]> git.ipfire.org Git - thirdparty/bird.git/blob - nest/rt-attr.c
edf27d4457e30d4d1efd9da02d1f9feee12f74bb
[thirdparty/bird.git] / nest / rt-attr.c
1 /*
2 * BIRD -- Route Attribute Cache
3 *
4 * (c) 1998--2000 Martin Mares <mj@ucw.cz>
5 *
6 * Can be freely distributed and used under the terms of the GNU GPL.
7 */
8
9 /**
10 * DOC: Route attribute cache
11 *
12 * Each route entry carries a set of route attributes. Several of them
13 * vary from route to route, but most attributes are usually common
14 * for a large number of routes. To conserve memory, we've decided to
15 * store only the varying ones directly in the &rte and hold the rest
16 * in a special structure called &rta which is shared among all the
17 * &rte's with these attributes.
18 *
19 * Each &rta contains all the static attributes of the route (i.e.,
20 * those which are always present) as structure members and a list of
21 * dynamic attributes represented by a linked list of &ea_list
22 * structures, each of them consisting of an array of &eattr's containing
23 * the individual attributes. An attribute can be specified more than once
24 * in the &ea_list chain and in such case the first occurrence overrides
25 * the others. This semantics is used especially when someone (for example
26 * a filter) wishes to alter values of several dynamic attributes, but
27 * it wants to preserve the original attribute lists maintained by
28 * another module.
29 *
30 * Each &eattr contains an attribute identifier (split to protocol ID and
31 * per-protocol attribute ID), protocol dependent flags, a type code (consisting
32 * of several bit fields describing attribute characteristics) and either an
33 * embedded 32-bit value or a pointer to a &adata structure holding attribute
34 * contents.
35 *
36 * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
37 * &rta's can have arbitrarily complex structure of &ea_list's and they
38 * can be modified by any module in the route processing chain. Cached
39 * &rta's have their attribute lists normalized (that means at most one
40 * &ea_list is present and its values are sorted in order to speed up
41 * searching), they are stored in a hash table to make fast lookup possible
42 * and they are provided with a use count to allow sharing.
43 *
44 * Routing tables always contain only cached &rta's.
45 */
46
47 #include "nest/bird.h"
48 #include "nest/route.h"
49 #include "nest/protocol.h"
50 #include "nest/iface.h"
51 #include "nest/cli.h"
52 #include "nest/attrs.h"
53 #include "lib/alloca.h"
54 #include "lib/hash.h"
55 #include "lib/resource.h"
56 #include "lib/string.h"
57
58 pool *rta_pool;
59
60 static slab *rta_slab;
61 static slab *mpnh_slab;
62 static slab *rte_src_slab;
63
64 /* rte source ID bitmap */
65 static u32 *src_ids;
66 static u32 src_id_size, src_id_used, src_id_pos;
67 #define SRC_ID_INIT_SIZE 4
68
69 /* rte source hash */
70
71 #define RSH_KEY(n) n->proto, n->private_id
72 #define RSH_NEXT(n) n->next
73 #define RSH_EQ(p1,n1,p2,n2) p1 == p2 && n1 == n2
74 #define RSH_FN(p,n) p->hash_key ^ u32_hash(n)
75
76 #define RSH_REHASH rte_src_rehash
77 #define RSH_PARAMS /2, *2, 1, 1, 8, 20
78 #define RSH_INIT_ORDER 6
79
80 static HASH(struct rte_src) src_hash;
81
82 struct protocol *attr_class_to_protocol[EAP_MAX];
83
84
85 static void
86 rte_src_init(void)
87 {
88 rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
89
90 src_id_pos = 0;
91 src_id_size = SRC_ID_INIT_SIZE;
92 src_ids = mb_allocz(rta_pool, src_id_size * sizeof(u32));
93
94 /* ID 0 is reserved */
95 src_ids[0] = 1;
96 src_id_used = 1;
97
98 HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
99 }
100
101 static inline int u32_cto(uint x) { return ffs(~x) - 1; }
102
103 static inline u32
104 rte_src_alloc_id(void)
105 {
106 uint i, j;
107 for (i = src_id_pos; i < src_id_size; i++)
108 if (src_ids[i] != 0xffffffff)
