]> git.ipfire.org Git - thirdparty/linux.git/blob - net/bluetooth/hci_sync.c
timer/migration: Fix quick check reporting late expiry
[thirdparty/linux.git] / net / bluetooth / hci_sync.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BlueZ - Bluetooth protocol stack for Linux
4 *
5 * Copyright (C) 2021 Intel Corporation
6 * Copyright 2023 NXP
7 */
8
9 #include <linux/property.h>
10
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 struct sk_buff *skb)
26 {
27 bt_dev_dbg(hdev, "result 0x%2.2x", result);
28
29 if (hdev->req_status != HCI_REQ_PEND)
30 return;
31
32 hdev->req_result = result;
33 hdev->req_status = HCI_REQ_DONE;
34
35 if (skb) {
36 struct sock *sk = hci_skb_sk(skb);
37
38 /* Drop sk reference if set */
39 if (sk)
40 sock_put(sk);
41
42 hdev->req_skb = skb_get(skb);
43 }
44
45 wake_up_interruptible(&hdev->req_wait_q);
46 }
47
48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
49 u32 plen, const void *param,
50 struct sock *sk)
51 {
52 int len = HCI_COMMAND_HDR_SIZE + plen;
53 struct hci_command_hdr *hdr;
54 struct sk_buff *skb;
55
56 skb = bt_skb_alloc(len, GFP_ATOMIC);
57 if (!skb)
58 return NULL;
59
60 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
61 hdr->opcode = cpu_to_le16(opcode);
62 hdr->plen = plen;
63
64 if (plen)
65 skb_put_data(skb, param, plen);
66
67 bt_dev_dbg(hdev, "skb len %d", skb->len);
68
69 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
70 hci_skb_opcode(skb) = opcode;
71
72 /* Grab a reference if command needs to be associated with a sock (e.g.
73 * likely mgmt socket that initiated the command).
74 */
75 if (sk) {
76 hci_skb_sk(skb) = sk;
77 sock_hold(sk);
78 }
79
80 return skb;
81 }
82
83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
84 const void *param, u8 event, struct sock *sk)
85 {
86 struct hci_dev *hdev = req->hdev;
87 struct sk_buff *skb;
88
89 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
90
91 /* If an error occurred during request building, there is no point in
92 * queueing the HCI command. We can simply return.
93 */
94 if (req->err)
95 return;
96
97 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
98 if (!skb) {
99 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
100 opcode);
101 req->err = -ENOMEM;
102 return;
103 }
104
105 if (skb_queue_empty(&req->cmd_q))
106 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
107
108 hci_skb_event(skb) = event;
109
110 skb_queue_tail(&req->cmd_q, skb);
111 }
112
113 static int hci_cmd_sync_run(struct hci_request *req)
114 {
115 struct hci_dev *hdev = req->hdev;
116 struct sk_buff *skb;
117 unsigned long flags;
118
119 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
120
121 /* If an error occurred during request building, remove all HCI
122 * commands queued on the HCI request queue.
123 */
124 if (req->err) {
125 skb_queue_purge(&req->cmd_q);
126 return req->err;
127 }
128
129 /* Do not allow empty requests */
130 if (skb_queue_empty(&req->cmd_q))
131 return -ENODATA;
132
133 skb = skb_peek_tail(&req->cmd_q);
134 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
135 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
136
137 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
138 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
139 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
140
141 queue_work(hdev->workqueue, &hdev->cmd_work);
142
143 return 0;
144 }
145
146 /* This function requires the caller holds hdev->req_lock. */
147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
148 const void *param, u8 event, u32 timeout,
149 struct sock *sk)
150 {
151 struct hci_request req;
152 struct sk_buff *skb;
153 int err = 0;
154
155 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
156
157 hci_req_init(&req, hdev);
158
159 hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
160
161 hdev->req_status = HCI_REQ_PEND;
162
163 err = hci_cmd_sync_run(&req);
164 if (err < 0)
165 return ERR_PTR(err);
166
167 err = wait_event_interruptible_timeout(hdev->req_wait_q,
168 hdev->req_status != HCI_REQ_PEND,
169 timeout);
170
171 if (err == -ERESTARTSYS)
172 return ERR_PTR(-EINTR);
173
174 switch (hdev->req_status) {
175 case HCI_REQ_DONE:
176 err = -bt_to_errno(hdev->req_result);
177 break;
178
179 case HCI_REQ_CANCELED:
180 err = -hdev->req_result;
181 break;
182
183 default:
184 err = -ETIMEDOUT;
185 break;
186 }
187
188 hdev->req_status = 0;
189 hdev->req_result = 0;
190 skb = hdev->req_skb;
191 hdev->req_skb = NULL;
192
193 bt_dev_dbg(hdev, "end: err %d", err);
194
195 if (err < 0) {
196 kfree_skb(skb);
197 return ERR_PTR(err);
198 }
199
200 return skb;
201 }
202 EXPORT_SYMBOL(__hci_cmd_sync_sk);
203
204 /* This function requires the caller holds hdev->req_lock. */
205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
206 const void *param, u32 timeout)
207 {
208 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
209 }
210 EXPORT_SYMBOL(__hci_cmd_sync);
211
212 /* Send HCI command and wait for command complete event */
213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
214 const void *param, u32 timeout)
215 {
216 struct sk_buff *skb;
217
218 if (!test_bit(HCI_UP, &hdev->flags))
219 return ERR_PTR(-ENETDOWN);
220
221 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
222
223 hci_req_sync_lock(hdev);
224 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
225 hci_req_sync_unlock(hdev);
226
227 return skb;
228 }
229 EXPORT_SYMBOL(hci_cmd_sync);
230
231 /* This function requires the caller holds hdev->req_lock. */
232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
233 const void *param, u8 event, u32 timeout)
234 {
235 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
236 NULL);
237 }
238 EXPORT_SYMBOL(__hci_cmd_sync_ev);
239
240 /* This function requires the caller holds hdev->req_lock. */
241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
242 const void *param, u8 event, u32 timeout,
243 struct sock *sk)
244 {
245 struct sk_buff *skb;
246 u8 status;
247
248 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
249 if (IS_ERR(skb)) {
250 if (!event)
251 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
252 PTR_ERR(skb));
253 return PTR_ERR(skb);
254 }
255
256 /* If command return a status event skb will be set to NULL as there are
257 * no parameters, in case of failure IS_ERR(skb) would have be set to
258 * the actual error would be found with PTR_ERR(skb).
259 */
260 if (!skb)
261 return 0;
262
263 status = skb->data[0];
264
265 kfree_skb(skb);
266
267 return status;
268 }
269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
270
271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
272 const void *param, u32 timeout)
273 {
274 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
275 NULL);
276 }
277 EXPORT_SYMBOL(__hci_cmd_sync_status);
278
279 static void hci_cmd_sync_work(struct work_struct *work)
280 {
281 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
282
283 bt_dev_dbg(hdev, "");
284
285 /* Dequeue all entries and run them */
286 while (1) {
287 struct hci_cmd_sync_work_entry *entry;
288
289 mutex_lock(&hdev->cmd_sync_work_lock);
290 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
291 struct hci_cmd_sync_work_entry,
292 list);
293 if (entry)
294 list_del(&entry->list);
295 mutex_unlock(&hdev->cmd_sync_work_lock);
296
297 if (!entry)
298 break;
299
300 bt_dev_dbg(hdev, "entry %p", entry);
301
302 if (entry->func) {
303 int err;
304
305 hci_req_sync_lock(hdev);
306 err = entry->func(hdev, entry->data);
307 if (entry->destroy)
308 entry->destroy(hdev, entry->data, err);
309 hci_req_sync_unlock(hdev);
310 }
311
312 kfree(entry);
313 }
314 }
315
316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319
320 cancel_delayed_work_sync(&hdev->cmd_timer);
321 cancel_delayed_work_sync(&hdev->ncmd_timer);
322 atomic_set(&hdev->cmd_cnt, 1);
323
324 wake_up_interruptible(&hdev->req_wait_q);
325 }
326
327 static int hci_scan_disable_sync(struct hci_dev *hdev);
328 static int scan_disable_sync(struct hci_dev *hdev, void *data)
329 {
330 return hci_scan_disable_sync(hdev);
331 }
332
333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
335 {
336 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
337 }
338
339 static void le_scan_disable(struct work_struct *work)
340 {
341 struct hci_dev *hdev = container_of(work, struct hci_dev,
342 le_scan_disable.work);
343 int status;
344
345 bt_dev_dbg(hdev, "");
346 hci_dev_lock(hdev);
347
348 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
349 goto _return;
350
351 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
352 if (status) {
353 bt_dev_err(hdev, "failed to disable LE scan: %d", status);
354 goto _return;
355 }
356
357 hdev->discovery.scan_start = 0;
358
359 /* If we were running LE only scan, change discovery state. If
360 * we were running both LE and BR/EDR inquiry simultaneously,
361 * and BR/EDR inquiry is already finished, stop discovery,
362 * otherwise BR/EDR inquiry will stop discovery when finished.
363 * If we will resolve remote device name, do not change
364 * discovery state.
365 */
366
367 if (hdev->discovery.type == DISCOV_TYPE_LE)
368 goto discov_stopped;
369
370 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
371 goto _return;
372
373 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
374 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
375 hdev->discovery.state != DISCOVERY_RESOLVING)
376 goto discov_stopped;
377
378 goto _return;
379 }
380
381 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
382 if (status) {
383 bt_dev_err(hdev, "inquiry failed: status %d", status);
384 goto discov_stopped;
385 }
386
387 goto _return;
388
389 discov_stopped:
390 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
391
392 _return:
393 hci_dev_unlock(hdev);
394 }
395
396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
397 u8 filter_dup);
398
399 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
400 {
401 bt_dev_dbg(hdev, "");
402
403 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
404 list_empty(&hdev->adv_instances))
405 return 0;
406
407 if (hdev->cur_adv_instance) {
408 return hci_schedule_adv_instance_sync(hdev,
409 hdev->cur_adv_instance,
410 true);
411 } else {
412 if (ext_adv_capable(hdev)) {
413 hci_start_ext_adv_sync(hdev, 0x00);
414 } else {
415 hci_update_adv_data_sync(hdev, 0x00);
416 hci_update_scan_rsp_data_sync(hdev, 0x00);
417 hci_enable_advertising_sync(hdev);
418 }
419 }
420
421 return 0;
422 }
423
424 static void reenable_adv(struct work_struct *work)
425 {
426 struct hci_dev *hdev = container_of(work, struct hci_dev,
427 reenable_adv_work);
428 int status;
429
430 bt_dev_dbg(hdev, "");
431
432 hci_dev_lock(hdev);
433
434 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
435 if (status)
436 bt_dev_err(hdev, "failed to reenable ADV: %d", status);
437
438 hci_dev_unlock(hdev);
439 }
440
441 static void cancel_adv_timeout(struct hci_dev *hdev)
442 {
443 if (hdev->adv_instance_timeout) {
444 hdev->adv_instance_timeout = 0;
445 cancel_delayed_work(&hdev->adv_instance_expire);
446 }
447 }
448
449 /* For a single instance:
450 * - force == true: The instance will be removed even when its remaining
451 * lifetime is not zero.
452 * - force == false: the instance will be deactivated but kept stored unless
453 * the remaining lifetime is zero.
454 *
455 * For instance == 0x00:
456 * - force == true: All instances will be removed regardless of their timeout
457 * setting.
458 * - force == false: Only instances that have a timeout will be removed.
459 */
460 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
461 u8 instance, bool force)
462 {
463 struct adv_info *adv_instance, *n, *next_instance = NULL;
464 int err;
465 u8 rem_inst;
466
467 /* Cancel any timeout concerning the removed instance(s). */
468 if (!instance || hdev->cur_adv_instance == instance)
469 cancel_adv_timeout(hdev);
470
471 /* Get the next instance to advertise BEFORE we remove
472 * the current one. This can be the same instance again
473 * if there is only one instance.
474 */
475 if (instance && hdev->cur_adv_instance == instance)
476 next_instance = hci_get_next_instance(hdev, instance);
477
478 if (instance == 0x00) {
479 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
480 list) {
481 if (!(force || adv_instance->timeout))
482 continue;
483
484 rem_inst = adv_instance->instance;
485 err = hci_remove_adv_instance(hdev, rem_inst);
486 if (!err)
487 mgmt_advertising_removed(sk, hdev, rem_inst);
488 }
489 } else {
490 adv_instance = hci_find_adv_instance(hdev, instance);
491
492 if (force || (adv_instance && adv_instance->timeout &&
493 !adv_instance->remaining_time)) {
494 /* Don't advertise a removed instance. */
495 if (next_instance &&
496 next_instance->instance == instance)
497 next_instance = NULL;
498
499 err = hci_remove_adv_instance(hdev, instance);
500 if (!err)
501 mgmt_advertising_removed(sk, hdev, instance);
502 }
503 }
504
505 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
506 return 0;
507
508 if (next_instance && !ext_adv_capable(hdev))
509 return hci_schedule_adv_instance_sync(hdev,
510 next_instance->instance,
511 false);
512
513 return 0;
514 }
515
516 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
517 {
518 u8 instance = *(u8 *)data;
519
520 kfree(data);
521
522 hci_clear_adv_instance_sync(hdev, NULL, instance, false);
523
524 if (list_empty(&hdev->adv_instances))
525 return hci_disable_advertising_sync(hdev);
526
527 return 0;
528 }
529
530 static void adv_timeout_expire(struct work_struct *work)
531 {
532 u8 *inst_ptr;
533 struct hci_dev *hdev = container_of(work, struct hci_dev,
534 adv_instance_expire.work);
535
536 bt_dev_dbg(hdev, "");
537
538 hci_dev_lock(hdev);
539
540 hdev->adv_instance_timeout = 0;
541
542 if (hdev->cur_adv_instance == 0x00)
543 goto unlock;
544
545 inst_ptr = kmalloc(1, GFP_KERNEL);
546 if (!inst_ptr)
547 goto unlock;
548
549 *inst_ptr = hdev->cur_adv_instance;
550 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
551
552 unlock:
553 hci_dev_unlock(hdev);
554 }
555
556 void hci_cmd_sync_init(struct hci_dev *hdev)
557 {
558 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
559 INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
560 mutex_init(&hdev->cmd_sync_work_lock);
561 mutex_init(&hdev->unregister_lock);
562
563 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
564 INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
565 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
566 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
567 }
568
569 void hci_cmd_sync_clear(struct hci_dev *hdev)
570 {
571 struct hci_cmd_sync_work_entry *entry, *tmp;
572
573 cancel_work_sync(&hdev->cmd_sync_work);
574 cancel_work_sync(&hdev->reenable_adv_work);
575
576 mutex_lock(&hdev->cmd_sync_work_lock);
577 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
578 if (entry->destroy)
579 entry->destroy(hdev, entry->data, -ECANCELED);
580
581 list_del(&entry->list);
582 kfree(entry);
583 }
584 mutex_unlock(&hdev->cmd_sync_work_lock);
585 }
586
587 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
588 {
589 bt_dev_dbg(hdev, "err 0x%2.2x", err);
590
591 if (hdev->req_status == HCI_REQ_PEND) {
592 hdev->req_result = err;
593 hdev->req_status = HCI_REQ_CANCELED;
594
595 cancel_delayed_work_sync(&hdev->cmd_timer);
596 cancel_delayed_work_sync(&hdev->ncmd_timer);
597 atomic_set(&hdev->cmd_cnt, 1);
598
599 wake_up_interruptible(&hdev->req_wait_q);
600 }
601 }
602
603 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
604 {
605 bt_dev_dbg(hdev, "err 0x%2.2x", err);
606
607 if (hdev->req_status == HCI_REQ_PEND) {
608 hdev->req_result = err;
609 hdev->req_status = HCI_REQ_CANCELED;
610
611 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
612 }
613 }
614 EXPORT_SYMBOL(hci_cmd_sync_cancel);
615
616 /* Submit HCI command to be run in as cmd_sync_work:
617 *
618 * - hdev must _not_ be unregistered
619 */
620 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
621 void *data, hci_cmd_sync_work_destroy_t destroy)
622 {
623 struct hci_cmd_sync_work_entry *entry;
624 int err = 0;
625
626 mutex_lock(&hdev->unregister_lock);
627 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
628 err = -ENODEV;
629 goto unlock;
630 }
631
632 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
633 if (!entry) {
634 err = -ENOMEM;
635 goto unlock;
636 }
637 entry->func = func;
638 entry->data = data;
639 entry->destroy = destroy;
640
641 mutex_lock(&hdev->cmd_sync_work_lock);
642 list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
643 mutex_unlock(&hdev->cmd_sync_work_lock);
644
645 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
646
647 unlock:
648 mutex_unlock(&hdev->unregister_lock);
649 return err;
650 }
651 EXPORT_SYMBOL(hci_cmd_sync_submit);
652
653 /* Queue HCI command:
654 *
655 * - hdev must be running
656 */
657 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
658 void *data, hci_cmd_sync_work_destroy_t destroy)
659 {
660 /* Only queue command if hdev is running which means it had been opened
661 * and is either on init phase or is already up.
662 */
663 if (!test_bit(HCI_RUNNING, &hdev->flags))
664 return -ENETDOWN;
665
666 return hci_cmd_sync_submit(hdev, func, data, destroy);
667 }
668 EXPORT_SYMBOL(hci_cmd_sync_queue);
669
670 int hci_update_eir_sync(struct hci_dev *hdev)
671 {
672 struct hci_cp_write_eir cp;
673
674 bt_dev_dbg(hdev, "");
675
676 if (!hdev_is_powered(hdev))
677 return 0;
678
679 if (!lmp_ext_inq_capable(hdev))
680 return 0;
681
682 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
683 return 0;
684
685 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
686 return 0;
687
688 memset(&cp, 0, sizeof(cp));
689
690 eir_create(hdev, cp.data);
691
692 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
693 return 0;
694
695 memcpy(hdev->eir, cp.data, sizeof(cp.data));
696
697 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
698 HCI_CMD_TIMEOUT);
699 }
700
701 static u8 get_service_classes(struct hci_dev *hdev)
702 {
703 struct bt_uuid *uuid;
704 u8 val = 0;
705
706 list_for_each_entry(uuid, &hdev->uuids, list)
707 val |= uuid->svc_hint;
708
709 return val;
710 }
711
712 int hci_update_class_sync(struct hci_dev *hdev)
713 {
714 u8 cod[3];
715
716 bt_dev_dbg(hdev, "");
717
718 if (!hdev_is_powered(hdev))
719 return 0;
720
721 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
722 return 0;
723
724 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
725 return 0;
726
727 cod[0] = hdev->minor_class;
728 cod[1] = hdev->major_class;
729 cod[2] = get_service_classes(hdev);
730
731 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
732 cod[1] |= 0x20;
733
734 if (memcmp(cod, hdev->dev_class, 3) == 0)
735 return 0;
736
737 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
738 sizeof(cod), cod, HCI_CMD_TIMEOUT);
739 }
740
741 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
742 {
743 /* If there is no connection we are OK to advertise. */
744 if (hci_conn_num(hdev, LE_LINK) == 0)
745 return true;
746
747 /* Check le_states if there is any connection in peripheral role. */
748 if (hdev->conn_hash.le_num_peripheral > 0) {
749 /* Peripheral connection state and non connectable mode
750 * bit 20.
751 */
752 if (!connectable && !(hdev->le_states[2] & 0x10))
753 return false;
754
755 /* Peripheral connection state and connectable mode bit 38
756 * and scannable bit 21.
757 */
758 if (connectable && (!(hdev->le_states[4] & 0x40) ||
759 !(hdev->le_states[2] & 0x20)))
760 return false;
761 }
762
763 /* Check le_states if there is any connection in central role. */
764 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
765 /* Central connection state and non connectable mode bit 18. */
766 if (!connectable && !(hdev->le_states[2] & 0x02))
767 return false;
768
769 /* Central connection state and connectable mode bit 35 and
770 * scannable 19.
771 */
772 if (connectable && (!(hdev->le_states[4] & 0x08) ||
773 !(hdev->le_states[2] & 0x08)))
774 return false;
775 }
776
777 return true;
778 }
779
780 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
781 {
782 /* If privacy is not enabled don't use RPA */
783 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
784 return false;
785
786 /* If basic privacy mode is enabled use RPA */
787 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
788 return true;
789
790 /* If limited privacy mode is enabled don't use RPA if we're
791 * both discoverable and bondable.
792 */
793 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
794 hci_dev_test_flag(hdev, HCI_BONDABLE))
795 return false;
796
797 /* We're neither bondable nor discoverable in the limited
798 * privacy mode, therefore use RPA.
799 */
800 return true;
801 }
802
803 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
804 {
805 /* If we're advertising or initiating an LE connection we can't
806 * go ahead and change the random address at this time. This is
807 * because the eventual initiator address used for the
808 * subsequently created connection will be undefined (some
809 * controllers use the new address and others the one we had
810 * when the operation started).
811 *
812 * In this kind of scenario skip the update and let the random
813 * address be updated at the next cycle.
814 */
815 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
816 hci_lookup_le_connect(hdev)) {
817 bt_dev_dbg(hdev, "Deferring random address update");
818 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
819 return 0;
820 }
821
822 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
823 6, rpa, HCI_CMD_TIMEOUT);
824 }
825
826 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
827 bool rpa, u8 *own_addr_type)
828 {
829 int err;
830
831 /* If privacy is enabled use a resolvable private address. If
832 * current RPA has expired or there is something else than
833 * the current RPA in use, then generate a new one.
834 */
835 if (rpa) {
836 /* If Controller supports LL Privacy use own address type is
837 * 0x03
838 */
839 if (use_ll_privacy(hdev))
840 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
841 else
842 *own_addr_type = ADDR_LE_DEV_RANDOM;
843
844 /* Check if RPA is valid */
845 if (rpa_valid(hdev))
846 return 0;
847
848 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
849 if (err < 0) {
850 bt_dev_err(hdev, "failed to generate new RPA");
851 return err;
852 }
853
854 err = hci_set_random_addr_sync(hdev, &hdev->rpa);
855 if (err)
856 return err;
857
858 return 0;
859 }
860
861 /* In case of required privacy without resolvable private address,
862 * use an non-resolvable private address. This is useful for active
863 * scanning and non-connectable advertising.
864 */
865 if (require_privacy) {
866 bdaddr_t nrpa;
867
868 while (true) {
869 /* The non-resolvable private address is generated
870 * from random six bytes with the two most significant
871 * bits cleared.
872 */
873 get_random_bytes(&nrpa, 6);
874 nrpa.b[5] &= 0x3f;
875
876 /* The non-resolvable private address shall not be
877 * equal to the public address.
