]> git.ipfire.org Git - people/ms/linux.git/blob - net/can/isotp.c
Merge tag 'tegra-for-5.20-arm64-defconfig' of git://git.kernel.org/pub/scm/linux...
[people/ms/linux.git] / net / can / isotp.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3 *
4 * This implementation does not provide ISO-TP specific return values to the
5 * userspace.
6 *
7 * - RX path timeout of data reception leads to -ETIMEDOUT
8 * - RX path SN mismatch leads to -EILSEQ
9 * - RX path data reception with wrong padding leads to -EBADMSG
10 * - TX path flowcontrol reception timeout leads to -ECOMM
11 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13 * - when a transfer (tx) is on the run the next write() blocks until it's done
14 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15 * - as we have static buffers the check whether the PDU fits into the buffer
16 * is done at FF reception time (no support for sending 'wait frames')
17 *
18 * Copyright (c) 2020 Volkswagen Group Electronic Research
19 * All rights reserved.
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 * 1. Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in the
28 * documentation and/or other materials provided with the distribution.
29 * 3. Neither the name of Volkswagen nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * Alternatively, provided that this notice is retained in full, this
34 * software may be distributed under the terms of the GNU General
35 * Public License ("GPL") version 2, in which case the provisions of the
36 * GPL apply INSTEAD OF those given above.
37 *
38 * The provided data structures and external interfaces from this code
39 * are not restricted to be used by modules with a GPL compatible license.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 */
54
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88 * this between user space and kernel space. For now increase the static buffer
89 * to something about 64 kbyte to be able to test this new functionality.
90 */
91 #define MAX_MSG_LENGTH 66000
92
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00 /* single frame */
95 #define N_PCI_FF 0x10 /* first frame */
96 #define N_PCI_CF 0x20 /* consecutive frame */
97 #define N_PCI_FC 0x30 /* flow control */
98
99 #define N_PCI_SZ 1 /* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1 /* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2 /* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2 /* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6 /* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3 /* flow control content size in byte (FS/BS/STmin) */
105
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
108
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0 /* clear to send */
111 #define ISOTP_FC_WT 1 /* wait */
112 #define ISOTP_FC_OVFLW 2 /* overflow */
113
114 enum {
115 ISOTP_IDLE = 0,
116 ISOTP_WAIT_FIRST_FC,
117 ISOTP_WAIT_FC,
118 ISOTP_WAIT_DATA,
119 ISOTP_SENDING
120 };
121
122 struct tpcon {
123 unsigned int idx;
124 unsigned int len;
125 u32 state;
126 u8 bs;
127 u8 sn;
128 u8 ll_dl;
129 u8 buf[MAX_MSG_LENGTH + 1];
130 };
131
132 struct isotp_sock {
133 struct sock sk;
134 int bound;
135 int ifindex;
136 canid_t txid;
137 canid_t rxid;
138 ktime_t tx_gap;
139 ktime_t lastrxcf_tstamp;
140 struct hrtimer rxtimer, txtimer;
141 struct can_isotp_options opt;
142 struct can_isotp_fc_options rxfc, txfc;
143 struct can_isotp_ll_options ll;
144 u32 frame_txtime;
145 u32 force_tx_stmin;
146 u32 force_rx_stmin;
147 u32 cfecho; /* consecutive frame echo tag */
148 struct tpcon rx, tx;
149 struct list_head notifier;
150 wait_queue_head_t wait;
151 spinlock_t rx_lock; /* protect single thread state machine */
152 };
153
154 static LIST_HEAD(isotp_notifier_list);
155 static DEFINE_SPINLOCK(isotp_notifier_lock);
156 static struct isotp_sock *isotp_busy_notifier;
157
158 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
159 {
160 return (struct isotp_sock *)sk;
161 }
162
163 static u32 isotp_bc_flags(struct isotp_sock *so)
164 {
165 return so->opt.flags & ISOTP_ALL_BC_FLAGS;
166 }
167
168 static bool isotp_register_rxid(struct isotp_sock *so)
169 {
170 /* no broadcast modes => register rx_id for FC frame reception */
171 return (isotp_bc_flags(so) == 0);
172 }
173
174 static bool isotp_register_txecho(struct isotp_sock *so)
175 {
176 /* all modes but SF_BROADCAST register for tx echo skbs */
177 return (isotp_bc_flags(so) != CAN_ISOTP_SF_BROADCAST);
178 }
179
180 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
181 {
182 struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
183 rxtimer);
184 struct sock *sk = &so->sk;
185
186 if (so->rx.state == ISOTP_WAIT_DATA) {
187 /* we did not get new data frames in time */
188
189 /* report 'connection timed out' */
190 sk->sk_err = ETIMEDOUT;
191 if (!sock_flag(sk, SOCK_DEAD))
192 sk_error_report(sk);
193
194 /* reset rx state */
195 so->rx.state = ISOTP_IDLE;
196 }
197
198 return HRTIMER_NORESTART;
199 }
200
201 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
202 {
203 struct net_device *dev;
204 struct sk_buff *nskb;
205 struct canfd_frame *ncf;
206 struct isotp_sock *so = isotp_sk(sk);
207 int can_send_ret;
208
209 nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
210 if (!nskb)
211 return 1;
212
213 dev = dev_get_by_index(sock_net(sk), so->ifindex);
214 if (!dev) {
215 kfree_skb(nskb);
216 return 1;
217 }
218
219 can_skb_reserve(nskb);
220 can_skb_prv(nskb)->ifindex = dev->ifindex;
221 can_skb_prv(nskb)->skbcnt = 0;
222
223 nskb->dev = dev;
224 can_skb_set_owner(nskb, sk);
225 ncf = (struct canfd_frame *)nskb->data;
226 skb_put_zero(nskb, so->ll.mtu);
227
228 /* create & send flow control reply */
229 ncf->can_id = so->txid;
230
231 if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
232 memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
233 ncf->len = CAN_MAX_DLEN;
