]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/vmscan.c
mm: delete historical BUG from zap_pmd_range()
[thirdparty/kernel/stable.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 /* Allocation order */
72 int order;
73
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
79
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
85
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
108
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
119 };
120
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148
149 /*
150 * From 0 .. 100. Higher means more swappy.
151 */
152 int vm_swappiness = 60;
153 /*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157 unsigned long vm_total_pages;
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 return !sc->target_mem_cgroup;
166 }
167
168 /**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 return true;
197 }
198
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 return true;
202 }
203 #endif
204
205 /*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221 }
222
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224 {
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230
231 if (get_nr_swap_pages() > 0)
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235
236 return nr;
237 }
238
239 /**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 unsigned long lru_size;
248 int zid;
249
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
258
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
271
272 }
273
274 /*
275 * Add a shrinker callback to be called from the vm.
276 */
277 int register_shrinker(struct shrinker *shrinker)
278 {
279 size_t size = sizeof(*shrinker->nr_deferred);
280
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
291 return 0;
292 }
293 EXPORT_SYMBOL(register_shrinker);
294
295 /*
296 * Remove one
297 */
298 void unregister_shrinker(struct shrinker *shrinker)
299 {
300 if (!shrinker->nr_deferred)
301 return;
302 down_write(&shrinker_rwsem);
303 list_del(&shrinker->list);
304 up_write(&shrinker_rwsem);
305 kfree(shrinker->nr_deferred);
306 shrinker->nr_deferred = NULL;
307 }
308 EXPORT_SYMBOL(unregister_shrinker);
309
310 #define SHRINK_BATCH 128
311
312 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313 struct shrinker *shrinker,
314 unsigned long nr_scanned,
315 unsigned long nr_eligible)
316 {
317 unsigned long freed = 0;
318 unsigned long long delta;
319 long total_scan;
320 long freeable;
321 long nr;
322 long new_nr;
323 int nid = shrinkctl->nid;
324 long batch_size = shrinker->batch ? shrinker->batch
325 : SHRINK_BATCH;
326 long scanned = 0, next_deferred;
327
328 freeable = shrinker->count_objects(shrinker, shrinkctl);
329 if (freeable == 0)
330 return 0;
331
332 /*
333 * copy the current shrinker scan count into a local variable
334 * and zero it so that other concurrent shrinker invocations
335 * don't also do this scanning work.
336 */
337 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
338
339 total_scan = nr;
340 delta = (4 * nr_scanned) / shrinker->seeks;
341 delta *= freeable;
342 do_div(delta, nr_eligible + 1);
343 total_scan += delta;
344 if (total_scan < 0) {
345 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
346 shrinker->scan_objects, total_scan);
347 total_scan = freeable;
348 next_deferred = nr;
349 } else
350 next_deferred = total_scan;
351
352 /*
353 * We need to avoid excessive windup on filesystem shrinkers
354 * due to large numbers of GFP_NOFS allocations causing the
355 * shrinkers to return -1 all the time. This results in a large
356 * nr being built up so when a shrink that can do some work
357 * comes along it empties the entire cache due to nr >>>
358 * freeable. This is bad for sustaining a working set in
359 * memory.
360 *
361 * Hence only allow the shrinker to scan the entire cache when
362 * a large delta change is calculated directly.
363 */
364 if (delta < freeable / 4)
365 total_scan = min(total_scan, freeable / 2);
366
367 /*
368 * Avoid risking looping forever due to too large nr value:
369 * never try to free more than twice the estimate number of
370 * freeable entries.
371 */
372 if (total_scan > freeable * 2)
373 total_scan = freeable * 2;
374
375 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
376 nr_scanned, nr_eligible,
377 freeable, delta, total_scan);
378
379 /*
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
386 * batch_size.
387 *
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
392 * possible.
393 */
394 while (total_scan >= batch_size ||
395 total_scan >= freeable) {
396 unsigned long ret;
397 unsigned long nr_to_scan = min(batch_size, total_scan);
398
399 shrinkctl->nr_to_scan = nr_to_scan;
400 shrinkctl->nr_scanned = nr_to_scan;
401 ret = shrinker->scan_objects(shrinker, shrinkctl);
402 if (ret == SHRINK_STOP)
403 break;
404 freed += ret;
405
406 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 total_scan -= shrinkctl->nr_scanned;
408 scanned += shrinkctl->nr_scanned;
409
410 cond_resched();
411 }
412
413 if (next_deferred >= scanned)
414 next_deferred -= scanned;
415 else
416 next_deferred = 0;
417 /*
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
421 */
422 if (next_deferred > 0)
423 new_nr = atomic_long_add_return(next_deferred,
424 &shrinker->nr_deferred[nid]);
425 else
426 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
427
428 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 return freed;
430 }
431
432 /**
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @nr_scanned: pressure numerator
438 * @nr_eligible: pressure denominator
439 *
440 * Call the shrink functions to age shrinkable caches.
441 *
442 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443 * unaware shrinkers will receive a node id of 0 instead.
444 *
445 * @memcg specifies the memory cgroup to target. If it is not NULL,
446 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447 * objects from the memory cgroup specified. Otherwise, only unaware
448 * shrinkers are called.
449 *
450 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451 * the available objects should be scanned. Page reclaim for example
452 * passes the number of pages scanned and the number of pages on the
453 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454 * when it encountered mapped pages. The ratio is further biased by
455 * the ->seeks setting of the shrink function, which indicates the
456 * cost to recreate an object relative to that of an LRU page.
457 *
458 * Returns the number of reclaimed slab objects.
459 */
460 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
461 struct mem_cgroup *memcg,
462 unsigned long nr_scanned,
463 unsigned long nr_eligible)
464 {
465 struct shrinker *shrinker;
466 unsigned long freed = 0;
467
468 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
469 return 0;
470
471 if (nr_scanned == 0)
472 nr_scanned = SWAP_CLUSTER_MAX;
473
474 if (!down_read_trylock(&shrinker_rwsem)) {
475 /*
476 * If we would return 0, our callers would understand that we
477 * have nothing else to shrink and give up trying. By returning
478 * 1 we keep it going and assume we'll be able to shrink next
479 * time.
480 */
481 freed = 1;
482 goto out;
483 }
484
485 list_for_each_entry(shrinker, &shrinker_list, list) {
486 struct shrink_control sc = {
487 .gfp_mask = gfp_mask,
488 .nid = nid,
489 .memcg = memcg,
490 };
491
492 /*
493 * If kernel memory accounting is disabled, we ignore
494 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 * passing NULL for memcg.
496 */
497 if (memcg_kmem_enabled() &&
498 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
499 continue;
500
501 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 sc.nid = 0;
503
504 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
505 }
506
507 up_read(&shrinker_rwsem);
508 out:
509 cond_resched();
510 return freed;
511 }
512
513 void drop_slab_node(int nid)
514 {
515 unsigned long freed;
516
517 do {
518 struct mem_cgroup *memcg = NULL;
519
520 freed = 0;
521 do {
522 freed += shrink_slab(GFP_KERNEL, nid, memcg,
523 1000, 1000);
524 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
525 } while (freed > 10);
526 }
527
528 void drop_slab(void)
529 {
530 int nid;
531
532 for_each_online_node(nid)
533 drop_slab_node(nid);
534 }
535
536 static inline int is_page_cache_freeable(struct page *page)
537 {
538 /*
539 * A freeable page cache page is referenced only by the caller
540 * that isolated the page, the page cache radix tree and
541 * optional buffer heads at page->private.
542 */
543 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
544 HPAGE_PMD_NR : 1;
545 return page_count(page) - page_has_private(page) == 1 + radix_pins;
546 }
547
548 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
549 {
550 if (current->flags & PF_SWAPWRITE)
551 return 1;
552 if (!inode_write_congested(inode))
553 return 1;
554 if (inode_to_bdi(inode) == current->backing_dev_info)
555 return 1;
556 return 0;
557 }
558
559 /*
560 * We detected a synchronous write error writing a page out. Probably
561 * -ENOSPC. We need to propagate that into the address_space for a subsequent
562 * fsync(), msync() or close().
563 *
564 * The tricky part is that after writepage we cannot touch the mapping: nothing
565 * prevents it from being freed up. But we have a ref on the page and once
566 * that page is locked, the mapping is pinned.
567 *
568 * We're allowed to run sleeping lock_page() here because we know the caller has
569 * __GFP_FS.
570 */
571 static void handle_write_error(struct address_space *mapping,
572 struct page *page, int error)
573 {
574 lock_page(page);
575 if (page_mapping(page) == mapping)
576 mapping_set_error(mapping, error);
577 unlock_page(page);
578 }
579
580 /* possible outcome of pageout() */
581 typedef enum {
582 /* failed to write page out, page is locked */
583 PAGE_KEEP,
584 /* move page to the active list, page is locked */
585 PAGE_ACTIVATE,
586 /* page has been sent to the disk successfully, page is unlocked */
587 PAGE_SUCCESS,
588 /* page is clean and locked */
589 PAGE_CLEAN,
590 } pageout_t;
591
592 /*
593 * pageout is called by shrink_page_list() for each dirty page.
594 * Calls ->writepage().
595 */
596 static pageout_t pageout(struct page *page, struct address_space *mapping,
597 struct scan_control *sc)
598 {
599 /*
600 * If the page is dirty, only perform writeback if that write
601 * will be non-blocking. To prevent this allocation from being
602 * stalled by pagecache activity. But note that there may be
603 * stalls if we need to run get_block(). We could test
604 * PagePrivate for that.
605 *
606 * If this process is currently in __generic_file_write_iter() against
607 * this page's queue, we can perform writeback even if that
608 * will block.
609 *
610 * If the page is swapcache, write it back even if that would
611 * block, for some throttling. This happens by accident, because
612 * swap_backing_dev_info is bust: it doesn't reflect the
613 * congestion state of the swapdevs. Easy to fix, if needed.
614 */
615 if (!is_page_cache_freeable(page))
616 return PAGE_KEEP;
617 if (!mapping) {
618 /*
619 * Some data journaling orphaned pages can have
620 * page->mapping == NULL while being dirty with clean buffers.
621 */
622 if (page_has_private(page)) {
623 if (try_to_free_buffers(page)) {
624 ClearPageDirty(page);
625 pr_info("%s: orphaned page\n", __func__);
626 return PAGE_CLEAN;
627 }
628 }
629 return PAGE_KEEP;
630 }
631 if (mapping->a_ops->writepage == NULL)
632 return PAGE_ACTIVATE;
633 if (!may_write_to_inode(mapping->host, sc))
634 return PAGE_KEEP;
635
636 if (clear_page_dirty_for_io(page)) {
637 int res;
638 struct writeback_control wbc = {
639 .sync_mode = WB_SYNC_NONE,
640 .nr_to_write = SWAP_CLUSTER_MAX,
641 .range_start = 0,
642 .range_end = LLONG_MAX,
643 .for_reclaim = 1,
644 };
645
646 SetPageReclaim(page);
647 res = mapping->a_ops->writepage(page, &wbc);
648 if (res < 0)
649 handle_write_error(mapping, page, res);
650 if (res == AOP_WRITEPAGE_ACTIVATE) {
651 ClearPageReclaim(page);
652 return PAGE_ACTIVATE;
653 }
654
655 if (!PageWriteback(page)) {
656 /* synchronous write or broken a_ops? */
657 ClearPageReclaim(page);
658 }
659 trace_mm_vmscan_writepage(page);
660 inc_node_page_state(page, NR_VMSCAN_WRITE);
661 return PAGE_SUCCESS;
662 }
663
664 return PAGE_CLEAN;
665 }
666
667 /*
668 * Same as remove_mapping, but if the page is removed from the mapping, it
669 * gets returned with a refcount of 0.
670 */
671 static int __remove_mapping(struct address_space *mapping, struct page *page,
672 bool reclaimed)
673 {
674 unsigned long flags;
675 int refcount;
676
677 BUG_ON(!PageLocked(page));
678 BUG_ON(mapping != page_mapping(page));
679
680 spin_lock_irqsave(&mapping->tree_lock, flags);
681 /*
682 * The non racy check for a busy page.
683 *
684 * Must be careful with the order of the tests. When someone has
685 * a ref to the page, it may be possible that they dirty it then
686 * drop the reference. So if PageDirty is tested before page_count
687 * here, then the following race may occur:
688 *
689 * get_user_pages(&page);
690 * [user mapping goes away]
691 * write_to(page);
692 * !PageDirty(page) [good]
693 * SetPageDirty(page);
694 * put_page(page);
695 * !page_count(page) [good, discard it]
696 *
697 * [oops, our write_to data is lost]
698 *
699 * Reversing the order of the tests ensures such a situation cannot
700 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
701 * load is not satisfied before that of page->_refcount.
702 *
703 * Note that if SetPageDirty is always performed via set_page_dirty,
704 * and thus under tree_lock, then this ordering is not required.
705 */
706 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
707 refcount = 1 + HPAGE_PMD_NR;
708 else
709 refcount = 2;
710 if (!page_ref_freeze(page, refcount))
711 goto cannot_free;
712 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
713 if (unlikely(PageDirty(page))) {
714 page_ref_unfreeze(page, refcount);
715 goto cannot_free;
716 }
717
718 if (PageSwapCache(page)) {
719 swp_entry_t swap = { .val = page_private(page) };
720 mem_cgroup_swapout(page, swap);
721 __delete_from_swap_cache(page);
722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 put_swap_page(page, swap);
724 } else {
725 void (*freepage)(struct page *);
726 void *shadow = NULL;
727
728 freepage = mapping->a_ops->freepage;
729 /*
730 * Remember a shadow entry for reclaimed file cache in
731 * order to detect refaults, thus thrashing, later on.
732 *
733 * But don't store shadows in an address space that is
734 * already exiting. This is not just an optizimation,
735 * inode reclaim needs to empty out the radix tree or
736 * the nodes are lost. Don't plant shadows behind its
737 * back.
738 *
739 * We also don't store shadows for DAX mappings because the
740 * only page cache pages found in these are zero pages
741 * covering holes, and because we don't want to mix DAX
742 * exceptional entries and shadow exceptional entries in the
743 * same page_tree.
744 */
745 if (reclaimed && page_is_file_cache(page) &&
746 !mapping_exiting(mapping) && !dax_mapping(mapping))
747 shadow = workingset_eviction(mapping, page);
748 __delete_from_page_cache(page, shadow);
749 spin_unlock_irqrestore(&mapping->tree_lock, flags);
750
751 if (freepage != NULL)
752 freepage(page);
753 }
754
755 return 1;
756
757 cannot_free:
758 spin_unlock_irqrestore(&mapping->tree_lock, flags);
759 return 0;
760 }
761
762 /*
763 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
764 * someone else has a ref on the page, abort and return 0. If it was
765 * successfully detached, return 1. Assumes the caller has a single ref on
766 * this page.
