428 .range_start = 0,
429 .range_end = LLONG_MAX,
430 .for_reclaim = 1,
431 };
432
433 SetPageReclaim(page);
434 res = mapping->a_ops->writepage(page, &wbc);
435 if (res < 0)
436 handle_write_error(mapping, page, res);
437 if (res == AOP_WRITEPAGE_ACTIVATE) {
438 ClearPageReclaim(page);
439 return PAGE_ACTIVATE;
440 }
441
442 /*
443 * Wait on writeback if requested to. This happens when
444 * direct reclaiming a large contiguous area and the
445 * first attempt to free a range of pages fails.
446 */
447 if (PageWriteback(page) &&
448 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
449 wait_on_page_writeback(page);
450
451 if (!PageWriteback(page)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page);
454 }
455 trace_mm_vmscan_writepage(page,
456 trace_reclaim_flags(page, sc->reclaim_mode));
457 inc_zone_page_state(page, NR_VMSCAN_WRITE);
458 return PAGE_SUCCESS;
459 }
460
461 return PAGE_CLEAN;
462 }
463
464 /*
465 * Same as remove_mapping, but if the page is removed from the mapping, it
466 * gets returned with a refcount of 0.
467 */
468 static int __remove_mapping(struct address_space *mapping, struct page *page)
469 {
470 BUG_ON(!PageLocked(page));
471 BUG_ON(mapping != page_mapping(page));
472
473 spin_lock_irq(&mapping->tree_lock);
474 /*
475 * The non racy check for a busy page.
476 *
477 * Must be careful with the order of the tests. When someone has
478 * a ref to the page, it may be possible that they dirty it then
479 * drop the reference. So if PageDirty is tested before page_count
480 * here, then the following race may occur:
481 *
482 * get_user_pages(&page);
483 * [user mapping goes away]
484 * write_to(page);
485 * !PageDirty(page) [good]
486 * SetPageDirty(page);
487 * put_page(page);
488 * !page_count(page) [good, discard it]
489 *
490 * [oops, our write_to data is lost]
491 *
492 * Reversing the order of the tests ensures such a situation cannot
493 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
494 * load is not satisfied before that of page->_count.
495 *
496 * Note that if SetPageDirty is always performed via set_page_dirty,
497 * and thus under tree_lock, then this ordering is not required.
498 */
499 if (!page_freeze_refs(page, 2))
500 goto cannot_free;
501 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
502 if (unlikely(PageDirty(page))) {
503 page_unfreeze_refs(page, 2);
504 goto cannot_free;
505 }
506
507 if (PageSwapCache(page)) {
508 swp_entry_t swap = { .val = page_private(page) };
509 __delete_from_swap_cache(page);
510 spin_unlock_irq(&mapping->tree_lock);
511 swapcache_free(swap, page);
512 } else {
513 void (*freepage)(struct page *);
514
515 freepage = mapping->a_ops->freepage;
516
517 __remove_from_page_cache(page);
518 spin_unlock_irq(&mapping->tree_lock);
519 mem_cgroup_uncharge_cache_page(page);
520
521 if (freepage != NULL)
522 freepage(page);
523 }
524
525 return 1;
526
527 cannot_free:
528 spin_unlock_irq(&mapping->tree_lock);
529 return 0;
530 }
531
532 /*
533 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
534 * someone else has a ref on the page, abort and return 0. If it was
535 * successfully detached, return 1. Assumes the caller has a single ref on
536 * this page.
537 */
538 int remove_mapping(struct address_space *mapping, struct page *page)
539 {
540 if (__remove_mapping(mapping, page)) {
541 /*
542 * Unfreezing the refcount with 1 rather than 2 effectively
543 * drops the pagecache ref for us without requiring another
544 * atomic operation.
545 */
546 page_unfreeze_refs(page, 1);
547 return 1;
548 }
549 return 0;
550 }
551
552 /**
553 * putback_lru_page - put previously isolated page onto appropriate LRU list
554 * @page: page to be put back to appropriate lru list
555 *
556 * Add previously isolated @page to appropriate LRU list.
557 * Page may still be unevictable for other reasons.
558 *
559 * lru_lock must not be held, interrupts must be enabled.
560 */
561 void putback_lru_page(struct page *page)
562 {
563 int lru;
564 int active = !!TestClearPageActive(page);
565 int was_unevictable = PageUnevictable(page);
566
567 VM_BUG_ON(PageLRU(page));
568
569 redo:
570 ClearPageUnevictable(page);
571
572 if (page_evictable(page, NULL)) {
573 /*
574 * For evictable pages, we can use the cache.
575 * In event of a race, worst case is we end up with an
576 * unevictable page on [in]active list.
577 * We know how to handle that.
578 */
579 lru = active + page_lru_base_type(page);
580 lru_cache_add_lru(page, lru);
581 } else {
582 /*
583 * Put unevictable pages directly on zone's unevictable
584 * list.
585 */
586 lru = LRU_UNEVICTABLE;
587 add_page_to_unevictable_list(page);
588 /*
589 * When racing with an mlock clearing (page is
590 * unlocked), make sure that if the other thread does
591 * not observe our setting of PG_lru and fails
592 * isolation, we see PG_mlocked cleared below and move
593 * the page back to the evictable list.
594 *
595 * The other side is TestClearPageMlocked().
596 */
597 smp_mb();
598 }
599
600 /*
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
604 */
605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 if (!isolate_lru_page(page)) {
607 put_page(page);
608 goto redo;
609 }
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
613 */
614 }
615
616 if (was_unevictable && lru != LRU_UNEVICTABLE)
617 count_vm_event(UNEVICTABLE_PGRESCUED);
618 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 count_vm_event(UNEVICTABLE_PGCULLED);
620
621 put_page(page); /* drop ref from isolate */
622 }
623
624 enum page_references {
625 PAGEREF_RECLAIM,
626 PAGEREF_RECLAIM_CLEAN,
627 PAGEREF_KEEP,
628 PAGEREF_ACTIVATE,
629 };
630
631 static enum page_references page_check_references(struct page *page,
632 struct scan_control *sc)
633 {
634 int referenced_ptes, referenced_page;
635 unsigned long vm_flags;
636
637 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
638 referenced_page = TestClearPageReferenced(page);
639
640 /* Lumpy reclaim - ignore references */
641 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
642 return PAGEREF_RECLAIM;
643
644 /*
645 * Mlock lost the isolation race with us. Let try_to_unmap()
646 * move the page to the unevictable list.
647 */
648 if (vm_flags & VM_LOCKED)
649 return PAGEREF_RECLAIM;
650
651 if (referenced_ptes) {
652 if (PageAnon(page))
653 return PAGEREF_ACTIVATE;
654 /*
655 * All mapped pages start out with page table
656 * references from the instantiating fault, so we need
657 * to look twice if a mapped file page is used more
658 * than once.
659 *
660 * Mark it and spare it for another trip around the
661 * inactive list. Another page table reference will
662 * lead to its activation.
663 *
664 * Note: the mark is set for activated pages as well
665 * so that recently deactivated but used pages are
666 * quickly recovered.
667 */
668 SetPageReferenced(page);
669
670 if (referenced_page)
671 return PAGEREF_ACTIVATE;
672
673 return PAGEREF_KEEP;
674 }
675
676 /* Reclaim if clean, defer dirty pages to writeback */
677 if (referenced_page && !PageSwapBacked(page))
678 return PAGEREF_RECLAIM_CLEAN;
679
680 return PAGEREF_RECLAIM;
681 }
682
683 static noinline_for_stack void free_page_list(struct list_head *free_pages)
684 {
685 struct pagevec freed_pvec;
686 struct page *page, *tmp;
687
688 pagevec_init(&freed_pvec, 1);
689
690 list_for_each_entry_safe(page, tmp, free_pages, lru) {
691 list_del(&page->lru);
692 if (!pagevec_add(&freed_pvec, page)) {
693 __pagevec_free(&freed_pvec);
694 pagevec_reinit(&freed_pvec);
695 }
696 }
697
698 pagevec_free(&freed_pvec);
699 }
700
701 /*
702 * shrink_page_list() returns the number of reclaimed pages
703 */
704 static unsigned long shrink_page_list(struct list_head *page_list,
705 struct zone *zone,
706 struct scan_control *sc)
707 {
708 LIST_HEAD(ret_pages);
709 LIST_HEAD(free_pages);
710 int pgactivate = 0;
711 unsigned long nr_dirty = 0;
712 unsigned long nr_congested = 0;
713 unsigned long nr_reclaimed = 0;
714
715 cond_resched();
716
717 while (!list_empty(page_list)) {
718 enum page_references references;
719 struct address_space *mapping;
720 struct page *page;
721 int may_enter_fs;
722
723 cond_resched();
724
725 page = lru_to_page(page_list);
726 list_del(&page->lru);
727
728 if (!trylock_page(page))
729 goto keep;
730
731 VM_BUG_ON(PageActive(page));
732 VM_BUG_ON(page_zone(page) != zone);
733
734 sc->nr_scanned++;
735
736 if (unlikely(!page_evictable(page, NULL)))
737 goto cull_mlocked;
738
739 if (!sc->may_unmap && page_mapped(page))
740 goto keep_locked;
741
742 /* Double the slab pressure for mapped and swapcache pages */
743 if (page_mapped(page) || PageSwapCache(page))
744 sc->nr_scanned++;
745
746 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
747 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
748
749 if (PageWriteback(page)) {
750 /*
751 * Synchronous reclaim is performed in two passes,
752 * first an asynchronous pass over the list to
753 * start parallel writeback, and a second synchronous
754 * pass to wait for the IO to complete. Wait here
755 * for any page for which writeback has already
756 * started.
757 */
758 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
759 may_enter_fs)
760 wait_on_page_writeback(page);
761 else {
762 unlock_page(page);
763 goto keep_lumpy;
764 }
765 }
766
767 references = page_check_references(page, sc);
768 switch (references) {
769 case PAGEREF_ACTIVATE:
770 goto activate_locked;
771 case PAGEREF_KEEP:
772 goto keep_locked;
773 case PAGEREF_RECLAIM:
774 case PAGEREF_RECLAIM_CLEAN:
775 ; /* try to reclaim the page below */
776 }
777
778 /*
779 * Anonymous process memory has backing store?
780 * Try to allocate it some swap space here.
781 */
782 if (PageAnon(page) && !PageSwapCache(page)) {
783 if (!(sc->gfp_mask & __GFP_IO))
784 goto keep_locked;
785 if (!add_to_swap(page))
786 goto activate_locked;
787 may_enter_fs = 1;
788 }
789
790 mapping = page_mapping(page);
791
792 /*
793 * The page is mapped into the page tables of one or more
794 * processes. Try to unmap it here.