234 } else {
235 ncf->len = ae + FC_CONTENT_SZ;
236 }
237
238 ncf->data[ae] = N_PCI_FC | flowstatus;
239 ncf->data[ae + 1] = so->rxfc.bs;
240 ncf->data[ae + 2] = so->rxfc.stmin;
241
242 if (ae)
243 ncf->data[0] = so->opt.ext_address;
244
245 ncf->flags = so->ll.tx_flags;
246
247 can_send_ret = can_send(nskb, 1);
248 if (can_send_ret)
249 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
250 __func__, ERR_PTR(can_send_ret));
251
252 dev_put(dev);
253
254 /* reset blocksize counter */
255 so->rx.bs = 0;
256
257 /* reset last CF frame rx timestamp for rx stmin enforcement */
258 so->lastrxcf_tstamp = ktime_set(0, 0);
259
260 /* start rx timeout watchdog */
261 hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
262 return 0;
263 }
264
265 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
266 {
267 struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
268
269 BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
270
271 memset(addr, 0, sizeof(*addr));
272 addr->can_family = AF_CAN;
273 addr->can_ifindex = skb->dev->ifindex;
274
275 if (sock_queue_rcv_skb(sk, skb) < 0)
276 kfree_skb(skb);
277 }
278
279 static u8 padlen(u8 datalen)
280 {
281 static const u8 plen[] = {
282 8, 8, 8, 8, 8, 8, 8, 8, 8, /* 0 - 8 */
283 12, 12, 12, 12, /* 9 - 12 */
284 16, 16, 16, 16, /* 13 - 16 */
285 20, 20, 20, 20, /* 17 - 20 */
286 24, 24, 24, 24, /* 21 - 24 */
287 32, 32, 32, 32, 32, 32, 32, 32, /* 25 - 32 */
288 48, 48, 48, 48, 48, 48, 48, 48, /* 33 - 40 */
289 48, 48, 48, 48, 48, 48, 48, 48 /* 41 - 48 */
290 };
291
292 if (datalen > 48)
293 return 64;
294
295 return plen[datalen];
296 }
297
298 /* check for length optimization and return 1/true when the check fails */
299 static int check_optimized(struct canfd_frame *cf, int start_index)
300 {
301 /* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
302 * padding would start at this point. E.g. if the padding would
303 * start at cf.data[7] cf->len has to be 7 to be optimal.
304 * Note: The data[] index starts with zero.
305 */
306 if (cf->len <= CAN_MAX_DLEN)
307 return (cf->len != start_index);
308
309 /* This relation is also valid in the non-linear DLC range, where
310 * we need to take care of the minimal next possible CAN_DL.
311 * The correct check would be (padlen(cf->len) != padlen(start_index)).
312 * But as cf->len can only take discrete values from 12, .., 64 at this
313 * point the padlen(cf->len) is always equal to cf->len.
314 */
315 return (cf->len != padlen(start_index));
316 }
317
318 /* check padding and return 1/true when the check fails */
319 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
320 int start_index, u8 content)
321 {
322 int i;
323
324 /* no RX_PADDING value => check length of optimized frame length */
325 if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
326 if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
327 return check_optimized(cf, start_index);
328
329 /* no valid test against empty value => ignore frame */
330 return 1;
331 }
332
333 /* check datalength of correctly padded CAN frame */
334 if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
335 cf->len != padlen(cf->len))
336 return 1;
337
338 /* check padding content */
339 if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
340 for (i = start_index; i < cf->len; i++)
341 if (cf->data[i] != content)
342 return 1;
343 }
344 return 0;
345 }
346
347 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
348 {
349 struct sock *sk = &so->sk;
350
351 if (so->tx.state != ISOTP_WAIT_FC &&
352 so->tx.state != ISOTP_WAIT_FIRST_FC)
353 return 0;
354
355 hrtimer_cancel(&so->txtimer);
356
357 if ((cf->len < ae + FC_CONTENT_SZ) ||
358 ((so->opt.flags & ISOTP_CHECK_PADDING) &&
359 check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
360 /* malformed PDU - report 'not a data message' */
361 sk->sk_err = EBADMSG;
362 if (!sock_flag(sk, SOCK_DEAD))
363 sk_error_report(sk);
364
365 so->tx.state = ISOTP_IDLE;
366 wake_up_interruptible(&so->wait);
367 return 1;
368 }
369
370 /* get communication parameters only from the first FC frame */
371 if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
372 so->txfc.bs = cf->data[ae + 1];
373 so->txfc.stmin = cf->data[ae + 2];
374
375 /* fix wrong STmin values according spec */
376 if (so->txfc.stmin > 0x7F &&
377 (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
378 so->txfc.stmin = 0x7F;
379
380 so->tx_gap = ktime_set(0, 0);
381 /* add transmission time for CAN frame N_As */
382 so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
383 /* add waiting time for consecutive frames N_Cs */
384 if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
385 so->tx_gap = ktime_add_ns(so->tx_gap,
386 so->force_tx_stmin);
387 else if (so->txfc.stmin < 0x80)
388 so->tx_gap = ktime_add_ns(so->tx_gap,
389 so->txfc.stmin * 1000000);
390 else
391 so->tx_gap = ktime_add_ns(so->tx_gap,
392 (so->txfc.stmin - 0xF0)
393 * 100000);
394 so->tx.state = ISOTP_WAIT_FC;
395 }
396
397 switch (cf->data[ae] & 0x0F) {
398 case ISOTP_FC_CTS:
399 so->tx.bs = 0;
400 so->tx.state = ISOTP_SENDING;
401 /* start cyclic timer for sending CF frame */
402 hrtimer_start(&so->txtimer, so->tx_gap,
403 HRTIMER_MODE_REL_SOFT);
404 break;
405
406 case ISOTP_FC_WT:
407 /* start timer to wait for next FC frame */
408 hrtimer_start(&so->txtimer, ktime_set(1, 0),
409 HRTIMER_MODE_REL_SOFT);
410 break;
411
412 case ISOTP_FC_OVFLW:
413 /* overflow on receiver side - report 'message too long' */
414 sk->sk_err = EMSGSIZE;
415 if (!sock_flag(sk, SOCK_DEAD))
416 sk_error_report(sk);
417 fallthrough;
418
419 default:
420 /* stop this tx job */
421 so->tx.state = ISOTP_IDLE;
422 wake_up_interruptible(&so->wait);
423 }
424 return 0;
425 }
426
427 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
428 struct sk_buff *skb, int len)
429 {
430 struct isotp_sock *so = isotp_sk(sk);
431 struct sk_buff *nskb;