878 */
879 if (bacmp(&hdev->bdaddr, &nrpa))
880 break;
881 }
882
883 *own_addr_type = ADDR_LE_DEV_RANDOM;
884
885 return hci_set_random_addr_sync(hdev, &nrpa);
886 }
887
888 /* If forcing static address is in use or there is no public
889 * address use the static address as random address (but skip
890 * the HCI command if the current random address is already the
891 * static one.
892 *
893 * In case BR/EDR has been disabled on a dual-mode controller
894 * and a static address has been configured, then use that
895 * address instead of the public BR/EDR address.
896 */
897 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
898 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
899 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
900 bacmp(&hdev->static_addr, BDADDR_ANY))) {
901 *own_addr_type = ADDR_LE_DEV_RANDOM;
902 if (bacmp(&hdev->static_addr, &hdev->random_addr))
903 return hci_set_random_addr_sync(hdev,
904 &hdev->static_addr);
905 return 0;
906 }
907
908 /* Neither privacy nor static address is being used so use a
909 * public address.
910 */
911 *own_addr_type = ADDR_LE_DEV_PUBLIC;
912
913 return 0;
914 }
915
916 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
917 {
918 struct hci_cp_le_set_ext_adv_enable *cp;
919 struct hci_cp_ext_adv_set *set;
920 u8 data[sizeof(*cp) + sizeof(*set) * 1];
921 u8 size;
922
923 /* If request specifies an instance that doesn't exist, fail */
924 if (instance > 0) {
925 struct adv_info *adv;
926
927 adv = hci_find_adv_instance(hdev, instance);
928 if (!adv)
929 return -EINVAL;
930
931 /* If not enabled there is nothing to do */
932 if (!adv->enabled)
933 return 0;
934 }
935
936 memset(data, 0, sizeof(data));
937
938 cp = (void *)data;
939 set = (void *)cp->data;
940
941 /* Instance 0x00 indicates all advertising instances will be disabled */
942 cp->num_of_sets = !!instance;
943 cp->enable = 0x00;
944
945 set->handle = instance;
946
947 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
948
949 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
950 size, data, HCI_CMD_TIMEOUT);
951 }
952
953 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
954 bdaddr_t *random_addr)
955 {
956 struct hci_cp_le_set_adv_set_rand_addr cp;
957 int err;
958
959 if (!instance) {
960 /* Instance 0x00 doesn't have an adv_info, instead it uses
961 * hdev->random_addr to track its address so whenever it needs
962 * to be updated this also set the random address since
963 * hdev->random_addr is shared with scan state machine.
964 */
965 err = hci_set_random_addr_sync(hdev, random_addr);
966 if (err)
967 return err;
968 }
969
970 memset(&cp, 0, sizeof(cp));
971
972 cp.handle = instance;
973 bacpy(&cp.bdaddr, random_addr);
974
975 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
976 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
977 }
978
979 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
980 {
981 struct hci_cp_le_set_ext_adv_params cp;
982 bool connectable;
983 u32 flags;
984 bdaddr_t random_addr;
985 u8 own_addr_type;
986 int err;
987 struct adv_info *adv;
988 bool secondary_adv;
989
990 if (instance > 0) {
991 adv = hci_find_adv_instance(hdev, instance);
992 if (!adv)
993 return -EINVAL;
994 } else {
995 adv = NULL;
996 }
997
998 /* Updating parameters of an active instance will return a
999 * Command Disallowed error, so we must first disable the
1000 * instance if it is active.
1001 */
1002 if (adv && !adv->pending) {
1003 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1004 if (err)
1005 return err;
1006 }
1007
1008 flags = hci_adv_instance_flags(hdev, instance);
1009
1010 /* If the "connectable" instance flag was not set, then choose between
1011 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1012 */
1013 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1014 mgmt_get_connectable(hdev);
1015
1016 if (!is_advertising_allowed(hdev, connectable))
1017 return -EPERM;
1018
1019 /* Set require_privacy to true only when non-connectable
1020 * advertising is used. In that case it is fine to use a
1021 * non-resolvable private address.
1022 */
1023 err = hci_get_random_address(hdev, !connectable,
1024 adv_use_rpa(hdev, flags), adv,
1025 &own_addr_type, &random_addr);
1026 if (err < 0)
1027 return err;
1028
1029 memset(&cp, 0, sizeof(cp));
1030
1031 if (adv) {
1032 hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1033 hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1034 cp.tx_power = adv->tx_power;
1035 } else {
1036 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1037 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1038 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1039 }
1040
1041 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1042
1043 if (connectable) {
1044 if (secondary_adv)
1045 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1046 else
1047 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1048 } else if (hci_adv_instance_is_scannable(hdev, instance) ||
1049 (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1050 if (secondary_adv)
1051 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1052 else
1053 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1054 } else {
1055 if (secondary_adv)
1056 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1057 else
1058 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1059 }
1060
1061 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1062 * contains the peer’s Identity Address and the Peer_Address_Type
1063 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1064 * These parameters are used to locate the corresponding local IRK in
1065 * the resolving list; this IRK is used to generate their own address
1066 * used in the advertisement.
1067 */
1068 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1069 hci_copy_identity_address(hdev, &cp.peer_addr,
1070 &cp.peer_addr_type);
1071
1072 cp.own_addr_type = own_addr_type;
1073 cp.channel_map = hdev->le_adv_channel_map;
1074 cp.handle = instance;
1075
1076 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1077 cp.primary_phy = HCI_ADV_PHY_1M;
1078 cp.secondary_phy = HCI_ADV_PHY_2M;
1079 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1080 cp.primary_phy = HCI_ADV_PHY_CODED;
1081 cp.secondary_phy = HCI_ADV_PHY_CODED;
1082 } else {
1083 /* In all other cases use 1M */
1084 cp.primary_phy = HCI_ADV_PHY_1M;
1085 cp.secondary_phy = HCI_ADV_PHY_1M;
1086 }
1087
1088 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1089 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1090 if (err)
1091 return err;
1092
1093 if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1094 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1095 bacmp(&random_addr, BDADDR_ANY)) {
1096 /* Check if random address need to be updated */
1097 if (adv) {
1098 if (!bacmp(&random_addr, &adv->random_addr))
1099 return 0;
1100 } else {
1101 if (!bacmp(&random_addr, &hdev->random_addr))
1102 return 0;
1103 }
1104
1105 return hci_set_adv_set_random_addr_sync(hdev, instance,
1106 &random_addr);
1107 }
1108
1109 return 0;
1110 }
1111
1112 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1113 {
1114 struct {
1115 struct hci_cp_le_set_ext_scan_rsp_data cp;
1116 u8 data[HCI_MAX_EXT_AD_LENGTH];
1117 } pdu;
1118 u8 len;
1119 struct adv_info *adv = NULL;
1120 int err;
1121
1122 memset(&pdu, 0, sizeof(pdu));
1123
1124 if (instance) {
1125 adv = hci_find_adv_instance(hdev, instance);
1126 if (!adv || !adv->scan_rsp_changed)
1127 return 0;
1128 }
1129
1130 len = eir_create_scan_rsp(hdev, instance, pdu.data);
1131
1132 pdu.cp.handle = instance;
1133 pdu.cp.length = len;
1134 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1135 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1136
1137 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1138 sizeof(pdu.cp) + len, &pdu.cp,
1139 HCI_CMD_TIMEOUT);
1140 if (err)
1141 return err;
1142
1143 if (adv) {
1144 adv->scan_rsp_changed = false;
1145 } else {
1146 memcpy(hdev->scan_rsp_data, pdu.data, len);
1147 hdev->scan_rsp_data_len = len;
1148 }
1149
1150 return 0;
1151 }
1152
1153 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1154 {
1155 struct hci_cp_le_set_scan_rsp_data cp;
1156 u8 len;
1157
1158 memset(&cp, 0, sizeof(cp));
1159
1160 len = eir_create_scan_rsp(hdev, instance, cp.data);
1161
1162 if (hdev->scan_rsp_data_len == len &&
1163 !memcmp(cp.data, hdev->scan_rsp_data, len))
1164 return 0;
1165
1166 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1167 hdev->scan_rsp_data_len = len;
1168
1169 cp.length = len;
1170
1171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1172 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1173 }
1174
1175 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1176 {
1177 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1178 return 0;
1179
1180 if (ext_adv_capable(hdev))
1181 return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1182
1183 return __hci_set_scan_rsp_data_sync(hdev, instance);
1184 }
1185
1186 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1187 {
1188 struct hci_cp_le_set_ext_adv_enable *cp;
1189 struct hci_cp_ext_adv_set *set;
1190 u8 data[sizeof(*cp) + sizeof(*set) * 1];
1191 struct adv_info *adv;
1192
1193 if (instance > 0) {
1194 adv = hci_find_adv_instance(hdev, instance);
1195 if (!adv)
1196 return -EINVAL;
1197 /* If already enabled there is nothing to do */
1198 if (adv->enabled)
1199 return 0;
1200 } else {
1201 adv = NULL;
1202 }
1203
1204 cp = (void *)data;
1205 set = (void *)cp->data;
1206
1207 memset(cp, 0, sizeof(*cp));
1208
1209 cp->enable = 0x01;
1210 cp->num_of_sets = 0x01;
1211
1212 memset(set, 0, sizeof(*set));
1213
1214 set->handle = instance;
1215
1216 /* Set duration per instance since controller is responsible for
1217 * scheduling it.
1218 */
1219 if (adv && adv->timeout) {
1220 u16 duration = adv->timeout * MSEC_PER_SEC;
1221
1222 /* Time = N * 10 ms */
1223 set->duration = cpu_to_le16(duration / 10);
1224 }
1225
1226 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1227 sizeof(*cp) +
1228 sizeof(*set) * cp->num_of_sets,
1229 data, HCI_CMD_TIMEOUT);
1230 }
1231
1232 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1233 {
1234 int err;
1235
1236 err = hci_setup_ext_adv_instance_sync(hdev, instance);
1237 if (err)
1238 return err;
1239
1240 err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1241 if (err)
1242 return err;
1243
1244 return hci_enable_ext_advertising_sync(hdev, instance);
1245 }
1246
1247 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1248 {
1249 struct hci_cp_le_set_per_adv_enable cp;
1250 struct adv_info *adv = NULL;
1251
1252 /* If periodic advertising already disabled there is nothing to do. */
1253 adv = hci_find_adv_instance(hdev, instance);
1254 if (!adv || !adv->periodic || !adv->enabled)
1255 return 0;
1256
1257 memset(&cp, 0, sizeof(cp));
1258
1259 cp.enable = 0x00;
1260 cp.handle = instance;
1261
1262 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1263 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1264 }
1265
1266 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1267 u16 min_interval, u16 max_interval)
1268 {
1269 struct hci_cp_le_set_per_adv_params cp;
1270
1271 memset(&cp, 0, sizeof(cp));
1272
1273 if (!min_interval)
1274 min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1275
1276 if (!max_interval)
1277 max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1278
1279 cp.handle = instance;
1280 cp.min_interval = cpu_to_le16(min_interval);
1281 cp.max_interval = cpu_to_le16(max_interval);
1282 cp.periodic_properties = 0x0000;
1283
1284 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1285 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1286 }
1287
1288 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1289 {
1290 struct {
1291 struct hci_cp_le_set_per_adv_data cp;
1292 u8 data[HCI_MAX_PER_AD_LENGTH];
1293 } pdu;
1294 u8 len;
1295
1296 memset(&pdu, 0, sizeof(pdu));
1297
1298 if (instance) {
1299 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1300
1301 if (!adv || !adv->periodic)
1302 return 0;
1303 }
1304
1305 len = eir_create_per_adv_data(hdev, instance, pdu.data);
1306
1307 pdu.cp.length = len;
1308 pdu.cp.handle = instance;
1309 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1310
1311 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1312 sizeof(pdu.cp) + len, &pdu,
1313 HCI_CMD_TIMEOUT);
1314 }
1315
1316 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1317 {
1318 struct hci_cp_le_set_per_adv_enable cp;
1319 struct adv_info *adv = NULL;
1320
1321 /* If periodic advertising already enabled there is nothing to do. */
1322 adv = hci_find_adv_instance(hdev, instance);
1323 if (adv && adv->periodic && adv->enabled)
1324 return 0;
1325
1326 memset(&cp, 0, sizeof(cp));
1327
1328 cp.enable = 0x01;
1329 cp.handle = instance;
1330
1331 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1332 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1333 }
1334
1335 /* Checks if periodic advertising data contains a Basic Announcement and if it
1336 * does generates a Broadcast ID and add Broadcast Announcement.
1337 */
1338 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1339 {
1340 u8 bid[3];
1341 u8 ad[4 + 3];
1342
1343 /* Skip if NULL adv as instance 0x00 is used for general purpose
1344 * advertising so it cannot used for the likes of Broadcast Announcement
1345 * as it can be overwritten at any point.
1346 */
1347 if (!adv)
1348 return 0;
1349
1350 /* Check if PA data doesn't contains a Basic Audio Announcement then
1351 * there is nothing to do.
1352 */
1353 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1354 0x1851, NULL))
1355 return 0;
1356
1357 /* Check if advertising data already has a Broadcast Announcement since
1358 * the process may want to control the Broadcast ID directly and in that
1359 * case the kernel shall no interfere.
1360 */
1361 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1362 NULL))
1363 return 0;
1364
1365 /* Generate Broadcast ID */
1366 get_random_bytes(bid, sizeof(bid));
1367 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1368 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1369
1370 return hci_update_adv_data_sync(hdev, adv->instance);
1371 }
1372
1373 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1374 u8 *data, u32 flags, u16 min_interval,
1375 u16 max_interval, u16 sync_interval)
1376 {
1377 struct adv_info *adv = NULL;
1378 int err;
1379 bool added = false;
1380
1381 hci_disable_per_advertising_sync(hdev, instance);
1382
1383 if (instance) {
1384 adv = hci_find_adv_instance(hdev, instance);
1385 /* Create an instance if that could not be found */
1386 if (!adv) {
1387 adv = hci_add_per_instance(hdev, instance, flags,
1388 data_len, data,
1389 sync_interval,
1390 sync_interval);
1391 if (IS_ERR(adv))
1392 return PTR_ERR(adv);
1393 adv->pending = false;
1394 added = true;
1395 }
1396 }
1397
1398 /* Start advertising */
1399 err = hci_start_ext_adv_sync(hdev, instance);
1400 if (err < 0)
1401 goto fail;
1402
1403 err = hci_adv_bcast_annoucement(hdev, adv);
1404 if (err < 0)
1405 goto fail;
1406
1407 err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1408 max_interval);
1409 if (err < 0)
1410 goto fail;
1411
1412 err = hci_set_per_adv_data_sync(hdev, instance);
1413 if (err < 0)
1414 goto fail;
1415
1416 err = hci_enable_per_advertising_sync(hdev, instance);
1417 if (err < 0)
1418 goto fail;
1419
1420 return 0;
1421
1422 fail:
1423 if (added)
1424 hci_remove_adv_instance(hdev, instance);
1425
1426 return err;
1427 }
1428
1429 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1430 {
1431 int err;
1432
1433 if (ext_adv_capable(hdev))
1434 return hci_start_ext_adv_sync(hdev, instance);
1435
1436 err = hci_update_adv_data_sync(hdev, instance);
1437 if (err)
1438 return err;
1439
1440 err = hci_update_scan_rsp_data_sync(hdev, instance);
1441 if (err)
1442 return err;
1443
1444 return hci_enable_advertising_sync(hdev);
1445 }
1446
1447 int hci_enable_advertising_sync(struct hci_dev *hdev)
1448 {
1449 struct adv_info *adv_instance;
1450 struct hci_cp_le_set_adv_param cp;
1451 u8 own_addr_type, enable = 0x01;
1452 bool connectable;
1453 u16 adv_min_interval, adv_max_interval;
1454 u32 flags;
1455 u8 status;
1456
1457 if (ext_adv_capable(hdev))
1458 return hci_enable_ext_advertising_sync(hdev,
1459 hdev->cur_adv_instance);
1460
1461 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1462 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1463
1464 /* If the "connectable" instance flag was not set, then choose between
1465 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1466 */
1467 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1468 mgmt_get_connectable(hdev);
1469
1470 if (!is_advertising_allowed(hdev, connectable))
1471 return -EINVAL;
1472
1473 status = hci_disable_advertising_sync(hdev);
1474 if (status)
1475 return status;
1476
1477 /* Clear the HCI_LE_ADV bit temporarily so that the
1478 * hci_update_random_address knows that it's safe to go ahead
1479 * and write a new random address. The flag will be set back on
1480 * as soon as the SET_ADV_ENABLE HCI command completes.
1481 */
1482 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1483
1484 /* Set require_privacy to true only when non-connectable
1485 * advertising is used. In that case it is fine to use a
1486 * non-resolvable private address.
1487 */
1488 status = hci_update_random_address_sync(hdev, !connectable,
1489 adv_use_rpa(hdev, flags),
1490 &own_addr_type);
1491 if (status)
1492 return status;
1493
1494 memset(&cp, 0, sizeof(cp));
1495
1496 if (adv_instance) {
1497 adv_min_interval = adv_instance->min_interval;
1498 adv_max_interval = adv_instance->max_interval;
1499 } else {
1500 adv_min_interval = hdev->le_adv_min_interval;
1501 adv_max_interval = hdev->le_adv_max_interval;
1502 }
1503
1504 if (connectable) {
1505 cp.type = LE_ADV_IND;
1506 } else {
1507 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1508 cp.type = LE_ADV_SCAN_IND;
1509 else
1510 cp.type = LE_ADV_NONCONN_IND;
1511
1512 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1513 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1514 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1515 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1516 }
1517 }
1518
1519 cp.min_interval = cpu_to_le16(adv_min_interval);
1520 cp.max_interval = cpu_to_le16(adv_max_interval);
1521 cp.own_address_type = own_addr_type;
1522 cp.channel_map = hdev->le_adv_channel_map;
1523
1524 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1525 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1526 if (status)
1527 return status;
1528
1529 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1530 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1531 }
1532
1533 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1534 {
1535 return hci_enable_advertising_sync(hdev);
1536 }
1537
1538 int hci_enable_advertising(struct hci_dev *hdev)
1539 {
1540 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1541 list_empty(&hdev->adv_instances))
1542 return 0;
1543
1544 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1545 }
1546
1547 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1548 struct sock *sk)
1549 {
1550 int err;
1551
1552 if (!ext_adv_capable(hdev))
1553 return 0;
1554
1555 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1556 if (err)
1557 return err;
1558
1559 /* If request specifies an instance that doesn't exist, fail */
1560 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1561 return -EINVAL;
1562
1563 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1564 sizeof(instance), &instance, 0,
1565 HCI_CMD_TIMEOUT, sk);
1566 }
1567
1568 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1569 {
1570 struct adv_info *adv = data;
1571 u8 instance = 0;
1572
1573 if (adv)
1574 instance = adv->instance;
1575
1576 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1577 }
1578
1579 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1580 {
1581 struct adv_info *adv = NULL;
1582
1583 if (instance) {
1584 adv = hci_find_adv_instance(hdev, instance);
1585 if (!adv)
1586 return -EINVAL;
1587 }
1588
1589 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1590 }
1591
1592 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1593 {
1594 struct hci_cp_le_term_big cp;
1595
1596 memset(&cp, 0, sizeof(cp));
1597 cp.handle = handle;
1598 cp.reason = reason;
1599
1600 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1601 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1602 }
1603
1604 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1605 {
1606 struct {
1607 struct hci_cp_le_set_ext_adv_data cp;
1608 u8 data[HCI_MAX_EXT_AD_LENGTH];
1609 } pdu;
1610 u8 len;
1611 struct adv_info *adv = NULL;
1612 int err;
1613
1614 memset(&pdu, 0, sizeof(pdu));
1615
1616 if (instance) {
1617 adv = hci_find_adv_instance(hdev, instance);
1618 if (!adv || !adv->adv_data_changed)
1619 return 0;
1620 }
1621
1622 len = eir_create_adv_data(hdev, instance, pdu.data);
1623
1624 pdu.cp.length = len;
1625 pdu.cp.handle = instance;
1626 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1627 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1628
1629 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1630 sizeof(pdu.cp) + len, &pdu.cp,
1631 HCI_CMD_TIMEOUT);
1632 if (err)
1633 return err;
1634
1635 /* Update data if the command succeed */
1636 if (adv) {
1637 adv->adv_data_changed = false;
1638 } else {
1639 memcpy(hdev->adv_data, pdu.data, len);
1640 hdev->adv_data_len = len;
1641 }
1642
1643 return 0;
1644 }
1645
1646 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1647 {
1648 struct hci_cp_le_set_adv_data cp;
1649 u8 len;
1650
1651 memset(&cp, 0, sizeof(cp));
1652
1653 len = eir_create_adv_data(hdev, instance, cp.data);
1654
1655 /* There's nothing to do if the data hasn't changed */
1656 if (hdev->adv_data_len == len &&
1657 memcmp(cp.data, hdev->adv_data, len) == 0)
1658 return 0;
1659
1660 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1661 hdev->adv_data_len = len;
1662
1663 cp.length = len;
1664
1665 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1666 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1667 }
1668
1669 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1670 {
1671 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1672 return 0;
1673
1674 if (ext_adv_capable(hdev))
1675 return hci_set_ext_adv_data_sync(hdev, instance);
1676
1677 return hci_set_adv_data_sync(hdev, instance);
1678 }
1679
1680 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1681 bool force)
1682 {
1683 struct adv_info *adv = NULL;
1684 u16 timeout;
1685
1686 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1687 return -EPERM;
1688
1689 if (hdev->adv_instance_timeout)
1690 return -EBUSY;
1691
1692 adv = hci_find_adv_instance(hdev, instance);
1693 if (!adv)
1694 return -ENOENT;
1695
1696 /* A zero timeout means unlimited advertising. As long as there is
1697 * only one instance, duration should be ignored. We still set a timeout
1698 * in case further instances are being added later on.
1699 *
1700 * If the remaining lifetime of the instance is more than the duration
1701 * then the timeout corresponds to the duration, otherwise it will be
1702 * reduced to the remaining instance lifetime.
1703 */
1704 if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1705 timeout = adv->duration;
1706 else
1707 timeout = adv->remaining_time;
1708
1709 /* The remaining time is being reduced unless the instance is being
1710 * advertised without time limit.