795 */
796 if (page_mapped(page) && mapping) {
797 switch (try_to_unmap(page, TTU_UNMAP)) {
798 case SWAP_FAIL:
799 goto activate_locked;
800 case SWAP_AGAIN:
801 goto keep_locked;
802 case SWAP_MLOCK:
803 goto cull_mlocked;
804 case SWAP_SUCCESS:
805 ; /* try to free the page below */
806 }
807 }
808
809 if (PageDirty(page)) {
810 nr_dirty++;
811
812 if (references == PAGEREF_RECLAIM_CLEAN)
813 goto keep_locked;
814 if (!may_enter_fs)
815 goto keep_locked;
816 if (!sc->may_writepage)
817 goto keep_locked;
818
819 /* Page is dirty, try to write it out here */
820 switch (pageout(page, mapping, sc)) {
821 case PAGE_KEEP:
822 nr_congested++;
823 goto keep_locked;
824 case PAGE_ACTIVATE:
825 goto activate_locked;
826 case PAGE_SUCCESS:
827 if (PageWriteback(page))
828 goto keep_lumpy;
829 if (PageDirty(page))
830 goto keep;
831
832 /*
833 * A synchronous write - probably a ramdisk. Go
834 * ahead and try to reclaim the page.
835 */
836 if (!trylock_page(page))
837 goto keep;
838 if (PageDirty(page) || PageWriteback(page))
839 goto keep_locked;
840 mapping = page_mapping(page);
841 case PAGE_CLEAN:
842 ; /* try to free the page below */
843 }
844 }
845
846 /*
847 * If the page has buffers, try to free the buffer mappings
848 * associated with this page. If we succeed we try to free
849 * the page as well.
850 *
851 * We do this even if the page is PageDirty().
852 * try_to_release_page() does not perform I/O, but it is
853 * possible for a page to have PageDirty set, but it is actually
854 * clean (all its buffers are clean). This happens if the
855 * buffers were written out directly, with submit_bh(). ext3
856 * will do this, as well as the blockdev mapping.
857 * try_to_release_page() will discover that cleanness and will
858 * drop the buffers and mark the page clean - it can be freed.
859 *
860 * Rarely, pages can have buffers and no ->mapping. These are
861 * the pages which were not successfully invalidated in
862 * truncate_complete_page(). We try to drop those buffers here
863 * and if that worked, and the page is no longer mapped into
864 * process address space (page_count == 1) it can be freed.
865 * Otherwise, leave the page on the LRU so it is swappable.
866 */
867 if (page_has_private(page)) {
868 if (!try_to_release_page(page, sc->gfp_mask))
869 goto activate_locked;
870 if (!mapping && page_count(page) == 1) {
871 unlock_page(page);
872 if (put_page_testzero(page))
873 goto free_it;
874 else {
875 /*
876 * rare race with speculative reference.
877 * the speculative reference will free
878 * this page shortly, so we may
879 * increment nr_reclaimed here (and
880 * leave it off the LRU).
881 */
882 nr_reclaimed++;
883 continue;
884 }
885 }
886 }
887
888 if (!mapping || !__remove_mapping(mapping, page))
889 goto keep_locked;
890
891 /*
892 * At this point, we have no other references and there is
893 * no way to pick any more up (removed from LRU, removed
894 * from pagecache). Can use non-atomic bitops now (and
895 * we obviously don't have to worry about waking up a process
896 * waiting on the page lock, because there are no references.
897 */
898 __clear_page_locked(page);
899 free_it:
900 nr_reclaimed++;
901
902 /*
903 * Is there need to periodically free_page_list? It would
904 * appear not as the counts should be low
905 */
906 list_add(&page->lru, &free_pages);
907 continue;
908
909 cull_mlocked:
910 if (PageSwapCache(page))
911 try_to_free_swap(page);
912 unlock_page(page);
913 putback_lru_page(page);
914 reset_reclaim_mode(sc);
915 continue;
916
917 activate_locked:
918 /* Not a candidate for swapping, so reclaim swap space. */
919 if (PageSwapCache(page) && vm_swap_full())
920 try_to_free_swap(page);
921 VM_BUG_ON(PageActive(page));
922 SetPageActive(page);
923 pgactivate++;
924 keep_locked:
925 unlock_page(page);
926 keep:
927 reset_reclaim_mode(sc);
928 keep_lumpy:
929 list_add(&page->lru, &ret_pages);
930 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
931 }
932
933 /*
934 * Tag a zone as congested if all the dirty pages encountered were
935 * backed by a congested BDI. In this case, reclaimers should just
936 * back off and wait for congestion to clear because further reclaim
937 * will encounter the same problem
938 */
939 if (nr_dirty == nr_congested && nr_dirty != 0)
940 zone_set_flag(zone, ZONE_CONGESTED);
941
942 free_page_list(&free_pages);
943
944 list_splice(&ret_pages, page_list);
945 count_vm_events(PGACTIVATE, pgactivate);
946 return nr_reclaimed;
947 }
948
949 /*
950 * Attempt to remove the specified page from its LRU. Only take this page
951 * if it is of the appropriate PageActive status. Pages which are being
952 * freed elsewhere are also ignored.
953 *
954 * page: page to consider
955 * mode: one of the LRU isolation modes defined above
956 *
957 * returns 0 on success, -ve errno on failure.
958 */
959 int __isolate_lru_page(struct page *page, int mode, int file)
960 {
961 int ret = -EINVAL;
962
963 /* Only take pages on the LRU. */
964 if (!PageLRU(page))
965 return ret;
966
967 /*
968 * When checking the active state, we need to be sure we are
969 * dealing with comparible boolean values. Take the logical not
970 * of each.
971 */
972 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
973 return ret;
974
975 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
976 return ret;
977
978 /*
979 * When this function is being called for lumpy reclaim, we
980 * initially look into all LRU pages, active, inactive and
981 * unevictable; only give shrink_page_list evictable pages.
982 */
983 if (PageUnevictable(page))
984 return ret;
985
986 ret = -EBUSY;
987
988 if (likely(get_page_unless_zero(page))) {
989 /*
990 * Be careful not to clear PageLRU until after we're
991 * sure the page is not being freed elsewhere -- the
992 * page release code relies on it.
993 */
994 ClearPageLRU(page);
995 ret = 0;
996 }
997
998 return ret;
999 }
1000
1001 /*
1002 * zone->lru_lock is heavily contended. Some of the functions that
1003 * shrink the lists perform better by taking out a batch of pages
1004 * and working on them outside the LRU lock.
1005 *
1006 * For pagecache intensive workloads, this function is the hottest
1007 * spot in the kernel (apart from copy_*_user functions).
1008 *
1009 * Appropriate locks must be held before calling this function.
1010 *
1011 * @nr_to_scan: The number of pages to look through on the list.
1012 * @src: The LRU list to pull pages off.
1013 * @dst: The temp list to put pages on to.
1014 * @scanned: The number of pages that were scanned.
1015 * @order: The caller's attempted allocation order
1016 * @mode: One of the LRU isolation modes
1017 * @file: True [1] if isolating file [!anon] pages
1018 *
1019 * returns how many pages were moved onto *@dst.
1020 */
1021 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1022 struct list_head *src, struct list_head *dst,
1023 unsigned long *scanned, int order, int mode, int file)
1024 {
1025 unsigned long nr_taken = 0;
1026 unsigned long nr_lumpy_taken = 0;
1027 unsigned long nr_lumpy_dirty = 0;
1028 unsigned long nr_lumpy_failed = 0;
1029 unsigned long scan;
1030
1031 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1032 struct page *page;
1033 unsigned long pfn;
1034 unsigned long end_pfn;
1035 unsigned long page_pfn;
1036 int zone_id;
1037
1038 page = lru_to_page(src);
1039 prefetchw_prev_lru_page(page, src, flags);
1040
1041 VM_BUG_ON(!PageLRU(page));
1042
1043 switch (__isolate_lru_page(page, mode, file)) {
1044 case 0:
1045 list_move(&page->lru, dst);
1046 mem_cgroup_del_lru(page);
1047 nr_taken++;
1048 break;
1049
1050 case -EBUSY:
1051 /* else it is being freed elsewhere */
1052 list_move(&page->lru, src);
1053 mem_cgroup_rotate_lru_list(page, page_lru(page));
1054 continue;
1055
1056 default:
1057 BUG();
1058 }
1059
1060 if (!order)
1061 continue;
1062
1063 /*
1064 * Attempt to take all pages in the order aligned region
1065 * surrounding the tag page. Only take those pages of
1066 * the same active state as that tag page. We may safely
1067 * round the target page pfn down to the requested order
1068 * as the mem_map is guarenteed valid out to MAX_ORDER,
1069 * where that page is in a different zone we will detect
1070 * it from its zone id and abort this block scan.
1071 */
1072 zone_id = page_zone_id(page);
1073 page_pfn = page_to_pfn(page);
1074 pfn = page_pfn & ~((1 << order) - 1);
1075 end_pfn = pfn + (1 << order);
1076 for (; pfn < end_pfn; pfn++) {
1077 struct page *cursor_page;
1078
1079 /* The target page is in the block, ignore it. */
1080 if (unlikely(pfn == page_pfn))
1081 continue;
1082
1083 /* Avoid holes within the zone. */
1084 if (unlikely(!pfn_valid_within(pfn)))
1085 break;
1086
1087 cursor_page = pfn_to_page(pfn);
1088
1089 /* Check that we have not crossed a zone boundary. */
1090 if (unlikely(page_zone_id(cursor_page) != zone_id))
1091 break;
1092
1093 /*
1094 * If we don't have enough swap space, reclaiming of
1095 * anon page which don't already have a swap slot is
1096 * pointless.
1097 */
1098 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1099 !PageSwapCache(cursor_page))
1100 break;
1101
1102 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1103 list_move(&cursor_page->lru, dst);
1104 mem_cgroup_del_lru(cursor_page);
1105 nr_taken++;
1106 nr_lumpy_taken++;
1107 if (PageDirty(cursor_page))
1108 nr_lumpy_dirty++;
1109 scan++;
1110 } else {
1111 /* the page is freed already. */
1112 if (!page_count(cursor_page))
1113 continue;
1114 break;
1115 }
1116 }
1117
1118 /* If we break out of the loop above, lumpy reclaim failed */
1119 if (pfn < end_pfn)
1120 nr_lumpy_failed++;
1121 }
1122
1123 *scanned = scan;
1124
1125 trace_mm_vmscan_lru_isolate(order,
1126 nr_to_scan, scan,
1127 nr_taken,
1128 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1129 mode);
1130 return nr_taken;
1131 }
1132
1133 static unsigned long isolate_pages_global(unsigned long nr,
1134 struct list_head *dst,
1135 unsigned long *scanned, int order,
1136 int mode, struct zone *z,
1137 int active, int file)
1138 {
1139 int lru = LRU_BASE;
1140 if (active)
1141 lru += LRU_ACTIVE;
1142 if (file)
1143 lru += LRU_FILE;
1144 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1145 mode, file);
1146 }
1147
1148 /*
1149 * clear_active_flags() is a helper for shrink_active_list(), clearing
1150 * any active bits from the pages in the list.