432
433 hrtimer_cancel(&so->rxtimer);
434 so->rx.state = ISOTP_IDLE;
435
436 if (!len || len > cf->len - pcilen)
437 return 1;
438
439 if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
440 check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
441 /* malformed PDU - report 'not a data message' */
442 sk->sk_err = EBADMSG;
443 if (!sock_flag(sk, SOCK_DEAD))
444 sk_error_report(sk);
445 return 1;
446 }
447
448 nskb = alloc_skb(len, gfp_any());
449 if (!nskb)
450 return 1;
451
452 memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
453
454 nskb->tstamp = skb->tstamp;
455 nskb->dev = skb->dev;
456 isotp_rcv_skb(nskb, sk);
457 return 0;
458 }
459
460 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
461 {
462 struct isotp_sock *so = isotp_sk(sk);
463 int i;
464 int off;
465 int ff_pci_sz;
466
467 hrtimer_cancel(&so->rxtimer);
468 so->rx.state = ISOTP_IDLE;
469
470 /* get the used sender LL_DL from the (first) CAN frame data length */
471 so->rx.ll_dl = padlen(cf->len);
472
473 /* the first frame has to use the entire frame up to LL_DL length */
474 if (cf->len != so->rx.ll_dl)
475 return 1;
476
477 /* get the FF_DL */
478 so->rx.len = (cf->data[ae] & 0x0F) << 8;
479 so->rx.len += cf->data[ae + 1];
480
481 /* Check for FF_DL escape sequence supporting 32 bit PDU length */
482 if (so->rx.len) {
483 ff_pci_sz = FF_PCI_SZ12;
484 } else {
485 /* FF_DL = 0 => get real length from next 4 bytes */
486 so->rx.len = cf->data[ae + 2] << 24;
487 so->rx.len += cf->data[ae + 3] << 16;
488 so->rx.len += cf->data[ae + 4] << 8;
489 so->rx.len += cf->data[ae + 5];
490 ff_pci_sz = FF_PCI_SZ32;
491 }
492
493 /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
494 off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
495
496 if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
497 return 1;
498
499 if (so->rx.len > MAX_MSG_LENGTH) {
500 /* send FC frame with overflow status */
501 isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
502 return 1;
503 }
504
505 /* copy the first received data bytes */
506 so->rx.idx = 0;
507 for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
508 so->rx.buf[so->rx.idx++] = cf->data[i];
509
510 /* initial setup for this pdu reception */
511 so->rx.sn = 1;
512 so->rx.state = ISOTP_WAIT_DATA;
513
514 /* no creation of flow control frames */
515 if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
516 return 0;
517
518 /* send our first FC frame */
519 isotp_send_fc(sk, ae, ISOTP_FC_CTS);
520 return 0;
521 }
522
523 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
524 struct sk_buff *skb)
525 {
526 struct isotp_sock *so = isotp_sk(sk);
527 struct sk_buff *nskb;
528 int i;
529
530 if (so->rx.state != ISOTP_WAIT_DATA)
531 return 0;
532
533 /* drop if timestamp gap is less than force_rx_stmin nano secs */
534 if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
535 if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
536 so->force_rx_stmin)
537 return 0;
538
539 so->lastrxcf_tstamp = skb->tstamp;
540 }
541
542 hrtimer_cancel(&so->rxtimer);
543
544 /* CFs are never longer than the FF */
545 if (cf->len > so->rx.ll_dl)
546 return 1;
547
548 /* CFs have usually the LL_DL length */
549 if (cf->len < so->rx.ll_dl) {
550 /* this is only allowed for the last CF */
551 if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
552 return 1;
553 }
554
555 if ((cf->data[ae] & 0x0F) != so->rx.sn) {
556 /* wrong sn detected - report 'illegal byte sequence' */
557 sk->sk_err = EILSEQ;
558 if (!sock_flag(sk, SOCK_DEAD))
559 sk_error_report(sk);
560
561 /* reset rx state */
562 so->rx.state = ISOTP_IDLE;
563 return 1;
564 }
565 so->rx.sn++;
566 so->rx.sn %= 16;
567
568 for (i = ae + N_PCI_SZ; i < cf->len; i++) {
569 so->rx.buf[so->rx.idx++] = cf->data[i];
570 if (so->rx.idx >= so->rx.len)
571 break;
572 }
573
574 if (so->rx.idx >= so->rx.len) {
575 /* we are done */
576 so->rx.state = ISOTP_IDLE;
577
578 if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
579 check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
580 /* malformed PDU - report 'not a data message' */
581 sk->sk_err = EBADMSG;
582 if (!sock_flag(sk, SOCK_DEAD))
583 sk_error_report(sk);
584 return 1;
585 }
586
587 nskb = alloc_skb(so->rx.len, gfp_any());
588 if (!nskb)
589 return 1;
590
591 memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
592 so->rx.len);
593
594 nskb->tstamp = skb->tstamp;
595 nskb->dev = skb->dev;
596 isotp_rcv_skb(nskb, sk);
597 return 0;
598 }
599
600 /* perform blocksize handling, if enabled */
601 if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
602 /* start rx timeout watchdog */
603 hrtimer_start(&so->rxtimer, ktime_set(1, 0),
604 HRTIMER_MODE_REL_SOFT);
605 return 0;
606 }
607
608 /* no creation of flow control frames */
609 if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
610 return 0;
611
612 /* we reached the specified blocksize so->rxfc.bs */
613 isotp_send_fc(sk, ae, ISOTP_FC_CTS);
614 return 0;
615 }
616
617 static void isotp_rcv(struct sk_buff *skb, void *data)
618 {
619 struct sock *sk = (struct sock *)data;
620 struct isotp_sock *so = isotp_sk(sk);
621 struct canfd_frame *cf;
622 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
623 u8 n_pci_type, sf_dl;
624
625 /* Strictly receive only frames with the configured MTU size
626 * => clear separation of CAN2.0 / CAN FD transport channels
627 */
628 if (skb->len != so->ll.mtu)
629 return;
630
631 cf = (struct canfd_frame *)skb->data;
632
633 /* if enabled: check reception of my configured extended address */
634 if (ae && cf->data[0] != so->opt.rx_ext_address)
635 return;
636
637 n_pci_type = cf->data[ae] & 0xF0;
638
639 /* Make sure the state changes and data structures stay consistent at
640 * CAN frame reception time. This locking is not needed in real world
641 * use cases but the inconsistency can be triggered with syzkaller.