1711 */
1712 if (adv->timeout)
1713 adv->remaining_time = adv->remaining_time - timeout;
1714
1715 /* Only use work for scheduling instances with legacy advertising */
1716 if (!ext_adv_capable(hdev)) {
1717 hdev->adv_instance_timeout = timeout;
1718 queue_delayed_work(hdev->req_workqueue,
1719 &hdev->adv_instance_expire,
1720 msecs_to_jiffies(timeout * 1000));
1721 }
1722
1723 /* If we're just re-scheduling the same instance again then do not
1724 * execute any HCI commands. This happens when a single instance is
1725 * being advertised.
1726 */
1727 if (!force && hdev->cur_adv_instance == instance &&
1728 hci_dev_test_flag(hdev, HCI_LE_ADV))
1729 return 0;
1730
1731 hdev->cur_adv_instance = instance;
1732
1733 return hci_start_adv_sync(hdev, instance);
1734 }
1735
1736 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1737 {
1738 int err;
1739
1740 if (!ext_adv_capable(hdev))
1741 return 0;
1742
1743 /* Disable instance 0x00 to disable all instances */
1744 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1745 if (err)
1746 return err;
1747
1748 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1749 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1750 }
1751
1752 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1753 {
1754 struct adv_info *adv, *n;
1755 int err = 0;
1756
1757 if (ext_adv_capable(hdev))
1758 /* Remove all existing sets */
1759 err = hci_clear_adv_sets_sync(hdev, sk);
1760 if (ext_adv_capable(hdev))
1761 return err;
1762
1763 /* This is safe as long as there is no command send while the lock is
1764 * held.
1765 */
1766 hci_dev_lock(hdev);
1767
1768 /* Cleanup non-ext instances */
1769 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1770 u8 instance = adv->instance;
1771 int err;
1772
1773 if (!(force || adv->timeout))
1774 continue;
1775
1776 err = hci_remove_adv_instance(hdev, instance);
1777 if (!err)
1778 mgmt_advertising_removed(sk, hdev, instance);
1779 }
1780
1781 hci_dev_unlock(hdev);
1782
1783 return 0;
1784 }
1785
1786 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1787 struct sock *sk)
1788 {
1789 int err = 0;
1790
1791 /* If we use extended advertising, instance has to be removed first. */
1792 if (ext_adv_capable(hdev))
1793 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1794 if (ext_adv_capable(hdev))
1795 return err;
1796
1797 /* This is safe as long as there is no command send while the lock is
1798 * held.
1799 */
1800 hci_dev_lock(hdev);
1801
1802 err = hci_remove_adv_instance(hdev, instance);
1803 if (!err)
1804 mgmt_advertising_removed(sk, hdev, instance);
1805
1806 hci_dev_unlock(hdev);
1807
1808 return err;
1809 }
1810
1811 /* For a single instance:
1812 * - force == true: The instance will be removed even when its remaining
1813 * lifetime is not zero.
1814 * - force == false: the instance will be deactivated but kept stored unless
1815 * the remaining lifetime is zero.
1816 *
1817 * For instance == 0x00:
1818 * - force == true: All instances will be removed regardless of their timeout
1819 * setting.
1820 * - force == false: Only instances that have a timeout will be removed.
1821 */
1822 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1823 u8 instance, bool force)
1824 {
1825 struct adv_info *next = NULL;
1826 int err;
1827
1828 /* Cancel any timeout concerning the removed instance(s). */
1829 if (!instance || hdev->cur_adv_instance == instance)
1830 cancel_adv_timeout(hdev);
1831
1832 /* Get the next instance to advertise BEFORE we remove
1833 * the current one. This can be the same instance again
1834 * if there is only one instance.
1835 */
1836 if (hdev->cur_adv_instance == instance)
1837 next = hci_get_next_instance(hdev, instance);
1838
1839 if (!instance) {
1840 err = hci_clear_adv_sync(hdev, sk, force);
1841 if (err)
1842 return err;
1843 } else {
1844 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1845
1846 if (force || (adv && adv->timeout && !adv->remaining_time)) {
1847 /* Don't advertise a removed instance. */
1848 if (next && next->instance == instance)
1849 next = NULL;
1850
1851 err = hci_remove_adv_sync(hdev, instance, sk);
1852 if (err)
1853 return err;
1854 }
1855 }
1856
1857 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858 return 0;
1859
1860 if (next && !ext_adv_capable(hdev))
1861 hci_schedule_adv_instance_sync(hdev, next->instance, false);
1862
1863 return 0;
1864 }
1865
1866 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1867 {
1868 struct hci_cp_read_rssi cp;
1869
1870 cp.handle = handle;
1871 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1872 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1873 }
1874
1875 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1876 {
1877 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1878 sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1879 }
1880
1881 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1882 {
1883 struct hci_cp_read_tx_power cp;
1884
1885 cp.handle = handle;
1886 cp.type = type;
1887 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1888 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1889 }
1890
1891 int hci_disable_advertising_sync(struct hci_dev *hdev)
1892 {
1893 u8 enable = 0x00;
1894 int err = 0;
1895
1896 /* If controller is not advertising we are done. */
1897 if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1898 return 0;
1899
1900 if (ext_adv_capable(hdev))
1901 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1902 if (ext_adv_capable(hdev))
1903 return err;
1904
1905 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1906 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1907 }
1908
1909 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1910 u8 filter_dup)
1911 {
1912 struct hci_cp_le_set_ext_scan_enable cp;
1913
1914 memset(&cp, 0, sizeof(cp));
1915 cp.enable = val;
1916
1917 if (hci_dev_test_flag(hdev, HCI_MESH))
1918 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1919 else
1920 cp.filter_dup = filter_dup;
1921
1922 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1923 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1924 }
1925
1926 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1927 u8 filter_dup)
1928 {
1929 struct hci_cp_le_set_scan_enable cp;
1930
1931 if (use_ext_scan(hdev))
1932 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1933
1934 memset(&cp, 0, sizeof(cp));
1935 cp.enable = val;
1936
1937 if (val && hci_dev_test_flag(hdev, HCI_MESH))
1938 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1939 else
1940 cp.filter_dup = filter_dup;
1941
1942 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1943 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1944 }
1945
1946 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1947 {
1948 if (!use_ll_privacy(hdev))
1949 return 0;
1950
1951 /* If controller is not/already resolving we are done. */
1952 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1953 return 0;
1954
1955 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1956 sizeof(val), &val, HCI_CMD_TIMEOUT);
1957 }
1958
1959 static int hci_scan_disable_sync(struct hci_dev *hdev)
1960 {
1961 int err;
1962
1963 /* If controller is not scanning we are done. */
1964 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1965 return 0;
1966
1967 if (hdev->scanning_paused) {
1968 bt_dev_dbg(hdev, "Scanning is paused for suspend");
1969 return 0;
1970 }
1971
1972 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1973 if (err) {
1974 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1975 return err;
1976 }
1977
1978 return err;
1979 }
1980
1981 static bool scan_use_rpa(struct hci_dev *hdev)
1982 {
1983 return hci_dev_test_flag(hdev, HCI_PRIVACY);
1984 }
1985
1986 static void hci_start_interleave_scan(struct hci_dev *hdev)
1987 {
1988 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1989 queue_delayed_work(hdev->req_workqueue,
1990 &hdev->interleave_scan, 0);
1991 }
1992
1993 static bool is_interleave_scanning(struct hci_dev *hdev)
1994 {
1995 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1996 }
1997
1998 static void cancel_interleave_scan(struct hci_dev *hdev)
1999 {
2000 bt_dev_dbg(hdev, "cancelling interleave scan");
2001
2002 cancel_delayed_work_sync(&hdev->interleave_scan);
2003
2004 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2005 }
2006
2007 /* Return true if interleave_scan wasn't started until exiting this function,
2008 * otherwise, return false
2009 */
2010 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2011 {
2012 /* Do interleaved scan only if all of the following are true:
2013 * - There is at least one ADV monitor
2014 * - At least one pending LE connection or one device to be scanned for
2015 * - Monitor offloading is not supported
2016 * If so, we should alternate between allowlist scan and one without
2017 * any filters to save power.
2018 */
2019 bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2020 !(list_empty(&hdev->pend_le_conns) &&
2021 list_empty(&hdev->pend_le_reports)) &&
2022 hci_get_adv_monitor_offload_ext(hdev) ==
2023 HCI_ADV_MONITOR_EXT_NONE;
2024 bool is_interleaving = is_interleave_scanning(hdev);
2025
2026 if (use_interleaving && !is_interleaving) {
2027 hci_start_interleave_scan(hdev);
2028 bt_dev_dbg(hdev, "starting interleave scan");
2029 return true;
2030 }
2031
2032 if (!use_interleaving && is_interleaving)
2033 cancel_interleave_scan(hdev);
2034
2035 return false;
2036 }
2037
2038 /* Removes connection to resolve list if needed.*/
2039 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2040 bdaddr_t *bdaddr, u8 bdaddr_type)
2041 {
2042 struct hci_cp_le_del_from_resolv_list cp;
2043 struct bdaddr_list_with_irk *entry;
2044
2045 if (!use_ll_privacy(hdev))
2046 return 0;
2047
2048 /* Check if the IRK has been programmed */
2049 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2050 bdaddr_type);
2051 if (!entry)
2052 return 0;
2053
2054 cp.bdaddr_type = bdaddr_type;
2055 bacpy(&cp.bdaddr, bdaddr);
2056
2057 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2058 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2059 }
2060
2061 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2062 bdaddr_t *bdaddr, u8 bdaddr_type)
2063 {
2064 struct hci_cp_le_del_from_accept_list cp;
2065 int err;
2066
2067 /* Check if device is on accept list before removing it */
2068 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2069 return 0;
2070
2071 cp.bdaddr_type = bdaddr_type;
2072 bacpy(&cp.bdaddr, bdaddr);
2073
2074 /* Ignore errors when removing from resolving list as that is likely
2075 * that the device was never added.
2076 */
2077 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2078
2079 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2080 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2081 if (err) {
2082 bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2083 return err;
2084 }
2085
2086 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2087 cp.bdaddr_type);
2088
2089 return 0;
2090 }
2091
2092 struct conn_params {
2093 bdaddr_t addr;
2094 u8 addr_type;
2095 hci_conn_flags_t flags;
2096 u8 privacy_mode;
2097 };
2098
2099 /* Adds connection to resolve list if needed.
2100 * Setting params to NULL programs local hdev->irk
2101 */
2102 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2103 struct conn_params *params)
2104 {
2105 struct hci_cp_le_add_to_resolv_list cp;
2106 struct smp_irk *irk;
2107 struct bdaddr_list_with_irk *entry;
2108 struct hci_conn_params *p;
2109
2110 if (!use_ll_privacy(hdev))
2111 return 0;
2112
2113 /* Attempt to program local identity address, type and irk if params is
2114 * NULL.
2115 */
2116 if (!params) {
2117 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2118 return 0;
2119
2120 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2121 memcpy(cp.peer_irk, hdev->irk, 16);
2122 goto done;
2123 }
2124
2125 irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2126 if (!irk)
2127 return 0;
2128
2129 /* Check if the IK has _not_ been programmed yet. */
2130 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2131 &params->addr,
2132 params->addr_type);
2133 if (entry)
2134 return 0;
2135
2136 cp.bdaddr_type = params->addr_type;
2137 bacpy(&cp.bdaddr, &params->addr);
2138 memcpy(cp.peer_irk, irk->val, 16);
2139
2140 /* Default privacy mode is always Network */
2141 params->privacy_mode = HCI_NETWORK_PRIVACY;
2142
2143 rcu_read_lock();
2144 p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2145 &params->addr, params->addr_type);
2146 if (!p)
2147 p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2148 &params->addr, params->addr_type);
2149 if (p)
2150 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2151 rcu_read_unlock();
2152
2153 done:
2154 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2155 memcpy(cp.local_irk, hdev->irk, 16);
2156 else
2157 memset(cp.local_irk, 0, 16);
2158
2159 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2160 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2161 }
2162
2163 /* Set Device Privacy Mode. */
2164 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2165 struct conn_params *params)
2166 {
2167 struct hci_cp_le_set_privacy_mode cp;
2168 struct smp_irk *irk;
2169
2170 /* If device privacy mode has already been set there is nothing to do */
2171 if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2172 return 0;
2173
2174 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2175 * indicates that LL Privacy has been enabled and
2176 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2177 */
2178 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2179 return 0;
2180
2181 irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2182 if (!irk)
2183 return 0;
2184
2185 memset(&cp, 0, sizeof(cp));
2186 cp.bdaddr_type = irk->addr_type;
2187 bacpy(&cp.bdaddr, &irk->bdaddr);
2188 cp.mode = HCI_DEVICE_PRIVACY;
2189
2190 /* Note: params->privacy_mode is not updated since it is a copy */
2191
2192 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2193 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2194 }
2195
2196 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2197 * this attempts to program the device in the resolving list as well and
2198 * properly set the privacy mode.
2199 */
2200 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2201 struct conn_params *params,
2202 u8 *num_entries)
2203 {
2204 struct hci_cp_le_add_to_accept_list cp;
2205 int err;
2206
2207 /* During suspend, only wakeable devices can be in acceptlist */
2208 if (hdev->suspended &&
2209 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2210 return 0;
2211
2212 /* Select filter policy to accept all advertising */
2213 if (*num_entries >= hdev->le_accept_list_size)
2214 return -ENOSPC;
2215
2216 /* Accept list can not be used with RPAs */
2217 if (!use_ll_privacy(hdev) &&
2218 hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2219 return -EINVAL;
2220
2221 /* Attempt to program the device in the resolving list first to avoid
2222 * having to rollback in case it fails since the resolving list is
2223 * dynamic it can probably be smaller than the accept list.
2224 */
2225 err = hci_le_add_resolve_list_sync(hdev, params);
2226 if (err) {
2227 bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2228 return err;
2229 }
2230
2231 /* Set Privacy Mode */
2232 err = hci_le_set_privacy_mode_sync(hdev, params);
2233 if (err) {
2234 bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2235 return err;
2236 }
2237
2238 /* Check if already in accept list */
2239 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2240 params->addr_type))
2241 return 0;
2242
2243 *num_entries += 1;
2244 cp.bdaddr_type = params->addr_type;
2245 bacpy(&cp.bdaddr, &params->addr);
2246
2247 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2248 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2249 if (err) {
2250 bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2251 /* Rollback the device from the resolving list */
2252 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2253 return err;
2254 }
2255
2256 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2257 cp.bdaddr_type);
2258
2259 return 0;
2260 }
2261
2262 /* This function disables/pause all advertising instances */
2263 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2264 {
2265 int err;
2266 int old_state;
2267
2268 /* If already been paused there is nothing to do. */
2269 if (hdev->advertising_paused)
2270 return 0;
2271
2272 bt_dev_dbg(hdev, "Pausing directed advertising");
2273
2274 /* Stop directed advertising */
2275 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2276 if (old_state) {
2277 /* When discoverable timeout triggers, then just make sure
2278 * the limited discoverable flag is cleared. Even in the case
2279 * of a timeout triggered from general discoverable, it is
2280 * safe to unconditionally clear the flag.
2281 */
2282 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2283 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2284 hdev->discov_timeout = 0;
2285 }
2286
2287 bt_dev_dbg(hdev, "Pausing advertising instances");
2288
2289 /* Call to disable any advertisements active on the controller.
2290 * This will succeed even if no advertisements are configured.
2291 */
2292 err = hci_disable_advertising_sync(hdev);
2293 if (err)
2294 return err;
2295
2296 /* If we are using software rotation, pause the loop */
2297 if (!ext_adv_capable(hdev))
2298 cancel_adv_timeout(hdev);
2299
2300 hdev->advertising_paused = true;
2301 hdev->advertising_old_state = old_state;
2302
2303 return 0;
2304 }
2305
2306 /* This function enables all user advertising instances */
2307 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2308 {
2309 struct adv_info *adv, *tmp;
2310 int err;
2311
2312 /* If advertising has not been paused there is nothing to do. */
2313 if (!hdev->advertising_paused)
2314 return 0;
2315
2316 /* Resume directed advertising */
2317 hdev->advertising_paused = false;
2318 if (hdev->advertising_old_state) {
2319 hci_dev_set_flag(hdev, HCI_ADVERTISING);
2320 hdev->advertising_old_state = 0;
2321 }
2322
2323 bt_dev_dbg(hdev, "Resuming advertising instances");
2324
2325 if (ext_adv_capable(hdev)) {
2326 /* Call for each tracked instance to be re-enabled */
2327 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2328 err = hci_enable_ext_advertising_sync(hdev,
2329 adv->instance);
2330 if (!err)
2331 continue;
2332
2333 /* If the instance cannot be resumed remove it */
2334 hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2335 NULL);
2336 }
2337 } else {
2338 /* Schedule for most recent instance to be restarted and begin
2339 * the software rotation loop
2340 */
2341 err = hci_schedule_adv_instance_sync(hdev,
2342 hdev->cur_adv_instance,
2343 true);
2344 }
2345
2346 hdev->advertising_paused = false;
2347
2348 return err;
2349 }
2350
2351 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2352 {
2353 int err;
2354
2355 if (!use_ll_privacy(hdev))
2356 return 0;
2357
2358 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2359 return 0;
2360
2361 /* Cannot disable addr resolution if scanning is enabled or
2362 * when initiating an LE connection.
2363 */
2364 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2365 hci_lookup_le_connect(hdev)) {
2366 bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2367 return -EPERM;
2368 }
2369
2370 /* Cannot disable addr resolution if advertising is enabled. */
2371 err = hci_pause_advertising_sync(hdev);
2372 if (err) {
2373 bt_dev_err(hdev, "Pause advertising failed: %d", err);
2374 return err;
2375 }
2376
2377 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2378 if (err)
2379 bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2380 err);
2381
2382 /* Return if address resolution is disabled and RPA is not used. */
2383 if (!err && scan_use_rpa(hdev))
2384 return 0;
2385
2386 hci_resume_advertising_sync(hdev);
2387 return err;
2388 }
2389
2390 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2391 bool extended, struct sock *sk)
2392 {
2393 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2394 HCI_OP_READ_LOCAL_OOB_DATA;
2395
2396 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2397 }
2398
2399 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2400 {
2401 struct hci_conn_params *params;
2402 struct conn_params *p;
2403 size_t i;
2404
2405 rcu_read_lock();
2406
2407 i = 0;
2408 list_for_each_entry_rcu(params, list, action)
2409 ++i;
2410 *n = i;
2411
2412 rcu_read_unlock();
2413
2414 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2415 if (!p)
2416 return NULL;
2417
2418 rcu_read_lock();
2419
2420 i = 0;
2421 list_for_each_entry_rcu(params, list, action) {
2422 /* Racing adds are handled in next scan update */
2423 if (i >= *n)
2424 break;
2425
2426 /* No hdev->lock, but: addr, addr_type are immutable.
2427 * privacy_mode is only written by us or in
2428 * hci_cc_le_set_privacy_mode that we wait for.
2429 * We should be idempotent so MGMT updating flags
2430 * while we are processing is OK.
2431 */
2432 bacpy(&p[i].addr, &params->addr);
2433 p[i].addr_type = params->addr_type;
2434 p[i].flags = READ_ONCE(params->flags);
2435 p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2436 ++i;
2437 }
2438
2439 rcu_read_unlock();
2440
2441 *n = i;
2442 return p;
2443 }
2444
2445 /* Device must not be scanning when updating the accept list.
2446 *
2447 * Update is done using the following sequence:
2448 *
2449 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2450 * Remove Devices From Accept List ->
2451 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2452 * Add Devices to Accept List ->
2453 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2454 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2455 * Enable Scanning
2456 *
2457 * In case of failure advertising shall be restored to its original state and
2458 * return would disable accept list since either accept or resolving list could
2459 * not be programmed.
2460 *
2461 */
2462 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2463 {
2464 struct conn_params *params;
2465 struct bdaddr_list *b, *t;
2466 u8 num_entries = 0;
2467 bool pend_conn, pend_report;
2468 u8 filter_policy;
2469 size_t i, n;
2470 int err;
2471
2472 /* Pause advertising if resolving list can be used as controllers
2473 * cannot accept resolving list modifications while advertising.
2474 */
2475 if (use_ll_privacy(hdev)) {
2476 err = hci_pause_advertising_sync(hdev);
2477 if (err) {
2478 bt_dev_err(hdev, "pause advertising failed: %d", err);
2479 return 0x00;
2480 }
2481 }
2482
2483 /* Disable address resolution while reprogramming accept list since
2484 * devices that do have an IRK will be programmed in the resolving list
2485 * when LL Privacy is enabled.
2486 */
2487 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2488 if (err) {
2489 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2490 goto done;
2491 }
2492
2493 /* Go through the current accept list programmed into the
2494 * controller one by one and check if that address is connected or is
2495 * still in the list of pending connections or list of devices to
2496 * report. If not present in either list, then remove it from
2497 * the controller.
2498 */
2499 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2500 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2501 continue;
2502
2503 /* Pointers not dereferenced, no locks needed */
2504 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2505 &b->bdaddr,
2506 b->bdaddr_type);
2507 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2508 &b->bdaddr,
2509 b->bdaddr_type);
2510
2511 /* If the device is not likely to connect or report,
2512 * remove it from the acceptlist.
2513 */
2514 if (!pend_conn && !pend_report) {
2515 hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2516 b->bdaddr_type);
2517 continue;
2518 }
2519
2520 num_entries++;
2521 }
2522
2523 /* Since all no longer valid accept list entries have been
2524 * removed, walk through the list of pending connections
2525 * and ensure that any new device gets programmed into
2526 * the controller.
2527 *
2528 * If the list of the devices is larger than the list of
2529 * available accept list entries in the controller, then
2530 * just abort and return filer policy value to not use the
2531 * accept list.
2532 *
2533 * The list and params may be mutated while we wait for events,
2534 * so make a copy and iterate it.
2535 */
2536
2537 params = conn_params_copy(&hdev->pend_le_conns, &n);
2538 if (!params) {
2539 err = -ENOMEM;
2540 goto done;
2541 }
2542
2543 for (i = 0; i < n; ++i) {
2544 err = hci_le_add_accept_list_sync(hdev, &params[i],
2545 &num_entries);
2546 if (err) {
2547 kvfree(params);
2548 goto done;
2549 }
2550 }
2551
2552 kvfree(params);
2553
2554 /* After adding all new pending connections, walk through
2555 * the list of pending reports and also add these to the
2556 * accept list if there is still space. Abort if space runs out.