109 goto found;
110
111 /* If we are at least 7/8 full, expand */
112 if (src_id_used > (src_id_size * 28))
113 {
114 src_id_size *= 2;
115 src_ids = mb_realloc(src_ids, src_id_size * sizeof(u32));
116 bzero(src_ids + i, (src_id_size - i) * sizeof(u32));
117 goto found;
118 }
119
120 for (i = 0; i < src_id_pos; i++)
121 if (src_ids[i] != 0xffffffff)
122 goto found;
123
124 ASSERT(0);
125
126 found:
127 ASSERT(i < 0x8000000);
128
129 src_id_pos = i;
130 j = u32_cto(src_ids[i]);
131
132 src_ids[i] |= (1 << j);
133 src_id_used++;
134 return 32 * i + j;
135 }
136
137 static inline void
138 rte_src_free_id(u32 id)
139 {
140 int i = id / 32;
141 int j = id % 32;
142
143 ASSERT((i < src_id_size) && (src_ids[i] & (1 << j)));
144 src_ids[i] &= ~(1 << j);
145 src_id_used--;
146 }
147
148
149 HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
150
151 struct rte_src *
152 rt_find_source(struct proto *p, u32 id)
153 {
154 return HASH_FIND(src_hash, RSH, p, id);
155 }
156
157 struct rte_src *
158 rt_get_source(struct proto *p, u32 id)
159 {
160 struct rte_src *src = rt_find_source(p, id);
161
162 if (src)
163 return src;
164
165 src = sl_alloc(rte_src_slab);
166 src->proto = p;
167 src->private_id = id;
168 src->global_id = rte_src_alloc_id();
169 src->uc = 0;
170
171 HASH_INSERT2(src_hash, RSH, rta_pool, src);
172
173 return src;
174 }
175
176 void
177 rt_prune_sources(void)
178 {
179 HASH_WALK_FILTER(src_hash, next, src, sp)
180 {
181 if (src->uc == 0)
182 {
183 HASH_DO_REMOVE(src_hash, RSH, sp);
184 rte_src_free_id(src->global_id);
185 sl_free(rte_src_slab, src);
186 }
187 }
188 HASH_WALK_FILTER_END;
189
190 HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
191 }
192
193
194 /*
195 * Multipath Next Hop
196 */
197
198 static inline uint
199 mpnh_hash(struct mpnh *x)
200 {
201 uint h = 0;
202 for (; x; x = x->next)
203 h ^= ipa_hash(x->gw);
204
205 return h;
206 }
207
208 int
209 mpnh__same(struct mpnh *x, struct mpnh *y)
210 {
211 for (; x && y; x = x->next, y = y->next)
212 if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) || (x->weight != y->weight))
213 return 0;
214
215 return x == y;
216 }
217
218 static int
219 mpnh_compare_node(struct mpnh *x, struct mpnh *y)
220 {
221 int r;
222
223 if (!x)
224 return 1;
225
226 if (!y)
227 return -1;
228
229 r = ((int) y->weight) - ((int) x->weight);
230 if (r)
231 return r;
232
233 r = ipa_compare(x->gw, y->gw);
234 if (r)
235 return r;
236
237 return ((int) x->iface->index) - ((int) y->iface->index);
238 }
239
240 static inline struct mpnh *
241 mpnh_copy_node(const struct mpnh *src, linpool *lp)
242 {
243 struct mpnh *n = lp_alloc(lp, sizeof(struct mpnh));
244 n->gw = src->gw;
245 n->iface = src->iface;
246 n->next = NULL;
247 n->weight = src->weight;
248 return n;
249 }
250
251 /**
252 * mpnh_merge - merge nexthop lists
253 * @x: list 1
254 * @y: list 2
255 * @rx: reusability of list @x
256 * @ry: reusability of list @y
257 * @max: max number of nexthops
258 * @lp: linpool for allocating nexthops
259 *
260 * The mpnh_merge() function takes two nexthop lists @x and @y and merges them,
261 * eliminating possible duplicates. The input lists must be sorted and the
262 * result is sorted too. The number of nexthops in result is limited by @max.
263 * New nodes are allocated from linpool @lp.
264 *
265 * The arguments @rx and @ry specify whether corresponding input lists may be
266 * consumed by the function (i.e. their nodes reused in the resulting list), in
267 * that case the caller should not access these lists after that. To eliminate
268 * issues with deallocation of these lists, the caller should use some form of
269 * bulk deallocation (e.g. stack or linpool) to free these nodes when the
270 * resulting list is no longer needed. When reusability is not set, the
271 * corresponding lists are not modified nor linked from the resulting list.