642 */
643 spin_lock(&so->rx_lock);
644
645 if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
646 /* check rx/tx path half duplex expectations */
647 if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
648 (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
649 goto out_unlock;
650 }
651
652 switch (n_pci_type) {
653 case N_PCI_FC:
654 /* tx path: flow control frame containing the FC parameters */
655 isotp_rcv_fc(so, cf, ae);
656 break;
657
658 case N_PCI_SF:
659 /* rx path: single frame
660 *
661 * As we do not have a rx.ll_dl configuration, we can only test
662 * if the CAN frames payload length matches the LL_DL == 8
663 * requirements - no matter if it's CAN 2.0 or CAN FD
664 */
665
666 /* get the SF_DL from the N_PCI byte */
667 sf_dl = cf->data[ae] & 0x0F;
668
669 if (cf->len <= CAN_MAX_DLEN) {
670 isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
671 } else {
672 if (skb->len == CANFD_MTU) {
673 /* We have a CAN FD frame and CAN_DL is greater than 8:
674 * Only frames with the SF_DL == 0 ESC value are valid.
675 *
676 * If so take care of the increased SF PCI size
677 * (SF_PCI_SZ8) to point to the message content behind
678 * the extended SF PCI info and get the real SF_DL
679 * length value from the formerly first data byte.
680 */
681 if (sf_dl == 0)
682 isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
683 cf->data[SF_PCI_SZ4 + ae]);
684 }
685 }
686 break;
687
688 case N_PCI_FF:
689 /* rx path: first frame */
690 isotp_rcv_ff(sk, cf, ae);
691 break;
692
693 case N_PCI_CF:
694 /* rx path: consecutive frame */
695 isotp_rcv_cf(sk, cf, ae, skb);
696 break;
697 }
698
699 out_unlock:
700 spin_unlock(&so->rx_lock);
701 }
702
703 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
704 int ae, int off)
705 {
706 int pcilen = N_PCI_SZ + ae + off;
707 int space = so->tx.ll_dl - pcilen;
708 int num = min_t(int, so->tx.len - so->tx.idx, space);
709 int i;
710
711 cf->can_id = so->txid;
712 cf->len = num + pcilen;
713
714 if (num < space) {
715 if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
716 /* user requested padding */
717 cf->len = padlen(cf->len);
718 memset(cf->data, so->opt.txpad_content, cf->len);
719 } else if (cf->len > CAN_MAX_DLEN) {
720 /* mandatory padding for CAN FD frames */
721 cf->len = padlen(cf->len);
722 memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
723 cf->len);
724 }
725 }
726
727 for (i = 0; i < num; i++)
728 cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
729
730 if (ae)
731 cf->data[0] = so->opt.ext_address;
732 }
733
734 static void isotp_send_cframe(struct isotp_sock *so)
735 {
736 struct sock *sk = &so->sk;
737 struct sk_buff *skb;
738 struct net_device *dev;
739 struct canfd_frame *cf;
740 int can_send_ret;
741 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
742
743 dev = dev_get_by_index(sock_net(sk), so->ifindex);
744 if (!dev)
745 return;
746
747 skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
748 if (!skb) {
749 dev_put(dev);
750 return;
751 }
752
753 can_skb_reserve(skb);
754 can_skb_prv(skb)->ifindex = dev->ifindex;
755 can_skb_prv(skb)->skbcnt = 0;
756
757 cf = (struct canfd_frame *)skb->data;
758 skb_put_zero(skb, so->ll.mtu);
759
760 /* create consecutive frame */
761 isotp_fill_dataframe(cf, so, ae, 0);
762
763 /* place consecutive frame N_PCI in appropriate index */
764 cf->data[ae] = N_PCI_CF | so->tx.sn++;
765 so->tx.sn %= 16;
766 so->tx.bs++;
767
768 cf->flags = so->ll.tx_flags;
769
770 skb->dev = dev;
771 can_skb_set_owner(skb, sk);
772
773 /* cfecho should have been zero'ed by init/isotp_rcv_echo() */
774 if (so->cfecho)
775 pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
776
777 /* set consecutive frame echo tag */
778 so->cfecho = *(u32 *)cf->data;
779
780 /* send frame with local echo enabled */
781 can_send_ret = can_send(skb, 1);
782 if (can_send_ret) {
783 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
784 __func__, ERR_PTR(can_send_ret));
785 if (can_send_ret == -ENOBUFS)
786 pr_notice_once("can-isotp: tx queue is full\n");
787 }
788 dev_put(dev);
789 }
790
791 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
792 int ae)
793 {
794 int i;
795 int ff_pci_sz;
796
797 cf->can_id = so->txid;
798 cf->len = so->tx.ll_dl;
799 if (ae)
800 cf->data[0] = so->opt.ext_address;
801
802 /* create N_PCI bytes with 12/32 bit FF_DL data length */
803 if (so->tx.len > 4095) {
804 /* use 32 bit FF_DL notation */
805 cf->data[ae] = N_PCI_FF;
806 cf->data[ae + 1] = 0;
807 cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
808 cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
809 cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
810 cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
811 ff_pci_sz = FF_PCI_SZ32;
812 } else {
813 /* use 12 bit FF_DL notation */
814 cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
815 cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
816 ff_pci_sz = FF_PCI_SZ12;
817 }
818
819 /* add first data bytes depending on ae */
820 for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
821 cf->data[i] = so->tx.buf[so->tx.idx++];
822
823 so->tx.sn = 1;
824 }
825
826 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
827 {
828 struct sock *sk = (struct sock *)data;
829 struct isotp_sock *so = isotp_sk(sk);
830 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
831
832 /* only handle my own local echo skb's */
833 if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
834 return;
835
836 /* cancel local echo timeout */