2557 */
2558
2559 params = conn_params_copy(&hdev->pend_le_reports, &n);
2560 if (!params) {
2561 err = -ENOMEM;
2562 goto done;
2563 }
2564
2565 for (i = 0; i < n; ++i) {
2566 err = hci_le_add_accept_list_sync(hdev, &params[i],
2567 &num_entries);
2568 if (err) {
2569 kvfree(params);
2570 goto done;
2571 }
2572 }
2573
2574 kvfree(params);
2575
2576 /* Use the allowlist unless the following conditions are all true:
2577 * - We are not currently suspending
2578 * - There are 1 or more ADV monitors registered and it's not offloaded
2579 * - Interleaved scanning is not currently using the allowlist
2580 */
2581 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2582 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2583 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2584 err = -EINVAL;
2585
2586 done:
2587 filter_policy = err ? 0x00 : 0x01;
2588
2589 /* Enable address resolution when LL Privacy is enabled. */
2590 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2591 if (err)
2592 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2593
2594 /* Resume advertising if it was paused */
2595 if (use_ll_privacy(hdev))
2596 hci_resume_advertising_sync(hdev);
2597
2598 /* Select filter policy to use accept list */
2599 return filter_policy;
2600 }
2601
2602 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2603 u16 interval, u16 window,
2604 u8 own_addr_type, u8 filter_policy)
2605 {
2606 struct hci_cp_le_set_ext_scan_params *cp;
2607 struct hci_cp_le_scan_phy_params *phy;
2608 u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2609 u8 num_phy = 0;
2610
2611 cp = (void *)data;
2612 phy = (void *)cp->data;
2613
2614 memset(data, 0, sizeof(data));
2615
2616 cp->own_addr_type = own_addr_type;
2617 cp->filter_policy = filter_policy;
2618
2619 if (scan_1m(hdev) || scan_2m(hdev)) {
2620 cp->scanning_phys |= LE_SCAN_PHY_1M;
2621
2622 phy->type = type;
2623 phy->interval = cpu_to_le16(interval);
2624 phy->window = cpu_to_le16(window);
2625
2626 num_phy++;
2627 phy++;
2628 }
2629
2630 if (scan_coded(hdev)) {
2631 cp->scanning_phys |= LE_SCAN_PHY_CODED;
2632
2633 phy->type = type;
2634 phy->interval = cpu_to_le16(interval);
2635 phy->window = cpu_to_le16(window);
2636
2637 num_phy++;
2638 phy++;
2639 }
2640
2641 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2642 sizeof(*cp) + sizeof(*phy) * num_phy,
2643 data, HCI_CMD_TIMEOUT);
2644 }
2645
2646 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2647 u16 interval, u16 window,
2648 u8 own_addr_type, u8 filter_policy)
2649 {
2650 struct hci_cp_le_set_scan_param cp;
2651
2652 if (use_ext_scan(hdev))
2653 return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2654 window, own_addr_type,
2655 filter_policy);
2656
2657 memset(&cp, 0, sizeof(cp));
2658 cp.type = type;
2659 cp.interval = cpu_to_le16(interval);
2660 cp.window = cpu_to_le16(window);
2661 cp.own_address_type = own_addr_type;
2662 cp.filter_policy = filter_policy;
2663
2664 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2665 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2666 }
2667
2668 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2669 u16 window, u8 own_addr_type, u8 filter_policy,
2670 u8 filter_dup)
2671 {
2672 int err;
2673
2674 if (hdev->scanning_paused) {
2675 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2676 return 0;
2677 }
2678
2679 err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2680 own_addr_type, filter_policy);
2681 if (err)
2682 return err;
2683
2684 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2685 }
2686
2687 static int hci_passive_scan_sync(struct hci_dev *hdev)
2688 {
2689 u8 own_addr_type;
2690 u8 filter_policy;
2691 u16 window, interval;
2692 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2693 int err;
2694
2695 if (hdev->scanning_paused) {
2696 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2697 return 0;
2698 }
2699
2700 err = hci_scan_disable_sync(hdev);
2701 if (err) {
2702 bt_dev_err(hdev, "disable scanning failed: %d", err);
2703 return err;
2704 }
2705
2706 /* Set require_privacy to false since no SCAN_REQ are send
2707 * during passive scanning. Not using an non-resolvable address
2708 * here is important so that peer devices using direct
2709 * advertising with our address will be correctly reported
2710 * by the controller.
2711 */
2712 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2713 &own_addr_type))
2714 return 0;
2715
2716 if (hdev->enable_advmon_interleave_scan &&
2717 hci_update_interleaved_scan_sync(hdev))
2718 return 0;
2719
2720 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2721
2722 /* Adding or removing entries from the accept list must
2723 * happen before enabling scanning. The controller does
2724 * not allow accept list modification while scanning.
2725 */
2726 filter_policy = hci_update_accept_list_sync(hdev);
2727
2728 /* When the controller is using random resolvable addresses and
2729 * with that having LE privacy enabled, then controllers with
2730 * Extended Scanner Filter Policies support can now enable support
2731 * for handling directed advertising.
2732 *
2733 * So instead of using filter polices 0x00 (no acceptlist)
2734 * and 0x01 (acceptlist enabled) use the new filter policies
2735 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2736 */
2737 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2738 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2739 filter_policy |= 0x02;
2740
2741 if (hdev->suspended) {
2742 window = hdev->le_scan_window_suspend;
2743 interval = hdev->le_scan_int_suspend;
2744 } else if (hci_is_le_conn_scanning(hdev)) {
2745 window = hdev->le_scan_window_connect;
2746 interval = hdev->le_scan_int_connect;
2747 } else if (hci_is_adv_monitoring(hdev)) {
2748 window = hdev->le_scan_window_adv_monitor;
2749 interval = hdev->le_scan_int_adv_monitor;
2750 } else {
2751 window = hdev->le_scan_window;
2752 interval = hdev->le_scan_interval;
2753 }
2754
2755 /* Disable all filtering for Mesh */
2756 if (hci_dev_test_flag(hdev, HCI_MESH)) {
2757 filter_policy = 0;
2758 filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2759 }
2760
2761 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2762
2763 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2764 own_addr_type, filter_policy, filter_dups);
2765 }
2766
2767 /* This function controls the passive scanning based on hdev->pend_le_conns
2768 * list. If there are pending LE connection we start the background scanning,
2769 * otherwise we stop it in the following sequence:
2770 *
2771 * If there are devices to scan:
2772 *
2773 * Disable Scanning -> Update Accept List ->
2774 * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2775 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2776 * Enable Scanning
2777 *
2778 * Otherwise:
2779 *
2780 * Disable Scanning
2781 */
2782 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2783 {
2784 int err;
2785
2786 if (!test_bit(HCI_UP, &hdev->flags) ||
2787 test_bit(HCI_INIT, &hdev->flags) ||
2788 hci_dev_test_flag(hdev, HCI_SETUP) ||
2789 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2790 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2791 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2792 return 0;
2793
2794 /* No point in doing scanning if LE support hasn't been enabled */
2795 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2796 return 0;
2797
2798 /* If discovery is active don't interfere with it */
2799 if (hdev->discovery.state != DISCOVERY_STOPPED)
2800 return 0;
2801
2802 /* Reset RSSI and UUID filters when starting background scanning
2803 * since these filters are meant for service discovery only.
2804 *
2805 * The Start Discovery and Start Service Discovery operations
2806 * ensure to set proper values for RSSI threshold and UUID
2807 * filter list. So it is safe to just reset them here.
2808 */
2809 hci_discovery_filter_clear(hdev);
2810
2811 bt_dev_dbg(hdev, "ADV monitoring is %s",
2812 hci_is_adv_monitoring(hdev) ? "on" : "off");
2813
2814 if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2815 list_empty(&hdev->pend_le_conns) &&
2816 list_empty(&hdev->pend_le_reports) &&
2817 !hci_is_adv_monitoring(hdev) &&
2818 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2819 /* If there is no pending LE connections or devices
2820 * to be scanned for or no ADV monitors, we should stop the
2821 * background scanning.
2822 */
2823
2824 bt_dev_dbg(hdev, "stopping background scanning");
2825
2826 err = hci_scan_disable_sync(hdev);
2827 if (err)
2828 bt_dev_err(hdev, "stop background scanning failed: %d",
2829 err);
2830 } else {
2831 /* If there is at least one pending LE connection, we should
2832 * keep the background scan running.
2833 */
2834
2835 /* If controller is connecting, we should not start scanning
2836 * since some controllers are not able to scan and connect at
2837 * the same time.
2838 */
2839 if (hci_lookup_le_connect(hdev))
2840 return 0;
2841
2842 bt_dev_dbg(hdev, "start background scanning");
2843
2844 err = hci_passive_scan_sync(hdev);
2845 if (err)
2846 bt_dev_err(hdev, "start background scanning failed: %d",
2847 err);
2848 }
2849
2850 return err;
2851 }
2852
2853 static int update_scan_sync(struct hci_dev *hdev, void *data)
2854 {
2855 return hci_update_scan_sync(hdev);
2856 }
2857
2858 int hci_update_scan(struct hci_dev *hdev)
2859 {
2860 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2861 }
2862
2863 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2864 {
2865 return hci_update_passive_scan_sync(hdev);
2866 }
2867
2868 int hci_update_passive_scan(struct hci_dev *hdev)
2869 {
2870 /* Only queue if it would have any effect */
2871 if (!test_bit(HCI_UP, &hdev->flags) ||
2872 test_bit(HCI_INIT, &hdev->flags) ||
2873 hci_dev_test_flag(hdev, HCI_SETUP) ||
2874 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2875 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2876 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2877 return 0;
2878
2879 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2880 }
2881
2882 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2883 {
2884 int err;
2885
2886 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2887 return 0;
2888
2889 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2890 sizeof(val), &val, HCI_CMD_TIMEOUT);
2891
2892 if (!err) {
2893 if (val) {
2894 hdev->features[1][0] |= LMP_HOST_SC;
2895 hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2896 } else {
2897 hdev->features[1][0] &= ~LMP_HOST_SC;
2898 hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2899 }
2900 }
2901
2902 return err;
2903 }
2904
2905 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2906 {
2907 int err;
2908
2909 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2910 lmp_host_ssp_capable(hdev))
2911 return 0;
2912
2913 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2914 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2915 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2916 }
2917
2918 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2919 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2920 if (err)
2921 return err;
2922
2923 return hci_write_sc_support_sync(hdev, 0x01);
2924 }
2925
2926 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2927 {
2928 struct hci_cp_write_le_host_supported cp;
2929
2930 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2931 !lmp_bredr_capable(hdev))
2932 return 0;
2933
2934 /* Check first if we already have the right host state
2935 * (host features set)
2936 */
2937 if (le == lmp_host_le_capable(hdev) &&
2938 simul == lmp_host_le_br_capable(hdev))
2939 return 0;
2940
2941 memset(&cp, 0, sizeof(cp));
2942
2943 cp.le = le;
2944 cp.simul = simul;
2945
2946 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2947 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2948 }
2949
2950 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2951 {
2952 struct adv_info *adv, *tmp;
2953 int err;
2954
2955 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2956 return 0;
2957
2958 /* If RPA Resolution has not been enable yet it means the
2959 * resolving list is empty and we should attempt to program the
2960 * local IRK in order to support using own_addr_type
2961 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2962 */
2963 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2964 hci_le_add_resolve_list_sync(hdev, NULL);
2965 hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2966 }
2967
2968 /* Make sure the controller has a good default for
2969 * advertising data. This also applies to the case
2970 * where BR/EDR was toggled during the AUTO_OFF phase.
2971 */
2972 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2973 list_empty(&hdev->adv_instances)) {
2974 if (ext_adv_capable(hdev)) {
2975 err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2976 if (!err)
2977 hci_update_scan_rsp_data_sync(hdev, 0x00);
2978 } else {
2979 err = hci_update_adv_data_sync(hdev, 0x00);
2980 if (!err)
2981 hci_update_scan_rsp_data_sync(hdev, 0x00);
2982 }
2983
2984 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2985 hci_enable_advertising_sync(hdev);
2986 }
2987
2988 /* Call for each tracked instance to be scheduled */
2989 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2990 hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2991
2992 return 0;
2993 }
2994
2995 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2996 {
2997 u8 link_sec;
2998
2999 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3000 if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3001 return 0;
3002
3003 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3004 sizeof(link_sec), &link_sec,
3005 HCI_CMD_TIMEOUT);
3006 }
3007
3008 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3009 {
3010 struct hci_cp_write_page_scan_activity cp;
3011 u8 type;
3012 int err = 0;
3013
3014 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3015 return 0;
3016
3017 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3018 return 0;
3019
3020 memset(&cp, 0, sizeof(cp));
3021
3022 if (enable) {
3023 type = PAGE_SCAN_TYPE_INTERLACED;
3024
3025 /* 160 msec page scan interval */
3026 cp.interval = cpu_to_le16(0x0100);
3027 } else {
3028 type = hdev->def_page_scan_type;
3029 cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3030 }
3031
3032 cp.window = cpu_to_le16(hdev->def_page_scan_window);
3033
3034 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3035 __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3036 err = __hci_cmd_sync_status(hdev,
3037 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3038 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3039 if (err)
3040 return err;
3041 }
3042
3043 if (hdev->page_scan_type != type)
3044 err = __hci_cmd_sync_status(hdev,
3045 HCI_OP_WRITE_PAGE_SCAN_TYPE,
3046 sizeof(type), &type,
3047 HCI_CMD_TIMEOUT);
3048
3049 return err;
3050 }
3051
3052 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3053 {
3054 struct bdaddr_list *b;
3055
3056 list_for_each_entry(b, &hdev->accept_list, list) {
3057 struct hci_conn *conn;
3058
3059 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3060 if (!conn)
3061 return true;
3062
3063 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3064 return true;
3065 }
3066
3067 return false;
3068 }
3069
3070 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3071 {
3072 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3073 sizeof(val), &val,
3074 HCI_CMD_TIMEOUT);
3075 }
3076
3077 int hci_update_scan_sync(struct hci_dev *hdev)
3078 {
3079 u8 scan;
3080
3081 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3082 return 0;
3083
3084 if (!hdev_is_powered(hdev))
3085 return 0;
3086
3087 if (mgmt_powering_down(hdev))
3088 return 0;
3089
3090 if (hdev->scanning_paused)
3091 return 0;
3092
3093 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3094 disconnected_accept_list_entries(hdev))
3095 scan = SCAN_PAGE;
3096 else
3097 scan = SCAN_DISABLED;
3098
3099 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3100 scan |= SCAN_INQUIRY;
3101
3102 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3103 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3104 return 0;
3105
3106 return hci_write_scan_enable_sync(hdev, scan);
3107 }
3108
3109 int hci_update_name_sync(struct hci_dev *hdev)
3110 {
3111 struct hci_cp_write_local_name cp;
3112
3113 memset(&cp, 0, sizeof(cp));
3114
3115 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3116
3117 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3118 sizeof(cp), &cp,
3119 HCI_CMD_TIMEOUT);
3120 }
3121
3122 /* This function perform powered update HCI command sequence after the HCI init
3123 * sequence which end up resetting all states, the sequence is as follows:
3124 *
3125 * HCI_SSP_ENABLED(Enable SSP)
3126 * HCI_LE_ENABLED(Enable LE)
3127 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3128 * Update adv data)
3129 * Enable Authentication
3130 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3131 * Set Name -> Set EIR)
3132 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3133 */
3134 int hci_powered_update_sync(struct hci_dev *hdev)
3135 {
3136 int err;
3137
3138 /* Register the available SMP channels (BR/EDR and LE) only when
3139 * successfully powering on the controller. This late
3140 * registration is required so that LE SMP can clearly decide if
3141 * the public address or static address is used.
3142 */
3143 smp_register(hdev);
3144
3145 err = hci_write_ssp_mode_sync(hdev, 0x01);
3146 if (err)
3147 return err;
3148
3149 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3150 if (err)
3151 return err;
3152
3153 err = hci_powered_update_adv_sync(hdev);
3154 if (err)
3155 return err;
3156
3157 err = hci_write_auth_enable_sync(hdev);
3158 if (err)
3159 return err;
3160
3161 if (lmp_bredr_capable(hdev)) {
3162 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3163 hci_write_fast_connectable_sync(hdev, true);
3164 else
3165 hci_write_fast_connectable_sync(hdev, false);
3166 hci_update_scan_sync(hdev);
3167 hci_update_class_sync(hdev);
3168 hci_update_name_sync(hdev);
3169 hci_update_eir_sync(hdev);
3170 }
3171
3172 /* If forcing static address is in use or there is no public
3173 * address use the static address as random address (but skip
3174 * the HCI command if the current random address is already the
3175 * static one.
3176 *
3177 * In case BR/EDR has been disabled on a dual-mode controller
3178 * and a static address has been configured, then use that
3179 * address instead of the public BR/EDR address.
3180 */
3181 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3182 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3183 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3184 if (bacmp(&hdev->static_addr, BDADDR_ANY))
3185 return hci_set_random_addr_sync(hdev,
3186 &hdev->static_addr);
3187 }
3188
3189 return 0;
3190 }
3191
3192 /**
3193 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3194 * (BD_ADDR) for a HCI device from
3195 * a firmware node property.
3196 * @hdev: The HCI device
3197 *
3198 * Search the firmware node for 'local-bd-address'.
3199 *
3200 * All-zero BD addresses are rejected, because those could be properties
3201 * that exist in the firmware tables, but were not updated by the firmware. For
3202 * example, the DTS could define 'local-bd-address', with zero BD addresses.
3203 */
3204 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3205 {
3206 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3207 bdaddr_t ba;
3208 int ret;
3209
3210 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3211 (u8 *)&ba, sizeof(ba));
3212 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3213 return;
3214
3215 bacpy(&hdev->public_addr, &ba);
3216 }
3217
3218 struct hci_init_stage {
3219 int (*func)(struct hci_dev *hdev);
3220 };
3221
3222 /* Run init stage NULL terminated function table */
3223 static int hci_init_stage_sync(struct hci_dev *hdev,
3224 const struct hci_init_stage *stage)
3225 {
3226 size_t i;
3227
3228 for (i = 0; stage[i].func; i++) {
3229 int err;
3230
3231 err = stage[i].func(hdev);
3232 if (err)
3233 return err;
3234 }
3235
3236 return 0;
3237 }
3238
3239 /* Read Local Version */
3240 static int hci_read_local_version_sync(struct hci_dev *hdev)
3241 {
3242 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3243 0, NULL, HCI_CMD_TIMEOUT);
3244 }
3245
3246 /* Read BD Address */
3247 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3248 {
3249 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3250 0, NULL, HCI_CMD_TIMEOUT);
3251 }
3252
3253 #define HCI_INIT(_func) \
3254 { \
3255 .func = _func, \
3256 }
3257
3258 static const struct hci_init_stage hci_init0[] = {
3259 /* HCI_OP_READ_LOCAL_VERSION */
3260 HCI_INIT(hci_read_local_version_sync),
3261 /* HCI_OP_READ_BD_ADDR */
3262 HCI_INIT(hci_read_bd_addr_sync),
3263 {}
3264 };
3265
3266 int hci_reset_sync(struct hci_dev *hdev)
3267 {
3268 int err;
3269
3270 set_bit(HCI_RESET, &hdev->flags);
3271
3272 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3273 HCI_CMD_TIMEOUT);
3274 if (err)
3275 return err;
3276
3277 return 0;
3278 }
3279
3280 static int hci_init0_sync(struct hci_dev *hdev)
3281 {
3282 int err;
3283
3284 bt_dev_dbg(hdev, "");
3285
3286 /* Reset */
3287 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3288 err = hci_reset_sync(hdev);
3289 if (err)
3290 return err;
3291 }
3292
3293 return hci_init_stage_sync(hdev, hci_init0);
3294 }
3295
3296 static int hci_unconf_init_sync(struct hci_dev *hdev)
3297 {
3298 int err;
3299
3300 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3301 return 0;
3302
3303 err = hci_init0_sync(hdev);
3304 if (err < 0)
3305 return err;
3306
3307 if (hci_dev_test_flag(hdev, HCI_SETUP))
3308 hci_debugfs_create_basic(hdev);
3309
3310 return 0;
3311 }
3312
3313 /* Read Local Supported Features. */
3314 static int hci_read_local_features_sync(struct hci_dev *hdev)
3315 {
3316 /* Not all AMP controllers support this command */
3317 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3318 return 0;
3319
3320 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3321 0, NULL, HCI_CMD_TIMEOUT);
3322 }
3323
3324 /* BR Controller init stage 1 command sequence */
3325 static const struct hci_init_stage br_init1[] = {
3326 /* HCI_OP_READ_LOCAL_FEATURES */
3327 HCI_INIT(hci_read_local_features_sync),
3328 /* HCI_OP_READ_LOCAL_VERSION */
3329 HCI_INIT(hci_read_local_version_sync),
3330 /* HCI_OP_READ_BD_ADDR */
3331 HCI_INIT(hci_read_bd_addr_sync),
3332 {}
3333 };
3334
3335 /* Read Local Commands */
3336 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3337 {
3338 /* All Bluetooth 1.2 and later controllers should support the
3339 * HCI command for reading the local supported commands.
3340 *
3341 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3342 * but do not have support for this command. If that is the case,
3343 * the driver can quirk the behavior and skip reading the local
3344 * supported commands.