272 */
273 struct mpnh *
274 mpnh_merge(struct mpnh *x, struct mpnh *y, int rx, int ry, int max, linpool *lp)
275 {
276 struct mpnh *root = NULL;
277 struct mpnh **n = &root;
278
279 while ((x || y) && max--)
280 {
281 int cmp = mpnh_compare_node(x, y);
282 if (cmp < 0)
283 {
284 *n = rx ? x : mpnh_copy_node(x, lp);
285 x = x->next;
286 }
287 else if (cmp > 0)
288 {
289 *n = ry ? y : mpnh_copy_node(y, lp);
290 y = y->next;
291 }
292 else
293 {
294 *n = rx ? x : (ry ? y : mpnh_copy_node(x, lp));
295 x = x->next;
296 y = y->next;
297 }
298 n = &((*n)->next);
299 }
300 *n = NULL;
301
302 return root;
303 }
304
305 void
306 mpnh_insert(struct mpnh **n, struct mpnh *x)
307 {
308 for (; *n; n = &((*n)->next))
309 {
310 int cmp = mpnh_compare_node(*n, x);
311
312 if (cmp < 0)
313 continue;
314 else if (cmp > 0)
315 break;
316 else
317 return;
318 }
319
320 x->next = *n;
321 *n = x;
322 }
323
324 int
325 mpnh_is_sorted(struct mpnh *x)
326 {
327 for (; x && x->next; x = x->next)
328 if (mpnh_compare_node(x, x->next) >= 0)
329 return 0;
330
331 return 1;
332 }
333
334 static struct mpnh *
335 mpnh_copy(struct mpnh *o)
336 {
337 struct mpnh *first = NULL;
338 struct mpnh **last = &first;
339
340 for (; o; o = o->next)
341 {
342 struct mpnh *n = sl_alloc(mpnh_slab);
343 n->gw = o->gw;
344 n->iface = o->iface;
345 n->next = NULL;
346 n->weight = o->weight;
347
348 *last = n;
349 last = &(n->next);
350 }
351
352 return first;
353 }
354
355 static void
356 mpnh_free(struct mpnh *o)
357 {
358 struct mpnh *n;
359
360 while (o)
361 {
362 n = o->next;
363 sl_free(mpnh_slab, o);
364 o = n;
365 }
366 }
367
368
369 /*
370 * Extended Attributes
371 */
372
373 static inline eattr *
374 ea__find(ea_list *e, unsigned id)
375 {
376 eattr *a;
377 int l, r, m;
378
379 while (e)
380 {
381 if (e->flags & EALF_BISECT)
382 {
383 l = 0;
384 r = e->count - 1;
385 while (l <= r)
386 {
387 m = (l+r) / 2;
388 a = &e->attrs[m];
389 if (a->id == id)
390 return a;
391 else if (a->id < id)
392 l = m+1;
393 else
394 r = m-1;
395 }
396 }
397 else
398 for(m=0; m<e->count; m++)
399 if (e->attrs[m].id == id)
400 return &e->attrs[m];
401 e = e->next;
402 }
403 return NULL;
404 }
405
406 /**
407 * ea_find - find an extended attribute
408 * @e: attribute list to search in
409 * @id: attribute ID to search for
410 *
411 * Given an extended attribute list, ea_find() searches for a first
412 * occurrence of an attribute with specified ID, returning either a pointer
413 * to its &eattr structure or %NULL if no such attribute exists.
414 */
415 eattr *
416 ea_find(ea_list *e, unsigned id)
417 {
418 eattr *a = ea__find(e, id & EA_CODE_MASK);
419
420 if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
421 !(id & EA_ALLOW_UNDEF))
422 return NULL;
423 return a;
424 }
425
426 /**
427 * ea_walk - walk through extended attributes
428 * @s: walk state structure
429 * @id: start of attribute ID interval
430 * @max: length of attribute ID interval
431 *
432 * Given an extended attribute list, ea_walk() walks through the list looking
433 * for first occurrences of attributes with ID in specified interval from @id to
434 * (@id + @max - 1), returning pointers to found &eattr structures, storing its
435 * walk state in @s for subsequent calls.
436 *
437 * The function ea_walk() is supposed to be called in a loop, with initially
438 * zeroed walk state structure @s with filled the initial extended attribute
439 * list, returning one found attribute in each call or %NULL when no other
440 * attribute exists. The extended attribute list or the arguments should not be
441 * modified between calls. The maximum value of @max is 128.
442 */
443 eattr *
444 ea_walk(struct ea_walk_state *s, uint id, uint max)
445 {
446 ea_list *e = s->eattrs;
447 eattr *a = s->ea;
448 eattr *a_max;
449
450 max = id + max;
451
452 if (a)
453 goto step;
454
455 for (; e; e = e->next)
456 {
457 if (e->flags & EALF_BISECT)
458 {
459 int l, r, m;
460
461 l = 0;
462 r = e->count - 1;
463 while (l < r)
464 {
465 m = (l+r) / 2;
466 if (e->attrs[m].id < id)
467 l = m + 1;
468 else
469 r = m;
470 }
471 a = e->attrs + l;
472 }
473 else
474 a = e->attrs;
475
476 step:
477 a_max = e->attrs + e->count;
478 for (; a < a_max; a++)
479 if ((a->id >= id) && (a->id < max))
480 {
481 int n = a->id - id;
482
483 if (BIT32_TEST(s->visited, n))
484 continue;
485
486 BIT32_SET(s->visited, n);
487
488 if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
489 continue;
490
491 s->eattrs = e;
492 s->ea = a;
493 return a;
494 }
495 else if (e->flags & EALF_BISECT)
496 break;
497 }
498
499 return NULL;
500 }
501
502 /**
503 * ea_get_int - fetch an integer attribute
504 * @e: attribute list
505 * @id: attribute ID
506 * @def: default value
507 *
508 * This function is a shortcut for retrieving a value of an integer attribute
509 * by calling ea_find() to find the attribute, extracting its value or returning
510 * a provided default if no such attribute is present.