837 hrtimer_cancel(&so->txtimer);
838
839 /* local echo skb with consecutive frame has been consumed */
840 so->cfecho = 0;
841
842 if (so->tx.idx >= so->tx.len) {
843 /* we are done */
844 so->tx.state = ISOTP_IDLE;
845 wake_up_interruptible(&so->wait);
846 return;
847 }
848
849 if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
850 /* stop and wait for FC with timeout */
851 so->tx.state = ISOTP_WAIT_FC;
852 hrtimer_start(&so->txtimer, ktime_set(1, 0),
853 HRTIMER_MODE_REL_SOFT);
854 return;
855 }
856
857 /* no gap between data frames needed => use burst mode */
858 if (!so->tx_gap) {
859 isotp_send_cframe(so);
860 return;
861 }
862
863 /* start timer to send next consecutive frame with correct delay */
864 hrtimer_start(&so->txtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
865 }
866
867 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
868 {
869 struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
870 txtimer);
871 struct sock *sk = &so->sk;
872 enum hrtimer_restart restart = HRTIMER_NORESTART;
873
874 switch (so->tx.state) {
875 case ISOTP_SENDING:
876
877 /* cfecho should be consumed by isotp_rcv_echo() here */
878 if (!so->cfecho) {
879 /* start timeout for unlikely lost echo skb */
880 hrtimer_set_expires(&so->txtimer,
881 ktime_add(ktime_get(),
882 ktime_set(2, 0)));
883 restart = HRTIMER_RESTART;
884
885 /* push out the next consecutive frame */
886 isotp_send_cframe(so);
887 break;
888 }
889
890 /* cfecho has not been cleared in isotp_rcv_echo() */
891 pr_notice_once("can-isotp: cfecho %08X timeout\n", so->cfecho);
892 fallthrough;
893
894 case ISOTP_WAIT_FC:
895 case ISOTP_WAIT_FIRST_FC:
896
897 /* we did not get any flow control frame in time */
898
899 /* report 'communication error on send' */
900 sk->sk_err = ECOMM;
901 if (!sock_flag(sk, SOCK_DEAD))
902 sk_error_report(sk);
903
904 /* reset tx state */
905 so->tx.state = ISOTP_IDLE;
906 wake_up_interruptible(&so->wait);
907 break;
908
909 default:
910 WARN_ON_ONCE(1);
911 }
912
913 return restart;
914 }
915
916 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
917 {
918 struct sock *sk = sock->sk;
919 struct isotp_sock *so = isotp_sk(sk);
920 u32 old_state = so->tx.state;
921 struct sk_buff *skb;
922 struct net_device *dev;
923 struct canfd_frame *cf;
924 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
925 int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
926 s64 hrtimer_sec = 0;
927 int off;
928 int err;
929
930 if (!so->bound)
931 return -EADDRNOTAVAIL;
932
933 /* we do not support multiple buffers - for now */
934 if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
935 wq_has_sleeper(&so->wait)) {
936 if (msg->msg_flags & MSG_DONTWAIT) {
937 err = -EAGAIN;
938 goto err_out;
939 }
940
941 /* wait for complete transmission of current pdu */
942 err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
943 if (err)
944 goto err_out;
945 }
946
947 if (!size || size > MAX_MSG_LENGTH) {
948 err = -EINVAL;
949 goto err_out_drop;
950 }
951
952 /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
953 off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
954
955 /* does the given data fit into a single frame for SF_BROADCAST? */
956 if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
957 (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
958 err = -EINVAL;
959 goto err_out_drop;
960 }
961
962 err = memcpy_from_msg(so->tx.buf, msg, size);
963 if (err < 0)
964 goto err_out_drop;
965
966 dev = dev_get_by_index(sock_net(sk), so->ifindex);
967 if (!dev) {
968 err = -ENXIO;
969 goto err_out_drop;
970 }
971
972 skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
973 msg->msg_flags & MSG_DONTWAIT, &err);
974 if (!skb) {
975 dev_put(dev);
976 goto err_out_drop;
977 }
978
979 can_skb_reserve(skb);
980 can_skb_prv(skb)->ifindex = dev->ifindex;
981 can_skb_prv(skb)->skbcnt = 0;
982
983 so->tx.len = size;
984 so->tx.idx = 0;
985
986 cf = (struct canfd_frame *)skb->data;
987 skb_put_zero(skb, so->ll.mtu);
988
989 /* check for single frame transmission depending on TX_DL */
990 if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
991 /* The message size generally fits into a SingleFrame - good.
992 *
993 * SF_DL ESC offset optimization:
994 *
995 * When TX_DL is greater 8 but the message would still fit
996 * into a 8 byte CAN frame, we can omit the offset.
997 * This prevents a protocol caused length extension from
998 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
999 */
1000 if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1001 off = 0;
1002
1003 isotp_fill_dataframe(cf, so, ae, off);
1004
1005 /* place single frame N_PCI w/o length in appropriate index */
1006 cf->data[ae] = N_PCI_SF;
1007
1008 /* place SF_DL size value depending on the SF_DL ESC offset */
1009 if (off)
1010 cf->data[SF_PCI_SZ4 + ae] = size;
1011 else
1012 cf->data[ae] |= size;
1013
1014 so->tx.state = ISOTP_IDLE;
1015 wake_up_interruptible(&so->wait);
1016
1017 /* don't enable wait queue for a single frame transmission */
1018 wait_tx_done = 0;
1019 } else {
1020 /* send first frame */
1021
1022 isotp_create_fframe(cf, so, ae);
1023
1024 if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1025 /* set timer for FC-less operation (STmin = 0) */
1026 if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1027 so->tx_gap = ktime_set(0, so->force_tx_stmin);
1028 else
1029 so->tx_gap = ktime_set(0, so->frame_txtime);
1030
1031 /* disable wait for FCs due to activated block size */
1032 so->txfc.bs = 0;
1033
