]> git.ipfire.org Git - people/arne_f/kernel.git/blob - net/bluetooth/hci_core.c
Merge tag 'phy-for-4.14-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[people/arne_f/kernel.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59
60 /* ---- HCI debugfs entries ---- */
61
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64 {
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76 {
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113 }
114
115 static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120 };
121
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124 {
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136 {
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active or in user channel operation, then there is no need
152 * for the vendor callback. Instead just store the desired value and
153 * the setting will be programmed when the controller gets powered on.
154 */
155 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156 (!test_bit(HCI_RUNNING, &hdev->flags) ||
157 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167 done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174 }
175
176 static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181 };
182
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191 }
192
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201 }
202
203 static void bredr_init(struct hci_request *req)
204 {
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216
217 static void amp_init1(struct hci_request *req)
218 {
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239
240 static int amp_init2(struct hci_request *req)
241 {
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250 }
251
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_PRIMARY:
264 bredr_init(req);
265 break;
266 case HCI_AMP:
267 amp_init1(req);
268 break;
269 default:
270 BT_ERR("Unknown device type %d", hdev->dev_type);
271 break;
272 }
273
274 return 0;
275 }
276
277 static void bredr_setup(struct hci_request *req)
278 {
279 __le16 param;
280 __u8 flt_type;
281
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285 /* Read Class of Device */
286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288 /* Read Local Name */
289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291 /* Read Voice Setting */
292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294 /* Read Number of Supported IAC */
295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297 /* Read Current IAC LAP */
298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300 /* Clear Event Filters */
301 flt_type = HCI_FLT_CLEAR_ALL;
302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304 /* Connection accept timeout ~20 secs */
305 param = cpu_to_le16(0x7d00);
306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308
309 static void le_setup(struct hci_request *req)
310 {
311 struct hci_dev *hdev = req->hdev;
312
313 /* Read LE Buffer Size */
314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316 /* Read LE Local Supported Features */
317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319 /* Read LE Supported States */
320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev))
324 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329 struct hci_dev *hdev = req->hdev;
330
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 * command otherwise.
334 */
335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
339 */
340 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 return;
342
343 if (lmp_bredr_capable(hdev)) {
344 events[4] |= 0x01; /* Flow Specification Complete */
345 } else {
346 /* Use a different default for LE-only devices */
347 memset(events, 0, sizeof(events));
348 events[1] |= 0x20; /* Command Complete */
349 events[1] |= 0x40; /* Command Status */
350 events[1] |= 0x80; /* Hardware Error */
351
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
355 */
356 if (hdev->commands[0] & 0x20) {
357 events[0] |= 0x10; /* Disconnection Complete */
358 events[2] |= 0x04; /* Number of Completed Packets */
359 events[3] |= 0x02; /* Data Buffer Overflow */
360 }
361
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
364 */
365 if (hdev->commands[2] & 0x80)
366 events[1] |= 0x08; /* Read Remote Version Information
367 * Complete
368 */
369
370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 events[0] |= 0x80; /* Encryption Change */
372 events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 }
374 }
375
376 if (lmp_inq_rssi_capable(hdev) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380 if (lmp_ext_feat_capable(hdev))
381 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383 if (lmp_esco_capable(hdev)) {
384 events[5] |= 0x08; /* Synchronous Connection Complete */
385 events[5] |= 0x10; /* Synchronous Connection Changed */
386 }
387
388 if (lmp_sniffsubr_capable(hdev))
389 events[5] |= 0x20; /* Sniff Subrating */
390
391 if (lmp_pause_enc_capable(hdev))
392 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394 if (lmp_ext_inq_capable(hdev))
395 events[5] |= 0x40; /* Extended Inquiry Result */
396
397 if (lmp_no_flush_capable(hdev))
398 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400 if (lmp_lsto_capable(hdev))
401 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403 if (lmp_ssp_capable(hdev)) {
404 events[6] |= 0x01; /* IO Capability Request */
405 events[6] |= 0x02; /* IO Capability Response */
406 events[6] |= 0x04; /* User Confirmation Request */
407 events[6] |= 0x08; /* User Passkey Request */
408 events[6] |= 0x10; /* Remote OOB Data Request */
409 events[6] |= 0x20; /* Simple Pairing Complete */
410 events[7] |= 0x04; /* User Passkey Notification */
411 events[7] |= 0x08; /* Keypress Notification */
412 events[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
414 */
415 }
416
417 if (lmp_le_capable(hdev))
418 events[7] |= 0x20; /* LE Meta-Event */
419
420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425 struct hci_dev *hdev = req->hdev;
426
427 if (hdev->dev_type == HCI_AMP)
428 return amp_init2(req);
429
430 if (lmp_bredr_capable(hdev))
431 bredr_setup(req);
432 else
433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435 if (lmp_le_capable(hdev))
436 le_setup(req);
437
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
440 *
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
445 */
446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450 if (lmp_ssp_capable(hdev)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
456 */
457 hdev->max_page = 0x01;
458
459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 u8 mode = 0x01;
461
462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 sizeof(mode), &mode);
464 } else {
465 struct hci_cp_write_eir cp;
466
467 memset(hdev->eir, 0, sizeof(hdev->eir));
468 memset(&cp, 0, sizeof(cp));
469
470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 }
472 }
473
474 if (lmp_inq_rssi_capable(hdev) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 u8 mode;
477
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
480 * events.
481 */
482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 }
486
487 if (lmp_inq_tx_pwr_capable(hdev))
488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490 if (lmp_ext_feat_capable(hdev)) {
491 struct hci_cp_read_local_ext_features cp;
492
493 cp.page = 0x01;
494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 sizeof(cp), &cp);
496 }
497
498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 u8 enable = 1;
500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 &enable);
502 }
503
504 return 0;
505 }
506
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509 struct hci_dev *hdev = req->hdev;
510 struct hci_cp_write_def_link_policy cp;
511 u16 link_policy = 0;
512
513 if (lmp_rswitch_capable(hdev))
514 link_policy |= HCI_LP_RSWITCH;
515 if (lmp_hold_capable(hdev))
516 link_policy |= HCI_LP_HOLD;
517 if (lmp_sniff_capable(hdev))
518 link_policy |= HCI_LP_SNIFF;
519 if (lmp_park_capable(hdev))
520 link_policy |= HCI_LP_PARK;
521
522 cp.policy = cpu_to_le16(link_policy);
523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525
526 static void hci_set_le_support(struct hci_request *req)
527 {
528 struct hci_dev *hdev = req->hdev;
529 struct hci_cp_write_le_host_supported cp;
530
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev))
533 return;
534
535 memset(&cp, 0, sizeof(cp));
536
537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 cp.le = 0x01;
539 cp.simul = 0x00;
540 }
541
542 if (cp.le != lmp_host_le_capable(hdev))
543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 &cp);
545 }
546
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549 struct hci_dev *hdev = req->hdev;
550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551 bool changed = false;
552
553 /* If Connectionless Slave Broadcast master role is supported
554 * enable all necessary events for it.
555 */
556 if (lmp_csb_master_capable(hdev)) {
557 events[1] |= 0x40; /* Triggered Clock Capture */
558 events[1] |= 0x80; /* Synchronization Train Complete */
559 events[2] |= 0x10; /* Slave Page Response Timeout */
560 events[2] |= 0x20; /* CSB Channel Map Change */
561 changed = true;
562 }
563
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
566 */
567 if (lmp_csb_slave_capable(hdev)) {
568 events[2] |= 0x01; /* Synchronization Train Received */
569 events[2] |= 0x02; /* CSB Receive */
570 events[2] |= 0x04; /* CSB Timeout */
571 events[2] |= 0x08; /* Truncated Page Complete */
572 changed = true;
573 }
574
575 /* Enable Authenticated Payload Timeout Expired event if supported */
576 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
577 events[2] |= 0x80;
578 changed = true;
579 }
580
581 /* Some Broadcom based controllers indicate support for Set Event
582 * Mask Page 2 command, but then actually do not support it. Since
583 * the default value is all bits set to zero, the command is only
584 * required if the event mask has to be changed. In case no change
585 * to the event mask is needed, skip this command.
586 */
587 if (changed)
588 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
589 sizeof(events), events);
590 }
591
592 static int hci_init3_req(struct hci_request *req, unsigned long opt)
593 {
594 struct hci_dev *hdev = req->hdev;
595 u8 p;
596
597 hci_setup_event_mask(req);
598
599 if (hdev->commands[6] & 0x20 &&
600 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
601 struct hci_cp_read_stored_link_key cp;
602
603 bacpy(&cp.bdaddr, BDADDR_ANY);
604 cp.read_all = 0x01;
605 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
606 }
607
608 if (hdev->commands[5] & 0x10)
609 hci_setup_link_policy(req);
610
611 if (hdev->commands[8] & 0x01)
612 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
613
614 /* Some older Broadcom based Bluetooth 1.2 controllers do not
615 * support the Read Page Scan Type command. Check support for
616 * this command in the bit mask of supported commands.
617 */
618 if (hdev->commands[13] & 0x01)
619 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
620
621 if (lmp_le_capable(hdev)) {
622 u8 events[8];
623
624 memset(events, 0, sizeof(events));
625
626 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
627 events[0] |= 0x10; /* LE Long Term Key Request */
628
629 /* If controller supports the Connection Parameters Request
630 * Link Layer Procedure, enable the corresponding event.
631 */
632 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
633 events[0] |= 0x20; /* LE Remote Connection
634 * Parameter Request
635 */
636
637 /* If the controller supports the Data Length Extension
638 * feature, enable the corresponding event.
639 */
640 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
641 events[0] |= 0x40; /* LE Data Length Change */
642
643 /* If the controller supports Extended Scanner Filter
644 * Policies, enable the correspondig event.
645 */
646 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
647 events[1] |= 0x04; /* LE Direct Advertising
648 * Report
649 */
650
651 /* If the controller supports Channel Selection Algorithm #2
652 * feature, enable the corresponding event.
653 */
654 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
655 events[2] |= 0x08; /* LE Channel Selection
656 * Algorithm
657 */
658
659 /* If the controller supports the LE Set Scan Enable command,
660 * enable the corresponding advertising report event.
661 */
662 if (hdev->commands[26] & 0x08)
663 events[0] |= 0x02; /* LE Advertising Report */
664
665 /* If the controller supports the LE Create Connection
666 * command, enable the corresponding event.
667 */
668 if (hdev->commands[26] & 0x10)
669 events[0] |= 0x01; /* LE Connection Complete */
670
671 /* If the controller supports the LE Connection Update
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[27] & 0x04)
675 events[0] |= 0x04; /* LE Connection Update
676 * Complete
677 */
678
679 /* If the controller supports the LE Read Remote Used Features
680 * command, enable the corresponding event.
681 */
682 if (hdev->commands[27] & 0x20)
683 events[0] |= 0x08; /* LE Read Remote Used
684 * Features Complete
685 */
686
687 /* If the controller supports the LE Read Local P-256
688 * Public Key command, enable the corresponding event.
689 */
690 if (hdev->commands[34] & 0x02)
691 events[0] |= 0x80; /* LE Read Local P-256
692 * Public Key Complete
693 */
694
695 /* If the controller supports the LE Generate DHKey
696 * command, enable the corresponding event.
697 */
698 if (hdev->commands[34] & 0x04)
699 events[1] |= 0x01; /* LE Generate DHKey Complete */
700
701 /* If the controller supports the LE Set Default PHY or
702 * LE Set PHY commands, enable the corresponding event.
703 */
704 if (hdev->commands[35] & (0x20 | 0x40))
705 events[1] |= 0x08; /* LE PHY Update Complete */
706
707 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
708 events);
709
710 if (hdev->commands[25] & 0x40) {
711 /* Read LE Advertising Channel TX Power */
712 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
713 }
714
715 if (hdev->commands[26] & 0x40) {
716 /* Read LE White List Size */
717 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
718 0, NULL);
719 }
720
721 if (hdev->commands[26] & 0x80) {
722 /* Clear LE White List */
723 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
724 }
725
726 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
727 /* Read LE Maximum Data Length */
728 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
729
730 /* Read LE Suggested Default Data Length */
731 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
732 }
733
734 hci_set_le_support(req);
735 }
736
737 /* Read features beyond page 1 if available */
738 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
739 struct hci_cp_read_local_ext_features cp;
740
741 cp.page = p;
742 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
743 sizeof(cp), &cp);
744 }
745
746 return 0;
747 }
748
749 static int hci_init4_req(struct hci_request *req, unsigned long opt)
750 {
751 struct hci_dev *hdev = req->hdev;
752
753 /* Some Broadcom based Bluetooth controllers do not support the
754 * Delete Stored Link Key command. They are clearly indicating its
755 * absence in the bit mask of supported commands.
756 *
757 * Check the supported commands and only if the the command is marked
758 * as supported send it. If not supported assume that the controller
759 * does not have actual support for stored link keys which makes this
760 * command redundant anyway.
761 *
762 * Some controllers indicate that they support handling deleting
763 * stored link keys, but they don't. The quirk lets a driver
764 * just disable this command.