767 */
768 int remove_mapping(struct address_space *mapping, struct page *page)
769 {
770 if (__remove_mapping(mapping, page, false)) {
771 /*
772 * Unfreezing the refcount with 1 rather than 2 effectively
773 * drops the pagecache ref for us without requiring another
774 * atomic operation.
775 */
776 page_ref_unfreeze(page, 1);
777 return 1;
778 }
779 return 0;
780 }
781
782 /**
783 * putback_lru_page - put previously isolated page onto appropriate LRU list
784 * @page: page to be put back to appropriate lru list
785 *
786 * Add previously isolated @page to appropriate LRU list.
787 * Page may still be unevictable for other reasons.
788 *
789 * lru_lock must not be held, interrupts must be enabled.
790 */
791 void putback_lru_page(struct page *page)
792 {
793 bool is_unevictable;
794 int was_unevictable = PageUnevictable(page);
795
796 VM_BUG_ON_PAGE(PageLRU(page), page);
797
798 redo:
799 ClearPageUnevictable(page);
800
801 if (page_evictable(page)) {
802 /*
803 * For evictable pages, we can use the cache.
804 * In event of a race, worst case is we end up with an
805 * unevictable page on [in]active list.
806 * We know how to handle that.
807 */
808 is_unevictable = false;
809 lru_cache_add(page);
810 } else {
811 /*
812 * Put unevictable pages directly on zone's unevictable
813 * list.
814 */
815 is_unevictable = true;
816 add_page_to_unevictable_list(page);
817 /*
818 * When racing with an mlock or AS_UNEVICTABLE clearing
819 * (page is unlocked) make sure that if the other thread
820 * does not observe our setting of PG_lru and fails
821 * isolation/check_move_unevictable_pages,
822 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
823 * the page back to the evictable list.
824 *
825 * The other side is TestClearPageMlocked() or shmem_lock().
826 */
827 smp_mb();
828 }
829
830 /*
831 * page's status can change while we move it among lru. If an evictable
832 * page is on unevictable list, it never be freed. To avoid that,
833 * check after we added it to the list, again.
834 */
835 if (is_unevictable && page_evictable(page)) {
836 if (!isolate_lru_page(page)) {
837 put_page(page);
838 goto redo;
839 }
840 /* This means someone else dropped this page from LRU
841 * So, it will be freed or putback to LRU again. There is
842 * nothing to do here.
843 */
844 }
845
846 if (was_unevictable && !is_unevictable)
847 count_vm_event(UNEVICTABLE_PGRESCUED);
848 else if (!was_unevictable && is_unevictable)
849 count_vm_event(UNEVICTABLE_PGCULLED);
850
851 put_page(page); /* drop ref from isolate */
852 }
853
854 enum page_references {
855 PAGEREF_RECLAIM,
856 PAGEREF_RECLAIM_CLEAN,
857 PAGEREF_KEEP,
858 PAGEREF_ACTIVATE,
859 };
860
861 static enum page_references page_check_references(struct page *page,
862 struct scan_control *sc)
863 {
864 int referenced_ptes, referenced_page;
865 unsigned long vm_flags;
866
867 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
868 &vm_flags);
869 referenced_page = TestClearPageReferenced(page);
870
871 /*
872 * Mlock lost the isolation race with us. Let try_to_unmap()
873 * move the page to the unevictable list.
874 */
875 if (vm_flags & VM_LOCKED)
876 return PAGEREF_RECLAIM;
877
878 if (referenced_ptes) {
879 if (PageSwapBacked(page))
880 return PAGEREF_ACTIVATE;
881 /*
882 * All mapped pages start out with page table
883 * references from the instantiating fault, so we need
884 * to look twice if a mapped file page is used more
885 * than once.
886 *
887 * Mark it and spare it for another trip around the
888 * inactive list. Another page table reference will
889 * lead to its activation.
890 *
891 * Note: the mark is set for activated pages as well
892 * so that recently deactivated but used pages are
893 * quickly recovered.
894 */
895 SetPageReferenced(page);
896
897 if (referenced_page || referenced_ptes > 1)
898 return PAGEREF_ACTIVATE;
899
900 /*
901 * Activate file-backed executable pages after first usage.
902 */
903 if (vm_flags & VM_EXEC)
904 return PAGEREF_ACTIVATE;
905
906 return PAGEREF_KEEP;
907 }
908
909 /* Reclaim if clean, defer dirty pages to writeback */
910 if (referenced_page && !PageSwapBacked(page))
911 return PAGEREF_RECLAIM_CLEAN;
912
913 return PAGEREF_RECLAIM;
914 }
915
916 /* Check if a page is dirty or under writeback */
917 static void page_check_dirty_writeback(struct page *page,
918 bool *dirty, bool *writeback)
919 {
920 struct address_space *mapping;
921
922 /*
923 * Anonymous pages are not handled by flushers and must be written
924 * from reclaim context. Do not stall reclaim based on them
925 */
926 if (!page_is_file_cache(page) ||
927 (PageAnon(page) && !PageSwapBacked(page))) {
928 *dirty = false;
929 *writeback = false;
930 return;
931 }
932
933 /* By default assume that the page flags are accurate */
934 *dirty = PageDirty(page);
935 *writeback = PageWriteback(page);
936
937 /* Verify dirty/writeback state if the filesystem supports it */
938 if (!page_has_private(page))
939 return;
940
941 mapping = page_mapping(page);
942 if (mapping && mapping->a_ops->is_dirty_writeback)
943 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
944 }
945
946 struct reclaim_stat {
947 unsigned nr_dirty;
948 unsigned nr_unqueued_dirty;
949 unsigned nr_congested;
950 unsigned nr_writeback;
951 unsigned nr_immediate;
952 unsigned nr_activate;
953 unsigned nr_ref_keep;
954 unsigned nr_unmap_fail;
955 };
956
957 /*
958 * shrink_page_list() returns the number of reclaimed pages
959 */
960 static unsigned long shrink_page_list(struct list_head *page_list,
961 struct pglist_data *pgdat,
962 struct scan_control *sc,
963 enum ttu_flags ttu_flags,
964 struct reclaim_stat *stat,
965 bool force_reclaim)
966 {
967 LIST_HEAD(ret_pages);
968 LIST_HEAD(free_pages);
969 int pgactivate = 0;
970 unsigned nr_unqueued_dirty = 0;
971 unsigned nr_dirty = 0;
972 unsigned nr_congested = 0;
973 unsigned nr_reclaimed = 0;
974 unsigned nr_writeback = 0;
975 unsigned nr_immediate = 0;
976 unsigned nr_ref_keep = 0;
977 unsigned nr_unmap_fail = 0;
978
979 cond_resched();
980
981 while (!list_empty(page_list)) {
982 struct address_space *mapping;
983 struct page *page;
984 int may_enter_fs;
985 enum page_references references = PAGEREF_RECLAIM_CLEAN;
986 bool dirty, writeback;
987
988 cond_resched();
989
990 page = lru_to_page(page_list);
991 list_del(&page->lru);
992
993 if (!trylock_page(page))
994 goto keep;
995
996 VM_BUG_ON_PAGE(PageActive(page), page);
997
998 sc->nr_scanned++;
999
1000 if (unlikely(!page_evictable(page)))
1001 goto activate_locked;
1002
1003 if (!sc->may_unmap && page_mapped(page))
1004 goto keep_locked;
1005
1006 /* Double the slab pressure for mapped and swapcache pages */
1007 if ((page_mapped(page) || PageSwapCache(page)) &&
1008 !(PageAnon(page) && !PageSwapBacked(page)))
1009 sc->nr_scanned++;
1010
1011 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1012 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1013
1014 /*
1015 * The number of dirty pages determines if a zone is marked
1016 * reclaim_congested which affects wait_iff_congested. kswapd
1017 * will stall and start writing pages if the tail of the LRU
1018 * is all dirty unqueued pages.
1019 */
1020 page_check_dirty_writeback(page, &dirty, &writeback);
1021 if (dirty || writeback)
1022 nr_dirty++;
1023
1024 if (dirty && !writeback)
1025 nr_unqueued_dirty++;
1026
1027 /*
1028 * Treat this page as congested if the underlying BDI is or if
1029 * pages are cycling through the LRU so quickly that the
1030 * pages marked for immediate reclaim are making it to the
1031 * end of the LRU a second time.
1032 */
1033 mapping = page_mapping(page);
1034 if (((dirty || writeback) && mapping &&
1035 inode_write_congested(mapping->host)) ||
1036 (writeback && PageReclaim(page)))
1037 nr_congested++;
1038
1039 /*
1040 * If a page at the tail of the LRU is under writeback, there
1041 * are three cases to consider.
1042 *
1043 * 1) If reclaim is encountering an excessive number of pages
1044 * under writeback and this page is both under writeback and
1045 * PageReclaim then it indicates that pages are being queued
1046 * for IO but are being recycled through the LRU before the
1047 * IO can complete. Waiting on the page itself risks an
1048 * indefinite stall if it is impossible to writeback the
1049 * page due to IO error or disconnected storage so instead
1050 * note that the LRU is being scanned too quickly and the
1051 * caller can stall after page list has been processed.
1052 *
1053 * 2) Global or new memcg reclaim encounters a page that is
1054 * not marked for immediate reclaim, or the caller does not
1055 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1056 * not to fs). In this case mark the page for immediate
1057 * reclaim and continue scanning.
1058 *
1059 * Require may_enter_fs because we would wait on fs, which
1060 * may not have submitted IO yet. And the loop driver might
1061 * enter reclaim, and deadlock if it waits on a page for
1062 * which it is needed to do the write (loop masks off
1063 * __GFP_IO|__GFP_FS for this reason); but more thought
1064 * would probably show more reasons.
1065 *
1066 * 3) Legacy memcg encounters a page that is already marked
1067 * PageReclaim. memcg does not have any dirty pages
1068 * throttling so we could easily OOM just because too many
1069 * pages are in writeback and there is nothing else to
1070 * reclaim. Wait for the writeback to complete.
1071 *
1072 * In cases 1) and 2) we activate the pages to get them out of
1073 * the way while we continue scanning for clean pages on the
1074 * inactive list and refilling from the active list. The
1075 * observation here is that waiting for disk writes is more
1076 * expensive than potentially causing reloads down the line.
1077 * Since they're marked for immediate reclaim, they won't put
1078 * memory pressure on the cache working set any longer than it
1079 * takes to write them to disk.
1080 */
1081 if (PageWriteback(page)) {
1082 /* Case 1 above */
1083 if (current_is_kswapd() &&
1084 PageReclaim(page) &&
1085 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1086 nr_immediate++;
1087 goto activate_locked;
1088
1089 /* Case 2 above */
1090 } else if (sane_reclaim(sc) ||
1091 !PageReclaim(page) || !may_enter_fs) {
1092 /*
1093 * This is slightly racy - end_page_writeback()
1094 * might have just cleared PageReclaim, then
1095 * setting PageReclaim here end up interpreted
1096 * as PageReadahead - but that does not matter
1097 * enough to care. What we do want is for this
1098 * page to have PageReclaim set next time memcg
1099 * reclaim reaches the tests above, so it will
1100 * then wait_on_page_writeback() to avoid OOM;
1101 * and it's also appropriate in global reclaim.
1102 */
1103 SetPageReclaim(page);
1104 nr_writeback++;
1105 goto activate_locked;
1106
1107 /* Case 3 above */
1108 } else {
1109 unlock_page(page);
1110 wait_on_page_writeback(page);
1111 /* then go back and try same page again */
1112 list_add_tail(&page->lru, page_list);
1113 continue;
1114 }
1115 }
1116
1117 if (!force_reclaim)
1118 references = page_check_references(page, sc);
1119
1120 switch (references) {
1121 case PAGEREF_ACTIVATE:
1122 goto activate_locked;
1123 case PAGEREF_KEEP:
1124 nr_ref_keep++;
1125 goto keep_locked;
1126 case PAGEREF_RECLAIM:
1127 case PAGEREF_RECLAIM_CLEAN:
1128 ; /* try to reclaim the page below */
1129 }
1130
1131 /*
1132 * Anonymous process memory has backing store?
1133 * Try to allocate it some swap space here.
1134 * Lazyfree page could be freed directly
1135 */
1136 if (PageAnon(page) && PageSwapBacked(page)) {
1137 if (!PageSwapCache(page)) {
1138 if (!(sc->gfp_mask & __GFP_IO))
1139 goto keep_locked;
1140 if (PageTransHuge(page)) {
1141 /* cannot split THP, skip it */
1142 if (!can_split_huge_page(page, NULL))
1143 goto activate_locked;
1144 /*
1145 * Split pages without a PMD map right
1146 * away. Chances are some or all of the
1147 * tail pages can be freed without IO.
1148 */
1149 if (!compound_mapcount(page) &&
1150 split_huge_page_to_list(page,
1151 page_list))
1152 goto activate_locked;
1153 }
1154 if (!add_to_swap(page)) {
1155 if (!PageTransHuge(page))
1156 goto activate_locked;
1157 /* Fallback to swap normal pages */
1158 if (split_huge_page_to_list(page,
1159 page_list))
1160 goto activate_locked;
1161 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1162 count_vm_event(THP_SWPOUT_FALLBACK);
1163 #endif
1164 if (!add_to_swap(page))
1165 goto activate_locked;
1166 }
1167
1168 may_enter_fs = 1;
1169
1170 /* Adding to swap updated mapping */
1171 mapping = page_mapping(page);
1172 }
1173 } else if (unlikely(PageTransHuge(page))) {
1174 /* Split file THP */
1175 if (split_huge_page_to_list(page, page_list))
1176 goto keep_locked;
1177 }
1178
1179 /*
1180 * The page is mapped into the page tables of one or more
1181 * processes. Try to unmap it here.
1182 */
1183 if (page_mapped(page)) {
1184 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1185
1186 if (unlikely(PageTransHuge(page)))
1187 flags |= TTU_SPLIT_HUGE_PMD;
1188 if (!try_to_unmap(page, flags)) {
1189 nr_unmap_fail++;
1190 goto activate_locked;
1191 }
1192 }
1193
1194 if (PageDirty(page)) {
1195 /*
1196 * Only kswapd can writeback filesystem pages
1197 * to avoid risk of stack overflow. But avoid
1198 * injecting inefficient single-page IO into
1199 * flusher writeback as much as possible: only
1200 * write pages when we've encountered many
1201 * dirty pages, and when we've already scanned
1202 * the rest of the LRU for clean pages and see
1203 * the same dirty pages again (PageReclaim).