1151 */
1152 static unsigned long clear_active_flags(struct list_head *page_list,
1153 unsigned int *count)
1154 {
1155 int nr_active = 0;
1156 int lru;
1157 struct page *page;
1158
1159 list_for_each_entry(page, page_list, lru) {
1160 lru = page_lru_base_type(page);
1161 if (PageActive(page)) {
1162 lru += LRU_ACTIVE;
1163 ClearPageActive(page);
1164 nr_active++;
1165 }
1166 if (count)
1167 count[lru]++;
1168 }
1169
1170 return nr_active;
1171 }
1172
1173 /**
1174 * isolate_lru_page - tries to isolate a page from its LRU list
1175 * @page: page to isolate from its LRU list
1176 *
1177 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1178 * vmstat statistic corresponding to whatever LRU list the page was on.
1179 *
1180 * Returns 0 if the page was removed from an LRU list.
1181 * Returns -EBUSY if the page was not on an LRU list.
1182 *
1183 * The returned page will have PageLRU() cleared. If it was found on
1184 * the active list, it will have PageActive set. If it was found on
1185 * the unevictable list, it will have the PageUnevictable bit set. That flag
1186 * may need to be cleared by the caller before letting the page go.
1187 *
1188 * The vmstat statistic corresponding to the list on which the page was
1189 * found will be decremented.
1190 *
1191 * Restrictions:
1192 * (1) Must be called with an elevated refcount on the page. This is a
1193 * fundamentnal difference from isolate_lru_pages (which is called
1194 * without a stable reference).
1195 * (2) the lru_lock must not be held.
1196 * (3) interrupts must be enabled.
1197 */
1198 int isolate_lru_page(struct page *page)
1199 {
1200 int ret = -EBUSY;
1201
1202 if (PageLRU(page)) {
1203 struct zone *zone = page_zone(page);
1204
1205 spin_lock_irq(&zone->lru_lock);
1206 if (PageLRU(page) && get_page_unless_zero(page)) {
1207 int lru = page_lru(page);
1208 ret = 0;
1209 ClearPageLRU(page);
1210
1211 del_page_from_lru_list(zone, page, lru);
1212 }
1213 spin_unlock_irq(&zone->lru_lock);
1214 }
1215 return ret;
1216 }
1217
1218 /*
1219 * Are there way too many processes in the direct reclaim path already?
1220 */
1221 static int too_many_isolated(struct zone *zone, int file,
1222 struct scan_control *sc)
1223 {
1224 unsigned long inactive, isolated;
1225
1226 if (current_is_kswapd())
1227 return 0;
1228
1229 if (!scanning_global_lru(sc))
1230 return 0;
1231
1232 if (file) {
1233 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1234 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1235 } else {
1236 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1237 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1238 }
1239
1240 return isolated > inactive;
1241 }
1242
1243 /*
1244 * TODO: Try merging with migrations version of putback_lru_pages
1245 */
1246 static noinline_for_stack void
1247 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1248 unsigned long nr_anon, unsigned long nr_file,
1249 struct list_head *page_list)
1250 {
1251 struct page *page;
1252 struct pagevec pvec;
1253 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1254
1255 pagevec_init(&pvec, 1);
1256
1257 /*
1258 * Put back any unfreeable pages.
1259 */
1260 spin_lock(&zone->lru_lock);
1261 while (!list_empty(page_list)) {
1262 int lru;
1263 page = lru_to_page(page_list);
1264 VM_BUG_ON(PageLRU(page));
1265 list_del(&page->lru);
1266 if (unlikely(!page_evictable(page, NULL))) {
1267 spin_unlock_irq(&zone->lru_lock);
1268 putback_lru_page(page);
1269 spin_lock_irq(&zone->lru_lock);
1270 continue;
1271 }
1272 SetPageLRU(page);
1273 lru = page_lru(page);
1274 add_page_to_lru_list(zone, page, lru);
1275 if (is_active_lru(lru)) {
1276 int file = is_file_lru(lru);
1277 reclaim_stat->recent_rotated[file]++;
1278 }
1279 if (!pagevec_add(&pvec, page)) {
1280 spin_unlock_irq(&zone->lru_lock);
1281 __pagevec_release(&pvec);
1282 spin_lock_irq(&zone->lru_lock);
1283 }
1284 }
1285 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1286 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1287
1288 spin_unlock_irq(&zone->lru_lock);
1289 pagevec_release(&pvec);
1290 }
1291
1292 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1293 struct scan_control *sc,
1294 unsigned long *nr_anon,
1295 unsigned long *nr_file,
1296 struct list_head *isolated_list)
1297 {
1298 unsigned long nr_active;
1299 unsigned int count[NR_LRU_LISTS] = { 0, };
1300 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1301
1302 nr_active = clear_active_flags(isolated_list, count);
1303 __count_vm_events(PGDEACTIVATE, nr_active);
1304
1305 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1306 -count[LRU_ACTIVE_FILE]);
1307 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1308 -count[LRU_INACTIVE_FILE]);
1309 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1310 -count[LRU_ACTIVE_ANON]);
1311 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1312 -count[LRU_INACTIVE_ANON]);
1313
1314 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1315 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1316 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1317 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1318
1319 reclaim_stat->recent_scanned[0] += *nr_anon;
1320 reclaim_stat->recent_scanned[1] += *nr_file;
1321 }
1322
1323 /*
1324 * Returns true if the caller should wait to clean dirty/writeback pages.
1325 *
1326 * If we are direct reclaiming for contiguous pages and we do not reclaim
1327 * everything in the list, try again and wait for writeback IO to complete.
1328 * This will stall high-order allocations noticeably. Only do that when really
1329 * need to free the pages under high memory pressure.
1330 */
1331 static inline bool should_reclaim_stall(unsigned long nr_taken,
1332 unsigned long nr_freed,
1333 int priority,
1334 struct scan_control *sc)
1335 {
1336 int lumpy_stall_priority;
1337
1338 /* kswapd should not stall on sync IO */
1339 if (current_is_kswapd())
1340 return false;
1341
1342 /* Only stall on lumpy reclaim */
1343 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1344 return false;
1345
1346 /* If we have relaimed everything on the isolated list, no stall */
1347 if (nr_freed == nr_taken)
1348 return false;
1349
1350 /*
1351 * For high-order allocations, there are two stall thresholds.
1352 * High-cost allocations stall immediately where as lower
1353 * order allocations such as stacks require the scanning
1354 * priority to be much higher before stalling.
1355 */
1356 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1357 lumpy_stall_priority = DEF_PRIORITY;
1358 else
1359 lumpy_stall_priority = DEF_PRIORITY / 3;
1360
1361 return priority <= lumpy_stall_priority;
1362 }
1363
1364 /*
1365 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1366 * of reclaimed pages
1367 */
1368 static noinline_for_stack unsigned long
1369 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1370 struct scan_control *sc, int priority, int file)
1371 {
1372 LIST_HEAD(page_list);
1373 unsigned long nr_scanned;
1374 unsigned long nr_reclaimed = 0;
1375 unsigned long nr_taken;
1376 unsigned long nr_anon;
1377 unsigned long nr_file;
1378
1379 while (unlikely(too_many_isolated(zone, file, sc))) {
1380 congestion_wait(BLK_RW_ASYNC, HZ/10);
1381
1382 /* We are about to die and free our memory. Return now. */
1383 if (fatal_signal_pending(current))
1384 return SWAP_CLUSTER_MAX;
1385 }
1386
1387 set_reclaim_mode(priority, sc, false);
1388 lru_add_drain();
1389 spin_lock_irq(&zone->lru_lock);
1390
1391 if (scanning_global_lru(sc)) {
1392 nr_taken = isolate_pages_global(nr_to_scan,
1393 &page_list, &nr_scanned, sc->order,
1394 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1395 ISOLATE_BOTH : ISOLATE_INACTIVE,
1396 zone, 0, file);
1397 zone->pages_scanned += nr_scanned;
1398 if (current_is_kswapd())
1399 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1400 nr_scanned);
1401 else
1402 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1403 nr_scanned);
1404 } else {
1405 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1406 &page_list, &nr_scanned, sc->order,
1407 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1408 ISOLATE_BOTH : ISOLATE_INACTIVE,
1409 zone, sc->mem_cgroup,
1410 0, file);
1411 /*
1412 * mem_cgroup_isolate_pages() keeps track of
1413 * scanned pages on its own.
1414 */
1415 }
1416
1417 if (nr_taken == 0) {
1418 spin_unlock_irq(&zone->lru_lock);
1419 return 0;
1420 }
1421
1422 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1423
1424 spin_unlock_irq(&zone->lru_lock);
1425
1426 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1427
1428 /* Check if we should syncronously wait for writeback */
1429 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1430 set_reclaim_mode(priority, sc, true);
1431 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1432 }
1433
1434 local_irq_disable();
1435 if (current_is_kswapd())
1436 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1437 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1438
1439 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1440
1441 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1442 zone_idx(zone),
1443 nr_scanned, nr_reclaimed,
1444 priority,
1445 trace_shrink_flags(file, sc->reclaim_mode));
1446 return nr_reclaimed;
1447 }
1448
1449 /*
1450 * This moves pages from the active list to the inactive list.
1451 *
1452 * We move them the other way if the page is referenced by one or more
1453 * processes, from rmap.
1454 *
1455 * If the pages are mostly unmapped, the processing is fast and it is
1456 * appropriate to hold zone->lru_lock across the whole operation. But if
1457 * the pages are mapped, the processing is slow (page_referenced()) so we
1458 * should drop zone->lru_lock around each page. It's impossible to balance
1459 * this, so instead we remove the pages from the LRU while processing them.
1460 * It is safe to rely on PG_active against the non-LRU pages in here because
1461 * nobody will play with that bit on a non-LRU page.
1462 *
1463 * The downside is that we have to touch page->_count against each page.
1464 * But we had to alter page->flags anyway.