765 */
766 if (hdev->commands[6] & 0x80 &&
767 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
768 struct hci_cp_delete_stored_link_key cp;
769
770 bacpy(&cp.bdaddr, BDADDR_ANY);
771 cp.delete_all = 0x01;
772 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
773 sizeof(cp), &cp);
774 }
775
776 /* Set event mask page 2 if the HCI command for it is supported */
777 if (hdev->commands[22] & 0x04)
778 hci_set_event_mask_page_2(req);
779
780 /* Read local codec list if the HCI command is supported */
781 if (hdev->commands[29] & 0x20)
782 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
783
784 /* Get MWS transport configuration if the HCI command is supported */
785 if (hdev->commands[30] & 0x08)
786 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
787
788 /* Check for Synchronization Train support */
789 if (lmp_sync_train_capable(hdev))
790 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
791
792 /* Enable Secure Connections if supported and configured */
793 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
794 bredr_sc_enabled(hdev)) {
795 u8 support = 0x01;
796
797 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
798 sizeof(support), &support);
799 }
800
801 /* Set Suggested Default Data Length to maximum if supported */
802 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
803 struct hci_cp_le_write_def_data_len cp;
804
805 cp.tx_len = hdev->le_max_tx_len;
806 cp.tx_time = hdev->le_max_tx_time;
807 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
808 }
809
810 /* Set Default PHY parameters if command is supported */
811 if (hdev->commands[35] & 0x20) {
812 struct hci_cp_le_set_default_phy cp;
813
814 /* No transmitter PHY or receiver PHY preferences */
815 cp.all_phys = 0x03;
816 cp.tx_phys = 0;
817 cp.rx_phys = 0;
818
819 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
820 }
821
822 return 0;
823 }
824
825 static int __hci_init(struct hci_dev *hdev)
826 {
827 int err;
828
829 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
830 if (err < 0)
831 return err;
832
833 if (hci_dev_test_flag(hdev, HCI_SETUP))
834 hci_debugfs_create_basic(hdev);
835
836 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
837 if (err < 0)
838 return err;
839
840 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841 * BR/EDR/LE type controllers. AMP controllers only need the
842 * first two stages of init.
843 */
844 if (hdev->dev_type != HCI_PRIMARY)
845 return 0;
846
847 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
848 if (err < 0)
849 return err;
850
851 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
852 if (err < 0)
853 return err;
854
855 /* This function is only called when the controller is actually in
856 * configured state. When the controller is marked as unconfigured,
857 * this initialization procedure is not run.
858 *
859 * It means that it is possible that a controller runs through its
860 * setup phase and then discovers missing settings. If that is the
861 * case, then this function will not be called. It then will only
862 * be called during the config phase.
863 *
864 * So only when in setup phase or config phase, create the debugfs
865 * entries and register the SMP channels.
866 */
867 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
868 !hci_dev_test_flag(hdev, HCI_CONFIG))
869 return 0;
870
871 hci_debugfs_create_common(hdev);
872
873 if (lmp_bredr_capable(hdev))
874 hci_debugfs_create_bredr(hdev);
875
876 if (lmp_le_capable(hdev))
877 hci_debugfs_create_le(hdev);
878
879 return 0;
880 }
881
882 static int hci_init0_req(struct hci_request *req, unsigned long opt)
883 {
884 struct hci_dev *hdev = req->hdev;
885
886 BT_DBG("%s %ld", hdev->name, opt);
887
888 /* Reset */
889 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
890 hci_reset_req(req, 0);
891
892 /* Read Local Version */
893 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
894
895 /* Read BD Address */
896 if (hdev->set_bdaddr)
897 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
898
899 return 0;
900 }
901
902 static int __hci_unconf_init(struct hci_dev *hdev)
903 {
904 int err;
905
906 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
907 return 0;
908
909 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
910 if (err < 0)
911 return err;
912
913 if (hci_dev_test_flag(hdev, HCI_SETUP))
914 hci_debugfs_create_basic(hdev);
915
916 return 0;
917 }
918
919 static int hci_scan_req(struct hci_request *req, unsigned long opt)
920 {
921 __u8 scan = opt;
922
923 BT_DBG("%s %x", req->hdev->name, scan);
924
925 /* Inquiry and Page scans */
926 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
927 return 0;
928 }
929
930 static int hci_auth_req(struct hci_request *req, unsigned long opt)
931 {
932 __u8 auth = opt;
933
934 BT_DBG("%s %x", req->hdev->name, auth);
935
936 /* Authentication */
937 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
938 return 0;
939 }
940
941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
942 {
943 __u8 encrypt = opt;
944
945 BT_DBG("%s %x", req->hdev->name, encrypt);
946
947 /* Encryption */
948 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
949 return 0;
950 }
951
952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
953 {
954 __le16 policy = cpu_to_le16(opt);
955
956 BT_DBG("%s %x", req->hdev->name, policy);
957
958 /* Default link policy */
959 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
960 return 0;
961 }
962
963 /* Get HCI device by index.
964 * Device is held on return. */
965 struct hci_dev *hci_dev_get(int index)
966 {
967 struct hci_dev *hdev = NULL, *d;
968
969 BT_DBG("%d", index);
970
971 if (index < 0)
972 return NULL;
973
974 read_lock(&hci_dev_list_lock);
975 list_for_each_entry(d, &hci_dev_list, list) {
976 if (d->id == index) {
977 hdev = hci_dev_hold(d);
978 break;
979 }
980 }
981 read_unlock(&hci_dev_list_lock);
982 return hdev;
983 }
984
985 /* ---- Inquiry support ---- */
986
987 bool hci_discovery_active(struct hci_dev *hdev)
988 {
989 struct discovery_state *discov = &hdev->discovery;
990
991 switch (discov->state) {
992 case DISCOVERY_FINDING:
993 case DISCOVERY_RESOLVING:
994 return true;
995
996 default:
997 return false;
998 }
999 }
1000
1001 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002 {
1003 int old_state = hdev->discovery.state;
1004
1005 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006
1007 if (old_state == state)
1008 return;
1009
1010 hdev->discovery.state = state;
1011
1012 switch (state) {
1013 case DISCOVERY_STOPPED:
1014 hci_update_background_scan(hdev);
1015
1016 if (old_state != DISCOVERY_STARTING)
1017 mgmt_discovering(hdev, 0);
1018 break;
1019 case DISCOVERY_STARTING:
1020 break;
1021 case DISCOVERY_FINDING:
1022 mgmt_discovering(hdev, 1);
1023 break;
1024 case DISCOVERY_RESOLVING:
1025 break;
1026 case DISCOVERY_STOPPING:
1027 break;
1028 }
1029 }
1030
1031 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032 {
1033 struct discovery_state *cache = &hdev->discovery;
1034 struct inquiry_entry *p, *n;
1035
1036 list_for_each_entry_safe(p, n, &cache->all, all) {
1037 list_del(&p->all);
1038 kfree(p);
1039 }
1040
1041 INIT_LIST_HEAD(&cache->unknown);
1042 INIT_LIST_HEAD(&cache->resolve);
1043 }
1044
1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046 bdaddr_t *bdaddr)
1047 {
1048 struct discovery_state *cache = &hdev->discovery;
1049 struct inquiry_entry *e;
1050
1051 BT_DBG("cache %p, %pMR", cache, bdaddr);
1052
1053 list_for_each_entry(e, &cache->all, all) {
1054 if (!bacmp(&e->data.bdaddr, bdaddr))
1055 return e;
1056 }
1057
1058 return NULL;
1059 }
1060
1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062 bdaddr_t *bdaddr)
1063 {
1064 struct discovery_state *cache = &hdev->discovery;
1065 struct inquiry_entry *e;
1066
1067 BT_DBG("cache %p, %pMR", cache, bdaddr);
1068
1069 list_for_each_entry(e, &cache->unknown, list) {
1070 if (!bacmp(&e->data.bdaddr, bdaddr))
1071 return e;
1072 }
1073
1074 return NULL;
1075 }
1076
1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078 bdaddr_t *bdaddr,
1079 int state)
1080 {
1081 struct discovery_state *cache = &hdev->discovery;
1082 struct inquiry_entry *e;
1083
1084 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085
1086 list_for_each_entry(e, &cache->resolve, list) {
1087 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088 return e;
1089 if (!bacmp(&e->data.bdaddr, bdaddr))
1090 return e;
1091 }
1092
1093 return NULL;
1094 }
1095
1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097 struct inquiry_entry *ie)
1098 {
1099 struct discovery_state *cache = &hdev->discovery;
1100 struct list_head *pos = &cache->resolve;
1101 struct inquiry_entry *p;
1102
1103 list_del(&ie->list);
1104
1105 list_for_each_entry(p, &cache->resolve, list) {
1106 if (p->name_state != NAME_PENDING &&
1107 abs(p->data.rssi) >= abs(ie->data.rssi))
1108 break;
1109 pos = &p->list;
1110 }
1111
1112 list_add(&ie->list, pos);
1113 }
1114
1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116 bool name_known)
1117 {
1118 struct discovery_state *cache = &hdev->discovery;
1119 struct inquiry_entry *ie;
1120 u32 flags = 0;
1121
1122 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123
1124 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125
1126 if (!data->ssp_mode)
1127 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128
1129 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130 if (ie) {
1131 if (!ie->data.ssp_mode)
1132 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133
1134 if (ie->name_state == NAME_NEEDED &&
1135 data->rssi != ie->data.rssi) {
1136 ie->data.rssi = data->rssi;
1137 hci_inquiry_cache_update_resolve(hdev, ie);
1138 }
1139
1140 goto update;
1141 }
1142
1143 /* Entry not in the cache. Add new one. */
1144 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145 if (!ie) {
1146 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147 goto done;
1148 }
1149
1150 list_add(&ie->all, &cache->all);
1151
1152 if (name_known) {
1153 ie->name_state = NAME_KNOWN;
1154 } else {
1155 ie->name_state = NAME_NOT_KNOWN;
1156 list_add(&ie->list, &cache->unknown);
1157 }
1158
1159 update:
1160 if (name_known && ie->name_state != NAME_KNOWN &&
1161 ie->name_state != NAME_PENDING) {
1162 ie->name_state = NAME_KNOWN;
1163 list_del(&ie->list);
1164 }
1165
1166 memcpy(&ie->data, data, sizeof(*data));
1167 ie->timestamp = jiffies;
1168 cache->timestamp = jiffies;
1169
1170 if (ie->name_state == NAME_NOT_KNOWN)
1171 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172
1173 done:
1174 return flags;
1175 }
1176
1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178 {
1179 struct discovery_state *cache = &hdev->discovery;
1180 struct inquiry_info *info = (struct inquiry_info *) buf;
1181 struct inquiry_entry *e;
1182 int copied = 0;
1183
1184 list_for_each_entry(e, &cache->all, all) {
1185 struct inquiry_data *data = &e->data;
1186
1187 if (copied >= num)
1188 break;
1189
1190 bacpy(&info->bdaddr, &data->bdaddr);
1191 info->pscan_rep_mode = data->pscan_rep_mode;
1192 info->pscan_period_mode = data->pscan_period_mode;
1193 info->pscan_mode = data->pscan_mode;
1194 memcpy(info->dev_class, data->dev_class, 3);
1195 info->clock_offset = data->clock_offset;
1196
1197 info++;
1198 copied++;
1199 }
1200
1201 BT_DBG("cache %p, copied %d", cache, copied);
1202 return copied;
1203 }
1204
1205 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206 {
1207 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208 struct hci_dev *hdev = req->hdev;
1209 struct hci_cp_inquiry cp;
1210
1211 BT_DBG("%s", hdev->name);
1212
1213 if (test_bit(HCI_INQUIRY, &hdev->flags))
1214 return 0;
1215
1216 /* Start Inquiry */
1217 memcpy(&cp.lap, &ir->lap, 3);
1218 cp.length = ir->length;
1219 cp.num_rsp = ir->num_rsp;
1220 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221
1222 return 0;
1223 }
1224
1225 int hci_inquiry(void __user *arg)
1226 {
1227 __u8 __user *ptr = arg;
1228 struct hci_inquiry_req ir;
1229 struct hci_dev *hdev;
1230 int err = 0, do_inquiry = 0, max_rsp;
1231 long timeo;
1232 __u8 *buf;
1233
1234 if (copy_from_user(&ir, ptr, sizeof(ir)))
1235 return -EFAULT;
1236
1237 hdev = hci_dev_get(ir.dev_id);
1238 if (!hdev)
1239 return -ENODEV;
1240
1241 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242 err = -EBUSY;
1243 goto done;
1244 }
1245
1246 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247 err = -EOPNOTSUPP;
1248 goto done;
1249 }
1250
1251 if (hdev->dev_type != HCI_PRIMARY) {
1252 err = -EOPNOTSUPP;
1253 goto done;
1254 }
1255
1256 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257 err = -EOPNOTSUPP;
1258 goto done;
1259 }
1260
1261 hci_dev_lock(hdev);
1262 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264 hci_inquiry_cache_flush(hdev);
1265 do_inquiry = 1;
1266 }
1267 hci_dev_unlock(hdev);
1268
1269 timeo = ir.length * msecs_to_jiffies(2000);
1270
1271 if (do_inquiry) {
1272 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273 timeo, NULL);
1274 if (err < 0)
1275 goto done;
1276
1277 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278 * cleared). If it is interrupted by a signal, return -EINTR.
1279 */
1280 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281 TASK_INTERRUPTIBLE))
1282 return -EINTR;
1283 }
1284
1285 /* for unlimited number of responses we will use buffer with
1286 * 255 entries
1287 */
1288 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289
1290 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291 * copy it to the user space.
1292 */
1293 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294 if (!buf) {
1295 err = -ENOMEM;
1296 goto done;
1297 }
1298
1299 hci_dev_lock(hdev);
1300 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301 hci_dev_unlock(hdev);
1302
1303 BT_DBG("num_rsp %d", ir.num_rsp);
1304
1305 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306 ptr += sizeof(ir);
1307 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308 ir.num_rsp))
1309 err = -EFAULT;
1310 } else
1311 err = -EFAULT;
1312
1313 kfree(buf);
1314
1315 done:
1316 hci_dev_put(hdev);
1317 return err;
1318 }
1319
1320 static int hci_dev_do_open(struct hci_dev *hdev)
1321 {
1322 int ret = 0;
1323
1324 BT_DBG("%s %p", hdev->name, hdev);
1325
1326 hci_req_sync_lock(hdev);
1327
1328 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329 ret = -ENODEV;
1330 goto done;
1331 }
1332
1333 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335 /* Check for rfkill but allow the HCI setup stage to
1336 * proceed (which in itself doesn't cause any RF activity).