1204 */
1205 if (page_is_file_cache(page) &&
1206 (!current_is_kswapd() || !PageReclaim(page) ||
1207 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1208 /*
1209 * Immediately reclaim when written back.
1210 * Similar in principal to deactivate_page()
1211 * except we already have the page isolated
1212 * and know it's dirty
1213 */
1214 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1215 SetPageReclaim(page);
1216
1217 goto activate_locked;
1218 }
1219
1220 if (references == PAGEREF_RECLAIM_CLEAN)
1221 goto keep_locked;
1222 if (!may_enter_fs)
1223 goto keep_locked;
1224 if (!sc->may_writepage)
1225 goto keep_locked;
1226
1227 /*
1228 * Page is dirty. Flush the TLB if a writable entry
1229 * potentially exists to avoid CPU writes after IO
1230 * starts and then write it out here.
1231 */
1232 try_to_unmap_flush_dirty();
1233 switch (pageout(page, mapping, sc)) {
1234 case PAGE_KEEP:
1235 goto keep_locked;
1236 case PAGE_ACTIVATE:
1237 goto activate_locked;
1238 case PAGE_SUCCESS:
1239 if (PageWriteback(page))
1240 goto keep;
1241 if (PageDirty(page))
1242 goto keep;
1243
1244 /*
1245 * A synchronous write - probably a ramdisk. Go
1246 * ahead and try to reclaim the page.
1247 */
1248 if (!trylock_page(page))
1249 goto keep;
1250 if (PageDirty(page) || PageWriteback(page))
1251 goto keep_locked;
1252 mapping = page_mapping(page);
1253 case PAGE_CLEAN:
1254 ; /* try to free the page below */
1255 }
1256 }
1257
1258 /*
1259 * If the page has buffers, try to free the buffer mappings
1260 * associated with this page. If we succeed we try to free
1261 * the page as well.
1262 *
1263 * We do this even if the page is PageDirty().
1264 * try_to_release_page() does not perform I/O, but it is
1265 * possible for a page to have PageDirty set, but it is actually
1266 * clean (all its buffers are clean). This happens if the
1267 * buffers were written out directly, with submit_bh(). ext3
1268 * will do this, as well as the blockdev mapping.
1269 * try_to_release_page() will discover that cleanness and will
1270 * drop the buffers and mark the page clean - it can be freed.
1271 *
1272 * Rarely, pages can have buffers and no ->mapping. These are
1273 * the pages which were not successfully invalidated in
1274 * truncate_complete_page(). We try to drop those buffers here
1275 * and if that worked, and the page is no longer mapped into
1276 * process address space (page_count == 1) it can be freed.
1277 * Otherwise, leave the page on the LRU so it is swappable.
1278 */
1279 if (page_has_private(page)) {
1280 if (!try_to_release_page(page, sc->gfp_mask))
1281 goto activate_locked;
1282 if (!mapping && page_count(page) == 1) {
1283 unlock_page(page);
1284 if (put_page_testzero(page))
1285 goto free_it;
1286 else {
1287 /*
1288 * rare race with speculative reference.
1289 * the speculative reference will free
1290 * this page shortly, so we may
1291 * increment nr_reclaimed here (and
1292 * leave it off the LRU).
1293 */
1294 nr_reclaimed++;
1295 continue;
1296 }
1297 }
1298 }
1299
1300 if (PageAnon(page) && !PageSwapBacked(page)) {
1301 /* follow __remove_mapping for reference */
1302 if (!page_ref_freeze(page, 1))
1303 goto keep_locked;
1304 if (PageDirty(page)) {
1305 page_ref_unfreeze(page, 1);
1306 goto keep_locked;
1307 }
1308
1309 count_vm_event(PGLAZYFREED);
1310 count_memcg_page_event(page, PGLAZYFREED);
1311 } else if (!mapping || !__remove_mapping(mapping, page, true))
1312 goto keep_locked;
1313 /*
1314 * At this point, we have no other references and there is
1315 * no way to pick any more up (removed from LRU, removed
1316 * from pagecache). Can use non-atomic bitops now (and
1317 * we obviously don't have to worry about waking up a process
1318 * waiting on the page lock, because there are no references.
1319 */
1320 __ClearPageLocked(page);
1321 free_it:
1322 nr_reclaimed++;
1323
1324 /*
1325 * Is there need to periodically free_page_list? It would
1326 * appear not as the counts should be low
1327 */
1328 if (unlikely(PageTransHuge(page))) {
1329 mem_cgroup_uncharge(page);
1330 (*get_compound_page_dtor(page))(page);
1331 } else
1332 list_add(&page->lru, &free_pages);
1333 continue;
1334
1335 activate_locked:
1336 /* Not a candidate for swapping, so reclaim swap space. */
1337 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1338 PageMlocked(page)))
1339 try_to_free_swap(page);
1340 VM_BUG_ON_PAGE(PageActive(page), page);
1341 if (!PageMlocked(page)) {
1342 SetPageActive(page);
1343 pgactivate++;
1344 count_memcg_page_event(page, PGACTIVATE);
1345 }
1346 keep_locked:
1347 unlock_page(page);
1348 keep:
1349 list_add(&page->lru, &ret_pages);
1350 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1351 }
1352
1353 mem_cgroup_uncharge_list(&free_pages);
1354 try_to_unmap_flush();
1355 free_hot_cold_page_list(&free_pages, true);
1356
1357 list_splice(&ret_pages, page_list);
1358 count_vm_events(PGACTIVATE, pgactivate);
1359
1360 if (stat) {
1361 stat->nr_dirty = nr_dirty;
1362 stat->nr_congested = nr_congested;
1363 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1364 stat->nr_writeback = nr_writeback;
1365 stat->nr_immediate = nr_immediate;
1366 stat->nr_activate = pgactivate;
1367 stat->nr_ref_keep = nr_ref_keep;
1368 stat->nr_unmap_fail = nr_unmap_fail;
1369 }
1370 return nr_reclaimed;
1371 }
1372
1373 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1374 struct list_head *page_list)
1375 {
1376 struct scan_control sc = {
1377 .gfp_mask = GFP_KERNEL,
1378 .priority = DEF_PRIORITY,
1379 .may_unmap = 1,
1380 };
1381 unsigned long ret;
1382 struct page *page, *next;
1383 LIST_HEAD(clean_pages);
1384
1385 list_for_each_entry_safe(page, next, page_list, lru) {
1386 if (page_is_file_cache(page) && !PageDirty(page) &&
1387 !__PageMovable(page)) {
1388 ClearPageActive(page);
1389 list_move(&page->lru, &clean_pages);
1390 }
1391 }
1392
1393 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1394 TTU_IGNORE_ACCESS, NULL, true);
1395 list_splice(&clean_pages, page_list);
1396 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1397 return ret;
1398 }
1399
1400 /*
1401 * Attempt to remove the specified page from its LRU. Only take this page
1402 * if it is of the appropriate PageActive status. Pages which are being
1403 * freed elsewhere are also ignored.
1404 *
1405 * page: page to consider
1406 * mode: one of the LRU isolation modes defined above
1407 *
1408 * returns 0 on success, -ve errno on failure.
1409 */
1410 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1411 {
1412 int ret = -EINVAL;
1413
1414 /* Only take pages on the LRU. */
1415 if (!PageLRU(page))
1416 return ret;
1417
1418 /* Compaction should not handle unevictable pages but CMA can do so */
1419 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1420 return ret;
1421
1422 ret = -EBUSY;
1423
1424 /*
1425 * To minimise LRU disruption, the caller can indicate that it only
1426 * wants to isolate pages it will be able to operate on without
1427 * blocking - clean pages for the most part.
1428 *
1429 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1430 * that it is possible to migrate without blocking
1431 */
1432 if (mode & ISOLATE_ASYNC_MIGRATE) {
1433 /* All the caller can do on PageWriteback is block */
1434 if (PageWriteback(page))
1435 return ret;
1436
1437 if (PageDirty(page)) {
1438 struct address_space *mapping;
1439 bool migrate_dirty;
1440
1441 /*
1442 * Only pages without mappings or that have a
1443 * ->migratepage callback are possible to migrate
1444 * without blocking. However, we can be racing with
1445 * truncation so it's necessary to lock the page
1446 * to stabilise the mapping as truncation holds
1447 * the page lock until after the page is removed
1448 * from the page cache.
1449 */
1450 if (!trylock_page(page))
1451 return ret;
1452
1453 mapping = page_mapping(page);
1454 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1455 unlock_page(page);
1456 if (!migrate_dirty)
1457 return ret;
1458 }
1459 }
1460
1461 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1462 return ret;
1463
1464 if (likely(get_page_unless_zero(page))) {
1465 /*
1466 * Be careful not to clear PageLRU until after we're
1467 * sure the page is not being freed elsewhere -- the
1468 * page release code relies on it.
1469 */
1470 ClearPageLRU(page);
1471 ret = 0;
1472 }
1473
1474 return ret;
1475 }
1476
1477
1478 /*
1479 * Update LRU sizes after isolating pages. The LRU size updates must
1480 * be complete before mem_cgroup_update_lru_size due to a santity check.
1481 */
1482 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1483 enum lru_list lru, unsigned long *nr_zone_taken)
1484 {
1485 int zid;
1486
1487 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1488 if (!nr_zone_taken[zid])
1489 continue;
1490
1491 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1492 #ifdef CONFIG_MEMCG
1493 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1494 #endif
1495 }
1496
1497 }
1498
1499 /*
1500 * zone_lru_lock is heavily contended. Some of the functions that
1501 * shrink the lists perform better by taking out a batch of pages
1502 * and working on them outside the LRU lock.
1503 *
1504 * For pagecache intensive workloads, this function is the hottest
1505 * spot in the kernel (apart from copy_*_user functions).
1506 *
1507 * Appropriate locks must be held before calling this function.
1508 *
1509 * @nr_to_scan: The number of eligible pages to look through on the list.
1510 * @lruvec: The LRU vector to pull pages from.
1511 * @dst: The temp list to put pages on to.
1512 * @nr_scanned: The number of pages that were scanned.
1513 * @sc: The scan_control struct for this reclaim session
1514 * @mode: One of the LRU isolation modes
1515 * @lru: LRU list id for isolating
1516 *
1517 * returns how many pages were moved onto *@dst.
1518 */
1519 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1520 struct lruvec *lruvec, struct list_head *dst,
1521 unsigned long *nr_scanned, struct scan_control *sc,
1522 isolate_mode_t mode, enum lru_list lru)
1523 {
1524 struct list_head *src = &lruvec->lists[lru];
1525 unsigned long nr_taken = 0;
1526 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1527 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1528 unsigned long skipped = 0;
1529 unsigned long scan, total_scan, nr_pages;
1530 LIST_HEAD(pages_skipped);
1531
1532 scan = 0;
1533 for (total_scan = 0;
1534 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1535 total_scan++) {
1536 struct page *page;
1537
1538 page = lru_to_page(src);
1539 prefetchw_prev_lru_page(page, src, flags);
1540
1541 VM_BUG_ON_PAGE(!PageLRU(page), page);
1542
1543 if (page_zonenum(page) > sc->reclaim_idx) {
1544 list_move(&page->lru, &pages_skipped);
1545 nr_skipped[page_zonenum(page)]++;
1546 continue;
1547 }
1548
1549 /*
1550 * Do not count skipped pages because that makes the function
1551 * return with no isolated pages if the LRU mostly contains
1552 * ineligible pages. This causes the VM to not reclaim any
1553 * pages, triggering a premature OOM.
1554 */
1555 scan++;
1556 switch (__isolate_lru_page(page, mode)) {
1557 case 0:
1558 nr_pages = hpage_nr_pages(page);
1559 nr_taken += nr_pages;
1560 nr_zone_taken[page_zonenum(page)] += nr_pages;
1561 list_move(&page->lru, dst);
1562 break;
1563
1564 case -EBUSY:
1565 /* else it is being freed elsewhere */
1566 list_move(&page->lru, src);
1567 continue;
1568
1569 default:
1570 BUG();
1571 }
1572 }
1573
1574 /*
1575 * Splice any skipped pages to the start of the LRU list. Note that
1576 * this disrupts the LRU order when reclaiming for lower zones but
1577 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1578 * scanning would soon rescan the same pages to skip and put the
1579 * system at risk of premature OOM.
1580 */
1581 if (!list_empty(&pages_skipped)) {
1582 int zid;
1583
1584 list_splice(&pages_skipped, src);
1585 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1586 if (!nr_skipped[zid])
1587 continue;
1588
1589 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1590 skipped += nr_skipped[zid];
1591 }
1592 }
1593 *nr_scanned = total_scan;
1594 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1595 total_scan, skipped, nr_taken, mode, lru);
1596 update_lru_sizes(lruvec, lru, nr_zone_taken);
1597 return nr_taken;
1598 }
1599
1600 /**
1601 * isolate_lru_page - tries to isolate a page from its LRU list
1602 * @page: page to isolate from its LRU list
1603 *
1604 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1605 * vmstat statistic corresponding to whatever LRU list the page was on.
1606 *
1607 * Returns 0 if the page was removed from an LRU list.
1608 * Returns -EBUSY if the page was not on an LRU list.
1609 *
1610 * The returned page will have PageLRU() cleared. If it was found on
1611 * the active list, it will have PageActive set. If it was found on
1612 * the unevictable list, it will have the PageUnevictable bit set. That flag
1613 * may need to be cleared by the caller before letting the page go.
1614 *
1615 * The vmstat statistic corresponding to the list on which the page was
1616 * found will be decremented.
1617 *
1618 * Restrictions:
1619 * (1) Must be called with an elevated refcount on the page. This is a
1620 * fundamentnal difference from isolate_lru_pages (which is called
1621 * without a stable reference).
1622 * (2) the lru_lock must not be held.
1623 * (3) interrupts must be enabled.
1624 */
1625 int isolate_lru_page(struct page *page)
1626 {
1627 int ret = -EBUSY;
1628
1629 VM_BUG_ON_PAGE(!page_count(page), page);
1630 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1631
1632 if (PageLRU(page)) {
1633 struct zone *zone = page_zone(page);
1634 struct lruvec *lruvec;
1635
1636 spin_lock_irq(zone_lru_lock(zone));
1637 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1638 if (PageLRU(page)) {
1639 int lru = page_lru(page);
1640 get_page(page);
1641 ClearPageLRU(page);
1642 del_page_from_lru_list(page, lruvec, lru);
1643 ret = 0;
1644 }
1645 spin_unlock_irq(zone_lru_lock(zone));
1646 }
1647 return ret;
1648 }
1649
1650 /*
1651 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1652 * then get resheduled. When there are massive number of tasks doing page
1653 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1654 * the LRU list will go small and be scanned faster than necessary, leading to
1655 * unnecessary swapping, thrashing and OOM.
