]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/vmscan.c
Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
66
67 #include "internal.h"
68 #include "swap.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
72
73 struct scan_control {
74 /* How many pages shrink_list() should reclaim */
75 unsigned long nr_to_reclaim;
76
77 /*
78 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * are scanned.
80 */
81 nodemask_t *nodemask;
82
83 /*
84 * The memory cgroup that hit its limit and as a result is the
85 * primary target of this reclaim invocation.
86 */
87 struct mem_cgroup *target_mem_cgroup;
88
89 /*
90 * Scan pressure balancing between anon and file LRUs
91 */
92 unsigned long anon_cost;
93 unsigned long file_cost;
94
95 /* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 unsigned int may_deactivate:2;
99 unsigned int force_deactivate:1;
100 unsigned int skipped_deactivate:1;
101
102 /* Writepage batching in laptop mode; RECLAIM_WRITE */
103 unsigned int may_writepage:1;
104
105 /* Can mapped folios be reclaimed? */
106 unsigned int may_unmap:1;
107
108 /* Can folios be swapped as part of reclaim? */
109 unsigned int may_swap:1;
110
111 /* Proactive reclaim invoked by userspace through memory.reclaim */
112 unsigned int proactive:1;
113
114 /*
115 * Cgroup memory below memory.low is protected as long as we
116 * don't threaten to OOM. If any cgroup is reclaimed at
117 * reduced force or passed over entirely due to its memory.low
118 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 * result, then go back for one more cycle that reclaims the protected
120 * memory (memcg_low_reclaim) to avert OOM.
121 */
122 unsigned int memcg_low_reclaim:1;
123 unsigned int memcg_low_skipped:1;
124
125 unsigned int hibernation_mode:1;
126
127 /* One of the zones is ready for compaction */
128 unsigned int compaction_ready:1;
129
130 /* There is easily reclaimable cold cache in the current node */
131 unsigned int cache_trim_mode:1;
132
133 /* The file folios on the current node are dangerously low */
134 unsigned int file_is_tiny:1;
135
136 /* Always discard instead of demoting to lower tier memory */
137 unsigned int no_demotion:1;
138
139 /* Allocation order */
140 s8 order;
141
142 /* Scan (total_size >> priority) pages at once */
143 s8 priority;
144
145 /* The highest zone to isolate folios for reclaim from */
146 s8 reclaim_idx;
147
148 /* This context's GFP mask */
149 gfp_t gfp_mask;
150
151 /* Incremented by the number of inactive pages that were scanned */
152 unsigned long nr_scanned;
153
154 /* Number of pages freed so far during a call to shrink_zones() */
155 unsigned long nr_reclaimed;
156
157 struct {
158 unsigned int dirty;
159 unsigned int unqueued_dirty;
160 unsigned int congested;
161 unsigned int writeback;
162 unsigned int immediate;
163 unsigned int file_taken;
164 unsigned int taken;
165 } nr;
166
167 /* for recording the reclaimed slab by now */
168 struct reclaim_state reclaim_state;
169 };
170
171 #ifdef ARCH_HAS_PREFETCHW
172 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
173 do { \
174 if ((_folio)->lru.prev != _base) { \
175 struct folio *prev; \
176 \
177 prev = lru_to_folio(&(_folio->lru)); \
178 prefetchw(&prev->_field); \
179 } \
180 } while (0)
181 #else
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
183 #endif
184
185 /*
186 * From 0 .. 200. Higher means more swappy.
187 */
188 int vm_swappiness = 60;
189
190 #ifdef CONFIG_MEMCG
191
192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193 static bool cgroup_reclaim(struct scan_control *sc)
194 {
195 return sc->target_mem_cgroup;
196 }
197
198 /*
199 * Returns true for reclaim on the root cgroup. This is true for direct
200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
201 */
202 static bool root_reclaim(struct scan_control *sc)
203 {
204 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
205 }
206
207 /**
208 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209 * @sc: scan_control in question
210 *
211 * The normal page dirty throttling mechanism in balance_dirty_pages() is
212 * completely broken with the legacy memcg and direct stalling in
213 * shrink_folio_list() is used for throttling instead, which lacks all the
214 * niceties such as fairness, adaptive pausing, bandwidth proportional
215 * allocation and configurability.
216 *
217 * This function tests whether the vmscan currently in progress can assume
218 * that the normal dirty throttling mechanism is operational.
219 */
220 static bool writeback_throttling_sane(struct scan_control *sc)
221 {
222 if (!cgroup_reclaim(sc))
223 return true;
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
226 return true;
227 #endif
228 return false;
229 }
230 #else
231 static bool cgroup_reclaim(struct scan_control *sc)
232 {
233 return false;
234 }
235
236 static bool root_reclaim(struct scan_control *sc)
237 {
238 return true;
239 }
240
241 static bool writeback_throttling_sane(struct scan_control *sc)
242 {
243 return true;
244 }
245 #endif
246
247 static void set_task_reclaim_state(struct task_struct *task,
248 struct reclaim_state *rs)
249 {
250 /* Check for an overwrite */
251 WARN_ON_ONCE(rs && task->reclaim_state);
252
253 /* Check for the nulling of an already-nulled member */
254 WARN_ON_ONCE(!rs && !task->reclaim_state);
255
256 task->reclaim_state = rs;
257 }
258
259 /*
260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261 * scan_control->nr_reclaimed.
262 */
263 static void flush_reclaim_state(struct scan_control *sc)
264 {
265 /*
266 * Currently, reclaim_state->reclaimed includes three types of pages
267 * freed outside of vmscan:
268 * (1) Slab pages.
269 * (2) Clean file pages from pruned inodes (on highmem systems).
270 * (3) XFS freed buffer pages.
271 *
272 * For all of these cases, we cannot universally link the pages to a
273 * single memcg. For example, a memcg-aware shrinker can free one object
274 * charged to the target memcg, causing an entire page to be freed.
275 * If we count the entire page as reclaimed from the memcg, we end up
276 * overestimating the reclaimed amount (potentially under-reclaiming).
277 *
278 * Only count such pages for global reclaim to prevent under-reclaiming
279 * from the target memcg; preventing unnecessary retries during memcg
280 * charging and false positives from proactive reclaim.
281 *
282 * For uncommon cases where the freed pages were actually mostly
283 * charged to the target memcg, we end up underestimating the reclaimed
284 * amount. This should be fine. The freed pages will be uncharged
285 * anyway, even if they are not counted here properly, and we will be
286 * able to make forward progress in charging (which is usually in a
287 * retry loop).
288 *
289 * We can go one step further, and report the uncharged objcg pages in
290 * memcg reclaim, to make reporting more accurate and reduce
291 * underestimation, but it's probably not worth the complexity for now.
292 */
293 if (current->reclaim_state && root_reclaim(sc)) {
294 sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 current->reclaim_state->reclaimed = 0;
296 }
297 }
298
299 static bool can_demote(int nid, struct scan_control *sc)
300 {
301 if (!numa_demotion_enabled)
302 return false;
303 if (sc && sc->no_demotion)
304 return false;
305 if (next_demotion_node(nid) == NUMA_NO_NODE)
306 return false;
307
308 return true;
309 }
310
311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
312 int nid,
313 struct scan_control *sc)
314 {
315 if (memcg == NULL) {
316 /*
317 * For non-memcg reclaim, is there
318 * space in any swap device?
319 */
320 if (get_nr_swap_pages() > 0)
321 return true;
322 } else {
323 /* Is the memcg below its swap limit? */
324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
325 return true;
326 }
327
328 /*
329 * The page can not be swapped.
330 *
331 * Can it be reclaimed from this node via demotion?
332 */
333 return can_demote(nid, sc);
334 }
335
336 /*
337 * This misses isolated folios which are not accounted for to save counters.
338 * As the data only determines if reclaim or compaction continues, it is
339 * not expected that isolated folios will be a dominating factor.
340 */
341 unsigned long zone_reclaimable_pages(struct zone *zone)
342 {
343 unsigned long nr;
344
345 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
346 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
347 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
348 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
349 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
350
351 return nr;
352 }
353
354 /**
355 * lruvec_lru_size - Returns the number of pages on the given LRU list.
356 * @lruvec: lru vector
357 * @lru: lru to use
358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
359 */
360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 int zone_idx)
362 {
363 unsigned long size = 0;
364 int zid;
365
366 for (zid = 0; zid <= zone_idx; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368
369 if (!managed_zone(zone))
370 continue;
371
372 if (!mem_cgroup_disabled())
373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 else
375 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
376 }
377 return size;
378 }
379
380 static unsigned long drop_slab_node(int nid)
381 {
382 unsigned long freed = 0;
383 struct mem_cgroup *memcg = NULL;
384
385 memcg = mem_cgroup_iter(NULL, NULL, NULL);
386 do {
387 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
389
390 return freed;
391 }
392
393 void drop_slab(void)
394 {
395 int nid;
396 int shift = 0;
397 unsigned long freed;
398
399 do {
400 freed = 0;
401 for_each_online_node(nid) {
402 if (fatal_signal_pending(current))
403 return;
404
405 freed += drop_slab_node(nid);
406 }
407 } while ((freed >> shift++) > 1);
408 }
409
410 static int reclaimer_offset(void)
411 {
412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
415 PGSCAN_DIRECT - PGSCAN_KSWAPD);
416 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
417 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
420
421 if (current_is_kswapd())
422 return 0;
423 if (current_is_khugepaged())
424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
426 }
427
428 static inline int is_page_cache_freeable(struct folio *folio)
429 {
430 /*
431 * A freeable page cache folio is referenced only by the caller
432 * that isolated the folio, the page cache and optional filesystem
433 * private data at folio->private.
434 */
435 return folio_ref_count(folio) - folio_test_private(folio) ==
436 1 + folio_nr_pages(folio);
437 }
438
439 /*
440 * We detected a synchronous write error writing a folio out. Probably
441 * -ENOSPC. We need to propagate that into the address_space for a subsequent
442 * fsync(), msync() or close().
443 *
444 * The tricky part is that after writepage we cannot touch the mapping: nothing
445 * prevents it from being freed up. But we have a ref on the folio and once
446 * that folio is locked, the mapping is pinned.
447 *
448 * We're allowed to run sleeping folio_lock() here because we know the caller has
449 * __GFP_FS.
450 */
451 static void handle_write_error(struct address_space *mapping,
452 struct folio *folio, int error)
453 {
454 folio_lock(folio);
455 if (folio_mapping(folio) == mapping)
456 mapping_set_error(mapping, error);
457 folio_unlock(folio);
458 }
459
460 static bool skip_throttle_noprogress(pg_data_t *pgdat)
461 {
462 int reclaimable = 0, write_pending = 0;
463 int i;
464
465 /*
466 * If kswapd is disabled, reschedule if necessary but do not
467 * throttle as the system is likely near OOM.
468 */
469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
470 return true;
471
472 /*
473 * If there are a lot of dirty/writeback folios then do not
474 * throttle as throttling will occur when the folios cycle
475 * towards the end of the LRU if still under writeback.
476 */
477 for (i = 0; i < MAX_NR_ZONES; i++) {
478 struct zone *zone = pgdat->node_zones + i;
479
480 if (!managed_zone(zone))
481 continue;
482
483 reclaimable += zone_reclaimable_pages(zone);
484 write_pending += zone_page_state_snapshot(zone,
485 NR_ZONE_WRITE_PENDING);
486 }
487 if (2 * write_pending <= reclaimable)
488 return true;
489
490 return false;
491 }
492
493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
494 {
495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
496 long timeout, ret;
497 DEFINE_WAIT(wait);
498
499 /*
500 * Do not throttle user workers, kthreads other than kswapd or
501 * workqueues. They may be required for reclaim to make
502 * forward progress (e.g. journalling workqueues or kthreads).
503 */
504 if (!current_is_kswapd() &&
505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
506 cond_resched();
507 return;
508 }
509
510 /*
511 * These figures are pulled out of thin air.
512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 * parallel reclaimers which is a short-lived event so the timeout is
514 * short. Failing to make progress or waiting on writeback are
515 * potentially long-lived events so use a longer timeout. This is shaky
516 * logic as a failure to make progress could be due to anything from
517 * writeback to a slow device to excessive referenced folios at the tail
518 * of the inactive LRU.
519 */
520 switch(reason) {
521 case VMSCAN_THROTTLE_WRITEBACK:
522 timeout = HZ/10;
523
524 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
525 WRITE_ONCE(pgdat->nr_reclaim_start,
526 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
527 }
528
529 break;
530 case VMSCAN_THROTTLE_CONGESTED:
531 fallthrough;
532 case VMSCAN_THROTTLE_NOPROGRESS:
533 if (skip_throttle_noprogress(pgdat)) {
534 cond_resched();
535 return;
536 }
537
538 timeout = 1;
539
540 break;
541 case VMSCAN_THROTTLE_ISOLATED:
542 timeout = HZ/50;
543 break;
544 default:
545 WARN_ON_ONCE(1);
546 timeout = HZ;
547 break;
548 }
549
550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
551 ret = schedule_timeout(timeout);
552 finish_wait(wqh, &wait);
553
554 if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 atomic_dec(&pgdat->nr_writeback_throttled);
556
557 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
558 jiffies_to_usecs(timeout - ret),
559 reason);
560 }
561
562 /*
563 * Account for folios written if tasks are throttled waiting on dirty
564 * folios to clean. If enough folios have been cleaned since throttling
565 * started then wakeup the throttled tasks.
566 */
567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
568 int nr_throttled)
569 {
570 unsigned long nr_written;
571
572 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
573
574 /*
575 * This is an inaccurate read as the per-cpu deltas may not
576 * be synchronised. However, given that the system is
577 * writeback throttled, it is not worth taking the penalty
578 * of getting an accurate count. At worst, the throttle
579 * timeout guarantees forward progress.
580 */
581 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
582 READ_ONCE(pgdat->nr_reclaim_start);
583
584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
586 }
587
588 /* possible outcome of pageout() */
589 typedef enum {
590 /* failed to write folio out, folio is locked */
591 PAGE_KEEP,
592 /* move folio to the active list, folio is locked */
593 PAGE_ACTIVATE,
594 /* folio has been sent to the disk successfully, folio is unlocked */
595 PAGE_SUCCESS,
596 /* folio is clean and locked */
597 PAGE_CLEAN,
598 } pageout_t;
599
600 /*
601 * pageout is called by shrink_folio_list() for each dirty folio.
602 * Calls ->writepage().
603 */
604 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 struct swap_iocb **plug)
606 {
607 /*
608 * If the folio is dirty, only perform writeback if that write
609 * will be non-blocking. To prevent this allocation from being
610 * stalled by pagecache activity. But note that there may be
611 * stalls if we need to run get_block(). We could test
612 * PagePrivate for that.
613 *
614 * If this process is currently in __generic_file_write_iter() against
615 * this folio's queue, we can perform writeback even if that
616 * will block.
617 *
618 * If the folio is swapcache, write it back even if that would
619 * block, for some throttling. This happens by accident, because
620 * swap_backing_dev_info is bust: it doesn't reflect the
621 * congestion state of the swapdevs. Easy to fix, if needed.
622 */
623 if (!is_page_cache_freeable(folio))
624 return PAGE_KEEP;
625 if (!mapping) {
626 /*
627 * Some data journaling orphaned folios can have
628 * folio->mapping == NULL while being dirty with clean buffers.
629 */
630 if (folio_test_private(folio)) {
631 if (try_to_free_buffers(folio)) {
632 folio_clear_dirty(folio);
633 pr_info("%s: orphaned folio\n", __func__);
634 return PAGE_CLEAN;
635 }
636 }
637 return PAGE_KEEP;
638 }
639 if (mapping->a_ops->writepage == NULL)
640 return PAGE_ACTIVATE;
641
642 if (folio_clear_dirty_for_io(folio)) {
643 int res;
644 struct writeback_control wbc = {
645 .sync_mode = WB_SYNC_NONE,
646 .nr_to_write = SWAP_CLUSTER_MAX,
647 .range_start = 0,
648 .range_end = LLONG_MAX,
649 .for_reclaim = 1,
650 .swap_plug = plug,
651 };
652
653 folio_set_reclaim(folio);
654 res = mapping->a_ops->writepage(&folio->page, &wbc);
655 if (res < 0)
656 handle_write_error(mapping, folio, res);
657 if (res == AOP_WRITEPAGE_ACTIVATE) {
658 folio_clear_reclaim(folio);
659 return PAGE_ACTIVATE;
660 }
661
662 if (!folio_test_writeback(folio)) {
663 /* synchronous write or broken a_ops? */
664 folio_clear_reclaim(folio);
665 }
666 trace_mm_vmscan_write_folio(folio);
667 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
668 return PAGE_SUCCESS;
669 }
670
671 return PAGE_CLEAN;
672 }
673
674 /*
675 * Same as remove_mapping, but if the folio is removed from the mapping, it
676 * gets returned with a refcount of 0.
677 */
678 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 bool reclaimed, struct mem_cgroup *target_memcg)
680 {
681 int refcount;
682 void *shadow = NULL;
683
684 BUG_ON(!folio_test_locked(folio));
685 BUG_ON(mapping != folio_mapping(folio));
686
687 if (!folio_test_swapcache(folio))
688 spin_lock(&mapping->host->i_lock);
689 xa_lock_irq(&mapping->i_pages);
690 /*
691 * The non racy check for a busy folio.
692 *
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the folio, it may be possible that they dirty it then
695 * drop the reference. So if the dirty flag is tested before the
696 * refcount here, then the following race may occur:
697 *
698 * get_user_pages(&page);
699 * [user mapping goes away]
700 * write_to(page);
701 * !folio_test_dirty(folio) [good]
702 * folio_set_dirty(folio);
703 * folio_put(folio);
704 * !refcount(folio) [good, discard it]
705 *
706 * [oops, our write_to data is lost]
707 *
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 * load is not satisfied before that of folio->_refcount.
711 *
712 * Note that if the dirty flag is always set via folio_mark_dirty,
713 * and thus under the i_pages lock, then this ordering is not required.
714 */
715 refcount = 1 + folio_nr_pages(folio);
716 if (!folio_ref_freeze(folio, refcount))
717 goto cannot_free;
718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 if (unlikely(folio_test_dirty(folio))) {
720 folio_ref_unfreeze(folio, refcount);
721 goto cannot_free;
722 }
723
724 if (folio_test_swapcache(folio)) {
725 swp_entry_t swap = folio->swap;
726
727 if (reclaimed && !mapping_exiting(mapping))
728 shadow = workingset_eviction(folio, target_memcg);
729 __delete_from_swap_cache(folio, swap, shadow);
730 mem_cgroup_swapout(folio, swap);
731 xa_unlock_irq(&mapping->i_pages);
732 put_swap_folio(folio, swap);
733 } else {
734 void (*free_folio)(struct folio *);
735
736 free_folio = mapping->a_ops->free_folio;
737 /*
738 * Remember a shadow entry for reclaimed file cache in
739 * order to detect refaults, thus thrashing, later on.
740 *
741 * But don't store shadows in an address space that is
742 * already exiting. This is not just an optimization,
743 * inode reclaim needs to empty out the radix tree or
744 * the nodes are lost. Don't plant shadows behind its
745 * back.
746 *
747 * We also don't store shadows for DAX mappings because the
748 * only page cache folios found in these are zero pages
749 * covering holes, and because we don't want to mix DAX
750 * exceptional entries and shadow exceptional entries in the
751 * same address_space.
752 */
753 if (reclaimed && folio_is_file_lru(folio) &&
754 !mapping_exiting(mapping) && !dax_mapping(mapping))
755 shadow = workingset_eviction(folio, target_memcg);
756 __filemap_remove_folio(folio, shadow);
757 xa_unlock_irq(&mapping->i_pages);
758 if (mapping_shrinkable(mapping))
759 inode_add_lru(mapping->host);
760 spin_unlock(&mapping->host->i_lock);
761
762 if (free_folio)
763 free_folio(folio);
764 }
765
766 return 1;
767
768 cannot_free:
769 xa_unlock_irq(&mapping->i_pages);
770 if (!folio_test_swapcache(folio))
771 spin_unlock(&mapping->host->i_lock);
772 return 0;
773 }
774
775 /**
776 * remove_mapping() - Attempt to remove a folio from its mapping.
777 * @mapping: The address space.
778 * @folio: The folio to remove.
779 *
780 * If the folio is dirty, under writeback or if someone else has a ref
781 * on it, removal will fail.
782 * Return: The number of pages removed from the mapping. 0 if the folio
783 * could not be removed.
784 * Context: The caller should have a single refcount on the folio and
785 * hold its lock.
786 */
787 long remove_mapping(struct address_space *mapping, struct folio *folio)
788 {
789 if (__remove_mapping(mapping, folio, false, NULL)) {
790 /*
791 * Unfreezing the refcount with 1 effectively
792 * drops the pagecache ref for us without requiring another
793 * atomic operation.
794 */
795 folio_ref_unfreeze(folio, 1);
796 return folio_nr_pages(folio);
797 }
798 return 0;
799 }
800
801 /**
802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803 * @folio: Folio to be returned to an LRU list.
804 *
805 * Add previously isolated @folio to appropriate LRU list.
806 * The folio may still be unevictable for other reasons.
807 *
808 * Context: lru_lock must not be held, interrupts must be enabled.
809 */
810 void folio_putback_lru(struct folio *folio)
811 {
812 folio_add_lru(folio);
813 folio_put(folio); /* drop ref from isolate */
814 }
815
816 enum folio_references {
817 FOLIOREF_RECLAIM,
818 FOLIOREF_RECLAIM_CLEAN,
819 FOLIOREF_KEEP,
820 FOLIOREF_ACTIVATE,
821 };
822
823 static enum folio_references folio_check_references(struct folio *folio,
824 struct scan_control *sc)
825 {
826 int referenced_ptes, referenced_folio;
827 unsigned long vm_flags;
828
829 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
830 &vm_flags);
831 referenced_folio = folio_test_clear_referenced(folio);
832
833 /*
834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 * Let the folio, now marked Mlocked, be moved to the unevictable list.
836 */
837 if (vm_flags & VM_LOCKED)
838 return FOLIOREF_ACTIVATE;
839
840 /* rmap lock contention: rotate */
841 if (referenced_ptes == -1)
842 return FOLIOREF_KEEP;
843
844 if (referenced_ptes) {
845 /*
846 * All mapped folios start out with page table
847 * references from the instantiating fault, so we need
848 * to look twice if a mapped file/anon folio is used more
849 * than once.
850 *
851 * Mark it and spare it for another trip around the
852 * inactive list. Another page table reference will
853 * lead to its activation.
854 *
855 * Note: the mark is set for activated folios as well
856 * so that recently deactivated but used folios are
857 * quickly recovered.
858 */
859 folio_set_referenced(folio);
860
861 if (referenced_folio || referenced_ptes > 1)
862 return FOLIOREF_ACTIVATE;
863
864 /*
865 * Activate file-backed executable folios after first usage.
866 */
867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 return FOLIOREF_ACTIVATE;
869
870 return FOLIOREF_KEEP;
871 }
872
873 /* Reclaim if clean, defer dirty folios to writeback */
874 if (referenced_folio && folio_is_file_lru(folio))
875 return FOLIOREF_RECLAIM_CLEAN;
876
877 return FOLIOREF_RECLAIM;
878 }
879
880 /* Check if a folio is dirty or under writeback */
881 static void folio_check_dirty_writeback(struct folio *folio,
882 bool *dirty, bool *writeback)
883 {
884 struct address_space *mapping;
885
886 /*
887 * Anonymous folios are not handled by flushers and must be written
888 * from reclaim context. Do not stall reclaim based on them.
889 * MADV_FREE anonymous folios are put into inactive file list too.
890 * They could be mistakenly treated as file lru. So further anon
891 * test is needed.
892 */
893 if (!folio_is_file_lru(folio) ||
894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
895 *dirty = false;
896 *writeback = false;
897 return;
898 }
899
900 /* By default assume that the folio flags are accurate */
901 *dirty = folio_test_dirty(folio);
902 *writeback = folio_test_writeback(folio);
903
904 /* Verify dirty/writeback state if the filesystem supports it */
905 if (!folio_test_private(folio))
906 return;
907
908 mapping = folio_mapping(folio);
909 if (mapping && mapping->a_ops->is_dirty_writeback)
910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
911 }
912
913 static struct folio *alloc_demote_folio(struct folio *src,
914 unsigned long private)
915 {
916 struct folio *dst;
917 nodemask_t *allowed_mask;
918 struct migration_target_control *mtc;
919
920 mtc = (struct migration_target_control *)private;
921
922 allowed_mask = mtc->nmask;
923 /*
924 * make sure we allocate from the target node first also trying to
925 * demote or reclaim pages from the target node via kswapd if we are
926 * low on free memory on target node. If we don't do this and if
927 * we have free memory on the slower(lower) memtier, we would start
928 * allocating pages from slower(lower) memory tiers without even forcing
929 * a demotion of cold pages from the target memtier. This can result
930 * in the kernel placing hot pages in slower(lower) memory tiers.
931 */
932 mtc->nmask = NULL;
933 mtc->gfp_mask |= __GFP_THISNODE;
934 dst = alloc_migration_target(src, (unsigned long)mtc);
935 if (dst)
936 return dst;
937
938 mtc->gfp_mask &= ~__GFP_THISNODE;
939 mtc->nmask = allowed_mask;
940
941 return alloc_migration_target(src, (unsigned long)mtc);
942 }
943
944 /*
945 * Take folios on @demote_folios and attempt to demote them to another node.
946 * Folios which are not demoted are left on @demote_folios.
947 */
948 static unsigned int demote_folio_list(struct list_head *demote_folios,
949 struct pglist_data *pgdat)
950 {
951 int target_nid = next_demotion_node(pgdat->node_id);
952 unsigned int nr_succeeded;
953 nodemask_t allowed_mask;
954
955 struct migration_target_control mtc = {
956 /*
957 * Allocate from 'node', or fail quickly and quietly.
958 * When this happens, 'page' will likely just be discarded
959 * instead of migrated.