1337 */
1338 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339 ret = -ERFKILL;
1340 goto done;
1341 }
1342
1343 /* Check for valid public address or a configured static
1344 * random adddress, but let the HCI setup proceed to
1345 * be able to determine if there is a public address
1346 * or not.
1347 *
1348 * In case of user channel usage, it is not important
1349 * if a public address or static random address is
1350 * available.
1351 *
1352 * This check is only valid for BR/EDR controllers
1353 * since AMP controllers do not have an address.
1354 */
1355 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356 hdev->dev_type == HCI_PRIMARY &&
1357 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359 ret = -EADDRNOTAVAIL;
1360 goto done;
1361 }
1362 }
1363
1364 if (test_bit(HCI_UP, &hdev->flags)) {
1365 ret = -EALREADY;
1366 goto done;
1367 }
1368
1369 if (hdev->open(hdev)) {
1370 ret = -EIO;
1371 goto done;
1372 }
1373
1374 set_bit(HCI_RUNNING, &hdev->flags);
1375 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376
1377 atomic_set(&hdev->cmd_cnt, 1);
1378 set_bit(HCI_INIT, &hdev->flags);
1379
1380 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382
1383 if (hdev->setup)
1384 ret = hdev->setup(hdev);
1385
1386 /* The transport driver can set these quirks before
1387 * creating the HCI device or in its setup callback.
1388 *
1389 * In case any of them is set, the controller has to
1390 * start up as unconfigured.
1391 */
1392 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395
1396 /* For an unconfigured controller it is required to
1397 * read at least the version information provided by
1398 * the Read Local Version Information command.
1399 *
1400 * If the set_bdaddr driver callback is provided, then
1401 * also the original Bluetooth public device address
1402 * will be read using the Read BD Address command.
1403 */
1404 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405 ret = __hci_unconf_init(hdev);
1406 }
1407
1408 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409 /* If public address change is configured, ensure that
1410 * the address gets programmed. If the driver does not
1411 * support changing the public address, fail the power
1412 * on procedure.
1413 */
1414 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415 hdev->set_bdaddr)
1416 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417 else
1418 ret = -EADDRNOTAVAIL;
1419 }
1420
1421 if (!ret) {
1422 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424 ret = __hci_init(hdev);
1425 if (!ret && hdev->post_init)
1426 ret = hdev->post_init(hdev);
1427 }
1428 }
1429
1430 /* If the HCI Reset command is clearing all diagnostic settings,
1431 * then they need to be reprogrammed after the init procedure
1432 * completed.
1433 */
1434 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437 ret = hdev->set_diag(hdev, true);
1438
1439 clear_bit(HCI_INIT, &hdev->flags);
1440
1441 if (!ret) {
1442 hci_dev_hold(hdev);
1443 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444 set_bit(HCI_UP, &hdev->flags);
1445 hci_sock_dev_event(hdev, HCI_DEV_UP);
1446 hci_leds_update_powered(hdev, true);
1447 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451 hci_dev_test_flag(hdev, HCI_MGMT) &&
1452 hdev->dev_type == HCI_PRIMARY) {
1453 ret = __hci_req_hci_power_on(hdev);
1454 mgmt_power_on(hdev, ret);
1455 }
1456 } else {
1457 /* Init failed, cleanup */
1458 flush_work(&hdev->tx_work);
1459 flush_work(&hdev->cmd_work);
1460 flush_work(&hdev->rx_work);
1461
1462 skb_queue_purge(&hdev->cmd_q);
1463 skb_queue_purge(&hdev->rx_q);
1464
1465 if (hdev->flush)
1466 hdev->flush(hdev);
1467
1468 if (hdev->sent_cmd) {
1469 kfree_skb(hdev->sent_cmd);
1470 hdev->sent_cmd = NULL;
1471 }
1472
1473 clear_bit(HCI_RUNNING, &hdev->flags);
1474 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475
1476 hdev->close(hdev);
1477 hdev->flags &= BIT(HCI_RAW);
1478 }
1479
1480 done:
1481 hci_req_sync_unlock(hdev);
1482 return ret;
1483 }
1484
1485 /* ---- HCI ioctl helpers ---- */
1486
1487 int hci_dev_open(__u16 dev)
1488 {
1489 struct hci_dev *hdev;
1490 int err;
1491
1492 hdev = hci_dev_get(dev);
1493 if (!hdev)
1494 return -ENODEV;
1495
1496 /* Devices that are marked as unconfigured can only be powered
1497 * up as user channel. Trying to bring them up as normal devices
1498 * will result into a failure. Only user channel operation is
1499 * possible.
1500 *
1501 * When this function is called for a user channel, the flag
1502 * HCI_USER_CHANNEL will be set first before attempting to
1503 * open the device.
1504 */
1505 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507 err = -EOPNOTSUPP;
1508 goto done;
1509 }
1510
1511 /* We need to ensure that no other power on/off work is pending
1512 * before proceeding to call hci_dev_do_open. This is
1513 * particularly important if the setup procedure has not yet
1514 * completed.
1515 */
1516 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517 cancel_delayed_work(&hdev->power_off);
1518
1519 /* After this call it is guaranteed that the setup procedure
1520 * has finished. This means that error conditions like RFKILL
1521 * or no valid public or static random address apply.
1522 */
1523 flush_workqueue(hdev->req_workqueue);
1524
1525 /* For controllers not using the management interface and that
1526 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527 * so that pairing works for them. Once the management interface
1528 * is in use this bit will be cleared again and userspace has
1529 * to explicitly enable it.
1530 */
1531 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532 !hci_dev_test_flag(hdev, HCI_MGMT))
1533 hci_dev_set_flag(hdev, HCI_BONDABLE);
1534
1535 err = hci_dev_do_open(hdev);
1536
1537 done:
1538 hci_dev_put(hdev);
1539 return err;
1540 }
1541
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544 {
1545 struct hci_conn_params *p;
1546
1547 list_for_each_entry(p, &hdev->le_conn_params, list) {
1548 if (p->conn) {
1549 hci_conn_drop(p->conn);
1550 hci_conn_put(p->conn);
1551 p->conn = NULL;
1552 }
1553 list_del_init(&p->action);
1554 }
1555
1556 BT_DBG("All LE pending actions cleared");
1557 }
1558
1559 int hci_dev_do_close(struct hci_dev *hdev)
1560 {
1561 bool auto_off;
1562
1563 BT_DBG("%s %p", hdev->name, hdev);
1564
1565 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567 test_bit(HCI_UP, &hdev->flags)) {
1568 /* Execute vendor specific shutdown routine */
1569 if (hdev->shutdown)
1570 hdev->shutdown(hdev);
1571 }
1572
1573 cancel_delayed_work(&hdev->power_off);
1574
1575 hci_request_cancel_all(hdev);
1576 hci_req_sync_lock(hdev);
1577
1578 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579 cancel_delayed_work_sync(&hdev->cmd_timer);
1580 hci_req_sync_unlock(hdev);
1581 return 0;
1582 }
1583
1584 hci_leds_update_powered(hdev, false);
1585
1586 /* Flush RX and TX works */
1587 flush_work(&hdev->tx_work);
1588 flush_work(&hdev->rx_work);
1589
1590 if (hdev->discov_timeout > 0) {
1591 hdev->discov_timeout = 0;
1592 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594 }
1595
1596 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597 cancel_delayed_work(&hdev->service_cache);
1598
1599 if (hci_dev_test_flag(hdev, HCI_MGMT))
1600 cancel_delayed_work_sync(&hdev->rpa_expired);
1601
1602 /* Avoid potential lockdep warnings from the *_flush() calls by
1603 * ensuring the workqueue is empty up front.
1604 */
1605 drain_workqueue(hdev->workqueue);
1606
1607 hci_dev_lock(hdev);
1608
1609 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610
1611 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612
1613 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615 hci_dev_test_flag(hdev, HCI_MGMT))
1616 __mgmt_power_off(hdev);
1617
1618 hci_inquiry_cache_flush(hdev);
1619 hci_pend_le_actions_clear(hdev);
1620 hci_conn_hash_flush(hdev);
1621 hci_dev_unlock(hdev);
1622
1623 smp_unregister(hdev);
1624
1625 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626
1627 if (hdev->flush)
1628 hdev->flush(hdev);
1629
1630 /* Reset device */
1631 skb_queue_purge(&hdev->cmd_q);
1632 atomic_set(&hdev->cmd_cnt, 1);
1633 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635 set_bit(HCI_INIT, &hdev->flags);
1636 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637 clear_bit(HCI_INIT, &hdev->flags);
1638 }
1639
1640 /* flush cmd work */
1641 flush_work(&hdev->cmd_work);
1642
1643 /* Drop queues */
1644 skb_queue_purge(&hdev->rx_q);
1645 skb_queue_purge(&hdev->cmd_q);
1646 skb_queue_purge(&hdev->raw_q);
1647
1648 /* Drop last sent command */
1649 if (hdev->sent_cmd) {
1650 cancel_delayed_work_sync(&hdev->cmd_timer);
1651 kfree_skb(hdev->sent_cmd);
1652 hdev->sent_cmd = NULL;
1653 }
1654
1655 clear_bit(HCI_RUNNING, &hdev->flags);
1656 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657
1658 /* After this point our queues are empty
1659 * and no tasks are scheduled. */
1660 hdev->close(hdev);
1661
1662 /* Clear flags */
1663 hdev->flags &= BIT(HCI_RAW);
1664 hci_dev_clear_volatile_flags(hdev);
1665
1666 /* Controller radio is available but is currently powered down */
1667 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668
1669 memset(hdev->eir, 0, sizeof(hdev->eir));
1670 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671 bacpy(&hdev->random_addr, BDADDR_ANY);
1672
1673 hci_req_sync_unlock(hdev);
1674
1675 hci_dev_put(hdev);
1676 return 0;
1677 }
1678
1679 int hci_dev_close(__u16 dev)
1680 {
1681 struct hci_dev *hdev;
1682 int err;
1683
1684 hdev = hci_dev_get(dev);
1685 if (!hdev)
1686 return -ENODEV;
1687
1688 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689 err = -EBUSY;
1690 goto done;
1691 }
1692
1693 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694 cancel_delayed_work(&hdev->power_off);
1695
1696 err = hci_dev_do_close(hdev);
1697
1698 done:
1699 hci_dev_put(hdev);
1700 return err;
1701 }
1702
1703 static int hci_dev_do_reset(struct hci_dev *hdev)
1704 {
1705 int ret;
1706
1707 BT_DBG("%s %p", hdev->name, hdev);
1708
1709 hci_req_sync_lock(hdev);
1710
1711 /* Drop queues */
1712 skb_queue_purge(&hdev->rx_q);
1713 skb_queue_purge(&hdev->cmd_q);
1714
1715 /* Avoid potential lockdep warnings from the *_flush() calls by
1716 * ensuring the workqueue is empty up front.
1717 */
1718 drain_workqueue(hdev->workqueue);
1719
1720 hci_dev_lock(hdev);
1721 hci_inquiry_cache_flush(hdev);
1722 hci_conn_hash_flush(hdev);
1723 hci_dev_unlock(hdev);
1724
1725 if (hdev->flush)
1726 hdev->flush(hdev);
1727
1728 atomic_set(&hdev->cmd_cnt, 1);
1729 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730
1731 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732
1733 hci_req_sync_unlock(hdev);
1734 return ret;
1735 }
1736
1737 int hci_dev_reset(__u16 dev)
1738 {
1739 struct hci_dev *hdev;
1740 int err;
1741
1742 hdev = hci_dev_get(dev);
1743 if (!hdev)
1744 return -ENODEV;
1745
1746 if (!test_bit(HCI_UP, &hdev->flags)) {
1747 err = -ENETDOWN;
1748 goto done;
1749 }
1750
1751 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752 err = -EBUSY;
1753 goto done;
1754 }
1755
1756 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757 err = -EOPNOTSUPP;
1758 goto done;
1759 }
1760
1761 err = hci_dev_do_reset(hdev);
1762
1763 done:
1764 hci_dev_put(hdev);
1765 return err;
1766 }
1767
1768 int hci_dev_reset_stat(__u16 dev)
1769 {
1770 struct hci_dev *hdev;
1771 int ret = 0;
1772
1773 hdev = hci_dev_get(dev);
1774 if (!hdev)
1775 return -ENODEV;
1776
1777 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778 ret = -EBUSY;
1779 goto done;
1780 }
1781
1782 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783 ret = -EOPNOTSUPP;
1784 goto done;
1785 }
1786
1787 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788
1789 done:
1790 hci_dev_put(hdev);
1791 return ret;
1792 }
1793
1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795 {
1796 bool conn_changed, discov_changed;
1797
1798 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799
1800 if ((scan & SCAN_PAGE))
1801 conn_changed = !hci_dev_test_and_set_flag(hdev,
1802 HCI_CONNECTABLE);
1803 else
1804 conn_changed = hci_dev_test_and_clear_flag(hdev,
1805 HCI_CONNECTABLE);
1806
1807 if ((scan & SCAN_INQUIRY)) {
1808 discov_changed = !hci_dev_test_and_set_flag(hdev,
1809 HCI_DISCOVERABLE);
1810 } else {
1811 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812 discov_changed = hci_dev_test_and_clear_flag(hdev,
1813 HCI_DISCOVERABLE);
1814 }
1815
1816 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817 return;
1818
1819 if (conn_changed || discov_changed) {
1820 /* In case this was disabled through mgmt */
1821 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822
1823 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825
1826 mgmt_new_settings(hdev);
1827 }
1828 }
1829
1830 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831 {
1832 struct hci_dev *hdev;
1833 struct hci_dev_req dr;
1834 int err = 0;
1835
1836 if (copy_from_user(&dr, arg, sizeof(dr)))
1837 return -EFAULT;
1838
1839 hdev = hci_dev_get(dr.dev_id);
1840 if (!hdev)
1841 return -ENODEV;
1842
1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 err = -EBUSY;
1845 goto done;
1846 }
1847
1848 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849 err = -EOPNOTSUPP;
1850 goto done;
1851 }
1852
1853 if (hdev->dev_type != HCI_PRIMARY) {
1854 err = -EOPNOTSUPP;
1855 goto done;
1856 }
1857
1858 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859 err = -EOPNOTSUPP;
1860 goto done;
1861 }
1862
1863 switch (cmd) {
1864 case HCISETAUTH:
1865 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866 HCI_INIT_TIMEOUT, NULL);
1867 break;
1868
1869 case HCISETENCRYPT:
1870 if (!lmp_encrypt_capable(hdev)) {
1871 err = -EOPNOTSUPP;
1872 break;
1873 }
1874
1875 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876 /* Auth must be enabled first */
1877 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878 HCI_INIT_TIMEOUT, NULL);
1879 if (err)
1880 break;
1881 }
1882
1883 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884 HCI_INIT_TIMEOUT, NULL);
1885 break;
1886
1887 case HCISETSCAN:
1888 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889 HCI_INIT_TIMEOUT, NULL);
1890
1891 /* Ensure that the connectable and discoverable states
1892 * get correctly modified as this was a non-mgmt change.