1656 */
1657 static int too_many_isolated(struct pglist_data *pgdat, int file,
1658 struct scan_control *sc)
1659 {
1660 unsigned long inactive, isolated;
1661
1662 if (current_is_kswapd())
1663 return 0;
1664
1665 if (!sane_reclaim(sc))
1666 return 0;
1667
1668 if (file) {
1669 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1670 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1671 } else {
1672 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1673 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1674 }
1675
1676 /*
1677 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1678 * won't get blocked by normal direct-reclaimers, forming a circular
1679 * deadlock.
1680 */
1681 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1682 inactive >>= 3;
1683
1684 return isolated > inactive;
1685 }
1686
1687 static noinline_for_stack void
1688 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1689 {
1690 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1691 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1692 LIST_HEAD(pages_to_free);
1693
1694 /*
1695 * Put back any unfreeable pages.
1696 */
1697 while (!list_empty(page_list)) {
1698 struct page *page = lru_to_page(page_list);
1699 int lru;
1700
1701 VM_BUG_ON_PAGE(PageLRU(page), page);
1702 list_del(&page->lru);
1703 if (unlikely(!page_evictable(page))) {
1704 spin_unlock_irq(&pgdat->lru_lock);
1705 putback_lru_page(page);
1706 spin_lock_irq(&pgdat->lru_lock);
1707 continue;
1708 }
1709
1710 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1711
1712 SetPageLRU(page);
1713 lru = page_lru(page);
1714 add_page_to_lru_list(page, lruvec, lru);
1715
1716 if (is_active_lru(lru)) {
1717 int file = is_file_lru(lru);
1718 int numpages = hpage_nr_pages(page);
1719 reclaim_stat->recent_rotated[file] += numpages;
1720 }
1721 if (put_page_testzero(page)) {
1722 __ClearPageLRU(page);
1723 __ClearPageActive(page);
1724 del_page_from_lru_list(page, lruvec, lru);
1725
1726 if (unlikely(PageCompound(page))) {
1727 spin_unlock_irq(&pgdat->lru_lock);
1728 mem_cgroup_uncharge(page);
1729 (*get_compound_page_dtor(page))(page);
1730 spin_lock_irq(&pgdat->lru_lock);
1731 } else
1732 list_add(&page->lru, &pages_to_free);
1733 }
1734 }
1735
1736 /*
1737 * To save our caller's stack, now use input list for pages to free.
1738 */
1739 list_splice(&pages_to_free, page_list);
1740 }
1741
1742 /*
1743 * If a kernel thread (such as nfsd for loop-back mounts) services
1744 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1745 * In that case we should only throttle if the backing device it is
1746 * writing to is congested. In other cases it is safe to throttle.
1747 */
1748 static int current_may_throttle(void)
1749 {
1750 return !(current->flags & PF_LESS_THROTTLE) ||
1751 current->backing_dev_info == NULL ||
1752 bdi_write_congested(current->backing_dev_info);
1753 }
1754
1755 /*
1756 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1757 * of reclaimed pages
1758 */
1759 static noinline_for_stack unsigned long
1760 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1761 struct scan_control *sc, enum lru_list lru)
1762 {
1763 LIST_HEAD(page_list);
1764 unsigned long nr_scanned;
1765 unsigned long nr_reclaimed = 0;
1766 unsigned long nr_taken;
1767 struct reclaim_stat stat = {};
1768 isolate_mode_t isolate_mode = 0;
1769 int file = is_file_lru(lru);
1770 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1771 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1772 bool stalled = false;
1773
1774 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1775 if (stalled)
1776 return 0;
1777
1778 /* wait a bit for the reclaimer. */
1779 msleep(100);
1780 stalled = true;
1781
1782 /* We are about to die and free our memory. Return now. */
1783 if (fatal_signal_pending(current))
1784 return SWAP_CLUSTER_MAX;
1785 }
1786
1787 lru_add_drain();
1788
1789 if (!sc->may_unmap)
1790 isolate_mode |= ISOLATE_UNMAPPED;
1791
1792 spin_lock_irq(&pgdat->lru_lock);
1793
1794 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1795 &nr_scanned, sc, isolate_mode, lru);
1796
1797 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1798 reclaim_stat->recent_scanned[file] += nr_taken;
1799
1800 if (current_is_kswapd()) {
1801 if (global_reclaim(sc))
1802 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1803 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1804 nr_scanned);
1805 } else {
1806 if (global_reclaim(sc))
1807 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1808 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1809 nr_scanned);
1810 }
1811 spin_unlock_irq(&pgdat->lru_lock);
1812
1813 if (nr_taken == 0)
1814 return 0;
1815
1816 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1817 &stat, false);
1818
1819 spin_lock_irq(&pgdat->lru_lock);
1820
1821 if (current_is_kswapd()) {
1822 if (global_reclaim(sc))
1823 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1824 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1825 nr_reclaimed);
1826 } else {
1827 if (global_reclaim(sc))
1828 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1829 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1830 nr_reclaimed);
1831 }
1832
1833 putback_inactive_pages(lruvec, &page_list);
1834
1835 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1836
1837 spin_unlock_irq(&pgdat->lru_lock);
1838
1839 mem_cgroup_uncharge_list(&page_list);
1840 free_hot_cold_page_list(&page_list, true);
1841
1842 /*
1843 * If reclaim is isolating dirty pages under writeback, it implies
1844 * that the long-lived page allocation rate is exceeding the page
1845 * laundering rate. Either the global limits are not being effective
1846 * at throttling processes due to the page distribution throughout
1847 * zones or there is heavy usage of a slow backing device. The
1848 * only option is to throttle from reclaim context which is not ideal
1849 * as there is no guarantee the dirtying process is throttled in the
1850 * same way balance_dirty_pages() manages.
1851 *
1852 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1853 * of pages under pages flagged for immediate reclaim and stall if any
1854 * are encountered in the nr_immediate check below.
1855 */
1856 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1857 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1858
1859 /*
1860 * If dirty pages are scanned that are not queued for IO, it
1861 * implies that flushers are not doing their job. This can
1862 * happen when memory pressure pushes dirty pages to the end of
1863 * the LRU before the dirty limits are breached and the dirty
1864 * data has expired. It can also happen when the proportion of
1865 * dirty pages grows not through writes but through memory
1866 * pressure reclaiming all the clean cache. And in some cases,
1867 * the flushers simply cannot keep up with the allocation
1868 * rate. Nudge the flusher threads in case they are asleep.
1869 */
1870 if (stat.nr_unqueued_dirty == nr_taken)
1871 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1872
1873 /*
1874 * Legacy memcg will stall in page writeback so avoid forcibly
1875 * stalling here.
1876 */
1877 if (sane_reclaim(sc)) {
1878 /*
1879 * Tag a zone as congested if all the dirty pages scanned were
1880 * backed by a congested BDI and wait_iff_congested will stall.
1881 */
1882 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1883 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1884
1885 /* Allow kswapd to start writing pages during reclaim. */
1886 if (stat.nr_unqueued_dirty == nr_taken)
1887 set_bit(PGDAT_DIRTY, &pgdat->flags);
1888
1889 /*
1890 * If kswapd scans pages marked marked for immediate
1891 * reclaim and under writeback (nr_immediate), it implies
1892 * that pages are cycling through the LRU faster than
1893 * they are written so also forcibly stall.
1894 */
1895 if (stat.nr_immediate && current_may_throttle())
1896 congestion_wait(BLK_RW_ASYNC, HZ/10);
1897 }
1898
1899 /*
1900 * Stall direct reclaim for IO completions if underlying BDIs or zone
1901 * is congested. Allow kswapd to continue until it starts encountering
1902 * unqueued dirty pages or cycling through the LRU too quickly.
1903 */
1904 if (!sc->hibernation_mode && !current_is_kswapd() &&
1905 current_may_throttle())
1906 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1907
1908 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1909 nr_scanned, nr_reclaimed,
1910 stat.nr_dirty, stat.nr_writeback,
1911 stat.nr_congested, stat.nr_immediate,
1912 stat.nr_activate, stat.nr_ref_keep,
1913 stat.nr_unmap_fail,
1914 sc->priority, file);
1915 return nr_reclaimed;
1916 }
1917
1918 /*
1919 * This moves pages from the active list to the inactive list.
1920 *
1921 * We move them the other way if the page is referenced by one or more
1922 * processes, from rmap.
1923 *
1924 * If the pages are mostly unmapped, the processing is fast and it is
1925 * appropriate to hold zone_lru_lock across the whole operation. But if
1926 * the pages are mapped, the processing is slow (page_referenced()) so we
1927 * should drop zone_lru_lock around each page. It's impossible to balance
1928 * this, so instead we remove the pages from the LRU while processing them.
1929 * It is safe to rely on PG_active against the non-LRU pages in here because
1930 * nobody will play with that bit on a non-LRU page.
1931 *
1932 * The downside is that we have to touch page->_refcount against each page.
1933 * But we had to alter page->flags anyway.
1934 *
1935 * Returns the number of pages moved to the given lru.
1936 */
1937
1938 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1939 struct list_head *list,
1940 struct list_head *pages_to_free,
1941 enum lru_list lru)
1942 {
1943 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1944 struct page *page;
1945 int nr_pages;
1946 int nr_moved = 0;
1947
1948 while (!list_empty(list)) {
1949 page = lru_to_page(list);
1950 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1951
1952 VM_BUG_ON_PAGE(PageLRU(page), page);
1953 SetPageLRU(page);
1954
1955 nr_pages = hpage_nr_pages(page);
1956 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1957 list_move(&page->lru, &lruvec->lists[lru]);
1958
1959 if (put_page_testzero(page)) {
1960 __ClearPageLRU(page);
1961 __ClearPageActive(page);
1962 del_page_from_lru_list(page, lruvec, lru);
1963
1964 if (unlikely(PageCompound(page))) {
1965 spin_unlock_irq(&pgdat->lru_lock);
1966 mem_cgroup_uncharge(page);
1967 (*get_compound_page_dtor(page))(page);
1968 spin_lock_irq(&pgdat->lru_lock);
1969 } else
1970 list_add(&page->lru, pages_to_free);
1971 } else {
1972 nr_moved += nr_pages;
1973 }
1974 }
1975
1976 if (!is_active_lru(lru)) {
1977 __count_vm_events(PGDEACTIVATE, nr_moved);
1978 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1979 nr_moved);
1980 }
1981
1982 return nr_moved;
1983 }
1984
1985 static void shrink_active_list(unsigned long nr_to_scan,
1986 struct lruvec *lruvec,
1987 struct scan_control *sc,
1988 enum lru_list lru)
1989 {
1990 unsigned long nr_taken;
1991 unsigned long nr_scanned;
1992 unsigned long vm_flags;
1993 LIST_HEAD(l_hold); /* The pages which were snipped off */
1994 LIST_HEAD(l_active);
1995 LIST_HEAD(l_inactive);
1996 struct page *page;
1997 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1998 unsigned nr_deactivate, nr_activate;
1999 unsigned nr_rotated = 0;
2000 isolate_mode_t isolate_mode = 0;
2001 int file = is_file_lru(lru);
2002 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2003
2004 lru_add_drain();
2005
2006 if (!sc->may_unmap)
2007 isolate_mode |= ISOLATE_UNMAPPED;
2008
2009 spin_lock_irq(&pgdat->lru_lock);
2010
2011 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2012 &nr_scanned, sc, isolate_mode, lru);
2013
2014 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2015 reclaim_stat->recent_scanned[file] += nr_taken;
2016
2017 __count_vm_events(PGREFILL, nr_scanned);
2018 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2019
2020 spin_unlock_irq(&pgdat->lru_lock);
2021
2022 while (!list_empty(&l_hold)) {
2023 cond_resched();
2024 page = lru_to_page(&l_hold);
2025 list_del(&page->lru);
2026
2027 if (unlikely(!page_evictable(page))) {
2028 putback_lru_page(page);
2029 continue;
2030 }
2031
2032 if (unlikely(buffer_heads_over_limit)) {
2033 if (page_has_private(page) && trylock_page(page)) {
2034 if (page_has_private(page))
2035 try_to_release_page(page, 0);
2036 unlock_page(page);
2037 }
2038 }
2039
2040 if (page_referenced(page, 0, sc->target_mem_cgroup,
2041 &vm_flags)) {
2042 nr_rotated += hpage_nr_pages(page);
2043 /*
2044 * Identify referenced, file-backed active pages and
2045 * give them one more trip around the active list. So
2046 * that executable code get better chances to stay in
2047 * memory under moderate memory pressure. Anon pages
2048 * are not likely to be evicted by use-once streaming
2049 * IO, plus JVM can create lots of anon VM_EXEC pages,
2050 * so we ignore them here.
2051 */
2052 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2053 list_add(&page->lru, &l_active);
2054 continue;
2055 }
2056 }
2057
2058 ClearPageActive(page); /* we are de-activating */
2059 list_add(&page->lru, &l_inactive);
2060 }
2061
2062 /*
2063 * Move pages back to the lru list.
2064 */
2065 spin_lock_irq(&pgdat->lru_lock);
2066 /*
2067 * Count referenced pages from currently used mappings as rotated,
2068 * even though only some of them are actually re-activated. This
2069 * helps balance scan pressure between file and anonymous pages in
2070 * get_scan_count.
2071 */
2072 reclaim_stat->recent_rotated[file] += nr_rotated;
2073
2074 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2075 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2076 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2077 spin_unlock_irq(&pgdat->lru_lock);
2078
2079 mem_cgroup_uncharge_list(&l_hold);
2080 free_hot_cold_page_list(&l_hold, true);
2081 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2082 nr_deactivate, nr_rotated, sc->priority, file);
2083 }
2084
2085 /*
2086 * The inactive anon list should be small enough that the VM never has
2087 * to do too much work.
2088 *
2089 * The inactive file list should be small enough to leave most memory
2090 * to the established workingset on the scan-resistant active list,
2091 * but large enough to avoid thrashing the aggregate readahead window.
2092 *
2093 * Both inactive lists should also be large enough that each inactive
2094 * page has a chance to be referenced again before it is reclaimed.
2095 *
2096 * If that fails and refaulting is observed, the inactive list grows.