960 */
961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 __GFP_NOMEMALLOC | GFP_NOWAIT,
963 .nid = target_nid,
964 .nmask = &allowed_mask
965 };
966
967 if (list_empty(demote_folios))
968 return 0;
969
970 if (target_nid == NUMA_NO_NODE)
971 return 0;
972
973 node_get_allowed_targets(pgdat, &allowed_mask);
974
975 /* Demotion ignores all cpuset and mempolicy settings */
976 migrate_pages(demote_folios, alloc_demote_folio, NULL,
977 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
978 &nr_succeeded);
979
980 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
981
982 return nr_succeeded;
983 }
984
985 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
986 {
987 if (gfp_mask & __GFP_FS)
988 return true;
989 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
990 return false;
991 /*
992 * We can "enter_fs" for swap-cache with only __GFP_IO
993 * providing this isn't SWP_FS_OPS.
994 * ->flags can be updated non-atomicially (scan_swap_map_slots),
995 * but that will never affect SWP_FS_OPS, so the data_race
996 * is safe.
997 */
998 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
999 }
1000
1001 /*
1002 * shrink_folio_list() returns the number of reclaimed pages
1003 */
1004 static unsigned int shrink_folio_list(struct list_head *folio_list,
1005 struct pglist_data *pgdat, struct scan_control *sc,
1006 struct reclaim_stat *stat, bool ignore_references)
1007 {
1008 LIST_HEAD(ret_folios);
1009 LIST_HEAD(free_folios);
1010 LIST_HEAD(demote_folios);
1011 unsigned int nr_reclaimed = 0;
1012 unsigned int pgactivate = 0;
1013 bool do_demote_pass;
1014 struct swap_iocb *plug = NULL;
1015
1016 memset(stat, 0, sizeof(*stat));
1017 cond_resched();
1018 do_demote_pass = can_demote(pgdat->node_id, sc);
1019
1020 retry:
1021 while (!list_empty(folio_list)) {
1022 struct address_space *mapping;
1023 struct folio *folio;
1024 enum folio_references references = FOLIOREF_RECLAIM;
1025 bool dirty, writeback;
1026 unsigned int nr_pages;
1027
1028 cond_resched();
1029
1030 folio = lru_to_folio(folio_list);
1031 list_del(&folio->lru);
1032
1033 if (!folio_trylock(folio))
1034 goto keep;
1035
1036 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1037
1038 nr_pages = folio_nr_pages(folio);
1039
1040 /* Account the number of base pages */
1041 sc->nr_scanned += nr_pages;
1042
1043 if (unlikely(!folio_evictable(folio)))
1044 goto activate_locked;
1045
1046 if (!sc->may_unmap && folio_mapped(folio))
1047 goto keep_locked;
1048
1049 /* folio_update_gen() tried to promote this page? */
1050 if (lru_gen_enabled() && !ignore_references &&
1051 folio_mapped(folio) && folio_test_referenced(folio))
1052 goto keep_locked;
1053
1054 /*
1055 * The number of dirty pages determines if a node is marked
1056 * reclaim_congested. kswapd will stall and start writing
1057 * folios if the tail of the LRU is all dirty unqueued folios.
1058 */
1059 folio_check_dirty_writeback(folio, &dirty, &writeback);
1060 if (dirty || writeback)
1061 stat->nr_dirty += nr_pages;
1062
1063 if (dirty && !writeback)
1064 stat->nr_unqueued_dirty += nr_pages;
1065
1066 /*
1067 * Treat this folio as congested if folios are cycling
1068 * through the LRU so quickly that the folios marked
1069 * for immediate reclaim are making it to the end of
1070 * the LRU a second time.
1071 */
1072 if (writeback && folio_test_reclaim(folio))
1073 stat->nr_congested += nr_pages;
1074
1075 /*
1076 * If a folio at the tail of the LRU is under writeback, there
1077 * are three cases to consider.
1078 *
1079 * 1) If reclaim is encountering an excessive number
1080 * of folios under writeback and this folio has both
1081 * the writeback and reclaim flags set, then it
1082 * indicates that folios are being queued for I/O but
1083 * are being recycled through the LRU before the I/O
1084 * can complete. Waiting on the folio itself risks an
1085 * indefinite stall if it is impossible to writeback
1086 * the folio due to I/O error or disconnected storage
1087 * so instead note that the LRU is being scanned too
1088 * quickly and the caller can stall after the folio
1089 * list has been processed.
1090 *
1091 * 2) Global or new memcg reclaim encounters a folio that is
1092 * not marked for immediate reclaim, or the caller does not
1093 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1094 * not to fs). In this case mark the folio for immediate
1095 * reclaim and continue scanning.
1096 *
1097 * Require may_enter_fs() because we would wait on fs, which
1098 * may not have submitted I/O yet. And the loop driver might
1099 * enter reclaim, and deadlock if it waits on a folio for
1100 * which it is needed to do the write (loop masks off
1101 * __GFP_IO|__GFP_FS for this reason); but more thought
1102 * would probably show more reasons.
1103 *
1104 * 3) Legacy memcg encounters a folio that already has the
1105 * reclaim flag set. memcg does not have any dirty folio
1106 * throttling so we could easily OOM just because too many
1107 * folios are in writeback and there is nothing else to
1108 * reclaim. Wait for the writeback to complete.
1109 *
1110 * In cases 1) and 2) we activate the folios to get them out of
1111 * the way while we continue scanning for clean folios on the
1112 * inactive list and refilling from the active list. The
1113 * observation here is that waiting for disk writes is more
1114 * expensive than potentially causing reloads down the line.
1115 * Since they're marked for immediate reclaim, they won't put
1116 * memory pressure on the cache working set any longer than it
1117 * takes to write them to disk.
1118 */
1119 if (folio_test_writeback(folio)) {
1120 /* Case 1 above */
1121 if (current_is_kswapd() &&
1122 folio_test_reclaim(folio) &&
1123 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1124 stat->nr_immediate += nr_pages;
1125 goto activate_locked;
1126
1127 /* Case 2 above */
1128 } else if (writeback_throttling_sane(sc) ||
1129 !folio_test_reclaim(folio) ||
1130 !may_enter_fs(folio, sc->gfp_mask)) {
1131 /*
1132 * This is slightly racy -
1133 * folio_end_writeback() might have
1134 * just cleared the reclaim flag, then
1135 * setting the reclaim flag here ends up
1136 * interpreted as the readahead flag - but
1137 * that does not matter enough to care.
1138 * What we do want is for this folio to
1139 * have the reclaim flag set next time
1140 * memcg reclaim reaches the tests above,
1141 * so it will then wait for writeback to
1142 * avoid OOM; and it's also appropriate
1143 * in global reclaim.
1144 */
1145 folio_set_reclaim(folio);
1146 stat->nr_writeback += nr_pages;
1147 goto activate_locked;
1148
1149 /* Case 3 above */
1150 } else {
1151 folio_unlock(folio);
1152 folio_wait_writeback(folio);
1153 /* then go back and try same folio again */
1154 list_add_tail(&folio->lru, folio_list);
1155 continue;
1156 }
1157 }
1158
1159 if (!ignore_references)
1160 references = folio_check_references(folio, sc);
1161
1162 switch (references) {
1163 case FOLIOREF_ACTIVATE:
1164 goto activate_locked;
1165 case FOLIOREF_KEEP:
1166 stat->nr_ref_keep += nr_pages;
1167 goto keep_locked;
1168 case FOLIOREF_RECLAIM:
1169 case FOLIOREF_RECLAIM_CLEAN:
1170 ; /* try to reclaim the folio below */
1171 }
1172
1173 /*
1174 * Before reclaiming the folio, try to relocate
1175 * its contents to another node.
1176 */
1177 if (do_demote_pass &&
1178 (thp_migration_supported() || !folio_test_large(folio))) {
1179 list_add(&folio->lru, &demote_folios);
1180 folio_unlock(folio);
1181 continue;
1182 }
1183
1184 /*
1185 * Anonymous process memory has backing store?
1186 * Try to allocate it some swap space here.
1187 * Lazyfree folio could be freed directly
1188 */
1189 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1190 if (!folio_test_swapcache(folio)) {
1191 if (!(sc->gfp_mask & __GFP_IO))
1192 goto keep_locked;
1193 if (folio_maybe_dma_pinned(folio))
1194 goto keep_locked;
1195 if (folio_test_large(folio)) {
1196 /* cannot split folio, skip it */
1197 if (!can_split_folio(folio, NULL))
1198 goto activate_locked;
1199 /*
1200 * Split folios without a PMD map right
1201 * away. Chances are some or all of the
1202 * tail pages can be freed without IO.
1203 */
1204 if (!folio_entire_mapcount(folio) &&
1205 split_folio_to_list(folio,
1206 folio_list))
1207 goto activate_locked;
1208 }
1209 if (!add_to_swap(folio)) {
1210 if (!folio_test_large(folio))
1211 goto activate_locked_split;
1212 /* Fallback to swap normal pages */
1213 if (split_folio_to_list(folio,
1214 folio_list))
1215 goto activate_locked;
1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1217 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1218 count_vm_event(THP_SWPOUT_FALLBACK);
1219 #endif
1220 if (!add_to_swap(folio))
1221 goto activate_locked_split;
1222 }
1223 }
1224 } else if (folio_test_swapbacked(folio) &&
1225 folio_test_large(folio)) {
1226 /* Split shmem folio */
1227 if (split_folio_to_list(folio, folio_list))
1228 goto keep_locked;
1229 }
1230
1231 /*
1232 * If the folio was split above, the tail pages will make
1233 * their own pass through this function and be accounted
1234 * then.
1235 */
1236 if ((nr_pages > 1) && !folio_test_large(folio)) {
1237 sc->nr_scanned -= (nr_pages - 1);
1238 nr_pages = 1;
1239 }
1240
1241 /*
1242 * The folio is mapped into the page tables of one or more
1243 * processes. Try to unmap it here.
1244 */
1245 if (folio_mapped(folio)) {
1246 enum ttu_flags flags = TTU_BATCH_FLUSH;
1247 bool was_swapbacked = folio_test_swapbacked(folio);
1248
1249 if (folio_test_pmd_mappable(folio))
1250 flags |= TTU_SPLIT_HUGE_PMD;
1251
1252 try_to_unmap(folio, flags);
1253 if (folio_mapped(folio)) {
1254 stat->nr_unmap_fail += nr_pages;
1255 if (!was_swapbacked &&
1256 folio_test_swapbacked(folio))
1257 stat->nr_lazyfree_fail += nr_pages;
1258 goto activate_locked;
1259 }
1260 }
1261
1262 /*
1263 * Folio is unmapped now so it cannot be newly pinned anymore.
1264 * No point in trying to reclaim folio if it is pinned.
1265 * Furthermore we don't want to reclaim underlying fs metadata
1266 * if the folio is pinned and thus potentially modified by the
1267 * pinning process as that may upset the filesystem.
1268 */
1269 if (folio_maybe_dma_pinned(folio))
1270 goto activate_locked;
1271
1272 mapping = folio_mapping(folio);
1273 if (folio_test_dirty(folio)) {
1274 /*
1275 * Only kswapd can writeback filesystem folios
1276 * to avoid risk of stack overflow. But avoid
1277 * injecting inefficient single-folio I/O into
1278 * flusher writeback as much as possible: only
1279 * write folios when we've encountered many
1280 * dirty folios, and when we've already scanned
1281 * the rest of the LRU for clean folios and see
1282 * the same dirty folios again (with the reclaim
1283 * flag set).
1284 */
1285 if (folio_is_file_lru(folio) &&
1286 (!current_is_kswapd() ||
1287 !folio_test_reclaim(folio) ||
1288 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1289 /*
1290 * Immediately reclaim when written back.
1291 * Similar in principle to folio_deactivate()
1292 * except we already have the folio isolated
1293 * and know it's dirty
1294 */
1295 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1296 nr_pages);
1297 folio_set_reclaim(folio);
1298
1299 goto activate_locked;
1300 }
1301
1302 if (references == FOLIOREF_RECLAIM_CLEAN)
1303 goto keep_locked;
1304 if (!may_enter_fs(folio, sc->gfp_mask))
1305 goto keep_locked;
1306 if (!sc->may_writepage)
1307 goto keep_locked;
1308
1309 /*
1310 * Folio is dirty. Flush the TLB if a writable entry
1311 * potentially exists to avoid CPU writes after I/O
1312 * starts and then write it out here.
1313 */
1314 try_to_unmap_flush_dirty();
1315 switch (pageout(folio, mapping, &plug)) {
1316 case PAGE_KEEP:
1317 goto keep_locked;
1318 case PAGE_ACTIVATE:
1319 goto activate_locked;
1320 case PAGE_SUCCESS:
1321 stat->nr_pageout += nr_pages;
1322
1323 if (folio_test_writeback(folio))
1324 goto keep;
1325 if (folio_test_dirty(folio))
1326 goto keep;
1327
1328 /*
1329 * A synchronous write - probably a ramdisk. Go
1330 * ahead and try to reclaim the folio.
1331 */
1332 if (!folio_trylock(folio))
1333 goto keep;
1334 if (folio_test_dirty(folio) ||
1335 folio_test_writeback(folio))
1336 goto keep_locked;
1337 mapping = folio_mapping(folio);
1338 fallthrough;
1339 case PAGE_CLEAN:
1340 ; /* try to free the folio below */
1341 }
1342 }
1343
1344 /*
1345 * If the folio has buffers, try to free the buffer
1346 * mappings associated with this folio. If we succeed
1347 * we try to free the folio as well.
1348 *
1349 * We do this even if the folio is dirty.
1350 * filemap_release_folio() does not perform I/O, but it
1351 * is possible for a folio to have the dirty flag set,
1352 * but it is actually clean (all its buffers are clean).
1353 * This happens if the buffers were written out directly,
1354 * with submit_bh(). ext3 will do this, as well as
1355 * the blockdev mapping. filemap_release_folio() will
1356 * discover that cleanness and will drop the buffers
1357 * and mark the folio clean - it can be freed.
1358 *
1359 * Rarely, folios can have buffers and no ->mapping.
1360 * These are the folios which were not successfully
1361 * invalidated in truncate_cleanup_folio(). We try to
1362 * drop those buffers here and if that worked, and the
1363 * folio is no longer mapped into process address space
1364 * (refcount == 1) it can be freed. Otherwise, leave
1365 * the folio on the LRU so it is swappable.
1366 */
1367 if (folio_needs_release(folio)) {
1368 if (!filemap_release_folio(folio, sc->gfp_mask))
1369 goto activate_locked;
1370 if (!mapping && folio_ref_count(folio) == 1) {
1371 folio_unlock(folio);
1372 if (folio_put_testzero(folio))
1373 goto free_it;
1374 else {
1375 /*
1376 * rare race with speculative reference.
1377 * the speculative reference will free
1378 * this folio shortly, so we may
1379 * increment nr_reclaimed here (and
1380 * leave it off the LRU).
1381 */
1382 nr_reclaimed += nr_pages;
1383 continue;
1384 }
1385 }
1386 }
1387
1388 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1389 /* follow __remove_mapping for reference */
1390 if (!folio_ref_freeze(folio, 1))
1391 goto keep_locked;
1392 /*
1393 * The folio has only one reference left, which is
1394 * from the isolation. After the caller puts the
1395 * folio back on the lru and drops the reference, the
1396 * folio will be freed anyway. It doesn't matter
1397 * which lru it goes on. So we don't bother checking
1398 * the dirty flag here.
1399 */
1400 count_vm_events(PGLAZYFREED, nr_pages);
1401 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1402 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1403 sc->target_mem_cgroup))
1404 goto keep_locked;
1405
1406 folio_unlock(folio);
1407 free_it:
1408 /*
1409 * Folio may get swapped out as a whole, need to account
1410 * all pages in it.
1411 */
1412 nr_reclaimed += nr_pages;
1413
1414 /*
1415 * Is there need to periodically free_folio_list? It would
1416 * appear not as the counts should be low
1417 */
1418 if (unlikely(folio_test_large(folio)))
1419 destroy_large_folio(folio);
1420 else
1421 list_add(&folio->lru, &free_folios);
1422 continue;
1423
1424 activate_locked_split:
1425 /*
1426 * The tail pages that are failed to add into swap cache
1427 * reach here. Fixup nr_scanned and nr_pages.
1428 */
1429 if (nr_pages > 1) {
1430 sc->nr_scanned -= (nr_pages - 1);
1431 nr_pages = 1;
1432 }
1433 activate_locked:
1434 /* Not a candidate for swapping, so reclaim swap space. */
1435 if (folio_test_swapcache(folio) &&
1436 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1437 folio_free_swap(folio);
1438 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1439 if (!folio_test_mlocked(folio)) {
1440 int type = folio_is_file_lru(folio);
1441 folio_set_active(folio);
1442 stat->nr_activate[type] += nr_pages;
1443 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1444 }
1445 keep_locked:
1446 folio_unlock(folio);
1447 keep:
1448 list_add(&folio->lru, &ret_folios);
1449 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1450 folio_test_unevictable(folio), folio);
1451 }
1452 /* 'folio_list' is always empty here */
1453
1454 /* Migrate folios selected for demotion */
1455 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1456 /* Folios that could not be demoted are still in @demote_folios */
1457 if (!list_empty(&demote_folios)) {
1458 /* Folios which weren't demoted go back on @folio_list */
1459 list_splice_init(&demote_folios, folio_list);
1460
1461 /*
1462 * goto retry to reclaim the undemoted folios in folio_list if
1463 * desired.
1464 *
1465 * Reclaiming directly from top tier nodes is not often desired
1466 * due to it breaking the LRU ordering: in general memory
1467 * should be reclaimed from lower tier nodes and demoted from
1468 * top tier nodes.
1469 *
1470 * However, disabling reclaim from top tier nodes entirely
1471 * would cause ooms in edge scenarios where lower tier memory
1472 * is unreclaimable for whatever reason, eg memory being
1473 * mlocked or too hot to reclaim. We can disable reclaim
1474 * from top tier nodes in proactive reclaim though as that is
1475 * not real memory pressure.
1476 */
1477 if (!sc->proactive) {
1478 do_demote_pass = false;
1479 goto retry;
1480 }
1481 }
1482
1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484
1485 mem_cgroup_uncharge_list(&free_folios);
1486 try_to_unmap_flush();
1487 free_unref_page_list(&free_folios);
1488
1489 list_splice(&ret_folios, folio_list);
1490 count_vm_events(PGACTIVATE, pgactivate);
1491
1492 if (plug)
1493 swap_write_unplug(plug);
1494 return nr_reclaimed;
1495 }
1496
1497 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1498 struct list_head *folio_list)
1499 {
1500 struct scan_control sc = {
1501 .gfp_mask = GFP_KERNEL,
1502 .may_unmap = 1,
1503 };
1504 struct reclaim_stat stat;
1505 unsigned int nr_reclaimed;
1506 struct folio *folio, *next;
1507 LIST_HEAD(clean_folios);
1508 unsigned int noreclaim_flag;
1509
1510 list_for_each_entry_safe(folio, next, folio_list, lru) {
1511 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1512 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1513 !folio_test_unevictable(folio)) {
1514 folio_clear_active(folio);
1515 list_move(&folio->lru, &clean_folios);
1516 }
1517 }
1518
1519 /*
1520 * We should be safe here since we are only dealing with file pages and
1521 * we are not kswapd and therefore cannot write dirty file pages. But
1522 * call memalloc_noreclaim_save() anyway, just in case these conditions
1523 * change in the future.
1524 */
1525 noreclaim_flag = memalloc_noreclaim_save();
1526 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1527 &stat, true);
1528 memalloc_noreclaim_restore(noreclaim_flag);
1529
1530 list_splice(&clean_folios, folio_list);
1531 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1532 -(long)nr_reclaimed);
1533 /*
1534 * Since lazyfree pages are isolated from file LRU from the beginning,
1535 * they will rotate back to anonymous LRU in the end if it failed to
1536 * discard so isolated count will be mismatched.
1537 * Compensate the isolated count for both LRU lists.
1538 */
1539 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1540 stat.nr_lazyfree_fail);
1541 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1542 -(long)stat.nr_lazyfree_fail);
1543 return nr_reclaimed;
1544 }
1545
1546 /*
1547 * Update LRU sizes after isolating pages. The LRU size updates must
1548 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1549 */
1550 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1551 enum lru_list lru, unsigned long *nr_zone_taken)
1552 {
1553 int zid;
1554
1555 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1556 if (!nr_zone_taken[zid])
1557 continue;
1558
1559 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1560 }
1561
1562 }
1563
1564 #ifdef CONFIG_CMA
1565 /*
1566 * It is waste of effort to scan and reclaim CMA pages if it is not available
1567 * for current allocation context. Kswapd can not be enrolled as it can not
1568 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1569 */
1570 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1571 {
1572 return !current_is_kswapd() &&
1573 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1574 folio_migratetype(folio) == MIGRATE_CMA;
1575 }
1576 #else
1577 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1578 {
1579 return false;
1580 }
1581 #endif
1582
1583 /*
1584 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1585 *
1586 * lruvec->lru_lock is heavily contended. Some of the functions that
1587 * shrink the lists perform better by taking out a batch of pages
1588 * and working on them outside the LRU lock.
1589 *
1590 * For pagecache intensive workloads, this function is the hottest
1591 * spot in the kernel (apart from copy_*_user functions).
1592 *
1593 * Lru_lock must be held before calling this function.
1594 *
1595 * @nr_to_scan: The number of eligible pages to look through on the list.
1596 * @lruvec: The LRU vector to pull pages from.
1597 * @dst: The temp list to put pages on to.
1598 * @nr_scanned: The number of pages that were scanned.
1599 * @sc: The scan_control struct for this reclaim session
1600 * @lru: LRU list id for isolating
1601 *
1602 * returns how many pages were moved onto *@dst.
1603 */
1604 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1605 struct lruvec *lruvec, struct list_head *dst,
1606 unsigned long *nr_scanned, struct scan_control *sc,
1607 enum lru_list lru)
1608 {
1609 struct list_head *src = &lruvec->lists[lru];
1610 unsigned long nr_taken = 0;
1611 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1612 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1613 unsigned long skipped = 0;
1614 unsigned long scan, total_scan, nr_pages;
1615 LIST_HEAD(folios_skipped);
1616
1617 total_scan = 0;
1618 scan = 0;
1619 while (scan < nr_to_scan && !list_empty(src)) {
1620 struct list_head *move_to = src;
1621 struct folio *folio;
1622
1623 folio = lru_to_folio(src);
1624 prefetchw_prev_lru_folio(folio, src, flags);
1625
1626 nr_pages = folio_nr_pages(folio);
1627 total_scan += nr_pages;
1628
1629 if (folio_zonenum(folio) > sc->reclaim_idx ||
1630 skip_cma(folio, sc)) {
1631 nr_skipped[folio_zonenum(folio)] += nr_pages;
1632 move_to = &folios_skipped;
1633 goto move;
1634 }
1635
1636 /*
1637 * Do not count skipped folios because that makes the function
1638 * return with no isolated folios if the LRU mostly contains
1639 * ineligible folios. This causes the VM to not reclaim any
1640 * folios, triggering a premature OOM.
1641 * Account all pages in a folio.
1642 */
1643 scan += nr_pages;
1644
1645 if (!folio_test_lru(folio))
1646 goto move;
1647 if (!sc->may_unmap && folio_mapped(folio))
1648 goto move;
1649
1650 /*
1651 * Be careful not to clear the lru flag until after we're
1652 * sure the folio is not being freed elsewhere -- the
1653 * folio release code relies on it.
1654 */
1655 if (unlikely(!folio_try_get(folio)))
1656 goto move;
1657
1658 if (!folio_test_clear_lru(folio)) {
1659 /* Another thread is already isolating this folio */
1660 folio_put(folio);
1661 goto move;
1662 }
1663
1664 nr_taken += nr_pages;
1665 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1666 move_to = dst;
1667 move:
1668 list_move(&folio->lru, move_to);
1669 }
1670
1671 /*
1672 * Splice any skipped folios to the start of the LRU list. Note that
1673 * this disrupts the LRU order when reclaiming for lower zones but
1674 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1675 * scanning would soon rescan the same folios to skip and waste lots
1676 * of cpu cycles.
1677 */
1678 if (!list_empty(&folios_skipped)) {
1679 int zid;
1680
1681 list_splice(&folios_skipped, src);
1682 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1683 if (!nr_skipped[zid])
1684 continue;
1685
1686 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1687 skipped += nr_skipped[zid];
1688 }
1689 }
1690 *nr_scanned = total_scan;
1691 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1692 total_scan, skipped, nr_taken, lru);
1693 update_lru_sizes(lruvec, lru, nr_zone_taken);
1694 return nr_taken;
1695 }
1696
1697 /**
1698 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1699 * @folio: Folio to isolate from its LRU list.
1700 *
1701 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1702 * corresponding to whatever LRU list the folio was on.
1703 *
1704 * The folio will have its LRU flag cleared. If it was found on the
1705 * active list, it will have the Active flag set. If it was found on the
1706 * unevictable list, it will have the Unevictable flag set. These flags
1707 * may need to be cleared by the caller before letting the page go.
1708 *
1709 * Context:
1710 *
1711 * (1) Must be called with an elevated refcount on the folio. This is a
1712 * fundamental difference from isolate_lru_folios() (which is called
1713 * without a stable reference).
1714 * (2) The lru_lock must not be held.
1715 * (3) Interrupts must be enabled.
1716 *
1717 * Return: true if the folio was removed from an LRU list.
1718 * false if the folio was not on an LRU list.
1719 */
1720 bool folio_isolate_lru(struct folio *folio)
1721 {
1722 bool ret = false;
1723
1724 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1725
1726 if (folio_test_clear_lru(folio)) {
1727 struct lruvec *lruvec;
1728
1729 folio_get(folio);
1730 lruvec = folio_lruvec_lock_irq(folio);
1731 lruvec_del_folio(lruvec, folio);
1732 unlock_page_lruvec_irq(lruvec);
1733 ret = true;
1734 }
1735
1736 return ret;
1737 }
1738
1739 /*
1740 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1741 * then get rescheduled. When there are massive number of tasks doing page
1742 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1743 * the LRU list will go small and be scanned faster than necessary, leading to
1744 * unnecessary swapping, thrashing and OOM.
1745 */
1746 static int too_many_isolated(struct pglist_data *pgdat, int file,
1747 struct scan_control *sc)
1748 {
1749 unsigned long inactive, isolated;
1750 bool too_many;
1751
1752 if (current_is_kswapd())
1753 return 0;
1754
1755 if (!writeback_throttling_sane(sc))
1756 return 0;
1757
1758 if (file) {
1759 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1760 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1761 } else {
1762 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1763 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1764 }
1765
1766 /*
1767 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1768 * won't get blocked by normal direct-reclaimers, forming a circular
1769 * deadlock.
