]> git.ipfire.org Git - people/ms/u-boot.git/blob - nand_spl/nand_boot.c
nand_spl: Support page-aligned read in nand_load, use chipselect
[people/ms/u-boot.git] / nand_spl / nand_boot.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 #define CFG_NAND_READ_DELAY \
26 { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
27
28 static int nand_ecc_pos[] = CFG_NAND_ECCPOS;
29
30 extern void board_nand_init(struct nand_chip *nand);
31
32 #if (CFG_NAND_PAGE_SIZE <= 512)
33 /*
34 * NAND command for small page NAND devices (512)
35 */
36 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
37 {
38 struct nand_chip *this = mtd->priv;
39 int page_addr = page + block * CFG_NAND_PAGE_COUNT;
40
41 if (this->dev_ready)
42 while (!this->dev_ready(mtd))
43 ;
44 else
45 CFG_NAND_READ_DELAY;
46
47 /* Begin command latch cycle */
48 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
49 /* Set ALE and clear CLE to start address cycle */
50 /* Column address */
51 this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
52 this->cmd_ctrl(mtd, page_addr & 0xff, 0); /* A[16:9] */
53 this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff, 0); /* A[24:17] */
54 #ifdef CFG_NAND_4_ADDR_CYCLE
55 /* One more address cycle for devices > 32MiB */
56 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[28:25] */
57 #endif
58 /* Latch in address */
59 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60
61 /*
62 * Wait a while for the data to be ready
63 */
64 if (this->dev_ready)
65 while (!this->dev_ready(mtd))
66 ;
67 else
68 CFG_NAND_READ_DELAY;
69
70 return 0;
71 }
72 #else
73 /*
74 * NAND command for large page NAND devices (2k)
75 */
76 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
77 {
78 struct nand_chip *this = mtd->priv;
79 int page_addr = page + block * CFG_NAND_PAGE_COUNT;
80
81 if (this->dev_ready)
82 while (!this->dev_ready(mtd))
83 ;
84 else
85 CFG_NAND_READ_DELAY;
86
87 /* Emulate NAND_CMD_READOOB */
88 if (cmd == NAND_CMD_READOOB) {
89 offs += CFG_NAND_PAGE_SIZE;
90 cmd = NAND_CMD_READ0;
91 }
92
93 /* Begin command latch cycle */
94 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
95 /* Set ALE and clear CLE to start address cycle */
96 /* Column address */
97 this->cmd_ctrl(mtd, offs & 0xff,
98 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
99 this->cmd_ctrl(mtd, (offs >> 8) & 0xff, 0); /* A[11:9] */
100 /* Row address */
101 this->cmd_ctrl(mtd, (page_addr & 0xff), 0); /* A[19:12] */
102 this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff), 0); /* A[27:20] */
103 #ifdef CFG_NAND_5_ADDR_CYCLE
104 /* One more address cycle for devices > 128MiB */
105 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[31:28] */
106 #endif
107 /* Latch in address */
108 this->cmd_ctrl(mtd, NAND_CMD_READSTART,
109 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
110 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
111
112 /*
113 * Wait a while for the data to be ready
114 */
115 if (this->dev_ready)
116 while (!this->dev_ready(mtd))
117 ;
118 else
119 CFG_NAND_READ_DELAY;
120
121 return 0;
122 }
123 #endif
124
125 static int nand_is_bad_block(struct mtd_info *mtd, int block)
126 {
127 struct nand_chip *this = mtd->priv;
128
129 nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
130
131 /*
132 * Read one byte
133 */
134 if (readb(this->IO_ADDR_R) != 0xff)
135 return 1;
136
137 return 0;
138 }
139
140 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
141 {
142 struct nand_chip *this = mtd->priv;
143 u_char *ecc_calc;
144 u_char *ecc_code;
145 u_char *oob_data;
146 int i;
147 int eccsize = CFG_NAND_ECCSIZE;
148 int eccbytes = CFG_NAND_ECCBYTES;
149 int eccsteps = CFG_NAND_ECCSTEPS;
150 uint8_t *p = dst;
151 int stat;
152
153 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
154
155 /* No malloc available for now, just use some temporary locations
156 * in SDRAM
157 */
158 ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000);
159 ecc_code = ecc_calc + 0x100;
160 oob_data = ecc_calc + 0x200;
161
162 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
163 this->ecc.hwctl(mtd, NAND_ECC_READ);
164 this->read_buf(mtd, p, eccsize);
165 this->ecc.calculate(mtd, p, &ecc_calc[i]);
166 }
167 this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE);
168
169 /* Pick the ECC bytes out of the oob data */
170 for (i = 0; i < CFG_NAND_ECCTOTAL; i++)
171 ecc_code[i] = oob_data[nand_ecc_pos[i]];
172
173 eccsteps = CFG_NAND_ECCSTEPS;
174 p = dst;
175
176 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
177 /* No chance to do something with the possible error message
178 * from correct_data(). We just hope that all possible errors
179 * are corrected by this routine.
180 */
181 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
182 }
183
184 return 0;
185 }
186
187 static int nand_load(struct mtd_info *mtd, unsigned int offs,
188 unsigned int uboot_size, uchar *dst)
189 {
190 unsigned int block, lastblock;
191 unsigned int page;
192
193 /*
194 * offs has to be aligned to a page address!
195 */
196 block = offs / CFG_NAND_BLOCK_SIZE;
197 lastblock = (offs + uboot_size - 1) / CFG_NAND_BLOCK_SIZE;
198 page = (offs % CFG_NAND_BLOCK_SIZE) / CFG_NAND_PAGE_SIZE;
199
200 while (block <= lastblock) {
201 if (!nand_is_bad_block(mtd, block)) {
202 /*
203 * Skip bad blocks
204 */
205 while (page < CFG_NAND_PAGE_COUNT) {
206 nand_read_page(mtd, block, page, dst);
207 dst += CFG_NAND_PAGE_SIZE;
208 page++;
209 }
210
211 page = 0;
212 } else {
213 lastblock++;
214 }
215
216 block++;
217 }
218
219 return 0;
220 }
221
222 /*
223 * The main entry for NAND booting. It's necessary that SDRAM is already
224 * configured and available since this code loads the main U-Boot image
225 * from NAND into SDRAM and starts it from there.
226 */
227 void nand_boot(void)
228 {
229 struct nand_chip nand_chip;
230 nand_info_t nand_info;
231 int ret;
232 __attribute__((noreturn)) void (*uboot)(void);
233
234 /*
235 * Init board specific nand support
236 */
237 nand_info.priv = &nand_chip;
238 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CFG_NAND_BASE;
239 nand_chip.dev_ready = NULL; /* preset to NULL */
240 board_nand_init(&nand_chip);
241
242 if (nand_chip.select_chip)
243 nand_chip.select_chip(&nand_info, 0);
244
245 /*
246 * Load U-Boot image from NAND into RAM
247 */
248 ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE,
249 (uchar *)CFG_NAND_U_BOOT_DST);
250
251 if (nand_chip.select_chip)
252 nand_chip.select_chip(&nand_info, -1);
253
254 /*
255 * Jump to U-Boot image
256 */
257 uboot = (void *)CFG_NAND_U_BOOT_START;
258 (*uboot)();
259 }