2097 *
2098 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2099 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2100 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2101 *
2102 * total target max
2103 * memory ratio inactive
2104 * -------------------------------------
2105 * 10MB 1 5MB
2106 * 100MB 1 50MB
2107 * 1GB 3 250MB
2108 * 10GB 10 0.9GB
2109 * 100GB 31 3GB
2110 * 1TB 101 10GB
2111 * 10TB 320 32GB
2112 */
2113 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2114 struct mem_cgroup *memcg,
2115 struct scan_control *sc, bool actual_reclaim)
2116 {
2117 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2118 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2119 enum lru_list inactive_lru = file * LRU_FILE;
2120 unsigned long inactive, active;
2121 unsigned long inactive_ratio;
2122 unsigned long refaults;
2123 unsigned long gb;
2124
2125 /*
2126 * If we don't have swap space, anonymous page deactivation
2127 * is pointless.
2128 */
2129 if (!file && !total_swap_pages)
2130 return false;
2131
2132 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2133 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2134
2135 if (memcg)
2136 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2137 else
2138 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2139
2140 /*
2141 * When refaults are being observed, it means a new workingset
2142 * is being established. Disable active list protection to get
2143 * rid of the stale workingset quickly.
2144 */
2145 if (file && actual_reclaim && lruvec->refaults != refaults) {
2146 inactive_ratio = 0;
2147 } else {
2148 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2149 if (gb)
2150 inactive_ratio = int_sqrt(10 * gb);
2151 else
2152 inactive_ratio = 1;
2153 }
2154
2155 if (actual_reclaim)
2156 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2157 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2158 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2159 inactive_ratio, file);
2160
2161 return inactive * inactive_ratio < active;
2162 }
2163
2164 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2165 struct lruvec *lruvec, struct mem_cgroup *memcg,
2166 struct scan_control *sc)
2167 {
2168 if (is_active_lru(lru)) {
2169 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2170 memcg, sc, true))
2171 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2172 return 0;
2173 }
2174
2175 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2176 }
2177
2178 enum scan_balance {
2179 SCAN_EQUAL,
2180 SCAN_FRACT,
2181 SCAN_ANON,
2182 SCAN_FILE,
2183 };
2184
2185 /*
2186 * Determine how aggressively the anon and file LRU lists should be
2187 * scanned. The relative value of each set of LRU lists is determined
2188 * by looking at the fraction of the pages scanned we did rotate back
2189 * onto the active list instead of evict.
2190 *
2191 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2192 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2193 */
2194 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2195 struct scan_control *sc, unsigned long *nr,
2196 unsigned long *lru_pages)
2197 {
2198 int swappiness = mem_cgroup_swappiness(memcg);
2199 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2200 u64 fraction[2];
2201 u64 denominator = 0; /* gcc */
2202 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2203 unsigned long anon_prio, file_prio;
2204 enum scan_balance scan_balance;
2205 unsigned long anon, file;
2206 unsigned long ap, fp;
2207 enum lru_list lru;
2208
2209 /* If we have no swap space, do not bother scanning anon pages. */
2210 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2211 scan_balance = SCAN_FILE;
2212 goto out;
2213 }
2214
2215 /*
2216 * Global reclaim will swap to prevent OOM even with no
2217 * swappiness, but memcg users want to use this knob to
2218 * disable swapping for individual groups completely when
2219 * using the memory controller's swap limit feature would be
2220 * too expensive.
2221 */
2222 if (!global_reclaim(sc) && !swappiness) {
2223 scan_balance = SCAN_FILE;
2224 goto out;
2225 }
2226
2227 /*
2228 * Do not apply any pressure balancing cleverness when the
2229 * system is close to OOM, scan both anon and file equally
2230 * (unless the swappiness setting disagrees with swapping).
2231 */
2232 if (!sc->priority && swappiness) {
2233 scan_balance = SCAN_EQUAL;
2234 goto out;
2235 }
2236
2237 /*
2238 * Prevent the reclaimer from falling into the cache trap: as
2239 * cache pages start out inactive, every cache fault will tip
2240 * the scan balance towards the file LRU. And as the file LRU
2241 * shrinks, so does the window for rotation from references.
2242 * This means we have a runaway feedback loop where a tiny
2243 * thrashing file LRU becomes infinitely more attractive than
2244 * anon pages. Try to detect this based on file LRU size.
2245 */
2246 if (global_reclaim(sc)) {
2247 unsigned long pgdatfile;
2248 unsigned long pgdatfree;
2249 int z;
2250 unsigned long total_high_wmark = 0;
2251
2252 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2253 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2254 node_page_state(pgdat, NR_INACTIVE_FILE);
2255
2256 for (z = 0; z < MAX_NR_ZONES; z++) {
2257 struct zone *zone = &pgdat->node_zones[z];
2258 if (!managed_zone(zone))
2259 continue;
2260
2261 total_high_wmark += high_wmark_pages(zone);
2262 }
2263
2264 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2265 /*
2266 * Force SCAN_ANON if there are enough inactive
2267 * anonymous pages on the LRU in eligible zones.
2268 * Otherwise, the small LRU gets thrashed.
2269 */
2270 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2271 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2272 >> sc->priority) {
2273 scan_balance = SCAN_ANON;
2274 goto out;
2275 }
2276 }
2277 }
2278
2279 /*
2280 * If there is enough inactive page cache, i.e. if the size of the
2281 * inactive list is greater than that of the active list *and* the
2282 * inactive list actually has some pages to scan on this priority, we
2283 * do not reclaim anything from the anonymous working set right now.
2284 * Without the second condition we could end up never scanning an
2285 * lruvec even if it has plenty of old anonymous pages unless the
2286 * system is under heavy pressure.
2287 */
2288 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2289 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2290 scan_balance = SCAN_FILE;
2291 goto out;
2292 }
2293
2294 scan_balance = SCAN_FRACT;
2295
2296 /*
2297 * With swappiness at 100, anonymous and file have the same priority.
2298 * This scanning priority is essentially the inverse of IO cost.
2299 */
2300 anon_prio = swappiness;
2301 file_prio = 200 - anon_prio;
2302
2303 /*
2304 * OK, so we have swap space and a fair amount of page cache
2305 * pages. We use the recently rotated / recently scanned
2306 * ratios to determine how valuable each cache is.
2307 *
2308 * Because workloads change over time (and to avoid overflow)
2309 * we keep these statistics as a floating average, which ends
2310 * up weighing recent references more than old ones.
2311 *
2312 * anon in [0], file in [1]
2313 */
2314
2315 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2316 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2317 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2318 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2319
2320 spin_lock_irq(&pgdat->lru_lock);
2321 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2322 reclaim_stat->recent_scanned[0] /= 2;
2323 reclaim_stat->recent_rotated[0] /= 2;
2324 }
2325
2326 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2327 reclaim_stat->recent_scanned[1] /= 2;
2328 reclaim_stat->recent_rotated[1] /= 2;
2329 }
2330
2331 /*
2332 * The amount of pressure on anon vs file pages is inversely
2333 * proportional to the fraction of recently scanned pages on
2334 * each list that were recently referenced and in active use.
2335 */
2336 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2337 ap /= reclaim_stat->recent_rotated[0] + 1;
2338
2339 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2340 fp /= reclaim_stat->recent_rotated[1] + 1;
2341 spin_unlock_irq(&pgdat->lru_lock);
2342
2343 fraction[0] = ap;
2344 fraction[1] = fp;
2345 denominator = ap + fp + 1;
2346 out:
2347 *lru_pages = 0;
2348 for_each_evictable_lru(lru) {
2349 int file = is_file_lru(lru);
2350 unsigned long size;
2351 unsigned long scan;
2352
2353 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2354 scan = size >> sc->priority;
2355 /*
2356 * If the cgroup's already been deleted, make sure to
2357 * scrape out the remaining cache.
2358 */
2359 if (!scan && !mem_cgroup_online(memcg))
2360 scan = min(size, SWAP_CLUSTER_MAX);
2361
2362 switch (scan_balance) {
2363 case SCAN_EQUAL:
2364 /* Scan lists relative to size */
2365 break;
2366 case SCAN_FRACT:
2367 /*
2368 * Scan types proportional to swappiness and
2369 * their relative recent reclaim efficiency.
2370 */
2371 scan = div64_u64(scan * fraction[file],
2372 denominator);
2373 break;
2374 case SCAN_FILE:
2375 case SCAN_ANON:
2376 /* Scan one type exclusively */
2377 if ((scan_balance == SCAN_FILE) != file) {
2378 size = 0;
2379 scan = 0;
2380 }
2381 break;
2382 default:
2383 /* Look ma, no brain */
2384 BUG();
2385 }
2386
2387 *lru_pages += size;
2388 nr[lru] = scan;
2389 }
2390 }
2391
2392 /*
2393 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2394 */
2395 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2396 struct scan_control *sc, unsigned long *lru_pages)
2397 {
2398 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2399 unsigned long nr[NR_LRU_LISTS];
2400 unsigned long targets[NR_LRU_LISTS];
2401 unsigned long nr_to_scan;
2402 enum lru_list lru;
2403 unsigned long nr_reclaimed = 0;
2404 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2405 struct blk_plug plug;
2406 bool scan_adjusted;
2407
2408 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2409
2410 /* Record the original scan target for proportional adjustments later */
2411 memcpy(targets, nr, sizeof(nr));
2412
2413 /*
2414 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2415 * event that can occur when there is little memory pressure e.g.
2416 * multiple streaming readers/writers. Hence, we do not abort scanning
2417 * when the requested number of pages are reclaimed when scanning at
2418 * DEF_PRIORITY on the assumption that the fact we are direct
2419 * reclaiming implies that kswapd is not keeping up and it is best to
2420 * do a batch of work at once. For memcg reclaim one check is made to
2421 * abort proportional reclaim if either the file or anon lru has already
2422 * dropped to zero at the first pass.
2423 */
2424 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2425 sc->priority == DEF_PRIORITY);
2426
2427 blk_start_plug(&plug);
2428 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2429 nr[LRU_INACTIVE_FILE]) {
2430 unsigned long nr_anon, nr_file, percentage;
2431 unsigned long nr_scanned;
2432
2433 for_each_evictable_lru(lru) {
2434 if (nr[lru]) {
2435 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2436 nr[lru] -= nr_to_scan;
2437
2438 nr_reclaimed += shrink_list(lru, nr_to_scan,
2439 lruvec, memcg, sc);
2440 }
2441 }
2442
2443 cond_resched();
2444
2445 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2446 continue;
2447
2448 /*
2449 * For kswapd and memcg, reclaim at least the number of pages
2450 * requested. Ensure that the anon and file LRUs are scanned
2451 * proportionally what was requested by get_scan_count(). We
2452 * stop reclaiming one LRU and reduce the amount scanning
2453 * proportional to the original scan target.
2454 */
2455 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2456 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2457
2458 /*
2459 * It's just vindictive to attack the larger once the smaller
2460 * has gone to zero. And given the way we stop scanning the
2461 * smaller below, this makes sure that we only make one nudge
2462 * towards proportionality once we've got nr_to_reclaim.
2463 */
2464 if (!nr_file || !nr_anon)
2465 break;
2466
2467 if (nr_file > nr_anon) {
2468 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2469 targets[LRU_ACTIVE_ANON] + 1;
2470 lru = LRU_BASE;
2471 percentage = nr_anon * 100 / scan_target;
2472 } else {
2473 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2474 targets[LRU_ACTIVE_FILE] + 1;
2475 lru = LRU_FILE;
2476 percentage = nr_file * 100 / scan_target;
2477 }
2478
2479 /* Stop scanning the smaller of the LRU */
2480 nr[lru] = 0;
2481 nr[lru + LRU_ACTIVE] = 0;
2482
2483 /*
2484 * Recalculate the other LRU scan count based on its original
2485 * scan target and the percentage scanning already complete
2486 */
2487 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2488 nr_scanned = targets[lru] - nr[lru];
2489 nr[lru] = targets[lru] * (100 - percentage) / 100;
2490 nr[lru] -= min(nr[lru], nr_scanned);
2491
2492 lru += LRU_ACTIVE;
2493 nr_scanned = targets[lru] - nr[lru];
2494 nr[lru] = targets[lru] * (100 - percentage) / 100;
2495 nr[lru] -= min(nr[lru], nr_scanned);
2496
2497 scan_adjusted = true;
2498 }
2499 blk_finish_plug(&plug);
2500 sc->nr_reclaimed += nr_reclaimed;
2501
2502 /*
2503 * Even if we did not try to evict anon pages at all, we want to
2504 * rebalance the anon lru active/inactive ratio.
2505 */
2506 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2507 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2508 sc, LRU_ACTIVE_ANON);
2509 }
2510
2511 /* Use reclaim/compaction for costly allocs or under memory pressure */
2512 static bool in_reclaim_compaction(struct scan_control *sc)
2513 {
2514 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2515 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2516 sc->priority < DEF_PRIORITY - 2))
2517 return true;
2518
2519 return false;
2520 }
2521
2522 /*
2523 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2524 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2525 * true if more pages should be reclaimed such that when the page allocator
2526 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2527 * It will give up earlier than that if there is difficulty reclaiming pages.