1770 */
1771 if (gfp_has_io_fs(sc->gfp_mask))
1772 inactive >>= 3;
1773
1774 too_many = isolated > inactive;
1775
1776 /* Wake up tasks throttled due to too_many_isolated. */
1777 if (!too_many)
1778 wake_throttle_isolated(pgdat);
1779
1780 return too_many;
1781 }
1782
1783 /*
1784 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1785 * On return, @list is reused as a list of folios to be freed by the caller.
1786 *
1787 * Returns the number of pages moved to the given lruvec.
1788 */
1789 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1790 struct list_head *list)
1791 {
1792 int nr_pages, nr_moved = 0;
1793 LIST_HEAD(folios_to_free);
1794
1795 while (!list_empty(list)) {
1796 struct folio *folio = lru_to_folio(list);
1797
1798 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1799 list_del(&folio->lru);
1800 if (unlikely(!folio_evictable(folio))) {
1801 spin_unlock_irq(&lruvec->lru_lock);
1802 folio_putback_lru(folio);
1803 spin_lock_irq(&lruvec->lru_lock);
1804 continue;
1805 }
1806
1807 /*
1808 * The folio_set_lru needs to be kept here for list integrity.
1809 * Otherwise:
1810 * #0 move_folios_to_lru #1 release_pages
1811 * if (!folio_put_testzero())
1812 * if (folio_put_testzero())
1813 * !lru //skip lru_lock
1814 * folio_set_lru()
1815 * list_add(&folio->lru,)
1816 * list_add(&folio->lru,)
1817 */
1818 folio_set_lru(folio);
1819
1820 if (unlikely(folio_put_testzero(folio))) {
1821 __folio_clear_lru_flags(folio);
1822
1823 if (unlikely(folio_test_large(folio))) {
1824 spin_unlock_irq(&lruvec->lru_lock);
1825 destroy_large_folio(folio);
1826 spin_lock_irq(&lruvec->lru_lock);
1827 } else
1828 list_add(&folio->lru, &folios_to_free);
1829
1830 continue;
1831 }
1832
1833 /*
1834 * All pages were isolated from the same lruvec (and isolation
1835 * inhibits memcg migration).
1836 */
1837 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1838 lruvec_add_folio(lruvec, folio);
1839 nr_pages = folio_nr_pages(folio);
1840 nr_moved += nr_pages;
1841 if (folio_test_active(folio))
1842 workingset_age_nonresident(lruvec, nr_pages);
1843 }
1844
1845 /*
1846 * To save our caller's stack, now use input list for pages to free.
1847 */
1848 list_splice(&folios_to_free, list);
1849
1850 return nr_moved;
1851 }
1852
1853 /*
1854 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1855 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1856 * we should not throttle. Otherwise it is safe to do so.
1857 */
1858 static int current_may_throttle(void)
1859 {
1860 return !(current->flags & PF_LOCAL_THROTTLE);
1861 }
1862
1863 /*
1864 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1865 * of reclaimed pages
1866 */
1867 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1868 struct lruvec *lruvec, struct scan_control *sc,
1869 enum lru_list lru)
1870 {
1871 LIST_HEAD(folio_list);
1872 unsigned long nr_scanned;
1873 unsigned int nr_reclaimed = 0;
1874 unsigned long nr_taken;
1875 struct reclaim_stat stat;
1876 bool file = is_file_lru(lru);
1877 enum vm_event_item item;
1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1879 bool stalled = false;
1880
1881 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1882 if (stalled)
1883 return 0;
1884
1885 /* wait a bit for the reclaimer. */
1886 stalled = true;
1887 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1888
1889 /* We are about to die and free our memory. Return now. */
1890 if (fatal_signal_pending(current))
1891 return SWAP_CLUSTER_MAX;
1892 }
1893
1894 lru_add_drain();
1895
1896 spin_lock_irq(&lruvec->lru_lock);
1897
1898 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1899 &nr_scanned, sc, lru);
1900
1901 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1902 item = PGSCAN_KSWAPD + reclaimer_offset();
1903 if (!cgroup_reclaim(sc))
1904 __count_vm_events(item, nr_scanned);
1905 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1906 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1907
1908 spin_unlock_irq(&lruvec->lru_lock);
1909
1910 if (nr_taken == 0)
1911 return 0;
1912
1913 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1914
1915 spin_lock_irq(&lruvec->lru_lock);
1916 move_folios_to_lru(lruvec, &folio_list);
1917
1918 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1919 item = PGSTEAL_KSWAPD + reclaimer_offset();
1920 if (!cgroup_reclaim(sc))
1921 __count_vm_events(item, nr_reclaimed);
1922 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1923 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1924 spin_unlock_irq(&lruvec->lru_lock);
1925
1926 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1927 mem_cgroup_uncharge_list(&folio_list);
1928 free_unref_page_list(&folio_list);
1929
1930 /*
1931 * If dirty folios are scanned that are not queued for IO, it
1932 * implies that flushers are not doing their job. This can
1933 * happen when memory pressure pushes dirty folios to the end of
1934 * the LRU before the dirty limits are breached and the dirty
1935 * data has expired. It can also happen when the proportion of
1936 * dirty folios grows not through writes but through memory
1937 * pressure reclaiming all the clean cache. And in some cases,
1938 * the flushers simply cannot keep up with the allocation
1939 * rate. Nudge the flusher threads in case they are asleep.
1940 */
1941 if (stat.nr_unqueued_dirty == nr_taken) {
1942 wakeup_flusher_threads(WB_REASON_VMSCAN);
1943 /*
1944 * For cgroupv1 dirty throttling is achieved by waking up
1945 * the kernel flusher here and later waiting on folios
1946 * which are in writeback to finish (see shrink_folio_list()).
1947 *
1948 * Flusher may not be able to issue writeback quickly
1949 * enough for cgroupv1 writeback throttling to work
1950 * on a large system.
1951 */
1952 if (!writeback_throttling_sane(sc))
1953 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1954 }
1955
1956 sc->nr.dirty += stat.nr_dirty;
1957 sc->nr.congested += stat.nr_congested;
1958 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1959 sc->nr.writeback += stat.nr_writeback;
1960 sc->nr.immediate += stat.nr_immediate;
1961 sc->nr.taken += nr_taken;
1962 if (file)
1963 sc->nr.file_taken += nr_taken;
1964
1965 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1966 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1967 return nr_reclaimed;
1968 }
1969
1970 /*
1971 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1972 *
1973 * We move them the other way if the folio is referenced by one or more
1974 * processes.
1975 *
1976 * If the folios are mostly unmapped, the processing is fast and it is
1977 * appropriate to hold lru_lock across the whole operation. But if
1978 * the folios are mapped, the processing is slow (folio_referenced()), so
1979 * we should drop lru_lock around each folio. It's impossible to balance
1980 * this, so instead we remove the folios from the LRU while processing them.
1981 * It is safe to rely on the active flag against the non-LRU folios in here
1982 * because nobody will play with that bit on a non-LRU folio.
1983 *
1984 * The downside is that we have to touch folio->_refcount against each folio.
1985 * But we had to alter folio->flags anyway.
1986 */
1987 static void shrink_active_list(unsigned long nr_to_scan,
1988 struct lruvec *lruvec,
1989 struct scan_control *sc,
1990 enum lru_list lru)
1991 {
1992 unsigned long nr_taken;
1993 unsigned long nr_scanned;
1994 unsigned long vm_flags;
1995 LIST_HEAD(l_hold); /* The folios which were snipped off */
1996 LIST_HEAD(l_active);
1997 LIST_HEAD(l_inactive);
1998 unsigned nr_deactivate, nr_activate;
1999 unsigned nr_rotated = 0;
2000 int file = is_file_lru(lru);
2001 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2002
2003 lru_add_drain();
2004
2005 spin_lock_irq(&lruvec->lru_lock);
2006
2007 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2008 &nr_scanned, sc, lru);
2009
2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2011
2012 if (!cgroup_reclaim(sc))
2013 __count_vm_events(PGREFILL, nr_scanned);
2014 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2015
2016 spin_unlock_irq(&lruvec->lru_lock);
2017
2018 while (!list_empty(&l_hold)) {
2019 struct folio *folio;
2020
2021 cond_resched();
2022 folio = lru_to_folio(&l_hold);
2023 list_del(&folio->lru);
2024
2025 if (unlikely(!folio_evictable(folio))) {
2026 folio_putback_lru(folio);
2027 continue;
2028 }
2029
2030 if (unlikely(buffer_heads_over_limit)) {
2031 if (folio_needs_release(folio) &&
2032 folio_trylock(folio)) {
2033 filemap_release_folio(folio, 0);
2034 folio_unlock(folio);
2035 }
2036 }
2037
2038 /* Referenced or rmap lock contention: rotate */
2039 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2040 &vm_flags) != 0) {
2041 /*
2042 * Identify referenced, file-backed active folios and
2043 * give them one more trip around the active list. So
2044 * that executable code get better chances to stay in
2045 * memory under moderate memory pressure. Anon folios
2046 * are not likely to be evicted by use-once streaming
2047 * IO, plus JVM can create lots of anon VM_EXEC folios,
2048 * so we ignore them here.
2049 */
2050 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2051 nr_rotated += folio_nr_pages(folio);
2052 list_add(&folio->lru, &l_active);
2053 continue;
2054 }
2055 }
2056
2057 folio_clear_active(folio); /* we are de-activating */
2058 folio_set_workingset(folio);
2059 list_add(&folio->lru, &l_inactive);
2060 }
2061
2062 /*
2063 * Move folios back to the lru list.
2064 */
2065 spin_lock_irq(&lruvec->lru_lock);
2066
2067 nr_activate = move_folios_to_lru(lruvec, &l_active);
2068 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2069 /* Keep all free folios in l_active list */
2070 list_splice(&l_inactive, &l_active);
2071
2072 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2073 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2074
2075 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2076 spin_unlock_irq(&lruvec->lru_lock);
2077
2078 if (nr_rotated)
2079 lru_note_cost(lruvec, file, 0, nr_rotated);
2080 mem_cgroup_uncharge_list(&l_active);
2081 free_unref_page_list(&l_active);
2082 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2083 nr_deactivate, nr_rotated, sc->priority, file);
2084 }
2085
2086 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2087 struct pglist_data *pgdat)
2088 {
2089 struct reclaim_stat dummy_stat;
2090 unsigned int nr_reclaimed;
2091 struct folio *folio;
2092 struct scan_control sc = {
2093 .gfp_mask = GFP_KERNEL,
2094 .may_writepage = 1,
2095 .may_unmap = 1,
2096 .may_swap = 1,
2097 .no_demotion = 1,
2098 };
2099
2100 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2101 while (!list_empty(folio_list)) {
2102 folio = lru_to_folio(folio_list);
2103 list_del(&folio->lru);
2104 folio_putback_lru(folio);
2105 }
2106
2107 return nr_reclaimed;
2108 }
2109
2110 unsigned long reclaim_pages(struct list_head *folio_list)
2111 {
2112 int nid;
2113 unsigned int nr_reclaimed = 0;
2114 LIST_HEAD(node_folio_list);
2115 unsigned int noreclaim_flag;
2116
2117 if (list_empty(folio_list))
2118 return nr_reclaimed;
2119
2120 noreclaim_flag = memalloc_noreclaim_save();
2121
2122 nid = folio_nid(lru_to_folio(folio_list));
2123 do {
2124 struct folio *folio = lru_to_folio(folio_list);
2125
2126 if (nid == folio_nid(folio)) {
2127 folio_clear_active(folio);
2128 list_move(&folio->lru, &node_folio_list);
2129 continue;
2130 }
2131
2132 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2133 nid = folio_nid(lru_to_folio(folio_list));
2134 } while (!list_empty(folio_list));
2135
2136 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2137
2138 memalloc_noreclaim_restore(noreclaim_flag);
2139
2140 return nr_reclaimed;
2141 }
2142
2143 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2144 struct lruvec *lruvec, struct scan_control *sc)
2145 {
2146 if (is_active_lru(lru)) {
2147 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2148 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2149 else
2150 sc->skipped_deactivate = 1;
2151 return 0;
2152 }
2153
2154 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2155 }
2156
2157 /*
2158 * The inactive anon list should be small enough that the VM never has
2159 * to do too much work.
2160 *
2161 * The inactive file list should be small enough to leave most memory
2162 * to the established workingset on the scan-resistant active list,
2163 * but large enough to avoid thrashing the aggregate readahead window.
2164 *
2165 * Both inactive lists should also be large enough that each inactive
2166 * folio has a chance to be referenced again before it is reclaimed.
2167 *
2168 * If that fails and refaulting is observed, the inactive list grows.
2169 *
2170 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2171 * on this LRU, maintained by the pageout code. An inactive_ratio
2172 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2173 *
2174 * total target max
2175 * memory ratio inactive
2176 * -------------------------------------
2177 * 10MB 1 5MB
2178 * 100MB 1 50MB
2179 * 1GB 3 250MB
2180 * 10GB 10 0.9GB
2181 * 100GB 31 3GB
2182 * 1TB 101 10GB
2183 * 10TB 320 32GB
2184 */
2185 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2186 {
2187 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2188 unsigned long inactive, active;
2189 unsigned long inactive_ratio;
2190 unsigned long gb;
2191
2192 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2193 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2194
2195 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2196 if (gb)
2197 inactive_ratio = int_sqrt(10 * gb);
2198 else
2199 inactive_ratio = 1;
2200
2201 return inactive * inactive_ratio < active;
2202 }
2203
2204 enum scan_balance {
2205 SCAN_EQUAL,
2206 SCAN_FRACT,
2207 SCAN_ANON,
2208 SCAN_FILE,
2209 };
2210
2211 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2212 {
2213 unsigned long file;
2214 struct lruvec *target_lruvec;
2215
2216 if (lru_gen_enabled())
2217 return;
2218
2219 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2220
2221 /*
2222 * Flush the memory cgroup stats, so that we read accurate per-memcg
2223 * lruvec stats for heuristics.
2224 */
2225 mem_cgroup_flush_stats();
2226
2227 /*
2228 * Determine the scan balance between anon and file LRUs.
2229 */
2230 spin_lock_irq(&target_lruvec->lru_lock);
2231 sc->anon_cost = target_lruvec->anon_cost;
2232 sc->file_cost = target_lruvec->file_cost;
2233 spin_unlock_irq(&target_lruvec->lru_lock);
2234
2235 /*
2236 * Target desirable inactive:active list ratios for the anon
2237 * and file LRU lists.
2238 */
2239 if (!sc->force_deactivate) {
2240 unsigned long refaults;
2241
2242 /*
2243 * When refaults are being observed, it means a new
2244 * workingset is being established. Deactivate to get
2245 * rid of any stale active pages quickly.
2246 */
2247 refaults = lruvec_page_state(target_lruvec,
2248 WORKINGSET_ACTIVATE_ANON);
2249 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2250 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2251 sc->may_deactivate |= DEACTIVATE_ANON;
2252 else
2253 sc->may_deactivate &= ~DEACTIVATE_ANON;
2254
2255 refaults = lruvec_page_state(target_lruvec,
2256 WORKINGSET_ACTIVATE_FILE);
2257 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2258 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2259 sc->may_deactivate |= DEACTIVATE_FILE;
2260 else
2261 sc->may_deactivate &= ~DEACTIVATE_FILE;
2262 } else
2263 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2264
2265 /*
2266 * If we have plenty of inactive file pages that aren't
2267 * thrashing, try to reclaim those first before touching
2268 * anonymous pages.
2269 */
2270 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2271 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2272 sc->cache_trim_mode = 1;
2273 else
2274 sc->cache_trim_mode = 0;
2275
2276 /*
2277 * Prevent the reclaimer from falling into the cache trap: as
2278 * cache pages start out inactive, every cache fault will tip
2279 * the scan balance towards the file LRU. And as the file LRU
2280 * shrinks, so does the window for rotation from references.
2281 * This means we have a runaway feedback loop where a tiny
2282 * thrashing file LRU becomes infinitely more attractive than
2283 * anon pages. Try to detect this based on file LRU size.
2284 */
2285 if (!cgroup_reclaim(sc)) {
2286 unsigned long total_high_wmark = 0;
2287 unsigned long free, anon;
2288 int z;
2289
2290 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2291 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2292 node_page_state(pgdat, NR_INACTIVE_FILE);
2293
2294 for (z = 0; z < MAX_NR_ZONES; z++) {
2295 struct zone *zone = &pgdat->node_zones[z];
2296
2297 if (!managed_zone(zone))
2298 continue;
2299
2300 total_high_wmark += high_wmark_pages(zone);
2301 }
2302
2303 /*
2304 * Consider anon: if that's low too, this isn't a
2305 * runaway file reclaim problem, but rather just
2306 * extreme pressure. Reclaim as per usual then.
2307 */
2308 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2309
2310 sc->file_is_tiny =
2311 file + free <= total_high_wmark &&
2312 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2313 anon >> sc->priority;
2314 }
2315 }
2316
2317 /*
2318 * Determine how aggressively the anon and file LRU lists should be
2319 * scanned.
2320 *
2321 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2322 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2323 */
2324 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2325 unsigned long *nr)
2326 {
2327 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2328 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2329 unsigned long anon_cost, file_cost, total_cost;
2330 int swappiness = mem_cgroup_swappiness(memcg);
2331 u64 fraction[ANON_AND_FILE];
2332 u64 denominator = 0; /* gcc */
2333 enum scan_balance scan_balance;
2334 unsigned long ap, fp;
2335 enum lru_list lru;
2336
2337 /* If we have no swap space, do not bother scanning anon folios. */
2338 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2339 scan_balance = SCAN_FILE;
2340 goto out;
2341 }
2342
2343 /*
2344 * Global reclaim will swap to prevent OOM even with no
2345 * swappiness, but memcg users want to use this knob to
2346 * disable swapping for individual groups completely when
2347 * using the memory controller's swap limit feature would be
2348 * too expensive.
2349 */
2350 if (cgroup_reclaim(sc) && !swappiness) {
2351 scan_balance = SCAN_FILE;
2352 goto out;
2353 }
2354
2355 /*
2356 * Do not apply any pressure balancing cleverness when the
2357 * system is close to OOM, scan both anon and file equally
2358 * (unless the swappiness setting disagrees with swapping).
2359 */
2360 if (!sc->priority && swappiness) {
2361 scan_balance = SCAN_EQUAL;
2362 goto out;
2363 }
2364
2365 /*
2366 * If the system is almost out of file pages, force-scan anon.
2367 */
2368 if (sc->file_is_tiny) {
2369 scan_balance = SCAN_ANON;
2370 goto out;
2371 }
2372
2373 /*
2374 * If there is enough inactive page cache, we do not reclaim
2375 * anything from the anonymous working right now.
2376 */
2377 if (sc->cache_trim_mode) {
2378 scan_balance = SCAN_FILE;
2379 goto out;
2380 }
2381
2382 scan_balance = SCAN_FRACT;
2383 /*
2384 * Calculate the pressure balance between anon and file pages.
2385 *
2386 * The amount of pressure we put on each LRU is inversely
2387 * proportional to the cost of reclaiming each list, as
2388 * determined by the share of pages that are refaulting, times
2389 * the relative IO cost of bringing back a swapped out
2390 * anonymous page vs reloading a filesystem page (swappiness).
2391 *
2392 * Although we limit that influence to ensure no list gets
2393 * left behind completely: at least a third of the pressure is
2394 * applied, before swappiness.
2395 *
2396 * With swappiness at 100, anon and file have equal IO cost.
2397 */
2398 total_cost = sc->anon_cost + sc->file_cost;
2399 anon_cost = total_cost + sc->anon_cost;
2400 file_cost = total_cost + sc->file_cost;
2401 total_cost = anon_cost + file_cost;
2402
2403 ap = swappiness * (total_cost + 1);
2404 ap /= anon_cost + 1;
2405
2406 fp = (200 - swappiness) * (total_cost + 1);
2407 fp /= file_cost + 1;
2408
2409 fraction[0] = ap;
2410 fraction[1] = fp;
2411 denominator = ap + fp;
2412 out:
2413 for_each_evictable_lru(lru) {
2414 int file = is_file_lru(lru);
2415 unsigned long lruvec_size;
2416 unsigned long low, min;
2417 unsigned long scan;
2418
2419 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2420 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2421 &min, &low);
2422
2423 if (min || low) {
2424 /*
2425 * Scale a cgroup's reclaim pressure by proportioning
2426 * its current usage to its memory.low or memory.min
2427 * setting.
2428 *
2429 * This is important, as otherwise scanning aggression
2430 * becomes extremely binary -- from nothing as we
2431 * approach the memory protection threshold, to totally
2432 * nominal as we exceed it. This results in requiring
2433 * setting extremely liberal protection thresholds. It
2434 * also means we simply get no protection at all if we
2435 * set it too low, which is not ideal.
2436 *
2437 * If there is any protection in place, we reduce scan
2438 * pressure by how much of the total memory used is
2439 * within protection thresholds.
2440 *
2441 * There is one special case: in the first reclaim pass,
2442 * we skip over all groups that are within their low
2443 * protection. If that fails to reclaim enough pages to
2444 * satisfy the reclaim goal, we come back and override
2445 * the best-effort low protection. However, we still
2446 * ideally want to honor how well-behaved groups are in
2447 * that case instead of simply punishing them all
2448 * equally. As such, we reclaim them based on how much
2449 * memory they are using, reducing the scan pressure
2450 * again by how much of the total memory used is under
2451 * hard protection.
2452 */
2453 unsigned long cgroup_size = mem_cgroup_size(memcg);
2454 unsigned long protection;
2455
2456 /* memory.low scaling, make sure we retry before OOM */
2457 if (!sc->memcg_low_reclaim && low > min) {
2458 protection = low;
2459 sc->memcg_low_skipped = 1;
2460 } else {
2461 protection = min;
2462 }
2463
2464 /* Avoid TOCTOU with earlier protection check */
2465 cgroup_size = max(cgroup_size, protection);
2466
2467 scan = lruvec_size - lruvec_size * protection /
2468 (cgroup_size + 1);
2469
2470 /*
2471 * Minimally target SWAP_CLUSTER_MAX pages to keep
2472 * reclaim moving forwards, avoiding decrementing
2473 * sc->priority further than desirable.
2474 */
2475 scan = max(scan, SWAP_CLUSTER_MAX);
2476 } else {
2477 scan = lruvec_size;
2478 }
2479
2480 scan >>= sc->priority;
2481
2482 /*
2483 * If the cgroup's already been deleted, make sure to
2484 * scrape out the remaining cache.
2485 */
2486 if (!scan && !mem_cgroup_online(memcg))
2487 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2488
2489 switch (scan_balance) {
2490 case SCAN_EQUAL:
2491 /* Scan lists relative to size */
2492 break;
2493 case SCAN_FRACT:
2494 /*
2495 * Scan types proportional to swappiness and
2496 * their relative recent reclaim efficiency.
2497 * Make sure we don't miss the last page on
2498 * the offlined memory cgroups because of a
2499 * round-off error.
2500 */
2501 scan = mem_cgroup_online(memcg) ?
2502 div64_u64(scan * fraction[file], denominator) :
2503 DIV64_U64_ROUND_UP(scan * fraction[file],
2504 denominator);
2505 break;
2506 case SCAN_FILE:
2507 case SCAN_ANON:
2508 /* Scan one type exclusively */
2509 if ((scan_balance == SCAN_FILE) != file)
2510 scan = 0;
2511 break;
2512 default:
2513 /* Look ma, no brain */
2514 BUG();
2515 }
2516
2517 nr[lru] = scan;
2518 }
2519 }
2520
2521 /*
2522 * Anonymous LRU management is a waste if there is
2523 * ultimately no way to reclaim the memory.
2524 */
2525 static bool can_age_anon_pages(struct pglist_data *pgdat,
2526 struct scan_control *sc)
2527 {
2528 /* Aging the anon LRU is valuable if swap is present: */
2529 if (total_swap_pages > 0)
2530 return true;
2531
2532 /* Also valuable if anon pages can be demoted: */
2533 return can_demote(pgdat->node_id, sc);
2534 }
2535
2536 #ifdef CONFIG_LRU_GEN
2537
2538 #ifdef CONFIG_LRU_GEN_ENABLED
2539 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2540 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2541 #else
2542 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2543 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2544 #endif
2545
2546 static bool should_walk_mmu(void)
2547 {
2548 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2549 }
2550
2551 static bool should_clear_pmd_young(void)
2552 {
2553 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2554 }
2555
2556 /******************************************************************************
2557 * shorthand helpers
2558 ******************************************************************************/
2559
2560 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2561
2562 #define DEFINE_MAX_SEQ(lruvec) \
2563 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2564
2565 #define DEFINE_MIN_SEQ(lruvec) \
2566 unsigned long min_seq[ANON_AND_FILE] = { \
2567 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2568 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2569 }
2570
2571 #define for_each_gen_type_zone(gen, type, zone) \
2572 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2573 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2574 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2575
2576 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2577 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2578
2579 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2580 {
2581 struct pglist_data *pgdat = NODE_DATA(nid);
2582
2583 #ifdef CONFIG_MEMCG
2584 if (memcg) {
2585 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2586
2587 /* see the comment in mem_cgroup_lruvec() */
2588 if (!lruvec->pgdat)
2589 lruvec->pgdat = pgdat;
2590
2591 return lruvec;
2592 }
2593 #endif
2594 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2595
2596 return &pgdat->__lruvec;
2597 }
2598
2599 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2600 {
2601 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2602 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2603
2604 if (!sc->may_swap)
2605 return 0;
2606
2607 if (!can_demote(pgdat->node_id, sc) &&
2608 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2609 return 0;
2610
2611 return mem_cgroup_swappiness(memcg);
2612 }
2613
2614 static int get_nr_gens(struct lruvec *lruvec, int type)
2615 {
2616 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2617 }
2618
2619 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2620 {
2621 /* see the comment on lru_gen_folio */
2622 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2623 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2624 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2625 }
2626
2627 /******************************************************************************
2628 * Bloom filters
2629 ******************************************************************************/
2630
2631 /*
2632 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2633 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2634 * bits in a bitmap, k is the number of hash functions and n is the number of
2635 * inserted items.