511 */
512 int
513 ea_get_int(ea_list *e, unsigned id, int def)
514 {
515 eattr *a = ea_find(e, id);
516 if (!a)
517 return def;
518 return a->u.data;
519 }
520
521 static inline void
522 ea_do_sort(ea_list *e)
523 {
524 unsigned n = e->count;
525 eattr *a = e->attrs;
526 eattr *b = alloca(n * sizeof(eattr));
527 unsigned s, ss;
528
529 /* We need to use a stable sorting algorithm, hence mergesort */
530 do
531 {
532 s = ss = 0;
533 while (s < n)
534 {
535 eattr *p, *q, *lo, *hi;
536 p = b;
537 ss = s;
538 *p++ = a[s++];
539 while (s < n && p[-1].id <= a[s].id)
540 *p++ = a[s++];
541 if (s < n)
542 {
543 q = p;
544 *p++ = a[s++];
545 while (s < n && p[-1].id <= a[s].id)
546 *p++ = a[s++];
547 lo = b;
548 hi = q;
549 s = ss;
550 while (lo < q && hi < p)
551 if (lo->id <= hi->id)
552 a[s++] = *lo++;
553 else
554 a[s++] = *hi++;
555 while (lo < q)
556 a[s++] = *lo++;
557 while (hi < p)
558 a[s++] = *hi++;
559 }
560 }
561 }
562 while (ss);
563 }
564
565 static inline void
566 ea_do_prune(ea_list *e)
567 {
568 eattr *s, *d, *l, *s0;
569 int i = 0;
570
571 /* Discard duplicates and undefs. Do you remember sorting was stable? */
572 s = d = e->attrs;
573 l = e->attrs + e->count;
574 while (s < l)
575 {
576 s0 = s++;
577 while (s < l && s->id == s[-1].id)
578 s++;
579 /* s0 is the most recent version, s[-1] the oldest one */
580 if ((s0->type & EAF_TYPE_MASK) != EAF_TYPE_UNDEF)
581 {
582 *d = *s0;
583 d->type = (d->type & ~EAF_ORIGINATED) | (s[-1].type & EAF_ORIGINATED);
584 d++;
585 i++;
586 }
587 }
588 e->count = i;
589 }
590
591 /**
592 * ea_sort - sort an attribute list
593 * @e: list to be sorted
594 *
595 * This function takes a &ea_list chain and sorts the attributes
596 * within each of its entries.
597 *
598 * If an attribute occurs multiple times in a single &ea_list,
599 * ea_sort() leaves only the first (the only significant) occurrence.
600 */
601 void
602 ea_sort(ea_list *e)
603 {
604 while (e)
605 {
606 if (!(e->flags & EALF_SORTED))
607 {
608 ea_do_sort(e);
609 ea_do_prune(e);
610 e->flags |= EALF_SORTED;
611 }
612 if (e->count > 5)
613 e->flags |= EALF_BISECT;
614 e = e->next;
615 }
616 }
617
618 /**
619 * ea_scan - estimate attribute list size
620 * @e: attribute list
621 *
622 * This function calculates an upper bound of the size of
623 * a given &ea_list after merging with ea_merge().
624 */
625 unsigned
626 ea_scan(ea_list *e)
627 {
628 unsigned cnt = 0;
629
630 while (e)
631 {
632 cnt += e->count;
633 e = e->next;
634 }
635 return sizeof(ea_list) + sizeof(eattr)*cnt;
636 }
637
638 /**
639 * ea_merge - merge segments of an attribute list
640 * @e: attribute list
641 * @t: buffer to store the result to
642 *
643 * This function takes a possibly multi-segment attribute list
644 * and merges all of its segments to one.
645 *
646 * The primary use of this function is for &ea_list normalization:
647 * first call ea_scan() to determine how much memory will the result
648 * take, then allocate a buffer (usually using alloca()), merge the
649 * segments with ea_merge() and finally sort and prune the result
650 * by calling ea_sort().
651 */
652 void
653 ea_merge(ea_list *e, ea_list *t)
654 {
655 eattr *d = t->attrs;
656
657 t->flags = 0;
658 t->count = 0;
659 t->next = NULL;
660 while (e)
661 {
662 memcpy(d, e->attrs, sizeof(eattr)*e->count);
663 t->count += e->count;
664 d += e->count;
665 e = e->next;
666 }
667 }
668
669 /**
670 * ea_same - compare two &ea_list's
671 * @x: attribute list
672 * @y: attribute list
673 *
674 * ea_same() compares two normalized attribute lists @x and @y and returns
675 * 1 if they contain the same attributes, 0 otherwise.