3345 */
3346 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3347 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3348 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3349 0, NULL, HCI_CMD_TIMEOUT);
3350
3351 return 0;
3352 }
3353
3354 /* Read Local AMP Info */
3355 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3356 {
3357 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3358 0, NULL, HCI_CMD_TIMEOUT);
3359 }
3360
3361 /* Read Data Blk size */
3362 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3363 {
3364 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3365 0, NULL, HCI_CMD_TIMEOUT);
3366 }
3367
3368 /* Read Flow Control Mode */
3369 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3370 {
3371 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3372 0, NULL, HCI_CMD_TIMEOUT);
3373 }
3374
3375 /* Read Location Data */
3376 static int hci_read_location_data_sync(struct hci_dev *hdev)
3377 {
3378 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3379 0, NULL, HCI_CMD_TIMEOUT);
3380 }
3381
3382 /* AMP Controller init stage 1 command sequence */
3383 static const struct hci_init_stage amp_init1[] = {
3384 /* HCI_OP_READ_LOCAL_VERSION */
3385 HCI_INIT(hci_read_local_version_sync),
3386 /* HCI_OP_READ_LOCAL_COMMANDS */
3387 HCI_INIT(hci_read_local_cmds_sync),
3388 /* HCI_OP_READ_LOCAL_AMP_INFO */
3389 HCI_INIT(hci_read_local_amp_info_sync),
3390 /* HCI_OP_READ_DATA_BLOCK_SIZE */
3391 HCI_INIT(hci_read_data_block_size_sync),
3392 /* HCI_OP_READ_FLOW_CONTROL_MODE */
3393 HCI_INIT(hci_read_flow_control_mode_sync),
3394 /* HCI_OP_READ_LOCATION_DATA */
3395 HCI_INIT(hci_read_location_data_sync),
3396 {}
3397 };
3398
3399 static int hci_init1_sync(struct hci_dev *hdev)
3400 {
3401 int err;
3402
3403 bt_dev_dbg(hdev, "");
3404
3405 /* Reset */
3406 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3407 err = hci_reset_sync(hdev);
3408 if (err)
3409 return err;
3410 }
3411
3412 switch (hdev->dev_type) {
3413 case HCI_PRIMARY:
3414 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3415 return hci_init_stage_sync(hdev, br_init1);
3416 case HCI_AMP:
3417 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3418 return hci_init_stage_sync(hdev, amp_init1);
3419 default:
3420 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3421 break;
3422 }
3423
3424 return 0;
3425 }
3426
3427 /* AMP Controller init stage 2 command sequence */
3428 static const struct hci_init_stage amp_init2[] = {
3429 /* HCI_OP_READ_LOCAL_FEATURES */
3430 HCI_INIT(hci_read_local_features_sync),
3431 {}
3432 };
3433
3434 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3435 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3436 {
3437 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3438 0, NULL, HCI_CMD_TIMEOUT);
3439 }
3440
3441 /* Read Class of Device */
3442 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3443 {
3444 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3445 0, NULL, HCI_CMD_TIMEOUT);
3446 }
3447
3448 /* Read Local Name */
3449 static int hci_read_local_name_sync(struct hci_dev *hdev)
3450 {
3451 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3452 0, NULL, HCI_CMD_TIMEOUT);
3453 }
3454
3455 /* Read Voice Setting */
3456 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3457 {
3458 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3459 0, NULL, HCI_CMD_TIMEOUT);
3460 }
3461
3462 /* Read Number of Supported IAC */
3463 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3464 {
3465 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3466 0, NULL, HCI_CMD_TIMEOUT);
3467 }
3468
3469 /* Read Current IAC LAP */
3470 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3471 {
3472 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3473 0, NULL, HCI_CMD_TIMEOUT);
3474 }
3475
3476 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3477 u8 cond_type, bdaddr_t *bdaddr,
3478 u8 auto_accept)
3479 {
3480 struct hci_cp_set_event_filter cp;
3481
3482 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3483 return 0;
3484
3485 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3486 return 0;
3487
3488 memset(&cp, 0, sizeof(cp));
3489 cp.flt_type = flt_type;
3490
3491 if (flt_type != HCI_FLT_CLEAR_ALL) {
3492 cp.cond_type = cond_type;
3493 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3494 cp.addr_conn_flt.auto_accept = auto_accept;
3495 }
3496
3497 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3498 flt_type == HCI_FLT_CLEAR_ALL ?
3499 sizeof(cp.flt_type) : sizeof(cp), &cp,
3500 HCI_CMD_TIMEOUT);
3501 }
3502
3503 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3504 {
3505 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3506 return 0;
3507
3508 /* In theory the state machine should not reach here unless
3509 * a hci_set_event_filter_sync() call succeeds, but we do
3510 * the check both for parity and as a future reminder.
3511 */
3512 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3513 return 0;
3514
3515 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3516 BDADDR_ANY, 0x00);
3517 }
3518
3519 /* Connection accept timeout ~20 secs */
3520 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3521 {
3522 __le16 param = cpu_to_le16(0x7d00);
3523
3524 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3525 sizeof(param), &param, HCI_CMD_TIMEOUT);
3526 }
3527
3528 /* BR Controller init stage 2 command sequence */
3529 static const struct hci_init_stage br_init2[] = {
3530 /* HCI_OP_READ_BUFFER_SIZE */
3531 HCI_INIT(hci_read_buffer_size_sync),
3532 /* HCI_OP_READ_CLASS_OF_DEV */
3533 HCI_INIT(hci_read_dev_class_sync),
3534 /* HCI_OP_READ_LOCAL_NAME */
3535 HCI_INIT(hci_read_local_name_sync),
3536 /* HCI_OP_READ_VOICE_SETTING */
3537 HCI_INIT(hci_read_voice_setting_sync),
3538 /* HCI_OP_READ_NUM_SUPPORTED_IAC */
3539 HCI_INIT(hci_read_num_supported_iac_sync),
3540 /* HCI_OP_READ_CURRENT_IAC_LAP */
3541 HCI_INIT(hci_read_current_iac_lap_sync),
3542 /* HCI_OP_SET_EVENT_FLT */
3543 HCI_INIT(hci_clear_event_filter_sync),
3544 /* HCI_OP_WRITE_CA_TIMEOUT */
3545 HCI_INIT(hci_write_ca_timeout_sync),
3546 {}
3547 };
3548
3549 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3550 {
3551 u8 mode = 0x01;
3552
3553 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3554 return 0;
3555
3556 /* When SSP is available, then the host features page
3557 * should also be available as well. However some
3558 * controllers list the max_page as 0 as long as SSP
3559 * has not been enabled. To achieve proper debugging
3560 * output, force the minimum max_page to 1 at least.
3561 */
3562 hdev->max_page = 0x01;
3563
3564 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3565 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3566 }
3567
3568 static int hci_write_eir_sync(struct hci_dev *hdev)
3569 {
3570 struct hci_cp_write_eir cp;
3571
3572 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3573 return 0;
3574
3575 memset(hdev->eir, 0, sizeof(hdev->eir));
3576 memset(&cp, 0, sizeof(cp));
3577
3578 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3579 HCI_CMD_TIMEOUT);
3580 }
3581
3582 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3583 {
3584 u8 mode;
3585
3586 if (!lmp_inq_rssi_capable(hdev) &&
3587 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3588 return 0;
3589
3590 /* If Extended Inquiry Result events are supported, then
3591 * they are clearly preferred over Inquiry Result with RSSI
3592 * events.
3593 */
3594 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3595
3596 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3597 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3598 }
3599
3600 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3601 {
3602 if (!lmp_inq_tx_pwr_capable(hdev))
3603 return 0;
3604
3605 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3606 0, NULL, HCI_CMD_TIMEOUT);
3607 }
3608
3609 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3610 {
3611 struct hci_cp_read_local_ext_features cp;
3612
3613 if (!lmp_ext_feat_capable(hdev))
3614 return 0;
3615
3616 memset(&cp, 0, sizeof(cp));
3617 cp.page = page;
3618
3619 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3620 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3621 }
3622
3623 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3624 {
3625 return hci_read_local_ext_features_sync(hdev, 0x01);
3626 }
3627
3628 /* HCI Controller init stage 2 command sequence */
3629 static const struct hci_init_stage hci_init2[] = {
3630 /* HCI_OP_READ_LOCAL_COMMANDS */
3631 HCI_INIT(hci_read_local_cmds_sync),
3632 /* HCI_OP_WRITE_SSP_MODE */
3633 HCI_INIT(hci_write_ssp_mode_1_sync),
3634 /* HCI_OP_WRITE_EIR */
3635 HCI_INIT(hci_write_eir_sync),
3636 /* HCI_OP_WRITE_INQUIRY_MODE */
3637 HCI_INIT(hci_write_inquiry_mode_sync),
3638 /* HCI_OP_READ_INQ_RSP_TX_POWER */
3639 HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3640 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
3641 HCI_INIT(hci_read_local_ext_features_1_sync),
3642 /* HCI_OP_WRITE_AUTH_ENABLE */
3643 HCI_INIT(hci_write_auth_enable_sync),
3644 {}
3645 };
3646
3647 /* Read LE Buffer Size */
3648 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3649 {
3650 /* Use Read LE Buffer Size V2 if supported */
3651 if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3652 return __hci_cmd_sync_status(hdev,
3653 HCI_OP_LE_READ_BUFFER_SIZE_V2,
3654 0, NULL, HCI_CMD_TIMEOUT);
3655
3656 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3657 0, NULL, HCI_CMD_TIMEOUT);
3658 }
3659
3660 /* Read LE Local Supported Features */
3661 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3662 {
3663 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3664 0, NULL, HCI_CMD_TIMEOUT);
3665 }
3666
3667 /* Read LE Supported States */
3668 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3669 {
3670 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3671 0, NULL, HCI_CMD_TIMEOUT);
3672 }
3673
3674 /* LE Controller init stage 2 command sequence */
3675 static const struct hci_init_stage le_init2[] = {
3676 /* HCI_OP_LE_READ_LOCAL_FEATURES */
3677 HCI_INIT(hci_le_read_local_features_sync),
3678 /* HCI_OP_LE_READ_BUFFER_SIZE */
3679 HCI_INIT(hci_le_read_buffer_size_sync),
3680 /* HCI_OP_LE_READ_SUPPORTED_STATES */
3681 HCI_INIT(hci_le_read_supported_states_sync),
3682 {}
3683 };
3684
3685 static int hci_init2_sync(struct hci_dev *hdev)
3686 {
3687 int err;
3688
3689 bt_dev_dbg(hdev, "");
3690
3691 if (hdev->dev_type == HCI_AMP)
3692 return hci_init_stage_sync(hdev, amp_init2);
3693
3694 err = hci_init_stage_sync(hdev, hci_init2);
3695 if (err)
3696 return err;
3697
3698 if (lmp_bredr_capable(hdev)) {
3699 err = hci_init_stage_sync(hdev, br_init2);
3700 if (err)
3701 return err;
3702 } else {
3703 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3704 }
3705
3706 if (lmp_le_capable(hdev)) {
3707 err = hci_init_stage_sync(hdev, le_init2);
3708 if (err)
3709 return err;
3710 /* LE-only controllers have LE implicitly enabled */
3711 if (!lmp_bredr_capable(hdev))
3712 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3713 }
3714
3715 return 0;
3716 }
3717
3718 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3719 {
3720 /* The second byte is 0xff instead of 0x9f (two reserved bits
3721 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3722 * command otherwise.
3723 */
3724 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3725
3726 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
3727 * any event mask for pre 1.2 devices.
3728 */
3729 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3730 return 0;
3731
3732 if (lmp_bredr_capable(hdev)) {
3733 events[4] |= 0x01; /* Flow Specification Complete */
3734
3735 /* Don't set Disconnect Complete and mode change when
3736 * suspended as that would wakeup the host when disconnecting
3737 * due to suspend.
3738 */
3739 if (hdev->suspended) {
3740 events[0] &= 0xef;
3741 events[2] &= 0xf7;
3742 }
3743 } else {
3744 /* Use a different default for LE-only devices */
3745 memset(events, 0, sizeof(events));
3746 events[1] |= 0x20; /* Command Complete */
3747 events[1] |= 0x40; /* Command Status */
3748 events[1] |= 0x80; /* Hardware Error */
3749
3750 /* If the controller supports the Disconnect command, enable
3751 * the corresponding event. In addition enable packet flow
3752 * control related events.
3753 */
3754 if (hdev->commands[0] & 0x20) {
3755 /* Don't set Disconnect Complete when suspended as that
3756 * would wakeup the host when disconnecting due to
3757 * suspend.
3758 */
3759 if (!hdev->suspended)
3760 events[0] |= 0x10; /* Disconnection Complete */
3761 events[2] |= 0x04; /* Number of Completed Packets */
3762 events[3] |= 0x02; /* Data Buffer Overflow */
3763 }
3764
3765 /* If the controller supports the Read Remote Version
3766 * Information command, enable the corresponding event.
3767 */
3768 if (hdev->commands[2] & 0x80)
3769 events[1] |= 0x08; /* Read Remote Version Information
3770 * Complete
3771 */
3772
3773 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3774 events[0] |= 0x80; /* Encryption Change */
3775 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3776 }
3777 }
3778
3779 if (lmp_inq_rssi_capable(hdev) ||
3780 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3781 events[4] |= 0x02; /* Inquiry Result with RSSI */
3782
3783 if (lmp_ext_feat_capable(hdev))
3784 events[4] |= 0x04; /* Read Remote Extended Features Complete */
3785
3786 if (lmp_esco_capable(hdev)) {
3787 events[5] |= 0x08; /* Synchronous Connection Complete */
3788 events[5] |= 0x10; /* Synchronous Connection Changed */
3789 }
3790
3791 if (lmp_sniffsubr_capable(hdev))
3792 events[5] |= 0x20; /* Sniff Subrating */
3793
3794 if (lmp_pause_enc_capable(hdev))
3795 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3796
3797 if (lmp_ext_inq_capable(hdev))
3798 events[5] |= 0x40; /* Extended Inquiry Result */
3799
3800 if (lmp_no_flush_capable(hdev))
3801 events[7] |= 0x01; /* Enhanced Flush Complete */
3802
3803 if (lmp_lsto_capable(hdev))
3804 events[6] |= 0x80; /* Link Supervision Timeout Changed */
3805
3806 if (lmp_ssp_capable(hdev)) {
3807 events[6] |= 0x01; /* IO Capability Request */
3808 events[6] |= 0x02; /* IO Capability Response */
3809 events[6] |= 0x04; /* User Confirmation Request */
3810 events[6] |= 0x08; /* User Passkey Request */
3811 events[6] |= 0x10; /* Remote OOB Data Request */
3812 events[6] |= 0x20; /* Simple Pairing Complete */
3813 events[7] |= 0x04; /* User Passkey Notification */
3814 events[7] |= 0x08; /* Keypress Notification */
3815 events[7] |= 0x10; /* Remote Host Supported
3816 * Features Notification
3817 */
3818 }
3819
3820 if (lmp_le_capable(hdev))
3821 events[7] |= 0x20; /* LE Meta-Event */
3822
3823 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3824 sizeof(events), events, HCI_CMD_TIMEOUT);
3825 }
3826
3827 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3828 {
3829 struct hci_cp_read_stored_link_key cp;
3830
3831 if (!(hdev->commands[6] & 0x20) ||
3832 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3833 return 0;
3834
3835 memset(&cp, 0, sizeof(cp));
3836 bacpy(&cp.bdaddr, BDADDR_ANY);
3837 cp.read_all = 0x01;
3838
3839 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3840 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3841 }
3842
3843 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3844 {
3845 struct hci_cp_write_def_link_policy cp;
3846 u16 link_policy = 0;
3847
3848 if (!(hdev->commands[5] & 0x10))
3849 return 0;
3850
3851 memset(&cp, 0, sizeof(cp));
3852
3853 if (lmp_rswitch_capable(hdev))
3854 link_policy |= HCI_LP_RSWITCH;
3855 if (lmp_hold_capable(hdev))
3856 link_policy |= HCI_LP_HOLD;
3857 if (lmp_sniff_capable(hdev))
3858 link_policy |= HCI_LP_SNIFF;
3859 if (lmp_park_capable(hdev))
3860 link_policy |= HCI_LP_PARK;
3861
3862 cp.policy = cpu_to_le16(link_policy);
3863
3864 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3865 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3866 }
3867
3868 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3869 {
3870 if (!(hdev->commands[8] & 0x01))
3871 return 0;
3872
3873 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3874 0, NULL, HCI_CMD_TIMEOUT);
3875 }
3876
3877 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3878 {
3879 if (!(hdev->commands[18] & 0x04) ||
3880 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3881 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3882 return 0;
3883
3884 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3885 0, NULL, HCI_CMD_TIMEOUT);
3886 }
3887
3888 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3889 {
3890 /* Some older Broadcom based Bluetooth 1.2 controllers do not
3891 * support the Read Page Scan Type command. Check support for
3892 * this command in the bit mask of supported commands.
3893 */
3894 if (!(hdev->commands[13] & 0x01))
3895 return 0;
3896
3897 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3898 0, NULL, HCI_CMD_TIMEOUT);
3899 }
3900
3901 /* Read features beyond page 1 if available */
3902 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3903 {
3904 u8 page;
3905 int err;
3906
3907 if (!lmp_ext_feat_capable(hdev))
3908 return 0;
3909
3910 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3911 page++) {
3912 err = hci_read_local_ext_features_sync(hdev, page);
3913 if (err)
3914 return err;
3915 }
3916
3917 return 0;
3918 }
3919
3920 /* HCI Controller init stage 3 command sequence */
3921 static const struct hci_init_stage hci_init3[] = {
3922 /* HCI_OP_SET_EVENT_MASK */
3923 HCI_INIT(hci_set_event_mask_sync),
3924 /* HCI_OP_READ_STORED_LINK_KEY */
3925 HCI_INIT(hci_read_stored_link_key_sync),
3926 /* HCI_OP_WRITE_DEF_LINK_POLICY */
3927 HCI_INIT(hci_setup_link_policy_sync),
3928 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3929 HCI_INIT(hci_read_page_scan_activity_sync),
3930 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3931 HCI_INIT(hci_read_def_err_data_reporting_sync),
3932 /* HCI_OP_READ_PAGE_SCAN_TYPE */
3933 HCI_INIT(hci_read_page_scan_type_sync),
3934 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
3935 HCI_INIT(hci_read_local_ext_features_all_sync),
3936 {}
3937 };
3938
3939 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3940 {
3941 u8 events[8];
3942
3943 if (!lmp_le_capable(hdev))
3944 return 0;
3945
3946 memset(events, 0, sizeof(events));
3947
3948 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3949 events[0] |= 0x10; /* LE Long Term Key Request */
3950
3951 /* If controller supports the Connection Parameters Request
3952 * Link Layer Procedure, enable the corresponding event.
3953 */
3954 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3955 /* LE Remote Connection Parameter Request */
3956 events[0] |= 0x20;
3957
3958 /* If the controller supports the Data Length Extension
3959 * feature, enable the corresponding event.
3960 */
3961 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3962 events[0] |= 0x40; /* LE Data Length Change */
3963
3964 /* If the controller supports LL Privacy feature or LE Extended Adv,
3965 * enable the corresponding event.
3966 */
3967 if (use_enhanced_conn_complete(hdev))
3968 events[1] |= 0x02; /* LE Enhanced Connection Complete */
3969
3970 /* If the controller supports Extended Scanner Filter
3971 * Policies, enable the corresponding event.
3972 */
3973 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3974 events[1] |= 0x04; /* LE Direct Advertising Report */
3975
3976 /* If the controller supports Channel Selection Algorithm #2
3977 * feature, enable the corresponding event.
3978 */
3979 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3980 events[2] |= 0x08; /* LE Channel Selection Algorithm */
3981
3982 /* If the controller supports the LE Set Scan Enable command,
3983 * enable the corresponding advertising report event.
3984 */
3985 if (hdev->commands[26] & 0x08)
3986 events[0] |= 0x02; /* LE Advertising Report */
3987
3988 /* If the controller supports the LE Create Connection
3989 * command, enable the corresponding event.
3990 */
3991 if (hdev->commands[26] & 0x10)
3992 events[0] |= 0x01; /* LE Connection Complete */
3993
3994 /* If the controller supports the LE Connection Update
3995 * command, enable the corresponding event.
3996 */
3997 if (hdev->commands[27] & 0x04)
3998 events[0] |= 0x04; /* LE Connection Update Complete */
3999
4000 /* If the controller supports the LE Read Remote Used Features
4001 * command, enable the corresponding event.
4002 */
4003 if (hdev->commands[27] & 0x20)
4004 /* LE Read Remote Used Features Complete */
4005 events[0] |= 0x08;
4006
4007 /* If the controller supports the LE Read Local P-256
4008 * Public Key command, enable the corresponding event.
4009 */
4010 if (hdev->commands[34] & 0x02)
4011 /* LE Read Local P-256 Public Key Complete */
4012 events[0] |= 0x80;
4013
4014 /* If the controller supports the LE Generate DHKey
4015 * command, enable the corresponding event.
4016 */
4017 if (hdev->commands[34] & 0x04)
4018 events[1] |= 0x01; /* LE Generate DHKey Complete */
4019
4020 /* If the controller supports the LE Set Default PHY or
4021 * LE Set PHY commands, enable the corresponding event.
4022 */
4023 if (hdev->commands[35] & (0x20 | 0x40))
4024 events[1] |= 0x08; /* LE PHY Update Complete */
4025
4026 /* If the controller supports LE Set Extended Scan Parameters
4027 * and LE Set Extended Scan Enable commands, enable the
4028 * corresponding event.
4029 */
4030 if (use_ext_scan(hdev))
4031 events[1] |= 0x10; /* LE Extended Advertising Report */
4032
4033 /* If the controller supports the LE Extended Advertising
4034 * command, enable the corresponding event.
4035 */
4036 if (ext_adv_capable(hdev))
4037 events[2] |= 0x02; /* LE Advertising Set Terminated */
4038
4039 if (cis_capable(hdev)) {
4040 events[3] |= 0x01; /* LE CIS Established */
4041 if (cis_peripheral_capable(hdev))
4042 events[3] |= 0x02; /* LE CIS Request */
4043 }
4044
4045 if (bis_capable(hdev)) {
4046 events[1] |= 0x20; /* LE PA Report */
4047 events[1] |= 0x40; /* LE PA Sync Established */
4048 events[3] |= 0x04; /* LE Create BIG Complete */
4049 events[3] |= 0x08; /* LE Terminate BIG Complete */
4050 events[3] |= 0x10; /* LE BIG Sync Established */
4051 events[3] |= 0x20; /* LE BIG Sync Loss */
4052 events[4] |= 0x02; /* LE BIG Info Advertising Report */
4053 }
4054
4055 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4056 sizeof(events), events, HCI_CMD_TIMEOUT);
4057 }
4058
4059 /* Read LE Advertising Channel TX Power */
4060 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4061 {
4062 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4063 /* HCI TS spec forbids mixing of legacy and extended
4064 * advertising commands wherein READ_ADV_TX_POWER is
4065 * also included. So do not call it if extended adv
4066 * is supported otherwise controller will return
4067 * COMMAND_DISALLOWED for extended commands.