1465 */
1466
1467 static void move_active_pages_to_lru(struct zone *zone,
1468 struct list_head *list,
1469 enum lru_list lru)
1470 {
1471 unsigned long pgmoved = 0;
1472 struct pagevec pvec;
1473 struct page *page;
1474
1475 pagevec_init(&pvec, 1);
1476
1477 while (!list_empty(list)) {
1478 page = lru_to_page(list);
1479
1480 VM_BUG_ON(PageLRU(page));
1481 SetPageLRU(page);
1482
1483 list_move(&page->lru, &zone->lru[lru].list);
1484 mem_cgroup_add_lru_list(page, lru);
1485 pgmoved++;
1486
1487 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1488 spin_unlock_irq(&zone->lru_lock);
1489 if (buffer_heads_over_limit)
1490 pagevec_strip(&pvec);
1491 __pagevec_release(&pvec);
1492 spin_lock_irq(&zone->lru_lock);
1493 }
1494 }
1495 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1496 if (!is_active_lru(lru))
1497 __count_vm_events(PGDEACTIVATE, pgmoved);
1498 }
1499
1500 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1501 struct scan_control *sc, int priority, int file)
1502 {
1503 unsigned long nr_taken;
1504 unsigned long pgscanned;
1505 unsigned long vm_flags;
1506 LIST_HEAD(l_hold); /* The pages which were snipped off */
1507 LIST_HEAD(l_active);
1508 LIST_HEAD(l_inactive);
1509 struct page *page;
1510 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1511 unsigned long nr_rotated = 0;
1512
1513 lru_add_drain();
1514 spin_lock_irq(&zone->lru_lock);
1515 if (scanning_global_lru(sc)) {
1516 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1517 &pgscanned, sc->order,
1518 ISOLATE_ACTIVE, zone,
1519 1, file);
1520 zone->pages_scanned += pgscanned;
1521 } else {
1522 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1523 &pgscanned, sc->order,
1524 ISOLATE_ACTIVE, zone,
1525 sc->mem_cgroup, 1, file);
1526 /*
1527 * mem_cgroup_isolate_pages() keeps track of
1528 * scanned pages on its own.
1529 */
1530 }
1531
1532 reclaim_stat->recent_scanned[file] += nr_taken;
1533
1534 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1535 if (file)
1536 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1537 else
1538 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1539 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1540 spin_unlock_irq(&zone->lru_lock);
1541
1542 while (!list_empty(&l_hold)) {
1543 cond_resched();
1544 page = lru_to_page(&l_hold);
1545 list_del(&page->lru);
1546
1547 if (unlikely(!page_evictable(page, NULL))) {
1548 putback_lru_page(page);
1549 continue;
1550 }
1551
1552 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1553 nr_rotated++;
1554 /*
1555 * Identify referenced, file-backed active pages and
1556 * give them one more trip around the active list. So
1557 * that executable code get better chances to stay in
1558 * memory under moderate memory pressure. Anon pages
1559 * are not likely to be evicted by use-once streaming
1560 * IO, plus JVM can create lots of anon VM_EXEC pages,
1561 * so we ignore them here.
1562 */
1563 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1564 list_add(&page->lru, &l_active);
1565 continue;
1566 }
1567 }
1568
1569 ClearPageActive(page); /* we are de-activating */
1570 list_add(&page->lru, &l_inactive);
1571 }
1572
1573 /*
1574 * Move pages back to the lru list.
1575 */
1576 spin_lock_irq(&zone->lru_lock);
1577 /*
1578 * Count referenced pages from currently used mappings as rotated,
1579 * even though only some of them are actually re-activated. This
1580 * helps balance scan pressure between file and anonymous pages in
1581 * get_scan_ratio.
1582 */
1583 reclaim_stat->recent_rotated[file] += nr_rotated;
1584
1585 move_active_pages_to_lru(zone, &l_active,
1586 LRU_ACTIVE + file * LRU_FILE);
1587 move_active_pages_to_lru(zone, &l_inactive,
1588 LRU_BASE + file * LRU_FILE);
1589 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1590 spin_unlock_irq(&zone->lru_lock);
1591 }
1592
1593 #ifdef CONFIG_SWAP
1594 static int inactive_anon_is_low_global(struct zone *zone)
1595 {
1596 unsigned long active, inactive;
1597
1598 active = zone_page_state(zone, NR_ACTIVE_ANON);
1599 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1600
1601 if (inactive * zone->inactive_ratio < active)
1602 return 1;
1603
1604 return 0;
1605 }
1606
1607 /**
1608 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1609 * @zone: zone to check
1610 * @sc: scan control of this context
1611 *
1612 * Returns true if the zone does not have enough inactive anon pages,
1613 * meaning some active anon pages need to be deactivated.
1614 */
1615 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1616 {
1617 int low;
1618
1619 /*
1620 * If we don't have swap space, anonymous page deactivation
1621 * is pointless.
1622 */
1623 if (!total_swap_pages)
1624 return 0;
1625
1626 if (scanning_global_lru(sc))
1627 low = inactive_anon_is_low_global(zone);
1628 else
1629 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1630 return low;
1631 }
1632 #else
1633 static inline int inactive_anon_is_low(struct zone *zone,
1634 struct scan_control *sc)
1635 {
1636 return 0;
1637 }
1638 #endif
1639
1640 static int inactive_file_is_low_global(struct zone *zone)
1641 {
1642 unsigned long active, inactive;
1643
1644 active = zone_page_state(zone, NR_ACTIVE_FILE);
1645 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1646
1647 return (active > inactive);
1648 }
1649
1650 /**
1651 * inactive_file_is_low - check if file pages need to be deactivated
1652 * @zone: zone to check
1653 * @sc: scan control of this context
1654 *
1655 * When the system is doing streaming IO, memory pressure here
1656 * ensures that active file pages get deactivated, until more
1657 * than half of the file pages are on the inactive list.
1658 *
1659 * Once we get to that situation, protect the system's working
1660 * set from being evicted by disabling active file page aging.
1661 *
1662 * This uses a different ratio than the anonymous pages, because
1663 * the page cache uses a use-once replacement algorithm.
1664 */
1665 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1666 {
1667 int low;
1668
1669 if (scanning_global_lru(sc))
1670 low = inactive_file_is_low_global(zone);
1671 else
1672 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1673 return low;
1674 }
1675
1676 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1677 int file)
1678 {
1679 if (file)
1680 return inactive_file_is_low(zone, sc);
1681 else
1682 return inactive_anon_is_low(zone, sc);
1683 }
1684
1685 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1686 struct zone *zone, struct scan_control *sc, int priority)
1687 {
1688 int file = is_file_lru(lru);
1689
1690 if (is_active_lru(lru)) {
1691 if (inactive_list_is_low(zone, sc, file))
1692 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1693 return 0;
1694 }
1695
1696 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1697 }
1698
1699 /*
1700 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1701 * until we collected @swap_cluster_max pages to scan.
1702 */
1703 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1704 unsigned long *nr_saved_scan)
1705 {
1706 unsigned long nr;
1707
1708 *nr_saved_scan += nr_to_scan;
1709 nr = *nr_saved_scan;
1710
1711 if (nr >= SWAP_CLUSTER_MAX)
1712 *nr_saved_scan = 0;
1713 else
1714 nr = 0;
1715
1716 return nr;
1717 }
1718
1719 /*
1720 * Determine how aggressively the anon and file LRU lists should be
1721 * scanned. The relative value of each set of LRU lists is determined
1722 * by looking at the fraction of the pages scanned we did rotate back
1723 * onto the active list instead of evict.
1724 *
1725 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1726 */
1727 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1728 unsigned long *nr, int priority)
1729 {
1730 unsigned long anon, file, free;
1731 unsigned long anon_prio, file_prio;
1732 unsigned long ap, fp;
1733 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1734 u64 fraction[2], denominator;
1735 enum lru_list l;
1736 int noswap = 0;
1737
1738 /* If we have no swap space, do not bother scanning anon pages. */
1739 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1740 noswap = 1;
1741 fraction[0] = 0;
1742 fraction[1] = 1;
1743 denominator = 1;
1744 goto out;
1745 }
1746
1747 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1748 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1749 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1750 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1751
1752 if (scanning_global_lru(sc)) {
1753 free = zone_page_state(zone, NR_FREE_PAGES);
1754 /* If we have very few page cache pages,
1755 force-scan anon pages. */
1756 if (unlikely(file + free <= high_wmark_pages(zone))) {
1757 fraction[0] = 1;
1758 fraction[1] = 0;
1759 denominator = 1;
1760 goto out;
1761 }
1762 }
1763
1764 /*
1765 * With swappiness at 100, anonymous and file have the same priority.
1766 * This scanning priority is essentially the inverse of IO cost.
1767 */
1768 anon_prio = sc->swappiness;
1769 file_prio = 200 - sc->swappiness;
1770
1771 /*
1772 * OK, so we have swap space and a fair amount of page cache
1773 * pages. We use the recently rotated / recently scanned
1774 * ratios to determine how valuable each cache is.
1775 *
1776 * Because workloads change over time (and to avoid overflow)
1777 * we keep these statistics as a floating average, which ends
1778 * up weighing recent references more than old ones.
1779 *
1780 * anon in [0], file in [1]
1781 */
1782 spin_lock_irq(&zone->lru_lock);
1783 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1784 reclaim_stat->recent_scanned[0] /= 2;
1785 reclaim_stat->recent_rotated[0] /= 2;
1786 }
1787
1788 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1789 reclaim_stat->recent_scanned[1] /= 2;
1790 reclaim_stat->recent_rotated[1] /= 2;
1791 }
1792
1793 /*
1794 * The amount of pressure on anon vs file pages is inversely
1795 * proportional to the fraction of recently scanned pages on
1796 * each list that were recently referenced and in active use.
1797 */
1798 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1799 ap /= reclaim_stat->recent_rotated[0] + 1;
1800
1801 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1802 fp /= reclaim_stat->recent_rotated[1] + 1;
1803 spin_unlock_irq(&zone->lru_lock);
1804
1805 fraction[0] = ap;
1806 fraction[1] = fp;
1807 denominator = ap + fp + 1;
1808 out:
1809 for_each_evictable_lru(l) {
1810 int file = is_file_lru(l);
1811 unsigned long scan;
1812
1813 scan = zone_nr_lru_pages(zone, sc, l);
1814 if (priority || noswap) {
1815 scan >>= priority;
1816 scan = div64_u64(scan * fraction[file], denominator);
1817 }
1818 nr[l] = nr_scan_try_batch(scan,
1819 &reclaim_stat->nr_saved_scan[l]);
1820 }
1821 }
1822
1823 /*
1824 * Reclaim/compaction depends on a number of pages being freed. To avoid
1825 * disruption to the system, a small number of order-0 pages continue to be
1826 * rotated and reclaimed in the normal fashion. However, by the time we get
1827 * back to the allocator and call try_to_compact_zone(), we ensure that
1828 * there are enough free pages for it to be likely successful
1829 */
1830 static inline bool should_continue_reclaim(struct zone *zone,
1831 unsigned long nr_reclaimed,
1832 unsigned long nr_scanned,
1833 struct scan_control *sc)
1834 {
1835 unsigned long pages_for_compaction;
1836 unsigned long inactive_lru_pages;
1837
1838 /* If not in reclaim/compaction mode, stop */
1839 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1840 return false;
1841
1842 /*
1843 * If we failed to reclaim and have scanned the full list, stop.