676 */
677 int
678 ea_same(ea_list *x, ea_list *y)
679 {
680 int c;
681
682 if (!x || !y)
683 return x == y;
684 ASSERT(!x->next && !y->next);
685 if (x->count != y->count)
686 return 0;
687 for(c=0; c<x->count; c++)
688 {
689 eattr *a = &x->attrs[c];
690 eattr *b = &y->attrs[c];
691
692 if (a->id != b->id ||
693 a->flags != b->flags ||
694 a->type != b->type ||
695 ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
696 return 0;
697 }
698 return 1;
699 }
700
701 static inline ea_list *
702 ea_list_copy(ea_list *o)
703 {
704 ea_list *n;
705 unsigned i, len;
706
707 if (!o)
708 return NULL;
709 ASSERT(!o->next);
710 len = sizeof(ea_list) + sizeof(eattr) * o->count;
711 n = mb_alloc(rta_pool, len);
712 memcpy(n, o, len);
713 n->flags |= EALF_CACHED;
714 for(i=0; i<o->count; i++)
715 {
716 eattr *a = &n->attrs[i];
717 if (!(a->type & EAF_EMBEDDED))
718 {
719 unsigned size = sizeof(struct adata) + a->u.ptr->length;
720 struct adata *d = mb_alloc(rta_pool, size);
721 memcpy(d, a->u.ptr, size);
722 a->u.ptr = d;
723 }
724 }
725 return n;
726 }
727
728 static inline void
729 ea_free(ea_list *o)
730 {
731 int i;
732
733 if (o)
734 {
735 ASSERT(!o->next);
736 for(i=0; i<o->count; i++)
737 {
738 eattr *a = &o->attrs[i];
739 if (!(a->type & EAF_EMBEDDED))
740 mb_free(a->u.ptr);
741 }
742 mb_free(o);
743 }
744 }
745
746 static int
747 get_generic_attr(eattr *a, byte **buf, int buflen UNUSED)
748 {
749 if (a->id == EA_GEN_IGP_METRIC)
750 {
751 *buf += bsprintf(*buf, "igp_metric");
752 return GA_NAME;
753 }
754
755 return GA_UNKNOWN;
756 }
757
758 void
759 ea_format_bitfield(struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
760 {
761 byte *bound = buf + bufsize - 32;
762 u32 data = a->u.data;
763 int i;
764
765 for (i = min; i < max; i++)
766 if ((data & (1u << i)) && names[i])
767 {
768 if (buf > bound)
769 {
770 strcpy(buf, " ...");
771 return;
772 }
773
774 buf += bsprintf(buf, " %s", names[i]);
775 data &= ~(1u << i);
776 }
777
778 if (data)
779 bsprintf(buf, " %08x", data);
780
781 return;
782 }
783
784 static inline void
785 opaque_format(struct adata *ad, byte *buf, uint size)
786 {
787 byte *bound = buf + size - 10;
788 uint i;
789
790 for(i = 0; i < ad->length; i++)
791 {
792 if (buf > bound)
793 {
794 strcpy(buf, " ...");
795 return;
796 }
797 if (i)
798 *buf++ = ' ';
799
800 buf += bsprintf(buf, "%02x", ad->data[i]);
801 }
802
803 *buf = 0;
804 return;
805 }
806
807 static inline void
808 ea_show_int_set(struct cli *c, struct adata *ad, int way, byte *pos, byte *buf, byte *end)
809 {
810 int i = int_set_format(ad, way, 0, pos, end - pos);
811 cli_printf(c, -1012, "\t%s", buf);
812 while (i)
813 {
814 i = int_set_format(ad, way, i, buf, end - buf - 1);
815 cli_printf(c, -1012, "\t\t%s", buf);
816 }
817 }
818
819 static inline void
820 ea_show_ec_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
821 {
822 int i = ec_set_format(ad, 0, pos, end - pos);
823 cli_printf(c, -1012, "\t%s", buf);
824 while (i)
825 {
826 i = ec_set_format(ad, i, buf, end - buf - 1);
827 cli_printf(c, -1012, "\t\t%s", buf);
828 }
829 }
830
831 static inline void
832 ea_show_lc_set(struct cli *c, struct adata *ad, byte *pos, byte *buf, byte *end)
833 {
834 int i = lc_set_format(ad, 0, pos, end - pos);
835 cli_printf(c, -1012, "\t%s", buf);
836 while (i)
837 {
838 i = lc_set_format(ad, i, buf, end - buf - 1);
839 cli_printf(c, -1012, "\t\t%s", buf);
840 }
841 }
842
843 /**
844 * ea_show - print an &eattr to CLI
845 * @c: destination CLI
846 * @e: attribute to be printed
847 *
848 * This function takes an extended attribute represented by its &eattr
849 * structure and prints it to the CLI according to the type information.
850 *
851 * If the protocol defining the attribute provides its own
852 * get_attr() hook, it's consulted first.
