]> git.ipfire.org Git - people/ms/u-boot.git/blob - nand_spl/nand_boot.c
Merge branch 'cleanups' into next
[people/ms/u-boot.git] / nand_spl / nand_boot.c
1 /*
2 * (C) Copyright 2006-2008
3 * Stefan Roese, DENX Software Engineering, sr@denx.de.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18 * MA 02111-1307 USA
19 */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 #define CONFIG_SYS_NAND_READ_DELAY \
26 { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
27
28 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
29
30 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
31 /*
32 * NAND command for small page NAND devices (512)
33 */
34 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
35 {
36 struct nand_chip *this = mtd->priv;
37 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
38
39 if (this->dev_ready)
40 while (!this->dev_ready(mtd))
41 ;
42 else
43 CONFIG_SYS_NAND_READ_DELAY;
44
45 /* Begin command latch cycle */
46 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
47 /* Set ALE and clear CLE to start address cycle */
48 /* Column address */
49 this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
50 this->cmd_ctrl(mtd, page_addr & 0xff, 0); /* A[16:9] */
51 this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff, 0); /* A[24:17] */
52 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
53 /* One more address cycle for devices > 32MiB */
54 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[28:25] */
55 #endif
56 /* Latch in address */
57 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
58
59 /*
60 * Wait a while for the data to be ready
61 */
62 if (this->dev_ready)
63 while (!this->dev_ready(mtd))
64 ;
65 else
66 CONFIG_SYS_NAND_READ_DELAY;
67
68 return 0;
69 }
70 #else
71 /*
72 * NAND command for large page NAND devices (2k)
73 */
74 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
75 {
76 struct nand_chip *this = mtd->priv;
77 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
78
79 if (this->dev_ready)
80 while (!this->dev_ready(mtd))
81 ;
82 else
83 CONFIG_SYS_NAND_READ_DELAY;
84
85 /* Emulate NAND_CMD_READOOB */
86 if (cmd == NAND_CMD_READOOB) {
87 offs += CONFIG_SYS_NAND_PAGE_SIZE;
88 cmd = NAND_CMD_READ0;
89 }
90
91 /* Begin command latch cycle */
92 this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
93 /* Set ALE and clear CLE to start address cycle */
94 /* Column address */
95 this->cmd_ctrl(mtd, offs & 0xff,
96 NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
97 this->cmd_ctrl(mtd, (offs >> 8) & 0xff, 0); /* A[11:9] */
98 /* Row address */
99 this->cmd_ctrl(mtd, (page_addr & 0xff), 0); /* A[19:12] */
100 this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff), 0); /* A[27:20] */
101 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
102 /* One more address cycle for devices > 128MiB */
103 this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f, 0); /* A[31:28] */
104 #endif
105 /* Latch in address */
106 this->cmd_ctrl(mtd, NAND_CMD_READSTART,
107 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
108 this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
109
110 /*
111 * Wait a while for the data to be ready
112 */
113 if (this->dev_ready)
114 while (!this->dev_ready(mtd))
115 ;
116 else
117 CONFIG_SYS_NAND_READ_DELAY;
118
119 return 0;
120 }
121 #endif
122
123 static int nand_is_bad_block(struct mtd_info *mtd, int block)
124 {
125 struct nand_chip *this = mtd->priv;
126
127 nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
128
129 /*
130 * Read one byte
131 */
132 if (readb(this->IO_ADDR_R) != 0xff)
133 return 1;
134
135 return 0;
136 }
137
138 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
139 {
140 struct nand_chip *this = mtd->priv;
141 u_char *ecc_calc;
142 u_char *ecc_code;
143 u_char *oob_data;
144 int i;
145 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
146 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
147 int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
148 uint8_t *p = dst;
149 int stat;
150
151 nand_command(mtd, block, page, 0, NAND_CMD_READ0);
152
153 /* No malloc available for now, just use some temporary locations
154 * in SDRAM
155 */
156 ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
157 ecc_code = ecc_calc + 0x100;
158 oob_data = ecc_calc + 0x200;
159
160 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
161 this->ecc.hwctl(mtd, NAND_ECC_READ);
162 this->read_buf(mtd, p, eccsize);
163 this->ecc.calculate(mtd, p, &ecc_calc[i]);
164 }
165 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
166
167 /* Pick the ECC bytes out of the oob data */
168 for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
169 ecc_code[i] = oob_data[nand_ecc_pos[i]];
170
171 eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
172 p = dst;
173
174 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
175 /* No chance to do something with the possible error message
176 * from correct_data(). We just hope that all possible errors
177 * are corrected by this routine.
178 */
179 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
180 }
181
182 return 0;
183 }
184
185 static int nand_load(struct mtd_info *mtd, unsigned int offs,
186 unsigned int uboot_size, uchar *dst)
187 {
188 unsigned int block, lastblock;
189 unsigned int page;
190
191 /*
192 * offs has to be aligned to a page address!
193 */
194 block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
195 lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
196 page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
197
198 while (block <= lastblock) {
199 if (!nand_is_bad_block(mtd, block)) {
200 /*
201 * Skip bad blocks
202 */
203 while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
204 nand_read_page(mtd, block, page, dst);
205 dst += CONFIG_SYS_NAND_PAGE_SIZE;
206 page++;
207 }
208
209 page = 0;
210 } else {
211 lastblock++;
212 }
213
214 block++;
215 }
216
217 return 0;
218 }
219
220 /*
221 * The main entry for NAND booting. It's necessary that SDRAM is already
222 * configured and available since this code loads the main U-Boot image
223 * from NAND into SDRAM and starts it from there.
224 */
225 void nand_boot(void)
226 {
227 struct nand_chip nand_chip;
228 nand_info_t nand_info;
229 int ret;
230 __attribute__((noreturn)) void (*uboot)(void);
231
232 /*
233 * Init board specific nand support
234 */
235 nand_info.priv = &nand_chip;
236 nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
237 nand_chip.dev_ready = NULL; /* preset to NULL */
238 board_nand_init(&nand_chip);
239
240 if (nand_chip.select_chip)
241 nand_chip.select_chip(&nand_info, 0);
242
243 /*
244 * Load U-Boot image from NAND into RAM
245 */
246 ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
247 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
248
249 if (nand_chip.select_chip)
250 nand_chip.select_chip(&nand_info, -1);
251
252 /*
253 * Jump to U-Boot image
254 */
255 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
256 (*uboot)();
257 }