2528 */
2529 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2530 unsigned long nr_reclaimed,
2531 unsigned long nr_scanned,
2532 struct scan_control *sc)
2533 {
2534 unsigned long pages_for_compaction;
2535 unsigned long inactive_lru_pages;
2536 int z;
2537
2538 /* If not in reclaim/compaction mode, stop */
2539 if (!in_reclaim_compaction(sc))
2540 return false;
2541
2542 /* Consider stopping depending on scan and reclaim activity */
2543 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2544 /*
2545 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2546 * full LRU list has been scanned and we are still failing
2547 * to reclaim pages. This full LRU scan is potentially
2548 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2549 */
2550 if (!nr_reclaimed && !nr_scanned)
2551 return false;
2552 } else {
2553 /*
2554 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2555 * fail without consequence, stop if we failed to reclaim
2556 * any pages from the last SWAP_CLUSTER_MAX number of
2557 * pages that were scanned. This will return to the
2558 * caller faster at the risk reclaim/compaction and
2559 * the resulting allocation attempt fails
2560 */
2561 if (!nr_reclaimed)
2562 return false;
2563 }
2564
2565 /*
2566 * If we have not reclaimed enough pages for compaction and the
2567 * inactive lists are large enough, continue reclaiming
2568 */
2569 pages_for_compaction = compact_gap(sc->order);
2570 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2571 if (get_nr_swap_pages() > 0)
2572 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2573 if (sc->nr_reclaimed < pages_for_compaction &&
2574 inactive_lru_pages > pages_for_compaction)
2575 return true;
2576
2577 /* If compaction would go ahead or the allocation would succeed, stop */
2578 for (z = 0; z <= sc->reclaim_idx; z++) {
2579 struct zone *zone = &pgdat->node_zones[z];
2580 if (!managed_zone(zone))
2581 continue;
2582
2583 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2584 case COMPACT_SUCCESS:
2585 case COMPACT_CONTINUE:
2586 return false;
2587 default:
2588 /* check next zone */
2589 ;
2590 }
2591 }
2592 return true;
2593 }
2594
2595 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2596 {
2597 struct reclaim_state *reclaim_state = current->reclaim_state;
2598 unsigned long nr_reclaimed, nr_scanned;
2599 bool reclaimable = false;
2600
2601 do {
2602 struct mem_cgroup *root = sc->target_mem_cgroup;
2603 struct mem_cgroup_reclaim_cookie reclaim = {
2604 .pgdat = pgdat,
2605 .priority = sc->priority,
2606 };
2607 unsigned long node_lru_pages = 0;
2608 struct mem_cgroup *memcg;
2609
2610 nr_reclaimed = sc->nr_reclaimed;
2611 nr_scanned = sc->nr_scanned;
2612
2613 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2614 do {
2615 unsigned long lru_pages;
2616 unsigned long reclaimed;
2617 unsigned long scanned;
2618
2619 if (mem_cgroup_low(root, memcg)) {
2620 if (!sc->memcg_low_reclaim) {
2621 sc->memcg_low_skipped = 1;
2622 continue;
2623 }
2624 mem_cgroup_event(memcg, MEMCG_LOW);
2625 }
2626
2627 reclaimed = sc->nr_reclaimed;
2628 scanned = sc->nr_scanned;
2629
2630 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2631 node_lru_pages += lru_pages;
2632
2633 if (memcg)
2634 shrink_slab(sc->gfp_mask, pgdat->node_id,
2635 memcg, sc->nr_scanned - scanned,
2636 lru_pages);
2637
2638 /* Record the group's reclaim efficiency */
2639 vmpressure(sc->gfp_mask, memcg, false,
2640 sc->nr_scanned - scanned,
2641 sc->nr_reclaimed - reclaimed);
2642
2643 /*
2644 * Direct reclaim and kswapd have to scan all memory
2645 * cgroups to fulfill the overall scan target for the
2646 * node.
2647 *
2648 * Limit reclaim, on the other hand, only cares about
2649 * nr_to_reclaim pages to be reclaimed and it will
2650 * retry with decreasing priority if one round over the
2651 * whole hierarchy is not sufficient.
2652 */
2653 if (!global_reclaim(sc) &&
2654 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2655 mem_cgroup_iter_break(root, memcg);
2656 break;
2657 }
2658 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2659
2660 /*
2661 * Shrink the slab caches in the same proportion that
2662 * the eligible LRU pages were scanned.
2663 */
2664 if (global_reclaim(sc))
2665 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2666 sc->nr_scanned - nr_scanned,
2667 node_lru_pages);
2668
2669 if (reclaim_state) {
2670 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2671 reclaim_state->reclaimed_slab = 0;
2672 }
2673
2674 /* Record the subtree's reclaim efficiency */
2675 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2676 sc->nr_scanned - nr_scanned,
2677 sc->nr_reclaimed - nr_reclaimed);
2678
2679 if (sc->nr_reclaimed - nr_reclaimed)
2680 reclaimable = true;
2681
2682 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2683 sc->nr_scanned - nr_scanned, sc));
2684
2685 /*
2686 * Kswapd gives up on balancing particular nodes after too
2687 * many failures to reclaim anything from them and goes to
2688 * sleep. On reclaim progress, reset the failure counter. A
2689 * successful direct reclaim run will revive a dormant kswapd.
2690 */
2691 if (reclaimable)
2692 pgdat->kswapd_failures = 0;
2693
2694 return reclaimable;
2695 }
2696
2697 /*
2698 * Returns true if compaction should go ahead for a costly-order request, or
2699 * the allocation would already succeed without compaction. Return false if we
2700 * should reclaim first.
2701 */
2702 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2703 {
2704 unsigned long watermark;
2705 enum compact_result suitable;
2706
2707 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2708 if (suitable == COMPACT_SUCCESS)
2709 /* Allocation should succeed already. Don't reclaim. */
2710 return true;
2711 if (suitable == COMPACT_SKIPPED)
2712 /* Compaction cannot yet proceed. Do reclaim. */
2713 return false;
2714
2715 /*
2716 * Compaction is already possible, but it takes time to run and there
2717 * are potentially other callers using the pages just freed. So proceed
2718 * with reclaim to make a buffer of free pages available to give
2719 * compaction a reasonable chance of completing and allocating the page.
2720 * Note that we won't actually reclaim the whole buffer in one attempt
2721 * as the target watermark in should_continue_reclaim() is lower. But if
2722 * we are already above the high+gap watermark, don't reclaim at all.
2723 */
2724 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2725
2726 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2727 }
2728
2729 /*
2730 * This is the direct reclaim path, for page-allocating processes. We only
2731 * try to reclaim pages from zones which will satisfy the caller's allocation
2732 * request.
2733 *
2734 * If a zone is deemed to be full of pinned pages then just give it a light
2735 * scan then give up on it.
2736 */
2737 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2738 {
2739 struct zoneref *z;
2740 struct zone *zone;
2741 unsigned long nr_soft_reclaimed;
2742 unsigned long nr_soft_scanned;
2743 gfp_t orig_mask;
2744 pg_data_t *last_pgdat = NULL;
2745
2746 /*
2747 * If the number of buffer_heads in the machine exceeds the maximum
2748 * allowed level, force direct reclaim to scan the highmem zone as
2749 * highmem pages could be pinning lowmem pages storing buffer_heads
2750 */
2751 orig_mask = sc->gfp_mask;
2752 if (buffer_heads_over_limit) {
2753 sc->gfp_mask |= __GFP_HIGHMEM;
2754 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2755 }
2756
2757 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2758 sc->reclaim_idx, sc->nodemask) {
2759 /*
2760 * Take care memory controller reclaiming has small influence
2761 * to global LRU.
2762 */
2763 if (global_reclaim(sc)) {
2764 if (!cpuset_zone_allowed(zone,
2765 GFP_KERNEL | __GFP_HARDWALL))
2766 continue;
2767
2768 /*
2769 * If we already have plenty of memory free for
2770 * compaction in this zone, don't free any more.
2771 * Even though compaction is invoked for any
2772 * non-zero order, only frequent costly order
2773 * reclamation is disruptive enough to become a
2774 * noticeable problem, like transparent huge
2775 * page allocations.
2776 */
2777 if (IS_ENABLED(CONFIG_COMPACTION) &&
2778 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2779 compaction_ready(zone, sc)) {
2780 sc->compaction_ready = true;
2781 continue;
2782 }
2783
2784 /*
2785 * Shrink each node in the zonelist once. If the
2786 * zonelist is ordered by zone (not the default) then a
2787 * node may be shrunk multiple times but in that case
2788 * the user prefers lower zones being preserved.
2789 */
2790 if (zone->zone_pgdat == last_pgdat)
2791 continue;
2792
2793 /*
2794 * This steals pages from memory cgroups over softlimit
2795 * and returns the number of reclaimed pages and
2796 * scanned pages. This works for global memory pressure
2797 * and balancing, not for a memcg's limit.
2798 */
2799 nr_soft_scanned = 0;
2800 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2801 sc->order, sc->gfp_mask,
2802 &nr_soft_scanned);
2803 sc->nr_reclaimed += nr_soft_reclaimed;
2804 sc->nr_scanned += nr_soft_scanned;
2805 /* need some check for avoid more shrink_zone() */
2806 }
2807
2808 /* See comment about same check for global reclaim above */
2809 if (zone->zone_pgdat == last_pgdat)
2810 continue;
2811 last_pgdat = zone->zone_pgdat;
2812 shrink_node(zone->zone_pgdat, sc);
2813 }
2814
2815 /*
2816 * Restore to original mask to avoid the impact on the caller if we
2817 * promoted it to __GFP_HIGHMEM.
2818 */
2819 sc->gfp_mask = orig_mask;
2820 }
2821
2822 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2823 {
2824 struct mem_cgroup *memcg;
2825
2826 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2827 do {
2828 unsigned long refaults;
2829 struct lruvec *lruvec;
2830
2831 if (memcg)
2832 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2833 else
2834 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2835
2836 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2837 lruvec->refaults = refaults;
2838 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2839 }
2840
2841 /*
2842 * This is the main entry point to direct page reclaim.
2843 *
2844 * If a full scan of the inactive list fails to free enough memory then we
2845 * are "out of memory" and something needs to be killed.
2846 *
2847 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2848 * high - the zone may be full of dirty or under-writeback pages, which this
2849 * caller can't do much about. We kick the writeback threads and take explicit
2850 * naps in the hope that some of these pages can be written. But if the
2851 * allocating task holds filesystem locks which prevent writeout this might not
2852 * work, and the allocation attempt will fail.
2853 *
2854 * returns: 0, if no pages reclaimed
2855 * else, the number of pages reclaimed
2856 */
2857 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2858 struct scan_control *sc)
2859 {
2860 int initial_priority = sc->priority;
2861 pg_data_t *last_pgdat;
2862 struct zoneref *z;
2863 struct zone *zone;
2864 retry:
2865 delayacct_freepages_start();
2866
2867 if (global_reclaim(sc))
2868 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2869
2870 do {
2871 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2872 sc->priority);
2873 sc->nr_scanned = 0;
2874 shrink_zones(zonelist, sc);
2875
2876 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2877 break;
2878
2879 if (sc->compaction_ready)
2880 break;
2881
2882 /*
2883 * If we're getting trouble reclaiming, start doing
2884 * writepage even in laptop mode.
2885 */
2886 if (sc->priority < DEF_PRIORITY - 2)
2887 sc->may_writepage = 1;
2888 } while (--sc->priority >= 0);
2889
2890 last_pgdat = NULL;
2891 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2892 sc->nodemask) {
2893 if (zone->zone_pgdat == last_pgdat)
2894 continue;
2895 last_pgdat = zone->zone_pgdat;
2896 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2897 }
2898
2899 delayacct_freepages_end();
2900
2901 if (sc->nr_reclaimed)
2902 return sc->nr_reclaimed;
2903
2904 /* Aborted reclaim to try compaction? don't OOM, then */
2905 if (sc->compaction_ready)
2906 return 1;
2907
2908 /* Untapped cgroup reserves? Don't OOM, retry. */
2909 if (sc->memcg_low_skipped) {
2910 sc->priority = initial_priority;
2911 sc->memcg_low_reclaim = 1;
2912 sc->memcg_low_skipped = 0;
2913 goto retry;
2914 }
2915
2916 return 0;
2917 }
2918
2919 static bool allow_direct_reclaim(pg_data_t *pgdat)
2920 {
2921 struct zone *zone;
2922 unsigned long pfmemalloc_reserve = 0;
2923 unsigned long free_pages = 0;
2924 int i;
2925 bool wmark_ok;
2926
2927 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2928 return true;
2929
2930 for (i = 0; i <= ZONE_NORMAL; i++) {
2931 zone = &pgdat->node_zones[i];
2932 if (!managed_zone(zone))
2933 continue;
2934
2935 if (!zone_reclaimable_pages(zone))
2936 continue;
2937
2938 pfmemalloc_reserve += min_wmark_pages(zone);
2939 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2940 }
2941
2942 /* If there are no reserves (unexpected config) then do not throttle */
2943 if (!pfmemalloc_reserve)
2944 return true;
2945
2946 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2947
2948 /* kswapd must be awake if processes are being throttled */
2949 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2950 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2951 (enum zone_type)ZONE_NORMAL);
2952 wake_up_interruptible(&pgdat->kswapd_wait);
2953 }
2954
2955 return wmark_ok;
2956 }
2957
2958 /*
2959 * Throttle direct reclaimers if backing storage is backed by the network
2960 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2961 * depleted. kswapd will continue to make progress and wake the processes
2962 * when the low watermark is reached.
2963 *
2964 * Returns true if a fatal signal was delivered during throttling. If this
2965 * happens, the page allocator should not consider triggering the OOM killer.
2966 */
2967 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2968 nodemask_t *nodemask)
2969 {
2970 struct zoneref *z;
2971 struct zone *zone;
2972 pg_data_t *pgdat = NULL;
2973
2974 /*
2975 * Kernel threads should not be throttled as they may be indirectly
2976 * responsible for cleaning pages necessary for reclaim to make forward
2977 * progress. kjournald for example may enter direct reclaim while
2978 * committing a transaction where throttling it could forcing other
2979 * processes to block on log_wait_commit().
2980 */
2981 if (current->flags & PF_KTHREAD)
2982 goto out;
2983
2984 /*
2985 * If a fatal signal is pending, this process should not throttle.
2986 * It should return quickly so it can exit and free its memory
2987 */
2988 if (fatal_signal_pending(current))
2989 goto out;
2990
2991 /*
2992 * Check if the pfmemalloc reserves are ok by finding the first node
2993 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2994 * GFP_KERNEL will be required for allocating network buffers when
2995 * swapping over the network so ZONE_HIGHMEM is unusable.
2996 *
2997 * Throttling is based on the first usable node and throttled processes
2998 * wait on a queue until kswapd makes progress and wakes them. There
2999 * is an affinity then between processes waking up and where reclaim
3000 * progress has been made assuming the process wakes on the same node.
3001 * More importantly, processes running on remote nodes will not compete
3002 * for remote pfmemalloc reserves and processes on different nodes
3003 * should make reasonable progress.
3004 */
3005 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3006 gfp_zone(gfp_mask), nodemask) {
3007 if (zone_idx(zone) > ZONE_NORMAL)
3008 continue;
3009
3010 /* Throttle based on the first usable node */
3011 pgdat = zone->zone_pgdat;
3012 if (allow_direct_reclaim(pgdat))
3013 goto out;
3014 break;
3015 }
3016
3017 /* If no zone was usable by the allocation flags then do not throttle */
3018 if (!pgdat)
3019 goto out;
3020
3021 /* Account for the throttling */
3022 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3023
3024 /*
3025 * If the caller cannot enter the filesystem, it's possible that it
3026 * is due to the caller holding an FS lock or performing a journal
3027 * transaction in the case of a filesystem like ext[3|4]. In this case,
3028 * it is not safe to block on pfmemalloc_wait as kswapd could be
3029 * blocked waiting on the same lock. Instead, throttle for up to a
3030 * second before continuing.