2636 *
2637 * Page table walkers use one of the two filters to reduce their search space.
2638 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2639 * aging uses the double-buffering technique to flip to the other filter each
2640 * time it produces a new generation. For non-leaf entries that have enough
2641 * leaf entries, the aging carries them over to the next generation in
2642 * walk_pmd_range(); the eviction also report them when walking the rmap
2643 * in lru_gen_look_around().
2644 *
2645 * For future optimizations:
2646 * 1. It's not necessary to keep both filters all the time. The spare one can be
2647 * freed after the RCU grace period and reallocated if needed again.
2648 * 2. And when reallocating, it's worth scaling its size according to the number
2649 * of inserted entries in the other filter, to reduce the memory overhead on
2650 * small systems and false positives on large systems.
2651 * 3. Jenkins' hash function is an alternative to Knuth's.
2652 */
2653 #define BLOOM_FILTER_SHIFT 15
2654
2655 static inline int filter_gen_from_seq(unsigned long seq)
2656 {
2657 return seq % NR_BLOOM_FILTERS;
2658 }
2659
2660 static void get_item_key(void *item, int *key)
2661 {
2662 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2663
2664 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2665
2666 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2667 key[1] = hash >> BLOOM_FILTER_SHIFT;
2668 }
2669
2670 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2671 {
2672 int key[2];
2673 unsigned long *filter;
2674 int gen = filter_gen_from_seq(seq);
2675
2676 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2677 if (!filter)
2678 return true;
2679
2680 get_item_key(item, key);
2681
2682 return test_bit(key[0], filter) && test_bit(key[1], filter);
2683 }
2684
2685 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2686 {
2687 int key[2];
2688 unsigned long *filter;
2689 int gen = filter_gen_from_seq(seq);
2690
2691 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2692 if (!filter)
2693 return;
2694
2695 get_item_key(item, key);
2696
2697 if (!test_bit(key[0], filter))
2698 set_bit(key[0], filter);
2699 if (!test_bit(key[1], filter))
2700 set_bit(key[1], filter);
2701 }
2702
2703 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
2704 {
2705 unsigned long *filter;
2706 int gen = filter_gen_from_seq(seq);
2707
2708 filter = lruvec->mm_state.filters[gen];
2709 if (filter) {
2710 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2711 return;
2712 }
2713
2714 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2715 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2716 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
2717 }
2718
2719 /******************************************************************************
2720 * mm_struct list
2721 ******************************************************************************/
2722
2723 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2724 {
2725 static struct lru_gen_mm_list mm_list = {
2726 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2727 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2728 };
2729
2730 #ifdef CONFIG_MEMCG
2731 if (memcg)
2732 return &memcg->mm_list;
2733 #endif
2734 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2735
2736 return &mm_list;
2737 }
2738
2739 void lru_gen_add_mm(struct mm_struct *mm)
2740 {
2741 int nid;
2742 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2743 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2744
2745 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2746 #ifdef CONFIG_MEMCG
2747 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2748 mm->lru_gen.memcg = memcg;
2749 #endif
2750 spin_lock(&mm_list->lock);
2751
2752 for_each_node_state(nid, N_MEMORY) {
2753 struct lruvec *lruvec = get_lruvec(memcg, nid);
2754
2755 /* the first addition since the last iteration */
2756 if (lruvec->mm_state.tail == &mm_list->fifo)
2757 lruvec->mm_state.tail = &mm->lru_gen.list;
2758 }
2759
2760 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2761
2762 spin_unlock(&mm_list->lock);
2763 }
2764
2765 void lru_gen_del_mm(struct mm_struct *mm)
2766 {
2767 int nid;
2768 struct lru_gen_mm_list *mm_list;
2769 struct mem_cgroup *memcg = NULL;
2770
2771 if (list_empty(&mm->lru_gen.list))
2772 return;
2773
2774 #ifdef CONFIG_MEMCG
2775 memcg = mm->lru_gen.memcg;
2776 #endif
2777 mm_list = get_mm_list(memcg);
2778
2779 spin_lock(&mm_list->lock);
2780
2781 for_each_node(nid) {
2782 struct lruvec *lruvec = get_lruvec(memcg, nid);
2783
2784 /* where the current iteration continues after */
2785 if (lruvec->mm_state.head == &mm->lru_gen.list)
2786 lruvec->mm_state.head = lruvec->mm_state.head->prev;
2787
2788 /* where the last iteration ended before */
2789 if (lruvec->mm_state.tail == &mm->lru_gen.list)
2790 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
2791 }
2792
2793 list_del_init(&mm->lru_gen.list);
2794
2795 spin_unlock(&mm_list->lock);
2796
2797 #ifdef CONFIG_MEMCG
2798 mem_cgroup_put(mm->lru_gen.memcg);
2799 mm->lru_gen.memcg = NULL;
2800 #endif
2801 }
2802
2803 #ifdef CONFIG_MEMCG
2804 void lru_gen_migrate_mm(struct mm_struct *mm)
2805 {
2806 struct mem_cgroup *memcg;
2807 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2808
2809 VM_WARN_ON_ONCE(task->mm != mm);
2810 lockdep_assert_held(&task->alloc_lock);
2811
2812 /* for mm_update_next_owner() */
2813 if (mem_cgroup_disabled())
2814 return;
2815
2816 /* migration can happen before addition */
2817 if (!mm->lru_gen.memcg)
2818 return;
2819
2820 rcu_read_lock();
2821 memcg = mem_cgroup_from_task(task);
2822 rcu_read_unlock();
2823 if (memcg == mm->lru_gen.memcg)
2824 return;
2825
2826 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2827
2828 lru_gen_del_mm(mm);
2829 lru_gen_add_mm(mm);
2830 }
2831 #endif
2832
2833 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2834 {
2835 int i;
2836 int hist;
2837
2838 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2839
2840 if (walk) {
2841 hist = lru_hist_from_seq(walk->max_seq);
2842
2843 for (i = 0; i < NR_MM_STATS; i++) {
2844 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
2845 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
2846 walk->mm_stats[i] = 0;
2847 }
2848 }
2849
2850 if (NR_HIST_GENS > 1 && last) {
2851 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
2852
2853 for (i = 0; i < NR_MM_STATS; i++)
2854 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
2855 }
2856 }
2857
2858 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
2859 {
2860 int type;
2861 unsigned long size = 0;
2862 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2863 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2864
2865 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2866 return true;
2867
2868 clear_bit(key, &mm->lru_gen.bitmap);
2869
2870 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
2871 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
2872 get_mm_counter(mm, MM_ANONPAGES) +
2873 get_mm_counter(mm, MM_SHMEMPAGES);
2874 }
2875
2876 if (size < MIN_LRU_BATCH)
2877 return true;
2878
2879 return !mmget_not_zero(mm);
2880 }
2881
2882 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2883 struct mm_struct **iter)
2884 {
2885 bool first = false;
2886 bool last = false;
2887 struct mm_struct *mm = NULL;
2888 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2889 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2890 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2891
2892 /*
2893 * mm_state->seq is incremented after each iteration of mm_list. There
2894 * are three interesting cases for this page table walker:
2895 * 1. It tries to start a new iteration with a stale max_seq: there is
2896 * nothing left to do.
2897 * 2. It started the next iteration: it needs to reset the Bloom filter
2898 * so that a fresh set of PTE tables can be recorded.
2899 * 3. It ended the current iteration: it needs to reset the mm stats
2900 * counters and tell its caller to increment max_seq.
2901 */
2902 spin_lock(&mm_list->lock);
2903
2904 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2905
2906 if (walk->max_seq <= mm_state->seq)
2907 goto done;
2908
2909 if (!mm_state->head)
2910 mm_state->head = &mm_list->fifo;
2911
2912 if (mm_state->head == &mm_list->fifo)
2913 first = true;
2914
2915 do {
2916 mm_state->head = mm_state->head->next;
2917 if (mm_state->head == &mm_list->fifo) {
2918 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2919 last = true;
2920 break;
2921 }
2922
2923 /* force scan for those added after the last iteration */
2924 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2925 mm_state->tail = mm_state->head->next;
2926 walk->force_scan = true;
2927 }
2928
2929 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2930 if (should_skip_mm(mm, walk))
2931 mm = NULL;
2932 } while (!mm);
2933 done:
2934 if (*iter || last)
2935 reset_mm_stats(lruvec, walk, last);
2936
2937 spin_unlock(&mm_list->lock);
2938
2939 if (mm && first)
2940 reset_bloom_filter(lruvec, walk->max_seq + 1);
2941
2942 if (*iter)
2943 mmput_async(*iter);
2944
2945 *iter = mm;
2946
2947 return last;
2948 }
2949
2950 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2951 {
2952 bool success = false;
2953 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2954 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2955 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2956
2957 spin_lock(&mm_list->lock);
2958
2959 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2960
2961 if (max_seq > mm_state->seq) {
2962 mm_state->head = NULL;
2963 mm_state->tail = NULL;
2964 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2965 reset_mm_stats(lruvec, NULL, true);
2966 success = true;
2967 }
2968
2969 spin_unlock(&mm_list->lock);
2970
2971 return success;
2972 }
2973
2974 /******************************************************************************
2975 * PID controller
2976 ******************************************************************************/
2977
2978 /*
2979 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
2980 *
2981 * The P term is refaulted/(evicted+protected) from a tier in the generation
2982 * currently being evicted; the I term is the exponential moving average of the
2983 * P term over the generations previously evicted, using the smoothing factor
2984 * 1/2; the D term isn't supported.
2985 *
2986 * The setpoint (SP) is always the first tier of one type; the process variable
2987 * (PV) is either any tier of the other type or any other tier of the same
2988 * type.
2989 *
2990 * The error is the difference between the SP and the PV; the correction is to
2991 * turn off protection when SP>PV or turn on protection when SP<PV.
2992 *
2993 * For future optimizations:
2994 * 1. The D term may discount the other two terms over time so that long-lived
2995 * generations can resist stale information.
2996 */
2997 struct ctrl_pos {
2998 unsigned long refaulted;
2999 unsigned long total;
3000 int gain;
3001 };
3002
3003 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3004 struct ctrl_pos *pos)
3005 {
3006 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3007 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3008
3009 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3010 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3011 pos->total = lrugen->avg_total[type][tier] +
3012 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3013 if (tier)
3014 pos->total += lrugen->protected[hist][type][tier - 1];
3015 pos->gain = gain;
3016 }
3017
3018 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3019 {
3020 int hist, tier;
3021 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3022 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3023 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3024
3025 lockdep_assert_held(&lruvec->lru_lock);
3026
3027 if (!carryover && !clear)
3028 return;
3029
3030 hist = lru_hist_from_seq(seq);
3031
3032 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3033 if (carryover) {
3034 unsigned long sum;
3035
3036 sum = lrugen->avg_refaulted[type][tier] +
3037 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3038 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3039
3040 sum = lrugen->avg_total[type][tier] +
3041 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3042 if (tier)
3043 sum += lrugen->protected[hist][type][tier - 1];
3044 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3045 }
3046
3047 if (clear) {
3048 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3049 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3050 if (tier)
3051 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3052 }
3053 }
3054 }
3055
3056 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3057 {
3058 /*
3059 * Return true if the PV has a limited number of refaults or a lower
3060 * refaulted/total than the SP.
3061 */
3062 return pv->refaulted < MIN_LRU_BATCH ||
3063 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3064 (sp->refaulted + 1) * pv->total * pv->gain;
3065 }
3066
3067 /******************************************************************************
3068 * the aging
3069 ******************************************************************************/
3070
3071 /* promote pages accessed through page tables */
3072 static int folio_update_gen(struct folio *folio, int gen)
3073 {
3074 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3075
3076 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3077 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3078
3079 do {
3080 /* lru_gen_del_folio() has isolated this page? */
3081 if (!(old_flags & LRU_GEN_MASK)) {
3082 /* for shrink_folio_list() */
3083 new_flags = old_flags | BIT(PG_referenced);
3084 continue;
3085 }
3086
3087 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3088 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3089 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3090
3091 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3092 }
3093
3094 /* protect pages accessed multiple times through file descriptors */
3095 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3096 {
3097 int type = folio_is_file_lru(folio);
3098 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3099 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3100 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3101
3102 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3103
3104 do {
3105 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3106 /* folio_update_gen() has promoted this page? */
3107 if (new_gen >= 0 && new_gen != old_gen)
3108 return new_gen;
3109
3110 new_gen = (old_gen + 1) % MAX_NR_GENS;
3111
3112 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3113 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3114 /* for folio_end_writeback() */
3115 if (reclaiming)
3116 new_flags |= BIT(PG_reclaim);
3117 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3118
3119 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3120
3121 return new_gen;
3122 }
3123
3124 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3125 int old_gen, int new_gen)
3126 {
3127 int type = folio_is_file_lru(folio);
3128 int zone = folio_zonenum(folio);
3129 int delta = folio_nr_pages(folio);
3130
3131 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3132 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3133
3134 walk->batched++;
3135
3136 walk->nr_pages[old_gen][type][zone] -= delta;
3137 walk->nr_pages[new_gen][type][zone] += delta;
3138 }
3139
3140 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3141 {
3142 int gen, type, zone;
3143 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3144
3145 walk->batched = 0;
3146
3147 for_each_gen_type_zone(gen, type, zone) {
3148 enum lru_list lru = type * LRU_INACTIVE_FILE;
3149 int delta = walk->nr_pages[gen][type][zone];
3150
3151 if (!delta)
3152 continue;
3153
3154 walk->nr_pages[gen][type][zone] = 0;
3155 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3156 lrugen->nr_pages[gen][type][zone] + delta);
3157
3158 if (lru_gen_is_active(lruvec, gen))
3159 lru += LRU_ACTIVE;
3160 __update_lru_size(lruvec, lru, zone, delta);
3161 }
3162 }
3163
3164 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3165 {
3166 struct address_space *mapping;
3167 struct vm_area_struct *vma = args->vma;
3168 struct lru_gen_mm_walk *walk = args->private;
3169
3170 if (!vma_is_accessible(vma))
3171 return true;
3172
3173 if (is_vm_hugetlb_page(vma))
3174 return true;
3175
3176 if (!vma_has_recency(vma))
3177 return true;
3178
3179 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3180 return true;
3181
3182 if (vma == get_gate_vma(vma->vm_mm))
3183 return true;
3184
3185 if (vma_is_anonymous(vma))
3186 return !walk->can_swap;
3187
3188 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3189 return true;
3190
3191 mapping = vma->vm_file->f_mapping;
3192 if (mapping_unevictable(mapping))
3193 return true;
3194
3195 if (shmem_mapping(mapping))
3196 return !walk->can_swap;
3197
3198 /* to exclude special mappings like dax, etc. */
3199 return !mapping->a_ops->read_folio;
3200 }
3201
3202 /*
3203 * Some userspace memory allocators map many single-page VMAs. Instead of
3204 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3205 * table to reduce zigzags and improve cache performance.
3206 */
3207 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3208 unsigned long *vm_start, unsigned long *vm_end)
3209 {
3210 unsigned long start = round_up(*vm_end, size);
3211 unsigned long end = (start | ~mask) + 1;
3212 VMA_ITERATOR(vmi, args->mm, start);
3213
3214 VM_WARN_ON_ONCE(mask & size);
3215 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3216
3217 for_each_vma(vmi, args->vma) {
3218 if (end && end <= args->vma->vm_start)
3219 return false;
3220
3221 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3222 continue;
3223
3224 *vm_start = max(start, args->vma->vm_start);
3225 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3226
3227 return true;
3228 }
3229
3230 return false;
3231 }
3232
3233 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3234 {
3235 unsigned long pfn = pte_pfn(pte);
3236
3237 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3238
3239 if (!pte_present(pte) || is_zero_pfn(pfn))
3240 return -1;
3241
3242 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3243 return -1;
3244
3245 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3246 return -1;
3247
3248 return pfn;
3249 }
3250
3251 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3252 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3253 {
3254 unsigned long pfn = pmd_pfn(pmd);
3255
3256 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3257
3258 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3259 return -1;
3260
3261 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3262 return -1;
3263
3264 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3265 return -1;
3266
3267 return pfn;
3268 }
3269 #endif
3270
3271 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3272 struct pglist_data *pgdat, bool can_swap)
3273 {
3274 struct folio *folio;
3275
3276 /* try to avoid unnecessary memory loads */
3277 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3278 return NULL;
3279
3280 folio = pfn_folio(pfn);
3281 if (folio_nid(folio) != pgdat->node_id)
3282 return NULL;
3283
3284 if (folio_memcg_rcu(folio) != memcg)
3285 return NULL;
3286
3287 /* file VMAs can contain anon pages from COW */
3288 if (!folio_is_file_lru(folio) && !can_swap)
3289 return NULL;
3290
3291 return folio;
3292 }
3293
3294 static bool suitable_to_scan(int total, int young)
3295 {
3296 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3297
3298 /* suitable if the average number of young PTEs per cacheline is >=1 */
3299 return young * n >= total;
3300 }
3301
3302 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3303 struct mm_walk *args)
3304 {
3305 int i;
3306 pte_t *pte;
3307 spinlock_t *ptl;
3308 unsigned long addr;
3309 int total = 0;
3310 int young = 0;
3311 struct lru_gen_mm_walk *walk = args->private;
3312 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3313 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3314 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3315
3316 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3317 if (!pte)
3318 return false;
3319 if (!spin_trylock(ptl)) {
3320 pte_unmap(pte);
3321 return false;
3322 }
3323
3324 arch_enter_lazy_mmu_mode();
3325 restart:
3326 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3327 unsigned long pfn;
3328 struct folio *folio;
3329 pte_t ptent = ptep_get(pte + i);
3330
3331 total++;
3332 walk->mm_stats[MM_LEAF_TOTAL]++;
3333
3334 pfn = get_pte_pfn(ptent, args->vma, addr);
3335 if (pfn == -1)
3336 continue;
3337
3338 if (!pte_young(ptent)) {
3339 walk->mm_stats[MM_LEAF_OLD]++;
3340 continue;
3341 }
3342
3343 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3344 if (!folio)
3345 continue;
3346
3347 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3348 VM_WARN_ON_ONCE(true);
3349
3350 young++;
3351 walk->mm_stats[MM_LEAF_YOUNG]++;
3352
3353 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3354 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3355 !folio_test_swapcache(folio)))
3356 folio_mark_dirty(folio);
3357
3358 old_gen = folio_update_gen(folio, new_gen);
3359 if (old_gen >= 0 && old_gen != new_gen)
3360 update_batch_size(walk, folio, old_gen, new_gen);
3361 }
3362
3363 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3364 goto restart;
3365
3366 arch_leave_lazy_mmu_mode();
3367 pte_unmap_unlock(pte, ptl);
3368
3369 return suitable_to_scan(total, young);
3370 }
3371
3372 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3373 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3374 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3375 {
3376 int i;
3377 pmd_t *pmd;
3378 spinlock_t *ptl;
3379 struct lru_gen_mm_walk *walk = args->private;
3380 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3381 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3382 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3383
3384 VM_WARN_ON_ONCE(pud_leaf(*pud));
3385
3386 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3387 if (*first == -1) {
3388 *first = addr;
3389 bitmap_zero(bitmap, MIN_LRU_BATCH);
3390 return;
3391 }
3392
3393 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3394 if (i && i <= MIN_LRU_BATCH) {
3395 __set_bit(i - 1, bitmap);
3396 return;
3397 }
3398
3399 pmd = pmd_offset(pud, *first);
3400
3401 ptl = pmd_lockptr(args->mm, pmd);
3402 if (!spin_trylock(ptl))
3403 goto done;
3404
3405 arch_enter_lazy_mmu_mode();
3406
3407 do {
3408 unsigned long pfn;
3409 struct folio *folio;
3410
3411 /* don't round down the first address */
3412 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3413
3414 pfn = get_pmd_pfn(pmd[i], vma, addr);
3415 if (pfn == -1)
3416 goto next;
3417
3418 if (!pmd_trans_huge(pmd[i])) {
3419 if (should_clear_pmd_young())
3420 pmdp_test_and_clear_young(vma, addr, pmd + i);
3421 goto next;
3422 }
3423
3424 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3425 if (!folio)
3426 goto next;
3427
3428 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3429 goto next;
3430
3431 walk->mm_stats[MM_LEAF_YOUNG]++;
3432
3433 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3434 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3435 !folio_test_swapcache(folio)))
3436 folio_mark_dirty(folio);
3437
3438 old_gen = folio_update_gen(folio, new_gen);
3439 if (old_gen >= 0 && old_gen != new_gen)
3440 update_batch_size(walk, folio, old_gen, new_gen);
3441 next:
3442 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3443 } while (i <= MIN_LRU_BATCH);
3444
3445 arch_leave_lazy_mmu_mode();
3446 spin_unlock(ptl);
3447 done:
3448 *first = -1;
3449 }
3450 #else
3451 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3452 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3453 {
3454 }
3455 #endif
3456
3457 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3458 struct mm_walk *args)
3459 {
3460 int i;
3461 pmd_t *pmd;
3462 unsigned long next;
3463 unsigned long addr;
3464 struct vm_area_struct *vma;
3465 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3466 unsigned long first = -1;
3467 struct lru_gen_mm_walk *walk = args->private;
3468
3469 VM_WARN_ON_ONCE(pud_leaf(*pud));
3470
3471 /*
3472 * Finish an entire PMD in two passes: the first only reaches to PTE
3473 * tables to avoid taking the PMD lock; the second, if necessary, takes
3474 * the PMD lock to clear the accessed bit in PMD entries.
3475 */
3476 pmd = pmd_offset(pud, start & PUD_MASK);
3477 restart:
3478 /* walk_pte_range() may call get_next_vma() */
3479 vma = args->vma;
3480 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3481 pmd_t val = pmdp_get_lockless(pmd + i);
3482
3483 next = pmd_addr_end(addr, end);
3484
3485 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3486 walk->mm_stats[MM_LEAF_TOTAL]++;
3487 continue;
3488 }
3489
3490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3491 if (pmd_trans_huge(val)) {
3492 unsigned long pfn = pmd_pfn(val);
3493 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3494
3495 walk->mm_stats[MM_LEAF_TOTAL]++;
3496
3497 if (!pmd_young(val)) {
3498 walk->mm_stats[MM_LEAF_OLD]++;
3499 continue;
3500 }
3501
3502 /* try to avoid unnecessary memory loads */
3503 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3504 continue;
3505
3506 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3507 continue;
3508 }
3509 #endif
3510 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3511
3512 if (should_clear_pmd_young()) {
3513 if (!pmd_young(val))
3514 continue;
3515
3516 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3517 }
3518
3519 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
3520 continue;
3521
3522 walk->mm_stats[MM_NONLEAF_FOUND]++;
3523
3524 if (!walk_pte_range(&val, addr, next, args))
3525 continue;
3526
3527 walk->mm_stats[MM_NONLEAF_ADDED]++;
3528
3529 /* carry over to the next generation */
3530 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
3531 }
3532
3533 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3534
3535 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3536 goto restart;
3537 }
3538
3539 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3540 struct mm_walk *args)
3541 {
3542 int i;
3543 pud_t *pud;
3544 unsigned long addr;
3545 unsigned long next;
3546 struct lru_gen_mm_walk *walk = args->private;
3547
3548 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3549
3550 pud = pud_offset(p4d, start & P4D_MASK);
3551 restart:
3552 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3553 pud_t val = READ_ONCE(pud[i]);
3554
3555 next = pud_addr_end(addr, end);
3556
3557 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3558 continue;
3559
3560 walk_pmd_range(&val, addr, next, args);
3561
3562 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3563 end = (addr | ~PUD_MASK) + 1;
3564 goto done;
3565 }
3566 }
3567
3568 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3569 goto restart;
3570
3571 end = round_up(end, P4D_SIZE);
3572 done:
3573 if (!end || !args->vma)
3574 return 1;
3575
3576 walk->next_addr = max(end, args->vma->vm_start);
3577
3578 return -EAGAIN;
3579 }
3580
3581 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3582 {
3583 static const struct mm_walk_ops mm_walk_ops = {
3584 .test_walk = should_skip_vma,
3585 .p4d_entry = walk_pud_range,
3586 .walk_lock = PGWALK_RDLOCK,
3587 };
3588
3589 int err;
3590 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3591
3592 walk->next_addr = FIRST_USER_ADDRESS;
3593
3594 do {
3595 DEFINE_MAX_SEQ(lruvec);
3596
3597 err = -EBUSY;
3598
3599 /* another thread might have called inc_max_seq() */
3600 if (walk->max_seq != max_seq)
3601 break;
3602
3603 /* folio_update_gen() requires stable folio_memcg() */
3604 if (!mem_cgroup_trylock_pages(memcg))
3605 break;
3606
3607 /* the caller might be holding the lock for write */
3608 if (mmap_read_trylock(mm)) {
3609 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3610
3611 mmap_read_unlock(mm);
3612 }
3613
3614 mem_cgroup_unlock_pages();
3615
3616 if (walk->batched) {
3617 spin_lock_irq(&lruvec->lru_lock);
3618 reset_batch_size(lruvec, walk);
3619 spin_unlock_irq(&lruvec->lru_lock);
3620 }
3621
3622 cond_resched();
3623 } while (err == -EAGAIN);
3624 }
3625
3626 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3627 {
3628 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3629
3630 if (pgdat && current_is_kswapd()) {
3631 VM_WARN_ON_ONCE(walk);
3632
3633 walk = &pgdat->mm_walk;
3634 } else if (!walk && force_alloc) {
3635 VM_WARN_ON_ONCE(current_is_kswapd());
3636
3637 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3638 }
3639
3640 current->reclaim_state->mm_walk = walk;
3641
3642 return walk;
3643 }
3644
3645 static void clear_mm_walk(void)
3646 {
3647 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3648
3649 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3650 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3651
3652 current->reclaim_state->mm_walk = NULL;
3653
3654 if (!current_is_kswapd())
3655 kfree(walk);
3656 }
3657
3658 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3659 {
3660 int zone;
3661 int remaining = MAX_LRU_BATCH;
3662 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3663 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3664
3665 if (type == LRU_GEN_ANON && !can_swap)
3666 goto done;
3667
3668 /* prevent cold/hot inversion if force_scan is true */
3669 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3670 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3671
3672 while (!list_empty(head)) {
3673 struct folio *folio = lru_to_folio(head);
3674
3675 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3676 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3677 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3678 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3679
3680 new_gen = folio_inc_gen(lruvec, folio, false);
3681 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3682
3683 if (!--remaining)
3684 return false;
3685 }
3686 }
3687 done:
3688 reset_ctrl_pos(lruvec, type, true);
3689 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3690
3691 return true;
3692 }
3693
3694 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3695 {
3696 int gen, type, zone;
3697 bool success = false;
3698 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3699 DEFINE_MIN_SEQ(lruvec);
3700
3701 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3702
3703 /* find the oldest populated generation */
3704 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3705 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3706 gen = lru_gen_from_seq(min_seq[type]);
3707
3708 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3709 if (!list_empty(&lrugen->folios[gen][type][zone]))
3710 goto next;
3711 }
3712
3713 min_seq[type]++;
3714 }
3715 next:
3716 ;
3717 }
3718
3719 /* see the comment on lru_gen_folio */
3720 if (can_swap) {
3721 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3722 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3723 }
3724
3725 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3726 if (min_seq[type] == lrugen->min_seq[type])
3727 continue;
3728
3729 reset_ctrl_pos(lruvec, type, true);
3730 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3731 success = true;
3732 }
3733
3734 return success;
3735 }
3736
3737 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
3738 {
3739 int prev, next;
3740 int type, zone;
3741 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3742 restart:
3743 spin_lock_irq(&lruvec->lru_lock);
3744
3745 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3746
3747 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3748 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3749 continue;
3750
3751 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3752
3753 if (inc_min_seq(lruvec, type, can_swap))
3754 continue;
3755
3756 spin_unlock_irq(&lruvec->lru_lock);
3757 cond_resched();
3758 goto restart;
3759 }
3760
3761 /*
3762 * Update the active/inactive LRU sizes for compatibility. Both sides of
3763 * the current max_seq need to be covered, since max_seq+1 can overlap
3764 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3765 * overlap, cold/hot inversion happens.