1893 */
1894 if (!err)
1895 hci_update_scan_state(hdev, dr.dev_opt);
1896 break;
1897
1898 case HCISETLINKPOL:
1899 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900 HCI_INIT_TIMEOUT, NULL);
1901 break;
1902
1903 case HCISETLINKMODE:
1904 hdev->link_mode = ((__u16) dr.dev_opt) &
1905 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1906 break;
1907
1908 case HCISETPTYPE:
1909 hdev->pkt_type = (__u16) dr.dev_opt;
1910 break;
1911
1912 case HCISETACLMTU:
1913 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1914 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915 break;
1916
1917 case HCISETSCOMTU:
1918 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1919 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920 break;
1921
1922 default:
1923 err = -EINVAL;
1924 break;
1925 }
1926
1927 done:
1928 hci_dev_put(hdev);
1929 return err;
1930 }
1931
1932 int hci_get_dev_list(void __user *arg)
1933 {
1934 struct hci_dev *hdev;
1935 struct hci_dev_list_req *dl;
1936 struct hci_dev_req *dr;
1937 int n = 0, size, err;
1938 __u16 dev_num;
1939
1940 if (get_user(dev_num, (__u16 __user *) arg))
1941 return -EFAULT;
1942
1943 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944 return -EINVAL;
1945
1946 size = sizeof(*dl) + dev_num * sizeof(*dr);
1947
1948 dl = kzalloc(size, GFP_KERNEL);
1949 if (!dl)
1950 return -ENOMEM;
1951
1952 dr = dl->dev_req;
1953
1954 read_lock(&hci_dev_list_lock);
1955 list_for_each_entry(hdev, &hci_dev_list, list) {
1956 unsigned long flags = hdev->flags;
1957
1958 /* When the auto-off is configured it means the transport
1959 * is running, but in that case still indicate that the
1960 * device is actually down.
1961 */
1962 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963 flags &= ~BIT(HCI_UP);
1964
1965 (dr + n)->dev_id = hdev->id;
1966 (dr + n)->dev_opt = flags;
1967
1968 if (++n >= dev_num)
1969 break;
1970 }
1971 read_unlock(&hci_dev_list_lock);
1972
1973 dl->dev_num = n;
1974 size = sizeof(*dl) + n * sizeof(*dr);
1975
1976 err = copy_to_user(arg, dl, size);
1977 kfree(dl);
1978
1979 return err ? -EFAULT : 0;
1980 }
1981
1982 int hci_get_dev_info(void __user *arg)
1983 {
1984 struct hci_dev *hdev;
1985 struct hci_dev_info di;
1986 unsigned long flags;
1987 int err = 0;
1988
1989 if (copy_from_user(&di, arg, sizeof(di)))
1990 return -EFAULT;
1991
1992 hdev = hci_dev_get(di.dev_id);
1993 if (!hdev)
1994 return -ENODEV;
1995
1996 /* When the auto-off is configured it means the transport
1997 * is running, but in that case still indicate that the
1998 * device is actually down.
1999 */
2000 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001 flags = hdev->flags & ~BIT(HCI_UP);
2002 else
2003 flags = hdev->flags;
2004
2005 strcpy(di.name, hdev->name);
2006 di.bdaddr = hdev->bdaddr;
2007 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008 di.flags = flags;
2009 di.pkt_type = hdev->pkt_type;
2010 if (lmp_bredr_capable(hdev)) {
2011 di.acl_mtu = hdev->acl_mtu;
2012 di.acl_pkts = hdev->acl_pkts;
2013 di.sco_mtu = hdev->sco_mtu;
2014 di.sco_pkts = hdev->sco_pkts;
2015 } else {
2016 di.acl_mtu = hdev->le_mtu;
2017 di.acl_pkts = hdev->le_pkts;
2018 di.sco_mtu = 0;
2019 di.sco_pkts = 0;
2020 }
2021 di.link_policy = hdev->link_policy;
2022 di.link_mode = hdev->link_mode;
2023
2024 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025 memcpy(&di.features, &hdev->features, sizeof(di.features));
2026
2027 if (copy_to_user(arg, &di, sizeof(di)))
2028 err = -EFAULT;
2029
2030 hci_dev_put(hdev);
2031
2032 return err;
2033 }
2034
2035 /* ---- Interface to HCI drivers ---- */
2036
2037 static int hci_rfkill_set_block(void *data, bool blocked)
2038 {
2039 struct hci_dev *hdev = data;
2040
2041 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042
2043 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044 return -EBUSY;
2045
2046 if (blocked) {
2047 hci_dev_set_flag(hdev, HCI_RFKILLED);
2048 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049 !hci_dev_test_flag(hdev, HCI_CONFIG))
2050 hci_dev_do_close(hdev);
2051 } else {
2052 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053 }
2054
2055 return 0;
2056 }
2057
2058 static const struct rfkill_ops hci_rfkill_ops = {
2059 .set_block = hci_rfkill_set_block,
2060 };
2061
2062 static void hci_power_on(struct work_struct *work)
2063 {
2064 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065 int err;
2066
2067 BT_DBG("%s", hdev->name);
2068
2069 if (test_bit(HCI_UP, &hdev->flags) &&
2070 hci_dev_test_flag(hdev, HCI_MGMT) &&
2071 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072 cancel_delayed_work(&hdev->power_off);
2073 hci_req_sync_lock(hdev);
2074 err = __hci_req_hci_power_on(hdev);
2075 hci_req_sync_unlock(hdev);
2076 mgmt_power_on(hdev, err);
2077 return;
2078 }
2079
2080 err = hci_dev_do_open(hdev);
2081 if (err < 0) {
2082 hci_dev_lock(hdev);
2083 mgmt_set_powered_failed(hdev, err);
2084 hci_dev_unlock(hdev);
2085 return;
2086 }
2087
2088 /* During the HCI setup phase, a few error conditions are
2089 * ignored and they need to be checked now. If they are still
2090 * valid, it is important to turn the device back off.
2091 */
2092 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094 (hdev->dev_type == HCI_PRIMARY &&
2095 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098 hci_dev_do_close(hdev);
2099 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101 HCI_AUTO_OFF_TIMEOUT);
2102 }
2103
2104 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105 /* For unconfigured devices, set the HCI_RAW flag
2106 * so that userspace can easily identify them.
2107 */
2108 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109 set_bit(HCI_RAW, &hdev->flags);
2110
2111 /* For fully configured devices, this will send
2112 * the Index Added event. For unconfigured devices,
2113 * it will send Unconfigued Index Added event.
2114 *
2115 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116 * and no event will be send.
2117 */
2118 mgmt_index_added(hdev);
2119 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120 /* When the controller is now configured, then it
2121 * is important to clear the HCI_RAW flag.
2122 */
2123 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124 clear_bit(HCI_RAW, &hdev->flags);
2125
2126 /* Powering on the controller with HCI_CONFIG set only
2127 * happens with the transition from unconfigured to
2128 * configured. This will send the Index Added event.
2129 */
2130 mgmt_index_added(hdev);
2131 }
2132 }
2133
2134 static void hci_power_off(struct work_struct *work)
2135 {
2136 struct hci_dev *hdev = container_of(work, struct hci_dev,
2137 power_off.work);
2138
2139 BT_DBG("%s", hdev->name);
2140
2141 hci_dev_do_close(hdev);
2142 }
2143
2144 static void hci_error_reset(struct work_struct *work)
2145 {
2146 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147
2148 BT_DBG("%s", hdev->name);
2149
2150 if (hdev->hw_error)
2151 hdev->hw_error(hdev, hdev->hw_error_code);
2152 else
2153 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2154 hdev->hw_error_code);
2155
2156 if (hci_dev_do_close(hdev))
2157 return;
2158
2159 hci_dev_do_open(hdev);
2160 }
2161
2162 void hci_uuids_clear(struct hci_dev *hdev)
2163 {
2164 struct bt_uuid *uuid, *tmp;
2165
2166 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2167 list_del(&uuid->list);
2168 kfree(uuid);
2169 }
2170 }
2171
2172 void hci_link_keys_clear(struct hci_dev *hdev)
2173 {
2174 struct link_key *key;
2175
2176 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2177 list_del_rcu(&key->list);
2178 kfree_rcu(key, rcu);
2179 }
2180 }
2181
2182 void hci_smp_ltks_clear(struct hci_dev *hdev)
2183 {
2184 struct smp_ltk *k;
2185
2186 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2187 list_del_rcu(&k->list);
2188 kfree_rcu(k, rcu);
2189 }
2190 }
2191
2192 void hci_smp_irks_clear(struct hci_dev *hdev)
2193 {
2194 struct smp_irk *k;
2195
2196 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2197 list_del_rcu(&k->list);
2198 kfree_rcu(k, rcu);
2199 }
2200 }
2201
2202 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2203 {
2204 struct link_key *k;
2205
2206 rcu_read_lock();
2207 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2208 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2209 rcu_read_unlock();
2210 return k;
2211 }
2212 }
2213 rcu_read_unlock();
2214
2215 return NULL;
2216 }
2217
2218 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2219 u8 key_type, u8 old_key_type)
2220 {
2221 /* Legacy key */
2222 if (key_type < 0x03)
2223 return true;
2224
2225 /* Debug keys are insecure so don't store them persistently */
2226 if (key_type == HCI_LK_DEBUG_COMBINATION)
2227 return false;
2228
2229 /* Changed combination key and there's no previous one */
2230 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2231 return false;
2232
2233 /* Security mode 3 case */
2234 if (!conn)
2235 return true;
2236
2237 /* BR/EDR key derived using SC from an LE link */
2238 if (conn->type == LE_LINK)
2239 return true;
2240
2241 /* Neither local nor remote side had no-bonding as requirement */
2242 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2243 return true;
2244
2245 /* Local side had dedicated bonding as requirement */
2246 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2247 return true;
2248
2249 /* Remote side had dedicated bonding as requirement */
2250 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2251 return true;
2252
2253 /* If none of the above criteria match, then don't store the key
2254 * persistently */
2255 return false;
2256 }
2257
2258 static u8 ltk_role(u8 type)
2259 {
2260 if (type == SMP_LTK)
2261 return HCI_ROLE_MASTER;
2262
2263 return HCI_ROLE_SLAVE;
2264 }
2265
2266 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2267 u8 addr_type, u8 role)
2268 {
2269 struct smp_ltk *k;
2270
2271 rcu_read_lock();
2272 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2273 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2274 continue;
2275
2276 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2277 rcu_read_unlock();
2278 return k;
2279 }
2280 }
2281 rcu_read_unlock();
2282
2283 return NULL;
2284 }
2285
2286 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2287 {
2288 struct smp_irk *irk;
2289
2290 rcu_read_lock();
2291 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2292 if (!bacmp(&irk->rpa, rpa)) {
2293 rcu_read_unlock();
2294 return irk;
2295 }
2296 }
2297
2298 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2299 if (smp_irk_matches(hdev, irk->val, rpa)) {
2300 bacpy(&irk->rpa, rpa);
2301 rcu_read_unlock();
2302 return irk;
2303 }
2304 }
2305 rcu_read_unlock();
2306
2307 return NULL;
2308 }
2309
2310 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2311 u8 addr_type)
2312 {
2313 struct smp_irk *irk;
2314
2315 /* Identity Address must be public or static random */
2316 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2317 return NULL;
2318
2319 rcu_read_lock();
2320 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2321 if (addr_type == irk->addr_type &&
2322 bacmp(bdaddr, &irk->bdaddr) == 0) {
2323 rcu_read_unlock();
2324 return irk;
2325 }
2326 }
2327 rcu_read_unlock();
2328
2329 return NULL;
2330 }
2331
2332 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2333 bdaddr_t *bdaddr, u8 *val, u8 type,
2334 u8 pin_len, bool *persistent)
2335 {
2336 struct link_key *key, *old_key;
2337 u8 old_key_type;
2338
2339 old_key = hci_find_link_key(hdev, bdaddr);
2340 if (old_key) {
2341 old_key_type = old_key->type;
2342 key = old_key;
2343 } else {
2344 old_key_type = conn ? conn->key_type : 0xff;
2345 key = kzalloc(sizeof(*key), GFP_KERNEL);
2346 if (!key)
2347 return NULL;
2348 list_add_rcu(&key->list, &hdev->link_keys);
2349 }
2350
2351 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2352
2353 /* Some buggy controller combinations generate a changed
2354 * combination key for legacy pairing even when there's no
2355 * previous key */
2356 if (type == HCI_LK_CHANGED_COMBINATION &&
2357 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2358 type = HCI_LK_COMBINATION;
2359 if (conn)
2360 conn->key_type = type;
2361 }
2362
2363 bacpy(&key->bdaddr, bdaddr);
2364 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2365 key->pin_len = pin_len;
2366
2367 if (type == HCI_LK_CHANGED_COMBINATION)
2368 key->type = old_key_type;
2369 else
2370 key->type = type;
2371
2372 if (persistent)
2373 *persistent = hci_persistent_key(hdev, conn, type,
2374 old_key_type);
2375
2376 return key;
2377 }
2378
2379 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2380 u8 addr_type, u8 type, u8 authenticated,
2381 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2382 {
2383 struct smp_ltk *key, *old_key;
2384 u8 role = ltk_role(type);
2385
2386 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2387 if (old_key)
2388 key = old_key;
2389 else {
2390 key = kzalloc(sizeof(*key), GFP_KERNEL);
2391 if (!key)
2392 return NULL;
2393 list_add_rcu(&key->list, &hdev->long_term_keys);
2394 }
2395
2396 bacpy(&key->bdaddr, bdaddr);
2397 key->bdaddr_type = addr_type;
2398 memcpy(key->val, tk, sizeof(key->val));
2399 key->authenticated = authenticated;
2400 key->ediv = ediv;
2401 key->rand = rand;
2402 key->enc_size = enc_size;
2403 key->type = type;
2404
2405 return key;
2406 }
2407
2408 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2409 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2410 {