4068 */
4069 return __hci_cmd_sync_status(hdev,
4070 HCI_OP_LE_READ_ADV_TX_POWER,
4071 0, NULL, HCI_CMD_TIMEOUT);
4072 }
4073
4074 return 0;
4075 }
4076
4077 /* Read LE Min/Max Tx Power*/
4078 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4079 {
4080 if (!(hdev->commands[38] & 0x80) ||
4081 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4082 return 0;
4083
4084 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4085 0, NULL, HCI_CMD_TIMEOUT);
4086 }
4087
4088 /* Read LE Accept List Size */
4089 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4090 {
4091 if (!(hdev->commands[26] & 0x40))
4092 return 0;
4093
4094 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4095 0, NULL, HCI_CMD_TIMEOUT);
4096 }
4097
4098 /* Clear LE Accept List */
4099 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4100 {
4101 if (!(hdev->commands[26] & 0x80))
4102 return 0;
4103
4104 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4105 HCI_CMD_TIMEOUT);
4106 }
4107
4108 /* Read LE Resolving List Size */
4109 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4110 {
4111 if (!(hdev->commands[34] & 0x40))
4112 return 0;
4113
4114 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4115 0, NULL, HCI_CMD_TIMEOUT);
4116 }
4117
4118 /* Clear LE Resolving List */
4119 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4120 {
4121 if (!(hdev->commands[34] & 0x20))
4122 return 0;
4123
4124 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4125 HCI_CMD_TIMEOUT);
4126 }
4127
4128 /* Set RPA timeout */
4129 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4130 {
4131 __le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4132
4133 if (!(hdev->commands[35] & 0x04) ||
4134 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4135 return 0;
4136
4137 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4138 sizeof(timeout), &timeout,
4139 HCI_CMD_TIMEOUT);
4140 }
4141
4142 /* Read LE Maximum Data Length */
4143 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4144 {
4145 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4146 return 0;
4147
4148 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4149 HCI_CMD_TIMEOUT);
4150 }
4151
4152 /* Read LE Suggested Default Data Length */
4153 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4154 {
4155 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4156 return 0;
4157
4158 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4159 HCI_CMD_TIMEOUT);
4160 }
4161
4162 /* Read LE Number of Supported Advertising Sets */
4163 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4164 {
4165 if (!ext_adv_capable(hdev))
4166 return 0;
4167
4168 return __hci_cmd_sync_status(hdev,
4169 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4170 0, NULL, HCI_CMD_TIMEOUT);
4171 }
4172
4173 /* Write LE Host Supported */
4174 static int hci_set_le_support_sync(struct hci_dev *hdev)
4175 {
4176 struct hci_cp_write_le_host_supported cp;
4177
4178 /* LE-only devices do not support explicit enablement */
4179 if (!lmp_bredr_capable(hdev))
4180 return 0;
4181
4182 memset(&cp, 0, sizeof(cp));
4183
4184 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4185 cp.le = 0x01;
4186 cp.simul = 0x00;
4187 }
4188
4189 if (cp.le == lmp_host_le_capable(hdev))
4190 return 0;
4191
4192 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4193 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4194 }
4195
4196 /* LE Set Host Feature */
4197 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4198 {
4199 struct hci_cp_le_set_host_feature cp;
4200
4201 if (!cis_capable(hdev))
4202 return 0;
4203
4204 memset(&cp, 0, sizeof(cp));
4205
4206 /* Connected Isochronous Channels (Host Support) */
4207 cp.bit_number = 32;
4208 cp.bit_value = 1;
4209
4210 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4211 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4212 }
4213
4214 /* LE Controller init stage 3 command sequence */
4215 static const struct hci_init_stage le_init3[] = {
4216 /* HCI_OP_LE_SET_EVENT_MASK */
4217 HCI_INIT(hci_le_set_event_mask_sync),
4218 /* HCI_OP_LE_READ_ADV_TX_POWER */
4219 HCI_INIT(hci_le_read_adv_tx_power_sync),
4220 /* HCI_OP_LE_READ_TRANSMIT_POWER */
4221 HCI_INIT(hci_le_read_tx_power_sync),
4222 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4223 HCI_INIT(hci_le_read_accept_list_size_sync),
4224 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4225 HCI_INIT(hci_le_clear_accept_list_sync),
4226 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4227 HCI_INIT(hci_le_read_resolv_list_size_sync),
4228 /* HCI_OP_LE_CLEAR_RESOLV_LIST */
4229 HCI_INIT(hci_le_clear_resolv_list_sync),
4230 /* HCI_OP_LE_SET_RPA_TIMEOUT */
4231 HCI_INIT(hci_le_set_rpa_timeout_sync),
4232 /* HCI_OP_LE_READ_MAX_DATA_LEN */
4233 HCI_INIT(hci_le_read_max_data_len_sync),
4234 /* HCI_OP_LE_READ_DEF_DATA_LEN */
4235 HCI_INIT(hci_le_read_def_data_len_sync),
4236 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4237 HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4238 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4239 HCI_INIT(hci_set_le_support_sync),
4240 /* HCI_OP_LE_SET_HOST_FEATURE */
4241 HCI_INIT(hci_le_set_host_feature_sync),
4242 {}
4243 };
4244
4245 static int hci_init3_sync(struct hci_dev *hdev)
4246 {
4247 int err;
4248
4249 bt_dev_dbg(hdev, "");
4250
4251 err = hci_init_stage_sync(hdev, hci_init3);
4252 if (err)
4253 return err;
4254
4255 if (lmp_le_capable(hdev))
4256 return hci_init_stage_sync(hdev, le_init3);
4257
4258 return 0;
4259 }
4260
4261 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4262 {
4263 struct hci_cp_delete_stored_link_key cp;
4264
4265 /* Some Broadcom based Bluetooth controllers do not support the
4266 * Delete Stored Link Key command. They are clearly indicating its
4267 * absence in the bit mask of supported commands.
4268 *
4269 * Check the supported commands and only if the command is marked
4270 * as supported send it. If not supported assume that the controller
4271 * does not have actual support for stored link keys which makes this
4272 * command redundant anyway.
4273 *
4274 * Some controllers indicate that they support handling deleting
4275 * stored link keys, but they don't. The quirk lets a driver
4276 * just disable this command.
4277 */
4278 if (!(hdev->commands[6] & 0x80) ||
4279 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4280 return 0;
4281
4282 memset(&cp, 0, sizeof(cp));
4283 bacpy(&cp.bdaddr, BDADDR_ANY);
4284 cp.delete_all = 0x01;
4285
4286 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4287 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4288 }
4289
4290 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4291 {
4292 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4293 bool changed = false;
4294
4295 /* Set event mask page 2 if the HCI command for it is supported */
4296 if (!(hdev->commands[22] & 0x04))
4297 return 0;
4298
4299 /* If Connectionless Peripheral Broadcast central role is supported
4300 * enable all necessary events for it.
4301 */
4302 if (lmp_cpb_central_capable(hdev)) {
4303 events[1] |= 0x40; /* Triggered Clock Capture */
4304 events[1] |= 0x80; /* Synchronization Train Complete */
4305 events[2] |= 0x08; /* Truncated Page Complete */
4306 events[2] |= 0x20; /* CPB Channel Map Change */
4307 changed = true;
4308 }
4309
4310 /* If Connectionless Peripheral Broadcast peripheral role is supported
4311 * enable all necessary events for it.
4312 */
4313 if (lmp_cpb_peripheral_capable(hdev)) {
4314 events[2] |= 0x01; /* Synchronization Train Received */
4315 events[2] |= 0x02; /* CPB Receive */
4316 events[2] |= 0x04; /* CPB Timeout */
4317 events[2] |= 0x10; /* Peripheral Page Response Timeout */
4318 changed = true;
4319 }
4320
4321 /* Enable Authenticated Payload Timeout Expired event if supported */
4322 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4323 events[2] |= 0x80;
4324 changed = true;
4325 }
4326
4327 /* Some Broadcom based controllers indicate support for Set Event
4328 * Mask Page 2 command, but then actually do not support it. Since
4329 * the default value is all bits set to zero, the command is only
4330 * required if the event mask has to be changed. In case no change
4331 * to the event mask is needed, skip this command.
4332 */
4333 if (!changed)
4334 return 0;
4335
4336 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4337 sizeof(events), events, HCI_CMD_TIMEOUT);
4338 }
4339
4340 /* Read local codec list if the HCI command is supported */
4341 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4342 {
4343 if (hdev->commands[45] & 0x04)
4344 hci_read_supported_codecs_v2(hdev);
4345 else if (hdev->commands[29] & 0x20)
4346 hci_read_supported_codecs(hdev);
4347
4348 return 0;
4349 }
4350
4351 /* Read local pairing options if the HCI command is supported */
4352 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4353 {
4354 if (!(hdev->commands[41] & 0x08))
4355 return 0;
4356
4357 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4358 0, NULL, HCI_CMD_TIMEOUT);
4359 }
4360
4361 /* Get MWS transport configuration if the HCI command is supported */
4362 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4363 {
4364 if (!mws_transport_config_capable(hdev))
4365 return 0;
4366
4367 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4368 0, NULL, HCI_CMD_TIMEOUT);
4369 }
4370
4371 /* Check for Synchronization Train support */
4372 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4373 {
4374 if (!lmp_sync_train_capable(hdev))
4375 return 0;
4376
4377 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4378 0, NULL, HCI_CMD_TIMEOUT);
4379 }
4380
4381 /* Enable Secure Connections if supported and configured */
4382 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4383 {
4384 u8 support = 0x01;
4385
4386 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4387 !bredr_sc_enabled(hdev))
4388 return 0;
4389
4390 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4391 sizeof(support), &support,
4392 HCI_CMD_TIMEOUT);
4393 }
4394
4395 /* Set erroneous data reporting if supported to the wideband speech
4396 * setting value
4397 */
4398 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4399 {
4400 struct hci_cp_write_def_err_data_reporting cp;
4401 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4402
4403 if (!(hdev->commands[18] & 0x08) ||
4404 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4405 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4406 return 0;
4407
4408 if (enabled == hdev->err_data_reporting)
4409 return 0;
4410
4411 memset(&cp, 0, sizeof(cp));
4412 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4413 ERR_DATA_REPORTING_DISABLED;
4414
4415 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4416 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4417 }
4418
4419 static const struct hci_init_stage hci_init4[] = {
4420 /* HCI_OP_DELETE_STORED_LINK_KEY */
4421 HCI_INIT(hci_delete_stored_link_key_sync),
4422 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4423 HCI_INIT(hci_set_event_mask_page_2_sync),
4424 /* HCI_OP_READ_LOCAL_CODECS */
4425 HCI_INIT(hci_read_local_codecs_sync),
4426 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4427 HCI_INIT(hci_read_local_pairing_opts_sync),
4428 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4429 HCI_INIT(hci_get_mws_transport_config_sync),
4430 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4431 HCI_INIT(hci_read_sync_train_params_sync),
4432 /* HCI_OP_WRITE_SC_SUPPORT */
4433 HCI_INIT(hci_write_sc_support_1_sync),
4434 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4435 HCI_INIT(hci_set_err_data_report_sync),
4436 {}
4437 };
4438
4439 /* Set Suggested Default Data Length to maximum if supported */
4440 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4441 {
4442 struct hci_cp_le_write_def_data_len cp;
4443
4444 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4445 return 0;
4446
4447 memset(&cp, 0, sizeof(cp));
4448 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4449 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4450
4451 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4452 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4453 }
4454
4455 /* Set Default PHY parameters if command is supported, enables all supported
4456 * PHYs according to the LE Features bits.
4457 */
4458 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4459 {
4460 struct hci_cp_le_set_default_phy cp;
4461
4462 if (!(hdev->commands[35] & 0x20)) {
4463 /* If the command is not supported it means only 1M PHY is
4464 * supported.
4465 */
4466 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4467 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4468 return 0;
4469 }
4470
4471 memset(&cp, 0, sizeof(cp));
4472 cp.all_phys = 0x00;
4473 cp.tx_phys = HCI_LE_SET_PHY_1M;
4474 cp.rx_phys = HCI_LE_SET_PHY_1M;
4475
4476 /* Enables 2M PHY if supported */
4477 if (le_2m_capable(hdev)) {
4478 cp.tx_phys |= HCI_LE_SET_PHY_2M;
4479 cp.rx_phys |= HCI_LE_SET_PHY_2M;
4480 }
4481
4482 /* Enables Coded PHY if supported */
4483 if (le_coded_capable(hdev)) {
4484 cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4485 cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4486 }
4487
4488 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4489 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4490 }
4491
4492 static const struct hci_init_stage le_init4[] = {
4493 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4494 HCI_INIT(hci_le_set_write_def_data_len_sync),
4495 /* HCI_OP_LE_SET_DEFAULT_PHY */
4496 HCI_INIT(hci_le_set_default_phy_sync),
4497 {}
4498 };
4499
4500 static int hci_init4_sync(struct hci_dev *hdev)
4501 {
4502 int err;
4503
4504 bt_dev_dbg(hdev, "");
4505
4506 err = hci_init_stage_sync(hdev, hci_init4);
4507 if (err)
4508 return err;
4509
4510 if (lmp_le_capable(hdev))
4511 return hci_init_stage_sync(hdev, le_init4);
4512
4513 return 0;
4514 }
4515
4516 static int hci_init_sync(struct hci_dev *hdev)
4517 {
4518 int err;
4519
4520 err = hci_init1_sync(hdev);
4521 if (err < 0)
4522 return err;
4523
4524 if (hci_dev_test_flag(hdev, HCI_SETUP))
4525 hci_debugfs_create_basic(hdev);
4526
4527 err = hci_init2_sync(hdev);
4528 if (err < 0)
4529 return err;
4530
4531 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4532 * BR/EDR/LE type controllers. AMP controllers only need the
4533 * first two stages of init.
4534 */
4535 if (hdev->dev_type != HCI_PRIMARY)
4536 return 0;
4537
4538 err = hci_init3_sync(hdev);
4539 if (err < 0)
4540 return err;
4541
4542 err = hci_init4_sync(hdev);
4543 if (err < 0)
4544 return err;
4545
4546 /* This function is only called when the controller is actually in
4547 * configured state. When the controller is marked as unconfigured,
4548 * this initialization procedure is not run.
4549 *
4550 * It means that it is possible that a controller runs through its
4551 * setup phase and then discovers missing settings. If that is the
4552 * case, then this function will not be called. It then will only
4553 * be called during the config phase.
4554 *
4555 * So only when in setup phase or config phase, create the debugfs
4556 * entries and register the SMP channels.
4557 */
4558 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4559 !hci_dev_test_flag(hdev, HCI_CONFIG))
4560 return 0;
4561
4562 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4563 return 0;
4564
4565 hci_debugfs_create_common(hdev);
4566
4567 if (lmp_bredr_capable(hdev))
4568 hci_debugfs_create_bredr(hdev);
4569
4570 if (lmp_le_capable(hdev))
4571 hci_debugfs_create_le(hdev);
4572
4573 return 0;
4574 }
4575
4576 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4577
4578 static const struct {
4579 unsigned long quirk;
4580 const char *desc;
4581 } hci_broken_table[] = {
4582 HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4583 "HCI Read Local Supported Commands not supported"),
4584 HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4585 "HCI Delete Stored Link Key command is advertised, "
4586 "but not supported."),
4587 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4588 "HCI Read Default Erroneous Data Reporting command is "
4589 "advertised, but not supported."),
4590 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4591 "HCI Read Transmit Power Level command is advertised, "
4592 "but not supported."),
4593 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4594 "HCI Set Event Filter command not supported."),
4595 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4596 "HCI Enhanced Setup Synchronous Connection command is "
4597 "advertised, but not supported."),
4598 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4599 "HCI LE Set Random Private Address Timeout command is "
4600 "advertised, but not supported."),
4601 HCI_QUIRK_BROKEN(LE_CODED,
4602 "HCI LE Coded PHY feature bit is set, "
4603 "but its usage is not supported.")
4604 };
4605
4606 /* This function handles hdev setup stage:
4607 *
4608 * Calls hdev->setup
4609 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4610 */
4611 static int hci_dev_setup_sync(struct hci_dev *hdev)
4612 {
4613 int ret = 0;
4614 bool invalid_bdaddr;
4615 size_t i;
4616
4617 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4618 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4619 return 0;
4620
4621 bt_dev_dbg(hdev, "");
4622
4623 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4624
4625 if (hdev->setup)
4626 ret = hdev->setup(hdev);
4627
4628 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4629 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4630 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4631 }
4632
4633 /* The transport driver can set the quirk to mark the
4634 * BD_ADDR invalid before creating the HCI device or in
4635 * its setup callback.
4636 */
4637 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4638 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4639 if (!ret) {
4640 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4641 !bacmp(&hdev->public_addr, BDADDR_ANY))
4642 hci_dev_get_bd_addr_from_property(hdev);
4643
4644 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4645 hdev->set_bdaddr) {
4646 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4647 if (!ret)
4648 invalid_bdaddr = false;
4649 }
4650 }
4651
4652 /* The transport driver can set these quirks before
4653 * creating the HCI device or in its setup callback.
4654 *
4655 * For the invalid BD_ADDR quirk it is possible that
4656 * it becomes a valid address if the bootloader does
4657 * provide it (see above).
4658 *
4659 * In case any of them is set, the controller has to
4660 * start up as unconfigured.
4661 */
4662 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4663 invalid_bdaddr)
4664 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4665
4666 /* For an unconfigured controller it is required to
4667 * read at least the version information provided by
4668 * the Read Local Version Information command.
4669 *
4670 * If the set_bdaddr driver callback is provided, then
4671 * also the original Bluetooth public device address
4672 * will be read using the Read BD Address command.
4673 */
4674 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4675 return hci_unconf_init_sync(hdev);
4676
4677 return ret;
4678 }
4679
4680 /* This function handles hdev init stage:
4681 *
4682 * Calls hci_dev_setup_sync to perform setup stage
4683 * Calls hci_init_sync to perform HCI command init sequence
4684 */
4685 static int hci_dev_init_sync(struct hci_dev *hdev)
4686 {
4687 int ret;
4688
4689 bt_dev_dbg(hdev, "");
4690
4691 atomic_set(&hdev->cmd_cnt, 1);
4692 set_bit(HCI_INIT, &hdev->flags);
4693
4694 ret = hci_dev_setup_sync(hdev);
4695
4696 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4697 /* If public address change is configured, ensure that
4698 * the address gets programmed. If the driver does not
4699 * support changing the public address, fail the power
4700 * on procedure.
4701 */
4702 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4703 hdev->set_bdaddr)
4704 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4705 else
4706 ret = -EADDRNOTAVAIL;
4707 }
4708
4709 if (!ret) {
4710 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4711 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4712 ret = hci_init_sync(hdev);
4713 if (!ret && hdev->post_init)
4714 ret = hdev->post_init(hdev);
4715 }
4716 }
4717
4718 /* If the HCI Reset command is clearing all diagnostic settings,
4719 * then they need to be reprogrammed after the init procedure
4720 * completed.
4721 */
4722 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4723 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4724 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4725 ret = hdev->set_diag(hdev, true);
4726
4727 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4728 msft_do_open(hdev);
4729 aosp_do_open(hdev);
4730 }
4731
4732 clear_bit(HCI_INIT, &hdev->flags);
4733
4734 return ret;
4735 }
4736
4737 int hci_dev_open_sync(struct hci_dev *hdev)
4738 {
4739 int ret;
4740
4741 bt_dev_dbg(hdev, "");
4742
4743 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4744 ret = -ENODEV;
4745 goto done;
4746 }
4747
4748 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4749 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4750 /* Check for rfkill but allow the HCI setup stage to
4751 * proceed (which in itself doesn't cause any RF activity).
4752 */
4753 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4754 ret = -ERFKILL;
4755 goto done;
4756 }
4757
4758 /* Check for valid public address or a configured static
4759 * random address, but let the HCI setup proceed to
4760 * be able to determine if there is a public address
4761 * or not.
4762 *
4763 * In case of user channel usage, it is not important
4764 * if a public address or static random address is
4765 * available.
4766 *
4767 * This check is only valid for BR/EDR controllers
4768 * since AMP controllers do not have an address.
4769 */
4770 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4771 hdev->dev_type == HCI_PRIMARY &&
4772 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4773 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4774 ret = -EADDRNOTAVAIL;
4775 goto done;
4776 }
4777 }
4778
4779 if (test_bit(HCI_UP, &hdev->flags)) {
4780 ret = -EALREADY;
4781 goto done;
4782 }
4783
4784 if (hdev->open(hdev)) {
4785 ret = -EIO;
4786 goto done;
4787 }
4788
4789 hci_devcd_reset(hdev);
4790
4791 set_bit(HCI_RUNNING, &hdev->flags);
4792 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4793
4794 ret = hci_dev_init_sync(hdev);
4795 if (!ret) {
4796 hci_dev_hold(hdev);
4797 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4798 hci_adv_instances_set_rpa_expired(hdev, true);
4799 set_bit(HCI_UP, &hdev->flags);
4800 hci_sock_dev_event(hdev, HCI_DEV_UP);
4801 hci_leds_update_powered(hdev, true);
4802 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4803 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4804 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4805 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4806 hci_dev_test_flag(hdev, HCI_MGMT) &&
4807 hdev->dev_type == HCI_PRIMARY) {
4808 ret = hci_powered_update_sync(hdev);
4809 mgmt_power_on(hdev, ret);
4810 }
4811 } else {
4812 /* Init failed, cleanup */
4813 flush_work(&hdev->tx_work);
4814
4815 /* Since hci_rx_work() is possible to awake new cmd_work
4816 * it should be flushed first to avoid unexpected call of
4817 * hci_cmd_work()
4818 */
4819 flush_work(&hdev->rx_work);
4820 flush_work(&hdev->cmd_work);
4821
4822 skb_queue_purge(&hdev->cmd_q);
4823 skb_queue_purge(&hdev->rx_q);
4824
4825 if (hdev->flush)
4826 hdev->flush(hdev);
4827
4828 if (hdev->sent_cmd) {
4829 cancel_delayed_work_sync(&hdev->cmd_timer);
4830 kfree_skb(hdev->sent_cmd);
4831 hdev->sent_cmd = NULL;
4832 }
4833
4834 clear_bit(HCI_RUNNING, &hdev->flags);
4835 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4836
4837 hdev->close(hdev);
4838 hdev->flags &= BIT(HCI_RAW);
4839 }
4840
4841 done:
4842 return ret;
4843 }
4844
4845 /* This function requires the caller holds hdev->lock */
4846 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4847 {
4848 struct hci_conn_params *p;
4849
4850 list_for_each_entry(p, &hdev->le_conn_params, list) {
4851 hci_pend_le_list_del_init(p);
4852 if (p->conn) {
4853 hci_conn_drop(p->conn);
4854 hci_conn_put(p->conn);
4855 p->conn = NULL;
4856 }
4857 }
4858
4859 BT_DBG("All LE pending actions cleared");
4860 }
4861
4862 static int hci_dev_shutdown(struct hci_dev *hdev)
4863 {
4864 int err = 0;
4865 /* Similar to how we first do setup and then set the exclusive access
4866 * bit for userspace, we must first unset userchannel and then clean up.
4867 * Otherwise, the kernel can't properly use the hci channel to clean up
4868 * the controller (some shutdown routines require sending additional
4869 * commands to the controller for example).