1844 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
1845 * faster but obviously would be less likely to succeed
1846 * allocation. If this is desirable, use GFP_REPEAT to decide
1847 * if both reclaimed and scanned should be checked or just
1848 * reclaimed
1849 */
1850 if (!nr_reclaimed && !nr_scanned)
1851 return false;
1852
1853 /*
1854 * If we have not reclaimed enough pages for compaction and the
1855 * inactive lists are large enough, continue reclaiming
1856 */
1857 pages_for_compaction = (2UL << sc->order);
1858 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1859 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1860 if (sc->nr_reclaimed < pages_for_compaction &&
1861 inactive_lru_pages > pages_for_compaction)
1862 return true;
1863
1864 /* If compaction would go ahead or the allocation would succeed, stop */
1865 switch (compaction_suitable(zone, sc->order)) {
1866 case COMPACT_PARTIAL:
1867 case COMPACT_CONTINUE:
1868 return false;
1869 default:
1870 return true;
1871 }
1872 }
1873
1874 /*
1875 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1876 */
1877 static void shrink_zone(int priority, struct zone *zone,
1878 struct scan_control *sc)
1879 {
1880 unsigned long nr[NR_LRU_LISTS];
1881 unsigned long nr_to_scan;
1882 enum lru_list l;
1883 unsigned long nr_reclaimed;
1884 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1885 unsigned long nr_scanned = sc->nr_scanned;
1886
1887 restart:
1888 nr_reclaimed = 0;
1889 get_scan_count(zone, sc, nr, priority);
1890
1891 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1892 nr[LRU_INACTIVE_FILE]) {
1893 for_each_evictable_lru(l) {
1894 if (nr[l]) {
1895 nr_to_scan = min_t(unsigned long,
1896 nr[l], SWAP_CLUSTER_MAX);
1897 nr[l] -= nr_to_scan;
1898
1899 nr_reclaimed += shrink_list(l, nr_to_scan,
1900 zone, sc, priority);
1901 }
1902 }
1903 /*
1904 * On large memory systems, scan >> priority can become
1905 * really large. This is fine for the starting priority;
1906 * we want to put equal scanning pressure on each zone.
1907 * However, if the VM has a harder time of freeing pages,
1908 * with multiple processes reclaiming pages, the total
1909 * freeing target can get unreasonably large.
1910 */
1911 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1912 break;
1913 }
1914 sc->nr_reclaimed += nr_reclaimed;
1915
1916 /*
1917 * Even if we did not try to evict anon pages at all, we want to
1918 * rebalance the anon lru active/inactive ratio.
1919 */
1920 if (inactive_anon_is_low(zone, sc))
1921 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1922
1923 /* reclaim/compaction might need reclaim to continue */
1924 if (should_continue_reclaim(zone, nr_reclaimed,
1925 sc->nr_scanned - nr_scanned, sc))
1926 goto restart;
1927
1928 throttle_vm_writeout(sc->gfp_mask);
1929 }
1930
1931 /*
1932 * This is the direct reclaim path, for page-allocating processes. We only
1933 * try to reclaim pages from zones which will satisfy the caller's allocation
1934 * request.
1935 *
1936 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1937 * Because:
1938 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1939 * allocation or
1940 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1941 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1942 * zone defense algorithm.
1943 *
1944 * If a zone is deemed to be full of pinned pages then just give it a light
1945 * scan then give up on it.
1946 */
1947 static void shrink_zones(int priority, struct zonelist *zonelist,
1948 struct scan_control *sc)
1949 {
1950 struct zoneref *z;
1951 struct zone *zone;
1952
1953 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1954 gfp_zone(sc->gfp_mask), sc->nodemask) {
1955 if (!populated_zone(zone))
1956 continue;
1957 /*
1958 * Take care memory controller reclaiming has small influence
1959 * to global LRU.
1960 */
1961 if (scanning_global_lru(sc)) {
1962 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1963 continue;
1964 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1965 continue; /* Let kswapd poll it */
1966 }
1967
1968 shrink_zone(priority, zone, sc);
1969 }
1970 }
1971
1972 static bool zone_reclaimable(struct zone *zone)
1973 {
1974 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1975 }
1976
1977 /*
1978 * As hibernation is going on, kswapd is freezed so that it can't mark
1979 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1980 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1981 */
1982 static bool all_unreclaimable(struct zonelist *zonelist,
1983 struct scan_control *sc)
1984 {
1985 struct zoneref *z;
1986 struct zone *zone;
1987 bool all_unreclaimable = true;
1988
1989 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1990 gfp_zone(sc->gfp_mask), sc->nodemask) {
1991 if (!populated_zone(zone))
1992 continue;
1993 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1994 continue;
1995 if (zone_reclaimable(zone)) {
1996 all_unreclaimable = false;
1997 break;
1998 }
1999 }
2000
2001 return all_unreclaimable;
2002 }
2003
2004 /*
2005 * This is the main entry point to direct page reclaim.
2006 *
2007 * If a full scan of the inactive list fails to free enough memory then we
2008 * are "out of memory" and something needs to be killed.
2009 *
2010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2011 * high - the zone may be full of dirty or under-writeback pages, which this
2012 * caller can't do much about. We kick the writeback threads and take explicit
2013 * naps in the hope that some of these pages can be written. But if the
2014 * allocating task holds filesystem locks which prevent writeout this might not
2015 * work, and the allocation attempt will fail.
2016 *
2017 * returns: 0, if no pages reclaimed
2018 * else, the number of pages reclaimed
2019 */
2020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2021 struct scan_control *sc)
2022 {
2023 int priority;
2024 unsigned long total_scanned = 0;
2025 struct reclaim_state *reclaim_state = current->reclaim_state;
2026 struct zoneref *z;
2027 struct zone *zone;
2028 unsigned long writeback_threshold;
2029
2030 get_mems_allowed();
2031 delayacct_freepages_start();
2032
2033 if (scanning_global_lru(sc))
2034 count_vm_event(ALLOCSTALL);
2035
2036 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2037 sc->nr_scanned = 0;
2038 if (!priority)
2039 disable_swap_token();
2040 shrink_zones(priority, zonelist, sc);
2041 /*
2042 * Don't shrink slabs when reclaiming memory from
2043 * over limit cgroups
2044 */
2045 if (scanning_global_lru(sc)) {
2046 unsigned long lru_pages = 0;
2047 for_each_zone_zonelist(zone, z, zonelist,
2048 gfp_zone(sc->gfp_mask)) {
2049 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2050 continue;
2051
2052 lru_pages += zone_reclaimable_pages(zone);
2053 }
2054
2055 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2056 if (reclaim_state) {
2057 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2058 reclaim_state->reclaimed_slab = 0;
2059 }
2060 }
2061 total_scanned += sc->nr_scanned;
2062 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2063 goto out;
2064
2065 /*
2066 * Try to write back as many pages as we just scanned. This
2067 * tends to cause slow streaming writers to write data to the
2068 * disk smoothly, at the dirtying rate, which is nice. But
2069 * that's undesirable in laptop mode, where we *want* lumpy
2070 * writeout. So in laptop mode, write out the whole world.
2071 */
2072 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2073 if (total_scanned > writeback_threshold) {
2074 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2075 sc->may_writepage = 1;
2076 }
2077
2078 /* Take a nap, wait for some writeback to complete */
2079 if (!sc->hibernation_mode && sc->nr_scanned &&
2080 priority < DEF_PRIORITY - 2) {
2081 struct zone *preferred_zone;
2082
2083 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2084 NULL, &preferred_zone);
2085 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2086 }
2087 }
2088
2089 out:
2090 delayacct_freepages_end();
2091 put_mems_allowed();
2092
2093 if (sc->nr_reclaimed)
2094 return sc->nr_reclaimed;
2095
2096 /* top priority shrink_zones still had more to do? don't OOM, then */
2097 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2098 return 1;
2099
2100 return 0;
2101 }
2102
2103 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2104 gfp_t gfp_mask, nodemask_t *nodemask)
2105 {
2106 unsigned long nr_reclaimed;
2107 struct scan_control sc = {
2108 .gfp_mask = gfp_mask,
2109 .may_writepage = !laptop_mode,
2110 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2111 .may_unmap = 1,
2112 .may_swap = 1,
2113 .swappiness = vm_swappiness,
2114 .order = order,
2115 .mem_cgroup = NULL,
2116 .nodemask = nodemask,
2117 };
2118
2119 trace_mm_vmscan_direct_reclaim_begin(order,
2120 sc.may_writepage,
2121 gfp_mask);
2122
2123 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2124
2125 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2126
2127 return nr_reclaimed;
2128 }
2129
2130 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2131
2132 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2133 gfp_t gfp_mask, bool noswap,
2134 unsigned int swappiness,
2135 struct zone *zone)
2136 {
2137 struct scan_control sc = {
2138 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2139 .may_writepage = !laptop_mode,
2140 .may_unmap = 1,
2141 .may_swap = !noswap,
2142 .swappiness = swappiness,
2143 .order = 0,
2144 .mem_cgroup = mem,
2145 };
2146 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2147 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2148
2149 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2150 sc.may_writepage,
2151 sc.gfp_mask);
2152
2153 /*
2154 * NOTE: Although we can get the priority field, using it
2155 * here is not a good idea, since it limits the pages we can scan.
2156 * if we don't reclaim here, the shrink_zone from balance_pgdat
2157 * will pick up pages from other mem cgroup's as well. We hack
2158 * the priority and make it zero.
2159 */
2160 shrink_zone(0, zone, &sc);
2161
2162 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2163
2164 return sc.nr_reclaimed;
2165 }
2166
2167 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2168 gfp_t gfp_mask,
2169 bool noswap,
2170 unsigned int swappiness)
2171 {
2172 struct zonelist *zonelist;
2173 unsigned long nr_reclaimed;
2174 struct scan_control sc = {
2175 .may_writepage = !laptop_mode,
2176 .may_unmap = 1,
2177 .may_swap = !noswap,
2178 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2179 .swappiness = swappiness,
2180 .order = 0,
2181 .mem_cgroup = mem_cont,
2182 .nodemask = NULL, /* we don't care the placement */
2183 };
2184
2185 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2186 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2187 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2188
2189 trace_mm_vmscan_memcg_reclaim_begin(0,
2190 sc.may_writepage,
2191 sc.gfp_mask);
2192
2193 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2194
2195 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2196
2197 return nr_reclaimed;
2198 }
2199 #endif
2200
2201 /*
2202 * pgdat_balanced is used when checking if a node is balanced for high-order
2203 * allocations. Only zones that meet watermarks and are in a zone allowed
2204 * by the callers classzone_idx are added to balanced_pages. The total of
2205 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2206 * for the node to be considered balanced. Forcing all zones to be balanced
2207 * for high orders can cause excessive reclaim when there are imbalanced zones.
2208 * The choice of 25% is due to
2209 * o a 16M DMA zone that is balanced will not balance a zone on any
2210 * reasonable sized machine
2211 * o On all other machines, the top zone must be at least a reasonable
2212 * precentage of the middle zones. For example, on 32-bit x86, highmem
2213 * would need to be at least 256M for it to be balance a whole node.
2214 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2215 * to balance a node on its own. These seemed like reasonable ratios.