2411 struct smp_irk *irk;
2412
2413 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2414 if (!irk) {
2415 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2416 if (!irk)
2417 return NULL;
2418
2419 bacpy(&irk->bdaddr, bdaddr);
2420 irk->addr_type = addr_type;
2421
2422 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2423 }
2424
2425 memcpy(irk->val, val, 16);
2426 bacpy(&irk->rpa, rpa);
2427
2428 return irk;
2429 }
2430
2431 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2432 {
2433 struct link_key *key;
2434
2435 key = hci_find_link_key(hdev, bdaddr);
2436 if (!key)
2437 return -ENOENT;
2438
2439 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2440
2441 list_del_rcu(&key->list);
2442 kfree_rcu(key, rcu);
2443
2444 return 0;
2445 }
2446
2447 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2448 {
2449 struct smp_ltk *k;
2450 int removed = 0;
2451
2452 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2453 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2454 continue;
2455
2456 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2457
2458 list_del_rcu(&k->list);
2459 kfree_rcu(k, rcu);
2460 removed++;
2461 }
2462
2463 return removed ? 0 : -ENOENT;
2464 }
2465
2466 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2467 {
2468 struct smp_irk *k;
2469
2470 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2471 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2472 continue;
2473
2474 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2475
2476 list_del_rcu(&k->list);
2477 kfree_rcu(k, rcu);
2478 }
2479 }
2480
2481 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2482 {
2483 struct smp_ltk *k;
2484 struct smp_irk *irk;
2485 u8 addr_type;
2486
2487 if (type == BDADDR_BREDR) {
2488 if (hci_find_link_key(hdev, bdaddr))
2489 return true;
2490 return false;
2491 }
2492
2493 /* Convert to HCI addr type which struct smp_ltk uses */
2494 if (type == BDADDR_LE_PUBLIC)
2495 addr_type = ADDR_LE_DEV_PUBLIC;
2496 else
2497 addr_type = ADDR_LE_DEV_RANDOM;
2498
2499 irk = hci_get_irk(hdev, bdaddr, addr_type);
2500 if (irk) {
2501 bdaddr = &irk->bdaddr;
2502 addr_type = irk->addr_type;
2503 }
2504
2505 rcu_read_lock();
2506 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2507 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2508 rcu_read_unlock();
2509 return true;
2510 }
2511 }
2512 rcu_read_unlock();
2513
2514 return false;
2515 }
2516
2517 /* HCI command timer function */
2518 static void hci_cmd_timeout(struct work_struct *work)
2519 {
2520 struct hci_dev *hdev = container_of(work, struct hci_dev,
2521 cmd_timer.work);
2522
2523 if (hdev->sent_cmd) {
2524 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2525 u16 opcode = __le16_to_cpu(sent->opcode);
2526
2527 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2528 } else {
2529 BT_ERR("%s command tx timeout", hdev->name);
2530 }
2531
2532 atomic_set(&hdev->cmd_cnt, 1);
2533 queue_work(hdev->workqueue, &hdev->cmd_work);
2534 }
2535
2536 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2537 bdaddr_t *bdaddr, u8 bdaddr_type)
2538 {
2539 struct oob_data *data;
2540
2541 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2542 if (bacmp(bdaddr, &data->bdaddr) != 0)
2543 continue;
2544 if (data->bdaddr_type != bdaddr_type)
2545 continue;
2546 return data;
2547 }
2548
2549 return NULL;
2550 }
2551
2552 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2553 u8 bdaddr_type)
2554 {
2555 struct oob_data *data;
2556
2557 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2558 if (!data)
2559 return -ENOENT;
2560
2561 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2562
2563 list_del(&data->list);
2564 kfree(data);
2565
2566 return 0;
2567 }
2568
2569 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2570 {
2571 struct oob_data *data, *n;
2572
2573 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2574 list_del(&data->list);
2575 kfree(data);
2576 }
2577 }
2578
2579 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2580 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2581 u8 *hash256, u8 *rand256)
2582 {
2583 struct oob_data *data;
2584
2585 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2586 if (!data) {
2587 data = kmalloc(sizeof(*data), GFP_KERNEL);
2588 if (!data)
2589 return -ENOMEM;
2590
2591 bacpy(&data->bdaddr, bdaddr);
2592 data->bdaddr_type = bdaddr_type;
2593 list_add(&data->list, &hdev->remote_oob_data);
2594 }
2595
2596 if (hash192 && rand192) {
2597 memcpy(data->hash192, hash192, sizeof(data->hash192));
2598 memcpy(data->rand192, rand192, sizeof(data->rand192));
2599 if (hash256 && rand256)
2600 data->present = 0x03;
2601 } else {
2602 memset(data->hash192, 0, sizeof(data->hash192));
2603 memset(data->rand192, 0, sizeof(data->rand192));
2604 if (hash256 && rand256)
2605 data->present = 0x02;
2606 else
2607 data->present = 0x00;
2608 }
2609
2610 if (hash256 && rand256) {
2611 memcpy(data->hash256, hash256, sizeof(data->hash256));
2612 memcpy(data->rand256, rand256, sizeof(data->rand256));
2613 } else {
2614 memset(data->hash256, 0, sizeof(data->hash256));
2615 memset(data->rand256, 0, sizeof(data->rand256));
2616 if (hash192 && rand192)
2617 data->present = 0x01;
2618 }
2619
2620 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2621
2622 return 0;
2623 }
2624
2625 /* This function requires the caller holds hdev->lock */
2626 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2627 {
2628 struct adv_info *adv_instance;
2629
2630 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2631 if (adv_instance->instance == instance)
2632 return adv_instance;
2633 }
2634
2635 return NULL;
2636 }
2637
2638 /* This function requires the caller holds hdev->lock */
2639 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2640 {
2641 struct adv_info *cur_instance;
2642
2643 cur_instance = hci_find_adv_instance(hdev, instance);
2644 if (!cur_instance)
2645 return NULL;
2646
2647 if (cur_instance == list_last_entry(&hdev->adv_instances,
2648 struct adv_info, list))
2649 return list_first_entry(&hdev->adv_instances,
2650 struct adv_info, list);
2651 else
2652 return list_next_entry(cur_instance, list);
2653 }
2654
2655 /* This function requires the caller holds hdev->lock */
2656 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2657 {
2658 struct adv_info *adv_instance;
2659
2660 adv_instance = hci_find_adv_instance(hdev, instance);
2661 if (!adv_instance)
2662 return -ENOENT;
2663
2664 BT_DBG("%s removing %dMR", hdev->name, instance);
2665
2666 if (hdev->cur_adv_instance == instance) {
2667 if (hdev->adv_instance_timeout) {
2668 cancel_delayed_work(&hdev->adv_instance_expire);
2669 hdev->adv_instance_timeout = 0;
2670 }
2671 hdev->cur_adv_instance = 0x00;
2672 }
2673
2674 list_del(&adv_instance->list);
2675 kfree(adv_instance);
2676
2677 hdev->adv_instance_cnt--;
2678
2679 return 0;
2680 }
2681
2682 /* This function requires the caller holds hdev->lock */
2683 void hci_adv_instances_clear(struct hci_dev *hdev)
2684 {
2685 struct adv_info *adv_instance, *n;
2686
2687 if (hdev->adv_instance_timeout) {
2688 cancel_delayed_work(&hdev->adv_instance_expire);
2689 hdev->adv_instance_timeout = 0;
2690 }
2691
2692 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2693 list_del(&adv_instance->list);
2694 kfree(adv_instance);
2695 }
2696
2697 hdev->adv_instance_cnt = 0;
2698 hdev->cur_adv_instance = 0x00;
2699 }
2700
2701 /* This function requires the caller holds hdev->lock */
2702 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2703 u16 adv_data_len, u8 *adv_data,
2704 u16 scan_rsp_len, u8 *scan_rsp_data,
2705 u16 timeout, u16 duration)
2706 {
2707 struct adv_info *adv_instance;
2708
2709 adv_instance = hci_find_adv_instance(hdev, instance);
2710 if (adv_instance) {
2711 memset(adv_instance->adv_data, 0,
2712 sizeof(adv_instance->adv_data));
2713 memset(adv_instance->scan_rsp_data, 0,
2714 sizeof(adv_instance->scan_rsp_data));
2715 } else {
2716 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2717 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2718 return -EOVERFLOW;
2719
2720 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2721 if (!adv_instance)
2722 return -ENOMEM;
2723
2724 adv_instance->pending = true;
2725 adv_instance->instance = instance;
2726 list_add(&adv_instance->list, &hdev->adv_instances);
2727 hdev->adv_instance_cnt++;
2728 }
2729
2730 adv_instance->flags = flags;
2731 adv_instance->adv_data_len = adv_data_len;
2732 adv_instance->scan_rsp_len = scan_rsp_len;
2733
2734 if (adv_data_len)
2735 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2736
2737 if (scan_rsp_len)
2738 memcpy(adv_instance->scan_rsp_data,
2739 scan_rsp_data, scan_rsp_len);
2740
2741 adv_instance->timeout = timeout;
2742 adv_instance->remaining_time = timeout;
2743
2744 if (duration == 0)
2745 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2746 else
2747 adv_instance->duration = duration;
2748
2749 BT_DBG("%s for %dMR", hdev->name, instance);
2750
2751 return 0;
2752 }
2753
2754 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2755 bdaddr_t *bdaddr, u8 type)
2756 {
2757 struct bdaddr_list *b;
2758
2759 list_for_each_entry(b, bdaddr_list, list) {
2760 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2761 return b;
2762 }
2763
2764 return NULL;
2765 }
2766
2767 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2768 {
2769 struct bdaddr_list *b, *n;
2770
2771 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2772 list_del(&b->list);
2773 kfree(b);
2774 }
2775 }
2776
2777 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2778 {
2779 struct bdaddr_list *entry;
2780
2781 if (!bacmp(bdaddr, BDADDR_ANY))
2782 return -EBADF;
2783
2784 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2785 return -EEXIST;
2786
2787 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2788 if (!entry)
2789 return -ENOMEM;
2790
2791 bacpy(&entry->bdaddr, bdaddr);
2792 entry->bdaddr_type = type;
2793
2794 list_add(&entry->list, list);
2795
2796 return 0;
2797 }
2798
2799 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2800 {
2801 struct bdaddr_list *entry;
2802
2803 if (!bacmp(bdaddr, BDADDR_ANY)) {
2804 hci_bdaddr_list_clear(list);
2805 return 0;
2806 }
2807
2808 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2809 if (!entry)
2810 return -ENOENT;
2811
2812 list_del(&entry->list);
2813 kfree(entry);
2814
2815 return 0;
2816 }
2817
2818 /* This function requires the caller holds hdev->lock */
2819 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2820 bdaddr_t *addr, u8 addr_type)
2821 {
2822 struct hci_conn_params *params;
2823
2824 list_for_each_entry(params, &hdev->le_conn_params, list) {
2825 if (bacmp(&params->addr, addr) == 0 &&
2826 params->addr_type == addr_type) {
2827 return params;
2828 }
2829 }
2830
2831 return NULL;
2832 }
2833
2834 /* This function requires the caller holds hdev->lock */
2835 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2836 bdaddr_t *addr, u8 addr_type)
2837 {
2838 struct hci_conn_params *param;
2839
2840 list_for_each_entry(param, list, action) {
2841 if (bacmp(&param->addr, addr) == 0 &&
2842 param->addr_type == addr_type)
2843 return param;
2844 }
2845
2846 return NULL;
2847 }
2848
2849 /* This function requires the caller holds hdev->lock */
2850 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2851 bdaddr_t *addr, u8 addr_type)
2852 {
2853 struct hci_conn_params *params;
2854
2855 params = hci_conn_params_lookup(hdev, addr, addr_type);
2856 if (params)
2857 return params;
2858
2859 params = kzalloc(sizeof(*params), GFP_KERNEL);
2860 if (!params) {
2861 BT_ERR("Out of memory");
2862 return NULL;
2863 }
2864
2865 bacpy(&params->addr, addr);
2866 params->addr_type = addr_type;
2867
2868 list_add(&params->list, &hdev->le_conn_params);
2869 INIT_LIST_HEAD(&params->action);
2870
2871 params->conn_min_interval = hdev->le_conn_min_interval;
2872 params->conn_max_interval = hdev->le_conn_max_interval;
2873 params->conn_latency = hdev->le_conn_latency;
2874 params->supervision_timeout = hdev->le_supv_timeout;
2875 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2876
2877 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2878
2879 return params;
2880 }
2881
2882 static void hci_conn_params_free(struct hci_conn_params *params)
2883 {
2884 if (params->conn) {
2885 hci_conn_drop(params->conn);
2886 hci_conn_put(params->conn);
2887 }
2888
2889 list_del(&params->action);
2890 list_del(&params->list);
2891 kfree(params);
2892 }
2893
2894 /* This function requires the caller holds hdev->lock */
2895 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2896 {
2897 struct hci_conn_params *params;
2898
2899 params = hci_conn_params_lookup(hdev, addr, addr_type);
2900 if (!params)
2901 return;
2902
2903 hci_conn_params_free(params);
2904
2905 hci_update_background_scan(hdev);
2906
2907 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2908 }
2909
2910 /* This function requires the caller holds hdev->lock */
2911 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2912 {
2913 struct hci_conn_params *params, *tmp;
2914
2915 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2916 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2917 continue;
2918
2919 /* If trying to estabilish one time connection to disabled
2920 * device, leave the params, but mark them as just once.