4870 */
4871 bool was_userchannel =
4872 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4873
4874 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4875 test_bit(HCI_UP, &hdev->flags)) {
4876 /* Execute vendor specific shutdown routine */
4877 if (hdev->shutdown)
4878 err = hdev->shutdown(hdev);
4879 }
4880
4881 if (was_userchannel)
4882 hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4883
4884 return err;
4885 }
4886
4887 int hci_dev_close_sync(struct hci_dev *hdev)
4888 {
4889 bool auto_off;
4890 int err = 0;
4891
4892 bt_dev_dbg(hdev, "");
4893
4894 cancel_delayed_work(&hdev->power_off);
4895 cancel_delayed_work(&hdev->ncmd_timer);
4896 cancel_delayed_work(&hdev->le_scan_disable);
4897
4898 hci_request_cancel_all(hdev);
4899
4900 if (hdev->adv_instance_timeout) {
4901 cancel_delayed_work_sync(&hdev->adv_instance_expire);
4902 hdev->adv_instance_timeout = 0;
4903 }
4904
4905 err = hci_dev_shutdown(hdev);
4906
4907 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4908 cancel_delayed_work_sync(&hdev->cmd_timer);
4909 return err;
4910 }
4911
4912 hci_leds_update_powered(hdev, false);
4913
4914 /* Flush RX and TX works */
4915 flush_work(&hdev->tx_work);
4916 flush_work(&hdev->rx_work);
4917
4918 if (hdev->discov_timeout > 0) {
4919 hdev->discov_timeout = 0;
4920 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4921 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4922 }
4923
4924 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4925 cancel_delayed_work(&hdev->service_cache);
4926
4927 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4928 struct adv_info *adv_instance;
4929
4930 cancel_delayed_work_sync(&hdev->rpa_expired);
4931
4932 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4933 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4934 }
4935
4936 /* Avoid potential lockdep warnings from the *_flush() calls by
4937 * ensuring the workqueue is empty up front.
4938 */
4939 drain_workqueue(hdev->workqueue);
4940
4941 hci_dev_lock(hdev);
4942
4943 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4944
4945 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4946
4947 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4948 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4949 hci_dev_test_flag(hdev, HCI_MGMT))
4950 __mgmt_power_off(hdev);
4951
4952 hci_inquiry_cache_flush(hdev);
4953 hci_pend_le_actions_clear(hdev);
4954 hci_conn_hash_flush(hdev);
4955 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4956 smp_unregister(hdev);
4957 hci_dev_unlock(hdev);
4958
4959 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4960
4961 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4962 aosp_do_close(hdev);
4963 msft_do_close(hdev);
4964 }
4965
4966 if (hdev->flush)
4967 hdev->flush(hdev);
4968
4969 /* Reset device */
4970 skb_queue_purge(&hdev->cmd_q);
4971 atomic_set(&hdev->cmd_cnt, 1);
4972 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4973 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4974 set_bit(HCI_INIT, &hdev->flags);
4975 hci_reset_sync(hdev);
4976 clear_bit(HCI_INIT, &hdev->flags);
4977 }
4978
4979 /* flush cmd work */
4980 flush_work(&hdev->cmd_work);
4981
4982 /* Drop queues */
4983 skb_queue_purge(&hdev->rx_q);
4984 skb_queue_purge(&hdev->cmd_q);
4985 skb_queue_purge(&hdev->raw_q);
4986
4987 /* Drop last sent command */
4988 if (hdev->sent_cmd) {
4989 cancel_delayed_work_sync(&hdev->cmd_timer);
4990 kfree_skb(hdev->sent_cmd);
4991 hdev->sent_cmd = NULL;
4992 }
4993
4994 clear_bit(HCI_RUNNING, &hdev->flags);
4995 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4996
4997 /* After this point our queues are empty and no tasks are scheduled. */
4998 hdev->close(hdev);
4999
5000 /* Clear flags */
5001 hdev->flags &= BIT(HCI_RAW);
5002 hci_dev_clear_volatile_flags(hdev);
5003
5004 /* Controller radio is available but is currently powered down */
5005 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5006
5007 memset(hdev->eir, 0, sizeof(hdev->eir));
5008 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5009 bacpy(&hdev->random_addr, BDADDR_ANY);
5010 hci_codec_list_clear(&hdev->local_codecs);
5011
5012 hci_dev_put(hdev);
5013 return err;
5014 }
5015
5016 /* This function perform power on HCI command sequence as follows:
5017 *
5018 * If controller is already up (HCI_UP) performs hci_powered_update_sync
5019 * sequence otherwise run hci_dev_open_sync which will follow with
5020 * hci_powered_update_sync after the init sequence is completed.
5021 */
5022 static int hci_power_on_sync(struct hci_dev *hdev)
5023 {
5024 int err;
5025
5026 if (test_bit(HCI_UP, &hdev->flags) &&
5027 hci_dev_test_flag(hdev, HCI_MGMT) &&
5028 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5029 cancel_delayed_work(&hdev->power_off);
5030 return hci_powered_update_sync(hdev);
5031 }
5032
5033 err = hci_dev_open_sync(hdev);
5034 if (err < 0)
5035 return err;
5036
5037 /* During the HCI setup phase, a few error conditions are
5038 * ignored and they need to be checked now. If they are still
5039 * valid, it is important to return the device back off.
5040 */
5041 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5042 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5043 (hdev->dev_type == HCI_PRIMARY &&
5044 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5045 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5046 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5047 hci_dev_close_sync(hdev);
5048 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5049 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5050 HCI_AUTO_OFF_TIMEOUT);
5051 }
5052
5053 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5054 /* For unconfigured devices, set the HCI_RAW flag
5055 * so that userspace can easily identify them.
5056 */
5057 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5058 set_bit(HCI_RAW, &hdev->flags);
5059
5060 /* For fully configured devices, this will send
5061 * the Index Added event. For unconfigured devices,
5062 * it will send Unconfigued Index Added event.
5063 *
5064 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5065 * and no event will be send.
5066 */
5067 mgmt_index_added(hdev);
5068 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5069 /* When the controller is now configured, then it
5070 * is important to clear the HCI_RAW flag.
5071 */
5072 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5073 clear_bit(HCI_RAW, &hdev->flags);
5074
5075 /* Powering on the controller with HCI_CONFIG set only
5076 * happens with the transition from unconfigured to
5077 * configured. This will send the Index Added event.
5078 */
5079 mgmt_index_added(hdev);
5080 }
5081
5082 return 0;
5083 }
5084
5085 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5086 {
5087 struct hci_cp_remote_name_req_cancel cp;
5088
5089 memset(&cp, 0, sizeof(cp));
5090 bacpy(&cp.bdaddr, addr);
5091
5092 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5093 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5094 }
5095
5096 int hci_stop_discovery_sync(struct hci_dev *hdev)
5097 {
5098 struct discovery_state *d = &hdev->discovery;
5099 struct inquiry_entry *e;
5100 int err;
5101
5102 bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5103
5104 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5105 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5106 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5107 0, NULL, HCI_CMD_TIMEOUT);
5108 if (err)
5109 return err;
5110 }
5111
5112 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5113 cancel_delayed_work(&hdev->le_scan_disable);
5114
5115 err = hci_scan_disable_sync(hdev);
5116 if (err)
5117 return err;
5118 }
5119
5120 } else {
5121 err = hci_scan_disable_sync(hdev);
5122 if (err)
5123 return err;
5124 }
5125
5126 /* Resume advertising if it was paused */
5127 if (use_ll_privacy(hdev))
5128 hci_resume_advertising_sync(hdev);
5129
5130 /* No further actions needed for LE-only discovery */
5131 if (d->type == DISCOV_TYPE_LE)
5132 return 0;
5133
5134 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5135 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5136 NAME_PENDING);
5137 if (!e)
5138 return 0;
5139
5140 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5141 }
5142
5143 return 0;
5144 }
5145
5146 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5147 u8 reason)
5148 {
5149 struct hci_cp_disconn_phy_link cp;
5150
5151 memset(&cp, 0, sizeof(cp));
5152 cp.phy_handle = HCI_PHY_HANDLE(handle);
5153 cp.reason = reason;
5154
5155 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5156 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5157 }
5158
5159 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5160 u8 reason)
5161 {
5162 struct hci_cp_disconnect cp;
5163
5164 if (conn->type == AMP_LINK)
5165 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5166
5167 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) {
5168 /* This is a BIS connection, hci_conn_del will
5169 * do the necessary cleanup.
5170 */
5171 hci_dev_lock(hdev);
5172 hci_conn_failed(conn, reason);
5173 hci_dev_unlock(hdev);
5174
5175 return 0;
5176 }
5177
5178 memset(&cp, 0, sizeof(cp));
5179 cp.handle = cpu_to_le16(conn->handle);
5180 cp.reason = reason;
5181
5182 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5183 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5184 * used when suspending or powering off, where we don't want to wait
5185 * for the peer's response.
5186 */
5187 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5188 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5189 sizeof(cp), &cp,
5190 HCI_EV_DISCONN_COMPLETE,
5191 HCI_CMD_TIMEOUT, NULL);
5192
5193 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5194 HCI_CMD_TIMEOUT);
5195 }
5196
5197 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5198 struct hci_conn *conn, u8 reason)
5199 {
5200 /* Return reason if scanning since the connection shall probably be
5201 * cleanup directly.
5202 */
5203 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5204 return reason;
5205
5206 if (conn->role == HCI_ROLE_SLAVE ||
5207 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5208 return 0;
5209
5210 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5211 0, NULL, HCI_CMD_TIMEOUT);
5212 }
5213
5214 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5215 u8 reason)
5216 {
5217 if (conn->type == LE_LINK)
5218 return hci_le_connect_cancel_sync(hdev, conn, reason);
5219
5220 if (conn->type == ISO_LINK) {
5221 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5222 * page 1857:
5223 *
5224 * If this command is issued for a CIS on the Central and the
5225 * CIS is successfully terminated before being established,
5226 * then an HCI_LE_CIS_Established event shall also be sent for
5227 * this CIS with the Status Operation Cancelled by Host (0x44).
5228 */
5229 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5230 return hci_disconnect_sync(hdev, conn, reason);
5231
5232 /* CIS with no Create CIS sent have nothing to cancel */
5233 if (bacmp(&conn->dst, BDADDR_ANY))
5234 return HCI_ERROR_LOCAL_HOST_TERM;
5235
5236 /* There is no way to cancel a BIS without terminating the BIG
5237 * which is done later on connection cleanup.
5238 */
5239 return 0;
5240 }
5241
5242 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5243 return 0;
5244
5245 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5246 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5247 * used when suspending or powering off, where we don't want to wait
5248 * for the peer's response.
5249 */
5250 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5251 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5252 6, &conn->dst,
5253 HCI_EV_CONN_COMPLETE,
5254 HCI_CMD_TIMEOUT, NULL);
5255
5256 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5257 6, &conn->dst, HCI_CMD_TIMEOUT);
5258 }
5259
5260 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5261 u8 reason)
5262 {
5263 struct hci_cp_reject_sync_conn_req cp;
5264
5265 memset(&cp, 0, sizeof(cp));
5266 bacpy(&cp.bdaddr, &conn->dst);
5267 cp.reason = reason;
5268
5269 /* SCO rejection has its own limited set of
5270 * allowed error values (0x0D-0x0F).
5271 */
5272 if (reason < 0x0d || reason > 0x0f)
5273 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5274
5275 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5276 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5277 }
5278
5279 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5280 u8 reason)
5281 {
5282 struct hci_cp_le_reject_cis cp;
5283
5284 memset(&cp, 0, sizeof(cp));
5285 cp.handle = cpu_to_le16(conn->handle);
5286 cp.reason = reason;
5287
5288 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5289 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5290 }
5291
5292 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5293 u8 reason)
5294 {
5295 struct hci_cp_reject_conn_req cp;
5296
5297 if (conn->type == ISO_LINK)
5298 return hci_le_reject_cis_sync(hdev, conn, reason);
5299
5300 if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5301 return hci_reject_sco_sync(hdev, conn, reason);
5302
5303 memset(&cp, 0, sizeof(cp));
5304 bacpy(&cp.bdaddr, &conn->dst);
5305 cp.reason = reason;
5306
5307 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5308 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5309 }
5310
5311 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5312 {
5313 int err = 0;
5314 u16 handle = conn->handle;
5315 bool disconnect = false;
5316 struct hci_conn *c;
5317
5318 switch (conn->state) {
5319 case BT_CONNECTED:
5320 case BT_CONFIG:
5321 err = hci_disconnect_sync(hdev, conn, reason);
5322 break;
5323 case BT_CONNECT:
5324 err = hci_connect_cancel_sync(hdev, conn, reason);
5325 break;
5326 case BT_CONNECT2:
5327 err = hci_reject_conn_sync(hdev, conn, reason);
5328 break;
5329 case BT_OPEN:
5330 case BT_BOUND:
5331 break;
5332 default:
5333 disconnect = true;
5334 break;
5335 }
5336
5337 hci_dev_lock(hdev);
5338
5339 /* Check if the connection has been cleaned up concurrently */
5340 c = hci_conn_hash_lookup_handle(hdev, handle);
5341 if (!c || c != conn) {
5342 err = 0;
5343 goto unlock;
5344 }
5345
5346 /* Cleanup hci_conn object if it cannot be cancelled as it
5347 * likelly means the controller and host stack are out of sync
5348 * or in case of LE it was still scanning so it can be cleanup
5349 * safely.
5350 */
5351 if (disconnect) {
5352 conn->state = BT_CLOSED;
5353 hci_disconn_cfm(conn, reason);
5354 hci_conn_del(conn);
5355 } else {
5356 hci_conn_failed(conn, reason);
5357 }
5358
5359 unlock:
5360 hci_dev_unlock(hdev);
5361 return err;
5362 }
5363
5364 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5365 {
5366 struct list_head *head = &hdev->conn_hash.list;
5367 struct hci_conn *conn;
5368
5369 rcu_read_lock();
5370 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5371 /* Make sure the connection is not freed while unlocking */
5372 conn = hci_conn_get(conn);
5373 rcu_read_unlock();
5374 /* Disregard possible errors since hci_conn_del shall have been
5375 * called even in case of errors had occurred since it would
5376 * then cause hci_conn_failed to be called which calls
5377 * hci_conn_del internally.
5378 */
5379 hci_abort_conn_sync(hdev, conn, reason);
5380 hci_conn_put(conn);
5381 rcu_read_lock();
5382 }
5383 rcu_read_unlock();
5384
5385 return 0;
5386 }
5387
5388 /* This function perform power off HCI command sequence as follows:
5389 *
5390 * Clear Advertising
5391 * Stop Discovery
5392 * Disconnect all connections
5393 * hci_dev_close_sync
5394 */
5395 static int hci_power_off_sync(struct hci_dev *hdev)
5396 {
5397 int err;
5398
5399 /* If controller is already down there is nothing to do */
5400 if (!test_bit(HCI_UP, &hdev->flags))
5401 return 0;
5402
5403 if (test_bit(HCI_ISCAN, &hdev->flags) ||
5404 test_bit(HCI_PSCAN, &hdev->flags)) {
5405 err = hci_write_scan_enable_sync(hdev, 0x00);
5406 if (err)
5407 return err;
5408 }
5409
5410 err = hci_clear_adv_sync(hdev, NULL, false);
5411 if (err)
5412 return err;
5413
5414 err = hci_stop_discovery_sync(hdev);
5415 if (err)
5416 return err;
5417
5418 /* Terminated due to Power Off */
5419 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5420 if (err)
5421 return err;
5422
5423 return hci_dev_close_sync(hdev);
5424 }
5425
5426 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5427 {
5428 if (val)
5429 return hci_power_on_sync(hdev);
5430
5431 return hci_power_off_sync(hdev);
5432 }
5433
5434 static int hci_write_iac_sync(struct hci_dev *hdev)
5435 {
5436 struct hci_cp_write_current_iac_lap cp;
5437
5438 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5439 return 0;
5440
5441 memset(&cp, 0, sizeof(cp));
5442
5443 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5444 /* Limited discoverable mode */
5445 cp.num_iac = min_t(u8, hdev->num_iac, 2);
5446 cp.iac_lap[0] = 0x00; /* LIAC */
5447 cp.iac_lap[1] = 0x8b;
5448 cp.iac_lap[2] = 0x9e;
5449 cp.iac_lap[3] = 0x33; /* GIAC */
5450 cp.iac_lap[4] = 0x8b;
5451 cp.iac_lap[5] = 0x9e;
5452 } else {
5453 /* General discoverable mode */
5454 cp.num_iac = 1;
5455 cp.iac_lap[0] = 0x33; /* GIAC */
5456 cp.iac_lap[1] = 0x8b;
5457 cp.iac_lap[2] = 0x9e;
5458 }
5459
5460 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5461 (cp.num_iac * 3) + 1, &cp,
5462 HCI_CMD_TIMEOUT);
5463 }
5464
5465 int hci_update_discoverable_sync(struct hci_dev *hdev)
5466 {
5467 int err = 0;
5468
5469 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5470 err = hci_write_iac_sync(hdev);
5471 if (err)
5472 return err;
5473
5474 err = hci_update_scan_sync(hdev);
5475 if (err)
5476 return err;
5477
5478 err = hci_update_class_sync(hdev);
5479 if (err)
5480 return err;
5481 }
5482
5483 /* Advertising instances don't use the global discoverable setting, so
5484 * only update AD if advertising was enabled using Set Advertising.
5485 */
5486 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5487 err = hci_update_adv_data_sync(hdev, 0x00);
5488 if (err)
5489 return err;
5490
5491 /* Discoverable mode affects the local advertising
5492 * address in limited privacy mode.
5493 */
5494 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5495 if (ext_adv_capable(hdev))
5496 err = hci_start_ext_adv_sync(hdev, 0x00);
5497 else
5498 err = hci_enable_advertising_sync(hdev);
5499 }
5500 }
5501
5502 return err;
5503 }
5504
5505 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5506 {
5507 return hci_update_discoverable_sync(hdev);
5508 }
5509
5510 int hci_update_discoverable(struct hci_dev *hdev)
5511 {
5512 /* Only queue if it would have any effect */
5513 if (hdev_is_powered(hdev) &&
5514 hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5515 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5516 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5517 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5518 NULL);
5519
5520 return 0;
5521 }
5522
5523 int hci_update_connectable_sync(struct hci_dev *hdev)
5524 {
5525 int err;
5526
5527 err = hci_update_scan_sync(hdev);
5528 if (err)
5529 return err;
5530
5531 /* If BR/EDR is not enabled and we disable advertising as a
5532 * by-product of disabling connectable, we need to update the
5533 * advertising flags.
5534 */
5535 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5536 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5537
5538 /* Update the advertising parameters if necessary */
5539 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5540 !list_empty(&hdev->adv_instances)) {
5541 if (ext_adv_capable(hdev))
5542 err = hci_start_ext_adv_sync(hdev,
5543 hdev->cur_adv_instance);
5544 else
5545 err = hci_enable_advertising_sync(hdev);
5546
5547 if (err)
5548 return err;
5549 }
5550
5551 return hci_update_passive_scan_sync(hdev);
5552 }
5553
5554 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5555 {
5556 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5557 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5558 struct hci_cp_inquiry cp;
5559
5560 bt_dev_dbg(hdev, "");
5561
5562 if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5563 return 0;
5564
5565 hci_dev_lock(hdev);
5566 hci_inquiry_cache_flush(hdev);
5567 hci_dev_unlock(hdev);
5568
5569 memset(&cp, 0, sizeof(cp));
5570
5571 if (hdev->discovery.limited)
5572 memcpy(&cp.lap, liac, sizeof(cp.lap));
5573 else
5574 memcpy(&cp.lap, giac, sizeof(cp.lap));
5575
5576 cp.length = length;
5577
5578 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5579 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5580 }
5581
5582 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5583 {
5584 u8 own_addr_type;
5585 /* Accept list is not used for discovery */
5586 u8 filter_policy = 0x00;
5587 /* Default is to enable duplicates filter */
5588 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5589 int err;
5590
5591 bt_dev_dbg(hdev, "");
5592
5593 /* If controller is scanning, it means the passive scanning is
5594 * running. Thus, we should temporarily stop it in order to set the
5595 * discovery scanning parameters.
5596 */
5597 err = hci_scan_disable_sync(hdev);
5598 if (err) {
5599 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5600 return err;
5601 }
5602
5603 cancel_interleave_scan(hdev);
5604
5605 /* Pause address resolution for active scan and stop advertising if
5606 * privacy is enabled.
5607 */
5608 err = hci_pause_addr_resolution(hdev);
5609 if (err)
5610 goto failed;
5611
5612 /* All active scans will be done with either a resolvable private
5613 * address (when privacy feature has been enabled) or non-resolvable
5614 * private address.
5615 */
5616 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5617 &own_addr_type);
5618 if (err < 0)
5619 own_addr_type = ADDR_LE_DEV_PUBLIC;
5620
5621 if (hci_is_adv_monitoring(hdev) ||
5622 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5623 hdev->discovery.result_filtering)) {
5624 /* Duplicate filter should be disabled when some advertisement
5625 * monitor is activated, otherwise AdvMon can only receive one
5626 * advertisement for one peer(*) during active scanning, and
5627 * might report loss to these peers.
5628 *
5629 * If controller does strict duplicate filtering and the
5630 * discovery requires result filtering disables controller based
5631 * filtering since that can cause reports that would match the
5632 * host filter to not be reported.
5633 */
5634 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5635 }
5636
5637 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5638 hdev->le_scan_window_discovery,
5639 own_addr_type, filter_policy, filter_dup);
5640 if (!err)
5641 return err;
5642
5643 failed:
5644 /* Resume advertising if it was paused */
5645 if (use_ll_privacy(hdev))
5646 hci_resume_advertising_sync(hdev);
5647
5648 /* Resume passive scanning */
5649 hci_update_passive_scan_sync(hdev);
5650 return err;
5651 }
5652
5653 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5654 {
5655 int err;
5656
5657 bt_dev_dbg(hdev, "");
5658
5659 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5660 if (err)
5661 return err;
5662
5663 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5664 }
5665
5666 int hci_start_discovery_sync(struct hci_dev *hdev)
5667 {
5668 unsigned long timeout;
5669 int err;
5670
5671 bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5672
5673 switch (hdev->discovery.type) {
5674 case DISCOV_TYPE_BREDR:
5675 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5676 case DISCOV_TYPE_INTERLEAVED:
5677 /* When running simultaneous discovery, the LE scanning time
5678 * should occupy the whole discovery time sine BR/EDR inquiry
5679 * and LE scanning are scheduled by the controller.
5680 *
5681 * For interleaving discovery in comparison, BR/EDR inquiry
5682 * and LE scanning are done sequentially with separate
5683 * timeouts.