2216 */
2217 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2218 int classzone_idx)
2219 {
2220 unsigned long present_pages = 0;
2221 int i;
2222
2223 for (i = 0; i <= classzone_idx; i++)
2224 present_pages += pgdat->node_zones[i].present_pages;
2225
2226 return balanced_pages > (present_pages >> 2);
2227 }
2228
2229 /* is kswapd sleeping prematurely? */
2230 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2231 {
2232 int i;
2233 unsigned long balanced = 0;
2234 bool all_zones_ok = true;
2235
2236 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2237 if (remaining)
2238 return 1;
2239
2240 /* Check the watermark levels */
2241 for (i = 0; i < pgdat->nr_zones; i++) {
2242 struct zone *zone = pgdat->node_zones + i;
2243
2244 if (!populated_zone(zone))
2245 continue;
2246
2247 if (zone->all_unreclaimable)
2248 continue;
2249
2250 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2251 0, 0))
2252 all_zones_ok = false;
2253 else
2254 balanced += zone->present_pages;
2255 }
2256
2257 /*
2258 * For high-order requests, the balanced zones must contain at least
2259 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2260 * must be balanced
2261 */
2262 if (order)
2263 return pgdat_balanced(pgdat, balanced, 0);
2264 else
2265 return !all_zones_ok;
2266 }
2267
2268 /*
2269 * For kswapd, balance_pgdat() will work across all this node's zones until
2270 * they are all at high_wmark_pages(zone).
2271 *
2272 * Returns the final order kswapd was reclaiming at
2273 *
2274 * There is special handling here for zones which are full of pinned pages.
2275 * This can happen if the pages are all mlocked, or if they are all used by
2276 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2277 * What we do is to detect the case where all pages in the zone have been
2278 * scanned twice and there has been zero successful reclaim. Mark the zone as
2279 * dead and from now on, only perform a short scan. Basically we're polling
2280 * the zone for when the problem goes away.
2281 *
2282 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2283 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2284 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2285 * lower zones regardless of the number of free pages in the lower zones. This
2286 * interoperates with the page allocator fallback scheme to ensure that aging
2287 * of pages is balanced across the zones.
2288 */
2289 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2290 int classzone_idx)
2291 {
2292 int all_zones_ok;
2293 unsigned long balanced;
2294 int priority;
2295 int i;
2296 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2297 unsigned long total_scanned;
2298 struct reclaim_state *reclaim_state = current->reclaim_state;
2299 struct scan_control sc = {
2300 .gfp_mask = GFP_KERNEL,
2301 .may_unmap = 1,
2302 .may_swap = 1,
2303 /*
2304 * kswapd doesn't want to be bailed out while reclaim. because
2305 * we want to put equal scanning pressure on each zone.
2306 */
2307 .nr_to_reclaim = ULONG_MAX,
2308 .swappiness = vm_swappiness,
2309 .order = order,
2310 .mem_cgroup = NULL,
2311 };
2312 loop_again:
2313 total_scanned = 0;
2314 sc.nr_reclaimed = 0;
2315 sc.may_writepage = !laptop_mode;
2316 count_vm_event(PAGEOUTRUN);
2317
2318 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2319 unsigned long lru_pages = 0;
2320 int has_under_min_watermark_zone = 0;
2321
2322 /* The swap token gets in the way of swapout... */
2323 if (!priority)
2324 disable_swap_token();
2325
2326 all_zones_ok = 1;
2327 balanced = 0;
2328
2329 /*
2330 * Scan in the highmem->dma direction for the highest
2331 * zone which needs scanning
2332 */
2333 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2334 struct zone *zone = pgdat->node_zones + i;
2335
2336 if (!populated_zone(zone))
2337 continue;
2338
2339 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2340 continue;
2341
2342 /*
2343 * Do some background aging of the anon list, to give
2344 * pages a chance to be referenced before reclaiming.
2345 */
2346 if (inactive_anon_is_low(zone, &sc))
2347 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2348 &sc, priority, 0);
2349
2350 if (!zone_watermark_ok_safe(zone, order,
2351 high_wmark_pages(zone), 0, 0)) {
2352 end_zone = i;
2353 break;
2354 }
2355 }
2356 if (i < 0)
2357 goto out;
2358
2359 for (i = 0; i <= end_zone; i++) {
2360 struct zone *zone = pgdat->node_zones + i;
2361
2362 lru_pages += zone_reclaimable_pages(zone);
2363 }
2364
2365 /*
2366 * Now scan the zone in the dma->highmem direction, stopping
2367 * at the last zone which needs scanning.
2368 *
2369 * We do this because the page allocator works in the opposite
2370 * direction. This prevents the page allocator from allocating
2371 * pages behind kswapd's direction of progress, which would
2372 * cause too much scanning of the lower zones.
2373 */
2374 for (i = 0; i <= end_zone; i++) {
2375 struct zone *zone = pgdat->node_zones + i;
2376 int nr_slab;
2377
2378 if (!populated_zone(zone))
2379 continue;
2380
2381 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2382 continue;
2383
2384 sc.nr_scanned = 0;
2385
2386 /*
2387 * Call soft limit reclaim before calling shrink_zone.
2388 * For now we ignore the return value
2389 */
2390 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2391
2392 /*
2393 * We put equal pressure on every zone, unless one
2394 * zone has way too many pages free already.
2395 */
2396 if (!zone_watermark_ok_safe(zone, order,
2397 8*high_wmark_pages(zone), end_zone, 0))
2398 shrink_zone(priority, zone, &sc);
2399 reclaim_state->reclaimed_slab = 0;
2400 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2401 lru_pages);
2402 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2403 total_scanned += sc.nr_scanned;
2404 if (zone->all_unreclaimable)
2405 continue;
2406 if (nr_slab == 0 && !zone_reclaimable(zone))
2407 zone->all_unreclaimable = 1;
2408 /*
2409 * If we've done a decent amount of scanning and
2410 * the reclaim ratio is low, start doing writepage
2411 * even in laptop mode
2412 */
2413 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2414 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2415 sc.may_writepage = 1;
2416
2417 /*
2418 * Compact the zone for higher orders to reduce
2419 * latencies for higher-order allocations that
2420 * would ordinarily call try_to_compact_pages()
2421 */
2422 if (sc.order > PAGE_ALLOC_COSTLY_ORDER)
2423 compact_zone_order(zone, sc.order, sc.gfp_mask,
2424 false);
2425
2426 if (!zone_watermark_ok_safe(zone, order,
2427 high_wmark_pages(zone), end_zone, 0)) {
2428 all_zones_ok = 0;
2429 /*
2430 * We are still under min water mark. This
2431 * means that we have a GFP_ATOMIC allocation
2432 * failure risk. Hurry up!
2433 */
2434 if (!zone_watermark_ok_safe(zone, order,
2435 min_wmark_pages(zone), end_zone, 0))
2436 has_under_min_watermark_zone = 1;
2437 } else {
2438 /*
2439 * If a zone reaches its high watermark,
2440 * consider it to be no longer congested. It's
2441 * possible there are dirty pages backed by
2442 * congested BDIs but as pressure is relieved,
2443 * spectulatively avoid congestion waits
2444 */
2445 zone_clear_flag(zone, ZONE_CONGESTED);
2446 if (i <= classzone_idx)
2447 balanced += zone->present_pages;
2448 }
2449
2450 }
2451 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, classzone_idx)))
2452 break; /* kswapd: all done */
2453 /*
2454 * OK, kswapd is getting into trouble. Take a nap, then take
2455 * another pass across the zones.
2456 */
2457 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2458 if (has_under_min_watermark_zone)
2459 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2460 else
2461 congestion_wait(BLK_RW_ASYNC, HZ/10);
2462 }
2463
2464 /*
2465 * We do this so kswapd doesn't build up large priorities for
2466 * example when it is freeing in parallel with allocators. It
2467 * matches the direct reclaim path behaviour in terms of impact
2468 * on zone->*_priority.
2469 */
2470 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2471 break;
2472 }
2473 out:
2474
2475 /*
2476 * order-0: All zones must meet high watermark for a balanced node
2477 * high-order: Balanced zones must make up at least 25% of the node
2478 * for the node to be balanced
2479 */
2480 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, classzone_idx)))) {
2481 cond_resched();
2482
2483 try_to_freeze();
2484
2485 /*
2486 * Fragmentation may mean that the system cannot be
2487 * rebalanced for high-order allocations in all zones.
2488 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2489 * it means the zones have been fully scanned and are still
2490 * not balanced. For high-order allocations, there is
2491 * little point trying all over again as kswapd may
2492 * infinite loop.
2493 *
2494 * Instead, recheck all watermarks at order-0 as they
2495 * are the most important. If watermarks are ok, kswapd will go
2496 * back to sleep. High-order users can still perform direct
2497 * reclaim if they wish.
2498 */
2499 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2500 order = sc.order = 0;
2501
2502 goto loop_again;
2503 }
2504
2505 /*
2506 * If kswapd was reclaiming at a higher order, it has the option of
2507 * sleeping without all zones being balanced. Before it does, it must
2508 * ensure that the watermarks for order-0 on *all* zones are met and
2509 * that the congestion flags are cleared. The congestion flag must
2510 * be cleared as kswapd is the only mechanism that clears the flag
2511 * and it is potentially going to sleep here.
2512 */
2513 if (order) {
2514 for (i = 0; i <= end_zone; i++) {
2515 struct zone *zone = pgdat->node_zones + i;
2516
2517 if (!populated_zone(zone))
2518 continue;
2519
2520 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2521 continue;
2522
2523 /* Confirm the zone is balanced for order-0 */
2524 if (!zone_watermark_ok(zone, 0,
2525 high_wmark_pages(zone), 0, 0)) {
2526 order = sc.order = 0;
2527 goto loop_again;
2528 }
2529
2530 /* If balanced, clear the congested flag */
2531 zone_clear_flag(zone, ZONE_CONGESTED);
2532 }
2533 }
2534
2535 /*
2536 * Return the order we were reclaiming at so sleeping_prematurely()
2537 * makes a decision on the order we were last reclaiming at. However,
2538 * if another caller entered the allocator slow path while kswapd
2539 * was awake, order will remain at the higher level
2540 */
2541 return order;
2542 }
2543
2544 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order)
2545 {
2546 long remaining = 0;
2547 DEFINE_WAIT(wait);
2548
2549 if (freezing(current) || kthread_should_stop())
2550 return;
2551
2552 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2553
2554 /* Try to sleep for a short interval */
2555 if (!sleeping_prematurely(pgdat, order, remaining)) {
2556 remaining = schedule_timeout(HZ/10);
2557 finish_wait(&pgdat->kswapd_wait, &wait);
2558 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2559 }
2560
2561 /*
2562 * After a short sleep, check if it was a premature sleep. If not, then
2563 * go fully to sleep until explicitly woken up.