3031 */
3032 if (!(gfp_mask & __GFP_FS)) {
3033 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3034 allow_direct_reclaim(pgdat), HZ);
3035
3036 goto check_pending;
3037 }
3038
3039 /* Throttle until kswapd wakes the process */
3040 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3041 allow_direct_reclaim(pgdat));
3042
3043 check_pending:
3044 if (fatal_signal_pending(current))
3045 return true;
3046
3047 out:
3048 return false;
3049 }
3050
3051 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3052 gfp_t gfp_mask, nodemask_t *nodemask)
3053 {
3054 unsigned long nr_reclaimed;
3055 struct scan_control sc = {
3056 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3057 .gfp_mask = current_gfp_context(gfp_mask),
3058 .reclaim_idx = gfp_zone(gfp_mask),
3059 .order = order,
3060 .nodemask = nodemask,
3061 .priority = DEF_PRIORITY,
3062 .may_writepage = !laptop_mode,
3063 .may_unmap = 1,
3064 .may_swap = 1,
3065 };
3066
3067 /*
3068 * Do not enter reclaim if fatal signal was delivered while throttled.
3069 * 1 is returned so that the page allocator does not OOM kill at this
3070 * point.
3071 */
3072 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3073 return 1;
3074
3075 trace_mm_vmscan_direct_reclaim_begin(order,
3076 sc.may_writepage,
3077 sc.gfp_mask,
3078 sc.reclaim_idx);
3079
3080 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3081
3082 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3083
3084 return nr_reclaimed;
3085 }
3086
3087 #ifdef CONFIG_MEMCG
3088
3089 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3090 gfp_t gfp_mask, bool noswap,
3091 pg_data_t *pgdat,
3092 unsigned long *nr_scanned)
3093 {
3094 struct scan_control sc = {
3095 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3096 .target_mem_cgroup = memcg,
3097 .may_writepage = !laptop_mode,
3098 .may_unmap = 1,
3099 .reclaim_idx = MAX_NR_ZONES - 1,
3100 .may_swap = !noswap,
3101 };
3102 unsigned long lru_pages;
3103
3104 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3105 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3106
3107 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3108 sc.may_writepage,
3109 sc.gfp_mask,
3110 sc.reclaim_idx);
3111
3112 /*
3113 * NOTE: Although we can get the priority field, using it
3114 * here is not a good idea, since it limits the pages we can scan.
3115 * if we don't reclaim here, the shrink_node from balance_pgdat
3116 * will pick up pages from other mem cgroup's as well. We hack
3117 * the priority and make it zero.
3118 */
3119 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3120
3121 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3122
3123 *nr_scanned = sc.nr_scanned;
3124 return sc.nr_reclaimed;
3125 }
3126
3127 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3128 unsigned long nr_pages,
3129 gfp_t gfp_mask,
3130 bool may_swap)
3131 {
3132 struct zonelist *zonelist;
3133 unsigned long nr_reclaimed;
3134 int nid;
3135 unsigned int noreclaim_flag;
3136 struct scan_control sc = {
3137 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3138 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3139 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3140 .reclaim_idx = MAX_NR_ZONES - 1,
3141 .target_mem_cgroup = memcg,
3142 .priority = DEF_PRIORITY,
3143 .may_writepage = !laptop_mode,
3144 .may_unmap = 1,
3145 .may_swap = may_swap,
3146 };
3147
3148 /*
3149 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3150 * take care of from where we get pages. So the node where we start the
3151 * scan does not need to be the current node.
3152 */
3153 nid = mem_cgroup_select_victim_node(memcg);
3154
3155 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3156
3157 trace_mm_vmscan_memcg_reclaim_begin(0,
3158 sc.may_writepage,
3159 sc.gfp_mask,
3160 sc.reclaim_idx);
3161
3162 noreclaim_flag = memalloc_noreclaim_save();
3163 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3164 memalloc_noreclaim_restore(noreclaim_flag);
3165
3166 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3167
3168 return nr_reclaimed;
3169 }
3170 #endif
3171
3172 static void age_active_anon(struct pglist_data *pgdat,
3173 struct scan_control *sc)
3174 {
3175 struct mem_cgroup *memcg;
3176
3177 if (!total_swap_pages)
3178 return;
3179
3180 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3181 do {
3182 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3183
3184 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3185 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3186 sc, LRU_ACTIVE_ANON);
3187
3188 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3189 } while (memcg);
3190 }
3191
3192 /*
3193 * Returns true if there is an eligible zone balanced for the request order
3194 * and classzone_idx
3195 */
3196 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3197 {
3198 int i;
3199 unsigned long mark = -1;
3200 struct zone *zone;
3201
3202 for (i = 0; i <= classzone_idx; i++) {
3203 zone = pgdat->node_zones + i;
3204
3205 if (!managed_zone(zone))
3206 continue;
3207
3208 mark = high_wmark_pages(zone);
3209 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3210 return true;
3211 }
3212
3213 /*
3214 * If a node has no populated zone within classzone_idx, it does not
3215 * need balancing by definition. This can happen if a zone-restricted
3216 * allocation tries to wake a remote kswapd.
3217 */
3218 if (mark == -1)
3219 return true;
3220
3221 return false;
3222 }
3223
3224 /* Clear pgdat state for congested, dirty or under writeback. */
3225 static void clear_pgdat_congested(pg_data_t *pgdat)
3226 {
3227 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3228 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3229 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3230 }
3231
3232 /*
3233 * Prepare kswapd for sleeping. This verifies that there are no processes
3234 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3235 *
3236 * Returns true if kswapd is ready to sleep
3237 */
3238 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3239 {
3240 /*
3241 * The throttled processes are normally woken up in balance_pgdat() as
3242 * soon as allow_direct_reclaim() is true. But there is a potential
3243 * race between when kswapd checks the watermarks and a process gets
3244 * throttled. There is also a potential race if processes get
3245 * throttled, kswapd wakes, a large process exits thereby balancing the
3246 * zones, which causes kswapd to exit balance_pgdat() before reaching
3247 * the wake up checks. If kswapd is going to sleep, no process should
3248 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3249 * the wake up is premature, processes will wake kswapd and get
3250 * throttled again. The difference from wake ups in balance_pgdat() is
3251 * that here we are under prepare_to_wait().
3252 */
3253 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3254 wake_up_all(&pgdat->pfmemalloc_wait);
3255
3256 /* Hopeless node, leave it to direct reclaim */
3257 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3258 return true;
3259
3260 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3261 clear_pgdat_congested(pgdat);
3262 return true;
3263 }
3264
3265 return false;
3266 }
3267
3268 /*
3269 * kswapd shrinks a node of pages that are at or below the highest usable
3270 * zone that is currently unbalanced.
3271 *
3272 * Returns true if kswapd scanned at least the requested number of pages to
3273 * reclaim or if the lack of progress was due to pages under writeback.
3274 * This is used to determine if the scanning priority needs to be raised.
3275 */
3276 static bool kswapd_shrink_node(pg_data_t *pgdat,
3277 struct scan_control *sc)
3278 {
3279 struct zone *zone;
3280 int z;
3281
3282 /* Reclaim a number of pages proportional to the number of zones */
3283 sc->nr_to_reclaim = 0;
3284 for (z = 0; z <= sc->reclaim_idx; z++) {
3285 zone = pgdat->node_zones + z;
3286 if (!managed_zone(zone))
3287 continue;
3288
3289 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3290 }
3291
3292 /*
3293 * Historically care was taken to put equal pressure on all zones but
3294 * now pressure is applied based on node LRU order.
3295 */
3296 shrink_node(pgdat, sc);
3297
3298 /*
3299 * Fragmentation may mean that the system cannot be rebalanced for
3300 * high-order allocations. If twice the allocation size has been
3301 * reclaimed then recheck watermarks only at order-0 to prevent
3302 * excessive reclaim. Assume that a process requested a high-order
3303 * can direct reclaim/compact.
3304 */
3305 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3306 sc->order = 0;
3307
3308 return sc->nr_scanned >= sc->nr_to_reclaim;
3309 }
3310
3311 /*
3312 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3313 * that are eligible for use by the caller until at least one zone is
3314 * balanced.
3315 *
3316 * Returns the order kswapd finished reclaiming at.
3317 *
3318 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3319 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3320 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3321 * or lower is eligible for reclaim until at least one usable zone is
3322 * balanced.
3323 */
3324 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3325 {
3326 int i;
3327 unsigned long nr_soft_reclaimed;
3328 unsigned long nr_soft_scanned;
3329 struct zone *zone;
3330 struct scan_control sc = {
3331 .gfp_mask = GFP_KERNEL,
3332 .order = order,
3333 .priority = DEF_PRIORITY,
3334 .may_writepage = !laptop_mode,
3335 .may_unmap = 1,
3336 .may_swap = 1,
3337 };
3338 count_vm_event(PAGEOUTRUN);
3339
3340 do {
3341 unsigned long nr_reclaimed = sc.nr_reclaimed;
3342 bool raise_priority = true;
3343
3344 sc.reclaim_idx = classzone_idx;
3345
3346 /*
3347 * If the number of buffer_heads exceeds the maximum allowed
3348 * then consider reclaiming from all zones. This has a dual
3349 * purpose -- on 64-bit systems it is expected that
3350 * buffer_heads are stripped during active rotation. On 32-bit
3351 * systems, highmem pages can pin lowmem memory and shrinking
3352 * buffers can relieve lowmem pressure. Reclaim may still not
3353 * go ahead if all eligible zones for the original allocation
3354 * request are balanced to avoid excessive reclaim from kswapd.
3355 */
3356 if (buffer_heads_over_limit) {
3357 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3358 zone = pgdat->node_zones + i;
3359 if (!managed_zone(zone))
3360 continue;
3361
3362 sc.reclaim_idx = i;
3363 break;
3364 }
3365 }
3366
3367 /*
3368 * Only reclaim if there are no eligible zones. Note that
3369 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3370 * have adjusted it.
3371 */
3372 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3373 goto out;
3374
3375 /*
3376 * Do some background aging of the anon list, to give
3377 * pages a chance to be referenced before reclaiming. All
3378 * pages are rotated regardless of classzone as this is
3379 * about consistent aging.
3380 */
3381 age_active_anon(pgdat, &sc);
3382
3383 /*
3384 * If we're getting trouble reclaiming, start doing writepage
3385 * even in laptop mode.
3386 */
3387 if (sc.priority < DEF_PRIORITY - 2)
3388 sc.may_writepage = 1;
3389
3390 /* Call soft limit reclaim before calling shrink_node. */
3391 sc.nr_scanned = 0;
3392 nr_soft_scanned = 0;
3393 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3394 sc.gfp_mask, &nr_soft_scanned);
3395 sc.nr_reclaimed += nr_soft_reclaimed;
3396
3397 /*
3398 * There should be no need to raise the scanning priority if
3399 * enough pages are already being scanned that that high
3400 * watermark would be met at 100% efficiency.
3401 */
3402 if (kswapd_shrink_node(pgdat, &sc))
3403 raise_priority = false;
3404
3405 /*
3406 * If the low watermark is met there is no need for processes
3407 * to be throttled on pfmemalloc_wait as they should not be
3408 * able to safely make forward progress. Wake them
3409 */
3410 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3411 allow_direct_reclaim(pgdat))
3412 wake_up_all(&pgdat->pfmemalloc_wait);
3413
3414 /* Check if kswapd should be suspending */
3415 if (try_to_freeze() || kthread_should_stop())
3416 break;
3417
3418 /*
3419 * Raise priority if scanning rate is too low or there was no
3420 * progress in reclaiming pages
3421 */
3422 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3423 if (raise_priority || !nr_reclaimed)
3424 sc.priority--;
3425 } while (sc.priority >= 1);
3426
3427 if (!sc.nr_reclaimed)
3428 pgdat->kswapd_failures++;
3429
3430 out:
3431 snapshot_refaults(NULL, pgdat);
3432 /*
3433 * Return the order kswapd stopped reclaiming at as
3434 * prepare_kswapd_sleep() takes it into account. If another caller
3435 * entered the allocator slow path while kswapd was awake, order will
3436 * remain at the higher level.
3437 */
3438 return sc.order;
3439 }
3440
3441 /*
3442 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3443 * allocation request woke kswapd for. When kswapd has not woken recently,
3444 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3445 * given classzone and returns it or the highest classzone index kswapd
3446 * was recently woke for.
3447 */
3448 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3449 enum zone_type classzone_idx)
3450 {
3451 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3452 return classzone_idx;
3453
3454 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3455 }
3456
3457 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3458 unsigned int classzone_idx)
3459 {
3460 long remaining = 0;
3461 DEFINE_WAIT(wait);
3462
3463 if (freezing(current) || kthread_should_stop())
3464 return;
3465
3466 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3467
3468 /*
3469 * Try to sleep for a short interval. Note that kcompactd will only be
3470 * woken if it is possible to sleep for a short interval. This is
3471 * deliberate on the assumption that if reclaim cannot keep an
3472 * eligible zone balanced that it's also unlikely that compaction will
3473 * succeed.
3474 */
3475 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3476 /*
3477 * Compaction records what page blocks it recently failed to
3478 * isolate pages from and skips them in the future scanning.
3479 * When kswapd is going to sleep, it is reasonable to assume
3480 * that pages and compaction may succeed so reset the cache.
3481 */
3482 reset_isolation_suitable(pgdat);
3483
3484 /*
3485 * We have freed the memory, now we should compact it to make
3486 * allocation of the requested order possible.
3487 */
3488 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3489
3490 remaining = schedule_timeout(HZ/10);
3491
3492 /*
3493 * If woken prematurely then reset kswapd_classzone_idx and
3494 * order. The values will either be from a wakeup request or
3495 * the previous request that slept prematurely.
3496 */
3497 if (remaining) {
3498 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3499 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3500 }
3501
3502 finish_wait(&pgdat->kswapd_wait, &wait);
3503 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3504 }
3505
3506 /*
3507 * After a short sleep, check if it was a premature sleep. If not, then
3508 * go fully to sleep until explicitly woken up.
3509 */
3510 if (!remaining &&
3511 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3512 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3513
3514 /*
3515 * vmstat counters are not perfectly accurate and the estimated
3516 * value for counters such as NR_FREE_PAGES can deviate from the
3517 * true value by nr_online_cpus * threshold. To avoid the zone
3518 * watermarks being breached while under pressure, we reduce the
3519 * per-cpu vmstat threshold while kswapd is awake and restore
3520 * them before going back to sleep.
3521 */
3522 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3523
3524 if (!kthread_should_stop())
3525 schedule();
3526
3527 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3528 } else {
3529 if (remaining)
3530 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3531 else
3532 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3533 }
3534 finish_wait(&pgdat->kswapd_wait, &wait);
3535 }
3536
3537 /*
3538 * The background pageout daemon, started as a kernel thread
3539 * from the init process.