5684 */
5685 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5686 &hdev->quirks)) {
5687 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5688 /* During simultaneous discovery, we double LE scan
5689 * interval. We must leave some time for the controller
5690 * to do BR/EDR inquiry.
5691 */
5692 err = hci_start_interleaved_discovery_sync(hdev);
5693 break;
5694 }
5695
5696 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5697 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5698 break;
5699 case DISCOV_TYPE_LE:
5700 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5701 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5702 break;
5703 default:
5704 return -EINVAL;
5705 }
5706
5707 if (err)
5708 return err;
5709
5710 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5711
5712 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5713 timeout);
5714 return 0;
5715 }
5716
5717 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5718 {
5719 switch (hci_get_adv_monitor_offload_ext(hdev)) {
5720 case HCI_ADV_MONITOR_EXT_MSFT:
5721 msft_suspend_sync(hdev);
5722 break;
5723 default:
5724 return;
5725 }
5726 }
5727
5728 /* This function disables discovery and mark it as paused */
5729 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5730 {
5731 int old_state = hdev->discovery.state;
5732 int err;
5733
5734 /* If discovery already stopped/stopping/paused there nothing to do */
5735 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5736 hdev->discovery_paused)
5737 return 0;
5738
5739 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5740 err = hci_stop_discovery_sync(hdev);
5741 if (err)
5742 return err;
5743
5744 hdev->discovery_paused = true;
5745 hdev->discovery_old_state = old_state;
5746 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5747
5748 return 0;
5749 }
5750
5751 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5752 {
5753 struct bdaddr_list_with_flags *b;
5754 u8 scan = SCAN_DISABLED;
5755 bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5756 int err;
5757
5758 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5759 return 0;
5760
5761 /* Some fake CSR controllers lock up after setting this type of
5762 * filter, so avoid sending the request altogether.
5763 */
5764 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5765 return 0;
5766
5767 /* Always clear event filter when starting */
5768 hci_clear_event_filter_sync(hdev);
5769
5770 list_for_each_entry(b, &hdev->accept_list, list) {
5771 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5772 continue;
5773
5774 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5775
5776 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5777 HCI_CONN_SETUP_ALLOW_BDADDR,
5778 &b->bdaddr,
5779 HCI_CONN_SETUP_AUTO_ON);
5780 if (err)
5781 bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5782 &b->bdaddr);
5783 else
5784 scan = SCAN_PAGE;
5785 }
5786
5787 if (scan && !scanning)
5788 hci_write_scan_enable_sync(hdev, scan);
5789 else if (!scan && scanning)
5790 hci_write_scan_enable_sync(hdev, scan);
5791
5792 return 0;
5793 }
5794
5795 /* This function disables scan (BR and LE) and mark it as paused */
5796 static int hci_pause_scan_sync(struct hci_dev *hdev)
5797 {
5798 if (hdev->scanning_paused)
5799 return 0;
5800
5801 /* Disable page scan if enabled */
5802 if (test_bit(HCI_PSCAN, &hdev->flags))
5803 hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5804
5805 hci_scan_disable_sync(hdev);
5806
5807 hdev->scanning_paused = true;
5808
5809 return 0;
5810 }
5811
5812 /* This function performs the HCI suspend procedures in the follow order:
5813 *
5814 * Pause discovery (active scanning/inquiry)
5815 * Pause Directed Advertising/Advertising
5816 * Pause Scanning (passive scanning in case discovery was not active)
5817 * Disconnect all connections
5818 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5819 * otherwise:
5820 * Update event mask (only set events that are allowed to wake up the host)
5821 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5822 * Update passive scanning (lower duty cycle)
5823 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5824 */
5825 int hci_suspend_sync(struct hci_dev *hdev)
5826 {
5827 int err;
5828
5829 /* If marked as suspended there nothing to do */
5830 if (hdev->suspended)
5831 return 0;
5832
5833 /* Mark device as suspended */
5834 hdev->suspended = true;
5835
5836 /* Pause discovery if not already stopped */
5837 hci_pause_discovery_sync(hdev);
5838
5839 /* Pause other advertisements */
5840 hci_pause_advertising_sync(hdev);
5841
5842 /* Suspend monitor filters */
5843 hci_suspend_monitor_sync(hdev);
5844
5845 /* Prevent disconnects from causing scanning to be re-enabled */
5846 hci_pause_scan_sync(hdev);
5847
5848 if (hci_conn_count(hdev)) {
5849 /* Soft disconnect everything (power off) */
5850 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5851 if (err) {
5852 /* Set state to BT_RUNNING so resume doesn't notify */
5853 hdev->suspend_state = BT_RUNNING;
5854 hci_resume_sync(hdev);
5855 return err;
5856 }
5857
5858 /* Update event mask so only the allowed event can wakeup the
5859 * host.
5860 */
5861 hci_set_event_mask_sync(hdev);
5862 }
5863
5864 /* Only configure accept list if disconnect succeeded and wake
5865 * isn't being prevented.
5866 */
5867 if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5868 hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5869 return 0;
5870 }
5871
5872 /* Unpause to take care of updating scanning params */
5873 hdev->scanning_paused = false;
5874
5875 /* Enable event filter for paired devices */
5876 hci_update_event_filter_sync(hdev);
5877
5878 /* Update LE passive scan if enabled */
5879 hci_update_passive_scan_sync(hdev);
5880
5881 /* Pause scan changes again. */
5882 hdev->scanning_paused = true;
5883
5884 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5885
5886 return 0;
5887 }
5888
5889 /* This function resumes discovery */
5890 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5891 {
5892 int err;
5893
5894 /* If discovery not paused there nothing to do */
5895 if (!hdev->discovery_paused)
5896 return 0;
5897
5898 hdev->discovery_paused = false;
5899
5900 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5901
5902 err = hci_start_discovery_sync(hdev);
5903
5904 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5905 DISCOVERY_FINDING);
5906
5907 return err;
5908 }
5909
5910 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5911 {
5912 switch (hci_get_adv_monitor_offload_ext(hdev)) {
5913 case HCI_ADV_MONITOR_EXT_MSFT:
5914 msft_resume_sync(hdev);
5915 break;
5916 default:
5917 return;
5918 }
5919 }
5920
5921 /* This function resume scan and reset paused flag */
5922 static int hci_resume_scan_sync(struct hci_dev *hdev)
5923 {
5924 if (!hdev->scanning_paused)
5925 return 0;
5926
5927 hdev->scanning_paused = false;
5928
5929 hci_update_scan_sync(hdev);
5930
5931 /* Reset passive scanning to normal */
5932 hci_update_passive_scan_sync(hdev);
5933
5934 return 0;
5935 }
5936
5937 /* This function performs the HCI suspend procedures in the follow order:
5938 *
5939 * Restore event mask
5940 * Clear event filter
5941 * Update passive scanning (normal duty cycle)
5942 * Resume Directed Advertising/Advertising
5943 * Resume discovery (active scanning/inquiry)
5944 */
5945 int hci_resume_sync(struct hci_dev *hdev)
5946 {
5947 /* If not marked as suspended there nothing to do */
5948 if (!hdev->suspended)
5949 return 0;
5950
5951 hdev->suspended = false;
5952
5953 /* Restore event mask */
5954 hci_set_event_mask_sync(hdev);
5955
5956 /* Clear any event filters and restore scan state */
5957 hci_clear_event_filter_sync(hdev);
5958
5959 /* Resume scanning */
5960 hci_resume_scan_sync(hdev);
5961
5962 /* Resume monitor filters */
5963 hci_resume_monitor_sync(hdev);
5964
5965 /* Resume other advertisements */
5966 hci_resume_advertising_sync(hdev);
5967
5968 /* Resume discovery */
5969 hci_resume_discovery_sync(hdev);
5970
5971 return 0;
5972 }
5973
5974 static bool conn_use_rpa(struct hci_conn *conn)
5975 {
5976 struct hci_dev *hdev = conn->hdev;
5977
5978 return hci_dev_test_flag(hdev, HCI_PRIVACY);
5979 }
5980
5981 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5982 struct hci_conn *conn)
5983 {
5984 struct hci_cp_le_set_ext_adv_params cp;
5985 int err;
5986 bdaddr_t random_addr;
5987 u8 own_addr_type;
5988
5989 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5990 &own_addr_type);
5991 if (err)
5992 return err;
5993
5994 /* Set require_privacy to false so that the remote device has a
5995 * chance of identifying us.
5996 */
5997 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5998 &own_addr_type, &random_addr);
5999 if (err)
6000 return err;
6001
6002 memset(&cp, 0, sizeof(cp));
6003
6004 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6005 cp.channel_map = hdev->le_adv_channel_map;
6006 cp.tx_power = HCI_TX_POWER_INVALID;
6007 cp.primary_phy = HCI_ADV_PHY_1M;
6008 cp.secondary_phy = HCI_ADV_PHY_1M;
6009 cp.handle = 0x00; /* Use instance 0 for directed adv */
6010 cp.own_addr_type = own_addr_type;
6011 cp.peer_addr_type = conn->dst_type;
6012 bacpy(&cp.peer_addr, &conn->dst);
6013
6014 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6015 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6016 * does not supports advertising data when the advertising set already
6017 * contains some, the controller shall return erroc code 'Invalid
6018 * HCI Command Parameters(0x12).
6019 * So it is required to remove adv set for handle 0x00. since we use
6020 * instance 0 for directed adv.
6021 */
6022 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6023 if (err)
6024 return err;
6025
6026 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6027 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6028 if (err)
6029 return err;
6030
6031 /* Check if random address need to be updated */
6032 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6033 bacmp(&random_addr, BDADDR_ANY) &&
6034 bacmp(&random_addr, &hdev->random_addr)) {
6035 err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6036 &random_addr);
6037 if (err)
6038 return err;
6039 }
6040
6041 return hci_enable_ext_advertising_sync(hdev, 0x00);
6042 }
6043
6044 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6045 struct hci_conn *conn)
6046 {
6047 struct hci_cp_le_set_adv_param cp;
6048 u8 status;
6049 u8 own_addr_type;
6050 u8 enable;
6051
6052 if (ext_adv_capable(hdev))
6053 return hci_le_ext_directed_advertising_sync(hdev, conn);
6054
6055 /* Clear the HCI_LE_ADV bit temporarily so that the
6056 * hci_update_random_address knows that it's safe to go ahead
6057 * and write a new random address. The flag will be set back on
6058 * as soon as the SET_ADV_ENABLE HCI command completes.
6059 */
6060 hci_dev_clear_flag(hdev, HCI_LE_ADV);
6061
6062 /* Set require_privacy to false so that the remote device has a
6063 * chance of identifying us.
6064 */
6065 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6066 &own_addr_type);
6067 if (status)
6068 return status;
6069
6070 memset(&cp, 0, sizeof(cp));
6071
6072 /* Some controllers might reject command if intervals are not
6073 * within range for undirected advertising.
6074 * BCM20702A0 is known to be affected by this.
6075 */
6076 cp.min_interval = cpu_to_le16(0x0020);
6077 cp.max_interval = cpu_to_le16(0x0020);
6078
6079 cp.type = LE_ADV_DIRECT_IND;
6080 cp.own_address_type = own_addr_type;
6081 cp.direct_addr_type = conn->dst_type;
6082 bacpy(&cp.direct_addr, &conn->dst);
6083 cp.channel_map = hdev->le_adv_channel_map;
6084
6085 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6086 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6087 if (status)
6088 return status;
6089
6090 enable = 0x01;
6091
6092 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6093 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6094 }
6095
6096 static void set_ext_conn_params(struct hci_conn *conn,
6097 struct hci_cp_le_ext_conn_param *p)
6098 {
6099 struct hci_dev *hdev = conn->hdev;
6100
6101 memset(p, 0, sizeof(*p));
6102
6103 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6104 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6105 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6106 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6107 p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6108 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6109 p->min_ce_len = cpu_to_le16(0x0000);
6110 p->max_ce_len = cpu_to_le16(0x0000);
6111 }
6112
6113 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6114 struct hci_conn *conn, u8 own_addr_type)
6115 {
6116 struct hci_cp_le_ext_create_conn *cp;
6117 struct hci_cp_le_ext_conn_param *p;
6118 u8 data[sizeof(*cp) + sizeof(*p) * 3];
6119 u32 plen;
6120
6121 cp = (void *)data;
6122 p = (void *)cp->data;
6123
6124 memset(cp, 0, sizeof(*cp));
6125
6126 bacpy(&cp->peer_addr, &conn->dst);
6127 cp->peer_addr_type = conn->dst_type;
6128 cp->own_addr_type = own_addr_type;
6129
6130 plen = sizeof(*cp);
6131
6132 if (scan_1m(hdev)) {
6133 cp->phys |= LE_SCAN_PHY_1M;
6134 set_ext_conn_params(conn, p);
6135
6136 p++;
6137 plen += sizeof(*p);
6138 }
6139
6140 if (scan_2m(hdev)) {
6141 cp->phys |= LE_SCAN_PHY_2M;
6142 set_ext_conn_params(conn, p);
6143
6144 p++;
6145 plen += sizeof(*p);
6146 }
6147
6148 if (scan_coded(hdev)) {
6149 cp->phys |= LE_SCAN_PHY_CODED;
6150 set_ext_conn_params(conn, p);
6151
6152 plen += sizeof(*p);
6153 }
6154
6155 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6156 plen, data,
6157 HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6158 conn->conn_timeout, NULL);
6159 }
6160
6161 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6162 {
6163 struct hci_cp_le_create_conn cp;
6164 struct hci_conn_params *params;
6165 u8 own_addr_type;
6166 int err;
6167
6168 /* If requested to connect as peripheral use directed advertising */
6169 if (conn->role == HCI_ROLE_SLAVE) {
6170 /* If we're active scanning and simultaneous roles is not
6171 * enabled simply reject the attempt.
6172 */
6173 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6174 hdev->le_scan_type == LE_SCAN_ACTIVE &&
6175 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6176 hci_conn_del(conn);
6177 return -EBUSY;
6178 }
6179
6180 /* Pause advertising while doing directed advertising. */
6181 hci_pause_advertising_sync(hdev);
6182
6183 err = hci_le_directed_advertising_sync(hdev, conn);
6184 goto done;
6185 }
6186
6187 /* Disable advertising if simultaneous roles is not in use. */
6188 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6189 hci_pause_advertising_sync(hdev);
6190
6191 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6192 if (params) {
6193 conn->le_conn_min_interval = params->conn_min_interval;
6194 conn->le_conn_max_interval = params->conn_max_interval;
6195 conn->le_conn_latency = params->conn_latency;
6196 conn->le_supv_timeout = params->supervision_timeout;
6197 } else {
6198 conn->le_conn_min_interval = hdev->le_conn_min_interval;
6199 conn->le_conn_max_interval = hdev->le_conn_max_interval;
6200 conn->le_conn_latency = hdev->le_conn_latency;
6201 conn->le_supv_timeout = hdev->le_supv_timeout;
6202 }
6203
6204 /* If controller is scanning, we stop it since some controllers are
6205 * not able to scan and connect at the same time. Also set the
6206 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6207 * handler for scan disabling knows to set the correct discovery
6208 * state.
6209 */
6210 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6211 hci_scan_disable_sync(hdev);
6212 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6213 }
6214
6215 /* Update random address, but set require_privacy to false so
6216 * that we never connect with an non-resolvable address.
6217 */
6218 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6219 &own_addr_type);
6220 if (err)
6221 goto done;
6222
6223 if (use_ext_conn(hdev)) {
6224 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6225 goto done;
6226 }
6227
6228 memset(&cp, 0, sizeof(cp));
6229
6230 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6231 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6232
6233 bacpy(&cp.peer_addr, &conn->dst);
6234 cp.peer_addr_type = conn->dst_type;
6235 cp.own_address_type = own_addr_type;
6236 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6237 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6238 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6239 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6240 cp.min_ce_len = cpu_to_le16(0x0000);
6241 cp.max_ce_len = cpu_to_le16(0x0000);
6242
6243 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6244 *
6245 * If this event is unmasked and the HCI_LE_Connection_Complete event
6246 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6247 * sent when a new connection has been created.
6248 */
6249 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6250 sizeof(cp), &cp,
6251 use_enhanced_conn_complete(hdev) ?
6252 HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6253 HCI_EV_LE_CONN_COMPLETE,
6254 conn->conn_timeout, NULL);
6255
6256 done:
6257 if (err == -ETIMEDOUT)
6258 hci_le_connect_cancel_sync(hdev, conn, 0x00);
6259
6260 /* Re-enable advertising after the connection attempt is finished. */
6261 hci_resume_advertising_sync(hdev);
6262 return err;
6263 }
6264
6265 int hci_le_create_cis_sync(struct hci_dev *hdev)
6266 {
6267 struct {
6268 struct hci_cp_le_create_cis cp;
6269 struct hci_cis cis[0x1f];
6270 } cmd;
6271 struct hci_conn *conn;
6272 u8 cig = BT_ISO_QOS_CIG_UNSET;
6273
6274 /* The spec allows only one pending LE Create CIS command at a time. If
6275 * the command is pending now, don't do anything. We check for pending
6276 * connections after each CIS Established event.
6277 *
6278 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6279 * page 2566:
6280 *
6281 * If the Host issues this command before all the
6282 * HCI_LE_CIS_Established events from the previous use of the
6283 * command have been generated, the Controller shall return the
6284 * error code Command Disallowed (0x0C).
6285 *
6286 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6287 * page 2567:
6288 *
6289 * When the Controller receives the HCI_LE_Create_CIS command, the
6290 * Controller sends the HCI_Command_Status event to the Host. An
6291 * HCI_LE_CIS_Established event will be generated for each CIS when it
6292 * is established or if it is disconnected or considered lost before
6293 * being established; until all the events are generated, the command
6294 * remains pending.
6295 */
6296
6297 memset(&cmd, 0, sizeof(cmd));
6298
6299 hci_dev_lock(hdev);
6300
6301 rcu_read_lock();
6302
6303 /* Wait until previous Create CIS has completed */
6304 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6305 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6306 goto done;
6307 }
6308
6309 /* Find CIG with all CIS ready */
6310 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6311 struct hci_conn *link;
6312
6313 if (hci_conn_check_create_cis(conn))
6314 continue;
6315
6316 cig = conn->iso_qos.ucast.cig;
6317
6318 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6319 if (hci_conn_check_create_cis(link) > 0 &&
6320 link->iso_qos.ucast.cig == cig &&
6321 link->state != BT_CONNECTED) {
6322 cig = BT_ISO_QOS_CIG_UNSET;
6323 break;
6324 }
6325 }
6326
6327 if (cig != BT_ISO_QOS_CIG_UNSET)
6328 break;
6329 }
6330
6331 if (cig == BT_ISO_QOS_CIG_UNSET)
6332 goto done;
6333
6334 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6335 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6336
6337 if (hci_conn_check_create_cis(conn) ||
6338 conn->iso_qos.ucast.cig != cig)
6339 continue;
6340
6341 set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6342 cis->acl_handle = cpu_to_le16(conn->parent->handle);
6343 cis->cis_handle = cpu_to_le16(conn->handle);
6344 cmd.cp.num_cis++;
6345
6346 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6347 break;
6348 }
6349
6350 done:
6351 rcu_read_unlock();
6352
6353 hci_dev_unlock(hdev);
6354
6355 if (!cmd.cp.num_cis)
6356 return 0;
6357
6358 /* Wait for HCI_LE_CIS_Established */
6359 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6360 sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6361 cmd.cp.num_cis, &cmd,
6362 HCI_EVT_LE_CIS_ESTABLISHED,
6363 conn->conn_timeout, NULL);
6364 }
6365
6366 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6367 {
6368 struct hci_cp_le_remove_cig cp;
6369
6370 memset(&cp, 0, sizeof(cp));
6371 cp.cig_id = handle;
6372
6373 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6374 &cp, HCI_CMD_TIMEOUT);
6375 }
6376
6377 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6378 {
6379 struct hci_cp_le_big_term_sync cp;
6380
6381 memset(&cp, 0, sizeof(cp));
6382 cp.handle = handle;
6383
6384 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6385 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6386 }
6387
6388 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6389 {
6390 struct hci_cp_le_pa_term_sync cp;
6391
6392 memset(&cp, 0, sizeof(cp));
6393 cp.handle = cpu_to_le16(handle);
6394
6395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6396 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6397 }
6398
6399 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6400 bool use_rpa, struct adv_info *adv_instance,
6401 u8 *own_addr_type, bdaddr_t *rand_addr)
6402 {
6403 int err;
6404
6405 bacpy(rand_addr, BDADDR_ANY);
6406
6407 /* If privacy is enabled use a resolvable private address. If
6408 * current RPA has expired then generate a new one.
6409 */
6410 if (use_rpa) {
6411 /* If Controller supports LL Privacy use own address type is
6412 * 0x03
6413 */
6414 if (use_ll_privacy(hdev))
6415 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6416 else
6417 *own_addr_type = ADDR_LE_DEV_RANDOM;
6418
6419 if (adv_instance) {
6420 if (adv_rpa_valid(adv_instance))
6421 return 0;
6422 } else {
6423 if (rpa_valid(hdev))
6424 return 0;
6425 }
6426
6427 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6428 if (err < 0) {
6429 bt_dev_err(hdev, "failed to generate new RPA");
6430 return err;
6431 }
6432
6433 bacpy(rand_addr, &hdev->rpa);
6434
6435 return 0;
6436 }
6437
6438 /* In case of required privacy without resolvable private address,
6439 * use an non-resolvable private address. This is useful for
6440 * non-connectable advertising.
6441 */
6442 if (require_privacy) {
6443 bdaddr_t nrpa;
6444
6445 while (true) {
6446 /* The non-resolvable private address is generated
6447 * from random six bytes with the two most significant
6448 * bits cleared.
6449 */
6450 get_random_bytes(&nrpa, 6);
6451 nrpa.b[5] &= 0x3f;
6452
6453 /* The non-resolvable private address shall not be
6454 * equal to the public address.
6455 */
6456 if (bacmp(&hdev->bdaddr, &nrpa))
6457 break;
6458 }
6459
6460 *own_addr_type = ADDR_LE_DEV_RANDOM;
6461 bacpy(rand_addr, &nrpa);
6462
6463 return 0;
6464 }
6465
6466 /* No privacy so use a public address. */
6467 *own_addr_type = ADDR_LE_DEV_PUBLIC;
6468
6469 return 0;
6470 }
6471
6472 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6473 {
6474 u8 instance = PTR_UINT(data);
6475
6476 return hci_update_adv_data_sync(hdev, instance);
6477 }
6478
6479 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6480 {
6481 return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6482 UINT_PTR(instance), NULL);
6483 }