3766 */
3767 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3768 next = lru_gen_from_seq(lrugen->max_seq + 1);
3769
3770 for (type = 0; type < ANON_AND_FILE; type++) {
3771 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3772 enum lru_list lru = type * LRU_INACTIVE_FILE;
3773 long delta = lrugen->nr_pages[prev][type][zone] -
3774 lrugen->nr_pages[next][type][zone];
3775
3776 if (!delta)
3777 continue;
3778
3779 __update_lru_size(lruvec, lru, zone, delta);
3780 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3781 }
3782 }
3783
3784 for (type = 0; type < ANON_AND_FILE; type++)
3785 reset_ctrl_pos(lruvec, type, false);
3786
3787 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3788 /* make sure preceding modifications appear */
3789 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3790
3791 spin_unlock_irq(&lruvec->lru_lock);
3792 }
3793
3794 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3795 struct scan_control *sc, bool can_swap, bool force_scan)
3796 {
3797 bool success;
3798 struct lru_gen_mm_walk *walk;
3799 struct mm_struct *mm = NULL;
3800 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3801
3802 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3803
3804 /* see the comment in iterate_mm_list() */
3805 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
3806 success = false;
3807 goto done;
3808 }
3809
3810 /*
3811 * If the hardware doesn't automatically set the accessed bit, fallback
3812 * to lru_gen_look_around(), which only clears the accessed bit in a
3813 * handful of PTEs. Spreading the work out over a period of time usually
3814 * is less efficient, but it avoids bursty page faults.
3815 */
3816 if (!should_walk_mmu()) {
3817 success = iterate_mm_list_nowalk(lruvec, max_seq);
3818 goto done;
3819 }
3820
3821 walk = set_mm_walk(NULL, true);
3822 if (!walk) {
3823 success = iterate_mm_list_nowalk(lruvec, max_seq);
3824 goto done;
3825 }
3826
3827 walk->lruvec = lruvec;
3828 walk->max_seq = max_seq;
3829 walk->can_swap = can_swap;
3830 walk->force_scan = force_scan;
3831
3832 do {
3833 success = iterate_mm_list(lruvec, walk, &mm);
3834 if (mm)
3835 walk_mm(lruvec, mm, walk);
3836 } while (mm);
3837 done:
3838 if (success)
3839 inc_max_seq(lruvec, can_swap, force_scan);
3840
3841 return success;
3842 }
3843
3844 /******************************************************************************
3845 * working set protection
3846 ******************************************************************************/
3847
3848 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3849 {
3850 int gen, type, zone;
3851 unsigned long total = 0;
3852 bool can_swap = get_swappiness(lruvec, sc);
3853 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3854 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3855 DEFINE_MAX_SEQ(lruvec);
3856 DEFINE_MIN_SEQ(lruvec);
3857
3858 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3859 unsigned long seq;
3860
3861 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3862 gen = lru_gen_from_seq(seq);
3863
3864 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3865 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3866 }
3867 }
3868
3869 /* whether the size is big enough to be helpful */
3870 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3871 }
3872
3873 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3874 unsigned long min_ttl)
3875 {
3876 int gen;
3877 unsigned long birth;
3878 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3879 DEFINE_MIN_SEQ(lruvec);
3880
3881 /* see the comment on lru_gen_folio */
3882 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3883 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3884
3885 if (time_is_after_jiffies(birth + min_ttl))
3886 return false;
3887
3888 if (!lruvec_is_sizable(lruvec, sc))
3889 return false;
3890
3891 mem_cgroup_calculate_protection(NULL, memcg);
3892
3893 return !mem_cgroup_below_min(NULL, memcg);
3894 }
3895
3896 /* to protect the working set of the last N jiffies */
3897 static unsigned long lru_gen_min_ttl __read_mostly;
3898
3899 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3900 {
3901 struct mem_cgroup *memcg;
3902 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3903
3904 VM_WARN_ON_ONCE(!current_is_kswapd());
3905
3906 /* check the order to exclude compaction-induced reclaim */
3907 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3908 return;
3909
3910 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3911 do {
3912 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3913
3914 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3915 mem_cgroup_iter_break(NULL, memcg);
3916 return;
3917 }
3918
3919 cond_resched();
3920 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3921
3922 /*
3923 * The main goal is to OOM kill if every generation from all memcgs is
3924 * younger than min_ttl. However, another possibility is all memcgs are
3925 * either too small or below min.
3926 */
3927 if (mutex_trylock(&oom_lock)) {
3928 struct oom_control oc = {
3929 .gfp_mask = sc->gfp_mask,
3930 };
3931
3932 out_of_memory(&oc);
3933
3934 mutex_unlock(&oom_lock);
3935 }
3936 }
3937
3938 /******************************************************************************
3939 * rmap/PT walk feedback
3940 ******************************************************************************/
3941
3942 /*
3943 * This function exploits spatial locality when shrink_folio_list() walks the
3944 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3945 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3946 * the PTE table to the Bloom filter. This forms a feedback loop between the
3947 * eviction and the aging.
3948 */
3949 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3950 {
3951 int i;
3952 unsigned long start;
3953 unsigned long end;
3954 struct lru_gen_mm_walk *walk;
3955 int young = 0;
3956 pte_t *pte = pvmw->pte;
3957 unsigned long addr = pvmw->address;
3958 struct folio *folio = pfn_folio(pvmw->pfn);
3959 bool can_swap = !folio_is_file_lru(folio);
3960 struct mem_cgroup *memcg = folio_memcg(folio);
3961 struct pglist_data *pgdat = folio_pgdat(folio);
3962 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3963 DEFINE_MAX_SEQ(lruvec);
3964 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3965
3966 lockdep_assert_held(pvmw->ptl);
3967 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3968
3969 if (spin_is_contended(pvmw->ptl))
3970 return;
3971
3972 /* avoid taking the LRU lock under the PTL when possible */
3973 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
3974
3975 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
3976 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
3977
3978 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
3979 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
3980 end = start + MIN_LRU_BATCH * PAGE_SIZE;
3981 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
3982 start = end - MIN_LRU_BATCH * PAGE_SIZE;
3983 else {
3984 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
3985 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
3986 }
3987 }
3988
3989 /* folio_update_gen() requires stable folio_memcg() */
3990 if (!mem_cgroup_trylock_pages(memcg))
3991 return;
3992
3993 arch_enter_lazy_mmu_mode();
3994
3995 pte -= (addr - start) / PAGE_SIZE;
3996
3997 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
3998 unsigned long pfn;
3999 pte_t ptent = ptep_get(pte + i);
4000
4001 pfn = get_pte_pfn(ptent, pvmw->vma, addr);
4002 if (pfn == -1)
4003 continue;
4004
4005 if (!pte_young(ptent))
4006 continue;
4007
4008 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4009 if (!folio)
4010 continue;
4011
4012 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4013 VM_WARN_ON_ONCE(true);
4014
4015 young++;
4016
4017 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4018 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4019 !folio_test_swapcache(folio)))
4020 folio_mark_dirty(folio);
4021
4022 if (walk) {
4023 old_gen = folio_update_gen(folio, new_gen);
4024 if (old_gen >= 0 && old_gen != new_gen)
4025 update_batch_size(walk, folio, old_gen, new_gen);
4026
4027 continue;
4028 }
4029
4030 old_gen = folio_lru_gen(folio);
4031 if (old_gen < 0)
4032 folio_set_referenced(folio);
4033 else if (old_gen != new_gen)
4034 folio_activate(folio);
4035 }
4036
4037 arch_leave_lazy_mmu_mode();
4038 mem_cgroup_unlock_pages();
4039
4040 /* feedback from rmap walkers to page table walkers */
4041 if (suitable_to_scan(i, young))
4042 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4043 }
4044
4045 /******************************************************************************
4046 * memcg LRU
4047 ******************************************************************************/
4048
4049 /* see the comment on MEMCG_NR_GENS */
4050 enum {
4051 MEMCG_LRU_NOP,
4052 MEMCG_LRU_HEAD,
4053 MEMCG_LRU_TAIL,
4054 MEMCG_LRU_OLD,
4055 MEMCG_LRU_YOUNG,
4056 };
4057
4058 #ifdef CONFIG_MEMCG
4059
4060 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4061 {
4062 return READ_ONCE(lruvec->lrugen.seg);
4063 }
4064
4065 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4066 {
4067 int seg;
4068 int old, new;
4069 unsigned long flags;
4070 int bin = get_random_u32_below(MEMCG_NR_BINS);
4071 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4072
4073 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4074
4075 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4076
4077 seg = 0;
4078 new = old = lruvec->lrugen.gen;
4079
4080 /* see the comment on MEMCG_NR_GENS */
4081 if (op == MEMCG_LRU_HEAD)
4082 seg = MEMCG_LRU_HEAD;
4083 else if (op == MEMCG_LRU_TAIL)
4084 seg = MEMCG_LRU_TAIL;
4085 else if (op == MEMCG_LRU_OLD)
4086 new = get_memcg_gen(pgdat->memcg_lru.seq);
4087 else if (op == MEMCG_LRU_YOUNG)
4088 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4089 else
4090 VM_WARN_ON_ONCE(true);
4091
4092 WRITE_ONCE(lruvec->lrugen.seg, seg);
4093 WRITE_ONCE(lruvec->lrugen.gen, new);
4094
4095 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4096
4097 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4098 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4099 else
4100 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4101
4102 pgdat->memcg_lru.nr_memcgs[old]--;
4103 pgdat->memcg_lru.nr_memcgs[new]++;
4104
4105 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4106 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4107
4108 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4109 }
4110
4111 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4112 {
4113 int gen;
4114 int nid;
4115 int bin = get_random_u32_below(MEMCG_NR_BINS);
4116
4117 for_each_node(nid) {
4118 struct pglist_data *pgdat = NODE_DATA(nid);
4119 struct lruvec *lruvec = get_lruvec(memcg, nid);
4120
4121 spin_lock_irq(&pgdat->memcg_lru.lock);
4122
4123 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4124
4125 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4126
4127 lruvec->lrugen.gen = gen;
4128
4129 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4130 pgdat->memcg_lru.nr_memcgs[gen]++;
4131
4132 spin_unlock_irq(&pgdat->memcg_lru.lock);
4133 }
4134 }
4135
4136 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4137 {
4138 int nid;
4139
4140 for_each_node(nid) {
4141 struct lruvec *lruvec = get_lruvec(memcg, nid);
4142
4143 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4144 }
4145 }
4146
4147 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4148 {
4149 int gen;
4150 int nid;
4151
4152 for_each_node(nid) {
4153 struct pglist_data *pgdat = NODE_DATA(nid);
4154 struct lruvec *lruvec = get_lruvec(memcg, nid);
4155
4156 spin_lock_irq(&pgdat->memcg_lru.lock);
4157
4158 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4159 goto unlock;
4160
4161 gen = lruvec->lrugen.gen;
4162
4163 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4164 pgdat->memcg_lru.nr_memcgs[gen]--;
4165
4166 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4167 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4168 unlock:
4169 spin_unlock_irq(&pgdat->memcg_lru.lock);
4170 }
4171 }
4172
4173 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4174 {
4175 struct lruvec *lruvec = get_lruvec(memcg, nid);
4176
4177 /* see the comment on MEMCG_NR_GENS */
4178 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4179 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4180 }
4181
4182 #else /* !CONFIG_MEMCG */
4183
4184 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4185 {
4186 return 0;
4187 }
4188
4189 #endif
4190
4191 /******************************************************************************
4192 * the eviction
4193 ******************************************************************************/
4194
4195 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4196 int tier_idx)
4197 {
4198 bool success;
4199 int gen = folio_lru_gen(folio);
4200 int type = folio_is_file_lru(folio);
4201 int zone = folio_zonenum(folio);
4202 int delta = folio_nr_pages(folio);
4203 int refs = folio_lru_refs(folio);
4204 int tier = lru_tier_from_refs(refs);
4205 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4206
4207 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4208
4209 /* unevictable */
4210 if (!folio_evictable(folio)) {
4211 success = lru_gen_del_folio(lruvec, folio, true);
4212 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4213 folio_set_unevictable(folio);
4214 lruvec_add_folio(lruvec, folio);
4215 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4216 return true;
4217 }
4218
4219 /* dirty lazyfree */
4220 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4221 success = lru_gen_del_folio(lruvec, folio, true);
4222 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4223 folio_set_swapbacked(folio);
4224 lruvec_add_folio_tail(lruvec, folio);
4225 return true;
4226 }
4227
4228 /* promoted */
4229 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4230 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4231 return true;
4232 }
4233
4234 /* protected */
4235 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4236 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4237
4238 gen = folio_inc_gen(lruvec, folio, false);
4239 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4240
4241 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4242 lrugen->protected[hist][type][tier - 1] + delta);
4243 return true;
4244 }
4245
4246 /* ineligible */
4247 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4248 gen = folio_inc_gen(lruvec, folio, false);
4249 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4250 return true;
4251 }
4252
4253 /* waiting for writeback */
4254 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4255 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4256 gen = folio_inc_gen(lruvec, folio, true);
4257 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4258 return true;
4259 }
4260
4261 return false;
4262 }
4263
4264 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4265 {
4266 bool success;
4267
4268 /* swapping inhibited */
4269 if (!(sc->gfp_mask & __GFP_IO) &&
4270 (folio_test_dirty(folio) ||
4271 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4272 return false;
4273
4274 /* raced with release_pages() */
4275 if (!folio_try_get(folio))
4276 return false;
4277
4278 /* raced with another isolation */
4279 if (!folio_test_clear_lru(folio)) {
4280 folio_put(folio);
4281 return false;
4282 }
4283
4284 /* see the comment on MAX_NR_TIERS */
4285 if (!folio_test_referenced(folio))
4286 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4287
4288 /* for shrink_folio_list() */
4289 folio_clear_reclaim(folio);
4290 folio_clear_referenced(folio);
4291
4292 success = lru_gen_del_folio(lruvec, folio, true);
4293 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4294
4295 return true;
4296 }
4297
4298 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4299 int type, int tier, struct list_head *list)
4300 {
4301 int i;
4302 int gen;
4303 enum vm_event_item item;
4304 int sorted = 0;
4305 int scanned = 0;
4306 int isolated = 0;
4307 int skipped = 0;
4308 int remaining = MAX_LRU_BATCH;
4309 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4310 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4311
4312 VM_WARN_ON_ONCE(!list_empty(list));
4313
4314 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4315 return 0;
4316
4317 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4318
4319 for (i = MAX_NR_ZONES; i > 0; i--) {
4320 LIST_HEAD(moved);
4321 int skipped_zone = 0;
4322 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4323 struct list_head *head = &lrugen->folios[gen][type][zone];
4324
4325 while (!list_empty(head)) {
4326 struct folio *folio = lru_to_folio(head);
4327 int delta = folio_nr_pages(folio);
4328
4329 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4330 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4331 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4332 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4333
4334 scanned += delta;
4335
4336 if (sort_folio(lruvec, folio, sc, tier))
4337 sorted += delta;
4338 else if (isolate_folio(lruvec, folio, sc)) {
4339 list_add(&folio->lru, list);
4340 isolated += delta;
4341 } else {
4342 list_move(&folio->lru, &moved);
4343 skipped_zone += delta;
4344 }
4345
4346 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4347 break;
4348 }
4349
4350 if (skipped_zone) {
4351 list_splice(&moved, head);
4352 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4353 skipped += skipped_zone;
4354 }
4355
4356 if (!remaining || isolated >= MIN_LRU_BATCH)
4357 break;
4358 }
4359
4360 item = PGSCAN_KSWAPD + reclaimer_offset();
4361 if (!cgroup_reclaim(sc)) {
4362 __count_vm_events(item, isolated);
4363 __count_vm_events(PGREFILL, sorted);
4364 }
4365 __count_memcg_events(memcg, item, isolated);
4366 __count_memcg_events(memcg, PGREFILL, sorted);
4367 __count_vm_events(PGSCAN_ANON + type, isolated);
4368 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4369 scanned, skipped, isolated,
4370 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4371
4372 /*
4373 * There might not be eligible folios due to reclaim_idx. Check the
4374 * remaining to prevent livelock if it's not making progress.
4375 */
4376 return isolated || !remaining ? scanned : 0;
4377 }
4378
4379 static int get_tier_idx(struct lruvec *lruvec, int type)
4380 {
4381 int tier;
4382 struct ctrl_pos sp, pv;
4383
4384 /*
4385 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4386 * This value is chosen because any other tier would have at least twice
4387 * as many refaults as the first tier.
4388 */
4389 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4390 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4391 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4392 if (!positive_ctrl_err(&sp, &pv))
4393 break;
4394 }
4395
4396 return tier - 1;
4397 }
4398
4399 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4400 {
4401 int type, tier;
4402 struct ctrl_pos sp, pv;
4403 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4404
4405 /*
4406 * Compare the first tier of anon with that of file to determine which
4407 * type to scan. Also need to compare other tiers of the selected type
4408 * with the first tier of the other type to determine the last tier (of
4409 * the selected type) to evict.
4410 */
4411 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4412 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4413 type = positive_ctrl_err(&sp, &pv);
4414
4415 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4416 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4417 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4418 if (!positive_ctrl_err(&sp, &pv))
4419 break;
4420 }
4421
4422 *tier_idx = tier - 1;
4423
4424 return type;
4425 }
4426
4427 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4428 int *type_scanned, struct list_head *list)
4429 {
4430 int i;
4431 int type;
4432 int scanned;
4433 int tier = -1;
4434 DEFINE_MIN_SEQ(lruvec);
4435
4436 /*
4437 * Try to make the obvious choice first. When anon and file are both
4438 * available from the same generation, interpret swappiness 1 as file
4439 * first and 200 as anon first.
4440 */
4441 if (!swappiness)
4442 type = LRU_GEN_FILE;
4443 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4444 type = LRU_GEN_ANON;
4445 else if (swappiness == 1)
4446 type = LRU_GEN_FILE;
4447 else if (swappiness == 200)
4448 type = LRU_GEN_ANON;
4449 else
4450 type = get_type_to_scan(lruvec, swappiness, &tier);
4451
4452 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4453 if (tier < 0)
4454 tier = get_tier_idx(lruvec, type);
4455
4456 scanned = scan_folios(lruvec, sc, type, tier, list);
4457 if (scanned)
4458 break;
4459
4460 type = !type;
4461 tier = -1;
4462 }
4463
4464 *type_scanned = type;
4465
4466 return scanned;
4467 }
4468
4469 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4470 {
4471 int type;
4472 int scanned;
4473 int reclaimed;
4474 LIST_HEAD(list);
4475 LIST_HEAD(clean);
4476 struct folio *folio;
4477 struct folio *next;
4478 enum vm_event_item item;
4479 struct reclaim_stat stat;
4480 struct lru_gen_mm_walk *walk;
4481 bool skip_retry = false;
4482 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4483 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4484
4485 spin_lock_irq(&lruvec->lru_lock);
4486
4487 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4488
4489 scanned += try_to_inc_min_seq(lruvec, swappiness);
4490
4491 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4492 scanned = 0;
4493
4494 spin_unlock_irq(&lruvec->lru_lock);
4495
4496 if (list_empty(&list))
4497 return scanned;
4498 retry:
4499 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4500 sc->nr_reclaimed += reclaimed;
4501 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4502 scanned, reclaimed, &stat, sc->priority,
4503 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4504
4505 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4506 if (!folio_evictable(folio)) {
4507 list_del(&folio->lru);
4508 folio_putback_lru(folio);
4509 continue;
4510 }
4511
4512 if (folio_test_reclaim(folio) &&
4513 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4514 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4515 if (folio_test_workingset(folio))
4516 folio_set_referenced(folio);
4517 continue;
4518 }
4519
4520 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4521 folio_mapped(folio) || folio_test_locked(folio) ||
4522 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4523 /* don't add rejected folios to the oldest generation */
4524 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4525 BIT(PG_active));
4526 continue;
4527 }
4528
4529 /* retry folios that may have missed folio_rotate_reclaimable() */
4530 list_move(&folio->lru, &clean);
4531 sc->nr_scanned -= folio_nr_pages(folio);
4532 }
4533
4534 spin_lock_irq(&lruvec->lru_lock);
4535
4536 move_folios_to_lru(lruvec, &list);
4537
4538 walk = current->reclaim_state->mm_walk;
4539 if (walk && walk->batched)
4540 reset_batch_size(lruvec, walk);
4541
4542 item = PGSTEAL_KSWAPD + reclaimer_offset();
4543 if (!cgroup_reclaim(sc))
4544 __count_vm_events(item, reclaimed);
4545 __count_memcg_events(memcg, item, reclaimed);
4546 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4547
4548 spin_unlock_irq(&lruvec->lru_lock);
4549
4550 mem_cgroup_uncharge_list(&list);
4551 free_unref_page_list(&list);
4552
4553 INIT_LIST_HEAD(&list);
4554 list_splice_init(&clean, &list);
4555
4556 if (!list_empty(&list)) {
4557 skip_retry = true;
4558 goto retry;
4559 }
4560
4561 return scanned;
4562 }
4563
4564 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4565 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4566 {
4567 int gen, type, zone;
4568 unsigned long old = 0;
4569 unsigned long young = 0;
4570 unsigned long total = 0;
4571 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4572 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4573 DEFINE_MIN_SEQ(lruvec);
4574
4575 /* whether this lruvec is completely out of cold folios */
4576 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4577 *nr_to_scan = 0;
4578 return true;
4579 }
4580
4581 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4582 unsigned long seq;
4583
4584 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4585 unsigned long size = 0;
4586
4587 gen = lru_gen_from_seq(seq);
4588
4589 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4590 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4591
4592 total += size;
4593 if (seq == max_seq)
4594 young += size;
4595 else if (seq + MIN_NR_GENS == max_seq)
4596 old += size;
4597 }
4598 }
4599
4600 /* try to scrape all its memory if this memcg was deleted */
4601 if (!mem_cgroup_online(memcg)) {
4602 *nr_to_scan = total;
4603 return false;
4604 }
4605
4606 *nr_to_scan = total >> sc->priority;
4607
4608 /*
4609 * The aging tries to be lazy to reduce the overhead, while the eviction
4610 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4611 * ideal number of generations is MIN_NR_GENS+1.
4612 */
4613 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4614 return false;
4615
4616 /*
4617 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4618 * of the total number of pages for each generation. A reasonable range
4619 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4620 * aging cares about the upper bound of hot pages, while the eviction
4621 * cares about the lower bound of cold pages.
4622 */
4623 if (young * MIN_NR_GENS > total)
4624 return true;
4625 if (old * (MIN_NR_GENS + 2) < total)
4626 return true;
4627
4628 return false;
4629 }
4630
4631 /*
4632 * For future optimizations:
4633 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4634 * reclaim.