853 */
854 void
855 ea_show(struct cli *c, eattr *e)
856 {
857 struct protocol *p;
858 int status = GA_UNKNOWN;
859 struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
860 byte buf[CLI_MSG_SIZE];
861 byte *pos = buf, *end = buf + sizeof(buf);
862
863 if (p = attr_class_to_protocol[EA_PROTO(e->id)])
864 {
865 pos += bsprintf(pos, "%s.", p->name);
866 if (p->get_attr)
867 status = p->get_attr(e, pos, end - pos);
868 pos += strlen(pos);
869 }
870 else if (EA_PROTO(e->id))
871 pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
872 else
873 status = get_generic_attr(e, &pos, end - pos);
874
875 if (status < GA_NAME)
876 pos += bsprintf(pos, "%02x", EA_ID(e->id));
877 if (status < GA_FULL)
878 {
879 *pos++ = ':';
880 *pos++ = ' ';
881 switch (e->type & EAF_TYPE_MASK)
882 {
883 case EAF_TYPE_INT:
884 bsprintf(pos, "%u", e->u.data);
885 break;
886 case EAF_TYPE_OPAQUE:
887 opaque_format(ad, pos, end - pos);
888 break;
889 case EAF_TYPE_IP_ADDRESS:
890 bsprintf(pos, "%I", *(ip_addr *) ad->data);
891 break;
892 case EAF_TYPE_ROUTER_ID:
893 bsprintf(pos, "%R", e->u.data);
894 break;
895 case EAF_TYPE_AS_PATH:
896 as_path_format(ad, pos, end - pos);
897 break;
898 case EAF_TYPE_BITFIELD:
899 bsprintf(pos, "%08x", e->u.data);
900 break;
901 case EAF_TYPE_INT_SET:
902 ea_show_int_set(c, ad, 1, pos, buf, end);
903 return;
904 case EAF_TYPE_EC_SET:
905 ea_show_ec_set(c, ad, pos, buf, end);
906 return;
907 case EAF_TYPE_LC_SET:
908 ea_show_lc_set(c, ad, pos, buf, end);
909 return;
910 case EAF_TYPE_UNDEF:
911 default:
912 bsprintf(pos, "<type %02x>", e->type);
913 }
914 }
915 cli_printf(c, -1012, "\t%s", buf);
916 }
917
918 /**
919 * ea_dump - dump an extended attribute
920 * @e: attribute to be dumped
921 *
922 * ea_dump() dumps contents of the extended attribute given to
923 * the debug output.
924 */
925 void
926 ea_dump(ea_list *e)
927 {
928 int i;
929
930 if (!e)
931 {
932 debug("NONE");
933 return;
934 }
935 while (e)
936 {
937 debug("[%c%c%c]",
938 (e->flags & EALF_SORTED) ? 'S' : 's',
939 (e->flags & EALF_BISECT) ? 'B' : 'b',
940 (e->flags & EALF_CACHED) ? 'C' : 'c');
941 for(i=0; i<e->count; i++)
942 {
943 eattr *a = &e->attrs[i];
944 debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
945 if (a->type & EAF_TEMP)
946 debug("T");
947 debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
948 if (a->type & EAF_ORIGINATED)
949 debug("o");
950 if (a->type & EAF_EMBEDDED)
951 debug(":%08x", a->u.data);
952 else
953 {
954 int j, len = a->u.ptr->length;
955 debug("[%d]:", len);
956 for(j=0; j<len; j++)
957 debug("%02x", a->u.ptr->data[j]);
958 }
959 }
960 if (e = e->next)
961 debug(" | ");
962 }
963 }
964
965 /**
966 * ea_hash - calculate an &ea_list hash key
967 * @e: attribute list
968 *
969 * ea_hash() takes an extended attribute list and calculated a hopefully
970 * uniformly distributed hash value from its contents.
971 */
972 inline uint
973 ea_hash(ea_list *e)
974 {
975 u32 h = 0;
976 int i;
977
978 if (e) /* Assuming chain of length 1 */
979 {
980 for(i=0; i<e->count; i++)
981 {
982 struct eattr *a = &e->attrs[i];
983 h ^= a->id;
984 if (a->type & EAF_EMBEDDED)
985 h ^= a->u.data;
986 else
987 {
988 struct adata *d = a->u.ptr;
989 int size = d->length;
990 byte *z = d->data;
991 while (size >= 4)
992 {
993 h ^= *(u32 *)z;
994 z += 4;
995 size -= 4;
996 }
997 while (size--)
998 h = (h >> 24) ^ (h << 8) ^ *z++;
999 }
1000 }
1001 h ^= h >> 16;
1002 h ^= h >> 6;
1003 h &= 0xffff;
1004 }
1005 return h;
1006 }
1007
1008 /**
1009 * ea_append - concatenate &ea_list's
1010 * @to: destination list (can be %NULL)
1011 * @what: list to be appended (can be %NULL)
1012 *
1013 * This function appends the &ea_list @what at the end of
1014 * &ea_list @to and returns a pointer to the resulting list.