2921 */
2922 if (params->explicit_connect) {
2923 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2924 continue;
2925 }
2926
2927 list_del(&params->list);
2928 kfree(params);
2929 }
2930
2931 BT_DBG("All LE disabled connection parameters were removed");
2932 }
2933
2934 /* This function requires the caller holds hdev->lock */
2935 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2936 {
2937 struct hci_conn_params *params, *tmp;
2938
2939 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2940 hci_conn_params_free(params);
2941
2942 BT_DBG("All LE connection parameters were removed");
2943 }
2944
2945 /* Copy the Identity Address of the controller.
2946 *
2947 * If the controller has a public BD_ADDR, then by default use that one.
2948 * If this is a LE only controller without a public address, default to
2949 * the static random address.
2950 *
2951 * For debugging purposes it is possible to force controllers with a
2952 * public address to use the static random address instead.
2953 *
2954 * In case BR/EDR has been disabled on a dual-mode controller and
2955 * userspace has configured a static address, then that address
2956 * becomes the identity address instead of the public BR/EDR address.
2957 */
2958 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2959 u8 *bdaddr_type)
2960 {
2961 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2962 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2963 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2964 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2965 bacpy(bdaddr, &hdev->static_addr);
2966 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2967 } else {
2968 bacpy(bdaddr, &hdev->bdaddr);
2969 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2970 }
2971 }
2972
2973 /* Alloc HCI device */
2974 struct hci_dev *hci_alloc_dev(void)
2975 {
2976 struct hci_dev *hdev;
2977
2978 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2979 if (!hdev)
2980 return NULL;
2981
2982 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2983 hdev->esco_type = (ESCO_HV1);
2984 hdev->link_mode = (HCI_LM_ACCEPT);
2985 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2986 hdev->io_capability = 0x03; /* No Input No Output */
2987 hdev->manufacturer = 0xffff; /* Default to internal use */
2988 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2989 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2990 hdev->adv_instance_cnt = 0;
2991 hdev->cur_adv_instance = 0x00;
2992 hdev->adv_instance_timeout = 0;
2993
2994 hdev->sniff_max_interval = 800;
2995 hdev->sniff_min_interval = 80;
2996
2997 hdev->le_adv_channel_map = 0x07;
2998 hdev->le_adv_min_interval = 0x0800;
2999 hdev->le_adv_max_interval = 0x0800;
3000 hdev->le_scan_interval = 0x0060;
3001 hdev->le_scan_window = 0x0030;
3002 hdev->le_conn_min_interval = 0x0018;
3003 hdev->le_conn_max_interval = 0x0028;
3004 hdev->le_conn_latency = 0x0000;
3005 hdev->le_supv_timeout = 0x002a;
3006 hdev->le_def_tx_len = 0x001b;
3007 hdev->le_def_tx_time = 0x0148;
3008 hdev->le_max_tx_len = 0x001b;
3009 hdev->le_max_tx_time = 0x0148;
3010 hdev->le_max_rx_len = 0x001b;
3011 hdev->le_max_rx_time = 0x0148;
3012
3013 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3014 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3015 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3016 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3017
3018 mutex_init(&hdev->lock);
3019 mutex_init(&hdev->req_lock);
3020
3021 INIT_LIST_HEAD(&hdev->mgmt_pending);
3022 INIT_LIST_HEAD(&hdev->blacklist);
3023 INIT_LIST_HEAD(&hdev->whitelist);
3024 INIT_LIST_HEAD(&hdev->uuids);
3025 INIT_LIST_HEAD(&hdev->link_keys);
3026 INIT_LIST_HEAD(&hdev->long_term_keys);
3027 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3028 INIT_LIST_HEAD(&hdev->remote_oob_data);
3029 INIT_LIST_HEAD(&hdev->le_white_list);
3030 INIT_LIST_HEAD(&hdev->le_conn_params);
3031 INIT_LIST_HEAD(&hdev->pend_le_conns);
3032 INIT_LIST_HEAD(&hdev->pend_le_reports);
3033 INIT_LIST_HEAD(&hdev->conn_hash.list);
3034 INIT_LIST_HEAD(&hdev->adv_instances);
3035
3036 INIT_WORK(&hdev->rx_work, hci_rx_work);
3037 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3038 INIT_WORK(&hdev->tx_work, hci_tx_work);
3039 INIT_WORK(&hdev->power_on, hci_power_on);
3040 INIT_WORK(&hdev->error_reset, hci_error_reset);
3041
3042 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3043
3044 skb_queue_head_init(&hdev->rx_q);
3045 skb_queue_head_init(&hdev->cmd_q);
3046 skb_queue_head_init(&hdev->raw_q);
3047
3048 init_waitqueue_head(&hdev->req_wait_q);
3049
3050 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3051
3052 hci_request_setup(hdev);
3053
3054 hci_init_sysfs(hdev);
3055 discovery_init(hdev);
3056
3057 return hdev;
3058 }
3059 EXPORT_SYMBOL(hci_alloc_dev);
3060
3061 /* Free HCI device */
3062 void hci_free_dev(struct hci_dev *hdev)
3063 {
3064 /* will free via device release */
3065 put_device(&hdev->dev);
3066 }
3067 EXPORT_SYMBOL(hci_free_dev);
3068
3069 /* Register HCI device */
3070 int hci_register_dev(struct hci_dev *hdev)
3071 {
3072 int id, error;
3073
3074 if (!hdev->open || !hdev->close || !hdev->send)
3075 return -EINVAL;
3076
3077 /* Do not allow HCI_AMP devices to register at index 0,
3078 * so the index can be used as the AMP controller ID.
3079 */
3080 switch (hdev->dev_type) {
3081 case HCI_PRIMARY:
3082 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3083 break;
3084 case HCI_AMP:
3085 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3086 break;
3087 default:
3088 return -EINVAL;
3089 }
3090
3091 if (id < 0)
3092 return id;
3093
3094 sprintf(hdev->name, "hci%d", id);
3095 hdev->id = id;
3096
3097 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3098
3099 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3100 if (!hdev->workqueue) {
3101 error = -ENOMEM;
3102 goto err;
3103 }
3104
3105 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3106 hdev->name);
3107 if (!hdev->req_workqueue) {
3108 destroy_workqueue(hdev->workqueue);
3109 error = -ENOMEM;
3110 goto err;
3111 }
3112
3113 if (!IS_ERR_OR_NULL(bt_debugfs))
3114 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3115
3116 dev_set_name(&hdev->dev, "%s", hdev->name);
3117
3118 error = device_add(&hdev->dev);
3119 if (error < 0)
3120 goto err_wqueue;
3121
3122 hci_leds_init(hdev);
3123
3124 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3125 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3126 hdev);
3127 if (hdev->rfkill) {
3128 if (rfkill_register(hdev->rfkill) < 0) {
3129 rfkill_destroy(hdev->rfkill);
3130 hdev->rfkill = NULL;
3131 }
3132 }
3133
3134 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3135 hci_dev_set_flag(hdev, HCI_RFKILLED);
3136
3137 hci_dev_set_flag(hdev, HCI_SETUP);
3138 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3139
3140 if (hdev->dev_type == HCI_PRIMARY) {
3141 /* Assume BR/EDR support until proven otherwise (such as
3142 * through reading supported features during init.
3143 */
3144 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3145 }
3146
3147 write_lock(&hci_dev_list_lock);
3148 list_add(&hdev->list, &hci_dev_list);
3149 write_unlock(&hci_dev_list_lock);
3150
3151 /* Devices that are marked for raw-only usage are unconfigured
3152 * and should not be included in normal operation.
3153 */
3154 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3155 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3156
3157 hci_sock_dev_event(hdev, HCI_DEV_REG);
3158 hci_dev_hold(hdev);
3159
3160 queue_work(hdev->req_workqueue, &hdev->power_on);
3161
3162 return id;
3163
3164 err_wqueue:
3165 destroy_workqueue(hdev->workqueue);
3166 destroy_workqueue(hdev->req_workqueue);
3167 err:
3168 ida_simple_remove(&hci_index_ida, hdev->id);
3169
3170 return error;
3171 }
3172 EXPORT_SYMBOL(hci_register_dev);
3173
3174 /* Unregister HCI device */
3175 void hci_unregister_dev(struct hci_dev *hdev)
3176 {
3177 int id;
3178
3179 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3180
3181 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3182
3183 id = hdev->id;
3184
3185 write_lock(&hci_dev_list_lock);
3186 list_del(&hdev->list);
3187 write_unlock(&hci_dev_list_lock);
3188
3189 cancel_work_sync(&hdev->power_on);
3190
3191 hci_dev_do_close(hdev);
3192
3193 if (!test_bit(HCI_INIT, &hdev->flags) &&
3194 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3195 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3196 hci_dev_lock(hdev);
3197 mgmt_index_removed(hdev);
3198 hci_dev_unlock(hdev);
3199 }
3200
3201 /* mgmt_index_removed should take care of emptying the
3202 * pending list */
3203 BUG_ON(!list_empty(&hdev->mgmt_pending));
3204
3205 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3206
3207 if (hdev->rfkill) {
3208 rfkill_unregister(hdev->rfkill);
3209 rfkill_destroy(hdev->rfkill);
3210 }
3211
3212 device_del(&hdev->dev);
3213
3214 debugfs_remove_recursive(hdev->debugfs);
3215 kfree_const(hdev->hw_info);
3216 kfree_const(hdev->fw_info);
3217
3218 destroy_workqueue(hdev->workqueue);
3219 destroy_workqueue(hdev->req_workqueue);
3220
3221 hci_dev_lock(hdev);
3222 hci_bdaddr_list_clear(&hdev->blacklist);
3223 hci_bdaddr_list_clear(&hdev->whitelist);
3224 hci_uuids_clear(hdev);
3225 hci_link_keys_clear(hdev);
3226 hci_smp_ltks_clear(hdev);
3227 hci_smp_irks_clear(hdev);
3228 hci_remote_oob_data_clear(hdev);
3229 hci_adv_instances_clear(hdev);
3230 hci_bdaddr_list_clear(&hdev->le_white_list);
3231 hci_conn_params_clear_all(hdev);
3232 hci_discovery_filter_clear(hdev);
3233 hci_dev_unlock(hdev);
3234
3235 hci_dev_put(hdev);
3236
3237 ida_simple_remove(&hci_index_ida, id);
3238 }
3239 EXPORT_SYMBOL(hci_unregister_dev);
3240
3241 /* Suspend HCI device */
3242 int hci_suspend_dev(struct hci_dev *hdev)
3243 {
3244 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3245 return 0;
3246 }
3247 EXPORT_SYMBOL(hci_suspend_dev);
3248
3249 /* Resume HCI device */
3250 int hci_resume_dev(struct hci_dev *hdev)
3251 {
3252 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3253 return 0;
3254 }
3255 EXPORT_SYMBOL(hci_resume_dev);
3256
3257 /* Reset HCI device */
3258 int hci_reset_dev(struct hci_dev *hdev)
3259 {
3260 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3261 struct sk_buff *skb;
3262
3263 skb = bt_skb_alloc(3, GFP_ATOMIC);
3264 if (!skb)
3265 return -ENOMEM;
3266
3267 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3268 skb_put_data(skb, hw_err, 3);
3269
3270 /* Send Hardware Error to upper stack */
3271 return hci_recv_frame(hdev, skb);
3272 }
3273 EXPORT_SYMBOL(hci_reset_dev);
3274
3275 /* Receive frame from HCI drivers */
3276 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3277 {
3278 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3279 && !test_bit(HCI_INIT, &hdev->flags))) {
3280 kfree_skb(skb);
3281 return -ENXIO;
3282 }
3283
3284 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3285 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3286 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3287 kfree_skb(skb);
3288 return -EINVAL;
3289 }
3290
3291 /* Incoming skb */
3292 bt_cb(skb)->incoming = 1;
3293
3294 /* Time stamp */
3295 __net_timestamp(skb);
3296
3297 skb_queue_tail(&hdev->rx_q, skb);
3298 queue_work(hdev->workqueue, &hdev->rx_work);
3299
3300 return 0;
3301 }
3302 EXPORT_SYMBOL(hci_recv_frame);
3303
3304 /* Receive diagnostic message from HCI drivers */
3305 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3306 {
3307 /* Mark as diagnostic packet */
3308 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3309
3310 /* Time stamp */
3311 __net_timestamp(skb);
3312
3313 skb_queue_tail(&hdev->rx_q, skb);
3314 queue_work(hdev->workqueue, &hdev->rx_work);
3315
3316 return 0;
3317 }
3318 EXPORT_SYMBOL(hci_recv_diag);
3319
3320 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3321 {
3322 va_list vargs;
3323
3324 va_start(vargs, fmt);
3325 kfree_const(hdev->hw_info);
3326 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3327 va_end(vargs);
3328 }
3329 EXPORT_SYMBOL(hci_set_hw_info);
3330
3331 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3332 {
3333 va_list vargs;
3334
3335 va_start(vargs, fmt);
3336 kfree_const(hdev->fw_info);
3337 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3338 va_end(vargs);
3339 }
3340 EXPORT_SYMBOL(hci_set_fw_info);
3341
3342 /* ---- Interface to upper protocols ---- */
3343
3344 int hci_register_cb(struct hci_cb *cb)
3345 {
3346 BT_DBG("%p name %s", cb, cb->name);
3347
3348 mutex_lock(&hci_cb_list_lock);
3349 list_add_tail(&cb->list, &hci_cb_list);
3350 mutex_unlock(&hci_cb_list_lock);
3351
3352 return 0;
3353 }
3354 EXPORT_SYMBOL(hci_register_cb);
3355
3356 int hci_unregister_cb(struct hci_cb *cb)
3357 {
3358 BT_DBG("%p name %s", cb, cb->name);
3359
3360 mutex_lock(&hci_cb_list_lock);
3361 list_del(&cb->list);
3362 mutex_unlock(&hci_cb_list_lock);
3363
3364 return 0;
3365 }
3366 EXPORT_SYMBOL(hci_unregister_cb);
3367
3368 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3369 {
3370 int err;
3371
3372 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3373 skb->len);
3374
3375 /* Time stamp */
3376 __net_timestamp(skb);
3377
3378 /* Send copy to monitor */
3379 hci_send_to_monitor(hdev, skb);
3380
3381 if (atomic_read(&hdev->promisc)) {
3382 /* Send copy to the sockets */
3383 hci_send_to_sock(hdev, skb);
3384 }
3385
3386 /* Get rid of skb owner, prior to sending to the driver. */
3387 skb_orphan(skb);
3388
3389 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3390 kfree_skb(skb);
3391 return;
3392 }
3393
3394 err = hdev->send(hdev, skb);
3395 if (err < 0) {
3396 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3397 kfree_skb(skb);
3398 }
3399 }
3400
3401 /* Send HCI command */
3402 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3403 const void *param)
3404 {
3405 struct sk_buff *skb;
3406
3407 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3408
3409 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3410 if (!skb) {
3411 BT_ERR("%s no memory for command", hdev->name);
3412 return -ENOMEM;
3413 }
3414
3415 /* Stand-alone HCI commands must be flagged as
3416 * single-command requests.