4635 */
4636 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4637 {
4638 unsigned long nr_to_scan;
4639 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4640 DEFINE_MAX_SEQ(lruvec);
4641
4642 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4643 return -1;
4644
4645 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4646 return nr_to_scan;
4647
4648 /* skip the aging path at the default priority */
4649 if (sc->priority == DEF_PRIORITY)
4650 return nr_to_scan;
4651
4652 /* skip this lruvec as it's low on cold folios */
4653 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4654 }
4655
4656 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4657 {
4658 int i;
4659 enum zone_watermarks mark;
4660
4661 /* don't abort memcg reclaim to ensure fairness */
4662 if (!root_reclaim(sc))
4663 return false;
4664
4665 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4666 return true;
4667
4668 /* check the order to exclude compaction-induced reclaim */
4669 if (!current_is_kswapd() || sc->order)
4670 return false;
4671
4672 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4673 WMARK_PROMO : WMARK_HIGH;
4674
4675 for (i = 0; i <= sc->reclaim_idx; i++) {
4676 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4677 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4678
4679 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4680 return false;
4681 }
4682
4683 /* kswapd should abort if all eligible zones are safe */
4684 return true;
4685 }
4686
4687 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4688 {
4689 long nr_to_scan;
4690 unsigned long scanned = 0;
4691 int swappiness = get_swappiness(lruvec, sc);
4692
4693 /* clean file folios are more likely to exist */
4694 if (swappiness && !(sc->gfp_mask & __GFP_IO))
4695 swappiness = 1;
4696
4697 while (true) {
4698 int delta;
4699
4700 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4701 if (nr_to_scan <= 0)
4702 break;
4703
4704 delta = evict_folios(lruvec, sc, swappiness);
4705 if (!delta)
4706 break;
4707
4708 scanned += delta;
4709 if (scanned >= nr_to_scan)
4710 break;
4711
4712 if (should_abort_scan(lruvec, sc))
4713 break;
4714
4715 cond_resched();
4716 }
4717
4718 /* whether this lruvec should be rotated */
4719 return nr_to_scan < 0;
4720 }
4721
4722 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4723 {
4724 bool success;
4725 unsigned long scanned = sc->nr_scanned;
4726 unsigned long reclaimed = sc->nr_reclaimed;
4727 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4728 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4729
4730 mem_cgroup_calculate_protection(NULL, memcg);
4731
4732 if (mem_cgroup_below_min(NULL, memcg))
4733 return MEMCG_LRU_YOUNG;
4734
4735 if (mem_cgroup_below_low(NULL, memcg)) {
4736 /* see the comment on MEMCG_NR_GENS */
4737 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
4738 return MEMCG_LRU_TAIL;
4739
4740 memcg_memory_event(memcg, MEMCG_LOW);
4741 }
4742
4743 success = try_to_shrink_lruvec(lruvec, sc);
4744
4745 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4746
4747 if (!sc->proactive)
4748 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4749 sc->nr_reclaimed - reclaimed);
4750
4751 flush_reclaim_state(sc);
4752
4753 if (success && mem_cgroup_online(memcg))
4754 return MEMCG_LRU_YOUNG;
4755
4756 if (!success && lruvec_is_sizable(lruvec, sc))
4757 return 0;
4758
4759 /* one retry if offlined or too small */
4760 return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
4761 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4762 }
4763
4764 #ifdef CONFIG_MEMCG
4765
4766 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4767 {
4768 int op;
4769 int gen;
4770 int bin;
4771 int first_bin;
4772 struct lruvec *lruvec;
4773 struct lru_gen_folio *lrugen;
4774 struct mem_cgroup *memcg;
4775 struct hlist_nulls_node *pos;
4776
4777 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4778 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4779 restart:
4780 op = 0;
4781 memcg = NULL;
4782
4783 rcu_read_lock();
4784
4785 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4786 if (op) {
4787 lru_gen_rotate_memcg(lruvec, op);
4788 op = 0;
4789 }
4790
4791 mem_cgroup_put(memcg);
4792 memcg = NULL;
4793
4794 if (gen != READ_ONCE(lrugen->gen))
4795 continue;
4796
4797 lruvec = container_of(lrugen, struct lruvec, lrugen);
4798 memcg = lruvec_memcg(lruvec);
4799
4800 if (!mem_cgroup_tryget(memcg)) {
4801 lru_gen_release_memcg(memcg);
4802 memcg = NULL;
4803 continue;
4804 }
4805
4806 rcu_read_unlock();
4807
4808 op = shrink_one(lruvec, sc);
4809
4810 rcu_read_lock();
4811
4812 if (should_abort_scan(lruvec, sc))
4813 break;
4814 }
4815
4816 rcu_read_unlock();
4817
4818 if (op)
4819 lru_gen_rotate_memcg(lruvec, op);
4820
4821 mem_cgroup_put(memcg);
4822
4823 if (!is_a_nulls(pos))
4824 return;
4825
4826 /* restart if raced with lru_gen_rotate_memcg() */
4827 if (gen != get_nulls_value(pos))
4828 goto restart;
4829
4830 /* try the rest of the bins of the current generation */
4831 bin = get_memcg_bin(bin + 1);
4832 if (bin != first_bin)
4833 goto restart;
4834 }
4835
4836 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4837 {
4838 struct blk_plug plug;
4839
4840 VM_WARN_ON_ONCE(root_reclaim(sc));
4841 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4842
4843 lru_add_drain();
4844
4845 blk_start_plug(&plug);
4846
4847 set_mm_walk(NULL, sc->proactive);
4848
4849 if (try_to_shrink_lruvec(lruvec, sc))
4850 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4851
4852 clear_mm_walk();
4853
4854 blk_finish_plug(&plug);
4855 }
4856
4857 #else /* !CONFIG_MEMCG */
4858
4859 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4860 {
4861 BUILD_BUG();
4862 }
4863
4864 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4865 {
4866 BUILD_BUG();
4867 }
4868
4869 #endif
4870
4871 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4872 {
4873 int priority;
4874 unsigned long reclaimable;
4875 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4876
4877 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4878 return;
4879 /*
4880 * Determine the initial priority based on
4881 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4882 * where reclaimed_to_scanned_ratio = inactive / total.
4883 */
4884 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4885 if (get_swappiness(lruvec, sc))
4886 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4887
4888 /* round down reclaimable and round up sc->nr_to_reclaim */
4889 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4890
4891 sc->priority = clamp(priority, 0, DEF_PRIORITY);
4892 }
4893
4894 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4895 {
4896 struct blk_plug plug;
4897 unsigned long reclaimed = sc->nr_reclaimed;
4898
4899 VM_WARN_ON_ONCE(!root_reclaim(sc));
4900
4901 /*
4902 * Unmapped clean folios are already prioritized. Scanning for more of
4903 * them is likely futile and can cause high reclaim latency when there
4904 * is a large number of memcgs.
4905 */
4906 if (!sc->may_writepage || !sc->may_unmap)
4907 goto done;
4908
4909 lru_add_drain();
4910
4911 blk_start_plug(&plug);
4912
4913 set_mm_walk(pgdat, sc->proactive);
4914
4915 set_initial_priority(pgdat, sc);
4916
4917 if (current_is_kswapd())
4918 sc->nr_reclaimed = 0;
4919
4920 if (mem_cgroup_disabled())
4921 shrink_one(&pgdat->__lruvec, sc);
4922 else
4923 shrink_many(pgdat, sc);
4924
4925 if (current_is_kswapd())
4926 sc->nr_reclaimed += reclaimed;
4927
4928 clear_mm_walk();
4929
4930 blk_finish_plug(&plug);
4931 done:
4932 /* kswapd should never fail */
4933 pgdat->kswapd_failures = 0;
4934 }
4935
4936 /******************************************************************************
4937 * state change
4938 ******************************************************************************/
4939
4940 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4941 {
4942 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4943
4944 if (lrugen->enabled) {
4945 enum lru_list lru;
4946
4947 for_each_evictable_lru(lru) {
4948 if (!list_empty(&lruvec->lists[lru]))
4949 return false;
4950 }
4951 } else {
4952 int gen, type, zone;
4953
4954 for_each_gen_type_zone(gen, type, zone) {
4955 if (!list_empty(&lrugen->folios[gen][type][zone]))
4956 return false;
4957 }
4958 }
4959
4960 return true;
4961 }
4962
4963 static bool fill_evictable(struct lruvec *lruvec)
4964 {
4965 enum lru_list lru;
4966 int remaining = MAX_LRU_BATCH;
4967
4968 for_each_evictable_lru(lru) {
4969 int type = is_file_lru(lru);
4970 bool active = is_active_lru(lru);
4971 struct list_head *head = &lruvec->lists[lru];
4972
4973 while (!list_empty(head)) {
4974 bool success;
4975 struct folio *folio = lru_to_folio(head);
4976
4977 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4978 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4979 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4980 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4981
4982 lruvec_del_folio(lruvec, folio);
4983 success = lru_gen_add_folio(lruvec, folio, false);
4984 VM_WARN_ON_ONCE(!success);
4985
4986 if (!--remaining)
4987 return false;
4988 }
4989 }
4990
4991 return true;
4992 }
4993
4994 static bool drain_evictable(struct lruvec *lruvec)
4995 {
4996 int gen, type, zone;
4997 int remaining = MAX_LRU_BATCH;
4998
4999 for_each_gen_type_zone(gen, type, zone) {
5000 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5001
5002 while (!list_empty(head)) {
5003 bool success;
5004 struct folio *folio = lru_to_folio(head);
5005
5006 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5007 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5008 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5009 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5010
5011 success = lru_gen_del_folio(lruvec, folio, false);
5012 VM_WARN_ON_ONCE(!success);
5013 lruvec_add_folio(lruvec, folio);
5014
5015 if (!--remaining)
5016 return false;
5017 }
5018 }
5019
5020 return true;
5021 }
5022
5023 static void lru_gen_change_state(bool enabled)
5024 {
5025 static DEFINE_MUTEX(state_mutex);
5026
5027 struct mem_cgroup *memcg;
5028
5029 cgroup_lock();
5030 cpus_read_lock();
5031 get_online_mems();
5032 mutex_lock(&state_mutex);
5033
5034 if (enabled == lru_gen_enabled())
5035 goto unlock;
5036
5037 if (enabled)
5038 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5039 else
5040 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5041
5042 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5043 do {
5044 int nid;
5045
5046 for_each_node(nid) {
5047 struct lruvec *lruvec = get_lruvec(memcg, nid);
5048
5049 spin_lock_irq(&lruvec->lru_lock);
5050
5051 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5052 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5053
5054 lruvec->lrugen.enabled = enabled;
5055
5056 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5057 spin_unlock_irq(&lruvec->lru_lock);
5058 cond_resched();
5059 spin_lock_irq(&lruvec->lru_lock);
5060 }
5061
5062 spin_unlock_irq(&lruvec->lru_lock);
5063 }
5064
5065 cond_resched();
5066 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5067 unlock:
5068 mutex_unlock(&state_mutex);
5069 put_online_mems();
5070 cpus_read_unlock();
5071 cgroup_unlock();
5072 }
5073
5074 /******************************************************************************
5075 * sysfs interface
5076 ******************************************************************************/
5077
5078 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5079 {
5080 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5081 }
5082
5083 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5084 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5085 const char *buf, size_t len)
5086 {
5087 unsigned int msecs;
5088
5089 if (kstrtouint(buf, 0, &msecs))
5090 return -EINVAL;
5091
5092 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5093
5094 return len;
5095 }
5096
5097 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5098
5099 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5100 {
5101 unsigned int caps = 0;
5102
5103 if (get_cap(LRU_GEN_CORE))
5104 caps |= BIT(LRU_GEN_CORE);
5105
5106 if (should_walk_mmu())
5107 caps |= BIT(LRU_GEN_MM_WALK);
5108
5109 if (should_clear_pmd_young())
5110 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5111
5112 return sysfs_emit(buf, "0x%04x\n", caps);
5113 }
5114
5115 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5116 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5117 const char *buf, size_t len)
5118 {
5119 int i;
5120 unsigned int caps;
5121
5122 if (tolower(*buf) == 'n')
5123 caps = 0;
5124 else if (tolower(*buf) == 'y')
5125 caps = -1;
5126 else if (kstrtouint(buf, 0, &caps))
5127 return -EINVAL;
5128
5129 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5130 bool enabled = caps & BIT(i);
5131
5132 if (i == LRU_GEN_CORE)
5133 lru_gen_change_state(enabled);
5134 else if (enabled)
5135 static_branch_enable(&lru_gen_caps[i]);
5136 else
5137 static_branch_disable(&lru_gen_caps[i]);
5138 }
5139
5140 return len;
5141 }
5142
5143 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5144
5145 static struct attribute *lru_gen_attrs[] = {
5146 &lru_gen_min_ttl_attr.attr,
5147 &lru_gen_enabled_attr.attr,
5148 NULL
5149 };
5150
5151 static const struct attribute_group lru_gen_attr_group = {
5152 .name = "lru_gen",
5153 .attrs = lru_gen_attrs,
5154 };
5155
5156 /******************************************************************************
5157 * debugfs interface
5158 ******************************************************************************/
5159
5160 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5161 {
5162 struct mem_cgroup *memcg;
5163 loff_t nr_to_skip = *pos;
5164
5165 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5166 if (!m->private)
5167 return ERR_PTR(-ENOMEM);
5168
5169 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5170 do {
5171 int nid;
5172
5173 for_each_node_state(nid, N_MEMORY) {
5174 if (!nr_to_skip--)
5175 return get_lruvec(memcg, nid);
5176 }
5177 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5178
5179 return NULL;
5180 }
5181
5182 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5183 {
5184 if (!IS_ERR_OR_NULL(v))
5185 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5186
5187 kvfree(m->private);
5188 m->private = NULL;
5189 }
5190
5191 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5192 {
5193 int nid = lruvec_pgdat(v)->node_id;
5194 struct mem_cgroup *memcg = lruvec_memcg(v);
5195
5196 ++*pos;
5197
5198 nid = next_memory_node(nid);
5199 if (nid == MAX_NUMNODES) {
5200 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5201 if (!memcg)
5202 return NULL;
5203
5204 nid = first_memory_node;
5205 }
5206
5207 return get_lruvec(memcg, nid);
5208 }
5209
5210 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5211 unsigned long max_seq, unsigned long *min_seq,
5212 unsigned long seq)
5213 {
5214 int i;
5215 int type, tier;
5216 int hist = lru_hist_from_seq(seq);
5217 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5218
5219 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5220 seq_printf(m, " %10d", tier);
5221 for (type = 0; type < ANON_AND_FILE; type++) {
5222 const char *s = " ";
5223 unsigned long n[3] = {};
5224
5225 if (seq == max_seq) {
5226 s = "RT ";
5227 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5228 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5229 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5230 s = "rep";
5231 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5232 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5233 if (tier)
5234 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5235 }
5236
5237 for (i = 0; i < 3; i++)
5238 seq_printf(m, " %10lu%c", n[i], s[i]);
5239 }
5240 seq_putc(m, '\n');
5241 }
5242
5243 seq_puts(m, " ");
5244 for (i = 0; i < NR_MM_STATS; i++) {
5245 const char *s = " ";
5246 unsigned long n = 0;
5247
5248 if (seq == max_seq && NR_HIST_GENS == 1) {
5249 s = "LOYNFA";
5250 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5251 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5252 s = "loynfa";
5253 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5254 }
5255
5256 seq_printf(m, " %10lu%c", n, s[i]);
5257 }
5258 seq_putc(m, '\n');
5259 }
5260
5261 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5262 static int lru_gen_seq_show(struct seq_file *m, void *v)
5263 {
5264 unsigned long seq;
5265 bool full = !debugfs_real_fops(m->file)->write;
5266 struct lruvec *lruvec = v;
5267 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5268 int nid = lruvec_pgdat(lruvec)->node_id;
5269 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5270 DEFINE_MAX_SEQ(lruvec);
5271 DEFINE_MIN_SEQ(lruvec);
5272
5273 if (nid == first_memory_node) {
5274 const char *path = memcg ? m->private : "";
5275
5276 #ifdef CONFIG_MEMCG
5277 if (memcg)
5278 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5279 #endif
5280 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5281 }
5282
5283 seq_printf(m, " node %5d\n", nid);
5284
5285 if (!full)
5286 seq = min_seq[LRU_GEN_ANON];
5287 else if (max_seq >= MAX_NR_GENS)
5288 seq = max_seq - MAX_NR_GENS + 1;
5289 else
5290 seq = 0;
5291
5292 for (; seq <= max_seq; seq++) {
5293 int type, zone;
5294 int gen = lru_gen_from_seq(seq);
5295 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5296
5297 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5298
5299 for (type = 0; type < ANON_AND_FILE; type++) {
5300 unsigned long size = 0;
5301 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5302
5303 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5304 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5305
5306 seq_printf(m, " %10lu%c", size, mark);
5307 }
5308
5309 seq_putc(m, '\n');
5310
5311 if (full)
5312 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5313 }
5314
5315 return 0;
5316 }
5317
5318 static const struct seq_operations lru_gen_seq_ops = {
5319 .start = lru_gen_seq_start,
5320 .stop = lru_gen_seq_stop,
5321 .next = lru_gen_seq_next,
5322 .show = lru_gen_seq_show,
5323 };
5324
5325 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5326 bool can_swap, bool force_scan)
5327 {
5328 DEFINE_MAX_SEQ(lruvec);
5329 DEFINE_MIN_SEQ(lruvec);
5330
5331 if (seq < max_seq)
5332 return 0;
5333
5334 if (seq > max_seq)
5335 return -EINVAL;
5336
5337 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5338 return -ERANGE;
5339
5340 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5341
5342 return 0;
5343 }
5344
5345 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5346 int swappiness, unsigned long nr_to_reclaim)
5347 {
5348 DEFINE_MAX_SEQ(lruvec);
5349
5350 if (seq + MIN_NR_GENS > max_seq)
5351 return -EINVAL;
5352
5353 sc->nr_reclaimed = 0;
5354
5355 while (!signal_pending(current)) {
5356 DEFINE_MIN_SEQ(lruvec);
5357
5358 if (seq < min_seq[!swappiness])
5359 return 0;
5360
5361 if (sc->nr_reclaimed >= nr_to_reclaim)
5362 return 0;
5363
5364 if (!evict_folios(lruvec, sc, swappiness))
5365 return 0;
5366
5367 cond_resched();
5368 }
5369
5370 return -EINTR;
5371 }
5372
5373 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5374 struct scan_control *sc, int swappiness, unsigned long opt)
5375 {
5376 struct lruvec *lruvec;
5377 int err = -EINVAL;
5378 struct mem_cgroup *memcg = NULL;
5379
5380 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5381 return -EINVAL;
5382
5383 if (!mem_cgroup_disabled()) {
5384 rcu_read_lock();
5385
5386 memcg = mem_cgroup_from_id(memcg_id);
5387 if (!mem_cgroup_tryget(memcg))
5388 memcg = NULL;
5389
5390 rcu_read_unlock();
5391
5392 if (!memcg)
5393 return -EINVAL;
5394 }
5395
5396 if (memcg_id != mem_cgroup_id(memcg))
5397 goto done;
5398
5399 lruvec = get_lruvec(memcg, nid);
5400
5401 if (swappiness < 0)
5402 swappiness = get_swappiness(lruvec, sc);
5403 else if (swappiness > 200)
5404 goto done;
5405
5406 switch (cmd) {
5407 case '+':
5408 err = run_aging(lruvec, seq, sc, swappiness, opt);
5409 break;
5410 case '-':
5411 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5412 break;
5413 }
5414 done:
5415 mem_cgroup_put(memcg);
5416
5417 return err;
5418 }
5419
5420 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5421 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5422 size_t len, loff_t *pos)
5423 {
5424 void *buf;
5425 char *cur, *next;
5426 unsigned int flags;
5427 struct blk_plug plug;
5428 int err = -EINVAL;
5429 struct scan_control sc = {
5430 .may_writepage = true,
5431 .may_unmap = true,
5432 .may_swap = true,
5433 .reclaim_idx = MAX_NR_ZONES - 1,
5434 .gfp_mask = GFP_KERNEL,
5435 };
5436
5437 buf = kvmalloc(len + 1, GFP_KERNEL);
5438 if (!buf)
5439 return -ENOMEM;
5440
5441 if (copy_from_user(buf, src, len)) {
5442 kvfree(buf);
5443 return -EFAULT;
5444 }
5445
5446 set_task_reclaim_state(current, &sc.reclaim_state);
5447 flags = memalloc_noreclaim_save();
5448 blk_start_plug(&plug);
5449 if (!set_mm_walk(NULL, true)) {
5450 err = -ENOMEM;
5451 goto done;
5452 }
5453
5454 next = buf;
5455 next[len] = '\0';
5456
5457 while ((cur = strsep(&next, ",;\n"))) {
5458 int n;
5459 int end;
5460 char cmd;
5461 unsigned int memcg_id;
5462 unsigned int nid;
5463 unsigned long seq;
5464 unsigned int swappiness = -1;
5465 unsigned long opt = -1;
5466
5467 cur = skip_spaces(cur);
5468 if (!*cur)
5469 continue;
5470
5471 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5472 &seq, &end, &swappiness, &end, &opt, &end);
5473 if (n < 4 || cur[end]) {
5474 err = -EINVAL;
5475 break;
5476 }
5477
5478 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5479 if (err)
5480 break;
5481 }
5482 done:
5483 clear_mm_walk();
5484 blk_finish_plug(&plug);
5485 memalloc_noreclaim_restore(flags);
5486 set_task_reclaim_state(current, NULL);
5487
5488 kvfree(buf);
5489
5490 return err ? : len;
5491 }
5492
5493 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5494 {
5495 return seq_open(file, &lru_gen_seq_ops);
5496 }
5497
5498 static const struct file_operations lru_gen_rw_fops = {
5499 .open = lru_gen_seq_open,
5500 .read = seq_read,
5501 .write = lru_gen_seq_write,
5502 .llseek = seq_lseek,
5503 .release = seq_release,
5504 };
5505
5506 static const struct file_operations lru_gen_ro_fops = {
5507 .open = lru_gen_seq_open,
5508 .read = seq_read,
5509 .llseek = seq_lseek,
5510 .release = seq_release,
5511 };
5512
5513 /******************************************************************************
5514 * initialization
5515 ******************************************************************************/
5516
5517 void lru_gen_init_lruvec(struct lruvec *lruvec)
5518 {
5519 int i;
5520 int gen, type, zone;
5521 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5522
5523 lrugen->max_seq = MIN_NR_GENS + 1;
5524 lrugen->enabled = lru_gen_enabled();
5525
5526 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5527 lrugen->timestamps[i] = jiffies;
5528
5529 for_each_gen_type_zone(gen, type, zone)
5530 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5531
5532 lruvec->mm_state.seq = MIN_NR_GENS;
5533 }
5534
5535 #ifdef CONFIG_MEMCG
5536
5537 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5538 {
5539 int i, j;
5540
5541 spin_lock_init(&pgdat->memcg_lru.lock);
5542
5543 for (i = 0; i < MEMCG_NR_GENS; i++) {
5544 for (j = 0; j < MEMCG_NR_BINS; j++)
5545 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5546 }
5547 }
5548
5549 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5550 {
5551 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5552 spin_lock_init(&memcg->mm_list.lock);
5553 }
5554
5555 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5556 {
5557 int i;
5558 int nid;
5559
5560 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
5561
5562 for_each_node(nid) {
5563 struct lruvec *lruvec = get_lruvec(memcg, nid);
5564
5565 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5566 sizeof(lruvec->lrugen.nr_pages)));
5567
5568 lruvec->lrugen.list.next = LIST_POISON1;
5569
5570 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5571 bitmap_free(lruvec->mm_state.filters[i]);
5572 lruvec->mm_state.filters[i] = NULL;
5573 }
5574 }
5575 }
5576
5577 #endif /* CONFIG_MEMCG */
5578
5579 static int __init init_lru_gen(void)
5580 {
5581 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5582 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5583
5584 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5585 pr_err("lru_gen: failed to create sysfs group\n");
5586
5587 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5588 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5589
5590 return 0;
5591 };
5592 late_initcall(init_lru_gen);
5593
5594 #else /* !CONFIG_LRU_GEN */
5595
5596 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5597 {
5598 }
5599
5600 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5601 {
5602 }
5603
5604 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5605 {
5606 }
5607
5608 #endif /* CONFIG_LRU_GEN */
5609
5610 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5611 {
5612 unsigned long nr[NR_LRU_LISTS];
5613 unsigned long targets[NR_LRU_LISTS];
5614 unsigned long nr_to_scan;
5615 enum lru_list lru;
5616 unsigned long nr_reclaimed = 0;
5617 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5618 bool proportional_reclaim;
5619 struct blk_plug plug;
5620
5621 if (lru_gen_enabled() && !root_reclaim(sc)) {
5622 lru_gen_shrink_lruvec(lruvec, sc);
5623 return;
5624 }
5625
5626 get_scan_count(lruvec, sc, nr);
5627
5628 /* Record the original scan target for proportional adjustments later */
5629 memcpy(targets, nr, sizeof(nr));
5630
5631 /*
5632 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5633 * event that can occur when there is little memory pressure e.g.
5634 * multiple streaming readers/writers. Hence, we do not abort scanning
5635 * when the requested number of pages are reclaimed when scanning at
5636 * DEF_PRIORITY on the assumption that the fact we are direct
5637 * reclaiming implies that kswapd is not keeping up and it is best to
5638 * do a batch of work at once. For memcg reclaim one check is made to
5639 * abort proportional reclaim if either the file or anon lru has already
5640 * dropped to zero at the first pass.
5641 */
5642 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5643 sc->priority == DEF_PRIORITY);
5644
5645 blk_start_plug(&plug);
5646 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5647 nr[LRU_INACTIVE_FILE]) {
5648 unsigned long nr_anon, nr_file, percentage;
5649 unsigned long nr_scanned;
5650
5651 for_each_evictable_lru(lru) {
5652 if (nr[lru]) {
5653 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5654 nr[lru] -= nr_to_scan;
5655
5656 nr_reclaimed += shrink_list(lru, nr_to_scan,
5657 lruvec, sc);
5658 }
5659 }
5660
5661 cond_resched();
5662
5663 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5664 continue;
5665
5666 /*
5667 * For kswapd and memcg, reclaim at least the number of pages
5668 * requested. Ensure that the anon and file LRUs are scanned
5669 * proportionally what was requested by get_scan_count(). We
5670 * stop reclaiming one LRU and reduce the amount scanning
5671 * proportional to the original scan target.
5672 */
5673 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5674 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5675
5676 /*
5677 * It's just vindictive to attack the larger once the smaller
5678 * has gone to zero. And given the way we stop scanning the
5679 * smaller below, this makes sure that we only make one nudge
5680 * towards proportionality once we've got nr_to_reclaim.
5681 */
5682 if (!nr_file || !nr_anon)
5683 break;
5684
5685 if (nr_file > nr_anon) {
5686 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5687 targets[LRU_ACTIVE_ANON] + 1;
5688 lru = LRU_BASE;
5689 percentage = nr_anon * 100 / scan_target;
5690 } else {
5691 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5692 targets[LRU_ACTIVE_FILE] + 1;
5693 lru = LRU_FILE;
5694 percentage = nr_file * 100 / scan_target;
5695 }
5696
5697 /* Stop scanning the smaller of the LRU */
5698 nr[lru] = 0;
5699 nr[lru + LRU_ACTIVE] = 0;
5700
5701 /*
5702 * Recalculate the other LRU scan count based on its original
5703 * scan target and the percentage scanning already complete
5704 */
5705 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5706 nr_scanned = targets[lru] - nr[lru];
5707 nr[lru] = targets[lru] * (100 - percentage) / 100;
5708 nr[lru] -= min(nr[lru], nr_scanned);
5709
5710 lru += LRU_ACTIVE;
5711 nr_scanned = targets[lru] - nr[lru];
5712 nr[lru] = targets[lru] * (100 - percentage) / 100;
5713 nr[lru] -= min(nr[lru], nr_scanned);
5714 }
5715 blk_finish_plug(&plug);
5716 sc->nr_reclaimed += nr_reclaimed;
5717
5718 /*
5719 * Even if we did not try to evict anon pages at all, we want to
5720 * rebalance the anon lru active/inactive ratio.