1034 /* cfecho should have been zero'ed by init */
1035 if (so->cfecho)
1036 pr_notice_once("can-isotp: no fc cfecho %08X\n",
1037 so->cfecho);
1038
1039 /* set consecutive frame echo tag */
1040 so->cfecho = *(u32 *)cf->data;
1041
1042 /* switch directly to ISOTP_SENDING state */
1043 so->tx.state = ISOTP_SENDING;
1044
1045 /* start timeout for unlikely lost echo skb */
1046 hrtimer_sec = 2;
1047 } else {
1048 /* standard flow control check */
1049 so->tx.state = ISOTP_WAIT_FIRST_FC;
1050
1051 /* start timeout for FC */
1052 hrtimer_sec = 1;
1053 }
1054
1055 hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1056 HRTIMER_MODE_REL_SOFT);
1057 }
1058
1059 /* send the first or only CAN frame */
1060 cf->flags = so->ll.tx_flags;
1061
1062 skb->dev = dev;
1063 skb->sk = sk;
1064 err = can_send(skb, 1);
1065 dev_put(dev);
1066 if (err) {
1067 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1068 __func__, ERR_PTR(err));
1069
1070 /* no transmission -> no timeout monitoring */
1071 if (hrtimer_sec)
1072 hrtimer_cancel(&so->txtimer);
1073
1074 /* reset consecutive frame echo tag */
1075 so->cfecho = 0;
1076
1077 goto err_out_drop;
1078 }
1079
1080 if (wait_tx_done) {
1081 /* wait for complete transmission of current pdu */
1082 wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1083
1084 if (sk->sk_err)
1085 return -sk->sk_err;
1086 }
1087
1088 return size;
1089
1090 err_out_drop:
1091 /* drop this PDU and unlock a potential wait queue */
1092 old_state = ISOTP_IDLE;
1093 err_out:
1094 so->tx.state = old_state;
1095 if (so->tx.state == ISOTP_IDLE)
1096 wake_up_interruptible(&so->wait);
1097
1098 return err;
1099 }
1100
1101 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1102 int flags)
1103 {
1104 struct sock *sk = sock->sk;
1105 struct sk_buff *skb;
1106 struct isotp_sock *so = isotp_sk(sk);
1107 int ret = 0;
1108
1109 if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1110 return -EINVAL;
1111
1112 if (!so->bound)
1113 return -EADDRNOTAVAIL;
1114
1115 skb = skb_recv_datagram(sk, flags, &ret);
1116 if (!skb)
1117 return ret;
1118
1119 if (size < skb->len)
1120 msg->msg_flags |= MSG_TRUNC;
1121 else
1122 size = skb->len;
1123
1124 ret = memcpy_to_msg(msg, skb->data, size);
1125 if (ret < 0)
1126 goto out_err;
1127
1128 sock_recv_timestamp(msg, sk, skb);
1129
1130 if (msg->msg_name) {
1131 __sockaddr_check_size(ISOTP_MIN_NAMELEN);
1132 msg->msg_namelen = ISOTP_MIN_NAMELEN;
1133 memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1134 }
1135
1136 /* set length of return value */
1137 ret = (flags & MSG_TRUNC) ? skb->len : size;
1138
1139 out_err:
1140 skb_free_datagram(sk, skb);
1141
1142 return ret;
1143 }
1144
1145 static int isotp_release(struct socket *sock)
1146 {
1147 struct sock *sk = sock->sk;
1148 struct isotp_sock *so;
1149 struct net *net;
1150
1151 if (!sk)
1152 return 0;
1153
1154 so = isotp_sk(sk);
1155 net = sock_net(sk);
1156
1157 /* wait for complete transmission of current pdu */
1158 wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1159
1160 spin_lock(&isotp_notifier_lock);
1161 while (isotp_busy_notifier == so) {
1162 spin_unlock(&isotp_notifier_lock);
1163 schedule_timeout_uninterruptible(1);
1164 spin_lock(&isotp_notifier_lock);
1165 }
1166 list_del(&so->notifier);
1167 spin_unlock(&isotp_notifier_lock);
1168
1169 lock_sock(sk);
1170
1171 /* remove current filters & unregister */
1172 if (so->bound && isotp_register_txecho(so)) {
1173 if (so->ifindex) {
1174 struct net_device *dev;
1175
1176 dev = dev_get_by_index(net, so->ifindex);
1177 if (dev) {
1178 if (isotp_register_rxid(so))
1179 can_rx_unregister(net, dev, so->rxid,
1180 SINGLE_MASK(so->rxid),
1181 isotp_rcv, sk);
1182
1183 can_rx_unregister(net, dev, so->txid,
1184 SINGLE_MASK(so->txid),
1185 isotp_rcv_echo, sk);
1186 dev_put(dev);
1187 synchronize_rcu();
1188 }
1189 }
1190 }
1191
1192 hrtimer_cancel(&so->txtimer);
1193 hrtimer_cancel(&so->rxtimer);
1194
1195 so->ifindex = 0;
1196 so->bound = 0;
1197
1198 sock_orphan(sk);
1199 sock->sk = NULL;
1200
1201 release_sock(sk);
1202 sock_put(sk);
1203
1204 return 0;
1205 }
1206
1207 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1208 {
1209 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1210 struct sock *sk = sock->sk;
1211 struct isotp_sock *so = isotp_sk(sk);
1212 struct net *net = sock_net(sk);
1213 int ifindex;
1214 struct net_device *dev;
1215 canid_t tx_id = addr->can_addr.tp.tx_id;
1216 canid_t rx_id = addr->can_addr.tp.rx_id;
1217 int err = 0;
1218 int notify_enetdown = 0;
1219
1220 if (len < ISOTP_MIN_NAMELEN)
1221 return -EINVAL;
1222
1223 /* sanitize tx CAN identifier */
1224 if (tx_id & CAN_EFF_FLAG)
1225 tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1226 else
1227 tx_id &= CAN_SFF_MASK;
1228
1229 /* give feedback on wrong CAN-ID value */
1230 if (tx_id != addr->can_addr.tp.tx_id)
1231 return -EINVAL;
1232
1233 /* sanitize rx CAN identifier (if needed) */
1234 if (isotp_register_rxid(so)) {
1235 if (rx_id & CAN_EFF_FLAG)
1236 rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1237 else
1238 rx_id &= CAN_SFF_MASK;
1239
1240 /* give feedback on wrong CAN-ID value */
1241 if (rx_id != addr->can_addr.tp.rx_id)
1242 return -EINVAL;
1243 }
1244
1245 if (!addr->can_ifindex)
1246 return -ENODEV;
1247
1248 lock_sock(sk);
1249
1250 if (so->bound) {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254
1255 /* ensure different CAN IDs when the rx_id is to be registered */
1256 if (isotp_register_rxid(so) && rx_id == tx_id) {
1257 err = -EADDRNOTAVAIL;