3417 */
3418 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3419
3420 skb_queue_tail(&hdev->cmd_q, skb);
3421 queue_work(hdev->workqueue, &hdev->cmd_work);
3422
3423 return 0;
3424 }
3425
3426 /* Get data from the previously sent command */
3427 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3428 {
3429 struct hci_command_hdr *hdr;
3430
3431 if (!hdev->sent_cmd)
3432 return NULL;
3433
3434 hdr = (void *) hdev->sent_cmd->data;
3435
3436 if (hdr->opcode != cpu_to_le16(opcode))
3437 return NULL;
3438
3439 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3440
3441 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3442 }
3443
3444 /* Send HCI command and wait for command commplete event */
3445 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3446 const void *param, u32 timeout)
3447 {
3448 struct sk_buff *skb;
3449
3450 if (!test_bit(HCI_UP, &hdev->flags))
3451 return ERR_PTR(-ENETDOWN);
3452
3453 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3454
3455 hci_req_sync_lock(hdev);
3456 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3457 hci_req_sync_unlock(hdev);
3458
3459 return skb;
3460 }
3461 EXPORT_SYMBOL(hci_cmd_sync);
3462
3463 /* Send ACL data */
3464 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3465 {
3466 struct hci_acl_hdr *hdr;
3467 int len = skb->len;
3468
3469 skb_push(skb, HCI_ACL_HDR_SIZE);
3470 skb_reset_transport_header(skb);
3471 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3472 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3473 hdr->dlen = cpu_to_le16(len);
3474 }
3475
3476 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3477 struct sk_buff *skb, __u16 flags)
3478 {
3479 struct hci_conn *conn = chan->conn;
3480 struct hci_dev *hdev = conn->hdev;
3481 struct sk_buff *list;
3482
3483 skb->len = skb_headlen(skb);
3484 skb->data_len = 0;
3485
3486 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3487
3488 switch (hdev->dev_type) {
3489 case HCI_PRIMARY:
3490 hci_add_acl_hdr(skb, conn->handle, flags);
3491 break;
3492 case HCI_AMP:
3493 hci_add_acl_hdr(skb, chan->handle, flags);
3494 break;
3495 default:
3496 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3497 return;
3498 }
3499
3500 list = skb_shinfo(skb)->frag_list;
3501 if (!list) {
3502 /* Non fragmented */
3503 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3504
3505 skb_queue_tail(queue, skb);
3506 } else {
3507 /* Fragmented */
3508 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3509
3510 skb_shinfo(skb)->frag_list = NULL;
3511
3512 /* Queue all fragments atomically. We need to use spin_lock_bh
3513 * here because of 6LoWPAN links, as there this function is
3514 * called from softirq and using normal spin lock could cause
3515 * deadlocks.
3516 */
3517 spin_lock_bh(&queue->lock);
3518
3519 __skb_queue_tail(queue, skb);
3520
3521 flags &= ~ACL_START;
3522 flags |= ACL_CONT;
3523 do {
3524 skb = list; list = list->next;
3525
3526 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3527 hci_add_acl_hdr(skb, conn->handle, flags);
3528
3529 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3530
3531 __skb_queue_tail(queue, skb);
3532 } while (list);
3533
3534 spin_unlock_bh(&queue->lock);
3535 }
3536 }
3537
3538 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3539 {
3540 struct hci_dev *hdev = chan->conn->hdev;
3541
3542 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3543
3544 hci_queue_acl(chan, &chan->data_q, skb, flags);
3545
3546 queue_work(hdev->workqueue, &hdev->tx_work);
3547 }
3548
3549 /* Send SCO data */
3550 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3551 {
3552 struct hci_dev *hdev = conn->hdev;
3553 struct hci_sco_hdr hdr;
3554
3555 BT_DBG("%s len %d", hdev->name, skb->len);
3556
3557 hdr.handle = cpu_to_le16(conn->handle);
3558 hdr.dlen = skb->len;
3559
3560 skb_push(skb, HCI_SCO_HDR_SIZE);
3561 skb_reset_transport_header(skb);
3562 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3563
3564 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3565
3566 skb_queue_tail(&conn->data_q, skb);
3567 queue_work(hdev->workqueue, &hdev->tx_work);
3568 }
3569
3570 /* ---- HCI TX task (outgoing data) ---- */
3571
3572 /* HCI Connection scheduler */
3573 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3574 int *quote)
3575 {
3576 struct hci_conn_hash *h = &hdev->conn_hash;
3577 struct hci_conn *conn = NULL, *c;
3578 unsigned int num = 0, min = ~0;
3579
3580 /* We don't have to lock device here. Connections are always
3581 * added and removed with TX task disabled. */
3582
3583 rcu_read_lock();
3584
3585 list_for_each_entry_rcu(c, &h->list, list) {
3586 if (c->type != type || skb_queue_empty(&c->data_q))
3587 continue;
3588
3589 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3590 continue;
3591
3592 num++;
3593
3594 if (c->sent < min) {
3595 min = c->sent;
3596 conn = c;
3597 }
3598
3599 if (hci_conn_num(hdev, type) == num)
3600 break;
3601 }
3602
3603 rcu_read_unlock();
3604
3605 if (conn) {
3606 int cnt, q;
3607
3608 switch (conn->type) {
3609 case ACL_LINK:
3610 cnt = hdev->acl_cnt;
3611 break;
3612 case SCO_LINK:
3613 case ESCO_LINK:
3614 cnt = hdev->sco_cnt;
3615 break;
3616 case LE_LINK:
3617 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3618 break;
3619 default:
3620 cnt = 0;
3621 BT_ERR("Unknown link type");
3622 }
3623
3624 q = cnt / num;
3625 *quote = q ? q : 1;
3626 } else
3627 *quote = 0;
3628
3629 BT_DBG("conn %p quote %d", conn, *quote);
3630 return conn;
3631 }
3632
3633 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3634 {
3635 struct hci_conn_hash *h = &hdev->conn_hash;
3636 struct hci_conn *c;
3637
3638 BT_ERR("%s link tx timeout", hdev->name);
3639
3640 rcu_read_lock();
3641
3642 /* Kill stalled connections */
3643 list_for_each_entry_rcu(c, &h->list, list) {
3644 if (c->type == type && c->sent) {
3645 BT_ERR("%s killing stalled connection %pMR",
3646 hdev->name, &c->dst);
3647 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3648 }
3649 }
3650
3651 rcu_read_unlock();
3652 }
3653
3654 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3655 int *quote)
3656 {
3657 struct hci_conn_hash *h = &hdev->conn_hash;
3658 struct hci_chan *chan = NULL;
3659 unsigned int num = 0, min = ~0, cur_prio = 0;
3660 struct hci_conn *conn;
3661 int cnt, q, conn_num = 0;
3662
3663 BT_DBG("%s", hdev->name);
3664
3665 rcu_read_lock();
3666
3667 list_for_each_entry_rcu(conn, &h->list, list) {
3668 struct hci_chan *tmp;
3669
3670 if (conn->type != type)
3671 continue;
3672
3673 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3674 continue;
3675
3676 conn_num++;
3677
3678 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3679 struct sk_buff *skb;
3680
3681 if (skb_queue_empty(&tmp->data_q))
3682 continue;
3683
3684 skb = skb_peek(&tmp->data_q);
3685 if (skb->priority < cur_prio)
3686 continue;
3687
3688 if (skb->priority > cur_prio) {
3689 num = 0;
3690 min = ~0;
3691 cur_prio = skb->priority;
3692 }
3693
3694 num++;
3695
3696 if (conn->sent < min) {
3697 min = conn->sent;
3698 chan = tmp;
3699 }
3700 }
3701
3702 if (hci_conn_num(hdev, type) == conn_num)
3703 break;
3704 }
3705
3706 rcu_read_unlock();
3707
3708 if (!chan)
3709 return NULL;
3710
3711 switch (chan->conn->type) {
3712 case ACL_LINK:
3713 cnt = hdev->acl_cnt;
3714 break;
3715 case AMP_LINK:
3716 cnt = hdev->block_cnt;
3717 break;
3718 case SCO_LINK:
3719 case ESCO_LINK:
3720 cnt = hdev->sco_cnt;
3721 break;
3722 case LE_LINK:
3723 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3724 break;
3725 default:
3726 cnt = 0;
3727 BT_ERR("Unknown link type");
3728 }
3729
3730 q = cnt / num;
3731 *quote = q ? q : 1;
3732 BT_DBG("chan %p quote %d", chan, *quote);
3733 return chan;
3734 }
3735
3736 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3737 {
3738 struct hci_conn_hash *h = &hdev->conn_hash;
3739 struct hci_conn *conn;
3740 int num = 0;
3741
3742 BT_DBG("%s", hdev->name);
3743
3744 rcu_read_lock();
3745
3746 list_for_each_entry_rcu(conn, &h->list, list) {
3747 struct hci_chan *chan;
3748
3749 if (conn->type != type)
3750 continue;
3751
3752 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3753 continue;
3754
3755 num++;
3756
3757 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3758 struct sk_buff *skb;
3759
3760 if (chan->sent) {
3761 chan->sent = 0;
3762 continue;
3763 }
3764
3765 if (skb_queue_empty(&chan->data_q))
3766 continue;
3767
3768 skb = skb_peek(&chan->data_q);
3769 if (skb->priority >= HCI_PRIO_MAX - 1)
3770 continue;
3771
3772 skb->priority = HCI_PRIO_MAX - 1;
3773
3774 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3775 skb->priority);
3776 }
3777
3778 if (hci_conn_num(hdev, type) == num)
3779 break;
3780 }
3781
3782 rcu_read_unlock();
3783
3784 }
3785
3786 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3787 {
3788 /* Calculate count of blocks used by this packet */
3789 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3790 }
3791
3792 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3793 {
3794 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3795 /* ACL tx timeout must be longer than maximum
3796 * link supervision timeout (40.9 seconds) */
3797 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3798 HCI_ACL_TX_TIMEOUT))
3799 hci_link_tx_to(hdev, ACL_LINK);
3800 }
3801 }
3802
3803 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3804 {
3805 unsigned int cnt = hdev->acl_cnt;
3806 struct hci_chan *chan;
3807 struct sk_buff *skb;
3808 int quote;
3809
3810 __check_timeout(hdev, cnt);
3811
3812 while (hdev->acl_cnt &&
3813 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3814 u32 priority = (skb_peek(&chan->data_q))->priority;
3815 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3816 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817 skb->len, skb->priority);
3818
3819 /* Stop if priority has changed */
3820 if (skb->priority < priority)
3821 break;
3822
3823 skb = skb_dequeue(&chan->data_q);
3824
3825 hci_conn_enter_active_mode(chan->conn,
3826 bt_cb(skb)->force_active);
3827
3828 hci_send_frame(hdev, skb);
3829 hdev->acl_last_tx = jiffies;
3830
3831 hdev->acl_cnt--;
3832 chan->sent++;
3833 chan->conn->sent++;
3834 }
3835 }
3836
3837 if (cnt != hdev->acl_cnt)
3838 hci_prio_recalculate(hdev, ACL_LINK);
3839 }
3840
3841 static void hci_sched_acl_blk(struct hci_dev *hdev)
3842 {
3843 unsigned int cnt = hdev->block_cnt;
3844 struct hci_chan *chan;
3845 struct sk_buff *skb;
3846 int quote;
3847 u8 type;
3848
3849 __check_timeout(hdev, cnt);
3850
3851 BT_DBG("%s", hdev->name);
3852
3853 if (hdev->dev_type == HCI_AMP)
3854 type = AMP_LINK;
3855 else
3856 type = ACL_LINK;
3857
3858 while (hdev->block_cnt > 0 &&
3859 (chan = hci_chan_sent(hdev, type, &quote))) {
3860 u32 priority = (skb_peek(&chan->data_q))->priority;
3861 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3862 int blocks;
3863
3864 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3865 skb->len, skb->priority);
3866