5721 */
5722 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5723 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5724 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5725 sc, LRU_ACTIVE_ANON);
5726 }
5727
5728 /* Use reclaim/compaction for costly allocs or under memory pressure */
5729 static bool in_reclaim_compaction(struct scan_control *sc)
5730 {
5731 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5732 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5733 sc->priority < DEF_PRIORITY - 2))
5734 return true;
5735
5736 return false;
5737 }
5738
5739 /*
5740 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5741 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5742 * true if more pages should be reclaimed such that when the page allocator
5743 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5744 * It will give up earlier than that if there is difficulty reclaiming pages.
5745 */
5746 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5747 unsigned long nr_reclaimed,
5748 struct scan_control *sc)
5749 {
5750 unsigned long pages_for_compaction;
5751 unsigned long inactive_lru_pages;
5752 int z;
5753
5754 /* If not in reclaim/compaction mode, stop */
5755 if (!in_reclaim_compaction(sc))
5756 return false;
5757
5758 /*
5759 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5760 * number of pages that were scanned. This will return to the caller
5761 * with the risk reclaim/compaction and the resulting allocation attempt
5762 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5763 * allocations through requiring that the full LRU list has been scanned
5764 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5765 * scan, but that approximation was wrong, and there were corner cases
5766 * where always a non-zero amount of pages were scanned.
5767 */
5768 if (!nr_reclaimed)
5769 return false;
5770
5771 /* If compaction would go ahead or the allocation would succeed, stop */
5772 for (z = 0; z <= sc->reclaim_idx; z++) {
5773 struct zone *zone = &pgdat->node_zones[z];
5774 if (!managed_zone(zone))
5775 continue;
5776
5777 /* Allocation can already succeed, nothing to do */
5778 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5779 sc->reclaim_idx, 0))
5780 return false;
5781
5782 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5783 return false;
5784 }
5785
5786 /*
5787 * If we have not reclaimed enough pages for compaction and the
5788 * inactive lists are large enough, continue reclaiming
5789 */
5790 pages_for_compaction = compact_gap(sc->order);
5791 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5792 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5793 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5794
5795 return inactive_lru_pages > pages_for_compaction;
5796 }
5797
5798 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5799 {
5800 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5801 struct mem_cgroup *memcg;
5802
5803 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5804 do {
5805 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5806 unsigned long reclaimed;
5807 unsigned long scanned;
5808
5809 /*
5810 * This loop can become CPU-bound when target memcgs
5811 * aren't eligible for reclaim - either because they
5812 * don't have any reclaimable pages, or because their
5813 * memory is explicitly protected. Avoid soft lockups.
5814 */
5815 cond_resched();
5816
5817 mem_cgroup_calculate_protection(target_memcg, memcg);
5818
5819 if (mem_cgroup_below_min(target_memcg, memcg)) {
5820 /*
5821 * Hard protection.
5822 * If there is no reclaimable memory, OOM.
5823 */
5824 continue;
5825 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5826 /*
5827 * Soft protection.
5828 * Respect the protection only as long as
5829 * there is an unprotected supply
5830 * of reclaimable memory from other cgroups.
5831 */
5832 if (!sc->memcg_low_reclaim) {
5833 sc->memcg_low_skipped = 1;
5834 continue;
5835 }
5836 memcg_memory_event(memcg, MEMCG_LOW);
5837 }
5838
5839 reclaimed = sc->nr_reclaimed;
5840 scanned = sc->nr_scanned;
5841
5842 shrink_lruvec(lruvec, sc);
5843
5844 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5845 sc->priority);
5846
5847 /* Record the group's reclaim efficiency */
5848 if (!sc->proactive)
5849 vmpressure(sc->gfp_mask, memcg, false,
5850 sc->nr_scanned - scanned,
5851 sc->nr_reclaimed - reclaimed);
5852
5853 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5854 }
5855
5856 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5857 {
5858 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5859 struct lruvec *target_lruvec;
5860 bool reclaimable = false;
5861
5862 if (lru_gen_enabled() && root_reclaim(sc)) {
5863 lru_gen_shrink_node(pgdat, sc);
5864 return;
5865 }
5866
5867 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5868
5869 again:
5870 memset(&sc->nr, 0, sizeof(sc->nr));
5871
5872 nr_reclaimed = sc->nr_reclaimed;
5873 nr_scanned = sc->nr_scanned;
5874
5875 prepare_scan_control(pgdat, sc);
5876
5877 shrink_node_memcgs(pgdat, sc);
5878
5879 flush_reclaim_state(sc);
5880
5881 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5882
5883 /* Record the subtree's reclaim efficiency */
5884 if (!sc->proactive)
5885 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5886 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5887
5888 if (nr_node_reclaimed)
5889 reclaimable = true;
5890
5891 if (current_is_kswapd()) {
5892 /*
5893 * If reclaim is isolating dirty pages under writeback,
5894 * it implies that the long-lived page allocation rate
5895 * is exceeding the page laundering rate. Either the
5896 * global limits are not being effective at throttling
5897 * processes due to the page distribution throughout
5898 * zones or there is heavy usage of a slow backing
5899 * device. The only option is to throttle from reclaim
5900 * context which is not ideal as there is no guarantee
5901 * the dirtying process is throttled in the same way
5902 * balance_dirty_pages() manages.
5903 *
5904 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5905 * count the number of pages under pages flagged for
5906 * immediate reclaim and stall if any are encountered
5907 * in the nr_immediate check below.
5908 */
5909 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5910 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5911
5912 /* Allow kswapd to start writing pages during reclaim.*/
5913 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5914 set_bit(PGDAT_DIRTY, &pgdat->flags);
5915
5916 /*
5917 * If kswapd scans pages marked for immediate
5918 * reclaim and under writeback (nr_immediate), it
5919 * implies that pages are cycling through the LRU
5920 * faster than they are written so forcibly stall
5921 * until some pages complete writeback.
5922 */
5923 if (sc->nr.immediate)
5924 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5925 }
5926
5927 /*
5928 * Tag a node/memcg as congested if all the dirty pages were marked
5929 * for writeback and immediate reclaim (counted in nr.congested).
5930 *
5931 * Legacy memcg will stall in page writeback so avoid forcibly
5932 * stalling in reclaim_throttle().
5933 */
5934 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5935 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5936 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5937
5938 if (current_is_kswapd())
5939 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5940 }
5941
5942 /*
5943 * Stall direct reclaim for IO completions if the lruvec is
5944 * node is congested. Allow kswapd to continue until it
5945 * starts encountering unqueued dirty pages or cycling through
5946 * the LRU too quickly.
5947 */
5948 if (!current_is_kswapd() && current_may_throttle() &&
5949 !sc->hibernation_mode &&
5950 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5951 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5952 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5953
5954 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5955 goto again;
5956
5957 /*
5958 * Kswapd gives up on balancing particular nodes after too
5959 * many failures to reclaim anything from them and goes to
5960 * sleep. On reclaim progress, reset the failure counter. A
5961 * successful direct reclaim run will revive a dormant kswapd.
5962 */
5963 if (reclaimable)
5964 pgdat->kswapd_failures = 0;
5965 }
5966
5967 /*
5968 * Returns true if compaction should go ahead for a costly-order request, or
5969 * the allocation would already succeed without compaction. Return false if we
5970 * should reclaim first.
5971 */
5972 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5973 {
5974 unsigned long watermark;
5975
5976 /* Allocation can already succeed, nothing to do */
5977 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5978 sc->reclaim_idx, 0))
5979 return true;
5980
5981 /* Compaction cannot yet proceed. Do reclaim. */
5982 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
5983 return false;
5984
5985 /*
5986 * Compaction is already possible, but it takes time to run and there
5987 * are potentially other callers using the pages just freed. So proceed
5988 * with reclaim to make a buffer of free pages available to give
5989 * compaction a reasonable chance of completing and allocating the page.
5990 * Note that we won't actually reclaim the whole buffer in one attempt
5991 * as the target watermark in should_continue_reclaim() is lower. But if
5992 * we are already above the high+gap watermark, don't reclaim at all.
5993 */
5994 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
5995
5996 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
5997 }
5998
5999 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6000 {
6001 /*
6002 * If reclaim is making progress greater than 12% efficiency then
6003 * wake all the NOPROGRESS throttled tasks.
6004 */
6005 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6006 wait_queue_head_t *wqh;
6007
6008 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6009 if (waitqueue_active(wqh))
6010 wake_up(wqh);
6011
6012 return;
6013 }
6014
6015 /*
6016 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6017 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6018 * under writeback and marked for immediate reclaim at the tail of the
6019 * LRU.
6020 */
6021 if (current_is_kswapd() || cgroup_reclaim(sc))
6022 return;
6023
6024 /* Throttle if making no progress at high prioities. */
6025 if (sc->priority == 1 && !sc->nr_reclaimed)
6026 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6027 }
6028
6029 /*
6030 * This is the direct reclaim path, for page-allocating processes. We only
6031 * try to reclaim pages from zones which will satisfy the caller's allocation
6032 * request.
6033 *
6034 * If a zone is deemed to be full of pinned pages then just give it a light
6035 * scan then give up on it.
6036 */
6037 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6038 {
6039 struct zoneref *z;
6040 struct zone *zone;
6041 unsigned long nr_soft_reclaimed;
6042 unsigned long nr_soft_scanned;
6043 gfp_t orig_mask;
6044 pg_data_t *last_pgdat = NULL;
6045 pg_data_t *first_pgdat = NULL;
6046
6047 /*
6048 * If the number of buffer_heads in the machine exceeds the maximum
6049 * allowed level, force direct reclaim to scan the highmem zone as
6050 * highmem pages could be pinning lowmem pages storing buffer_heads
6051 */
6052 orig_mask = sc->gfp_mask;
6053 if (buffer_heads_over_limit) {
6054 sc->gfp_mask |= __GFP_HIGHMEM;
6055 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6056 }
6057
6058 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6059 sc->reclaim_idx, sc->nodemask) {
6060 /*
6061 * Take care memory controller reclaiming has small influence
6062 * to global LRU.
6063 */
6064 if (!cgroup_reclaim(sc)) {
6065 if (!cpuset_zone_allowed(zone,
6066 GFP_KERNEL | __GFP_HARDWALL))
6067 continue;
6068
6069 /*
6070 * If we already have plenty of memory free for
6071 * compaction in this zone, don't free any more.
6072 * Even though compaction is invoked for any
6073 * non-zero order, only frequent costly order
6074 * reclamation is disruptive enough to become a
6075 * noticeable problem, like transparent huge
6076 * page allocations.
6077 */
6078 if (IS_ENABLED(CONFIG_COMPACTION) &&
6079 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6080 compaction_ready(zone, sc)) {
6081 sc->compaction_ready = true;
6082 continue;
6083 }
6084
6085 /*
6086 * Shrink each node in the zonelist once. If the
6087 * zonelist is ordered by zone (not the default) then a
6088 * node may be shrunk multiple times but in that case
6089 * the user prefers lower zones being preserved.
6090 */
6091 if (zone->zone_pgdat == last_pgdat)
6092 continue;
6093
6094 /*
6095 * This steals pages from memory cgroups over softlimit
6096 * and returns the number of reclaimed pages and
6097 * scanned pages. This works for global memory pressure
6098 * and balancing, not for a memcg's limit.
6099 */
6100 nr_soft_scanned = 0;
6101 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6102 sc->order, sc->gfp_mask,
6103 &nr_soft_scanned);
6104 sc->nr_reclaimed += nr_soft_reclaimed;
6105 sc->nr_scanned += nr_soft_scanned;
6106 /* need some check for avoid more shrink_zone() */
6107 }
6108
6109 if (!first_pgdat)
6110 first_pgdat = zone->zone_pgdat;
6111
6112 /* See comment about same check for global reclaim above */
6113 if (zone->zone_pgdat == last_pgdat)
6114 continue;
6115 last_pgdat = zone->zone_pgdat;
6116 shrink_node(zone->zone_pgdat, sc);
6117 }
6118
6119 if (first_pgdat)
6120 consider_reclaim_throttle(first_pgdat, sc);
6121
6122 /*
6123 * Restore to original mask to avoid the impact on the caller if we
6124 * promoted it to __GFP_HIGHMEM.
6125 */
6126 sc->gfp_mask = orig_mask;
6127 }
6128
6129 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6130 {
6131 struct lruvec *target_lruvec;
6132 unsigned long refaults;
6133
6134 if (lru_gen_enabled())
6135 return;
6136
6137 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6138 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6139 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6140 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6141 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6142 }
6143
6144 /*
6145 * This is the main entry point to direct page reclaim.
6146 *
6147 * If a full scan of the inactive list fails to free enough memory then we
6148 * are "out of memory" and something needs to be killed.
6149 *
6150 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6151 * high - the zone may be full of dirty or under-writeback pages, which this
6152 * caller can't do much about. We kick the writeback threads and take explicit
6153 * naps in the hope that some of these pages can be written. But if the
6154 * allocating task holds filesystem locks which prevent writeout this might not
6155 * work, and the allocation attempt will fail.
6156 *
6157 * returns: 0, if no pages reclaimed
6158 * else, the number of pages reclaimed
6159 */
6160 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6161 struct scan_control *sc)
6162 {
6163 int initial_priority = sc->priority;
6164 pg_data_t *last_pgdat;
6165 struct zoneref *z;
6166 struct zone *zone;
6167 retry:
6168 delayacct_freepages_start();
6169
6170 if (!cgroup_reclaim(sc))
6171 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6172
6173 do {
6174 if (!sc->proactive)
6175 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6176 sc->priority);
6177 sc->nr_scanned = 0;
6178 shrink_zones(zonelist, sc);
6179
6180 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6181 break;
6182
6183 if (sc->compaction_ready)
6184 break;
6185
6186 /*
6187 * If we're getting trouble reclaiming, start doing
6188 * writepage even in laptop mode.
6189 */
6190 if (sc->priority < DEF_PRIORITY - 2)
6191 sc->may_writepage = 1;
6192 } while (--sc->priority >= 0);
6193
6194 last_pgdat = NULL;
6195 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6196 sc->nodemask) {
6197 if (zone->zone_pgdat == last_pgdat)
6198 continue;
6199 last_pgdat = zone->zone_pgdat;
6200
6201 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6202
6203 if (cgroup_reclaim(sc)) {
6204 struct lruvec *lruvec;
6205
6206 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6207 zone->zone_pgdat);
6208 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6209 }
6210 }
6211
6212 delayacct_freepages_end();
6213
6214 if (sc->nr_reclaimed)
6215 return sc->nr_reclaimed;
6216
6217 /* Aborted reclaim to try compaction? don't OOM, then */
6218 if (sc->compaction_ready)
6219 return 1;
6220
6221 /*
6222 * We make inactive:active ratio decisions based on the node's
6223 * composition of memory, but a restrictive reclaim_idx or a
6224 * memory.low cgroup setting can exempt large amounts of
6225 * memory from reclaim. Neither of which are very common, so
6226 * instead of doing costly eligibility calculations of the
6227 * entire cgroup subtree up front, we assume the estimates are
6228 * good, and retry with forcible deactivation if that fails.
6229 */
6230 if (sc->skipped_deactivate) {
6231 sc->priority = initial_priority;
6232 sc->force_deactivate = 1;
6233 sc->skipped_deactivate = 0;
6234 goto retry;
6235 }
6236
6237 /* Untapped cgroup reserves? Don't OOM, retry. */
6238 if (sc->memcg_low_skipped) {
6239 sc->priority = initial_priority;
6240 sc->force_deactivate = 0;
6241 sc->memcg_low_reclaim = 1;
6242 sc->memcg_low_skipped = 0;
6243 goto retry;
6244 }
6245
6246 return 0;
6247 }
6248
6249 static bool allow_direct_reclaim(pg_data_t *pgdat)
6250 {
6251 struct zone *zone;
6252 unsigned long pfmemalloc_reserve = 0;
6253 unsigned long free_pages = 0;
6254 int i;
6255 bool wmark_ok;
6256
6257 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6258 return true;
6259
6260 for (i = 0; i <= ZONE_NORMAL; i++) {
6261 zone = &pgdat->node_zones[i];
6262 if (!managed_zone(zone))
6263 continue;
6264
6265 if (!zone_reclaimable_pages(zone))
6266 continue;
6267
6268 pfmemalloc_reserve += min_wmark_pages(zone);
6269 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6270 }
6271
6272 /* If there are no reserves (unexpected config) then do not throttle */
6273 if (!pfmemalloc_reserve)
6274 return true;
6275
6276 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6277
6278 /* kswapd must be awake if processes are being throttled */
6279 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6280 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6281 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6282
6283 wake_up_interruptible(&pgdat->kswapd_wait);
6284 }
6285
6286 return wmark_ok;
6287 }
6288
6289 /*
6290 * Throttle direct reclaimers if backing storage is backed by the network
6291 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6292 * depleted. kswapd will continue to make progress and wake the processes
6293 * when the low watermark is reached.
6294 *
6295 * Returns true if a fatal signal was delivered during throttling. If this
6296 * happens, the page allocator should not consider triggering the OOM killer.
6297 */
6298 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6299 nodemask_t *nodemask)
6300 {
6301 struct zoneref *z;
6302 struct zone *zone;
6303 pg_data_t *pgdat = NULL;
6304
6305 /*
6306 * Kernel threads should not be throttled as they may be indirectly
6307 * responsible for cleaning pages necessary for reclaim to make forward
6308 * progress. kjournald for example may enter direct reclaim while
6309 * committing a transaction where throttling it could forcing other
6310 * processes to block on log_wait_commit().
6311 */
6312 if (current->flags & PF_KTHREAD)
6313 goto out;
6314
6315 /*
6316 * If a fatal signal is pending, this process should not throttle.
6317 * It should return quickly so it can exit and free its memory
6318 */
6319 if (fatal_signal_pending(current))
6320 goto out;
6321
6322 /*
6323 * Check if the pfmemalloc reserves are ok by finding the first node
6324 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6325 * GFP_KERNEL will be required for allocating network buffers when
6326 * swapping over the network so ZONE_HIGHMEM is unusable.
6327 *
6328 * Throttling is based on the first usable node and throttled processes
6329 * wait on a queue until kswapd makes progress and wakes them. There
6330 * is an affinity then between processes waking up and where reclaim
6331 * progress has been made assuming the process wakes on the same node.
6332 * More importantly, processes running on remote nodes will not compete
6333 * for remote pfmemalloc reserves and processes on different nodes
6334 * should make reasonable progress.
6335 */
6336 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6337 gfp_zone(gfp_mask), nodemask) {
6338 if (zone_idx(zone) > ZONE_NORMAL)
6339 continue;
6340
6341 /* Throttle based on the first usable node */
6342 pgdat = zone->zone_pgdat;
6343 if (allow_direct_reclaim(pgdat))
6344 goto out;
6345 break;
6346 }
6347
6348 /* If no zone was usable by the allocation flags then do not throttle */
6349 if (!pgdat)
6350 goto out;
6351
6352 /* Account for the throttling */
6353 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6354
6355 /*
6356 * If the caller cannot enter the filesystem, it's possible that it
6357 * is due to the caller holding an FS lock or performing a journal
6358 * transaction in the case of a filesystem like ext[3|4]. In this case,
6359 * it is not safe to block on pfmemalloc_wait as kswapd could be
6360 * blocked waiting on the same lock. Instead, throttle for up to a
6361 * second before continuing.
6362 */
6363 if (!(gfp_mask & __GFP_FS))
6364 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6365 allow_direct_reclaim(pgdat), HZ);
6366 else
6367 /* Throttle until kswapd wakes the process */
6368 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6369 allow_direct_reclaim(pgdat));
6370
6371 if (fatal_signal_pending(current))
6372 return true;
6373
6374 out:
6375 return false;
6376 }
6377
6378 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6379 gfp_t gfp_mask, nodemask_t *nodemask)
6380 {
6381 unsigned long nr_reclaimed;
6382 struct scan_control sc = {
6383 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6384 .gfp_mask = current_gfp_context(gfp_mask),
6385 .reclaim_idx = gfp_zone(gfp_mask),
6386 .order = order,
6387 .nodemask = nodemask,
6388 .priority = DEF_PRIORITY,
6389 .may_writepage = !laptop_mode,
6390 .may_unmap = 1,
6391 .may_swap = 1,
6392 };
6393
6394 /*
6395 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6396 * Confirm they are large enough for max values.
6397 */
6398 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
6399 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6400 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6401
6402 /*
6403 * Do not enter reclaim if fatal signal was delivered while throttled.
6404 * 1 is returned so that the page allocator does not OOM kill at this
6405 * point.
6406 */
6407 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6408 return 1;
6409
6410 set_task_reclaim_state(current, &sc.reclaim_state);
6411 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6412
6413 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6414
6415 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6416 set_task_reclaim_state(current, NULL);
6417
6418 return nr_reclaimed;
6419 }
6420
6421 #ifdef CONFIG_MEMCG
6422
6423 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6424 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6425 gfp_t gfp_mask, bool noswap,
6426 pg_data_t *pgdat,
6427 unsigned long *nr_scanned)
6428 {
6429 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6430 struct scan_control sc = {
6431 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6432 .target_mem_cgroup = memcg,
6433 .may_writepage = !laptop_mode,
6434 .may_unmap = 1,
6435 .reclaim_idx = MAX_NR_ZONES - 1,
6436 .may_swap = !noswap,
6437 };
6438
6439 WARN_ON_ONCE(!current->reclaim_state);
6440
6441 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6442 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6443
6444 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6445 sc.gfp_mask);
6446
6447 /*
6448 * NOTE: Although we can get the priority field, using it
6449 * here is not a good idea, since it limits the pages we can scan.
6450 * if we don't reclaim here, the shrink_node from balance_pgdat
6451 * will pick up pages from other mem cgroup's as well. We hack
6452 * the priority and make it zero.
6453 */
6454 shrink_lruvec(lruvec, &sc);
6455
6456 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6457
6458 *nr_scanned = sc.nr_scanned;
6459
6460 return sc.nr_reclaimed;
6461 }
6462
6463 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6464 unsigned long nr_pages,
6465 gfp_t gfp_mask,
6466 unsigned int reclaim_options)
6467 {
6468 unsigned long nr_reclaimed;
6469 unsigned int noreclaim_flag;
6470 struct scan_control sc = {
6471 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6472 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6473 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6474 .reclaim_idx = MAX_NR_ZONES - 1,
6475 .target_mem_cgroup = memcg,
6476 .priority = DEF_PRIORITY,
6477 .may_writepage = !laptop_mode,
6478 .may_unmap = 1,
6479 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6480 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6481 };
6482 /*
6483 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6484 * equal pressure on all the nodes. This is based on the assumption that
6485 * the reclaim does not bail out early.
6486 */
6487 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6488
6489 set_task_reclaim_state(current, &sc.reclaim_state);
6490 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6491 noreclaim_flag = memalloc_noreclaim_save();
6492
6493 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6494
6495 memalloc_noreclaim_restore(noreclaim_flag);
6496 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6497 set_task_reclaim_state(current, NULL);
6498
6499 return nr_reclaimed;
6500 }
6501 #endif
6502
6503 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6504 {
6505 struct mem_cgroup *memcg;
6506 struct lruvec *lruvec;
6507
6508 if (lru_gen_enabled()) {
6509 lru_gen_age_node(pgdat, sc);
6510 return;
6511 }
6512
6513 if (!can_age_anon_pages(pgdat, sc))
6514 return;
6515
6516 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6517 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6518 return;
6519
6520 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6521 do {
6522 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6523 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6524 sc, LRU_ACTIVE_ANON);
6525 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6526 } while (memcg);
6527 }
6528
6529 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6530 {
6531 int i;
6532 struct zone *zone;
6533
6534 /*
6535 * Check for watermark boosts top-down as the higher zones
6536 * are more likely to be boosted. Both watermarks and boosts
6537 * should not be checked at the same time as reclaim would
6538 * start prematurely when there is no boosting and a lower
6539 * zone is balanced.
6540 */
6541 for (i = highest_zoneidx; i >= 0; i--) {
6542 zone = pgdat->node_zones + i;
6543 if (!managed_zone(zone))
6544 continue;
6545
6546 if (zone->watermark_boost)
6547 return true;
6548 }
6549
6550 return false;
6551 }
6552
6553 /*
6554 * Returns true if there is an eligible zone balanced for the request order
6555 * and highest_zoneidx
6556 */
6557 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6558 {
6559 int i;
6560 unsigned long mark = -1;
6561 struct zone *zone;
6562
6563 /*
6564 * Check watermarks bottom-up as lower zones are more likely to
6565 * meet watermarks.
6566 */
6567 for (i = 0; i <= highest_zoneidx; i++) {
6568 zone = pgdat->node_zones + i;
6569
6570 if (!managed_zone(zone))
6571 continue;
6572
6573 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6574 mark = wmark_pages(zone, WMARK_PROMO);
6575 else
6576 mark = high_wmark_pages(zone);
6577 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6578 return true;
6579 }
6580
6581 /*
6582 * If a node has no managed zone within highest_zoneidx, it does not
6583 * need balancing by definition. This can happen if a zone-restricted
6584 * allocation tries to wake a remote kswapd.
6585 */
6586 if (mark == -1)
6587 return true;
6588
6589 return false;
6590 }
6591
6592 /* Clear pgdat state for congested, dirty or under writeback. */
6593 static void clear_pgdat_congested(pg_data_t *pgdat)
6594 {
6595 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6596
6597 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6598 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6599 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6600 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6601 }
6602
6603 /*
6604 * Prepare kswapd for sleeping. This verifies that there are no processes
6605 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6606 *
6607 * Returns true if kswapd is ready to sleep
6608 */
6609 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6610 int highest_zoneidx)
6611 {
6612 /*
6613 * The throttled processes are normally woken up in balance_pgdat() as
6614 * soon as allow_direct_reclaim() is true. But there is a potential
6615 * race between when kswapd checks the watermarks and a process gets
6616 * throttled. There is also a potential race if processes get
6617 * throttled, kswapd wakes, a large process exits thereby balancing the
6618 * zones, which causes kswapd to exit balance_pgdat() before reaching
6619 * the wake up checks. If kswapd is going to sleep, no process should
6620 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6621 * the wake up is premature, processes will wake kswapd and get
6622 * throttled again. The difference from wake ups in balance_pgdat() is
6623 * that here we are under prepare_to_wait().