1258 goto out;
1259 }
1260
1261 dev = dev_get_by_index(net, addr->can_ifindex);
1262 if (!dev) {
1263 err = -ENODEV;
1264 goto out;
1265 }
1266 if (dev->type != ARPHRD_CAN) {
1267 dev_put(dev);
1268 err = -ENODEV;
1269 goto out;
1270 }
1271 if (dev->mtu < so->ll.mtu) {
1272 dev_put(dev);
1273 err = -EINVAL;
1274 goto out;
1275 }
1276 if (!(dev->flags & IFF_UP))
1277 notify_enetdown = 1;
1278
1279 ifindex = dev->ifindex;
1280
1281 if (isotp_register_rxid(so))
1282 can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1283 isotp_rcv, sk, "isotp", sk);
1284
1285 if (isotp_register_txecho(so)) {
1286 /* no consecutive frame echo skb in flight */
1287 so->cfecho = 0;
1288
1289 /* register for echo skb's */
1290 can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1291 isotp_rcv_echo, sk, "isotpe", sk);
1292 }
1293
1294 dev_put(dev);
1295
1296 /* switch to new settings */
1297 so->ifindex = ifindex;
1298 so->rxid = rx_id;
1299 so->txid = tx_id;
1300 so->bound = 1;
1301
1302 out:
1303 release_sock(sk);
1304
1305 if (notify_enetdown) {
1306 sk->sk_err = ENETDOWN;
1307 if (!sock_flag(sk, SOCK_DEAD))
1308 sk_error_report(sk);
1309 }
1310
1311 return err;
1312 }
1313
1314 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1315 {
1316 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1317 struct sock *sk = sock->sk;
1318 struct isotp_sock *so = isotp_sk(sk);
1319
1320 if (peer)
1321 return -EOPNOTSUPP;
1322
1323 memset(addr, 0, ISOTP_MIN_NAMELEN);
1324 addr->can_family = AF_CAN;
1325 addr->can_ifindex = so->ifindex;
1326 addr->can_addr.tp.rx_id = so->rxid;
1327 addr->can_addr.tp.tx_id = so->txid;
1328
1329 return ISOTP_MIN_NAMELEN;
1330 }
1331
1332 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1333 sockptr_t optval, unsigned int optlen)
1334 {
1335 struct sock *sk = sock->sk;
1336 struct isotp_sock *so = isotp_sk(sk);
1337 int ret = 0;
1338
1339 if (so->bound)
1340 return -EISCONN;
1341
1342 switch (optname) {
1343 case CAN_ISOTP_OPTS:
1344 if (optlen != sizeof(struct can_isotp_options))
1345 return -EINVAL;
1346
1347 if (copy_from_sockptr(&so->opt, optval, optlen))
1348 return -EFAULT;
1349
1350 /* no separate rx_ext_address is given => use ext_address */
1351 if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1352 so->opt.rx_ext_address = so->opt.ext_address;
1353
1354 /* these broadcast flags are not allowed together */
1355 if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1356 /* CAN_ISOTP_SF_BROADCAST is prioritized */
1357 so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1358
1359 /* give user feedback on wrong config attempt */
1360 ret = -EINVAL;
1361 }
1362
1363 /* check for frame_txtime changes (0 => no changes) */
1364 if (so->opt.frame_txtime) {
1365 if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1366 so->frame_txtime = 0;
1367 else
1368 so->frame_txtime = so->opt.frame_txtime;
1369 }
1370 break;
1371
1372 case CAN_ISOTP_RECV_FC:
1373 if (optlen != sizeof(struct can_isotp_fc_options))
1374 return -EINVAL;
1375
1376 if (copy_from_sockptr(&so->rxfc, optval, optlen))
1377 return -EFAULT;
1378 break;
1379
1380 case CAN_ISOTP_TX_STMIN:
1381 if (optlen != sizeof(u32))
1382 return -EINVAL;
1383
1384 if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1385 return -EFAULT;
1386 break;
1387
1388 case CAN_ISOTP_RX_STMIN:
1389 if (optlen != sizeof(u32))
1390 return -EINVAL;
1391
1392 if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1393 return -EFAULT;
1394 break;
1395
1396 case CAN_ISOTP_LL_OPTS:
1397 if (optlen == sizeof(struct can_isotp_ll_options)) {
1398 struct can_isotp_ll_options ll;
1399
1400 if (copy_from_sockptr(&ll, optval, optlen))
1401 return -EFAULT;
1402
1403 /* check for correct ISO 11898-1 DLC data length */
1404 if (ll.tx_dl != padlen(ll.tx_dl))
1405 return -EINVAL;
1406
1407 if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1408 return -EINVAL;
1409
1410 if (ll.mtu == CAN_MTU &&
1411 (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1412 return -EINVAL;
1413
1414 memcpy(&so->ll, &ll, sizeof(ll));
1415
1416 /* set ll_dl for tx path to similar place as for rx */
1417 so->tx.ll_dl = ll.tx_dl;
1418 } else {
1419 return -EINVAL;
1420 }
1421 break;
1422
1423 default:
1424 ret = -ENOPROTOOPT;
1425 }
1426
1427 return ret;
1428 }
1429
1430 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1431 sockptr_t optval, unsigned int optlen)
1432
1433 {
1434 struct sock *sk = sock->sk;
1435 int ret;
1436
1437 if (level != SOL_CAN_ISOTP)
1438 return -EINVAL;
1439
1440 lock_sock(sk);
1441 ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1442 release_sock(sk);
1443 return ret;
1444 }
1445
1446 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1447 char __user *optval, int __user *optlen)
1448 {
1449 struct sock *sk = sock->sk;
1450 struct isotp_sock *so = isotp_sk(sk);
1451 int len;
1452 void *val;
1453
1454 if (level != SOL_CAN_ISOTP)
1455 return -EINVAL;
1456 if (get_user(len, optlen))
1457 return -EFAULT;
1458 if (len < 0)
1459 return -EINVAL;
1460
1461 switch (optname) {
1462 case CAN_ISOTP_OPTS:
1463 len = min_t(int, len, sizeof(struct can_isotp_options));
1464 val = &so->opt;
1465 break;
1466
1467 case CAN_ISOTP_RECV_FC:
1468 len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1469 val = &so->rxfc;
1470 break;
1471
1472 case CAN_ISOTP_TX_STMIN:
1473 len = min_t(int, len, sizeof(u32));
1474 val = &so->force_tx_stmin;
1475 break;
1476
1477 case CAN_ISOTP_RX_STMIN:
1478 len = min_t(int, len, sizeof(u32));
1479 val = &so->force_rx_stmin;