2564 */
2565 if (!sleeping_prematurely(pgdat, order, remaining)) {
2566 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2567
2568 /*
2569 * vmstat counters are not perfectly accurate and the estimated
2570 * value for counters such as NR_FREE_PAGES can deviate from the
2571 * true value by nr_online_cpus * threshold. To avoid the zone
2572 * watermarks being breached while under pressure, we reduce the
2573 * per-cpu vmstat threshold while kswapd is awake and restore
2574 * them before going back to sleep.
2575 */
2576 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2577 schedule();
2578 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2579 } else {
2580 if (remaining)
2581 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2582 else
2583 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2584 }
2585 finish_wait(&pgdat->kswapd_wait, &wait);
2586 }
2587
2588 /*
2589 * The background pageout daemon, started as a kernel thread
2590 * from the init process.
2591 *
2592 * This basically trickles out pages so that we have _some_
2593 * free memory available even if there is no other activity
2594 * that frees anything up. This is needed for things like routing
2595 * etc, where we otherwise might have all activity going on in
2596 * asynchronous contexts that cannot page things out.
2597 *
2598 * If there are applications that are active memory-allocators
2599 * (most normal use), this basically shouldn't matter.
2600 */
2601 static int kswapd(void *p)
2602 {
2603 unsigned long order;
2604 int classzone_idx;
2605 pg_data_t *pgdat = (pg_data_t*)p;
2606 struct task_struct *tsk = current;
2607
2608 struct reclaim_state reclaim_state = {
2609 .reclaimed_slab = 0,
2610 };
2611 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2612
2613 lockdep_set_current_reclaim_state(GFP_KERNEL);
2614
2615 if (!cpumask_empty(cpumask))
2616 set_cpus_allowed_ptr(tsk, cpumask);
2617 current->reclaim_state = &reclaim_state;
2618
2619 /*
2620 * Tell the memory management that we're a "memory allocator",
2621 * and that if we need more memory we should get access to it
2622 * regardless (see "__alloc_pages()"). "kswapd" should
2623 * never get caught in the normal page freeing logic.
2624 *
2625 * (Kswapd normally doesn't need memory anyway, but sometimes
2626 * you need a small amount of memory in order to be able to
2627 * page out something else, and this flag essentially protects
2628 * us from recursively trying to free more memory as we're
2629 * trying to free the first piece of memory in the first place).
2630 */
2631 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2632 set_freezable();
2633
2634 order = 0;
2635 classzone_idx = MAX_NR_ZONES - 1;
2636 for ( ; ; ) {
2637 unsigned long new_order;
2638 int new_classzone_idx;
2639 int ret;
2640
2641 new_order = pgdat->kswapd_max_order;
2642 new_classzone_idx = pgdat->classzone_idx;
2643 pgdat->kswapd_max_order = 0;
2644 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2645 if (order < new_order || classzone_idx > new_classzone_idx) {
2646 /*
2647 * Don't sleep if someone wants a larger 'order'
2648 * allocation or has tigher zone constraints
2649 */
2650 order = new_order;
2651 classzone_idx = new_classzone_idx;
2652 } else {
2653 kswapd_try_to_sleep(pgdat, order);
2654 order = pgdat->kswapd_max_order;
2655 classzone_idx = pgdat->classzone_idx;
2656 }
2657
2658 ret = try_to_freeze();
2659 if (kthread_should_stop())
2660 break;
2661
2662 /*
2663 * We can speed up thawing tasks if we don't call balance_pgdat
2664 * after returning from the refrigerator
2665 */
2666 if (!ret) {
2667 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2668 order = balance_pgdat(pgdat, order, classzone_idx);
2669 }
2670 }
2671 return 0;
2672 }
2673
2674 /*
2675 * A zone is low on free memory, so wake its kswapd task to service it.
2676 */
2677 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2678 {
2679 pg_data_t *pgdat;
2680
2681 if (!populated_zone(zone))
2682 return;
2683
2684 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2685 return;
2686 pgdat = zone->zone_pgdat;
2687 if (pgdat->kswapd_max_order < order) {
2688 pgdat->kswapd_max_order = order;
2689 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2690 }
2691 if (!waitqueue_active(&pgdat->kswapd_wait))
2692 return;
2693 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2694 return;
2695
2696 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2697 wake_up_interruptible(&pgdat->kswapd_wait);
2698 }
2699
2700 /*
2701 * The reclaimable count would be mostly accurate.
2702 * The less reclaimable pages may be
2703 * - mlocked pages, which will be moved to unevictable list when encountered
2704 * - mapped pages, which may require several travels to be reclaimed
2705 * - dirty pages, which is not "instantly" reclaimable
2706 */
2707 unsigned long global_reclaimable_pages(void)
2708 {
2709 int nr;
2710
2711 nr = global_page_state(NR_ACTIVE_FILE) +
2712 global_page_state(NR_INACTIVE_FILE);
2713
2714 if (nr_swap_pages > 0)
2715 nr += global_page_state(NR_ACTIVE_ANON) +
2716 global_page_state(NR_INACTIVE_ANON);
2717
2718 return nr;
2719 }
2720
2721 unsigned long zone_reclaimable_pages(struct zone *zone)
2722 {
2723 int nr;
2724
2725 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2726 zone_page_state(zone, NR_INACTIVE_FILE);
2727
2728 if (nr_swap_pages > 0)
2729 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2730 zone_page_state(zone, NR_INACTIVE_ANON);
2731
2732 return nr;
2733 }
2734
2735 #ifdef CONFIG_HIBERNATION
2736 /*
2737 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2738 * freed pages.
2739 *
2740 * Rather than trying to age LRUs the aim is to preserve the overall
2741 * LRU order by reclaiming preferentially
2742 * inactive > active > active referenced > active mapped
2743 */
2744 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2745 {
2746 struct reclaim_state reclaim_state;
2747 struct scan_control sc = {
2748 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2749 .may_swap = 1,
2750 .may_unmap = 1,
2751 .may_writepage = 1,
2752 .nr_to_reclaim = nr_to_reclaim,
2753 .hibernation_mode = 1,
2754 .swappiness = vm_swappiness,
2755 .order = 0,
2756 };
2757 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2758 struct task_struct *p = current;
2759 unsigned long nr_reclaimed;
2760
2761 p->flags |= PF_MEMALLOC;
2762 lockdep_set_current_reclaim_state(sc.gfp_mask);
2763 reclaim_state.reclaimed_slab = 0;
2764 p->reclaim_state = &reclaim_state;
2765
2766 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2767
2768 p->reclaim_state = NULL;
2769 lockdep_clear_current_reclaim_state();
2770 p->flags &= ~PF_MEMALLOC;
2771
2772 return nr_reclaimed;
2773 }
2774 #endif /* CONFIG_HIBERNATION */
2775
2776 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2777 not required for correctness. So if the last cpu in a node goes
2778 away, we get changed to run anywhere: as the first one comes back,
2779 restore their cpu bindings. */
2780 static int __devinit cpu_callback(struct notifier_block *nfb,
2781 unsigned long action, void *hcpu)
2782 {
2783 int nid;
2784
2785 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2786 for_each_node_state(nid, N_HIGH_MEMORY) {
2787 pg_data_t *pgdat = NODE_DATA(nid);
2788 const struct cpumask *mask;
2789
2790 mask = cpumask_of_node(pgdat->node_id);
2791
2792 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2793 /* One of our CPUs online: restore mask */
2794 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2795 }
2796 }
2797 return NOTIFY_OK;
2798 }
2799
2800 /*
2801 * This kswapd start function will be called by init and node-hot-add.
2802 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2803 */
2804 int kswapd_run(int nid)
2805 {
2806 pg_data_t *pgdat = NODE_DATA(nid);
2807 int ret = 0;
2808
2809 if (pgdat->kswapd)
2810 return 0;
2811
2812 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2813 if (IS_ERR(pgdat->kswapd)) {
2814 /* failure at boot is fatal */
2815 BUG_ON(system_state == SYSTEM_BOOTING);
2816 printk("Failed to start kswapd on node %d\n",nid);
2817 ret = -1;
2818 }
2819 return ret;
2820 }
2821
2822 /*
2823 * Called by memory hotplug when all memory in a node is offlined.
2824 */
2825 void kswapd_stop(int nid)
2826 {
2827 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2828
2829 if (kswapd)
2830 kthread_stop(kswapd);
2831 }
2832
2833 static int __init kswapd_init(void)
2834 {
2835 int nid;
2836
2837 swap_setup();
2838 for_each_node_state(nid, N_HIGH_MEMORY)
2839 kswapd_run(nid);
2840 hotcpu_notifier(cpu_callback, 0);
2841 return 0;
2842 }
2843
2844 module_init(kswapd_init)
2845
2846 #ifdef CONFIG_NUMA
2847 /*
2848 * Zone reclaim mode
2849 *
2850 * If non-zero call zone_reclaim when the number of free pages falls below
2851 * the watermarks.
2852 */
2853 int zone_reclaim_mode __read_mostly;
2854
2855 #define RECLAIM_OFF 0
2856 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2857 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2858 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2859
2860 /*
2861 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2862 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2863 * a zone.
2864 */
2865 #define ZONE_RECLAIM_PRIORITY 4
2866
2867 /*
2868 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2869 * occur.
2870 */
2871 int sysctl_min_unmapped_ratio = 1;
2872
2873 /*
2874 * If the number of slab pages in a zone grows beyond this percentage then
2875 * slab reclaim needs to occur.
2876 */
2877 int sysctl_min_slab_ratio = 5;
2878
2879 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2880 {
2881 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2882 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2883 zone_page_state(zone, NR_ACTIVE_FILE);
2884
2885 /*
2886 * It's possible for there to be more file mapped pages than
2887 * accounted for by the pages on the file LRU lists because
2888 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2889 */
2890 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2891 }
2892
2893 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2894 static long zone_pagecache_reclaimable(struct zone *zone)
2895 {
2896 long nr_pagecache_reclaimable;
2897 long delta = 0;
2898
2899 /*
2900 * If RECLAIM_SWAP is set, then all file pages are considered
2901 * potentially reclaimable. Otherwise, we have to worry about
2902 * pages like swapcache and zone_unmapped_file_pages() provides
2903 * a better estimate
2904 */
2905 if (zone_reclaim_mode & RECLAIM_SWAP)
2906 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2907 else
2908 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2909
2910 /* If we can't clean pages, remove dirty pages from consideration */
2911 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2912 delta += zone_page_state(zone, NR_FILE_DIRTY);
2913
2914 /* Watch for any possible underflows due to delta */
2915 if (unlikely(delta > nr_pagecache_reclaimable))
2916 delta = nr_pagecache_reclaimable;
2917
2918 return nr_pagecache_reclaimable - delta;
2919 }
2920
2921 /*
2922 * Try to free up some pages from this zone through reclaim.