1015 */
1016 ea_list *
1017 ea_append(ea_list *to, ea_list *what)
1018 {
1019 ea_list *res;
1020
1021 if (!to)
1022 return what;
1023 res = to;
1024 while (to->next)
1025 to = to->next;
1026 to->next = what;
1027 return res;
1028 }
1029
1030 /*
1031 * rta's
1032 */
1033
1034 static uint rta_cache_count;
1035 static uint rta_cache_size = 32;
1036 static uint rta_cache_limit;
1037 static uint rta_cache_mask;
1038 static rta **rta_hash_table;
1039
1040 static void
1041 rta_alloc_hash(void)
1042 {
1043 rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
1044 if (rta_cache_size < 32768)
1045 rta_cache_limit = rta_cache_size * 2;
1046 else
1047 rta_cache_limit = ~0;
1048 rta_cache_mask = rta_cache_size - 1;
1049 }
1050
1051 static inline uint
1052 rta_hash(rta *a)
1053 {
1054 return (((uint) (uintptr_t) a->src) ^ ipa_hash(a->gw) ^
1055 mpnh_hash(a->nexthops) ^ ea_hash(a->eattrs)) & 0xffff;
1056 }
1057
1058 static inline int
1059 rta_same(rta *x, rta *y)
1060 {
1061 return (x->src == y->src &&
1062 x->source == y->source &&
1063 x->scope == y->scope &&
1064 x->cast == y->cast &&
1065 x->dest == y->dest &&
1066 x->flags == y->flags &&
1067 x->igp_metric == y->igp_metric &&
1068 ipa_equal(x->gw, y->gw) &&
1069 ipa_equal(x->from, y->from) &&
1070 x->iface == y->iface &&
1071 x->hostentry == y->hostentry &&
1072 mpnh_same(x->nexthops, y->nexthops) &&
1073 ea_same(x->eattrs, y->eattrs));
1074 }
1075
1076 static rta *
1077 rta_copy(rta *o)
1078 {
1079 rta *r = sl_alloc(rta_slab);
1080
1081 memcpy(r, o, sizeof(rta));
1082 r->uc = 1;
1083 r->nexthops = mpnh_copy(o->nexthops);
1084 r->eattrs = ea_list_copy(o->eattrs);
1085 return r;
1086 }
1087
1088 static inline void
1089 rta_insert(rta *r)
1090 {
1091 uint h = r->hash_key & rta_cache_mask;
1092 r->next = rta_hash_table[h];
1093 if (r->next)
1094 r->next->pprev = &r->next;
1095 r->pprev = &rta_hash_table[h];
1096 rta_hash_table[h] = r;
1097 }
1098
1099 static void
1100 rta_rehash(void)
1101 {
1102 uint ohs = rta_cache_size;
1103 uint h;
1104 rta *r, *n;
1105 rta **oht = rta_hash_table;
1106
1107 rta_cache_size = 2*rta_cache_size;
1108 DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
1109 rta_alloc_hash();
1110 for(h=0; h<ohs; h++)
1111 for(r=oht[h]; r; r=n)
1112 {
1113 n = r->next;
1114 rta_insert(r);
1115 }
1116 mb_free(oht);
1117 }
1118
1119 /**
1120 * rta_lookup - look up a &rta in attribute cache
1121 * @o: a un-cached &rta
1122 *
1123 * rta_lookup() gets an un-cached &rta structure and returns its cached
1124 * counterpart. It starts with examining the attribute cache to see whether
1125 * there exists a matching entry. If such an entry exists, it's returned and
1126 * its use count is incremented, else a new entry is created with use count
1127 * set to 1.
1128 *
1129 * The extended attribute lists attached to the &rta are automatically
1130 * converted to the normalized form.
1131 */
1132 rta *
1133 rta_lookup(rta *o)
1134 {
1135 rta *r;
1136 uint h;
1137
1138 ASSERT(!(o->aflags & RTAF_CACHED));
1139 if (o->eattrs)
1140 {
1141 if (o->eattrs->next) /* Multiple ea_list's, need to merge them */
1142 {
1143 ea_list *ml = alloca(ea_scan(o->eattrs));
1144 ea_merge(o->eattrs, ml);
1145 o->eattrs = ml;
1146 }
1147 ea_sort(o->eattrs);
1148 }
1149
1150 h = rta_hash(o);
1151 for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
1152 if (r->hash_key == h && rta_same(r, o))
1153 return rta_clone(r);
1154
1155 r = rta_copy(o);
1156 r->hash_key = h;
1157 r->aflags = RTAF_CACHED;
1158 rt_lock_source(r->src);
1159 rt_lock_hostentry(r->hostentry);
1160 rta_insert(r);
1161
1162 if (++rta_cache_count > rta_cache_limit)
1163 rta_rehash();
1164
1165 return r;
1166 }
1167
1168 void
1169 rta__free(rta *a)
1170 {
1171 ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
1172 rta_cache_count--;
1173 *a->pprev = a->next;
1174 if (a->next)
1175 a->next->pprev = a->pprev;
1176 a->aflags = 0; /* Poison the entry */
1177 rt_unlock_hostentry(a->hostentry);
1178 rt_unlock_source(a->src);
1179 mpnh_free(a->nexthops);
1180 ea_free(a->eattrs);
1181 sl_free(rta_slab, a);
1182 }
1183
1184 rta *
1185 rta_do_cow(rta *o, linpool *lp)
1186 {
1187 rta *r = lp_alloc(lp, sizeof(rta));
1188 memcpy(r, o, sizeof(rta));
1189 r->aflags = 0;
1190 r->uc = 0;
1191 return r;
1192 }
1193
1194 /**
1195 * rta_dump - dump route attributes
1196 * @a: attribute structure to dump
1197 *
1198 * This function takes a &rta and dumps its contents to the debug output.