1480 break;
1481
1482 case CAN_ISOTP_LL_OPTS:
1483 len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1484 val = &so->ll;
1485 break;
1486
1487 default:
1488 return -ENOPROTOOPT;
1489 }
1490
1491 if (put_user(len, optlen))
1492 return -EFAULT;
1493 if (copy_to_user(optval, val, len))
1494 return -EFAULT;
1495 return 0;
1496 }
1497
1498 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1499 struct net_device *dev)
1500 {
1501 struct sock *sk = &so->sk;
1502
1503 if (!net_eq(dev_net(dev), sock_net(sk)))
1504 return;
1505
1506 if (so->ifindex != dev->ifindex)
1507 return;
1508
1509 switch (msg) {
1510 case NETDEV_UNREGISTER:
1511 lock_sock(sk);
1512 /* remove current filters & unregister */
1513 if (so->bound && isotp_register_txecho(so)) {
1514 if (isotp_register_rxid(so))
1515 can_rx_unregister(dev_net(dev), dev, so->rxid,
1516 SINGLE_MASK(so->rxid),
1517 isotp_rcv, sk);
1518
1519 can_rx_unregister(dev_net(dev), dev, so->txid,
1520 SINGLE_MASK(so->txid),
1521 isotp_rcv_echo, sk);
1522 }
1523
1524 so->ifindex = 0;
1525 so->bound = 0;
1526 release_sock(sk);
1527
1528 sk->sk_err = ENODEV;
1529 if (!sock_flag(sk, SOCK_DEAD))
1530 sk_error_report(sk);
1531 break;
1532
1533 case NETDEV_DOWN:
1534 sk->sk_err = ENETDOWN;
1535 if (!sock_flag(sk, SOCK_DEAD))
1536 sk_error_report(sk);
1537 break;
1538 }
1539 }
1540
1541 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1542 void *ptr)
1543 {
1544 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1545
1546 if (dev->type != ARPHRD_CAN)
1547 return NOTIFY_DONE;
1548 if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1549 return NOTIFY_DONE;
1550 if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1551 return NOTIFY_DONE;
1552
1553 spin_lock(&isotp_notifier_lock);
1554 list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1555 spin_unlock(&isotp_notifier_lock);
1556 isotp_notify(isotp_busy_notifier, msg, dev);
1557 spin_lock(&isotp_notifier_lock);
1558 }
1559 isotp_busy_notifier = NULL;
1560 spin_unlock(&isotp_notifier_lock);
1561 return NOTIFY_DONE;
1562 }
1563
1564 static int isotp_init(struct sock *sk)
1565 {
1566 struct isotp_sock *so = isotp_sk(sk);
1567
1568 so->ifindex = 0;
1569 so->bound = 0;
1570
1571 so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1572 so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1573 so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1574 so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1575 so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1576 so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1577 so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1578 so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1579 so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1580 so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1581 so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1582 so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1583 so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1584
1585 /* set ll_dl for tx path to similar place as for rx */
1586 so->tx.ll_dl = so->ll.tx_dl;
1587
1588 so->rx.state = ISOTP_IDLE;
1589 so->tx.state = ISOTP_IDLE;
1590
1591 hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1592 so->rxtimer.function = isotp_rx_timer_handler;
1593 hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1594 so->txtimer.function = isotp_tx_timer_handler;
1595
1596 init_waitqueue_head(&so->wait);
1597 spin_lock_init(&so->rx_lock);
1598
1599 spin_lock(&isotp_notifier_lock);
1600 list_add_tail(&so->notifier, &isotp_notifier_list);
1601 spin_unlock(&isotp_notifier_lock);
1602
1603 return 0;
1604 }
1605
1606 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1607 unsigned long arg)
1608 {
1609 /* no ioctls for socket layer -> hand it down to NIC layer */
1610 return -ENOIOCTLCMD;
1611 }
1612
1613 static const struct proto_ops isotp_ops = {
1614 .family = PF_CAN,
1615 .release = isotp_release,
1616 .bind = isotp_bind,
1617 .connect = sock_no_connect,
1618 .socketpair = sock_no_socketpair,
1619 .accept = sock_no_accept,
1620 .getname = isotp_getname,
1621 .poll = datagram_poll,
1622 .ioctl = isotp_sock_no_ioctlcmd,
1623 .gettstamp = sock_gettstamp,
1624 .listen = sock_no_listen,
1625 .shutdown = sock_no_shutdown,
1626 .setsockopt = isotp_setsockopt,
1627 .getsockopt = isotp_getsockopt,
1628 .sendmsg = isotp_sendmsg,
1629 .recvmsg = isotp_recvmsg,
1630 .mmap = sock_no_mmap,
1631 .sendpage = sock_no_sendpage,
1632 };
1633
1634 static struct proto isotp_proto __read_mostly = {
1635 .name = "CAN_ISOTP",
1636 .owner = THIS_MODULE,
1637 .obj_size = sizeof(struct isotp_sock),
1638 .init = isotp_init,
1639 };
1640
1641 static const struct can_proto isotp_can_proto = {
1642 .type = SOCK_DGRAM,
1643 .protocol = CAN_ISOTP,
1644 .ops = &isotp_ops,
1645 .prot = &isotp_proto,
1646 };
1647
1648 static struct notifier_block canisotp_notifier = {
1649 .notifier_call = isotp_notifier
1650 };
1651
1652 static __init int isotp_module_init(void)
1653 {
1654 int err;
1655
1656 pr_info("can: isotp protocol\n");
1657
1658 err = can_proto_register(&isotp_can_proto);
1659 if (err < 0)
1660 pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1661 else
1662 register_netdevice_notifier(&canisotp_notifier);
1663
1664 return err;
1665 }
1666
1667 static __exit void isotp_module_exit(void)
1668 {
1669 can_proto_unregister(&isotp_can_proto);
1670 unregister_netdevice_notifier(&canisotp_notifier);
1671 }
1672
1673 module_init(isotp_module_init);
1674 module_exit(isotp_module_exit);