3540 *
3541 * This basically trickles out pages so that we have _some_
3542 * free memory available even if there is no other activity
3543 * that frees anything up. This is needed for things like routing
3544 * etc, where we otherwise might have all activity going on in
3545 * asynchronous contexts that cannot page things out.
3546 *
3547 * If there are applications that are active memory-allocators
3548 * (most normal use), this basically shouldn't matter.
3549 */
3550 static int kswapd(void *p)
3551 {
3552 unsigned int alloc_order, reclaim_order;
3553 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3554 pg_data_t *pgdat = (pg_data_t*)p;
3555 struct task_struct *tsk = current;
3556
3557 struct reclaim_state reclaim_state = {
3558 .reclaimed_slab = 0,
3559 };
3560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3561
3562 if (!cpumask_empty(cpumask))
3563 set_cpus_allowed_ptr(tsk, cpumask);
3564 current->reclaim_state = &reclaim_state;
3565
3566 /*
3567 * Tell the memory management that we're a "memory allocator",
3568 * and that if we need more memory we should get access to it
3569 * regardless (see "__alloc_pages()"). "kswapd" should
3570 * never get caught in the normal page freeing logic.
3571 *
3572 * (Kswapd normally doesn't need memory anyway, but sometimes
3573 * you need a small amount of memory in order to be able to
3574 * page out something else, and this flag essentially protects
3575 * us from recursively trying to free more memory as we're
3576 * trying to free the first piece of memory in the first place).
3577 */
3578 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3579 set_freezable();
3580
3581 pgdat->kswapd_order = 0;
3582 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3583 for ( ; ; ) {
3584 bool ret;
3585
3586 alloc_order = reclaim_order = pgdat->kswapd_order;
3587 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3588
3589 kswapd_try_sleep:
3590 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3591 classzone_idx);
3592
3593 /* Read the new order and classzone_idx */
3594 alloc_order = reclaim_order = pgdat->kswapd_order;
3595 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3596 pgdat->kswapd_order = 0;
3597 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3598
3599 ret = try_to_freeze();
3600 if (kthread_should_stop())
3601 break;
3602
3603 /*
3604 * We can speed up thawing tasks if we don't call balance_pgdat
3605 * after returning from the refrigerator
3606 */
3607 if (ret)
3608 continue;
3609
3610 /*
3611 * Reclaim begins at the requested order but if a high-order
3612 * reclaim fails then kswapd falls back to reclaiming for
3613 * order-0. If that happens, kswapd will consider sleeping
3614 * for the order it finished reclaiming at (reclaim_order)
3615 * but kcompactd is woken to compact for the original
3616 * request (alloc_order).
3617 */
3618 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3619 alloc_order);
3620 fs_reclaim_acquire(GFP_KERNEL);
3621 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3622 fs_reclaim_release(GFP_KERNEL);
3623 if (reclaim_order < alloc_order)
3624 goto kswapd_try_sleep;
3625 }
3626
3627 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3628 current->reclaim_state = NULL;
3629
3630 return 0;
3631 }
3632
3633 /*
3634 * A zone is low on free memory, so wake its kswapd task to service it.
3635 */
3636 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3637 {
3638 pg_data_t *pgdat;
3639
3640 if (!managed_zone(zone))
3641 return;
3642
3643 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3644 return;
3645 pgdat = zone->zone_pgdat;
3646 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3647 classzone_idx);
3648 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3649 if (!waitqueue_active(&pgdat->kswapd_wait))
3650 return;
3651
3652 /* Hopeless node, leave it to direct reclaim */
3653 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3654 return;
3655
3656 if (pgdat_balanced(pgdat, order, classzone_idx))
3657 return;
3658
3659 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3660 wake_up_interruptible(&pgdat->kswapd_wait);
3661 }
3662
3663 #ifdef CONFIG_HIBERNATION
3664 /*
3665 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3666 * freed pages.
3667 *
3668 * Rather than trying to age LRUs the aim is to preserve the overall
3669 * LRU order by reclaiming preferentially
3670 * inactive > active > active referenced > active mapped
3671 */
3672 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3673 {
3674 struct reclaim_state reclaim_state;
3675 struct scan_control sc = {
3676 .nr_to_reclaim = nr_to_reclaim,
3677 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3678 .reclaim_idx = MAX_NR_ZONES - 1,
3679 .priority = DEF_PRIORITY,
3680 .may_writepage = 1,
3681 .may_unmap = 1,
3682 .may_swap = 1,
3683 .hibernation_mode = 1,
3684 };
3685 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3686 struct task_struct *p = current;
3687 unsigned long nr_reclaimed;
3688 unsigned int noreclaim_flag;
3689
3690 noreclaim_flag = memalloc_noreclaim_save();
3691 fs_reclaim_acquire(sc.gfp_mask);
3692 reclaim_state.reclaimed_slab = 0;
3693 p->reclaim_state = &reclaim_state;
3694
3695 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3696
3697 p->reclaim_state = NULL;
3698 fs_reclaim_release(sc.gfp_mask);
3699 memalloc_noreclaim_restore(noreclaim_flag);
3700
3701 return nr_reclaimed;
3702 }
3703 #endif /* CONFIG_HIBERNATION */
3704
3705 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3706 not required for correctness. So if the last cpu in a node goes
3707 away, we get changed to run anywhere: as the first one comes back,
3708 restore their cpu bindings. */
3709 static int kswapd_cpu_online(unsigned int cpu)
3710 {
3711 int nid;
3712
3713 for_each_node_state(nid, N_MEMORY) {
3714 pg_data_t *pgdat = NODE_DATA(nid);
3715 const struct cpumask *mask;
3716
3717 mask = cpumask_of_node(pgdat->node_id);
3718
3719 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3720 /* One of our CPUs online: restore mask */
3721 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3722 }
3723 return 0;
3724 }
3725
3726 /*
3727 * This kswapd start function will be called by init and node-hot-add.
3728 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3729 */
3730 int kswapd_run(int nid)
3731 {
3732 pg_data_t *pgdat = NODE_DATA(nid);
3733 int ret = 0;
3734
3735 if (pgdat->kswapd)
3736 return 0;
3737
3738 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3739 if (IS_ERR(pgdat->kswapd)) {
3740 /* failure at boot is fatal */
3741 BUG_ON(system_state < SYSTEM_RUNNING);
3742 pr_err("Failed to start kswapd on node %d\n", nid);
3743 ret = PTR_ERR(pgdat->kswapd);
3744 pgdat->kswapd = NULL;
3745 }
3746 return ret;
3747 }
3748
3749 /*
3750 * Called by memory hotplug when all memory in a node is offlined. Caller must
3751 * hold mem_hotplug_begin/end().
3752 */
3753 void kswapd_stop(int nid)
3754 {
3755 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3756
3757 if (kswapd) {
3758 kthread_stop(kswapd);
3759 NODE_DATA(nid)->kswapd = NULL;
3760 }
3761 }
3762
3763 static int __init kswapd_init(void)
3764 {
3765 int nid, ret;
3766
3767 swap_setup();
3768 for_each_node_state(nid, N_MEMORY)
3769 kswapd_run(nid);
3770 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3771 "mm/vmscan:online", kswapd_cpu_online,
3772 NULL);
3773 WARN_ON(ret < 0);
3774 return 0;
3775 }
3776
3777 module_init(kswapd_init)
3778
3779 #ifdef CONFIG_NUMA
3780 /*
3781 * Node reclaim mode
3782 *
3783 * If non-zero call node_reclaim when the number of free pages falls below
3784 * the watermarks.
3785 */
3786 int node_reclaim_mode __read_mostly;
3787
3788 #define RECLAIM_OFF 0
3789 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3790 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3791 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3792
3793 /*
3794 * Priority for NODE_RECLAIM. This determines the fraction of pages
3795 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3796 * a zone.
3797 */
3798 #define NODE_RECLAIM_PRIORITY 4
3799
3800 /*
3801 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3802 * occur.
3803 */
3804 int sysctl_min_unmapped_ratio = 1;
3805
3806 /*
3807 * If the number of slab pages in a zone grows beyond this percentage then
3808 * slab reclaim needs to occur.
3809 */
3810 int sysctl_min_slab_ratio = 5;
3811
3812 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3813 {
3814 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3815 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3816 node_page_state(pgdat, NR_ACTIVE_FILE);
3817
3818 /*
3819 * It's possible for there to be more file mapped pages than
3820 * accounted for by the pages on the file LRU lists because
3821 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3822 */
3823 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3824 }
3825
3826 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3827 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3828 {
3829 unsigned long nr_pagecache_reclaimable;
3830 unsigned long delta = 0;
3831
3832 /*
3833 * If RECLAIM_UNMAP is set, then all file pages are considered
3834 * potentially reclaimable. Otherwise, we have to worry about
3835 * pages like swapcache and node_unmapped_file_pages() provides
3836 * a better estimate
3837 */
3838 if (node_reclaim_mode & RECLAIM_UNMAP)
3839 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3840 else
3841 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3842
3843 /* If we can't clean pages, remove dirty pages from consideration */
3844 if (!(node_reclaim_mode & RECLAIM_WRITE))
3845 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3846
3847 /* Watch for any possible underflows due to delta */
3848 if (unlikely(delta > nr_pagecache_reclaimable))
3849 delta = nr_pagecache_reclaimable;
3850
3851 return nr_pagecache_reclaimable - delta;
3852 }
3853
3854 /*
3855 * Try to free up some pages from this node through reclaim.
3856 */
3857 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3858 {
3859 /* Minimum pages needed in order to stay on node */
3860 const unsigned long nr_pages = 1 << order;
3861 struct task_struct *p = current;
3862 struct reclaim_state reclaim_state;
3863 unsigned int noreclaim_flag;
3864 struct scan_control sc = {
3865 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3866 .gfp_mask = current_gfp_context(gfp_mask),
3867 .order = order,
3868 .priority = NODE_RECLAIM_PRIORITY,
3869 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3870 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3871 .may_swap = 1,
3872 .reclaim_idx = gfp_zone(gfp_mask),
3873 };
3874
3875 cond_resched();
3876 /*
3877 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3878 * and we also need to be able to write out pages for RECLAIM_WRITE
3879 * and RECLAIM_UNMAP.
3880 */
3881 noreclaim_flag = memalloc_noreclaim_save();
3882 p->flags |= PF_SWAPWRITE;
3883 fs_reclaim_acquire(sc.gfp_mask);
3884 reclaim_state.reclaimed_slab = 0;
3885 p->reclaim_state = &reclaim_state;
3886
3887 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3888 /*
3889 * Free memory by calling shrink zone with increasing
3890 * priorities until we have enough memory freed.
3891 */
3892 do {
3893 shrink_node(pgdat, &sc);
3894 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3895 }
3896
3897 p->reclaim_state = NULL;
3898 fs_reclaim_release(gfp_mask);
3899 current->flags &= ~PF_SWAPWRITE;
3900 memalloc_noreclaim_restore(noreclaim_flag);
3901 return sc.nr_reclaimed >= nr_pages;
3902 }
3903
3904 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3905 {
3906 int ret;
3907
3908 /*
3909 * Node reclaim reclaims unmapped file backed pages and
3910 * slab pages if we are over the defined limits.
3911 *
3912 * A small portion of unmapped file backed pages is needed for
3913 * file I/O otherwise pages read by file I/O will be immediately
3914 * thrown out if the node is overallocated. So we do not reclaim
3915 * if less than a specified percentage of the node is used by
3916 * unmapped file backed pages.
3917 */
3918 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3919 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3920 return NODE_RECLAIM_FULL;
3921
3922 /*
3923 * Do not scan if the allocation should not be delayed.
3924 */
3925 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3926 return NODE_RECLAIM_NOSCAN;
3927
3928 /*
3929 * Only run node reclaim on the local node or on nodes that do not
3930 * have associated processors. This will favor the local processor
3931 * over remote processors and spread off node memory allocations
3932 * as wide as possible.
3933 */
3934 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3935 return NODE_RECLAIM_NOSCAN;
3936
3937 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3938 return NODE_RECLAIM_NOSCAN;
3939
3940 ret = __node_reclaim(pgdat, gfp_mask, order);
3941 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3942
3943 if (!ret)
3944 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3945
3946 return ret;
3947 }
3948 #endif
3949
3950 /*
3951 * page_evictable - test whether a page is evictable
3952 * @page: the page to test
3953 *
3954 * Test whether page is evictable--i.e., should be placed on active/inactive
3955 * lists vs unevictable list.
3956 *
3957 * Reasons page might not be evictable:
3958 * (1) page's mapping marked unevictable
3959 * (2) page is part of an mlocked VMA
3960 *
3961 */
3962 int page_evictable(struct page *page)
3963 {
3964 int ret;
3965
3966 /* Prevent address_space of inode and swap cache from being freed */
3967 rcu_read_lock();
3968 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3969 rcu_read_unlock();
3970 return ret;
3971 }
3972
3973 #ifdef CONFIG_SHMEM
3974 /**
3975 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3976 * @pages: array of pages to check
3977 * @nr_pages: number of pages to check
3978 *
3979 * Checks pages for evictability and moves them to the appropriate lru list.
3980 *
3981 * This function is only used for SysV IPC SHM_UNLOCK.
3982 */
3983 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3984 {
3985 struct lruvec *lruvec;
3986 struct pglist_data *pgdat = NULL;
3987 int pgscanned = 0;
3988 int pgrescued = 0;
3989 int i;
3990
3991 for (i = 0; i < nr_pages; i++) {
3992 struct page *page = pages[i];
3993 struct pglist_data *pagepgdat = page_pgdat(page);
3994
3995 pgscanned++;
3996 if (pagepgdat != pgdat) {
3997 if (pgdat)
3998 spin_unlock_irq(&pgdat->lru_lock);
3999 pgdat = pagepgdat;
4000 spin_lock_irq(&pgdat->lru_lock);
4001 }
4002 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4003
4004 if (!PageLRU(page) || !PageUnevictable(page))
4005 continue;
4006
4007 if (page_evictable(page)) {
4008 enum lru_list lru = page_lru_base_type(page);
4009
4010 VM_BUG_ON_PAGE(PageActive(page), page);
4011 ClearPageUnevictable(page);
4012 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4013 add_page_to_lru_list(page, lruvec, lru);
4014 pgrescued++;
4015 }
4016 }
4017
4018 if (pgdat) {
4019 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4020 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4021 spin_unlock_irq(&pgdat->lru_lock);
4022 }
4023 }
4024 #endif /* CONFIG_SHMEM */