1199 */
1200 void
1201 rta_dump(rta *a)
1202 {
1203 static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
1204 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
1205 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
1206 "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
1207 static char *rtc[] = { "", " BC", " MC", " AC" };
1208 static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
1209
1210 debug("p=%s uc=%d %s %s%s%s h=%04x",
1211 a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope), rtc[a->cast],
1212 rtd[a->dest], a->hash_key);
1213 if (!(a->aflags & RTAF_CACHED))
1214 debug(" !CACHED");
1215 debug(" <-%I", a->from);
1216 if (a->dest == RTD_ROUTER)
1217 debug(" ->%I", a->gw);
1218 if (a->dest == RTD_DEVICE || a->dest == RTD_ROUTER)
1219 debug(" [%s]", a->iface ? a->iface->name : "???" );
1220 if (a->eattrs)
1221 {
1222 debug(" EA: ");
1223 ea_dump(a->eattrs);
1224 }
1225 }
1226
1227 /**
1228 * rta_dump_all - dump attribute cache
1229 *
1230 * This function dumps the whole contents of route attribute cache
1231 * to the debug output.
1232 */
1233 void
1234 rta_dump_all(void)
1235 {
1236 rta *a;
1237 uint h;
1238
1239 debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
1240 for(h=0; h<rta_cache_size; h++)
1241 for(a=rta_hash_table[h]; a; a=a->next)
1242 {
1243 debug("%p ", a);
1244 rta_dump(a);
1245 debug("\n");
1246 }
1247 debug("\n");
1248 }
1249
1250 void
1251 rta_show(struct cli *c, rta *a, ea_list *eal)
1252 {
1253 static char *src_names[] = { "dummy", "static", "inherit", "device", "static-device", "redirect",
1254 "RIP", "OSPF", "OSPF-IA", "OSPF-E1", "OSPF-E2", "BGP", "pipe" };
1255 static char *cast_names[] = { "unicast", "broadcast", "multicast", "anycast" };
1256 int i;
1257
1258 cli_printf(c, -1008, "\tType: %s %s %s", src_names[a->source], cast_names[a->cast], ip_scope_text(a->scope));
1259 if (!eal)
1260 eal = a->eattrs;
1261 for(; eal; eal=eal->next)
1262 for(i=0; i<eal->count; i++)
1263 ea_show(c, &eal->attrs[i]);
1264 }
1265
1266 /**
1267 * rta_init - initialize route attribute cache
1268 *
1269 * This function is called during initialization of the routing
1270 * table module to set up the internals of the attribute cache.
1271 */
1272 void
1273 rta_init(void)
1274 {
1275 rta_pool = rp_new(&root_pool, "Attributes");
1276 rta_slab = sl_new(rta_pool, sizeof(rta));
1277 mpnh_slab = sl_new(rta_pool, sizeof(struct mpnh));
1278 rta_alloc_hash();
1279 rte_src_init();
1280 }
1281
1282 /*
1283 * Documentation for functions declared inline in route.h
1284 */
1285 #if 0
1286
1287 /**
1288 * rta_clone - clone route attributes
1289 * @r: a &rta to be cloned
1290 *
1291 * rta_clone() takes a cached &rta and returns its identical cached
1292 * copy. Currently it works by just returning the original &rta with
1293 * its use count incremented.
1294 */
1295 static inline rta *rta_clone(rta *r)
1296 { DUMMY; }
1297
1298 /**
1299 * rta_free - free route attributes
1300 * @r: a &rta to be freed
1301 *
1302 * If you stop using a &rta (for example when deleting a route which uses
1303 * it), you need to call rta_free() to notify the attribute cache the
1304 * attribute is no longer in use and can be freed if you were the last
1305 * user (which rta_free() tests by inspecting the use count).
1306 */
1307 static inline void rta_free(rta *r)
1308 { DUMMY; }
1309
1310 #endif