]> git.ipfire.org Git - people/ms/u-boot.git/blob - nand_spl/nand_boot.c
Merge samsung, imx, tegra into u-boot-arm/master
[people/ms/u-boot.git] / nand_spl / nand_boot.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
26
27 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
28 CONFIG_SYS_NAND_ECCSIZE)
29 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
30
31
32 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
33 /*
34 * NAND command for small page NAND devices (512)
35 */
36 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
37 {
38 struct nand_chip *this = mtd->priv;
39 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
40
41 while (!this->dev_ready(mtd))
42 ;
43
44 /* Begin command latch cycle */
45 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
46 /* Set ALE and clear CLE to start address cycle */
47 /* Column address */
48 this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
49 this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
50 this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
51 NAND_CTRL_ALE); /* A[24:17] */
52 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
53 /* One more address cycle for devices > 32MiB */
54 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
55 NAND_CTRL_ALE); /* A[28:25] */
56 #endif
57 /* Latch in address */
58 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
59
60 /*
61 * Wait a while for the data to be ready
62 */
63 while (!this->dev_ready(mtd))
64 ;
65
66 return 0;
67 }
68 #else
69 /*
70 * NAND command for large page NAND devices (2k)
71 */
72 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
73 {
74 struct nand_chip *this = mtd->priv;
75 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
76 void (*hwctrl)(struct mtd_info *mtd, int cmd,
77 unsigned int ctrl) = this->cmd_ctrl;
78
79 while (!this->dev_ready(mtd))
80 ;
81
82 /* Emulate NAND_CMD_READOOB */
83 if (cmd == NAND_CMD_READOOB) {
84 offs += CONFIG_SYS_NAND_PAGE_SIZE;
85 cmd = NAND_CMD_READ0;
86 }
87
88 /* Shift the offset from byte addressing to word addressing. */
89 if (this->options & NAND_BUSWIDTH_16)
90 offs >>= 1;
91
92 /* Begin command latch cycle */
93 hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
94 /* Set ALE and clear CLE to start address cycle */
95 /* Column address */
96 hwctrl(mtd, offs & 0xff,
97 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
98 hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
99 /* Row address */
100 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
101 hwctrl(mtd, ((page_addr >> 8) & 0xff),
102 NAND_CTRL_ALE); /* A[27:20] */
103 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
104 /* One more address cycle for devices > 128MiB */
105 hwctrl(mtd, (page_addr >> 16) & 0x0f,
106 NAND_CTRL_ALE); /* A[31:28] */
107 #endif
108 /* Latch in address */
109 hwctrl(mtd, NAND_CMD_READSTART,
110 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
111 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
112
113 /*
114 * Wait a while for the data to be ready
115 */
116 while (!this->dev_ready(mtd))
117 ;
118
119 return 0;
120 }
121 #endif
122
123 static int nand_is_bad_block(struct mtd_info *mtd, int block)
124 {
125 struct nand_chip *this = mtd->priv;
126
127 nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
128
129 /*
130 * Read one byte (or two if it's a 16 bit chip).
131 */
132 if (this->options & NAND_BUSWIDTH_16) {
133 if (readw(this->IO_ADDR_R) != 0xffff)
134 return 1;
135 } else {
136 if (readb(this->IO_ADDR_R) != 0xff)
137 return 1;
138 }
139
140 return 0;
141 }
142
143 #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
144 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
145 {
146 struct nand_chip *this = mtd->priv;
147 u_char ecc_calc[ECCTOTAL];
148 u_char ecc_code[ECCTOTAL];
149 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
150 int i;
151 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
152 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
153 int eccsteps = ECCSTEPS;
154 uint8_t *p = dst;
155
156 nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
157 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
158 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
159
160 /* Pick the ECC bytes out of the oob data */
161 for (i = 0; i < ECCTOTAL; i++)
162 ecc_code[i] = oob_data[nand_ecc_pos[i]];
163
164
165 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
166 this->ecc.hwctl(mtd, NAND_ECC_READ);
167 this->read_buf(mtd, p, eccsize);
168 this->ecc.calculate(mtd, p, &ecc_calc[i]);
169 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
170 }
171
172 return 0;
173 }
174 #else
175 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
176 {
177 struct nand_chip *this = mtd->priv;
178 u_char ecc_calc[ECCTOTAL];
179 u_char ecc_code[ECCTOTAL];
180 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
181 int i;
182 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
183 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
184 int eccsteps = ECCSTEPS;
185 uint8_t *p = dst;
186
187 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
188
189 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
190 this->ecc.hwctl(mtd, NAND_ECC_READ);
191 this->read_buf(mtd, p, eccsize);
192 this->ecc.calculate(mtd, p, &ecc_calc[i]);
193 }
194 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
195
196 /* Pick the ECC bytes out of the oob data */
197 for (i = 0; i < ECCTOTAL; i++)
198 ecc_code[i] = oob_data[nand_ecc_pos[i]];
199
200 eccsteps = ECCSTEPS;
201 p = dst;
202
203 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
204 /* No chance to do something with the possible error message
205 * from correct_data(). We just hope that all possible errors
206 * are corrected by this routine.
207 */
208 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
209 }
210
211 return 0;
212 }
213 #endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
214
215 static int nand_load(struct mtd_info *mtd, unsigned int offs,
216 unsigned int uboot_size, uchar *dst)
217 {
218 unsigned int block, lastblock;
219 unsigned int page;
220
221 /*
222 * offs has to be aligned to a page address!
223 */
224 block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
225 lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
226 page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
227
228 while (block <= lastblock) {
229 if (!nand_is_bad_block(mtd, block)) {
230 /*
231 * Skip bad blocks
232 */
233 while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
234 nand_read_page(mtd, block, page, dst);
235 dst += CONFIG_SYS_NAND_PAGE_SIZE;
236 page++;
237 }
238
239 page = 0;
240 } else {
241 lastblock++;
242 }
243
244 block++;
245 }
246
247 return 0;
248 }
249
250 /*
251 * The main entry for NAND booting. It's necessary that SDRAM is already
252 * configured and available since this code loads the main U-Boot image
253 * from NAND into SDRAM and starts it from there.
254 */
255 void nand_boot(void)
256 {
257 struct nand_chip nand_chip;
258 nand_info_t nand_info;
259 __attribute__((noreturn)) void (*uboot)(void);
260
261 /*
262 * Init board specific nand support
263 */
264 nand_chip.select_chip = NULL;
265 nand_info.priv = &nand_chip;
266 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
267 nand_chip.dev_ready = NULL; /* preset to NULL */
268 nand_chip.options = 0;
269 board_nand_init(&nand_chip);
270
271 if (nand_chip.select_chip)
272 nand_chip.select_chip(&nand_info, 0);
273
274 /*
275 * Load U-Boot image from NAND into RAM
276 */
277 nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
278 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
279
280 #ifdef CONFIG_NAND_ENV_DST
281 nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
282 (uchar *)CONFIG_NAND_ENV_DST);
283
284 #ifdef CONFIG_ENV_OFFSET_REDUND
285 nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
286 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
287 #endif
288 #endif
289
290 if (nand_chip.select_chip)
291 nand_chip.select_chip(&nand_info, -1);
292
293 /*
294 * Jump to U-Boot image
295 */
296 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
297 (*uboot)();
298 }