2923 */
2924 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2925 {
2926 /* Minimum pages needed in order to stay on node */
2927 const unsigned long nr_pages = 1 << order;
2928 struct task_struct *p = current;
2929 struct reclaim_state reclaim_state;
2930 int priority;
2931 struct scan_control sc = {
2932 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2933 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2934 .may_swap = 1,
2935 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2936 SWAP_CLUSTER_MAX),
2937 .gfp_mask = gfp_mask,
2938 .swappiness = vm_swappiness,
2939 .order = order,
2940 };
2941 unsigned long nr_slab_pages0, nr_slab_pages1;
2942
2943 cond_resched();
2944 /*
2945 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2946 * and we also need to be able to write out pages for RECLAIM_WRITE
2947 * and RECLAIM_SWAP.
2948 */
2949 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2950 lockdep_set_current_reclaim_state(gfp_mask);
2951 reclaim_state.reclaimed_slab = 0;
2952 p->reclaim_state = &reclaim_state;
2953
2954 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2955 /*
2956 * Free memory by calling shrink zone with increasing
2957 * priorities until we have enough memory freed.
2958 */
2959 priority = ZONE_RECLAIM_PRIORITY;
2960 do {
2961 shrink_zone(priority, zone, &sc);
2962 priority--;
2963 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2964 }
2965
2966 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2967 if (nr_slab_pages0 > zone->min_slab_pages) {
2968 /*
2969 * shrink_slab() does not currently allow us to determine how
2970 * many pages were freed in this zone. So we take the current
2971 * number of slab pages and shake the slab until it is reduced
2972 * by the same nr_pages that we used for reclaiming unmapped
2973 * pages.
2974 *
2975 * Note that shrink_slab will free memory on all zones and may
2976 * take a long time.
2977 */
2978 for (;;) {
2979 unsigned long lru_pages = zone_reclaimable_pages(zone);
2980
2981 /* No reclaimable slab or very low memory pressure */
2982 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2983 break;
2984
2985 /* Freed enough memory */
2986 nr_slab_pages1 = zone_page_state(zone,
2987 NR_SLAB_RECLAIMABLE);
2988 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2989 break;
2990 }
2991
2992 /*
2993 * Update nr_reclaimed by the number of slab pages we
2994 * reclaimed from this zone.
2995 */
2996 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2997 if (nr_slab_pages1 < nr_slab_pages0)
2998 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2999 }
3000
3001 p->reclaim_state = NULL;
3002 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3003 lockdep_clear_current_reclaim_state();
3004 return sc.nr_reclaimed >= nr_pages;
3005 }
3006
3007 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3008 {
3009 int node_id;
3010 int ret;
3011
3012 /*
3013 * Zone reclaim reclaims unmapped file backed pages and
3014 * slab pages if we are over the defined limits.
3015 *
3016 * A small portion of unmapped file backed pages is needed for
3017 * file I/O otherwise pages read by file I/O will be immediately
3018 * thrown out if the zone is overallocated. So we do not reclaim
3019 * if less than a specified percentage of the zone is used by
3020 * unmapped file backed pages.
3021 */
3022 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3023 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3024 return ZONE_RECLAIM_FULL;
3025
3026 if (zone->all_unreclaimable)
3027 return ZONE_RECLAIM_FULL;
3028
3029 /*
3030 * Do not scan if the allocation should not be delayed.
3031 */
3032 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3033 return ZONE_RECLAIM_NOSCAN;
3034
3035 /*
3036 * Only run zone reclaim on the local zone or on zones that do not
3037 * have associated processors. This will favor the local processor
3038 * over remote processors and spread off node memory allocations
3039 * as wide as possible.
3040 */
3041 node_id = zone_to_nid(zone);
3042 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3043 return ZONE_RECLAIM_NOSCAN;
3044
3045 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3046 return ZONE_RECLAIM_NOSCAN;
3047
3048 ret = __zone_reclaim(zone, gfp_mask, order);
3049 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3050
3051 if (!ret)
3052 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3053
3054 return ret;
3055 }
3056 #endif
3057
3058 /*
3059 * page_evictable - test whether a page is evictable
3060 * @page: the page to test
3061 * @vma: the VMA in which the page is or will be mapped, may be NULL
3062 *
3063 * Test whether page is evictable--i.e., should be placed on active/inactive
3064 * lists vs unevictable list. The vma argument is !NULL when called from the
3065 * fault path to determine how to instantate a new page.
3066 *
3067 * Reasons page might not be evictable:
3068 * (1) page's mapping marked unevictable
3069 * (2) page is part of an mlocked VMA
3070 *
3071 */
3072 int page_evictable(struct page *page, struct vm_area_struct *vma)
3073 {
3074
3075 if (mapping_unevictable(page_mapping(page)))
3076 return 0;
3077
3078 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3079 return 0;
3080
3081 return 1;
3082 }
3083
3084 /**
3085 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3086 * @page: page to check evictability and move to appropriate lru list
3087 * @zone: zone page is in
3088 *
3089 * Checks a page for evictability and moves the page to the appropriate
3090 * zone lru list.
3091 *
3092 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3093 * have PageUnevictable set.
3094 */
3095 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3096 {
3097 VM_BUG_ON(PageActive(page));
3098
3099 retry:
3100 ClearPageUnevictable(page);
3101 if (page_evictable(page, NULL)) {
3102 enum lru_list l = page_lru_base_type(page);
3103
3104 __dec_zone_state(zone, NR_UNEVICTABLE);
3105 list_move(&page->lru, &zone->lru[l].list);
3106 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3107 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3108 __count_vm_event(UNEVICTABLE_PGRESCUED);
3109 } else {
3110 /*
3111 * rotate unevictable list
3112 */
3113 SetPageUnevictable(page);
3114 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3115 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3116 if (page_evictable(page, NULL))
3117 goto retry;
3118 }
3119 }
3120
3121 /**
3122 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3123 * @mapping: struct address_space to scan for evictable pages
3124 *
3125 * Scan all pages in mapping. Check unevictable pages for
3126 * evictability and move them to the appropriate zone lru list.
3127 */
3128 void scan_mapping_unevictable_pages(struct address_space *mapping)
3129 {
3130 pgoff_t next = 0;
3131 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3132 PAGE_CACHE_SHIFT;
3133 struct zone *zone;
3134 struct pagevec pvec;
3135
3136 if (mapping->nrpages == 0)
3137 return;
3138
3139 pagevec_init(&pvec, 0);
3140 while (next < end &&
3141 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3142 int i;
3143 int pg_scanned = 0;
3144
3145 zone = NULL;
3146
3147 for (i = 0; i < pagevec_count(&pvec); i++) {
3148 struct page *page = pvec.pages[i];
3149 pgoff_t page_index = page->index;
3150 struct zone *pagezone = page_zone(page);
3151
3152 pg_scanned++;
3153 if (page_index > next)
3154 next = page_index;
3155 next++;
3156
3157 if (pagezone != zone) {
3158 if (zone)
3159 spin_unlock_irq(&zone->lru_lock);
3160 zone = pagezone;
3161 spin_lock_irq(&zone->lru_lock);
3162 }
3163
3164 if (PageLRU(page) && PageUnevictable(page))
3165 check_move_unevictable_page(page, zone);
3166 }
3167 if (zone)
3168 spin_unlock_irq(&zone->lru_lock);
3169 pagevec_release(&pvec);
3170
3171 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3172 }
3173
3174 }
3175
3176 /**
3177 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3178 * @zone - zone of which to scan the unevictable list
3179 *
3180 * Scan @zone's unevictable LRU lists to check for pages that have become
3181 * evictable. Move those that have to @zone's inactive list where they
3182 * become candidates for reclaim, unless shrink_inactive_zone() decides
3183 * to reactivate them. Pages that are still unevictable are rotated
3184 * back onto @zone's unevictable list.
3185 */
3186 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3187 static void scan_zone_unevictable_pages(struct zone *zone)
3188 {
3189 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3190 unsigned long scan;
3191 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3192
3193 while (nr_to_scan > 0) {
3194 unsigned long batch_size = min(nr_to_scan,
3195 SCAN_UNEVICTABLE_BATCH_SIZE);
3196
3197 spin_lock_irq(&zone->lru_lock);
3198 for (scan = 0; scan < batch_size; scan++) {
3199 struct page *page = lru_to_page(l_unevictable);
3200
3201 if (!trylock_page(page))
3202 continue;
3203
3204 prefetchw_prev_lru_page(page, l_unevictable, flags);
3205
3206 if (likely(PageLRU(page) && PageUnevictable(page)))
3207 check_move_unevictable_page(page, zone);
3208
3209 unlock_page(page);
3210 }
3211 spin_unlock_irq(&zone->lru_lock);
3212
3213 nr_to_scan -= batch_size;
3214 }
3215 }
3216
3217
3218 /**
3219 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3220 *
3221 * A really big hammer: scan all zones' unevictable LRU lists to check for
3222 * pages that have become evictable. Move those back to the zones'
3223 * inactive list where they become candidates for reclaim.
3224 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3225 * and we add swap to the system. As such, it runs in the context of a task
3226 * that has possibly/probably made some previously unevictable pages
3227 * evictable.
3228 */
3229 static void scan_all_zones_unevictable_pages(void)
3230 {
3231 struct zone *zone;
3232
3233 for_each_zone(zone) {
3234 scan_zone_unevictable_pages(zone);
3235 }
3236 }
3237
3238 /*
3239 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3240 * all nodes' unevictable lists for evictable pages
3241 */
3242 unsigned long scan_unevictable_pages;
3243
3244 int scan_unevictable_handler(struct ctl_table *table, int write,
3245 void __user *buffer,
3246 size_t *length, loff_t *ppos)
3247 {
3248 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3249
3250 if (write && *(unsigned long *)table->data)
3251 scan_all_zones_unevictable_pages();
3252
3253 scan_unevictable_pages = 0;
3254 return 0;
3255 }
3256
3257 #ifdef CONFIG_NUMA
3258 /*
3259 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3260 * a specified node's per zone unevictable lists for evictable pages.
3261 */
3262
3263 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3264 struct sysdev_attribute *attr,
3265 char *buf)
3266 {
3267 return sprintf(buf, "0\n"); /* always zero; should fit... */
3268 }
3269
3270 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3271 struct sysdev_attribute *attr,
3272 const char *buf, size_t count)
3273 {
3274 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3275 struct zone *zone;
3276 unsigned long res;
3277 unsigned long req = strict_strtoul(buf, 10, &res);
3278
3279 if (!req)
3280 return 1; /* zero is no-op */
3281
3282 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3283 if (!populated_zone(zone))
3284 continue;
3285 scan_zone_unevictable_pages(zone);
3286 }
3287 return 1;
3288 }
3289
3290
3291 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3292 read_scan_unevictable_node,
3293 write_scan_unevictable_node);
3294
3295 int scan_unevictable_register_node(struct node *node)
3296 {
3297 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3298 }
3299
3300 void scan_unevictable_unregister_node(struct node *node)
3301 {
3302 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3303 }
3304 #endif