6624 */
6625 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6626 wake_up_all(&pgdat->pfmemalloc_wait);
6627
6628 /* Hopeless node, leave it to direct reclaim */
6629 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6630 return true;
6631
6632 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6633 clear_pgdat_congested(pgdat);
6634 return true;
6635 }
6636
6637 return false;
6638 }
6639
6640 /*
6641 * kswapd shrinks a node of pages that are at or below the highest usable
6642 * zone that is currently unbalanced.
6643 *
6644 * Returns true if kswapd scanned at least the requested number of pages to
6645 * reclaim or if the lack of progress was due to pages under writeback.
6646 * This is used to determine if the scanning priority needs to be raised.
6647 */
6648 static bool kswapd_shrink_node(pg_data_t *pgdat,
6649 struct scan_control *sc)
6650 {
6651 struct zone *zone;
6652 int z;
6653
6654 /* Reclaim a number of pages proportional to the number of zones */
6655 sc->nr_to_reclaim = 0;
6656 for (z = 0; z <= sc->reclaim_idx; z++) {
6657 zone = pgdat->node_zones + z;
6658 if (!managed_zone(zone))
6659 continue;
6660
6661 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6662 }
6663
6664 /*
6665 * Historically care was taken to put equal pressure on all zones but
6666 * now pressure is applied based on node LRU order.
6667 */
6668 shrink_node(pgdat, sc);
6669
6670 /*
6671 * Fragmentation may mean that the system cannot be rebalanced for
6672 * high-order allocations. If twice the allocation size has been
6673 * reclaimed then recheck watermarks only at order-0 to prevent
6674 * excessive reclaim. Assume that a process requested a high-order
6675 * can direct reclaim/compact.
6676 */
6677 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6678 sc->order = 0;
6679
6680 return sc->nr_scanned >= sc->nr_to_reclaim;
6681 }
6682
6683 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6684 static inline void
6685 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6686 {
6687 int i;
6688 struct zone *zone;
6689
6690 for (i = 0; i <= highest_zoneidx; i++) {
6691 zone = pgdat->node_zones + i;
6692
6693 if (!managed_zone(zone))
6694 continue;
6695
6696 if (active)
6697 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6698 else
6699 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6700 }
6701 }
6702
6703 static inline void
6704 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6705 {
6706 update_reclaim_active(pgdat, highest_zoneidx, true);
6707 }
6708
6709 static inline void
6710 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6711 {
6712 update_reclaim_active(pgdat, highest_zoneidx, false);
6713 }
6714
6715 /*
6716 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6717 * that are eligible for use by the caller until at least one zone is
6718 * balanced.
6719 *
6720 * Returns the order kswapd finished reclaiming at.
6721 *
6722 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6723 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6724 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6725 * or lower is eligible for reclaim until at least one usable zone is
6726 * balanced.
6727 */
6728 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6729 {
6730 int i;
6731 unsigned long nr_soft_reclaimed;
6732 unsigned long nr_soft_scanned;
6733 unsigned long pflags;
6734 unsigned long nr_boost_reclaim;
6735 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6736 bool boosted;
6737 struct zone *zone;
6738 struct scan_control sc = {
6739 .gfp_mask = GFP_KERNEL,
6740 .order = order,
6741 .may_unmap = 1,
6742 };
6743
6744 set_task_reclaim_state(current, &sc.reclaim_state);
6745 psi_memstall_enter(&pflags);
6746 __fs_reclaim_acquire(_THIS_IP_);
6747
6748 count_vm_event(PAGEOUTRUN);
6749
6750 /*
6751 * Account for the reclaim boost. Note that the zone boost is left in
6752 * place so that parallel allocations that are near the watermark will
6753 * stall or direct reclaim until kswapd is finished.
6754 */
6755 nr_boost_reclaim = 0;
6756 for (i = 0; i <= highest_zoneidx; i++) {
6757 zone = pgdat->node_zones + i;
6758 if (!managed_zone(zone))
6759 continue;
6760
6761 nr_boost_reclaim += zone->watermark_boost;
6762 zone_boosts[i] = zone->watermark_boost;
6763 }
6764 boosted = nr_boost_reclaim;
6765
6766 restart:
6767 set_reclaim_active(pgdat, highest_zoneidx);
6768 sc.priority = DEF_PRIORITY;
6769 do {
6770 unsigned long nr_reclaimed = sc.nr_reclaimed;
6771 bool raise_priority = true;
6772 bool balanced;
6773 bool ret;
6774
6775 sc.reclaim_idx = highest_zoneidx;
6776
6777 /*
6778 * If the number of buffer_heads exceeds the maximum allowed
6779 * then consider reclaiming from all zones. This has a dual
6780 * purpose -- on 64-bit systems it is expected that
6781 * buffer_heads are stripped during active rotation. On 32-bit
6782 * systems, highmem pages can pin lowmem memory and shrinking
6783 * buffers can relieve lowmem pressure. Reclaim may still not
6784 * go ahead if all eligible zones for the original allocation
6785 * request are balanced to avoid excessive reclaim from kswapd.
6786 */
6787 if (buffer_heads_over_limit) {
6788 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6789 zone = pgdat->node_zones + i;
6790 if (!managed_zone(zone))
6791 continue;
6792
6793 sc.reclaim_idx = i;
6794 break;
6795 }
6796 }
6797
6798 /*
6799 * If the pgdat is imbalanced then ignore boosting and preserve
6800 * the watermarks for a later time and restart. Note that the
6801 * zone watermarks will be still reset at the end of balancing
6802 * on the grounds that the normal reclaim should be enough to
6803 * re-evaluate if boosting is required when kswapd next wakes.
6804 */
6805 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6806 if (!balanced && nr_boost_reclaim) {
6807 nr_boost_reclaim = 0;
6808 goto restart;
6809 }
6810
6811 /*
6812 * If boosting is not active then only reclaim if there are no
6813 * eligible zones. Note that sc.reclaim_idx is not used as
6814 * buffer_heads_over_limit may have adjusted it.
6815 */
6816 if (!nr_boost_reclaim && balanced)
6817 goto out;
6818
6819 /* Limit the priority of boosting to avoid reclaim writeback */
6820 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6821 raise_priority = false;
6822
6823 /*
6824 * Do not writeback or swap pages for boosted reclaim. The
6825 * intent is to relieve pressure not issue sub-optimal IO
6826 * from reclaim context. If no pages are reclaimed, the
6827 * reclaim will be aborted.
6828 */
6829 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6830 sc.may_swap = !nr_boost_reclaim;
6831
6832 /*
6833 * Do some background aging, to give pages a chance to be
6834 * referenced before reclaiming. All pages are rotated
6835 * regardless of classzone as this is about consistent aging.
6836 */
6837 kswapd_age_node(pgdat, &sc);
6838
6839 /*
6840 * If we're getting trouble reclaiming, start doing writepage
6841 * even in laptop mode.
6842 */
6843 if (sc.priority < DEF_PRIORITY - 2)
6844 sc.may_writepage = 1;
6845
6846 /* Call soft limit reclaim before calling shrink_node. */
6847 sc.nr_scanned = 0;
6848 nr_soft_scanned = 0;
6849 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6850 sc.gfp_mask, &nr_soft_scanned);
6851 sc.nr_reclaimed += nr_soft_reclaimed;
6852
6853 /*
6854 * There should be no need to raise the scanning priority if
6855 * enough pages are already being scanned that that high
6856 * watermark would be met at 100% efficiency.
6857 */
6858 if (kswapd_shrink_node(pgdat, &sc))
6859 raise_priority = false;
6860
6861 /*
6862 * If the low watermark is met there is no need for processes
6863 * to be throttled on pfmemalloc_wait as they should not be
6864 * able to safely make forward progress. Wake them
6865 */
6866 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6867 allow_direct_reclaim(pgdat))
6868 wake_up_all(&pgdat->pfmemalloc_wait);
6869
6870 /* Check if kswapd should be suspending */
6871 __fs_reclaim_release(_THIS_IP_);
6872 ret = try_to_freeze();
6873 __fs_reclaim_acquire(_THIS_IP_);
6874 if (ret || kthread_should_stop())
6875 break;
6876
6877 /*
6878 * Raise priority if scanning rate is too low or there was no
6879 * progress in reclaiming pages
6880 */
6881 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6882 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6883
6884 /*
6885 * If reclaim made no progress for a boost, stop reclaim as
6886 * IO cannot be queued and it could be an infinite loop in
6887 * extreme circumstances.
6888 */
6889 if (nr_boost_reclaim && !nr_reclaimed)
6890 break;
6891
6892 if (raise_priority || !nr_reclaimed)
6893 sc.priority--;
6894 } while (sc.priority >= 1);
6895
6896 if (!sc.nr_reclaimed)
6897 pgdat->kswapd_failures++;
6898
6899 out:
6900 clear_reclaim_active(pgdat, highest_zoneidx);
6901
6902 /* If reclaim was boosted, account for the reclaim done in this pass */
6903 if (boosted) {
6904 unsigned long flags;
6905
6906 for (i = 0; i <= highest_zoneidx; i++) {
6907 if (!zone_boosts[i])
6908 continue;
6909
6910 /* Increments are under the zone lock */
6911 zone = pgdat->node_zones + i;
6912 spin_lock_irqsave(&zone->lock, flags);
6913 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6914 spin_unlock_irqrestore(&zone->lock, flags);
6915 }
6916
6917 /*
6918 * As there is now likely space, wakeup kcompact to defragment
6919 * pageblocks.
6920 */
6921 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6922 }
6923
6924 snapshot_refaults(NULL, pgdat);
6925 __fs_reclaim_release(_THIS_IP_);
6926 psi_memstall_leave(&pflags);
6927 set_task_reclaim_state(current, NULL);
6928
6929 /*
6930 * Return the order kswapd stopped reclaiming at as
6931 * prepare_kswapd_sleep() takes it into account. If another caller
6932 * entered the allocator slow path while kswapd was awake, order will
6933 * remain at the higher level.
6934 */
6935 return sc.order;
6936 }
6937
6938 /*
6939 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6940 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6941 * not a valid index then either kswapd runs for first time or kswapd couldn't
6942 * sleep after previous reclaim attempt (node is still unbalanced). In that
6943 * case return the zone index of the previous kswapd reclaim cycle.
6944 */
6945 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6946 enum zone_type prev_highest_zoneidx)
6947 {
6948 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6949
6950 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6951 }
6952
6953 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6954 unsigned int highest_zoneidx)
6955 {
6956 long remaining = 0;
6957 DEFINE_WAIT(wait);
6958
6959 if (freezing(current) || kthread_should_stop())
6960 return;
6961
6962 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6963
6964 /*
6965 * Try to sleep for a short interval. Note that kcompactd will only be
6966 * woken if it is possible to sleep for a short interval. This is
6967 * deliberate on the assumption that if reclaim cannot keep an
6968 * eligible zone balanced that it's also unlikely that compaction will
6969 * succeed.
6970 */
6971 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6972 /*
6973 * Compaction records what page blocks it recently failed to
6974 * isolate pages from and skips them in the future scanning.
6975 * When kswapd is going to sleep, it is reasonable to assume
6976 * that pages and compaction may succeed so reset the cache.
6977 */
6978 reset_isolation_suitable(pgdat);
6979
6980 /*
6981 * We have freed the memory, now we should compact it to make
6982 * allocation of the requested order possible.
6983 */
6984 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
6985
6986 remaining = schedule_timeout(HZ/10);
6987
6988 /*
6989 * If woken prematurely then reset kswapd_highest_zoneidx and
6990 * order. The values will either be from a wakeup request or
6991 * the previous request that slept prematurely.
6992 */
6993 if (remaining) {
6994 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
6995 kswapd_highest_zoneidx(pgdat,
6996 highest_zoneidx));
6997
6998 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
6999 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7000 }
7001
7002 finish_wait(&pgdat->kswapd_wait, &wait);
7003 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7004 }
7005
7006 /*
7007 * After a short sleep, check if it was a premature sleep. If not, then
7008 * go fully to sleep until explicitly woken up.
7009 */
7010 if (!remaining &&
7011 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7012 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7013
7014 /*
7015 * vmstat counters are not perfectly accurate and the estimated
7016 * value for counters such as NR_FREE_PAGES can deviate from the
7017 * true value by nr_online_cpus * threshold. To avoid the zone
7018 * watermarks being breached while under pressure, we reduce the
7019 * per-cpu vmstat threshold while kswapd is awake and restore
7020 * them before going back to sleep.
7021 */
7022 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7023
7024 if (!kthread_should_stop())
7025 schedule();
7026
7027 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7028 } else {
7029 if (remaining)
7030 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7031 else
7032 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7033 }
7034 finish_wait(&pgdat->kswapd_wait, &wait);
7035 }
7036
7037 /*
7038 * The background pageout daemon, started as a kernel thread
7039 * from the init process.
7040 *
7041 * This basically trickles out pages so that we have _some_
7042 * free memory available even if there is no other activity
7043 * that frees anything up. This is needed for things like routing
7044 * etc, where we otherwise might have all activity going on in
7045 * asynchronous contexts that cannot page things out.
7046 *
7047 * If there are applications that are active memory-allocators
7048 * (most normal use), this basically shouldn't matter.
7049 */
7050 static int kswapd(void *p)
7051 {
7052 unsigned int alloc_order, reclaim_order;
7053 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7054 pg_data_t *pgdat = (pg_data_t *)p;
7055 struct task_struct *tsk = current;
7056 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7057
7058 if (!cpumask_empty(cpumask))
7059 set_cpus_allowed_ptr(tsk, cpumask);
7060
7061 /*
7062 * Tell the memory management that we're a "memory allocator",
7063 * and that if we need more memory we should get access to it
7064 * regardless (see "__alloc_pages()"). "kswapd" should
7065 * never get caught in the normal page freeing logic.
7066 *
7067 * (Kswapd normally doesn't need memory anyway, but sometimes
7068 * you need a small amount of memory in order to be able to
7069 * page out something else, and this flag essentially protects
7070 * us from recursively trying to free more memory as we're
7071 * trying to free the first piece of memory in the first place).
7072 */
7073 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7074 set_freezable();
7075
7076 WRITE_ONCE(pgdat->kswapd_order, 0);
7077 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7078 atomic_set(&pgdat->nr_writeback_throttled, 0);
7079 for ( ; ; ) {
7080 bool ret;
7081
7082 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7083 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7084 highest_zoneidx);
7085
7086 kswapd_try_sleep:
7087 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7088 highest_zoneidx);
7089
7090 /* Read the new order and highest_zoneidx */
7091 alloc_order = READ_ONCE(pgdat->kswapd_order);
7092 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7093 highest_zoneidx);
7094 WRITE_ONCE(pgdat->kswapd_order, 0);
7095 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7096
7097 ret = try_to_freeze();
7098 if (kthread_should_stop())
7099 break;
7100
7101 /*
7102 * We can speed up thawing tasks if we don't call balance_pgdat
7103 * after returning from the refrigerator
7104 */
7105 if (ret)
7106 continue;
7107
7108 /*
7109 * Reclaim begins at the requested order but if a high-order
7110 * reclaim fails then kswapd falls back to reclaiming for
7111 * order-0. If that happens, kswapd will consider sleeping
7112 * for the order it finished reclaiming at (reclaim_order)
7113 * but kcompactd is woken to compact for the original
7114 * request (alloc_order).
7115 */
7116 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7117 alloc_order);
7118 reclaim_order = balance_pgdat(pgdat, alloc_order,
7119 highest_zoneidx);
7120 if (reclaim_order < alloc_order)
7121 goto kswapd_try_sleep;
7122 }
7123
7124 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7125
7126 return 0;
7127 }
7128
7129 /*
7130 * A zone is low on free memory or too fragmented for high-order memory. If
7131 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7132 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7133 * has failed or is not needed, still wake up kcompactd if only compaction is
7134 * needed.
7135 */
7136 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7137 enum zone_type highest_zoneidx)
7138 {
7139 pg_data_t *pgdat;
7140 enum zone_type curr_idx;
7141
7142 if (!managed_zone(zone))
7143 return;
7144
7145 if (!cpuset_zone_allowed(zone, gfp_flags))
7146 return;
7147
7148 pgdat = zone->zone_pgdat;
7149 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7150
7151 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7152 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7153
7154 if (READ_ONCE(pgdat->kswapd_order) < order)
7155 WRITE_ONCE(pgdat->kswapd_order, order);
7156
7157 if (!waitqueue_active(&pgdat->kswapd_wait))
7158 return;
7159
7160 /* Hopeless node, leave it to direct reclaim if possible */
7161 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7162 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7163 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7164 /*
7165 * There may be plenty of free memory available, but it's too
7166 * fragmented for high-order allocations. Wake up kcompactd
7167 * and rely on compaction_suitable() to determine if it's
7168 * needed. If it fails, it will defer subsequent attempts to
7169 * ratelimit its work.
7170 */
7171 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7172 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7173 return;
7174 }
7175
7176 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7177 gfp_flags);
7178 wake_up_interruptible(&pgdat->kswapd_wait);
7179 }
7180
7181 #ifdef CONFIG_HIBERNATION
7182 /*
7183 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7184 * freed pages.
7185 *
7186 * Rather than trying to age LRUs the aim is to preserve the overall
7187 * LRU order by reclaiming preferentially
7188 * inactive > active > active referenced > active mapped
7189 */
7190 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7191 {
7192 struct scan_control sc = {
7193 .nr_to_reclaim = nr_to_reclaim,
7194 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7195 .reclaim_idx = MAX_NR_ZONES - 1,
7196 .priority = DEF_PRIORITY,
7197 .may_writepage = 1,
7198 .may_unmap = 1,
7199 .may_swap = 1,
7200 .hibernation_mode = 1,
7201 };
7202 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7203 unsigned long nr_reclaimed;
7204 unsigned int noreclaim_flag;
7205
7206 fs_reclaim_acquire(sc.gfp_mask);
7207 noreclaim_flag = memalloc_noreclaim_save();
7208 set_task_reclaim_state(current, &sc.reclaim_state);
7209
7210 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7211
7212 set_task_reclaim_state(current, NULL);
7213 memalloc_noreclaim_restore(noreclaim_flag);
7214 fs_reclaim_release(sc.gfp_mask);
7215
7216 return nr_reclaimed;
7217 }
7218 #endif /* CONFIG_HIBERNATION */
7219
7220 /*
7221 * This kswapd start function will be called by init and node-hot-add.
7222 */
7223 void __meminit kswapd_run(int nid)
7224 {
7225 pg_data_t *pgdat = NODE_DATA(nid);
7226
7227 pgdat_kswapd_lock(pgdat);
7228 if (!pgdat->kswapd) {
7229 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7230 if (IS_ERR(pgdat->kswapd)) {
7231 /* failure at boot is fatal */
7232 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7233 nid, PTR_ERR(pgdat->kswapd));
7234 BUG_ON(system_state < SYSTEM_RUNNING);
7235 pgdat->kswapd = NULL;
7236 }
7237 }
7238 pgdat_kswapd_unlock(pgdat);
7239 }
7240
7241 /*
7242 * Called by memory hotplug when all memory in a node is offlined. Caller must
7243 * be holding mem_hotplug_begin/done().
7244 */
7245 void __meminit kswapd_stop(int nid)
7246 {
7247 pg_data_t *pgdat = NODE_DATA(nid);
7248 struct task_struct *kswapd;
7249
7250 pgdat_kswapd_lock(pgdat);
7251 kswapd = pgdat->kswapd;
7252 if (kswapd) {
7253 kthread_stop(kswapd);
7254 pgdat->kswapd = NULL;
7255 }
7256 pgdat_kswapd_unlock(pgdat);
7257 }
7258
7259 static int __init kswapd_init(void)
7260 {
7261 int nid;
7262
7263 swap_setup();
7264 for_each_node_state(nid, N_MEMORY)
7265 kswapd_run(nid);
7266 return 0;
7267 }
7268
7269 module_init(kswapd_init)
7270
7271 #ifdef CONFIG_NUMA
7272 /*
7273 * Node reclaim mode
7274 *
7275 * If non-zero call node_reclaim when the number of free pages falls below
7276 * the watermarks.
7277 */
7278 int node_reclaim_mode __read_mostly;
7279
7280 /*
7281 * Priority for NODE_RECLAIM. This determines the fraction of pages
7282 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7283 * a zone.
7284 */
7285 #define NODE_RECLAIM_PRIORITY 4
7286
7287 /*
7288 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7289 * occur.
7290 */
7291 int sysctl_min_unmapped_ratio = 1;
7292
7293 /*
7294 * If the number of slab pages in a zone grows beyond this percentage then
7295 * slab reclaim needs to occur.
7296 */
7297 int sysctl_min_slab_ratio = 5;
7298
7299 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7300 {
7301 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7302 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7303 node_page_state(pgdat, NR_ACTIVE_FILE);
7304
7305 /*
7306 * It's possible for there to be more file mapped pages than
7307 * accounted for by the pages on the file LRU lists because
7308 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7309 */
7310 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7311 }
7312
7313 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7314 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7315 {
7316 unsigned long nr_pagecache_reclaimable;
7317 unsigned long delta = 0;
7318
7319 /*
7320 * If RECLAIM_UNMAP is set, then all file pages are considered
7321 * potentially reclaimable. Otherwise, we have to worry about
7322 * pages like swapcache and node_unmapped_file_pages() provides
7323 * a better estimate
7324 */
7325 if (node_reclaim_mode & RECLAIM_UNMAP)
7326 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7327 else
7328 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7329
7330 /* If we can't clean pages, remove dirty pages from consideration */
7331 if (!(node_reclaim_mode & RECLAIM_WRITE))
7332 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7333
7334 /* Watch for any possible underflows due to delta */
7335 if (unlikely(delta > nr_pagecache_reclaimable))
7336 delta = nr_pagecache_reclaimable;
7337
7338 return nr_pagecache_reclaimable - delta;
7339 }
7340
7341 /*
7342 * Try to free up some pages from this node through reclaim.
7343 */
7344 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7345 {
7346 /* Minimum pages needed in order to stay on node */
7347 const unsigned long nr_pages = 1 << order;
7348 struct task_struct *p = current;
7349 unsigned int noreclaim_flag;
7350 struct scan_control sc = {
7351 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7352 .gfp_mask = current_gfp_context(gfp_mask),
7353 .order = order,
7354 .priority = NODE_RECLAIM_PRIORITY,
7355 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7356 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7357 .may_swap = 1,
7358 .reclaim_idx = gfp_zone(gfp_mask),
7359 };
7360 unsigned long pflags;
7361
7362 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7363 sc.gfp_mask);
7364
7365 cond_resched();
7366 psi_memstall_enter(&pflags);
7367 delayacct_freepages_start();
7368 fs_reclaim_acquire(sc.gfp_mask);
7369 /*
7370 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7371 */
7372 noreclaim_flag = memalloc_noreclaim_save();
7373 set_task_reclaim_state(p, &sc.reclaim_state);
7374
7375 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7376 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7377 /*
7378 * Free memory by calling shrink node with increasing
7379 * priorities until we have enough memory freed.
7380 */
7381 do {
7382 shrink_node(pgdat, &sc);
7383 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7384 }
7385
7386 set_task_reclaim_state(p, NULL);
7387 memalloc_noreclaim_restore(noreclaim_flag);
7388 fs_reclaim_release(sc.gfp_mask);
7389 psi_memstall_leave(&pflags);
7390 delayacct_freepages_end();
7391
7392 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7393
7394 return sc.nr_reclaimed >= nr_pages;
7395 }
7396
7397 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7398 {
7399 int ret;
7400
7401 /*
7402 * Node reclaim reclaims unmapped file backed pages and
7403 * slab pages if we are over the defined limits.
7404 *
7405 * A small portion of unmapped file backed pages is needed for
7406 * file I/O otherwise pages read by file I/O will be immediately
7407 * thrown out if the node is overallocated. So we do not reclaim
7408 * if less than a specified percentage of the node is used by
7409 * unmapped file backed pages.
7410 */
7411 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7412 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7413 pgdat->min_slab_pages)
7414 return NODE_RECLAIM_FULL;
7415
7416 /*
7417 * Do not scan if the allocation should not be delayed.
7418 */
7419 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7420 return NODE_RECLAIM_NOSCAN;
7421
7422 /*
7423 * Only run node reclaim on the local node or on nodes that do not
7424 * have associated processors. This will favor the local processor
7425 * over remote processors and spread off node memory allocations
7426 * as wide as possible.
7427 */
7428 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7429 return NODE_RECLAIM_NOSCAN;
7430
7431 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7432 return NODE_RECLAIM_NOSCAN;
7433
7434 ret = __node_reclaim(pgdat, gfp_mask, order);
7435 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7436
7437 if (!ret)
7438 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7439
7440 return ret;
7441 }
7442 #endif
7443
7444 /**
7445 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7446 * lru list
7447 * @fbatch: Batch of lru folios to check.
7448 *
7449 * Checks folios for evictability, if an evictable folio is in the unevictable
7450 * lru list, moves it to the appropriate evictable lru list. This function
7451 * should be only used for lru folios.
7452 */
7453 void check_move_unevictable_folios(struct folio_batch *fbatch)
7454 {
7455 struct lruvec *lruvec = NULL;
7456 int pgscanned = 0;
7457 int pgrescued = 0;
7458 int i;
7459
7460 for (i = 0; i < fbatch->nr; i++) {
7461 struct folio *folio = fbatch->folios[i];
7462 int nr_pages = folio_nr_pages(folio);
7463
7464 pgscanned += nr_pages;
7465
7466 /* block memcg migration while the folio moves between lrus */
7467 if (!folio_test_clear_lru(folio))
7468 continue;
7469
7470 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7471 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7472 lruvec_del_folio(lruvec, folio);
7473 folio_clear_unevictable(folio);
7474 lruvec_add_folio(lruvec, folio);
7475 pgrescued += nr_pages;
7476 }
7477 folio_set_lru(folio);
7478 }
7479
7480 if (lruvec) {
7481 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7482 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7483 unlock_page_lruvec_irq(lruvec);
7484 } else if (pgscanned) {
7485 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7486 }
7487 }
7488 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);