3867 /* Stop if priority has changed */
3868 if (skb->priority < priority)
3869 break;
3870
3871 skb = skb_dequeue(&chan->data_q);
3872
3873 blocks = __get_blocks(hdev, skb);
3874 if (blocks > hdev->block_cnt)
3875 return;
3876
3877 hci_conn_enter_active_mode(chan->conn,
3878 bt_cb(skb)->force_active);
3879
3880 hci_send_frame(hdev, skb);
3881 hdev->acl_last_tx = jiffies;
3882
3883 hdev->block_cnt -= blocks;
3884 quote -= blocks;
3885
3886 chan->sent += blocks;
3887 chan->conn->sent += blocks;
3888 }
3889 }
3890
3891 if (cnt != hdev->block_cnt)
3892 hci_prio_recalculate(hdev, type);
3893 }
3894
3895 static void hci_sched_acl(struct hci_dev *hdev)
3896 {
3897 BT_DBG("%s", hdev->name);
3898
3899 /* No ACL link over BR/EDR controller */
3900 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3901 return;
3902
3903 /* No AMP link over AMP controller */
3904 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3905 return;
3906
3907 switch (hdev->flow_ctl_mode) {
3908 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3909 hci_sched_acl_pkt(hdev);
3910 break;
3911
3912 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3913 hci_sched_acl_blk(hdev);
3914 break;
3915 }
3916 }
3917
3918 /* Schedule SCO */
3919 static void hci_sched_sco(struct hci_dev *hdev)
3920 {
3921 struct hci_conn *conn;
3922 struct sk_buff *skb;
3923 int quote;
3924
3925 BT_DBG("%s", hdev->name);
3926
3927 if (!hci_conn_num(hdev, SCO_LINK))
3928 return;
3929
3930 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3931 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3932 BT_DBG("skb %p len %d", skb, skb->len);
3933 hci_send_frame(hdev, skb);
3934
3935 conn->sent++;
3936 if (conn->sent == ~0)
3937 conn->sent = 0;
3938 }
3939 }
3940 }
3941
3942 static void hci_sched_esco(struct hci_dev *hdev)
3943 {
3944 struct hci_conn *conn;
3945 struct sk_buff *skb;
3946 int quote;
3947
3948 BT_DBG("%s", hdev->name);
3949
3950 if (!hci_conn_num(hdev, ESCO_LINK))
3951 return;
3952
3953 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3954 &quote))) {
3955 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3956 BT_DBG("skb %p len %d", skb, skb->len);
3957 hci_send_frame(hdev, skb);
3958
3959 conn->sent++;
3960 if (conn->sent == ~0)
3961 conn->sent = 0;
3962 }
3963 }
3964 }
3965
3966 static void hci_sched_le(struct hci_dev *hdev)
3967 {
3968 struct hci_chan *chan;
3969 struct sk_buff *skb;
3970 int quote, cnt, tmp;
3971
3972 BT_DBG("%s", hdev->name);
3973
3974 if (!hci_conn_num(hdev, LE_LINK))
3975 return;
3976
3977 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3978 /* LE tx timeout must be longer than maximum
3979 * link supervision timeout (40.9 seconds) */
3980 if (!hdev->le_cnt && hdev->le_pkts &&
3981 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3982 hci_link_tx_to(hdev, LE_LINK);
3983 }
3984
3985 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3986 tmp = cnt;
3987 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3988 u32 priority = (skb_peek(&chan->data_q))->priority;
3989 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3990 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3991 skb->len, skb->priority);
3992
3993 /* Stop if priority has changed */
3994 if (skb->priority < priority)
3995 break;
3996
3997 skb = skb_dequeue(&chan->data_q);
3998
3999 hci_send_frame(hdev, skb);
4000 hdev->le_last_tx = jiffies;
4001
4002 cnt--;
4003 chan->sent++;
4004 chan->conn->sent++;
4005 }
4006 }
4007
4008 if (hdev->le_pkts)
4009 hdev->le_cnt = cnt;
4010 else
4011 hdev->acl_cnt = cnt;
4012
4013 if (cnt != tmp)
4014 hci_prio_recalculate(hdev, LE_LINK);
4015 }
4016
4017 static void hci_tx_work(struct work_struct *work)
4018 {
4019 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4020 struct sk_buff *skb;
4021
4022 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4023 hdev->sco_cnt, hdev->le_cnt);
4024
4025 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4026 /* Schedule queues and send stuff to HCI driver */
4027 hci_sched_acl(hdev);
4028 hci_sched_sco(hdev);
4029 hci_sched_esco(hdev);
4030 hci_sched_le(hdev);
4031 }
4032
4033 /* Send next queued raw (unknown type) packet */
4034 while ((skb = skb_dequeue(&hdev->raw_q)))
4035 hci_send_frame(hdev, skb);
4036 }
4037
4038 /* ----- HCI RX task (incoming data processing) ----- */
4039
4040 /* ACL data packet */
4041 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4042 {
4043 struct hci_acl_hdr *hdr = (void *) skb->data;
4044 struct hci_conn *conn;
4045 __u16 handle, flags;
4046
4047 skb_pull(skb, HCI_ACL_HDR_SIZE);
4048
4049 handle = __le16_to_cpu(hdr->handle);
4050 flags = hci_flags(handle);
4051 handle = hci_handle(handle);
4052
4053 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4054 handle, flags);
4055
4056 hdev->stat.acl_rx++;
4057
4058 hci_dev_lock(hdev);
4059 conn = hci_conn_hash_lookup_handle(hdev, handle);
4060 hci_dev_unlock(hdev);
4061
4062 if (conn) {
4063 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4064
4065 /* Send to upper protocol */
4066 l2cap_recv_acldata(conn, skb, flags);
4067 return;
4068 } else {
4069 BT_ERR("%s ACL packet for unknown connection handle %d",
4070 hdev->name, handle);
4071 }
4072
4073 kfree_skb(skb);
4074 }
4075
4076 /* SCO data packet */
4077 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4078 {
4079 struct hci_sco_hdr *hdr = (void *) skb->data;
4080 struct hci_conn *conn;
4081 __u16 handle;
4082
4083 skb_pull(skb, HCI_SCO_HDR_SIZE);
4084
4085 handle = __le16_to_cpu(hdr->handle);
4086
4087 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4088
4089 hdev->stat.sco_rx++;
4090
4091 hci_dev_lock(hdev);
4092 conn = hci_conn_hash_lookup_handle(hdev, handle);
4093 hci_dev_unlock(hdev);
4094
4095 if (conn) {
4096 /* Send to upper protocol */
4097 sco_recv_scodata(conn, skb);
4098 return;
4099 } else {
4100 BT_ERR("%s SCO packet for unknown connection handle %d",
4101 hdev->name, handle);
4102 }
4103
4104 kfree_skb(skb);
4105 }
4106
4107 static bool hci_req_is_complete(struct hci_dev *hdev)
4108 {
4109 struct sk_buff *skb;
4110
4111 skb = skb_peek(&hdev->cmd_q);
4112 if (!skb)
4113 return true;
4114
4115 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4116 }
4117
4118 static void hci_resend_last(struct hci_dev *hdev)
4119 {
4120 struct hci_command_hdr *sent;
4121 struct sk_buff *skb;
4122 u16 opcode;
4123
4124 if (!hdev->sent_cmd)
4125 return;
4126
4127 sent = (void *) hdev->sent_cmd->data;
4128 opcode = __le16_to_cpu(sent->opcode);
4129 if (opcode == HCI_OP_RESET)
4130 return;
4131
4132 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4133 if (!skb)
4134 return;
4135
4136 skb_queue_head(&hdev->cmd_q, skb);
4137 queue_work(hdev->workqueue, &hdev->cmd_work);
4138 }
4139
4140 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4141 hci_req_complete_t *req_complete,
4142 hci_req_complete_skb_t *req_complete_skb)
4143 {
4144 struct sk_buff *skb;
4145 unsigned long flags;
4146
4147 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4148
4149 /* If the completed command doesn't match the last one that was
4150 * sent we need to do special handling of it.
4151 */
4152 if (!hci_sent_cmd_data(hdev, opcode)) {
4153 /* Some CSR based controllers generate a spontaneous
4154 * reset complete event during init and any pending
4155 * command will never be completed. In such a case we
4156 * need to resend whatever was the last sent
4157 * command.
4158 */
4159 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4160 hci_resend_last(hdev);
4161
4162 return;
4163 }
4164
4165 /* If the command succeeded and there's still more commands in
4166 * this request the request is not yet complete.
4167 */
4168 if (!status && !hci_req_is_complete(hdev))
4169 return;
4170
4171 /* If this was the last command in a request the complete
4172 * callback would be found in hdev->sent_cmd instead of the
4173 * command queue (hdev->cmd_q).
4174 */
4175 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4176 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4177 return;
4178 }
4179
4180 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4181 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4182 return;
4183 }
4184
4185 /* Remove all pending commands belonging to this request */
4186 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4187 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4188 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4189 __skb_queue_head(&hdev->cmd_q, skb);
4190 break;
4191 }
4192
4193 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4194 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4195 else
4196 *req_complete = bt_cb(skb)->hci.req_complete;
4197 kfree_skb(skb);
4198 }
4199 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4200 }
4201
4202 static void hci_rx_work(struct work_struct *work)
4203 {
4204 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4205 struct sk_buff *skb;
4206
4207 BT_DBG("%s", hdev->name);
4208
4209 while ((skb = skb_dequeue(&hdev->rx_q))) {
4210 /* Send copy to monitor */
4211 hci_send_to_monitor(hdev, skb);
4212
4213 if (atomic_read(&hdev->promisc)) {
4214 /* Send copy to the sockets */
4215 hci_send_to_sock(hdev, skb);
4216 }
4217
4218 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4219 kfree_skb(skb);
4220 continue;
4221 }
4222
4223 if (test_bit(HCI_INIT, &hdev->flags)) {
4224 /* Don't process data packets in this states. */
4225 switch (hci_skb_pkt_type(skb)) {
4226 case HCI_ACLDATA_PKT:
4227 case HCI_SCODATA_PKT:
4228 kfree_skb(skb);
4229 continue;
4230 }
4231 }
4232
4233 /* Process frame */
4234 switch (hci_skb_pkt_type(skb)) {
4235 case HCI_EVENT_PKT:
4236 BT_DBG("%s Event packet", hdev->name);
4237 hci_event_packet(hdev, skb);
4238 break;
4239
4240 case HCI_ACLDATA_PKT:
4241 BT_DBG("%s ACL data packet", hdev->name);
4242 hci_acldata_packet(hdev, skb);
4243 break;
4244
4245 case HCI_SCODATA_PKT:
4246 BT_DBG("%s SCO data packet", hdev->name);
4247 hci_scodata_packet(hdev, skb);
4248 break;
4249
4250 default:
4251 kfree_skb(skb);
4252 break;
4253 }
4254 }
4255 }
4256
4257 static void hci_cmd_work(struct work_struct *work)
4258 {
4259 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4260 struct sk_buff *skb;
4261
4262 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4263 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4264
4265 /* Send queued commands */
4266 if (atomic_read(&hdev->cmd_cnt)) {
4267 skb = skb_dequeue(&hdev->cmd_q);
4268 if (!skb)
4269 return;
4270
4271 kfree_skb(hdev->sent_cmd);
4272
4273 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4274 if (hdev->sent_cmd) {
4275 atomic_dec(&hdev->cmd_cnt);
4276 hci_send_frame(hdev, skb);
4277 if (test_bit(HCI_RESET, &hdev->flags))
4278 cancel_delayed_work(&hdev->cmd_timer);
4279 else
4280 schedule_delayed_work(&hdev->cmd_timer,
4281 HCI_CMD_TIMEOUT);
4282 } else {
4283 skb_queue_head(&hdev->cmd_q, skb);
4284 queue_work(hdev->workqueue, &hdev->cmd_work);
4285 }
4286 }
4287 }